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Kurzfassung

Die zunehmende Komplexität im Design von integrierten Schaltkreisen erfordert innova-
tive Methoden im Systems Engineering. Modellierung und Simulation sind entscheidend
für die frühzeitige Identifikation von Architekturfehlern. Diese Arbeit formuliert die Iden-
tifikation solcher Fehler als Optimierungsproblem, da es im Kern darum geht, Extrema in
einem Simulationsmodell zu finden. Insbesondere wird das Problem auf das Optimierungs-
problem von teuren Black-Box Funktionen reduziert, da die Evaluierung der Zielfunktion,
welche einem Simulationsdurchlauf entspricht, zeitaufwändig ist und keine mathematische
Formulierung des Modells vorliegt. Optimierungstechniken aus verschiedenen Forschungs-
bereichen werden untersucht, wobei sich Partikelschwarm-Optimierung, evolutionäre
Algorithmen und mehrere Varianten der bayesschen Optimierung aus dem Bereich des
maschinellen Lernens als am Vielversprechendsten erweisen. Vier Algorithmen werden
implementiert und sowohl auf künstlichen Benchmark-Funktionen als auch auf einem
ereignisbasierten Simulationsmodell eines 5G-Mobilfunktrasnceivers evaluiert. Zusätzlich
wird ein Parallelisierungsumgebung vorgestellt, um die Ausführung der Algorithmen
auf parallelen Rechenressourcen zu ermöglichen. Die Ergebnisse zeigen, dass drei der
vier implementierten Algorithmen das Optimierungsproblem effektiv lösen. Algorithmen
basierend auf maschinellem Lernen weisen eine schnelle Konvergenz auf, während popula-
tionsbasierte Algorithmen hohe Zuverlässigkeit zeigen. Das Parallelisierungsumgebung
erweist sich als ein wesentlicher Bestandteil zur Erreichung kurzer Konvergenzzeiten. Sie
ermöglicht einen annährend linearen Speed-up auf bis zu 100 CPUs und bietet großes
Potenzial für weitere Skalierbarkeit.

vii





Abstract

The increasing complexity in integrated circuit (IC) design necessitates innovative meth-
ods in systems engineering. Modeling and simulation are crucial for early identification
of architectural flaws. This thesis formulates this flaw identification as an optimization
problem, as it refers to locating extrema in a simulation model. Specifically, the problem
is reduced to the expensive black-box optimization problem, due to the time-consuming
nature of objective function evaluations corresponding to simulation runs and the lack of
a mathematical model. Optimization techniques from various research fields are investi-
gated, with Particle Swarm Optimization, Evolutionary Algorithms, and several Bayesian
Optimization methods from the field of machine learning identified as the most promising
ones. Four algorithms are implemented and evaluated on both artificial benchmark
functions and an event-based simulation model of a 5G cellular transceiver. Additionally,
a parallelization framework is introduced to enable execution of the algorithms on parallel
computing ressources. Results indicate that three out of the four implemented algorithms
effectively solve the optimization problem. Machine learning-based algorithms exhibit
fast convergence, while population-based algorithms demonstrate high reliability. The
parallelization framework proves to be a vital part for achieving reasonable convergence
times. It achieves near-linear speed-up on up to 100 CPUs, with huge potential for
further scalability.
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CHAPTER 1
Introduction

Over the past decades we have seen rapid advancements and continuously rising complexity
in integrated circuit (IC) design. This development poses entirely new challenges to
electronic systems engineering, demanding continuous innovation in systems engineering
methods and approaches. Simulation and modelling have become a vital part of many
systems engineering processes. These tools enable engineers to estimate the consequences
of design decisions early in the development process, thus preventing costly iterations and
ensuring a more efficient design phase. In the first chapter of this thesis it is outlined how
different use cases of such simulation models lead to a common, difficult optimization
problem. This optimization problem is characterized by a black-box objective function
that is expensive to evaluate, as evaluation corresponds to simulation. These insights lead
to a formal problem statement, describing the core challenges addressed in this thesis.
What follows is a rigorous investigation of methods to solve this expensive black-box
optimization problem. Different approaches from various fields of computer science
and engineering are examined, with a focus on machine learning based methods and
heuristic methods. Particle Swarm Optimization, an Evolutionary algorithm and two
different approaches of Bayesian Optimization turn out most promising and are chosen for
implementation. Difficulties that need to be solved are adapting these general algorithms
to the particular problem as well as parallelizing the algorithms and interfacing with
external parallel computing infrastructure. This setup enables simultaneous execution of
hundreds of model evaluations, resulting in significant speed-up and improved scalability.
The details of how these challenges are solved are described in the second chapter of
the thesis. Finally, a set of experiments is conducted on both artificial and real-world
use cases. In particular, the real-world experiments are conducted using an event-based
simulation model of a 5G cellular transceiver. The results, which are described in the third
chapter, show that three out of the four implementations solve the black-box optimization
problem both for the artificial as well as the real-world usecases. The architecture proves
of being scalable and achieves convergence times of only a few minutes on expensive
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1. Introduction

black-box optimization tasks. Finally, in the last two chapters the results are discussed
and compared in detail, providing valuable insights for further implementations and
future research.
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CHAPTER 2
Background and Problem

Statement

2.1 Mobile Communications
Although this thesis clearly focuses on optimization topics, a very basic understanding of
mobile communications supports comprehension of this work. Mobile communications
have transformed the way individuals and societies connect and interact from ground
up. A central part of this development is the user equipment (UE), commonly known as
the mobile phone. The communications takes place between the UE and a network of
basestations ("cell phone towers"). This bidirectional communication involves the UE
sending data in the uplink (UL) and receiving data in the downlink (DL) direction. The
network of basestations provides comprehensive area coverage and acts as an interface to
the backend of the mobile network of the cellular provider which in turn provides access
to the internet. [Plo24]

A series of mobile communication standards has been developed over more than four
decades. The first generation (1G) dates back to the early 1980s and comprises a set of
different specifications and services with strong regional differences and complete lack of
interoperability. A first attempt to unify these services was the Global System for Mobile
Communications (GSM) taking over in the early 1990s. This second generation (2G)
standard allowed interoperability between devices across borders. The third generation
(3G) communication standards were specified by the Third Generation Partnership Project
(3GPP) and enabled high speed data rates for the first time. The first of this generation
was the Universial Mobile Telecommunications System (UMTS), advancements thereof
were High Speed Packet Access (HSPA) and HSPA+. In 2008 3GPP introduced a fourth
generation (4G) standard called Long Term Evolution (LTE). LTE and its successor Long
Term Evolution Advanced (LTE-A) solved many problems and limitations introduced in
3G standards. For the first time data rates of up to 100 Mbit/s became realistic. Today,
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2. Background and Problem Statement

still more than 60% of mobile communication takes place via 4G standards. In 2016
3GPP introduced the fifth generation (5G) standard New Radio (NR) which nowadays is
the latest release that has been commercially deployed at large scale. It’s core promises
are ultra-low latency, ultra-reliability and massive connection density enabling new fields
of applications requiring these capabilities such as autonomous vehicles, smart cities or
remote surgery [Plo24].

Resource management plays a critical role in mobile communications. The principles are
quite similar in LTE and NR. Generally speaking, in radio frequency (RF) communications,
both time and frequency are used as resources, resulting in a two-dimensional resource
grid. The largest time unit in this grid is a frame, lasting 10ms. Each frame is divided
into 10 subframes, each 1ms long. Subframes are further segmented into slots, which
can vary from 1ms to 0.0625ms, and each slot consists of 14 OFDM symbols. In the
frequency domain, the basic unit is the subcarrier, typically 15kHz or 30kHz wide. The
smallest unit in the resource grid, the resource element (RE), comprises one subcarrier
and one OFDM symbol. Twelve consecutive resource elements in the frequency domain
form a resource block [3GP24]. Figure 2.1 illustrates the resource grid for the duration
of one subframe [Ryu20].

The 5G NR protocol defines several communication channels. Some of these channels are

• Physical Downlink Shared Channel (PDSCH)

• Physical Uplink Shared Channel (PUSCH)

• Physical Downlink Control Channel (PDCCH)

• Physical Uplink Control Channel (PUCCH)

• Physical Random Access Channle (PRACH)

• Physical Broadcast Channel (PBCH)

The base station dynamically schedules these channels based on factors such as user
demands, signal quality, and UE speed. Each channel serves different purposes, such as
transmitting user data, control information, or signal quality measurements. For instance,
the PDCCH communicates the scheduling information to the UE, indicating where and
when data can be expected in the resource grid. Thus, to transmit or receive the correct
RF signals, the transceiver must be in a specific state at a precise time. This precision
requires a 5G cellular transceiver to be tightly controlled in terms of time, ensuring that
data is correctly sampled or transmitted.

2.2 Cellular Transceiver
The signal processsing chain of the UE that enables 4G and 5G standards is typically
implemented by an integrated radio frequency (RF) transceiver and a powerful baseband
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2.2. Cellular Transceiver

Figure 2.1: 5G NR Resource Grid [Ryu20]

(BB) processor. The baseband processor, equipped with many CPUs, RAM, and digital
signal processing (DSP) cores, operates a real-time operating system to manage the
cellular connection. It processes connection requests from the application processor and
controls the transceiver. The transceiver is a mixed signal IC, which provides the RF
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2. Background and Problem Statement

Figure 2.2: The signal processing chain implemented by the transceiver and the baseband
processor. Modified from [Plo24].

interface in both transmit and receive direction, converting digital data to RF signals
(transmit) or vice versa (receive).

The transceiver includes analog and digital elements for frequency conversion and ampli-
fication. Key components include the analog-to-digital converter (ADC), which converts
analog signals to digital form, and the upconversion mixer, which shifts the baseband
transmit (Tx) signal to an RF signal centered around the transmit frequency (fTx). This
RF signal is amplified by the power amplifier (PA) to ensure enough transmission power
is reached.

On the receive (Rx) side, the low-noise amplifier (LNA) amplifies the incoming RF signal
before it is downconverted by mixers to baseband for further processing. The channel-
select filter (CSF) and direct current (DC) filter limit the received signal’s bandwidth
and remove any DC offset. All components of this signal processsing chain implemented
by the transceiver and the baseband are illustrated in figure 2.2

A critical challenge in this process is controlling the transceiver components to ensure
precise timing of data transmission, as required by cellular protocols. The timing
is crucial to meet the strict requirements of 4G and 5G standards, which demand
accurate synchronization for reliable communication [Plo24]. This time-sensitive control
is particularly hard due to the transceiver being a mixed-signal integrated circuit, which
introduces various analog timing requirements.
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2.3. Computer Aided Systems Engineering

2.3 Computer Aided Systems Engineering
In recent years electronic systems design has been shaped by the increasing complexity of
both hardware and software and by aggressive time-to-market constraints, constituting
major challenges for system design engineers. According to Moore’s Law which was
first stated in 1969, transistor count per chip doubles every 18 months due to evolving
silicon fabrication technologies [DER97] - a law many believe is still intact today. The
rising number of transistors also leads to an exponential increase in the functionality
that an IC can possibly implement. However, design teams are hardly able to keep
up with that pace - leading to a divergence between technology capabilities and design
capabilities, the well-known design gap [MS13]. The systematic approach to tackle these
design challenges is what the discipline of systems engineering is all about. Systems
engineering is a multidisciplinary field, that is dedicated to the systematic design and
management of complex systems throughout their life cycles. The increasing complexity
of deployed technologies together with ever-rising demands for performance, reliability,
and integration constitute a challenge that cannot be solved by expert domain knowledge
alone anymore.

Therefore, the modern systems engineering process is augmented by a variety of techno-
logical and model-based tools, leading to the term Computer-Aided Systems Engineering.
This approach leverages advanced computer models, simulations and artificial intel-
ligence/machine learning (AI/ML) techniques to enhance the design, analysis, and
management of complex systems. This integration not only improves the efficiency and
effectiveness of the design process but also helps in avoiding costly errors and delays.
By using computer-aided and model-based tools, engineering teams can explore design
alternatives earlier in the design phase, when changing designs is easier and less disruptive.

The section begins with subsection 2.3.1 Systems Engineering describing the fundamental
principles of systems engineering and its theoretic foundations. The goal is to provide a
comprehensive understanding of the underlying challenges and the relevance for every
modern systems design process. We also outline the necessity of computational aid
through modelling, simulation and optimization. Modelling and simulation is dealt with
in the separate subsection 2.3.2 Model Based Systems Engineering. This subsection will
cover the types of simulation models commonly deployed and their development processes.
This thesis illustrates their practical utility by demonstrating how a simulation model
may enhance the systems engineering process of a cellular transceiver.

As soon as an expressive simulation model is at hand, naturally the question arises on
how to find ideal design parameters, whatever ideal means in the given context. It is
shown that this question always leads to a complex optimization problem. Model-based
optimization is a valuable tool enabling systems engineers to analyse a designed system
under possibly millions of scenarios without the need for physical prototypes. The
subsection 2.3.3 Optimization Oriented Systems Engineering shows how the results of
such an optimization may be utilized for both design and verification/validation purposes.
A detailed description of both classical and machine learning based strategies solving
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2. Background and Problem Statement

this complex optimization problem is subject of the next section, 2.7 Modern approaches
to Optimization.

2.3.1 Systems Engineering
In the subsequent sections the discipline of Systems Engineering is explained in detail
creating the foundation for a comprehensive understanding of the problem that this thesis
deals with.

What is Systems Engineering?

In order to get an understanding what the discipline of Systems Engineering (SE) actually
is, it’s vital to define the term system first. According to [Wei07], a system is an artifact
created by humans that consists of components that work together to achieve a goal
that cannot be achieved by one of the components alone. The components themselves
are not further specified - they might consist of hardware, software or mechanical parts
or might even be of human nature. This very general definition - intentionally - covers
an incredible variety of things and also allows for things that are initially unexpected
as systems, e.g. a country’s public transport system or a product’s supply chain. The
physical size of a system however does not imply anything about the complexity. A
physically large system like a country’s public transport system might be quite easy to
model, whereas a tiny thing such as an IC is way more complex to model due to the
level of detail necessary. Complexity of a system therefore always depends on the level of
detail in the underlying model.

The complexity and interconnectivity of our world and therefore the systems we create
are continuously growing. This is were the term engineering comes into play. Often
times engineering describes a discipline that uses methods and tools in a structured way
to develop a product. Now Systems Engineering is an engineering discipline based on
systems thinking, which in turn is a way of thinking that considers both the system as a
whole and the interaction of its parts. According to the definition by the International
Council on Systems Engineering (INCOSE), Systems Engineering is:

"... a transdisciplinary and integrative approach to enable the successful
realization, use, and retirement of engineered systems, using systems princi-
ples and concepts, and scientific, technological, and management methods."
[INC23]

Systems Engineering describes a unified and structured process that aims at developing a
complex technical system. Development includes concept development, implementation,
operation and if applicable also deconstruction and recycling. Due to the generality of
the system term and the variety of development steps it follows that Systems Engineering
describes a multidisciplinary approach, including but not limited to all kinds of engineering
disciplines - from computer science, electrical engineering, mechanical engineering all the
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2.3. Computer Aided Systems Engineering

way to material engineering or chemical and biological engineering. Most of the times
also economic aspects must be considered and appropriate expertise is required. The
overall result must be system that adheres to the requirements, solves a given problem
and meets the user’s needs.

According to [Wei07] Systems Engineering can also be seen as a discipline that stands
above all other, more specific disciplines, such as software or hardware engineering. It
is often times also described as a meta-discipline and as such provides a holistic way of
thinking. This way of thinking enables engineers to solve problems on system level and
therefore provides solutions of elegance that would otherwise not be possible.

Why is Systems Engineering difficult?

To understand the core difficulties that arise in Systems Engineering it’s essential to
understand the single steps that the Systems Engineering process consists of. Although
there is no standardized process model, there exist several principles that Systems
Engineering is built upon. To the derive the single steps of Systems Engineering let’s first
delve into the most important ones of these principles. As described in [INC23] Systems
Engineering is a rather young discipline that evolved of the past 30 years. During this
time a set of principles have emerged that define how Systems Engineering is practiced.
Important consistencies among all those principles are that they

• outlast a system’s particular life cycle,

• are not specific to a system type,

• are not ’how to’ statements

• and are supported by literature or have proven successful across a wide range of
system types and organizations.

In 1993 INCOSE put together a set of Systems Engineering principles for the first time.
Over time some of these initial principles were found not to adhere to the foundations
of Systems Engineering principles as itemized above. Consequently, the set of Systems
Engineering principles was updated in 2022 and now comprises 15 principles, the most
important of which are listed in Table 2.1.

Based on those principles INCOSE tries to break down the Systems Engineering process
into single steps. Although a term ’step’ often implies sequential execution INCOSE
stresses that this is not the intended understanding of their Systems Engineering process.
Rather those steps are to be understood as stages that can be executed arbitrarily often
and in parallel. Moreover, stages have decision gates for entry and exit. The entry
decision gate ensures that certain criteria are met, e.g. that all resources needed for
the particular stage are available. The exit decision gate ensures that the targets of
the concerning stage are met and the risk of proceeding is reasonable. These abstract
definitions become more clear when we take a look at the actual stages. INCOSE defines
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2. Background and Problem Statement

1 SE in application is specific to stakeholder needs, solution space, resulting system
solution(s), and context throughout the system life cycle.

2 SE has a holistic system view that includes the system elements and the interac-
tions amongst themselves, the enabling systems, and the system environment.

5 The real system is the perfect representation of the system.
6 A focus of SE is a progressively deeper understanding of the interactions, sen-

sitivities, and behaviors of the system, stakeholder needs, and its operational
environment.

8 SE addresses stakeholder needs, taking into consideration budget, schedule, and
technical needs, along with other expectations and constraints.

9 SE decisions are made under uncertainty accounting for risk.
10 Decision quality depends on knowledge of the system, enabling system(s), and

interoperating system(s) present in the decision making process.
13 SE integrates engineering and scientific disciplines in an effective manner.

Table 2.1: Excerpt of the 15 principles of Systems Engineering as described by INCOSE
in 2022.

the stages as Concept, Development, Production, Utilization, Support and Retirement.
Figure 2.3 illustrates the order in which those stages might be passed. It follows naturally
that stages are passed in parallel and arbitrary many times: the development stages
overlaps with production (e.g. for prototyping) and production overlaps with utilization
because not all items are produced before selling starts. After some times there might
be feedback available from the utilization stage and the system enters the concept stage
again and receives improvements.

Figure 2.3: The stages of the Systems Engineering process by [INC23]. The stages can
be passed several times and in parallel.

In order to better understand in which of these stages the present work provides assistance,
we will first take a closer look at how INCOSE defines them and why this makes Systems
Engineering a difficult discipline.

Concept. The concept stage consists of exploratory research to identify needs and
(potentially existing) solutions, assess feasibility, and define preliminary requirements

10



2.3. Computer Aided Systems Engineering

and estimates. The output of this stage significantly shapes the project’s path.

Development. The development stage refines the system concept into an engineering
baseline producing detailed plans and requirements to ensure the system can proceed to
production and other succeeding stages. Thereby modeling, simulation and prototyping
takes place achieving system balance and optimization for key parameters.

Production. The production stage implements the baselines from the development
stage and produces and an actual system along with necessary documentation for future
stages.

Utilization. In the utilization stage the system transitions into use. Often modifications
are introduced throughout the stage to address deficiencies, which have been remedied
by a concept or development stage running in parallel.

Support. The support stage provides necessary support for the system’s utilization.
Planning of this stage has to take place before it starts. Results include deficiency notes
being taken into account in future concept and development phases.

Retirement. Throughout this stage the system or a system element and its related
services are removed from operation. SE activities in the support stage primarily focus
on ensuring that extensive disposal requirements are satisfied.

Let’s now take a look at what makes systems engineering so difficult at its core. In
addition to the complexity of the system itself, many difficulties in SE originate in the
temporal and logical distance between conception, development and utilisation.

The consequences of the decisions that have to be made during the concept and devel-
opment phase will only become effective in later phases. However at the time they do
become effective, even small changes to the system properties may be extremely costly in
regards of financial, human or time resources. Depending on when an undesired effect
or behavior becomes visible, it might be not even be possible anymore to adapt the
system specifications accordingly and an entire reiteration is necessary. This work aims to
address this issue by deploying appropriate technology to estimate the effects of decisions
made in the concept and early development stages. We demonstrate that through the
development of custom machine learning and optimization techniques, it is possible to
predict decision effects during any phase of the conception and development stages, given
a simulation model that provides the necessary level of detail. This approach, which falls
under the term of Computer-Aided Systems Engineering, supports Systems Engineering
at various stages and aligns with the 15 core principles of Systems Engineering outlined
in Table 2.1. Specifically, Computer Aided Systems Engineering addresses the challenges
associated with principles 9 and 10, which describe the uncertainty involved in Systems
Engineering decision-making.

2.3.2 Model Based Systems Engineering
Modelling has been an important pillar of Systems Engineering ever since. However,
increasing scale and complexity of modern systems necessitate continuous innovation
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2. Background and Problem Statement

and rethinking of the Systems Engineering process. These efforts led to a new paradigm
called Model-Based Systems Engineering (MBSE). MBSE is an approach to Systems
Engineering that uses formalized modeling to support Systems Engineering activities such
as requirements engineering, design, analysis, verification, and validation. MBSE shifts
the focus from traditional document-based Systems Engineering to a more integrated,
model-centered approach. This transition promises greater rigor and effectiveness for
developing complex systems. MBSE introduces the model as single source of truth that
reflects the entire state of the system development process [MS18].

The motivation behind MBSE is manifold. Research has shown that Systems Engineers
waste lots of time searching for information and writing reports, a problem which
is only reinforced by the growing complexity of modern systems. Document centric
approaches are becoming more and more infeasible as they hold the risks of missing
critical information. MBSE addresses these challenges by maintaining a shared context
that contains key system requirements, usage scenarios, high-level architecture and so on
in a compact, manageable model. In large projects where systems may grow immensely
complex or may be nested (systems of systems), the document centric approach also
poses challenges on keeping the entire project library consisting of single documents for
each view (e.g. hardware, firmware) of each subsystem up-to-date. This bears the risk
of introducing incompleteness and inconsistencies. To circumvent this problem MBSE
provides the ability to automatically generate these documents - if even necessary - from
the model. The model as the sole source of truth reliably reflects the most up-to-date
state of the system development and so the documents generate from it do as well.
Another problem that MBSE tackles is related to block diagrams. Block diagrams are
often used for communication purposes among Systems Engineers. However they tend to
cause confusion and ambiguity as their semantics are often not standardized and vary
from team to team. This makes them inconsistent and hard to verify. According to the
literature often times these issues hinder clear communication among stakeholders with
different backgrounds. MBSE promises to overcome these challenges by providing clear,
consistent, and formalized representations of needs and designs [MS18].

Over the past two decades, during which MBSE has mainly been developed, some key
principles have emerged that define MBSE at its core. Among those are [MS18]:

Centralized Model Repository: MBSE utilizes a centralized model repository that
serves as a single source of truth. This repository serves as the reference for all stakeholders,
preventing misunderstandings.

Formal Languages and Notations: MBSE employs standardized modeling languages
such as the Systems Modeling Language (SysML) and Unified Modeling Language (UML).
These languages provide a common notation to describe system architecture, behavior,
and data flow comprehensively.

Lifecycle Integration: MBSE spans the entire system lifecycle (or the ’stages’ from
section 2.3.1 Why is Systems Engineering difficult?, from conceptual design through to
system deployment and maintenance. It enables continuous verification and validation
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via up-to-date models that reflect the current state of the system.

Automation and Tool Support: MBSE leverages powerful modeling tools like IBM
Rational Rhapsody 1, Cameo Systems Modeler 2, and others. These tools offer capabilities
for simulation, analysis, and automatic documentation generation.

Enhanced Collaboration: By providing a visual representation of the system, MBSE
facilitates better communication among multidisciplinary teams. This collaboration is
crucial for maintaining a common understanding of different system aspects among teams
of different engineering domains

Enhancing the Classical Approach with Simulation

Model-bases Systems Engineering in large parts is still subject to ongoing research [MS18]
and therefore far from being fully adopted within the industry. What companies came
up with is some kind of a hybrid approach. This means the Systems Engineering process
is still document-based however models are built to complement the classical approach.
These models don’t serve as a single source of truth but are rather used for simulation
purposes. Simulation is then used to estimate upfront how design decisions effect the
overall system regarding a certain aspect. The observed system aspect, along with factors
like the level of detail and the simulation framework used, is entirely flexible and can
be tailored by the model developer. This flexibility is a feature that MBSE does not
provide, at least if common modelling languages such as SysML/UML are utilized, as
suggested in the literature [Wei07].

A well suited simulation framework for many real-world applications, such as SoC or
IC design is an event-oriented approach. The event-oriented simulation paradigm is
based on the assumption that the entire system behavior is based on discrete events
(e.g. signal transition with the rising clock edge) rather then continuous processes (e.g.
die temperature curve). Event based simulation works on a set of events that is stored
together with the time of occurrence. The simulation maintains an efficient datastructure
(e.g. a priority queue) of such events. The simulation now occurs in a reversed manner
compared to what one might expect. Instead of simulating the passage of time and
checking which events are currently occurring, the events are sorted and the simulation
time is set to the time of the next scheduled event. The time until this event is skipped,
as it does not bring any changes to the system state (because it’s discrete) [Mat08].

Unfortunately purely event-based simulation tends to result in hard-to-read, messy code.
To address this shortcoming process-oriented simulation was invented. Process-based
simulation introduces stateful processes that can be seen as a collection of events. Now
instead of processing events one after another, processes hand over the control flow from
one to another. A process models an enclosed entity or resource of the simulated system,
e.g. a CPU or a write operation to a bus. Process oriented simulation produces modular

1https://www.ibm.com/products/systems-design-rhapsody
2https://www.3ds.com/products/catia/no-magic/cameo-systems-modeler
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code that is easier to read, understand and maintain. Several open source frameworks
implementing process oriented simulation have been developed, with SimPy being the
most popular one among them [Sim23].

SimPy SimPy is a Python framework that provides an easy-to-use environment for
writing process-oriented simulations. It makes use of Pythons generator functions, where
the yield statement is used to return a value but keep the state of the function (local
variables and position of execution). This functionality is perfectly suited to implement a
process. The value returned by yield is an event, that is scheduled by the SimPy engine.
Internally the event is stored together with a callback to the event-yielding function.
Once an event is triggered, SimPy will execute this callback to resume the process and
continue its execution. This mechanism allows processes to interact with each other and
with shared resources, enabling complex coordination and synchronization.

For example, when a process requests a resource, it yields a resource request event. SimPy
schedules this event and, once the resource becomes available, the callback associated
with the event resumes the process. This approach allows for the simulation of complex
systems with interactions between multiple entities and resources, making SimPy a
powerful tool for modeling dynamic systems [Sim23] [Mat08].

2.3.3 Optimization Oriented Systems Engineering
With the availability of detailed system models the question arises how they can effectively
be utilized to enhance the systems engineering process. There are two main strategies to
utilize a simulation model for Systems Engineering.

The first one is to find design parameters that lead to ideal design properties (e.g. in terms
of power consumption, area, ...). This can be formalized as the following optimization
problem:

argmin
Pd∈D1×···×Dn

f(Pfix, Pd), Pfix ∈ F1 × · · · × Fm (2.1)

where Pd is an n-dimensional vector where each entry Pd,i corresponds to the value of
the ith variable design parameter with domain Di and Pfix is an m-dimensional vector
where each entry Pfix,i corresponds to some fixed design parameter with domain Fi. f
is a scalar function that evaluates the quality of the design. Note that depending on
the nature of f our goal may be to either maximize or minimize it. Without loss of
generality, it is assumed that optimization refers to the minimization of an objective
function throughout this thesis. This assumption is reasonable due to the equality of
minimizing f and maximizing −f , for any given function f .

The second use-case of a simulation model in the systems engineering domain arises from
the fact that systems are becoming increasingly complex. In order to evaluate a given
design decision it is necessary to estimate its worst case consequences. Traditionally,
expert domain knowledge was sufficient to identify which system use-cases could lead
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to worst-case scenarios. However, due to the rising systems complexity it is no longer
possible for humans to reliably predict these scenarios. For example modern cellular
protocols such as LTE and NR introduce a variety of new technologies leading to a vast
amount of new use-cases compared to simple protocols like GSM or UMTS. This causes an
immense spike in the complexity of state-of-the-art cellular transceivers. The overlapping
of scenarios that were previously known to be worst-cases may now lead to entirely new
and unforeseen worst-cases. This effectively renders the traditional approach, which
solely relies on the knowledge experts with decades of industry experience, infeasible.
Fortunately, simulation can help in this case as well. The core idea is to computationally
evaluate a potentially critical design decision with regards to its worst-case consequences.
In previously used terms, for a given design, defined by fixed parameters Pfix and design
parameters Pd (now constituting the design decision of interest), we now seek input
parameters I (constituting the worst-case) that minimize the score of a simulated system
run with those inputs. Formally this is expressed through the following optimization
problem:

argmin
I∈I1×···×In

f(Pfix, Pd, I), Pfix ∈ F1 × · · · × Fm, Pd ∈ D1 × · · · × Dn (2.2)

where now f is a score calculated from a set of interesting parameters observed during
the simulated system run. These parameters must effectively characterise the potentially
adversarial effects of the design decision Pd. However, using the transformation P̃fix =
[Pfix, Pd] the second optimization problem 2.2 can also be written as

argmin
I∈I1×···×In

f(P̃fix, I), P̃fix ∈ F1 × · · · × Fm × D1 × · · · × Dn (2.3)

which yields essentially the same problem as stated in equation 2.1. It shows that both
equations 2.1 and 2.2 are actually a different view of the identical problem.

This justifies and encourages the usage of methods in the systems engineering domain that
have previously been reserved for design optimization, leading to the term of Optimization
Oriented Systems Engineering. This approach, not really documented in the literature,
aims to enhance the decision-making quality during the Concept and Development phase
of Systems Engineering. This is particularly important as bad decisions made in these
stages might stay unnoticed for a very long time leading to costly and hard to resolve
bugs. Although some similarities exist, this approach differs fundamentally from Model
Based Systems Engineering in that it incorporates modeling and optimization but not
making the model the central part of Systems Engineering.

2.4 Formalization of Optimization
Optimization is a fundamental problem in many scientific disciplines such as Mathematics,
Engineering, Economics and more. At its core, it involves selecting the best solution
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among a set of alternatives. The solutions are typically given by the so-called objective
function which is to be minimized or maximized. The set of feasible solutions is called
the search space. Formally the problem may be stated as

max
x∈S

f(x) (2.4)

or

min
x∈S

f(x) (2.5)

where f : S �→ R is the objective function and S is the search space. Without loss of
generality it is assumed throughout this thesis that optimization refers to the problem of
minimizing an objective function. This is a reasonable assumption due to the equality

min
x∈S

f(x) = max
x∈S

−f(x) (2.6)

The elements x ∈ S are points in the search space. A point x in the search space is a
vector with entries xj , 1 ≤ j ≤ D, where D is called the dimensionality of the search
space. Depending on the nature of the elements of S optimization can be categorized into

• continuous problems, i.e. ∀x ∈ S : x ∈ RD

• discrete problems, i.e. ∀x ∈ S : x ∈ ZD

• mixed problems consisting of n continuous and D − n discrete dimensions, i.e.
∀x ∈ S : x ∈ (R ∪ Z)D

The problem may be subject to constrains, meaning that not all solutions in the target
set of f are feasible. Only such x ∈ S where g(x) for some function g : S �→ R adheres to
specific constraints are desired. Formally

min
x∈S

f(x) (2.7)

subject to
gi(x) = 0, i = 1, . . . , p

hj(x) ≤ 0, j = 1, . . . , q

(2.8)

is an optimization problem with p equality and q inequality constraints.

The objective function can take a wide variety of forms. For some problems it might be
a mathematical expression, for other problems it could be a physical experiment. The
nature of f has a big impact on the set of feasible optimization strategies for the problem.
As many heuristic strategies rely on repeated evaluation of the objective function, the
evaluation cost of f plays a crucial role when choosing a strategy.

16



2.5. Expensive Black-Box Optimization

2.5 Expensive Black-Box Optimization
Many engineering problems require to solve optimization of objective functions that are
not given by mathematical equations or any other formal description. Instead the objective
functions is given as a so-called black-box. A black-box is characterized by its hidden
internal structure. The only thing it does is providing outputs given inputs. Expensive
black-box optimization refers to the optimization of black-box objective functions that
are particularly expensive to evaluate, either in terms of time or computing resources
or both. Such situations occur when the objective function is given by the results of
e.g. a computer simulation or physical experiments. In such cases the development of
a mathematical model is simply not feasible, at least under reasonable effort [AH17].
Expensive black-box optimization has been a very active field of research for more than
two decades already [JSW98]. Successful applications range from multi-disciplinary
engineering problems such as automated drug discovery [TSTT21] and the development
of aircraft wings [VSS06] to highly specialized problems, such as configuring a cooking
robot to make optimal omelettes [JHTI20]. The evaluation of the objective function in
the latter case involves tasting by human testers.

2.6 Problem Statement
The particular problem that this work deals with is solving the problem

argmin
I∈I1×···×In

f(P̃fix, I), P̃fix ∈ F1 × · · · × Fm × D1 × · · · × Dn (2.9)

which was established in section 2.3.3 Optimization Oriented Systems Engineering. f is
an expensive black-box function given through an event-based model of an integrated
circuit (see section 2.3.2 Enhancing the Classical Approach with Simulation for details).
The value of f is a score determined through simulation and based on the determined
system property that changes depending on the inputs I. Possible optimization strategies
should be researched and compared and, if promising, implemented. These solutions
should be independent of the specific search space and the implementation of the model
itself. The search space is assumed to be mixed and to have between 1 and 100 dimensions.
In order to tackle this search space the solution must be parallelizable and scale well
on several hundreds of cores. The developed methods should be benchmarked with a
model of the control architecture of a state-of-the-art cellular transceiver (see sections 2.1
Mobile Communications and 2.2 Cellular Transceiver for details).

2.7 Modern approaches to Optimization
An incredible amount of methods that aim to solve optimization problems exist. Over the
time different scientific disciplines came up with different approaches that all have their
strengths and weaknesses. In this context the "no free lunch theorem" of optimization and
search plays an important rule. It states, that in black-box optimization no algorithm is
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clearly superior to all others when considering all problems [WM97]. However, that does
not mean that algorithm performance does not vary for specific problems - it clearly does.
Therefore, the core challenge in optimization is to find the best method for a specific
problem. To do so, the following section introduces various concepts in optimization such
as mathematical, heuristic and approximate optimization.

Mathematical Optimization

The availability of a mathematical description of the objective functions allows the
application of mathematical optimization methods. The benefits of such an approach are
at apparent. These methods offer rigorous mathematical guarantees on both solution
optimality and runtime efficiency. However formulating problems into precise mathemati-
cal models can be challenging and time-consuming, particularly for complex real-world
scenarios. What follows is a short overview of two well-known mathematical methods,
illustrating the difference to heuristic approaches.

Gradient descent Gradient descent makes use of the fact that given a differentiable
function f(x), moving from a point x0 into the opposite direction of the gradient, −∇f(x),
will decrease the function the fastest way possible. It follows that if we construct the
sequence

xk+1 = xk − γk∇f(xk) (2.10)

with a reasonably small step size γk ≥ 0, the function values associated to the sequence
decrease, i.e. it holds that

f(xk+1) ≤ f(xk) ∀k. (2.11)

[Pol20]

From this observation it’s possible to construct an optimization algorithm by starting
with an initial guess x0 and updating the n-th solution by computing xn+1 according to
equation 2.10. This algorithm is guaranteed to converge under certain conditions. First,
the gradient ∇f(x) must satisfy the Lipschitz-condition

||∇f(x) − ∇f(y)|| ≤ L||x − y|| (2.12)

and γk has to satisfy

0 < γk <
2
L

(2.13)

where L is the Lipschitz-constant from 2.12 [Pol20]. Introduced in 1847 by Augustin-Louis
Cauchy, this algorithm gained massive popularity in recent decades as it is the foundation
of Backpropagation, the training algorithm for most modern Deep Neural Networks.
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Linear Programming Linear programming is a method for optimizing linear functions
cT x (commonly referred to as the cost function with cost vector c) subject to inequality
constraints Ax ≤ b and x ≥ 0. The constraints form a feasible region in the shape of
a convex polytope, a geometric object with flat faces enclosing a convex sets of points.
Georg Dantzig recognized that optimal solutions always occur along the edges of this
polytope and constructed an algorithm from this insight. It walks along the edges until
reaching a guaranteed optimum. The algorithm is known as the Simplex algorithm and
was introduced in 1946 [Pol20].

It quickly becomes clear that these methods require a differentiable function (e.g. for
gradient descent) or even a linear function (for linear programming) as a mathematical
model of the problem. Therefore they are not suitable to solve the given problem of
optimizing an objective function given by a simulation model.

2.7.1 Optimization as a machine learning problem

In order to further clarify the problem of optimizing a black-box function this section
gives a differentiation between such an optimization problem and problems that are
usually solved with reinforcement learning. For better understanding a short overview of
reinforcement learning follows.

Reinforcement Learning

Learning through interaction with our environment is a very fundamental principle of
human intelligence. Reinforcement learning (RL) is the attempt to mimic this type of
learning in computer programs. It involves interactions between the computer program
(the learner, typically referred to as the agent) and an environment, which responds to
the agent’s actions and rewards it upon reaching a desirable state (some intermediate or
final goal). Unlike supervised learning, where an agent learns from labelled examples
provided by an external supervisor, in RL the agent learns to map situations to actions
that maximizes the lifetime reward through trial and error. This process is illustrated in
figure 2.4. [SB18]

Figure 2.4: The interaction between agent and environment in reinforcement learning
[SB18]
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The essence of RL is captured in the Markov decision process (MDP). An MDP is a
4-tuple (S, A, R, p) where

• S is a set of possible states s that the environment can take on. The state at time
t is denoted as St.

• A is a set of possible actions a that the agent can take. At is the action at time t.

• R ⊂ R is the reward probability R(s, a, s′). It represents the probability that the
agent receives a reward depending on the action a taken in s upon transitioning
into successor state s′.

• p(s′, r|s, a) = Pr{Rt+1 = r, St+1 = s′|St, At} represents the probability of transi-
tioning to state s′ and receiving reward r upon taking action a in state s.

The definition of p is called the Markov property. It means, that the environment’s
response St+1, Rt+1 only depends on St and At but is independent of the previous
history S0, A0, R1, . . . , St−1, At−1, Rt. The Markov property ensures that future states
and rewards can be predicted with the knowledge of the current state just as good as
with knowledge of the entire history.

The goal in RL is to learn a policy π(a|s) that expresses the probability of taking action
a in state s. The policy can be seen as a mapping from state to actions, that includes
a certain degree of uncertainty. At each time t it should guide the agents behavior to
maximize the expected cumulative future reward Gt

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞


k=0
γkRt+k+1 (2.14)

where γ < 1 is the discount factor. Future rewards are discounted to incentivize the
agent to collect rewards and therefore reach its goal as fast as possible. Furthermore γ
ensures that Gt is a finite number. Typically the environment will be designed to provide
a positive reward when the goal is reached and a negative reward when an undesired
state is reached (e.g. a robot crashes).

In order for the agent being able to learn which action to take in state it needs a notion
of the utility of a state. Therefore we first need to define the total expected reward of a
state s as

R(s) = E[Rt+1|s] =


r∈R

r



s′∈S,a∈A
p(s′, r|s, a) (2.15)

Now we can define the Utility U of a state s as

U(s) = R(s) + γ max
a∈A



s′∈S

U(s′)p(s′|s, a) (2.16)
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where p(s′|s, a) refers to the marginalization �
r∈R p(s′, r|s, a). The Utility represents the

expected discounted sum of rewards until termination assuming optimal actions. Under
the assumption that the Utility function is known, it’s easy to define an optimal policy
π∗:

π∗(s) = argmax
a∈A



s′inS

U(s′)p(s′|s, a) ∀s ∈ S (2.17)

The big challenge in RL is that p and therefore neither R or U are known but must
be learned through interaction with the environment. This involves among others the
challenge of balancing exploration and exploitation during training. Exploring the
environment instead of exploiting knowledge gained so far bears the risk of not collecting
the maximum reward but potentially let’s the agent discover even more rewarding states
[SB18]. Important milestones in RL include the introduction of algorithms such as
Temporal-Difference (TD) Learning in 1989 [Sut88], Deep Q-Learning (DQN) in 2013
[MKS+13], Deterministic Policy Gradient (DPG) in 2014 [SLH+14], Twin Delayed Deep
Deterministic Policy Gradient (TD3) in 2018 [FvHM18], Deep Deterministic Policy
(DDPG) Gradient (DDPG) in 2019 and the Dreamer in 2020 [HLBN20]. Built on the
DQN algorithm, Google’s AlphaGo was the first computer program to beat a professional
Go player in tournament conditions in 2015. Nowadays RL is successfully applied in
countless real-world tasks, such as autonomous driving, robotics, biology and many more.

Applicability of Reinforcement Learning

The successful application of reinforcement learning on many difficult real-world problems
in recent years raises the question whether this technique is applicable for the present
problem of expensive black-box optimization. Applying RL to a problem involves
formulating the problem as an MDP (see section 2.7.1 Reinforcement Learning). To
define an MDP the notion of a state, an action, a transition and a reward must be defined.
Bengio et al. [BLP20] point out several works successfully formulating combinatorial
optimization problems as MDPs and solving them with reinforcement learning approaches.
Khalil et al. [DKZ+18] for example effectively learn algorithms to solve the NP-hard
graph problems Minimum Vertex Cover, Maximum Cut and the Travelling Salesman
Problem. They apply a greedy algorithm where the selection of the next vertex to add to
the solution is learned. Their MDP formulation looks as follows: as a state they define
the set of currently added vertices, the action space is defined by vertices that are still
available for adding and the reward is the change of the cost of the current solution
compared to the previous solution. The transition probabilities are negligible in this case
as there is no stochasticity involved in adding a vertex to a graph. The given problem
has both combinatorial as well as continuous and integer parts. This makes it harder
but an MDP formulation still seems feasible. On a high level, one would define a current
candidate solution vector as the state, possible modifications to this vector as actions
and as rewards the change in value of the objective function at the current candidate
solution compared to the previous solution. It is obvious from the nature of the reward
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function that after T time steps the cumulative reward R = �T
t=0 Rt for time 0, 1, . . . , T

corresponds to the value of the objective function f(ST ) for the terminal state ST . Hence,
a reinforcement learning agent aiming to maximize its lifetime reward will indeed find a
maximum of f (or a minimum of −f).

However, while this approach works in theory, there are several caveats to consider when
it comes to practical implementation. The first concern is that the reinforcement learning
approach does not provide the necessary flexibility. The given problem requires a solution
that has the flexibility to work on objective functions as well as search spaces of almost
arbitrary structure. It’s not clear in advance if the search space renders the problem purely
combinatorial, continuous or mixed. The objective function might be oscillating, non-
convex or even mostly constant. One assumption of most machine learning approaches is
that problem instances a drawn from a common distribution. The better the learned
algorithm or model works on these instances, the poorer it usually performs on instances
that are less probable or impossible under that distribution. Also the authors of the
aforementioned work on reinforcement learning approaches for combinatorial optimization
([DKZ+18]) point out that their work is mostly relevant for use cases where the problem
structure stays the same and only the data varies. This however cannot be guaranteed
for the given problem. This could necessitate regular retraining or restructuring, making
a reinforcement learning approach too cumbersome in this regard. In this case a more
general and robust approach as provided by e.g. evolutionary algorithms is expected to
be a better fit in the long term. Furthermore Bengio et al. in [BLP20] point out that at
least for many combinatorial optimization problems a classical, hand-crafted heuristic
performs better by several orders of magnitudes when compared to reinforcement learning
approaches.

Another important aspect in regards of performance is parallelizability. With the avail-
ability of massively parallel computing resources parallelizability becomes the dominant
factor when choosing a solution. A sequential solution that performs even several mag-
nitudes better on a single core will not be able to keep up with a less performant but
inherently parallelizable solution. This is another point against a reinforcement learning
approach, as it is fundamentally not easily parallelizable.

For the sake of completeness it’s worth noting that there still are machine learning
approaches that are able to handle the given problem. Some of them are described in
the subsequent sections and their implementation is reviewed in section 3.2.1 Bayesian
Optimization. The distinguishing fact about this approach is, that it is not trained on
predefined problems but learns from scratch every time during execution. This enables it
to adapt to diverse objective functions and search space structures, including scenarios
where the problem’s nature—whether combinatorial, continuous, or mixed—is not initially
clear.
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Supervised Learning

Supervised learning refers to learning from examples. The examples are pairs of inputs
and outputs of a function. A set of such pairs is also called labelled data, data refers to
the inputs and the label is the corresponding output. The goal is to predict the outputs
for unseen inputs, i.e. to learn the function. An example for a function to be learned is
a mapping from pixel values to strings, where the string is a description of the image
formed by the pixels (image recognition). The labelled data used for training will then
be a labelled image data set. Besides reinforcement learning, where the agent learns good
actions from rewards, and unsupervised learning, where structures in unlabelled data are
learned, supervised learning is one of the three paradigms in machine learning [RN10].
After a short introduction to supervised learning the subsequent sections describe how a
less well-known form of supervised learning can be applied to optimization.

Given is a training set of labelled data points {(x1, y1), . . . , (xN , yN )} which are samples
of a function f , i.e. f(xi) = yi ∀i. The task in supervised learning is to learn a function
h that approximates the true function f. h is called the hypothesis. The quality of h
is measured by how well it generalizes, i.e. how well it performs on previously unseen
examples. Sometimes the definition of f is relaxed and instead of a function f(x) = y the
goal is to learn a conditional probability distribution P (y|x). Depending on the nature
of the sets over which x and y are defined, the learning task might also be referred to as
classification (y is an element of a finite set) or regression (y is a number).

The hypothesis h is selected from a hypothesis space H which is defined before learning
starts. If H contains the true function f , then the learning problem is realizable. A simple
way to make every learning problem realizable is to define H such that it contains the set
of all computable functions. However, this would render the problem computationally
infeasible, showing that there is a tradeoff between the expressiveness of the hypothesis
space and the complexity of the learning problem. Subfields of machine learning research
efforts focus on particular types of hypothesis spaces. Deep Learning, for example, focuses
on solving learning problems within the hypothesis spaces defined by multi-layer neural
networks. In contrast, Decision Tree Learning concentrates on hypothesis spaces over
decision trees.

To illustrate how learning is conducted let’s assume a learning problem over a very simple
hypothesis space. Let H be the class of univariate linear functions. The functions in H
are parameterized by a vector w = [w1, w2] (referred to as weights) and are of the form
y = w1x + w0. The learning problem now refers to learning w1 and w2 and is known as
linear regression. For each w we define a hypothesis

hw = w1x + w0 (2.18)
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where the quality of hw is measured by a loss function, typically the squared loss:

Loss(hw) =
N


j=1
(yj − hw(xj))2 =

n

j=1

(yj − (w1xj + w0))2 (2.19)

We are looking for weights w∗ = argminw Loss(hw). The simplicity of H admits solving
this problem analytically: to minimize the loss function, we take partial derivatives with
respect to w0 and w1 and set them to zero. The derivatives can be computed as

∂Loss

∂w0
=



j

−2 (yj − (w1xj + w0)) = 0 ⇐⇒



j

yj = w1



j

xj + w0N (2.20)

and

∂Loss
∂w1

=



j

−2xj (yj − (w1xj + w0)) = 0 ⇐⇒



j

xjyj = w1



j

x2
j + w0



j

xj (2.21)

Solving this system of linear equations gives the optimal weights w0 and w1:

w1 =
N

�N
j=1 yjxj − �N

j=1 xj
�N

j=1 yj

N
�N

j=1 x2
j − (�N

j=1 xj)2 (2.22)

w0 =
�N

j=1 yj − w1
�N

j=1 xj

N
(2.23)

These weights minimize the squared loss, providing the best-fit linear model for the given
data.

However in most cases the hypothesis space will be much more complex (up to hundreds
of billions of weights [BMR+20]) and no closed-form solution will exist. In such cases the
minimization problem over the highly dimensional weight space must be solved iteratively
e.g. via gradient descent (see ?? ??). Therefore after each example the learning algorithm
sees, it updates each weight wi of the model according to

w
(t+1)
i ← w

(t)
i − α

∂

∂wi
Loss(hw) (2.24)

Intuitively, ∂
∂wi

Loss(hw) quantifies the influence of weight wi on the output error. Note
that in the case of a multi-layer perceptron with many layers this derivative can be
tedious to calculate, especially when the neuron that the weight belongs to, is buried
deep within the network. However, it can be computed efficiently via a chain-rule based
dynamic programming approach known as backpropagation, which is perfectly suited for
massive parallelization on GPUs [RN10].
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Sequential Model-Based Optimization

Sequential Model-Based Optimization (SMBO) is a class of optimization techniques that
are based on the principles of supervised learning. SMBO algorithms learn a regression
model predicting the objective function based on previously seen objective function values.
Then they use this model to determine the next, most promising point for evaluation
and update the model based on the newly observed value. In SMBO the learned model
is called surrogate or response surface model. The training data set now consists of pairs
{(x1, f(x1), . . . , (xn, f(xn)} of observed function evaluations [HHLB11]. The algorithm
is listed in listing 2.1. In line 1 the set of initial observations is defined. These observations
are evaluations of the objective functions for a set of randomly drawn points. The next
step in line 3 is to fit a model to these observations in a supervised learning manner.
There exist many different approaches for the selection of the next evaluation (line 4)
based on the model. The choice is between evaluating in areas of high uncertainty
(potentially a new optimum is hidden there) and areas where the model predicts a
high value (exploitation of known information). This trade-off between exploration and
exploitation is central to SMBO algorithms. One specific form of SMBO is Bayesian
Optimization, which is discussed in the subsequent chapter [BBBK11] [HHLB11].

Algorithm 2.1: Sequential Model-Based Optimization (SMBO) [HHLB11]
Input: objective function f
Output: best solution

1 Obs ← set of initial observations {(x1, f(x1)), . . . , (xn, f(xn))};
2 while time budget left do
3 M ← FitModel(Obs);
4 xn+1 ← SelectNextEvaluation(M);
5 yn+1 ← f(xn+1);
6 Obs ← Obs ∪ {(xn+1, yn+1)};
7 end
8 return argmin(x,y)∈Obs y;

Bayesian Optimization

Bayesian Optimization (BO) is a specific instance of Sequential Model-Based Optimization
(SMBO) that leverages Bayesian inference to guide the search for the optimal solution.
In Bayesian Optimization, the surrogate model is typically a Gaussian Process (GP) but
also other approaches such as Tree-structured Parzen Estimator (TPE) exist [BBBK11].
These approaches mainly deal with the FitModel and SelectNextEvaluation parts of
the SMBO algorithm (2.1). Bayesian Optimization has become a popular method for
numerous problems in a variety of research fields. Garnett et al. describe how they
solved the problem of placing a small set of sensors to make predictions about a spatial
field, such as air temperature. They managed to find good solutions using Bayesian
Optimization [GOR10]. Lorenz et al. successfully applied Bayesian Optimization to find
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parameters for a physical experiment in the domain of neuroscience [LSM+19]. Further
applications in the fields of materials sciences, financial industry and machine learning
are described in the literature [WJSO22].

These successful applications make Bayesian Optimization an interesting candidate and it
was chosen for implementation. Section 3.2.1 Bayesian Optimization gives details about
the algorithm using both Gaussian Processes and Tree-structured Parzen Estimators and
shows how it is implemented.

2.7.2 Classical Approach: Heuristic Algorithms
Computing truly optimal solutions is infeasible for a lot of real world optimization
problems. The unavailability of a mathematical model - as discussed in section 2.7
Mathematical Optimization, the computational intractability of the problem or other
reasons may prevent us from efficiently computing exact solutions. However, it turned
out that in many cases exact solutions are not necessary. In such cases, we turn to
heuristic approaches, which offer practical means to find near-optimal solutions within
a reasonable timeframe. A lot of times a "sufficiently good" solution obtained under
reasonable cost (in terms of time, computing power, ...) is more useful then an exact
solution under possibly exponentially rising cost. This chapter will explore several such
heuristic algorithms in detail, providing insights into the pros and cons of applying them
and highlighting considerations in the context of the given optimization problem.

Approximation versus approximate

One thing not to be mixed up in the terminology of heuristic algorithms are approximate
methods and approximation algorithms. Approximate methods are a class of algorithms
that consists of two subclasses, which are approximation algorithms and heuristic al-
gorithms. To fully grasp the essence of heuristic algorithms, let’s first contrast them
with approximation algorithms. Approximation algorithms are algorithms that don’t
necessarily produce optimal solutions, too. However, they come with a guarantee on how
"bad" the solutions gets in the worst case. Formally [Tal09],

Definition 1 (ϵ-approximation algorithm) An algorithm is an ϵ-approximation al-
gorithm with ϵ-approximation factor ϵ > 1if it runs in polynomial time and for any input
instance it computes a solution a such that

a ≤ ϵ · s (2.25)

where s is the optimal solution.

An ϵ-approximation algorithm gives a performance guarantee, whereas a heuristic al-
gorithm might possibly produce an arbitrarily bad solution. That guarantee of course
comes with a trade-off between ϵ and computational effort. For example Christofides
showed in 1976 that there exists a 2-approximation algorithm for the NP-hard euclidean
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Travelling Salesman Problem (TSP where all vertices have euclidean distance) [Chr76].
However, there exists no ϵ such that there exists an ϵ-approximation for the general TSP.
Such results are valuable from a theoretic point of view but introduce too much overhead
to yield practically relevant algorithms.

Heuristic algorithms in contrast are designed to produce good solutions or even optimal
solutions with reasonable computational efforts. However there is no guarantee that such
a solution will always be found. There might exist input instances or entire classes of
input instances where a heuristic algorithm performs really bad. The quality of a heuristic
algorithm is entirely defined by how well it works in practice on real-world instances.
Heuristic algorithms have gained popularity in the past 20 years and showed incredible
good results on many large instances of NP-hard problems across multiple disciplines,
ranging from structural optimization in VLSI, machine learning, bioinformatics, robot
planning to scheduling problems [Tal09].

Throughout the subsequent sections several heuristic algorithms relevant to the given
optimization problem are introduced. The first two, random search and local search
are intended to demonstrate problems that might occur with heuristic search strategies.
Their practical relevance is very limited. The subsequent methods, Simulated Annealing,
Evolutionary Algorithms and Particle Swarm Optimization overcome these issues and
are highly effective in exploring complex search spaces, finding near-optimal solutions,
and avoiding local optima.

Random Search

In random search, randomly generated solutions are evaluated for a predefined number
of iterations and the best seen solution is returned. For a sufficiently large number of
operations the expectancy value of the distance between the found solution to the true
global optimum will become arbitrarily small. Nowadays random search is used in as a
simple form of hyperparameter optimization in machine learning [LL19]. However, the
motivation keep exploring further heuristics is the idea that it should be possible to achieve
better results than naive random search by exploiting advanced and problem-specific
knowledge.

Local Search

In local search, the algorithm starts with an (potentially arbitrary) initial solution. It
then generates a new candidate solution in the neighborhood of the current solution.
This might happen through random perturbation or other problem specific operations.
Next, the objective function is evaluated at the new candidate solution. If the function
value of the candidate solution is better (smaller) then the previously seen optimum,
otherwise the candidate is discarded and the procedure repeats. The big drawback of
local search is it’s susceptibility to get stuck at local optima.
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Markov Chain Monte Carlo

As the previous two naive approaches show, heuristic optimization is all about collecting
samples from the objective function. The difficulty is to determine where to sample next.
Sampling according to a uniform distribution as in random search results in sampling in
bad areas most of the time. It would be better to employ a more sophisticated method
that samples more frequently in regions of the parameter space that are likely to yield
better results. An example for a distribution that would immediately improve results is
for example the softmax distribution

softmax(x) =
exp


f(x)

T


�

x∈S exp


f(x)
T


However, sampling from this distribution is non-trivial because the denominator cannot
be easily computed. Markov Chain Monte Carlo (MCMC) methods provide a way for
sampling from such complex distributions without explicitly computing them, which can
be particularly useful for optimization problems. The idea behind MCMC is to construct
a Markov chain that has the desired distribution as its equilibrium distribution. The
equilibrium distribution (or stationary distribution) of a Markov Chain is a distribution
of states that remains unchanged if a transition step is applied. Such an equilibrium
distribution exists under certain assumptions. By running such a chain for a sufficient
amount of time (the "burn in"), the collected samples approximate the desired distribution.

Although very different in detail, the following optimization alogrithms incorporate
the MCMC sampling idea in some form. In particular, Simulated Annealing is an
optimization algorithm based on the Metropolis-Hastings sampling algorithm, one of the
most commonly known MCMC method.

Simulated Annealing

Simulated annealing (SA) is a heuristic optimization strategy based on the metal pro-
cessing technique annealing. Annealing refers to a process where metal is cooled down
in a controlled manner. If liquid metal is cooled down slowly enough, according to the
laws of thermodynamics its atoms will find a state of minimal energy - which is a perfect
crystal. Cooling it down quicker will raise the energetic state of the atoms of the final
product. Researchers found, that the way in which the atoms find an energetically (near)
optimal state can be used to build a heuristic optimization algorithm. Metropolis and
Teller [MRR+53] used this concept in 1953 already to compute complex integrals in the
context of the development of nuclear weapons at Los Alamos. Kirkpatrick et al. in
1983 [KGV83] and Cerny in 1985 [Čer85] were the first to use these insights to develop
a general heuristic optimization method and called it Simulated Annealing. SA is a
simple and robust algorithm suited for mixed and continuous optimization problems.
Among its first application is the optimization of IC layout, a combinatorial optimization
problem. Further applications include optimization of antenna arrays, warehouse logistics
optimization and project scheduling problems [SK06].
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Although these successful applications of Simulated Annealing indicate that the algo-
rithm is a promising candidate for the problem of this thesis it was found out in the
implementation part that it lacks efficient possibilities to be parallelized. This is a crucial
disadvantage of SA. The details of the algorithm and the struggles with its parallelization
are described in sections 3.2.2 and 3.2.5.

Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of algorithms that simulate the principles of
biological evolution. By repeatedly applying fundamental evolutionary operations such
as selection, reproduction and mutation, a population of candidate solutions evolves over
time, progressively converging towards more optimal solutions.

At their core, EAs are based on Charles Darwin’s theory of biological evolution, "The
Origin of Species" [Dar59]. This theoretical foundation inspires the process where
the fittest individuals are more likely to survive and reproduce, thereby passing their
advantageous traits to the next generation. New traits arise during reproduction through
a process called mutation. Mutations are random changes to the genome that occur
due to the presence of radiation or unavoidable errors in the genetic copying process.
These genetic changes result in either positive or negative changes in the ability of the
concerned individual to live within its environment. This ability is also referred to as
the fitness of the individual. Individuals with high fitness might be better in finding
food, defending theirselves against predators or attracting partners. All in all, fitter
individuals have higher probability to survive, reproduce and pass on their beneficial
properties than individuals with lower fitness, that tend to fail to survive and reproduce,
thus causing their disadvantageous genes to disappear. This process is called selection.
During reproduction another process called crossover takes place. Crossover refers to a
scenario during reproduction on a cellular level. During crossover, the genetic material
of two parent organisms is recombined to produce offspring with a mixture of traits from
both parents. This recombination of genetic material potentially results in individuals
that are fitter then their parents. Given the enormously complex and intelligent forms
of live that evolution has created it’s reasonable to believe that simulating this process
yields good solutions for an optimization problem as well [KMB+22].

And indeed, a literature review shows that EAs are applied successfully across diverse
domains. For example in manufacturing, they are used to optimize processes like
assembly line balancing and facility layout design. For energy management, they address
power system optimization and renewable energy integration, improving utilization
and grid stability. In finance, EAs support tasks such as stock market prediction and
portfolio optimization, yielding accurate forecasts and effective risk management strategies
[CDH+24].

These successful applications make Evolutionary Algorithms an interesting candidate
and it was chosen for implementation. The section 3.2.3 Evolutionary Algorithm gives a
detailed description of the specific algorithm applied for the problem of this thesis.
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Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization algorithm that was first proposed
by Kennedy and Eberhart in 1995 and has grown immensely popular since [EK95]. It is
similar to evolutionary algorithms (see Evolutionary Algorithms) in that it is both inspired
by nature and based on a population of candidate solutions. In contrast to evolutionary
algorithms, PSO maintains all population members throughout the entire run without
selection. The interactions among these members lead to iterative enhancements in the
quality of the solutions over time. In order to compute these interactions, PSO leverages
the principles of swarm intelligence. The core principle of swarm intelligence is that all
individuals maintain independent local knowledge while also sharing the most important
information with the entire group.

A survey paper by Gad demonstrates the extensive success of PSO in various applications,
particularly in black box optimization. These applications include disease detection and
classification in healthcare, agricultural monitoring or flood control and routing problems
[Gad22].

These successful applications make Particle Swarm Optimization an interesting candidate
and it was chosen for implementation. The section 3.2.4 Particle Swarm Optimization
gives a detailed description of the specific algorithm applied for the problem of this thesis.
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CHAPTER 3
Methodology and Implementation

The previous chapter outlined the problem in detail and provided a comprehensive
overview of methods to tackle the problem. However, the transition from theory to
practice involves solving many unforeseen problems and thinking about many details. Four
algorithms have been chosen for implementation. Those are Particle Swarm Optimization,
the Evolutionary Algorithm, Bayesian Optimization using a Gaussian Process and
Bayesian Optimization using Tree-structured Parzen Estimators. The details of these
implementations and the implementation of the framework around them are provided in
this section.

3.1 Evaluation and Parallelization Framework
The framework is built around the implementations of the different algorithms to support
usage and benchmarking of the entire application. It’s purpose is to create a layer
of independence between the algorithms and the computation platform as well as the
benchmarking and statistics tools.

The core component of the framework is a scheduler that abstracts over the computation
platform. During execution any black box optimization will get to a point where the
evaluation of the objective function is necessary. For parallel implementations (see 3.2.5
Parallelization of Optimization) batches of points must be evaluated. The evaluation
of the objective function means running a simulation with a given set of parameters in
the context of this work. To keep the algorithm implementations neat, the coding and
algorithmic overhead of these function evaluations must be outsourced to a separate
module, in this case the scheduler. Furthermore the scheduler supports single-core,
multi-core and cloud computation of the specified function evaluations.

The scheduler exhibits a quite simple interface. For common usage it offers functions for
scheduling evaluations, starting evaluations and retrieving the available results. When
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scheduling evaluations, either a single point in the parameter space or a batch of points
or a range can be specified. Before the evaluations starts, a platform must be specified
(either locally single-core, locally multi-core or cloud computation). All evaluation results
available are retrieved as a batch via a single (optionally blocking) call. The scheduler
may also be used in a debug mode where it will not schedule the a simulation run but
instead evaluate the given parameters for a mathematical function (e.g. the sphere or the
Rastrigin function) in order to test convergence of the algorithm and for benchmarking
purposes.

Internally the scheduler maintains two queues, one for pending evaluations and one for the
results. Upon start of evaluation, it will take all pending evaluations and process them.
The scheduler processes evaluations one after another (local single-core), in batches (local
multi-core) or by distributing batches as cloud computing jobs. For batch evaluation the
scheduler will process the pending evaluations in batches that are multiples of the number
of available CPUs. This approach enables a simple implementation with little overhead.
An approach supporting asynchronous parallel evaluations would offer performance
improvement via a reduction in idle time. However, as most of the simulation runs take
an equal amount of time no severe drawbacks in performance must be expected for the
synchronous approach. Furthermore, the algorithms are aware of the number of CPUs
available and will always schedule a number of evaluations that is a multiple of the CPU
count. This ensures that no CPUs will idle in the last evaluated batch. The evaluations
results are stored in a multiprocessing queue and made available to the algorithm via the
scheduler interface.

The framework also offers tools for benchmarking and statistics. Therefore it collects the
necessary data (e.g. runtime, convergence data, best results, etc.) during an optimization
run and offers plotting functionality. Furthermore it’s possible to collect and export
checkpoints during an optimization run, ensuring no data is lost upon unexpected
termination.

3.2 Implementation of Algorithms
In the sections Optimization as a machine learning problem and Classical Approach:
Heuristic Algorithms we gave an overview of promising algorithms to solve the given
problem. In this section we are giving a more detailed description and all the details of
implementation as well as the hyperparameters used. For most hyperparameters there are
standard values that can be found in the literature. For implementation, at some points
open source libraries are used, which is also indicated in the subsequent paragraphs.

3.2.1 Bayesian Optimization
Bayesian Optimization (BO) is a specific instance of Sequential Model-Based Optimization
(SMBO) that leverages Bayesian inference to guide the search for the optimal solution.
The model is either a surrogate for the objective function (Bayesian Optimization via a
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Gaussian Process) or it can be derived by maintaining distributions for good and bad
values (Bayesian Optimization via Tree-structured Parzen Estimators).

The following section gives a detailed decription of how Bayesian Optimization work
as well as the specific adaption to serve the needs of this thesis. To begin, we want to
examine the process of model fitting in Bayesian Optimization. As the name implies,
this approach is rooted in Bayes’ theorem.

P [M|Obs] ∝ P [Obs|M]P [Obs] (3.1)

where M denotes the model and Obs is the set of observations as introduced in SMBO.
However, as discussed in 2.7.1 we still need to define a hypothesis space H that defines
the character of the model. In the Bayesian context this is usually known as the
prior, in this case a prior distribution over functions, given the previous observations
{(x1, f(x1), . . . , (xn, f(xn)}. One such model for a prior over functions is the Gaussian
Process (GP).

Gaussian Process A Gaussian Process is a collection of random variables, any finite
number of which have a joint Gaussian distribution. It is specified by its mean function
µ(x) and covariance function k(x, x′):

µ(x) = E[f(x)]
k(x, x′) = E[(f(x) − µ(x))(f(x′ − µ(x′))]

To model a function we assume the Gaussian process contains an infinite number of
random variables, each representing the function at a certain point. A sample drawn
from a Gaussian Process corresponds to a function. The definition of k(x, x′) defines
the nature of these samples, it is also referred to as the kernel function. A simple kernel
function is the linear kernel where

k(x, x′) = xT x′ (3.2)

Samples from this Gaussian Process with this kernel have the form f(x) = wT x. A more
expressive and therefore often used kernel is the squared exponential kernel:

k(x, x′) = exp


−1
2(x − x′)T diag(θ)−2(x − x′)


(3.3)

with a parameter vector θ. Now all that that the FitModel function of the SMBO
algorithm (2.1) does in Bayesian Optimization, is to fit a Gaussian Process to the set of
observations.
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In order understand what the SelectNextEvaluation of the SMBO algorithm (2.1) does
in Bayesian Optimization, first the term of an acquisition function needs to be defined.
The acquisition function is a function that indicates where it pays off most to evaluate
the objective function next (maximizing the acquisition function will yield this point).
Thereby it is the central aspect in Bayesian Optimization that trade off exploration
against exploitation. Several ways to define this acquisition function have been introduced
in the literature. The first one is known as Probability of Improvement (PI) and does
exactly what its name suggests, i.e. calculating the probability that an evaluation of the
objective function at a point x leads to an improvement of the previously known best
point. PI is defined as

PI(x) = P (f(x) ≥ f(x+) + ξ) (3.4)

= Φ


µ(x) − f(x+) − ξ

σ(x)


(3.5)

where Φ denotes the normal cumulative distribution function and x+ = argmaxx∈Obs f(x)
is the best known observation. ξ is a parameter trading off exploration against exploitation.
Maximizing the PI(x) yields the suggestions for the next objective function evaluation
[Gar23].

While PI considers only the probability that an improvement over the current best is
achieved, it does not pay attention to the amount of improvement. To improve on this
shortcoming, an acquisition function named Expected Improvement (EI) has been defined.
It is based on the improvement function I(x):

I(x) = max(0, f(x) − f(x+)) (3.6)

Now EI is defined as

EI(x) = E[I(x)] (3.7)

and has the analytical expression

EI(x) = (µ(x) − f(x+) − ξ)Φ


µ(x) − f(x+) − ξ

σ(x)


+ σ(x)φ


µ(x) − f(x+) − ξ

σ(x)


(3.8)

EI not only indicates whether to expect improvement but also what magnitude of
improvement to expect.

Finally, the probably simplest acquisition function: Upper Confidence Bound (UCB).
UCB at a point x is simply the sum of the expected value of the objective function at
x and the uncertainty for this point, weighted by a exploration-exploitation tradeoff
parameter λ:

UCB(x) = µ(x) + λσ(x) (3.9)
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Lower Confidence Bound is the pendant of UCB for minimization problems and defined
as LCB(x) = µ(x) + λσ(x).

Note that the acquisition function is substantially easier to optimize then the objective
functions, that GP-bases Bayesian optimization is applied to. Otherwise there would
be no point in using the Gaussian Process. However, as pointed out by Bergstra et
al. in [BBBK11] the runtime of fitting the GP model is in O(|Obs|3), i.e. cubic in the
number of available samples. Bergstra et al. claim that usually this cubic runtime
is dominated by the objective function evaluations. This might be true for purely
sequential implementations, however as through parallelization a significantly higher
number of samples is generated, the cubic runtime is a significant drawback. During the
implementation of this algorithm it was found that the GP approach essentially becomes
infeasible when applied at large scale (see section 4 Experiments and Results for the
details).

Tree-structured Parzen Estimator Using tree-structured Parzen estimators as a
model in Bayesian Optimization was suggested by Bergstra et al. in 2011 for the first
time [BBBK11]. This method was specifically developed to address the hyperparam-
eter optimization problem for machine learning algorithms, aiming to find the set of
hyperparameters that optimize the performance of a given model. Evaluating a set
of hyperparameters involves training the machine learning model with them, which is
computationally expensive. As such, hyperparameter optimization closely parallels the
optimization problem addressed in this thesis, making the application of TPE-based
algorithms a promising approach.

The TPE approach is different to the GP approach in that the goal is not to directly
learn a surrogate for the objective function, P (y|x), which is then used to suggest the
next evaluation. Instead, TPE aims to learn directly where good and where bad values
x of f(x) are. Therefore the authors of [BBBK11] propose to maintain two probability
densities:

l(x) = p(x|y ≤ yγ) (3.10)
g(x) = p(x|y > yγ) (3.11)

where yγ is the top γ-quantile of the observed objective function evaluations Obs. l(x)
is the density of points that yielded better (smaller) objective function values, i.e. it is
computed from observations xi with f(xi) ≤ yγ and g(x) is the density of points that
yielded worse values. To compute these density functions so-called Parzen estimators,
which are a form of kernel density estimators (KDE), are used. The authors of TPE
claim that building the densities scales linearly in the number of observations |Obs| in
contrast to the cubic runtime when using the Gaussian Process [BBBK11].

In order to compute suggestions for the next evaluations, the TPE based algorithm now
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simply samples from l(x) and computes a score α for these samples:

α(x) = l(x)
g(x) (3.12)

Samples that have a high probability under the "good" distribution l(x) and low proba-
bility under the "bad" distribution g(x) will achieve high scores. The sample with the
highest score is suggested. TPE showed superior results and became popular in the
hyperparameter tuning community [Wat23].

Implementation Details Gaussian Process (GP) based Bayesian Optimization con-
sists of several building blocks: the surrogate model fitting, the acquisition function
computation and optimization and the evaluation of the suggested points. For the
surrogate model implementation as well as for the acquisition function the open source
implementation of GPyOpt was used ([aut16]). In order to accelerate the fitting of the
model, a sparse GP is used. While fitting a GP to n data points usually scales with
O(n3), a sparse GP reduces this time complexity to O(nm2), where m is the size of a set
of inducing variables [LDJD22]. As acquisition functions both Expected Improvement
and Lower Confidence Bound are available. For batch sampling, which is necessary for
parallelizing this algorithm, Pure Exploration and Local Penalization are available.

The implementation of TPE is based on the popular Hyperopt library by the group of
Bergstra et al. which also invented the TPE algorithm [BKE+15]. For the parameter γ
that defines the quantile used to separate the observations into the two sets which are
used to construct the model, it was determined to set it to 0.25, which aligns with the
standard recommendation provided by the literature. Parallelization of this algorithm
is done by sampling batches from the acquisition function as described in the section
Bayesian Optimization.

3.2.2 Simulated Annealing
Simulated Annealing (SA) is a heuristic optimization algorithm inspired by the annealing
process in metalworking, where controlled cooling allows atoms to settle into a minimal-
energy state. SA is a simple and robust method suitable for mixed and continuous
optimization problems, with applications ranging from IC layout design to logistics and
scheduling. It should be noted upfront that due to the lack of efficient parallelization
possibilities for this algorithm, it has not been chosen for implementation. Nevertheless,
it is such a crucial heuristic algorithm that it is still described here to maintain the
completeness of this thesis. The core problems of parallelizing SA are described in section
3.2.5 Simulated Annealing.

The core principle of the algorithm follows local search. However, it overcomes its
limitations by probabilistically accepting worse solutions, allowing the algorithm to escape
local optima. In particular, the algorithm chooses a worse solution with probability e

−δ
T ,

where δ is a measurement for how much worse the candidate solution is and T is a control
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parameter referred to as temperature. The role of the temperature in SA is analogous to
the role of the temperature in annealing, hence the naming. Just like the temperature in
annealing controls how probable it is for atoms to end up in a state of higher energy, the
temperature in SA controls, how likely a move to a less optimal solution is. A probability
function is used such that a lower temperature leads to exponentially decreasing chances
a suboptimal solution is accepted.

The complete algorithm is listed in listing 3.1. The procedure starts by initializing the
temperature and the candidate solution (lines 1-2). The energy of the solution is the
value of the objective function (line 3). Within the main loop repeatedly candidate
solutions are generated (line 5). The exact strategy for generating a new candidate is
strongly dependant on the specific problem and should ensure that the new solution is
somehow related to the current solution. In the original paper by Cerny, where SA was
applied to the Traveling Salesman Problem (TSP), a new candidate tour is generated
by selecting two vertices in the current tour and reversing the order of traversal of the
vertices between them. The next step in the algorithm is to evaluate the objective for
the new candidate and observe the difference in energy (line 7). Better solutions are
accepted immediately, worse solutions probabilistically as described previously with δ
being the difference in energy (line 8-17). Finally after each iteration the temperature is
updated according to a cooling schedule (line 18).

The initial temperature and the cooling schedule play a vital role: a fast cooling rate or
a small initial temperature may lead to under-exploration of states, while a slow cooling
rate or a high initial temperature increases runtime and computing costs. An important
insight about the initial temperature by van Laarhoven is that it should be just high
enough that initially almost all candidates are accepted. Let the desired initial acceptance
rate be 0 < χ0 ≤ 1 and let the average difference in energy between two candidates be
Δe0 [van88].

T0 = − Δe0
ln(χ0) (3.13)

ensures that the probability p of accepting a solution in the first iterations is on average

p = e− ΔE
T = e

− ΔE

− Δe0
ln(χ0) = e

ΔE ln(χ0)
Δe0 ≈ eln χ0 = χ0 (3.14)

Thus, choosing χ0 ≈ 1 will ensure all possible transitions are considered initially. It’s
worth noting that this approach also aligns with the physical analogy: accepting all
transitions can be seen as heating the metal until it is completely liquid.

Several cooling schedules have been proposed. Important schedules are the logarithmic
and the Cauchy schedule. The temperature Ti at time i is given by Ti = T0

log i for the
logarithmic and by Ti = T0

i for the Cauchy schedule. It can be shown that for these
schedules, the algorithm converges to the true global optimum when candidates are
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generated according to a Gaussian distribution for the logarithmic schedule and a Cauchy
distribution for the Cauchy schedule, respectively. A faster cooling schedule is given by
Ti = T0e−Ci and a constant C. For this schedule, known as the exponential schedule, no
convergence guarantees can be given. Some authors propose adaptive cooling schedules
that update the temperature based on information gathered during the run [SK06]. There
exists no cooling schedule that clearly outperforms any other. Hence, it must be decided
by the algorithm engineer based on the specific problem. A good rule of thumb is to slow
down cooling during phases where the evaluations improve rapidly.

Algorithm 3.1: Simulated Annealing [KGV83] [Čer85]
Input: objective function f
Output: best solution

1 T ← Tmax;
2 x ← initial candidate solution;
3 E ← f(x);
4 while T and E above threshold do
5 xnew ← new candidate solution;
6 Enew ← f(xnew);
7 ΔE ← Enew − E;
8 p ← e

−ΔE
T ;

9 if ΔE < 0 then
10 x ← xnew;
11 E ← Enew;
12 else
13 if random < p then
14 x ← xnew;
15 E ← Enew;
16 end
17 end
18 T ← cooling schedule(T );
19 end
20 return x;

3.2.3 Evolutionary Algorithm

Evolutionary algorithms (EAs) simulate natural evolution, using selection, reproduction,
and mutation to optimize solutions. Inspired by Darwin’s theory, they evolve populations
by favoring fitter individuals, introducing variation through mutation, and combining
traits via crossover. This approach effectively solves complex optimization problems.

The following section gives a detailed description of how EAs work as well as the specific
adaptions made to serve the needs of this thesis.
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Listing 3.2 shows how evolutionary algorithms work on a high level. Initially a population
is generated randomly (line 2). Now the principle of evolution is applied to this population
for a given number of iterations (line 3). First, the fitness of each individual is evaluated.
This corresponds to the evaluation of the objective function for the parametrization
that each individual represents. To identify the set of individuals that qualifies for
reproduction the selection algorithm is applied (line 5). Next, the genetic operations of
mutation and crossover are applied to obtain the offspring, i.e. the next generation (line
6-7). After termination of the loop the fittest individual is returned as the solution (line
9).

Algorithm 3.2: Evolutionary algorithms on a high level [KMB+22]
Input: objective function f
Output: best solution

1 t ← 0;
2 populationt ← initialize population;
3 while t below threshold do
4 t ← t + 1;
5 fitness_vals ← evaluate f for populationt−1;
6 offspringt ← selection(populationt−1, fitness_vals);
7 offspringt ← variation(offspringt);
8 populationt ← offspringt;
9 end

10 return best individual from (populationt);

While the algorithm on a high level is fairly simple, there are a ton of different imple-
mentations, when it comes to the details. The variables are mainly the way of encoding
a solution, the selection mechanism as well as the genetic operations (mutation and
crossover).

Encoding. The encoding of candidate solutions plays a vital role when engineering
an evolutionary algorithm. It defines the way the algorithm represents a candidate
solution. This representation must strike a balance between simplicity and expressive
power, allowing the algorithm to navigate efficiently through the search space. Common
encoding schemes include binary strings, integer arrays, real-valued vectors, permutations,
and more. The choice of encoding impacts different aspects of the algorithm, including
the diversity of candidate solutions, the ease of applying genetic operators and the
interpretability of the final solutions obtained. To illustrate the importance of the
encoding, consider the n-queens problem. This problem refers to the question how to
place n queens on an n × n chess board such that no two queens can attack each other.
One possibility of encoding a candidate would be a binary matrix S with si,j ∈ {0, 1},
where the 1s indicate the positions of the queen. However, this would be a poor choice
as the encoding allows solutions that are known to be invalid a priori (e.g. with several
queens in a row). One would have to make sure to exclude such solutions when applying
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the genetic operations. A smarter way is to structure the encoding such that it narrows
down the search space in advance as far as possible. Using a simple permutation
π : {1, . . . , n} �→ {1, . . . , n}, where π(i) defines the position of the queen in row i satisfies
this requirement [KMB+22].

Selection. The selection mechanism chooses the individuals best suited for reproduction,
allowing them to pass on their genes to the next generation. It introduces so-called
selective pressure, which quantifies how strongly fitter individuals are preferred over
less fit individuals. Selection creates an exploration-exploitation trade-off where low
selective pressure results in random search and high selective pressure tends to drive the
population into local optima. A straightforward selection mechanism is roulette-wheel
selection. It computes the relative fitness frel of each individual s based on its absolute
fitness fabs:

frel(s) = fabs(s)�
s′∈populationt

fabs(s′) (3.15)

Next, the subsequent population is drawn from the current population, where the
probability of drawing s is frel(s). Roulette-based selection suffers from two drawbacks.
First, individuals with a very high fitness dominate the selection, resulting in an undesired
small variance in the population. Second, too small distances in fitness values are also not
desired as they might lead to vanishing selective pressure, where the selection probabilities
are more or less equal among all individuals, rendering the selection random. Scaling the
fitness function helps tackling both problems. Updating the fitness values according to

flds(s) = α · f(s) − min{f(s′)|s′ ∈ populationt}, α > 0 (3.16)

is known as linear dynamic scaling. Another popular scaling scheme is σ-scaling:

fσ(s) = f(s) − (µf (t) − β · σf (t)), β > 0 (3.17)

where µf (t) = 1
|populationt|

�
s∈populationt

f(s) and
σf (t) = 1

|populationt|
	�

s∈populationt
(f(s) − µf (t))2 are mean value and standard deviation

of the individuals’ fitness scores, respectively [KMB+22].

Applying the principles of a tournament yields another interesting selection mechanism,
the so-called tournament selection. In tournament selection k ∈ {2, . . . , |populationt|}
individuals are drawn from the population randomly and compete in a tournament
against each other. The fittest individual wins a spot in the offspring generation. Note
that each individual has the same chance to compete in a tournament, independently
of its fitness. After the tournament the competing individuals are put back into the
population and are allowed to compete again. The parameter k controls the selective
pressure. Assume k = |populationt|, then any variance is removed and the offspring
generation will consist of the fittest individual only. The smaller k becomes, the higher
the chances are for weak individuals to establish themselves against the other k − 1
individuals in their tournament. Note that the populations weakest k − 1 individuals will
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never win and their genetics are lost for sure. The number of tournaments conducted is
equal to the size of the population. Tournament selection also addresses the problem of
dominance as the probability of an individual to be selected does not directly correspond
to its fitness [KMB+22]. The expected number of spots in the offspring generation for
the fittest individual indmax is the expected number of tournaments it competes in:

E[spots(indmax)] = k

|populationt|
· |populationt| = k (3.18)

Thus the dominance problem can be tackled by varying k. In particular, the expected
number of spots for the fittest individual does not depend on it’s fitness as it does with
roulette-wheel selection.

The selection mechanisms introduced so far bear the risk that, although unlikely, the
best individual of a generation may be discarded, resulting in the best individual of the
next generation being less fit than the current one. To overcome this issue, a technique
called elitism is applied. Elitism ensures that the k fittest individuals are guaranteed
a spot in the next generation without undergoing selection or genetic operations such
as mutation and crossover. In many practical applications this technique has proven to
accelerate convergence towards the global optimum [KMB+22].

Genetic operations. Once the individuals selected for reproduction are chosen, the
genetic processes that occur in nature during cell separation are simulated. These
processes primarily include mutation and crossover. All individuals of the next generation
(except the k fittest ones when applying elitism) undergo these genetic operations, even
if there is a high probability of decreasing their fitness.

Mutation refers to a process that alters a single individual. Its biological background lies
in the fact that during the process of cell division, random modifications to the genetic
material can occur, influenced by external factors such as the presence of radiation or
internal factors such as unavoidable errors during this complex process. To simulate
mutation, evolutionary algorithms apply mutation operators. The nature of the mutation
operator applied depends on the encoding of the candidate solutions. If a bit vector
is used for encoding, a popular method to mutate it is to flip each bit with a given
probability. The corresponding algorithm is given in listing 3.3. In practical applications
choosing pm = 1

length(x) has shown good results.

Algorithm 3.3: Mutation of a bit vector [KMB+22]
Input: bit vector x, probability pm

1 for i ← 1 to len(x) do
2 if random() ≤ pm then
3 xi ← 1 − xi;
4 end
5 end
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For solution encodings that contain continuous components, Gaussian mutation usually
delivers good results [KMB+22]. Each continuous component is summed with a random
number sampled from a Gaussian with µ = 0. The value of σ is search space dependent
and offers a way to control the balance between exploration and exploitation. Listing 3.4
describes Gaussian mutation in detail.

Algorithm 3.4: Mutation of a continuous-valued vector [KMB+22]
Input: continuous-valued vector x, standard deviation σ

1 for i ← 1 to len(x) do
2 u ← sample from N(µ, σ);
3 xi ← xi + u;
4 end

Crossover refers to a process during cell separation where the genetic material of both
parents overlaps and exchanges parts with each other. This exchange, that may or may
not take place, can create new combinations of genes, potentially combining advantageous
traits from both parents. This process is reflected in evolutionary algorithms by the
application of crossover operators. Numerous crossover operators have been described in
the literature with one-point crossover and two-point crossover being the most popular
ones. In one-point crossover the candidate solution vectors of two individuals are cut
at one randomly chosen point and the parts of the vector on one side of this point are
exchanged between the two individuals. In two-point crossover two points of both vectors
are cut at two random points and the part in between them is exchanged. Figure 3.1
illustrate both one-point and two-point crossover for a integer vector solution encoding.

(a) Example for one-point crossover

(b) Example for two-point crossover

Figure 3.1: Examples for the crossover operation.

A crossover operation that works well for continuous search spaces is blend-crossover.
The blend-crossover operation defines for each component of the solution vector a space
where it samples a new value from. The space depends on the distance of the component
values of the parents, extended by some factor α. Then the new values are sampled
randomly from this space. Listing 3.5 illustrates the algorithm in detail.
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Algorithm 3.5: Blend-crossover operation [AXCS12]
Input: continuous-valued vectors x1, x2, parameter α

1 for x1,i, x2,i ∈ x1, x2 do
2 d ← ||x1,i − x2,i||;
3 lo ← min(x1,i, x2,i) − αd;
4 hi ← max(x1,i, x2,i) + αd;
5 x1,i ← random(lo, hi);
6 x2,i ← random(lo, hi);
7 end

Implementation Details For Evolutionary Algorithms primarily the genetic opera-
tions mutation and mating, the selection algorithm and the encoding need to be defined.
Regarding the encoding, a vector of float and integer values is suitable, where float values
represent the continuous dimensions and integers represent the categorical dimensions.
As a selection algorithm tournament selection was chosen with tournament size k = 3.
Tournament is computationally very efficient and effectively tackles the dominance prob-
lem. The small tournament size favors exploration and prevents converging too fast. The
selection mechanism is combined with elitism in order not to allow degradation of the
solution. Elitism is implemented such that the top 3 % of individuals are always passed
to the next generation. When it comes to genetic operations, Gaussian mutation is used
for continuous variables and random mutation is applied on categorical variables. While
Gaussian mutation is standard in the literature, the random mutation approach might
surprise. However, it is the most natural way to do it as there is no real ordering or
structure on categorical variables that allows to favor the selection of values "close" to
each other. As a mating algorithm Two Point Crossover was chosen. The probability
that crossover happens was set to 0.7, the probability for mutation to 0.2. Parallelization
of this algorithm is done by evaluating all individuals in parallel, thus the population
size is set to a multiple of the number of available CPUs.

3.2.4 Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a nature-inspired optimization algorithm based on
swarm intelligence. Unlike evolutionary algorithms, PSO retains all population members
throughout its run, with individuals sharing key information while maintaining local
knowledge to iteratively improve solution quality.

The following section gives a detailed description of how PSO works as well as the specific
adaptions to serve the needs of this thesis.

The swarm is modelled as a set of N particles: {x1, x2, . . . , xN}. Each particle represents
a candidate solution, i.e. a vector in the D-dimensional search space. In addition to
the location each particle also gets an individual velocity. This velocity is then used to
move the particle through the search space. Furthermore each particle keeps track of the
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coordinates corresponding to the best solution (objective function value) achieved so far,
which is called pbest in the literature. In some implementation each particle also knows
the globally best solution found so far, named gbest.

The algorithm consists basically of two simple update rules for each particle. First the
velocity is updated, afterwards each particle is moved with respect to its new velocity. The
update rule itself varies from implementation to implementation, however the principle is
always to move the velocity into the direction of regions of the search space that seem
most promising. In natural swarms each individual decides locally in which direction it
moves next based on it’s own observations and on information received from its direct
neighbors. Assume one individual finds a new global best. First its neighbors will notice
and they start moving towards the optimum. Now also the neighbors of these neighbors
notice, and so on. The information flows through the swarm and causes the individuals
to converge towards an optimal point. During this process however also new areas are
explored, potentially discovering even better points [Ken10].

In it’s simplest form PSO computes the velocity updates such that - conceptionally -
every particle is in the neighborhood of every other particle. This means that the update
of the velocity is performed with respect to pbest as well as gbest. In the literature this
PSO version is known as global best and was also the original form of PSO [EK95]. In
detail, every dimension d of the velocity vi of particle xi is updated according to:

v
(t+1)
i,d ← αv

(t)
i,d + r1β


pbesti,d − x

(t)
i,d


+ r2γ


gbesti,d − x

(t)
i,d


(3.19)

where α, β, γ are constants and r1, r2 are random numbers uniformly distributed on [0, 1].

After that every dimension xi,d of particle xi is updated according to:

x
(t+1)
i,d ← x

(t)
i,d + v

(t+1)
i,d (3.20)

The previously mentioned version of PSO, where only the neighboring particles influence
each other, is known as local best. The update rules are almost identical to global best, but
instead of gbest another metric called lbest is used. lbest corresponds to the best particle
within the neighborhood of the updated particle. The definition of the neighborhood is
problem specific, for a euclidean search space it’s common defining all particles within a
certain radius as neighbors.

Extending PSO, originally designed for continuous search spaces, to mixed search spaces
is non-trivial and remains an active field of research. Several approaches are described in
the literature, among them relaxation and hybridization. Relaxation simply treats the
discrete variables as continuous for the motion updates and then transfers them back into
discrete space by rounding. While this approach works well for integer valued variables,
it performs quite poorly on categorical variables. Wang et al. suggested hybridization,
an approach where discrete and continuous variables are treated independently [WZZ21].
As an update rule for the continuous portion they suggest an adapted version of local
best and for the discrete portion they suggest learning a distribution of well-performing
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values and sampling from it. This approach works merely for discrete values with limited
domain. For search spaces where the discrete variables only have little influence a random
updating rule is reasonable.

Implementation Details Implementing Particle Swarm Optimization for a mixed
search space was done via the hybridization approach, meaning that discrete and continu-
ous dimension of the solution vector are independently updated. While the continuous part
is updated according to the velocity of this dimension, the discrete part is treated differ-
ently. Here the global best strategy is applied, also described in the section Particle Swarm
Optimization. Parameter values for the velocity update are α = 0.5, β = 1.5, γ = 1.5.
The discrete part represents categorical variables with small, bounded domains only,
therefore velocity does not really make sense. Instead, a randomly drawn value is used
for update. Parallelization for this algorithm is done by evaluating all individuals in
parallel, thus the population size is set to a multiple of the number of available CPUs.

3.2.5 Parallelization of Optimization

Parallelizability is a highly desired property of any optimization strategy. The widespread
availability of parallel computing infrastructure makes parallelization and scalability one
of the most important aspects when choosing an optimization strategy. Optimization
algorithms that perform suboptimal on a single CPU core can still achieve superior
results when run on several hundreds of CPUs, provided they scale well enough. In this
section we will go through several previously described algorithms and evaluate their
potential in terms of parallelizability and scalability.

Bayesian Optimization

Parallelization of Bayesian optimization is an open and very active field of research.
The basic concept is clear and identical for all approaches: instead of generating just a
single suggestion x for evaluation in each iteration we want to generate an entire batch
B = {x1, . . . , xnb

} of nb suggestions and run all evaluations in parallel. That’s the reason
why parallel Bayesian optimization is also referred to as Batch Bayesian optimization
(BBO). While generating batches from a Gaussian process is very cumbersome, there
exist very simple approaches for TPE.

As described in section 3.2.1 Gaussian Process, generating suggestions using a Gaussian
process model involves maximizing a dedicated acquisition function. However, in order
to generate an entire batch of suggestions without duplicates, we cannot maximize it
several times. A suitable method must consider the correlations between the samples
within the batch. Several methods have been proposed. The first one introduced here
is multi-point expected improvement (qEI) by Ginsbourger et al. [GLRC08]. Analog
to expected improvement (EI) for the sequential version of Bayesian optimization they
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suggest considering the EI for the entire batch. qEI is defined as

qEI(B) = E

max


0, f(x+) − min

i=1,...,nb

f(xi)


(3.21)

where x+ = argmaxx∈Obs f(x) is the best known observation so far. qEI aims at finding
a set B of size nb that maximizes this expression. This maximization problem becomes
extremely difficult to solve as the dimensionality of the problem grows, as Ginsbourger
et al. point out [GLRC08]. Frazier et al. came up with an efficient algorithm based on a
gradient estimation of the qEI function [WCLF19].

Another approach is Local Penalization (LP) which has been suggested by Gonzalez et
al. in 2015 [GDHL15]. The intuition behind LP is to modify the acquisition function
after one suggestion has been generated in order to discourage the selection of points
that are close by (the acquisition function is "penalized locally"). This approach rests on
the assumption that the objective function is Lipschitz continuous, i.e. it must hold that

|f(x1) − f(x2)| ≤ L||x1 − x2|| (3.22)

for a global positive constant L, which is a reasonable and common assumption in
optimization according to the authors. This Lipschitzian assumption enables to establish
a bound on how far the optimum of f is from a certain location. This bound is essential to
LP as it allows to choose the penalization such that the true optimum of f is not excluded
unintentionally. The bound depends on the constant L which can be estimated from the
underlying Gaussian process. Figure 3.2 illustrates this process. After the first suggestion
has been generated my maximizing the acquisition function α(x), a local penalization
function ϕ(x), 0 ≤ ϕ(x) ≤ 1 is calculated and multiplied to α(x). It discourages the
selection of suggestions that are close to the first suggestion. This process iterates until
the last suggestion of the batch has been selected by maximizing α(x)Πnb

i=1ϕi.

Contal et al. introduced another different version of batch selection known as Pure
Exploration (PE) [CBRV13]. They suggest generating the first batch element by maxi-
mizing the acquisition function analogous to the sequential Bayesian optimization. The
remaining nb − 1 samples are generated in a purely random manner - hence the name.
They show that PE is efficient in reducing overall uncertainty which in turn results in a
more accurate acquisition function in each iteration.

The TPE approach offers a very natural way of generating a batch of suggestions.
As described in the section Tree-structured Parzen Estimator a sample is generated by
sampling from the distribution l(x). Since l(x) is a distribution rather than a deterministic
function, it facilitates the generation of multiple suggestions by iterative sampling. After
the scoring of the samples not just the single best sample but the top nb samples are
selected to form the suggestions of the batch. This advantage was also recognized by the
TPE authors and introduced already in the original TPE paper [BBBK11].
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Figure 3.2: Local penalization applied to an acquisition function α(x). After the first
suggestion is generated (left), α(x) is multiplied with the penalization function ϕ1(x) that
discourages the selection of points near the first suggestion (middle). After the second
suggestion is generated, ϕ2(x) is multiplied to α(x)ϕ1(x) to prepare the acquisition
function for the third iteration (right).

Simulated Annealing

The parallelization of Simulated Annealing (SA) is difficult due to its inherently sequential
nature. SA is inherently sequential because each move, i.e. whether or not to accept a
solution, depends on the temperature (which decreases after every move) and on the
previously found best solution. First attempts to parallelize SA focused on running
several instances of the algorithm at the same time. However, this approach is inefficient
as in n parallel instances, each instance neglects the information that has already been
collected by the other n − 1 instances. Some authors developed ways to parallelize a
single run of SA. They proposed adapting the cooling schedule so that a number τ of
moves can be completed simultaneously. However, these methods were found to provide
a significant speedup only for up to 16 or 32 processors. This is a fairly small number,
since the average clusters used in the industry have hundreds or thousands of CPUs
[LR16]. Due to these concerns and the insufficient options for parallelizing Simulated
Annealing, it will not be further considered for implementation.

Evolutionary Algorithms

As a population-based algorithm Evolutionary Algorithms (EAs) rely on the evaluation
of a set of individuals. These evaluations are completely independent of each other,
making EAs a perfect candidate for parallelization. Other operations of EAs are mutation,
crossover and selection. Mutation and crossover depend solely on one and two individuals,
respectively, making them highly parallelizable as well. The parallelizablity of the
selection mechanism varies from implementation to implementation. Most mechanisms
are well parallelizable but depend on information about the entire population making
communication the bottleneck [SO22]. However, for expensive black box optimization the
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evaluation of the objective function (the fitness calculation in EAs) dominates all other
operations by several orders of magnitude. Therefore all concerns about parallelizability
of the genetic operations and selection mechanism can be neglected in this case, making
EA a promising candidate for implementation.

Particle Swarm Optimization

Particle Swarm Optimization is also a population based algorithm and therefore provides
promising possibilities for optimization. The evaluations of the individuals can be done
in a perfectly parallel manner. Only the selection of the values of gbest or lbest needs to
be done sequentially before each iteration. The selection of gbest can be done in time
linear in the population size, the selection of lbest runs in quadratic time in the worst
case. However, similar to the evolutionary algorithm, this overhead is negligible when
applied for expensive black box optimization.
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CHAPTER 4
Experiments and Results

This chapter presents the results of several experiments conducted to compare the
performance of different optimization algorithms on a set of benchmark problems and a
real-world simulation model. The objective was to evaluate the entire implementation
based on various interesting aspects such as convergence, solution quality, efficiency,
reliability and scalability. First, the algorithms are compared to each other on different
use cases. Afterwards, the scalability of the parallelization framework is assessed.

4.1 Algorithm comparison
Fist, experiments were conducted to assess the performance of the evolutionary algorithm,
Particle Swarm Optimization (PSO), Bayesian Optimization with a Gaussian Process
model (BayesOpt-GP), and Bayesian Optimization using the Tree-structured Parzen
Estimator (BayesOpt-TPE). Each algorithm was tested on both artificial benchmark
functions and a real-world simulation model, with multiple runs conducted to ensure
robustness. The algorithms are then compared with each other and among the different
use cases.

4.1.1 Benchmarking on artificial functions
For the first part of benchmarking a set of mathematical functions has been chosen.
These functions are specifically developed as benchmarking problems for optimization
algorithms and used extensively throughout the literature [PS22]. This set comprises:

• Sphere function: The simplest and most commonly used function for continuous
optimization problems. It’s convex and unimodal.

• Rastrigin function: A highly multimodal function with many, regularly distributed
local optima.
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• Rosenbrock function: Function with a narrow, parabola-shaped valley that
contains the global optimum. Finding the valley is easy, but converging to the
optimum difficult.

• Schwefel function: Similar to Rastrigin, a highly multimodal function with many,
regularly distributed local optima.

• Branin function: A relatively smooth function with an easy to find global optimum
and some local optima.

Figure 4.1 depicts the 2-dimensional versions of these functions. For benchmarking these
functions were extended to the 10-dimensional real space.

Benchmarking is conducted by running each optimization algorithm for each benchmark
problem n = 20 times. During each run data is collected and afterwards plots of the
interesting aspects were generated. Interesting aspects include convergence speed, quality
of solution, reliability and efficiency. The parameters of the algorithms are chosen as
described in the section 3.2 Implementation of Algorithms. For the benchmarking on the
artificial functions, each evaluation is run locally on a single core. The reason is that in
this section we only want evaluate how well the algorithms move towards the optimum of
a function and how much overhead the algorithm introduces. The cost of evaluating these
functions is negligible and no different results can be expected for running the evaluations
on multiple cores or in the cloud. What does influence the performance however is how
often the model is updated when using the model-based Bayesian Optimization. To
simulate parallel execution (which is the main usecase of all algorithms), the model is
updated in batches of 200 evaluations. This a reasonable batch size for actually parallel
execution and therefore should accurately simulate the scenario. This approach allows us
to measure the performance characteristics of the algorithms in a way that reflects their
intended use in parallel environments. For the population based algorithms a population
size of 200 was chosen as well, making it easy to compare the collected data also on batch
level.

Convergence

Convergence measures how fast and how well the optimization algorithm approaches
the true optimum. To visualize the quality and speed of convergence, the best objective
function value found so far at each iteration is tracked. To obtain the convergence graph,
this value is plotted against the number of the according evaluation. The plots in figure
4.2 show the average across all runs of one algorithm on one problem together with
the standard deviation. Note that the total number of function evaluations in each run
was 4000, except for Bayesian Optimization using the Gaussian process model. This
algorithm exceeded the time budget long before reaching the 4000 evaluations. This
is due to the inefficient scaling of the fitting of the Gaussian process to observed data,
which causes a significant overhead both when using a sparse Gaussian process and when
using a Gaussian process. For the Sphere function and the Rosenbrock function only the
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(a) Sphere function [PS22] (b) Rastrigin function [PS22]

(c) Rosenbrock function [ros] (d) Schwefel function [PS22]

(e) Branin function [bra]

Figure 4.1: The set of mathematically defined benchmark functions.
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first 1600 evaluations are plotted because no significant improvement could be observed
afterwards.

The evolutionary algorithm provides the most reliable convergence, finding optimal or
near optimal solutions for all five problems. The variance vanishes when approaching
the optimum indicating stable performance across all runs. For the Rastrigin and the
Schwefel function it also outperformed all other algorithms significantly in terms of
solution quality. It reliably converges towards the optimum on those functions while the
other algorithms get stuck in suboptimal locations. However, in terms of convergence
speed, the evolutionary algorithm consistently underperforms compared to the other
algorithms, at least when ignoring the problems where the other algorithms struggled to
find the optimum at all (Rastigin and Schwefel). This makes the evolutionary algorithm
an interesting candidate for exact solutions provided enough budget is available.

Particle Swarm Optimization converges faster than the evolutionary algorithm on most
problems, however it struggles to find the optimum on the Rastrigin and the Schwefel
function. It does discover the second-best solution on Rastrigin, though this is still
significantly inferior to the solution achieved by the evolutionary algorithm. However, it
completely fails on the Schwefel function. Benchmarking on the real model will show if
this lack in realiability disqualifies Particle Swarm Optimization entirely or if the Schwefel
functions is simply a corner case, that Particle Swarm Optimization is not made for.

Bayesian Optimization with the Gaussian Process (BayesOpt-GP) model shows interesting
results. It converges very fast on the Sphere, Rosenbrock, Rastrigin and average or worse
than average on Schwefel and Branin. Until termination, it delivers the best results on
the Sphere, Rosenbrock and Rastrigin function across all algorithms. However, as already
mentioned, this algorithm scales so bad that it had to be terminated earlier, because
it consumed magnitudes more time per iteration (see section on efficiency for details).
It must be examined whether this overhead becomes negligible due to the simulation
runtime on the actual model or if it remains significant even there. The lack in realiability
however is a disadvantage to keep in mind.

Bayesian Optimization using the TPE model (BayesOpt-TPE) delivers consistent and
fast performance across all problems. Although the quality of the solution is clearly
suboptimal on Rastrigin and Schwefel, BayesOpt-TPE provides a very fair trade-off
between convergence speed an solution quality. For Sphere, Rosenbrock and Branin,
BayesOpt-TPE delivers the same solution quality as the evolutionary algorithm with
significant faster convergence. All in all BayesOpt-TPE is a great candidate if fast
convergence has priority while maintaining high reliability.

Summarizing, both the evolutionary algorithm as well as BayesOpt-TPE show very
promising results on the artifical benchmarking functions. While the evolutionary
algorithm delivers high quality and reliable solutions, BayesOpt-TPE trades off solution
quality for convergence speed. Both algorithms are superior to the other two in most
aspects.
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(a) Convergence on Sphere function (b) Convergence on Rosenbrock function

(c) Convergence on Rastrigin function (d) Convergence on Schwefel function

(e) Convergence on Branin function

Figure 4.2: Convergence plots of all four algorithms on different benchmark functions.
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Batch diversity

Evaluating the diversity of each batch also provides valuable insights. Each batch consists
of 200 evaluations as mentioned at the beginning of this section. Diversity refers to
the difference in objective function values for each evaluation in a batch. From the
development of this diversity during the run, for example, information can be derived
about the trade-off between exploration and exploitation. In order to visualize this
behavior for each batch a boxplot is plotted against the batch number. The boxplot
indicates the distribution of the objective function values obtained in this batch. Note
that for readability purposes only 20 batches out of the 200 of each run are plotted. For
BayesOpt-GP, which has been terminated earlier due to excessive time consumption, only
four out of 50 batches are plotted for comparability. The plots are depicted in figures ??,
4.4 and 4.5.

The evolutionary algorithm shows significant decrease in solution diversity already after
10 batches across all problems. However the diversity does never completely vanish even
until the last batch. This is exactly the idea of a reasonable exploration-exploitation
trade-off. Even if most evaluations take place close to the assumed optimum, there are
still some evaluations in unexplored regions that might contain even better solutions.

Particle Swarm Optimization shows very similar results, although the diversity almost
completely disappears over time, indicating that there is a bit too much exploitation.
However this does not seem to affect the solution quality, as can be derived from the
performance of Particle Swarm Optimization on the Rastrigin function and the Schwefel
function. On both functions, the algorithm struggles to find a good solution although
maintaining a good diversity in each batch.

BayesOpt-GP maintains great diversity throughout every batch and there does not seem
to be a correlation between solution quality and batch diversity.

BayesOpt-TPE reduces batch diversity slower than Particle Swarm Optimization or
the evolutionary algorithm. This could explain why BayesOpt-TPE shows superior
convergence speed across all problems, especially very early in the run. This algorithm
keeps at least some diversity throughout the entire run, similar to the evolutionary
algorithm.

Summarizing, reducing diversity too early could be a reason for slower convergence in
the early phase of the run. Afterwards no clear correlation between batch diversity and
solution quality can be observed.

Cost per major iteration

Another interesting aspect is the cost (time) per iteration of the optimization algorithm.
For optimization problems on easy-to-evaluate functions (such as the benchmark functions
in this chapter) this cost plays an essential role for the time it takes to find a good solution,
because it will dominate the cost of evaluating the function itself. For expensive black-box
optimization on the other hand, the expectation is, that the overhead introduced by the
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(a) Batch diversity on Sphere function (b) Batch diversity on Rosenbrock function

Figure 4.3: Diversity of each evaluated batch. The x-axis shows the batch number, the
y-axis shows the objective function value.

algorithm is negligible and dominated by the cost of evaluating the objective function.
To verify this expectation, we determine the runtime of each major iteration and plot it
against the number of the according iteration. A major iteration refers to an iteration
where a new generation is introduced in population based algorithms or a new model is
fitted in model-based algorithms. The plots are depicted in figure 4.6. This cost now
also contains the time that it took to evaluate the objective function. This evaluation
cost however is very small allowing a good estimation of the algorithmic overhead. The
experiments have been conducted for two functions (Branin, Rastrigin) only, as the
results should not significantly depend on the actual function.

The plots clearly shows two trends. First, the iteration cost for the population based
algorithms stays constant. This is expected as each iteration processes a constant number
of individuals. There is even a slight decrease in iteration cost for the evolutionary
algorithm which is caused by a rising number of duplicate individuals throughout the run.
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(a) Batch diversity on Rastrigin function (b) Batch diversity on Schwefel function

Figure 4.4: Diversity of each evaluated batch. The x-axis shows the batch number, the
y-axis shows the objective function value.

Duplicates evaluated only once. Second, the iteration cost for the model-based algorithms
rises constantly. This is also expected due to the fact that in each major iteration a new
model is fitted, taking into account a constantly rising number of observations.

The assumption of negligible algorithmic overhead is definitely true for the population
based algorithms, where the time per iteration stays in the region of 0.1 seconds. For
BayesOpt-TPE the cost stays below 1 second for at least 200 iterations. This number
of iterations is already close to the expected limit for expensive black-box optimization,
confirming the assumption also in this case. BayesOpt-GP in contrast introduces signifi-
cant overhead from the first iteration on. After 40 iterations the runtime per iteration is
already in the region of 1.5 to 3 seconds, which is quite significant. Although the plot
suggests linear growth in iteration cost, it was observed during experimenting, that soon
after the 40 iterations the cost jumped significantly to up to several minutes. This is
also the reason why it was not possible to conduct experiments with more iterations
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4.1. Algorithm comparison

(a) Batch diversity on Branin function

Figure 4.5: Diversity of each evaluated batch. The x-axis shows the batch number, the
y-axis shows the objective function value.

for BayesOpt-GP. The assumption does clearly not hold in this case, indicating the
BayesOpt-GP is a bad candidate.

Summarizing, the data shows that population based algorithms introduce only insignificant
overhead on top of the function evaluations. This also applies for the model-based
algorithm BayesOpt-TPE (at least for up to 200 iterations) but does not hold for
BayesOpt-GP.

4.1.2 Benchmarking on the real model

The second part of benchmarking took place on the actual simulation model. As a test
case a dual connectivity scenario was chosen. Dual connectivity is a usecase where the
user equipment (UE) is sending and receiving via two base stations at the same time,
improving speed and reliability. The base station requires the signals of it’s connected
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(a) Major iteration cost for Branin

(b) Major iteration cost for Rastrigin

Figure 4.6: The cost for a major iteration of each algorithm throughout the run on two
benchmark functions.
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UEs to arrive precisely at certain points in time. Therefore, the UE must compensate
for the signal run time by sending signals earlier according to the distance to the base
station. This time delta is called the timing advance in 3GPP terms. In dual connectivity,
each base station requires a distinct timing advance value, posing a challenge for the
transceiver. Different timing advance combinations can lead to overlapping high load
scenarios, potentially causing even higher load or overload.

For benchmarking, two timing advance values and 8 categorical design parameters were
chosen as variables. The goal was to find a scenario causing maximum load for the
transceiver. The load was measured by observing the delay of internal, time-critical
messages, which are closely related.

With each algorithm again n = 20 runs have been performed. Each algorithm was
configured to deliver batches of 200 evaluation suggestions in each iteration to match the
settings of artifical function benchmarking. Those suggestions were then simulated on
parallel computing infrastructure and the results were fed back to the algorithm. In total,
one run of an algorithm consisted of 50 such iterations, except for Bayesian Optimization
using the Gaussian process (BayesOpt-GP), which again consumed an excessive amount
of time and had to be quit early (more on that below).

Again, the first aspect to be discussed is convergence. The convergence of all four
algorithms on the experiment described above is depicted in figure ??, the plots were
generated as described in 4.1.1. All algorithms converge fast initially. All algorithms
except for BayesOpt-GP find the same maximum. BayesOpt-GP shows high standard
deviation, indicating that some runs found the maximum, but some did not. For all other
algorithms, the variance among the experiments vanishes and at least after 2500 iterations
they all found the same maximum. In terms of convergence speed only small differences
are visible. Bayesian Optimization using TPE converges fastest on average, confirming
the good results of the artificial function benchmarking. Among the population based
algorithms Particle Swarm Optimization performs better then the Evolutionary algorithm
on average which is also expected and in line with the artificial function benchmarks.

Next, batch diversity was evaluated, which gives an idea of how exploration is traded off
against exploitation. The average plot diversity for each algorithm is depicted in figure
4.8, the plots were generated as described in 4.1.1. The Evolutionary algorithm reduces
batch diversity fast, with a significant jump after about 20 iterations. From this point
on the algorithm focuses heavily on exploiting and less on exploration. Particle Swarm
Optimization reduces the batch diversity slower, which could be the reason for its faster
convergence, similar as observed for the artificial function benchmarks. ByaesOpt-GP and
BayesOpt-TPE both start with high batch diversity, and BayesOpt-TPE keeps almost
the same high diversity throughout the entire run. BayesOpt-TPE also has the highest
batch diversity of all algorithms. As it is also the algorithm converging fastest, this seems
to confirm the thesis that high batch diversity results in fast convergence.

Finally, major iteration cost was evaluated in an equal manner as in 4.1.1. The goal is
to confirm that the choice of the algorithm does not really impact the major iteration
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Figure 4.7: Convergence of all four algorithms on the simulation model optimization
task.

time. Figure 4.9 shows the major iteration time for all four algorithms. It’s immediately
visible that the iteration time of BayesOpt-GP rises very fast with each iteration, as
already observed with the artifical function benchmarking. After not even ten iterations
the overhead of fitting the model has grown so much that an iteration takes around
10 minutes. The other algorithms maintain a major iteration time of 50 to 80 seconds
throughout the entire run. Their plots are depicted separately in figure 4.10. No algorithm
is significantly faster than the others, confirming that iteration time is majorly caused by
the expensive model evaluation and not the algorithmic overhead. The bad results of
BayesOpt-GP confirm, that this algorithm is not practically usable for this problem.

4.2 Scaling of parallelization framework

Finally, the scalability of the parallelization framework was investigated. Therefore
n = 20 runs of the Particle Swarm Optimization algorithm were conducted on 5, 10, 20,
40, 60, 80 and 100 CPUs. Again, batches of 200 evaluations were generated and run
on the given number of CPUs. The total time it took to complete all evaluations was
measured. This time is independent of the algorithm and therefore the experiment was
conducted with a single algorithm only. Finally, the time to complete all 200 evaluations
was divided by 200 to obtain the average time per single simulation. These numbers
are plotted in figure 4.11. The time that a single simulation takes on a single CPU is
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Figure 4.8: Diversity of each evaluated batch the simulation model optimization task.
The x-axis shows the batch number, the y-axis shows the objective function value.

not plotted, but it is around 10 seconds. Up to 20 CPUs a perfect speed up can be
observed as the average simulation time decreases to 10s

20 = 0.5s. To maintain perfect
speed-up for up to 100 CPUs the average simulation time would need to decrease to
10s
100 = 0.1s. However, the actual average simulation time with 100 CPUs is approximately
0.15 seconds, slightly deviating from the ideal.

In summary, the parallelization framework introduces minimal overhead and achieves
near-perfect speedup with up to 100 CPUs. Although the experiment was limited to 100
CPUS due to availability of computing resources, the results suggest significant potential
for further scalability. Moreover, these results are crucial for the performance and rapid
convergence of the optimization algorithms. Without parallelization, the algorithms
would be impractical, as a 10-second evaluation time severely restricts the number of
possible evaluations considering a reasonable time budget.
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Figure 4.9: Major iteration run-time including BayesOpt-GP

Figure 4.10: Major iteration run-time excluding BayesOpt-GP
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4.2. Scaling of parallelization framework

Figure 4.11: The average time per simulation depending on the number of CPU cores.
Experiments conducted with batches of 200 simulations on the given number of CPUs.
A single run on a single core takes approximately 10 seconds.
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CHAPTER 5
Discussion and Conclusion

The goal of this thesis was to address the expensive black-box optimization problem in
the context of a 5G cellular transceiver simulation model. Several algorithms introduced
in the literature were investigated and the most promising candidates were implemented.
The implementation furthermore required a framework for parallelization to interface with
cloud computing infrastructure and to conduct experiments under scientific conditions.
The set of algorithms implemented comprises Particle Swarm Optimization (PSO), an
evolutionary algorithm (EA), as well as Bayesian Optimization using both Gaussian
Process (BayesOpt-GP) and tree-structured Parzen estimator (BayesOpt-TPE) models.

It is shown with numerous experiments that three out of four implemented algorithms
deliver very good results for a real-world usecase involving the transceiver model. Those
algorithms are PSO, EA and BayesOpt-GP. Furthermore, several benchmarks on artificial
benchmarking functions were conducted, yielding good results for all three mentioned
algorithms. EA and PSO showed very reliable convergence, with EA showing slightly
superior reliability. BayesOpt-TPE showed the fastest convergence on most tasks while
still maintaining high reliability. BayesOpt-GP showed good convergence as well but
the expensive fitting of the Gaussian process model makes this algorithm impractical.
BayesOpt-GP would become interesting again if the simulation time increases by a factor
of ten, making the algorithmic overhead relatively less significant.

The parallelization framework demonstrated good scalability properties and has proven to
be the foundation of the algorithm implementations in terms of performance. It showed
near-linear speed-up, meaning that evaluation times are up to 100 times faster on 100
CPUs compared to a single CPU, with potential for further scalability.

In conclusion the benchmarking results together with the results on the real simulation
model provide confidence that the given implementation is well suited to solve a wide
range of further real-world usecases related to the transceiver model in the future.
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5. Discussion and Conclusion

Several topics that are out of scope of this thesis are left to be addressed by future
research. One thing that could further improve performance are optimizaiton algorithms
that admit parallelizability at even larger scales. Although PSO, EA, and BayesOpt-
TPE inherently support parallelization, it remains a limiting factor. During each major
iteration, the information collected by one evaluation does not contribute to the all
remaining suggestions in this batch. The larger the batches grow, the more random
the search becomes therefore, regardless of the algorithm. Once this problem has been
successfully addressed, a lot more samples are to be evaluated at once. Replacing the
event-based approach of the current simulation model by a vectorized approach would
enable the usage of GPUs. This would allow scaling parallel simulations from hundreds
to hundreds of thousands, potentially providing speed ups of several orders of magnitudes.
Both factors would guarantee an increase in convergence speed and capability of searching
even more complex and high-dimensional search spaces.
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