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Kurzfassung

Mit zunehmenden Fortschritten im Bereich des autonomen Fahren stellen genaue Ent-
fernungsschätzungen und die Robustheit gegenüber Bildrauschen eine Herausforderung
für ausschließlich auf RGB basierenden Steuergeräten dar. Diese Arbeit untersucht wie
sich die Hinzunahme von räumlicher Tiefeninformationen, neben der Eingabe von "Single
Modality", auf die Lenkvorhersage auswirkt. Im Gegensatz zu bestehenden Ergebnissen,
welche die Vorzüge der multimodalen Wahrnehmung in Simulationen aufzeigen, werden
in dieser Arbeit leichte RGB-D Modelle auf einer ressourcenbeschränkten Plattform
eingesetzt.

Die Arbeit untersucht drei Schlüsselfragen: (1) Inwieweit verbessert Tiefeninformationen
die Lenkungsleistung? (2) Welche Fusionsmethode bietet die beste Balance zwischen
Robustheit und Effizienz? (3) Kann volle Autonomie mit einem leichten multimodalen
Steuerungssystem erreicht werden? Zu diesem Zweck wird eine kleine autonome Plattform,
der roboracer, verwendet, um verschiedene Fusionstechniken zu testen, einschließlich
"early" und "late Fusion", sowie fortgeschrittene räumliche Anpassungsmechanismen wie
"deformable convolutions" und Weitere. Neben Experimenten mit "open-loop" werden
auch solche mit "closed-loop" durchgeführt. Die Leistung der Modelle wird anhand von
Metriken wie der mittleren quadratischen Abweichung, "Attention Maps" und der Analyse
von Steuerbefehlssequenzen mit Fokus auf der Navigationsstabilität bewertet.

Die Ergebnisse zeigen, dass die Einbeziehung von Tiefeninformationen durch "early
Fusion" die Zuverlässigkeit des Controllers verbessert. Reine RGB-Modelle zeigen insbe-
sondere bei unterschiedlichen Beleuchtungs Schwierigkeiten und versagen in Regionen
mit unzureichenden visuellen Hinweisen, während RGB-D-Modelle Tiefeninformationen
nutzen, um effektiv zu navigieren und selbst bei Bildausfällen und Sensorrauschen eine
gleichbleibende Leistung aufweisen. Die "early Fusion" ermöglicht zudem eine robuste
und stabile Navigation durch Fokussierung auf kritische Fahrhinweise. Dies bestätigt die
Bedeutung einer tiefenverstärkten Modalitätswahrnehmung für robuste und effiziente
Controller auf Basis neuronaler Netze.
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Abstract

As more and more advancements are made in the autonomous driving scene, accurate
distance estimation and image noise robustness remain challenging for solely RGB-reliant
controllers. This thesis examines the impact of integrating depth information alongside
single-modality input on steering prediction. Furthermore, stepping up from previous
work which demonstrates the benefits of multimodal perception in simulations, this
research deploys lightweight RGB-D models on a resource-constrained platform.

The presented work investigates three key questions: (1) To what extent does depth
improve steering performance? (2) Which fusion method provides the best balance between
robustness and efficiency? (3) Can full autonomy be achieved with a lightweight multimodal
control system? A small-scale platform, roboracer, is used to test various fusion techniques,
including early and late fusion, as well as advanced spatial adaptability mechanisms like
deformable convolutions and variants thereof. Closed-loop experiments are carried out
alongside open-loop counterparts while assessing the models’ performance by employing
metrics such as mean squared error, attention maps, and analysis of steering command
sequences, with a focus on navigation stability.

Ultimately, the results reveal that incorporating depth information through early fusion
improves the controller’s reliability. In particular, RGB-only models struggle under
varying lighting and fail in regions with insufficient visual cues, whereas RGB-D models
leverage depth information to navigate effectively and maintain consistent performance
even when exposed to frame drops and sensor noise. Above all, early fusion enables robust
and stable navigation by focusing on critical driving cues, confirming the importance of
depth-enhanced modality perception for robust and efficient neural network controllers.
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CHAPTER 1
Introduction

Despite progress in autonomous driving, distance estimation and noise remain challenging
when only RGB is used as input data. Prior research suggests that perception can be
enhanced through RGB-D approaches, but these models have largely been confined to
simulation. This gap is addressed in this work by asking:

1. To what extent does depth improve steering control?

2. Which fusion method provides the best balance between robustness and efficiency?

3. Moreover, can full autonomy be achieved with lightweight multimodal control?

Hence, this thesis tackles the deployment of steering agents that can prove to be robust
and efficient in real-world conditions. This research demonstrates the real-world benefits
of multimodal RGB-D perception in a small-scale autonomous system. Lightweight
controllers that efficiently fuse RGB and depth are trained and assessed, achieving
robustness while maintaining performance after deployment.

The thesis continues with Chapter 2, which aims to provide an introductory overview of
the primary fundamental theoretical knowledge needed to understand the work. It starts
with the simplest forms of neural networks, delving deeper until reaching deep learning
models inspired by dynamical systems for continuous-time predictions.

In continuation, Chapter 3 analyzes previous solutions for similar autonomous agents.
Recent research on neural networks for autonomous driving agents is reviewed, concen-
trating on three key areas: RGB-based approaches, multimodal fusion techniques, and
state-of-the-art methods for the roboracer platform. Advancements that enable real-world
deployment are emphasized, especially for resource-constrained platforms, as is the case
for the roboracer platform.

1



1. Introduction

The following chapter, Chapter 4, delves into the data collection process, as well as an
overview of the roboracer platform used for autonomous driving research and its role in
the thesis. The dataset generation process is explained, including the synchronization
of RGB and depth data, preprocessing steps such as downscaling and interpolation,
and final dataset labeling. The obtained dataset of synchronized RGB-D and steering
commands is analyzed with respect to the driver’s bias and the difficulty of the navigated
tracks.

Chapter 5 provides both a high-level overview of the model architectures explored in this
research, as well as the motivation behind the architectural choices made in the model
networks. Among RGB-D fusion techniques, early and late fusion represent commonly
used approached for multimodal perception. In addition, deformable convolutions (DCN
and ZACN) were introduced, taking into account their possible spatial adaptability.
Different RNN backbones were also evaluated to assess their sequential decision-making
capabilities.

The results are presented in Chapter 6, separated into open-loop and closed-loop ex-
periments. For the open-loop evaluation, Mean Squared Error (MSE) losses, as well
as attention maps, were utilized for visual comparison. The chapter is structured into
sections describing open-loop and closed-loop experiments. Open-loop evaluation focuses
on performance metrics and visual analysis to compare different models, while closed-loop
experiments assess real-world deployment on hardware. The behavior of the models is
examined through attention maps and recorded trajectories, highlighting key strengths
and failure cases.

Chapter 7 summarizes the main findings of this thesis and introduces potential directions
for future research. The effectiveness of depth information for autonomous navigation
is emphasized, with RGB-D models achieving full autonomy in a new scenario. Among
fusion strategies, early fusion proved to be the most robust, maintaining stability even
under sensor noise and hardware limitations.

2



CHAPTER 2
Background

Over the last decade, the machine-learning field has been rapidly evolving. Research is
being conducted globally in a myriad of branches, driven by growing hardware capabilities
and increased accessibility. Thus, we now have various architectural approaches to choose
from and build upon. This calls for a solid understanding of the basis of our models in
order to maximize their benefits.

With this in mind, this chapter introduces the theoretical concepts that form the
foundation of the model architectures proposed in Chapter 4.

2.1 Deep Neural Networks Overview
2.1.1 Elementary Units of Neural Networks
As presented in [Zho21], the concept of artificial neurons was introduced in 1943
by Warren McCulloch and Walter Pitts in "A Logical Calculus of the ideas Imminent
in Nervous Activity" [MP43]. The McCulloch–Pitts (MP) neuron model presented in
Figure 2.1 is inspired by the structure of biological neurons, taking binary input signals
and producing a binary output. Therefore, "firing" neurons that are in a state of 1 at
time-step t, or "not firing" if the neuron state is 0.

In order to simulate this, the weighted sum of the inputs in Equation (2.1) is calculated
using wi ∈ {−1, 1}, i ≤ n, where n is the number of inputs and the weight values replicate
positive and negative synapses. The result is then checked against a threshold (θ), leading
to an output of 1 if the threshold is exceeded and 0 otherwise. An important observation
is that the MP neuron has no truly learnable parameters. This is caused by the
weights of the binary inputs being static.

y = f

(︄
n∑︂

i=1
wixi − θ

)︄
(2.1)

3



2. Background

Figure 2.1: The McCulloch–Pitts neuron model.

Figure 2.2: The Minsky perceptron model.

The Rosenblatt perceptron was introduced in 1958 in [Ros58] and can be presented
as a refined artificial neuron. Firstly, it allows for real values as inputs as opposed to
strictly {0, 1} values. Secondly, assigning different values to each input opens the door
to learnable parameters. Part of the learnable parameters is also the "bias" term.
The bias can be seen as a learnable threshold θ by being associated with the weight of
a static input with value 1. However, the output still remains split vertically by the θ
value, making the Rosenblatt perceptron only suitable in binary classification scenarios.

In 1969, [MP69] (illustrated in Figure 2.2) improved the model by switching the Heaviside
step function with a sigmoid function of Equation (2.2). This allowed the transition from
binary outputs to real values in the [0, 1] interval. As the sigmoid function is continuous

4



2.1. Deep Neural Networks Overview

Figure 2.3: Example of an MLP architecture consisting of two hidden layers. At inference,
data flows from left to right, whereas during backpropagation, it flows from right to left.

and differentiable, the Minsky perceptron can be used to tackle linear regression problems.

σ(x) = 1
1 + e−x

(2.2)

2.1.2 Multi-layer Perceptron
Perceptrons constitute the building blocks for Multi-layer Perceptron (MLP)s, which
represent elementary deep neural networks. As illustrated in Figure 2.3, they consist of
several (at least 3) layers, each containing nodes (perceptrons or neurons). The first and
last layers are commonly named the input and output layers, while all layers in between
are called "hidden" layers.

The input to the network is given in the form of vectors, and as such, each neuron in the
input layer represents a feature in the vector. For example, if the input is a greyscale
image of 120x212 pixels, the input would be a vector of size 1 ∗ 120 ∗ 212 = 25 440.

In an MLP the layers are feed-forward and fully connected. The former refers to
the fact that there are no cyclic operations within a layer, as the output of one neuron
must be fed to the next layer. The latter term indicates that each neuron in one layer is
connected to all neurons in the next layer. Therefore, information flows in one direction,
from the input to the output. To assess how well a network performs, we must calculate
the error in our prediction.

In regression problems, we typically apply a loss function that takes as input the
predicted and expected output of our model. Common choices are the Mean Absolute

5



2. Background

Error (MAE) / L1 Loss (2.3), the Mean Squared Error (MSE) / L2 Loss (2.4), and the
Huber Loss (2.5). Although the Huber loss is robust against outliers due to reducing
the impact of extreme values by combining MSE and MAE, it introduces yet another
hyperparameter, δ, which determines the threshold at which the loss function transitions
from quadratic (MSE-like) to linear (MAE-like).

LMAE = 1
n

n∑︂
i=1

|yi − ŷi| (2.3)

LMSE = 1
n

n∑︂
i=1

(yi − ŷi)2 (2.4)

LHuber =
{︄1

2(yi − ŷi)2, for |yi − ŷi| ≤ δ,

δ · (|yi − ŷi| − 1
2δ), otherwise.

(2.5)

where yi represents the ground truth output, ŷi is the model prediction, δ is a threshold
parameter.

In order to train an MLP for a specific task (e.g., image classification), we make use of
the backpropagation algorithm [RHW86] ("backward error propagation"). During
backpropagation, we compute how much each parameter in the network contributes to the
overall error, which allows us to make targeted tuning that improves model performance.

Backpropagation systematically calculates the gradient of the loss function with respect to
each parameter by applying the chain rule. The algorithm thus determines the influence
of each weight and bias on the overall error. Once gradients are computed, gradient
descent [Rud16] updates the network’s parameters in the direction that reduces loss.

The step size for these updates is controlled by the so-called learning rate. Choosing a
good learning rate is in itself a challenge since we need to strike a balance between the
network’s convergence speed and stability. It is known that in order to converge to an
optimal solution, backpropagation needs to be repeated across many training samples.

2.2 Convolutional Neural Networks
As seen in the previous section, MLPs process data sequentially in a fully connected
fashion. Although this structure works well for tabular data or simple classification tasks,
MLPs struggle with high-dimensional data such as images due to a large number of
parameters and computational inefficiency.

As image processing represents an important part of this project, we must now turn our
attention to popular techniques in the field. Classical computer vision relies on manually
designed filters to extract features from images. As presented in [Sze22], techniques such
as the Sobel filter for edge detection (illustrated in Figure 2.5), the Laplacian filter

6



2.2. Convolutional Neural Networks

Figure 2.4: An example of a CNN architecture taking as input 40 × 40 × 3 RGB images.
The network consists of two convolutional layers with ReLU activation, each using a 3 × 3
kernel, stride 1, and ’same’ padding. Each convolutional layer is followed by a 2 × 2 max
pooling layer with stride 2, reducing the spatial dimensions. The output is flattened and
passed through a fully connected layer with 128 neurons and ReLU activation, followed
by a softmax layer for classification into 10 categories.

for detecting regions of rapid intensity change, and Gabor filters for texture analysis
were widely used before the rise of deep learning. These hand-crafted feature extractors
require significant experience and fine-tuning to perform well across different tasks.

Convolution is a neighborhood operator used to implement spatial filters and feature
detectors in images similar to those previously described. The mathematical expression
for this operation on an input grayscale image I is:

O(i, j) =
M∑︂

k=1

N∑︂
l=1

I(i + k − 1, j + l − 1)K(k, l) (2.6)

where K is a 2-D array called "kernel" or filter, O is the output pixel at (i, j) coordinates,
and i = 1, M − m + 1 and j = 1, N − n + 1 [FPWW03].

A Convolutional Neural Network (CNN) [LBBH98] builds on this convolution operation
from classical computer vision and has proven to learn optimal filters directly from
data [HW18]. Instead of relying on predefined operations, CNNs iteratively adjust filter
weights through backpropagation, enabling them to detect not only low-level patterns
like edges but also complex, high-level representations such as shapes, textures, and
even object parts. The need for manual feature extractors is thus reduced, enabling
scalability to large datasets. From an architectural perspective, CNNs are feed-forward
neural networks that use the convolution operation in their hidden convolutional layers
(illustrated in Figure 2.4). Similarly to Equation (2.6), a kernel matrix is convolved with
the input image in order to extract a different type of feature in each hidden layer. For
example, one layer could learn to extract vertical edges, another one horizontal edges
or blobs of color. As we move deeper into the network, these layers appear to learn
increasingly complex representations [HW18], eventually detecting high-level objects and
structures.

In terms of hyperparameters, we can tune the following ones to have a direct influence
on the dimensions of the output coming from a convolutional layer:

7



2. Background

Figure 2.5: The figure displays the original MNIST digit ’0’ alongside the results of Sobel
edge detection applied in four directions: top, bottom, right, and left. Each filtered
image represents edge intensity, where red indicates positive activations, blue represents
negative activations, while gray is used to depict neutral areas. A 3×3 Sobel kernel is
convolved with the image with a stride of 1. Pixel intensities are used in a weighted
sum with the kernel to pin regions of rapid intensity change. The highlighted edges
correspond to the direction of each filter, revealing the structure and orientation of the
digit’s strokes.

• The number of filters determines the depth of the output feature map, with each
filter learning a different feature.

• The stride defines how far the filter moves at each step. The size of the output
feature maps decreases as the stride increases.

• The padding can be used to maintain spatial dimensions, typically by adding zero
values around the input image (as 0 values have no effect on the operations).

Usually, after each convolutional layer, a nonlinear activation function is applied to
introduce nonlinearity. This is typically the Rectified Linear Unit (ReLU) [KSH12]:

f(x) = max(0, x) (2.7)

ReLU ensures that negative values are replaced with zero, allowing only positive values
to pass through. The derivative remains 1 for positive values, helping to mitigate the
vanishing gradient problem.

To reduce the dimensions of the feature maps, CNNs can include Pooling layers. This
facilitates retaining essential information while decreasing the number of parameters and,
implicitly, the computational complexity. The most common pooling techniques include
max pooling (selecting the maximum value from a defined window, thus preserving the
most significant features) and average pooling (computing the average value of the
window, "smoothening" the feature map).

Mathematically, max pooling can be expressed as:

O(i, j) = max
(m,n)∈R(i,j)

F (m, n) (2.8)

8



2.2. Convolutional Neural Networks

where O(i, j) is the output, F (m, n) represents the feature map, and R(i, j) is the pooling
region.

Pooling can help improve translational invariance, i.e., small shifts or distortions in the
input image do not drastically affect the output.

After multiple convolutional (and, optionally, pooling) layers, the extracted features are
flattened into a one-dimensional vector and passed to a fully connected layer. This layer
assigns class probabilities to the input image using an activation function like softmax:

P (yi) = ezi

C∑︁
j=1

ezj

(2.9)

where P (yi) represents the probability of class i, zi is the input to the softmax function,
and C is the total number of classes.

The fully connected layer enables CNNs to perform classification tasks, mapping
extracted features to specific categories.

Over the years, various CNN architectures have been developed, each with innovations
aimed at improving accuracy and computational efficiency. Some of the most influential
architectures [IBM25] include: LeNet-5 [LBBH98], AlexNet [KSH12], VGGNet [SZ14],
Inception [SLJ+15], ResNet [HZRS15], and DenseNet [HLVDMW17].

CNNs have transformed the field of image processing by efficiently extracting relevant
visual features from inputs. While running at smaller computational costs than MLPs,
CNNs combine convolutional, pooling, and fully connected layers while performing tasks.
The rapid evolution of the research scene over the last decade has introduced deeper
architectures and novel training techniques, which transformed CNNs into the backbone
of modern computer vision applications.

2.2.1 Deformable Convolutional Networks
Deformable Convolutional Network (DCN) [DQX+17] enhances traditional CNNs by
incorporating a mechanism to model geometric transformations, such as changes in
object scale, pose, and deformation. Unlike standard CNNs, where the sampling grid
for convolution (and pooling) operations is fixed, DCNs employ deformable convolution,
which allows the grid to be dynamically adjusted through learned offsets, making the
network more flexible in handling transformations.

The work replaces standard convolution with a new operation. In the new deformable
convolution, the fixed grid locations are modified by additional offsets learned from the
preceding feature maps. As presented in [DQX+17], the new operation can be expressed
mathematically as follows:

y(p0) =
∑︂

pn∈R
w(pn) · x(p0 + pn + Δpn). (2.10)

9



2. Background

where y(p0) is the output at position p0, R is a fixed window that the filter will sample
from in the input feature map, x is the input feature map, and w is the convolution
weight.

Deformable convolution samples the input at irregular locations, aiming to provide the
flexibility needed to adapt to different object scales and deformations. In [DQX+17], the
offsets are computed by a convolutional layer applied to the input feature map (the same
input that feeds into the regular convolution layer). This convolutional layer produces
offset maps that specify how the regular grid should be deformed. Each offset is typically
a small value that shifts the standard sampling positions either in the x or y direction
(or both). These offsets are learned through backpropagation during training, similar to
how convolutional weights are learned.

The offsets are fractional in nature [DQX+17], meaning they can represent non-integer
shifts in the sampling locations. Since feature maps are discretized, these fractional
positions are resolved by the authors using bilinear interpolation to compute the feature
value at the non-integral location:

x(p) =
∑︂

q
G(q, p) · x(q), (2.11)

where G is the bilinear interpolation kernel.

The key difference from CNNs lies in the fact that deformable convolutions enable the
model to learn how to "distort" its sampling grid based on the input, improving its
ability to handle complex geometric transformations such as changes in object shape or
viewpoint. As proven by the authors, the approach is particularly beneficial in tasks
such as object detection and semantic segmentation, where objects can have significant
variations in shape, scale, or pose.

Although DCNs are effective at adapting to geometric variations in object structures, their
spatial support can sometimes extend beyond the relevant areas of an image, processing
unnecessary content. To address this, the authors introduced DCNv2 [ZHLD18], which
holds two new additions: the use of more deformable convolution layers and a modulation
mechanism. They claim that these advancements enhance the network’s ability to focus
on relevant regions, using modulation scalar values between 0 and 1 to amplify or ignore
features. Their experiments show that DCNv2 can outperform the original DCNv1 in
object detection and instance segmentation tasks. However, modulation scalars need to
be learned using new convolutional layers, which increase the size of the models.

2.2.2 Depth-Adaptive Offsets for Deformable Convolution
In standard deformable convolution, the sampling positions of convolutional kernels are
adaptively shifted by learned offsets. As an alternative to learning the offsets via a second
neural network, the authors of [WASD20] introduce ZACN. The key insight in their work
is that offsets can be guided by a locally estimated depth-adaptive plane so as to
capture geometric variations in the scene better.

10
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Starting from a 3D point cloud representation of the scene, ZACN estimates a local
depth-adaptive plane for every pixel, which helps approximate the surface at each pixel’s
location. The following equation governs such a plane:

n1x + n2y + n3z + d = 0, (2.12)

where n = (n1, n2, n3) is the normal vector of the plane (computed via Singular Value
Decomposition (SVD) on the central pixel’s neighbors within the receptive field in 3D
space), and d is the plane offset.

Let R3D be the obtained plane (3D sampling receptive field). The next step is to project
it onto the image plane:

R′ = Π(R3D), (2.13)

where Π(·) denotes the projection operation.

The final ZACN offsets are computed as the difference between the projected 2D
sampling positions and the original regular grid positions:

Δpn = R′(p) − R(p), (2.14)

where R(p) denotes the standard sampling position in the image domain, and R′(p) is
the adjusted sampling position obtained from the depth-adaptive projection.

In this way, ZACN offsets enable the convolutional kernel to distort in a manner that
aligns better with the underlying 3D geometry of the captured scene.

2.2.3 Transposed Convolution
Deconvolutional Networks [ZKTF10] introduce a mathematical operation for synthesizing
images from latent feature maps: transposed convolution. Unlike CNNs, which use a
bottom-up approach, Deconvolutional Networks (DNs) adopt a top-down approach to
reconstruct images.

DNs learn a hierarchical structure of features, where each layer builds upon the previous
one, progressively capturing more complex representations. The reconstruction process
is modeled as follows: given an input image yi with K0 color channels y1

i , ..., yK0
i , each

channel can be expressed as a sum of convolutions between learned filters fk,c and latent
feature maps zk

i [ZKTF10]:

yc
i =

K1∑︂
k=1

zk
i ∗ fk,c ∀ c ∈ [1, K0] (2.15)

where ∗ denotes the convolution operation. However, since this system is underdetermined,
a sparsity constraint is introduced in the form of a regularized cost function C1 containing
a sparsity-inducing norm ∥ · ∥p.
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Furthermore, to form a hierarchy, the latent feature maps zl
i,k at layer l serve as input to

layer l + 1, which leads to a more generalized cost function for higher layers Cl:

Cl(y) = λ

2

I∑︂
i=1

Kl−1∑︂
c=1

⃦⃦⃦⃦
⃦⃦ Kl∑︂

k=1
g

(l)
k,c(z

(l)
i,k ∗ f

(l)
k,c) − z

(l−1)
i,c

⃦⃦⃦⃦
⃦⃦

2

2

+
I∑︂

i=1

Kl∑︂
k=1

⃦⃦⃦
z

(l)
i,k

⃦⃦⃦
p

(2.16)

where g
(l)
k,c is a binary connectivity matrix that determines which feature maps from layer

l connect to those in layer l − 1.

DNs maintain sparsity while minimizing the error-prone image reconstruction process.
Through the transposed convolution operation, each layer learns more abstract visual
cues from the prior layer’s features. Ultimately, the network learns to upsample feature
maps and generate high-resolution image reconstructions.

2.2.4 Deformably-Scaled Transposed Convolution
Deformably-Scaled Transposed Convolution (DSTC) introduced in [BRX+22] is an
upsampling method designed to improve feature reconstruction from DCNs. Unlike DN,
which follows a fixed spatial relationship between input and output pixels, DSTC uses
the learned offsets from a DCN to recover the original feature maps at each layer.

The transposed deformable convolution introduced in DSTC modifies the standard
transposed convolution by introducing learnable offsets and interpolation kernels. Given
the standard deformable convolution in Equation (2.10), the transposed deformable
convolution modifies the receptive field dynamically by introducing the learned offsets
in the transposed operation:

y(qn) =
∑︂
p0

x(p0) · w(pn) · G(qn, p0 + pn + Δpn) (2.17)

where for each location p0 ∈ x: Δpn are the offsets learned, qn = r(p0) + pn + Δpn are
the offsets locations, {r(p0) + pn} is the receptive field around x(p0), and G is a learned
interpolation kernel for non-integer sampling locations.

One of the key motivations for DSTC is to better understand how features are learned
and reconstructed in deformable convolution networks. Standard deformable convolutions
adapt their receptive fields to capture spatially dynamic features. However, their impact
on feature reconstruction during upsampling has been less explored. DSTC learns how
to reconstruct those features effectively during decoding.

2.2.5 Visualization of CNNs for Steering Control
Originally, VisualBackProp [BCC+16] was developed for real-time debugging in au-
tonomous driving applications. Essentially, it is a mechanism for obtaining attention
maps, which highlight the most relevant regions of an input image that contribute to the
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predictions of neural networks, in this case, CNNs. In contrast to other techniques, which
rely on gradient computation (computing derivatives to determine the importance of each
pixel), VisualBackProp takes a value-based approach. It builds on the intuition that
as feature maps progress deeper into a CNN, they retain more important information,
thus becoming more indicative of the final decision. By requiring fewer computations
than a standard forward pass, VisualBackProp allows real-time visualization during both
training and inference.
Arguably, the most important insight in [BCC+16] is to combine the advantages of both
deep and shallow feature maps. Deep layers contain highly relevant but low-resolution
information. Opposedly, shallow layers provide finer spatial details but may include
less valuable features. VisualBackProp backpropagates information about relevant
regions from deep layers while progressively refining the resolution using deconvolution
operations (introduced in Subsection 2.2.3). The process results in a final attention
map that emphasizes the most significant image regions that have contributed to a
CNN’s output. Since it does not rely on computing gradients, VisualBackProp offers a
computational advantage over other visualization techniques like "Layer-wise Relevance
Propagation" [BMB+16].
Another key insight of VisualBackProp is capturing sets of pixels working collaboratively
rather than individual pixels in isolation. Unlike many visualization techniques that lack
rigorous mathematical backing, VisualBackProp is grounded in a network flow-based
formulation, allowing for a quantitative measure of how input pixels influence higher-
level feature maps. Hence, it generates attention maps that highly reflect the network’s
decision-making process.
During evaluation [BCC+16], VisualBackProp has demonstrated its effectiveness in
autonomous driving scenarios, where the generated attention maps highlight critical
elements such as lane markings, vehicles, and road boundaries. Generally, the method
is applicable to other domains where understanding CNN predictions is essential and
provides a valuable tool for interpreting CNN-based systems.

2.3 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are deep learning model architectures capable of
processing sequential data by retaining memory of past inputs to influence future
predictions. In contrast to traditional neural networks, which assume independence
between inputs and outputs, RNNs maintain a hidden state that captures contextual
information across time steps, given by Equation (2.18). The output of an RNN is
produced by the Equation (2.19).

ht = f(w1xt + b1 + w2ht−1 + b2) (2.18)
ŷ = g(w3ht + b3) (2.19)

where xt is the current input, ht − 1 is the previous hidden state, w1, w2, w3 are weight
matrices, and b1, b2, b3 are biases. The functions f, g are nonlinear (e.g., ReLU).
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Figure 2.6: RNNs make predictions using sequences of input values. This is possible by
means of the recurrent loop illustrated here in the basic model architecture. Unrolling
an RNN at the recurrent loop would reveal n time steps for n inputs. The final output ŷ
is influenced by all inputs in the sequence. As the same weight w2 is multiplied n times
over the time steps, during backpropagation, the gradients can grow exponentially (when
w2>1) and vanish (when w2<1).

However, standard RNNs struggle with long-term dependencies due to the vanishing
gradient problem, depicted in Figure 2.6. Variants like Long Short-Term Memory (LSTM)
address these limitations with specialized gating mechanisms that will be explained in
the following section.

2.3.1 Long Short-Term Memory
Long Short-Term Memory (LSTM) networks [HS97] are a specialized type of RNN
designed to address the limitations of standard RNNs. As previously discussed, one of
the major challenges with conventional RNNs is the vanishing or exploding gradient
problem. In the case of the former, long-range dependencies become difficult to learn
due to the exponential decay of gradient information over time. Meanwhile, in the latter
issue, the weight updates can become excessively large, destabilizing training.

LSTMs consist of the following structural components (illustrated in Figure 2.7, based
on [Yan16]):

• Cell State (ct): A memory unit that carries useful information across time steps.

• Input Gate (it): Determines the extent to which new information is added to the
memory.

• Forget Gate (ft): Controls how much past information should be retained.

• Output Gate (ot): Controls what information to use from the output derived
from the memory cell.
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Figure 2.7: LSTM memory cell depicting the forget, input, and output gates. The thick
colored arrows denote multiplications of the terms by the corresponding weight matrices
in Equations (2.20), (2.21), (2.22), (2.23).

At each time step t, the LSTM updates its internal state using the following equations
from [SSB14]:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi) (2.20)
ft = σ(Wfxxt + Whf ht−1 + Wcf ct−1 + bf ) (2.21)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxxt + Wchht−1 + bc) (2.22)
ot = σ(Woxxt + Wohht−1 + Wocct + bo) (2.23)
ht = ot ⊙ tanh(ct) (2.24)
yt = Wyhht + by (2.25)

where W denotes a weight matrix (e.g., Wix is the weight matrix from the input gate
to the input), b are bias terms, h is the cell output activation vector, σ is the sigmoid
activation function, tanh is the hyperbolic tangent function, and ⊙ denotes element-wise
multiplication.

While simple RNNs update their hidden states directly, LSTMs maintain a separate
cell state that allows information to persist across multiple time steps without being
overwritten, regulated by the input and forget gate. This enables LSTMs to effectively
learn long-term dependencies in sequential data, making them suitable for tasks such
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as natural language processing, speech recognition, and time-series forecasting. By
leveraging gated mechanisms, LSTMs avoid the instability and inefficiency seen in
standard RNNs, ensuring stable gradient propagation and efficient learning over long
sequences.

2.3.2 Neural ODEs
Two new insights in the direction of Neural ODEs were introduced in the paper
of [CRBD18]. Firstly, a new class of continuous-time models, in which the hidden
states are parameterized using an ordinary differential equation (ODE) solver
instead of a discrete sequence of layers. Secondly, they introduced the adjoint method
for backpropagation in ODE solvers, which computes gradients by solving an augmented
ODE in reverse.

As opposed to RNNs, which require discretization of observations, ODE-Net represents
each sequence as a latent trajectory governed by dynamic systems [CRBD18]. A dynamical
system can generally be understood as a system that encompasses some state that changes
with time (here, h(t)), along with a rule governing its evolution:

dh(t)
dt

= f(h(t), t, θ) (2.26)

where θ represents our system parameters.

Usually, this is a system of ordinary differential equations, for which the solution is
obtained via integration, having been given an initial condition h(t0). In ODE-Net,
f from Equation (2.26) is defined as a neural network, parameterized by the network
weights, time becomes the depth of the model, and h(t0) is the input layer. To tune the
accuracy of the solution obtained by ODE solvers, one can adjust the integration interval
δt = tnext − t. In this way, the computations are adaptable to steeper or milder changes.

With respect to continuous-time backpropagation, the authors refer to the adjoint method.
The following defines the forward and backward steps and the parameters:

a(t) = ∂L

z(t) (2.27)

z(t + 1) = z(t) +
∫︂ t+1

t
f(z(t))dt (2.28)

a(t) = a(t + 1) +
∫︂ t

t+1
a(t)∂f(z(t))

∂z(t) dt (2.29)

∂L

∂θ
=

∫︂ t+1

t
a(t)∂f(z(t), θ)

∂θ
dt (2.30)

where a(t) is the adjoint state, i.e., the gradient with respect to the hidden state at
time-step t.
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Through the use of continuous-time models, ODE-Nets improve long-term dependencies
between inputs while avoiding exploding/vanishing gradients, which are common in basic
RNN. Moreover, the methods employed in ODE-Net facilitate the modeling of dynamics
in real-world time-dependent problems. This ensures a more robust handling of missing
data.

2.3.3 Liquid Time-Constant Neural Networks
Liquid Time-Constant (LTC)s [HLA+20] are continuous-time recurrent models designed
to improve expressivity and stability in time-series tasks. Instead of defining the system’s
evolution using fixed, implicit nonlinearities, LTCs employ first-order differential equations,
where the time constants are dynamically adjusted via nonlinear gating mechanisms.
This leads to a system where the rate of change of the hidden state adapts based on the
input and the state, allowing for more flexible and robust sequence modeling.

LTC networks extend the standard ODE-Net formulation by introducing a dynamic
time constant. In system dynamics, time constants arise from the idea that nothing
happens instantaneously but with some delay. The time constant thus refers to the elapsed
time during a system transition. The hidden state evolution, as stated in [HLA+20] is
given by:

dx(t)
dt

= −
[︃ 1

τ
+ f(x(t), I(t), t, θ)

]︃
x(t) + f(x(t), I(t), t, θ)A, (2.31)

where τ represents a baseline time constant, f(x(t), I(t), t, θ) is a neural network with
hidden state over time, and θ, A are parameters. This allows evolution at different rates
of the hidden state.

One key advantage of LTCs is their bounded dynamics, ensuring stability even when
inputs may vary significantly. The dynamic time-constant mechanism allows different
neurons in the network to specialize in different timescales, improving the model’s ability
to capture complex temporal dependencies. Additionally, LTCs demonstrate higher
expressivity compared to classical recurrent architectures, as measured by trajectory
length in a latent space. Empirical evaluations on time-series prediction tasks confirm
that LTCs outperform standard RNNs, including LSTMs and Neural ODEs, in several
benchmarks. By leveraging a fused numerical ODE solver, the model maintains stability,
making it a promising alternative for continuous-time sequence modeling.

2.3.4 Closed-form Continuous-time Neural Networks
Undoubtedly, continuous-time neural networks based on differential equations (DEs) have
demonstrated strong capabilities in sequential decision-making. However, their efficiency
is unarguably constrained by the computational load of the numerical solvers used to
approximate these DEs. With this in mind, researchers have derived an approximate
closed-form solution [HLA+22], which aims to solve the issue specifically for LTC
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models. The authors eliminate the reliance on numerical DE solvers by computing
a tightly-bounded approximation of the previously unsolved integration in LTC
dynamics, leading to substantial speed improvements in both training and inference. In
an attempt to avoid numerical solvers, the authors of [HLA+22] offer an approximate
closed-form solution to the LTC from Equation (2.31). The key transformation in the
Closed-form Continuous-time Neural Network (CfC) neural network model is:

x(t) = σ (−f(x, I; θf )t) ⊙ g(x, I; θg) + (1 − σ (−f(x, I; θf )t)) ⊙ h(x, I; θh) (2.32)

where σ is a time-decaying sigmoidal function, the terms with σ (−f(x, I; θf )t) represent
time-continuous gating, f , g and h are neural network instances.

This equation effectively replaces the ODE solver with an explicit time-dependent gating
mechanism [HLA+22], making CfC significantly faster while maintaining expressive
power.

CfCs offer a significant advantage over traditional ODE-based models by making time
an explicit component of the formulation. As a result, the proposed models achieve
speed-ups of one to five orders of magnitude [HLA+22] while maintaining the expressivity
of DE-based networks. As such, CfCs appear to be an exciting alternative for resource-
constrained platforms at inference time.

2.3.5 Liquid Resistance Liquid Capacitance Networks
As discussed in the previous section, LTCs often exhibit oscillatory behavior and require
computationally expensive solvers. Liquid Resistance Liquid Capacitance Networks
(LRC) [FNG24] extends LTCs by incorporating a liquid capacitance, which dynamically
adapts the response of each neuron. While LTCs assume a fixed and constant membrane
capacitance (1), LRCs introduce an additional elastance term (the reciprocal of capaci-
tance) that depends on the neural state and the inputs. The equation [FNG24] for an
LRC neuron is:

ḣi = ϵ(wi) (−σ(fi)hi + τ(ui)ei) , (2.33)

where hi is the hidden state of neuron i, ϵ(wi) is the elastance, an adaptive function
that modulates capacitance, σ(fi) represents a forget gate, τ(ui) is an update gate, ei is
the resting potential.

In LTCs, neurons react to inputs with a fixed responsiveness due to the capacitance
which is assumed to be constant. LRCs instead introduce ϵ(wi), which dynamically scales
the effect of input signals and hidden states, reducing unnecessary variations. This
modification allows LRCs to dampen oscillations while maintaining high expressivity.

A key benefit of LRCs is that their smoother dynamics enable efficient numerical inte-
gration. While LTCs often require high-order solvers to prevent instability, LRCs can
be solved accurately with a simple explicit Euler method using just one unfolding step.
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This leads to a highly efficient recurrent unit, called the LRC unit (LRCU), which
functions as a biologically inspired alternative to GRUs and LSTMs.

All in all, LRCs refine the modeling of continuous-time recurrent dynamics by introducing
an adaptive capacitance, which improves numerical stability and generalization. By
reducing oscillations while preserving expressive power, LRCs serve as an efficient and
interpretable alternative to both Neural ODEs and traditional gated RNNs.

19





CHAPTER 3
Related Work

This chapter gives an overview of the recent studies in neural networks employed for
autonomous driving agents. The chapter consists of RGB-based approaches, the fusion of
different modalities, and state-of-the-art methods for the roboracer platform. Emphasis
is made on crucial advancements, real-world deployment and solutions for resource-
constrained platforms.

Overall, the following studies emphasize the shift in autonomous systems toward mul-
timodal learning and compact neural controllers, yet real-world deployment remains
limited. This thesis aims to enable autonomous agents to navigate their environment
reliably on low-cost, resource-constrained hardware. By deploying efficient RGB-D-based
models, the practicality and robustness of models can be brought over to real-world
scenarios.

3.1 Unimodal RGB Input
First and foremost, one key achievement in the end-to-end autonomous driving setting
is [BTD+16]. The authors trained a 9-layer CNN on 72 hours of RGB input, which
made successful steering predictions actuating a drive-by-wire vehicle. Even though the
visualization of learned features indicated the model had learned valuable road features,
attempts to assess which areas of the network contributed to decision-making were not
achievable. This is due to the constructed network comprising of 27 million connections
and 250 thousand parameters, which hindered interpretation tremendously.

The recent research of [LHA+20] introduced a compact bio-inspired neural controller,
called NCP, which facilitated interpretability during real-time deployment, an issue that
traditional deep learning methods pose. While using a 79, 420 parameter CNN for feature
extraction, they utilize as controller a hierarchically structured LTC which focuses on
short-term causal relationships, resulting in a 80, 485 parameter model. Their proposed
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NCP, consisting of only 19 neurons and 253 synapses, significantly out-performed purely
CNN methods both in simulation and hardware deployment using RGB data.
In a different approach, [ZGL+20] aimed to overcome the limitations of traditional CNN-
based steering models by introducing a temporal dependency-aware model. A C-LSTM
network architecture is introduced with a 4-layer CNN for feature extraction, followed
by 2 LSTM layers and 3 FC layers, amounting to a total of 800 thousand parameters.
After training with more than 40 thousand RGB images obtained from a simulated
environment, the dataset evaluation of the model proved effective feature extraction and
good autonomy.
Lastly, [MBB+24] makes use of optical flow from RGB frames to predict steering angles.
The authors leverage CNN-based feature extraction with RNN’s, mainly LSTM and
NCP. They assessed both early and hybrid fusion techniques and demonstrated that
incorporating optical flow significantly reduces steering estimation error — by 31%
compared to RGB-only methods, thus highlighting the potential of leveraging motion
dynamics for enhanced vehicle control.

3.2 Multimodal Input
In this section, several studies are presented, all employing RGB-D information with the
scope of better autonomous control.
In particular, [MVLÁCBAM24] introduces a Recurrent CNN (RCNN) trained with RGB-
D images, where the depth data is obtained through the fusion of a camera and a LiDAR
sensor in a simulated ROS environment [MVLÁCBAM24]. This study emphasizes the
importance of multimodal perception for enhancing vehicle autonomy, demonstrating that
the proposed neural network achieves an autonomy rate of 95.9%, a 9.95% improvement
over its base form.
Likewise, another study [XCG+19] delves into the effect of multimodal perception for
network-controlled cars, with a focus on early, mid, and late fusion techniques. The
authors use the CARLA simulator and a branched Conditional Imitation Learning (CIL)
model to train and test models using single-modality (RGB or depth) and multimodal
(RGB-D) approaches. They reached the conclusion that early fusion multimodality
significantly outperforms unimodality, especially under challenging driving conditions,
with a success rate improvement from 46.67% (RGB) to 94.00% (RGB-D).
Both works highlight the advantages of incorporating depth information into autonomous
driving models. While the first study focuses on improving RCNN architectures and
evaluating their impact on vehicle autonomy, the second study provides a comprehensive
analysis of different fusion techniques in an end-to-end learning paradigm. These findings
reinforce the growing consensus that multimodal sensor fusion, particularly RGB-D
integration, enhances perception and decision-making in autonomous driving systems.
Beyond traditional vision-based methods, the role of event cameras in autonomous navi-
gation has also been explored. A recent study introduced DRFuser, a multimodal fusion
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network that combines RGB and event-based vision using a self-attention mechanism
within an encoder-decoder architecture [MALJ22]. By leveraging self-attention layers,
the model effectively integrates spatial and temporal dependencies across both modalities,
achieving good performance in dataset evaluation.

3.3 State-of-the-Art of roboracer
End-to-End (E2E) deep learning approaches have been widely explored for autonomous
racing on the roboracer platform, with multiple works leveraging DRL for control [EBZ+23],
[EJE23], while another study provides a comparative analysis of various DRL methods
in autonomous racing [BDEE23].

In contrast, supervised learning-based approaches for roboracer are relatively unexplored,
with TinyLidarNet [ZWY+24] being a key recent contribution. TinyLidarNet introduces
a lightweight LiDAR-based 1-D convolutional model that achieves competitive racing
performance while maintaining inference efficiency on low-end microcontrollers.

However, its reliance on LiDAR raises concerns about robustness in challenging environ-
ments. A separate experimental study has demonstrated that depth cameras significantly
outperform LiDAR under ill-reflective conditions, maintaining full ranging capabilities
where LiDAR degrades to just 33% of its nominal performance [LBG+23].

Given these findings, this thesis diverges from TinyLidarNet by adopting an RGB-D-based
supervised learning approach, leveraging the enhanced robustness of depth sensing to
improve autonomous performance.

Lastly, as it is well-known that IR cameras are less affected by ambient lighting conditions
compared to RGB cameras, they represent a solid choice for this project’s hardware
application. Their reliability in varied lighting environments, including low light or
bright sunlight, where visible light sensors might struggle, should help when the model is
deployed in the real world, overcoming issues such as time of day differences between
training datasets and active testing sessions.
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CHAPTER 4
Setup

The platform that was used is a small-scale vehicle, known as roboracer. Univ. Prof.
Radu Grosu introduced the platform to TU Wien as part of the "Autonomous Racing
Cars" lecture.

Inspired by the lecture, students formed a roboracer autonomous racing team, Scud-
eria Segfault [Seg21]. The team has since then secured podium places repeatedly in
international head-to-head racing competitions. The hardware used for this thesis was
provided by the racing team, which operates as an extension of the Cyber-Physical
Systems Research Unit.

4.1 Data Collection
The following section aims to give an overview of the hardware platform, as well as the
process of data collection. The choices made at each step are explained, with details on
the configurations used.

4.1.1 Hardware and Software Stacks
The platform contains a lower-level and an upper-level chassis [CFRG25], as well as
hardware parts to help in providing autonomous support behavior. The vehicle instance
used in the experiments is illustrated in Figure 4.1. The roboracer developers provide
more detail about the system in [BZJ+24] and recent applications in academia [CFRG25].

The brushless electric motor resides on the lower-level chassis of the roboracer and is
powered by a 3-cell LiPo battery. Meanwhile, the upper-level chassis holds the power
board, a Vedder Electronic Speed Controller (VESC) for directing input signals to the
motor and to the autonomy elements. The autonomy-enabling elements are a processing
unit (13th Gen Intel(R) Core(TM) i7-1360P), LiDAR sensor, and Inertial Measurement
Unit (IMU).
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Figure 4.1: Component breakdown of the roboracer vehicle used for the experiments.

The unit on this roboracer instance uses only the CPU without dedicated hardware
acceleration for machine learning inference. Therefore, all autonomy-related computations,
including sensor fusion and decision-making, are executed solely on the CPU. Since there
is no hardware acceleration, this platform is considered resource-constrained for deploying
ML models; as a result, larger, more computationally demanding models may not deliver
the required real-time performance.

Control-wise, the platform currently used during autonomous driving competitions by
the racing team does not use optical lens vision. Therefore, a stereoscopic depth camera
(Intel Realsense D435i, Figure 4.1) was introduced into the hardware setup [CFRG25].

The camera’s datasheet gives the following information that is relevant to this the-
sis [CFRG25]:

• A detection distance of 10m, optimal in between 0.3m to 3m

• Field Of View (Horizontal×Vertical): RGB 69◦× 42◦, Depth 87◦× 58◦

• Depth RMS Error ≤ 2%, i.e ≈ 40mm RMSE at ≈ 2m
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Since the RGB camera settings allow only 30fps, the depth setting was configured to the
same number. With respect to the resolution, both streams were set to 848 × 480px,
listed as the best option for the depth stream [CFRG25].

roboracer uses Robot Operating System (ROS) as its core software framework. ROS [Rob21]
is an open-source middleware designed to facilitate the development and integration of
complex robotic systems by organizing functionality into modular components known
as nodes. The inter-node communication is done via channels (topics) which enable the
sharing and coordination of data (messages) across the system. The ROS architecture is
flexible and scalable, which facilitates the development of applications from sensor input
to high-level planning.

The University of Pennsylvania provides enthusiasts with a base stack [Fou25], which
provides the fundamental tools and libraries for processing sensor data, managing state,
and interfacing with hardware components. As the Scuderia Segfault in-house stack
builds on this foundation with more implementations, it was used for actuating the car
in this project. As the complete stack deals with the core functionalities necessary for
actuation, a new node was introduced dedicated to the closed-loop experiments. The
node (written in Python) is subscribed to the RGB-D topic and publishes steering and
constant speed commands on the /drive topic. In an experiment instance for this project,
the pre-trained model is loaded when the node is started and is used in inference mode to
make predictions in the camera messages callback. The camera messages are converted
to OpenCV images using cv_bridge [PMG24], scaled down to 212 × 120, and used by
the model. Importantly, Intel Extension for PyTorch [Int25] is used in imperative mode
to optimize the model performance.

It is worth noting that there is an ongoing debate about the real-time capabilities of
ROS. Critics argue that ROS is not truly real-time because it operates on a Linux
environment, which is inherently best-effort rather than deterministic. Factors such as
network communication delays, internal memory management, and the potential for non-
deterministic scheduling mean that ROS is not able to meet the timing requirements of
high-frequency control. However, the system can still achieve the performance necessary
for robust operation by offloading critical timing-sensitive tasks to, for example, specialized
threads.

4.1.2 Expert-Driven Data Acquisition

It is important to first describe the environment used for data collection. The driving area
was set up indoors, employing pipes to build different circuits for driving. This environ-
ment was chosen because these pipes are commonly used during roboracer competitions,
making them ideal for leveraging multimodal visual cues [CFRG25].

Moreover, it is notable that no attempts were made to control lighting conditions. In
this way, recording sessions were carried out at different times during the day, with and
without artificial lighting.
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In total, a series of five circuits to obtain variations in turns, differing in curvature and
segments, which are illustrated in Figure 4.2. Driving on all circuits was recorded in
clockwise, as well as anti-clockwise direction for 6 minutes each time (4 minutes for
Figure 4.2a, due to time restrictions) [CFRG25].

(a) (b) (c) (d) (e)

Figure 4.2: Circuits used during expert driving data recordings. From [CFRG25].

In what follows, the human control pipeline is described. A driver with 10 years of frequent
driving experience was chosen to control the car on the different track configurations.
The remote control of the car was carried out by a driver via steering wheel and
pedals [CFRG25].

After multiple test runs on the track in Figure 4.2a, it became necessary to introduce a
speed cap. It was found that because of the limited Field of View (FOV) of the camera,
the driver was unable to drive with speeds more than 0.9m/s [CFRG25].

The data recording pipeline is fully illustrated in Figure 4.3. To create a first-person
perspective, the onboard camera’s stream was transmitted over the network to a secondary
device displaying the footage on a monitor [CFRG25].

During recordings, all rostopic messages were saved to rosbags on the car, except the
camera RGB topic. Since the RGB information was being redirected to the support
device connected to the monitor, it had to be saved separately on that device [CFRG25].

Table 4.1 presents an overview of the essential properties of all the maps used in the data
collection step. It must be noted that the driver was asked to drive test runs before the
recording in order to ensure that each track could be navigated successfully [CFRG25].
A second note is that for Figure 4.2a, the driver was instructed to take the longer path
when reaching the island [CFRG25].

Based on the small lap times of ≈ 33s, it can be said that maps 4.2a and 4.2d were most
effortless to navigate, regardless of driving direction. This result can be explained by the
fact that both maps have the most extended straight sections, smooth, long turns, and
long distances to the walls. Figure 4.2b was the hardest to navigate due to its narrowness,
the rapid succession of turns, and sharp corners.
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4.2. Dataset Generation and Preprocessing

Figure 4.3: Diagram showing the vehicle control architecture used during recordings.
From [CFRG25].

Map No. Laps
(CW/ACW)

Lap Time [s]
(CW/ACW)

Length [m] Width [m]
avg.

left/right
4.2a 7/6 33.30/33.80 33.52 0.74/0.91
4.2b 9/9 38.50/39.74 35.98 0.4/0.3
4.2c 9/9 36.04/37.53 32.17 0.49/0.41
4.2d 10/10 33.50/33.85 31.21 0.69/0.61
4.2e 9/9 38.06/37.54 33.72 0.49/0.42

Table 4.1: Quantifiers for assessment of the tracks driven on by human expert.

4.2 Dataset Generation and Preprocessing
The synchronization of the rosbags with the video recordings was done on a separate
machine and was possible by using the common 30fps [CFRG25]. By this, it is meant
that while the messages in the rostopic for the depth camera were being recorded at
30fps, the same frequency was used for the RGB stream.

Initially, as described in [CFRG25], the depth topic messages were retrieved from each
rosbag [Res23], which contain uint16 1-D images and contain pixel-wise depth measure-
ments. The frames were used to obtain colormaps, using each measurement with respect
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4. Setup

to a constant value. After time-stamping the frames, colorful depth videos were generated
for each track recording session.

In the next phase, manual synchronization was performed between the original videos
and the depth data [CFRG25]. In preparation, the RGB videos were also time-stamped.
For stream synchronization, signs were positioned in front of the car at the start of the
recordings. Frame-wise stamps were manually registered for the identified common start
and end of the video streams, including laps breakdown.

In continuation, the streams were resized to 212x120px. After trying different tech-
niques (nearest neighbor, Gaussian, Lanczos [Lan50], Catmull-Rom [CR74]), Lanczos-3
(Figure 4.4d) was considered to be the best, with nearest neighbor (Figure 4.4a) giving
poor results, the Gaussian counterpart (Figure 4.4b) blurry ones, and Catmull-Rom
(Figure 4.4c) duller images [CFRG25].

Finally, to extract the original rosbag timestamp of the messages, the depth topic
was parsed according to the logged recording segments. Using the value interpolation
technique in [Res23], the pairs of drive messages and visual stream were identified and
saved in npz format [CFRG25].

4.2.1 Dataset Analysis
Thus, datasets totalling to ≈ 100 000 entries were generated [CFRG25]. Figure 4.5 offers
an insight into not only the variety of commands reached on driven tracks but also the
difference in distribution between driving directions.

Naturally, anti-clockwise driving directions keep strictly positive median values, which
correspond to the driver keeping left while driving. In contrast, clockwise driving is
characterized by negative median values.

Moreover, the spread of the distributions matched the levels of navigation difficulty
previously implied: narrow distributions (tracks 1 and 4) were also faster to navigate,
whereas the broadest distribution (track 2) resulted in the longest navigation times.

Lastly, the outliers on the Anti-clockwise (ACW) direction on tracks 2, 3, and 5 correspond
to very sharp right turns.

Figures B.1 and B.2 show individual distributions generated from 1 lap on each track
in anti-clockwise and clockwise directions. For ease of interpretation, bins have been
normalized such that each bar sums up to 100, and smoothed Kernel Density Estimation
(KDE) curves have been included. The normalization ensures proper representation, given
that not all laps have the same number of observations. In this way, it is straightforward
to conclude that the gathered dataset covers a wide range of steering commands.
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4.2. Dataset Generation and Preprocessing

(a) Nearest neighbor downsampling 212×120 (b) Gaussian σ = 0.5 downsampling 212×120

(c) Catmull-Rom bicubic downsampling 212×120 (d) Lanczos a = 3 downsampling 212×120

Figure 4.4: Colorized visualization of downsampled depth streams.
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4. Setup

Figure 4.5: Distributions of recorded steering angles in 1 lap on each track. Negative
values correspond to steering right, whereas positive values correspond to steering left.
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CHAPTER 5
Implementation

The following sections provide a walk-through of the steps taken prior to and during
training. These include setting up the environment, structuring the model architectures,
and the choices made along the way. The modular software design that was put in place
to implement reusable and maintainable code is described. In particular, the separate
modules created for model instantiation, data loading, training routines, and evaluation
are presented.

5.1 Work Environment

To train the models, a virtual machine with Ubuntu 20.04.6, 3 072 CUDA cores and 12
GB of GDDR5 memory was utilized [CFRG25]. Given the widespread use of PyTorch in
computer vision and offered implementations, it was chosen for implementing the models,
running in a Conda environment.

Several measures can be taken to ensure reproducibility, although identical behavior
cannot be guaranteed between all different runs. With this in mind, all sources of
non-determinism that are adjustable through the PyTorch framework are seeded with a
chosen value on program start.

A dedicated data loading pipeline was implemented with seeded shuffling and handling of
different file formats and image sizes, ensuring that the experimental setup can be easily
adapted to future datasets and requirements. Using this dataset loader, the recordings
were shuffled. The dataset was split into 60% training, 20% validation, and 20% test
data, and the dataset for each recording containing laps is then further shuffled prior to
use by models [CFRG25].
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5.2 Model Architecture
5.2.1 High-level Overview

Figure 5.1: Structural diagram of the network architectures used in this thesis, in a
channels-first format. From [CFRG25].

Starting from the approach of the authors of [LHA+20], twenty architectures were
designed and implemented, published in [CFRG25], as explained in Appendix A:

• Four of the architectures diverge from [LHA+20] based on the integration of
multimodal input and different approaches to achieving this

• One architecture emulates the original method

• There are four Recurrent Neural Network (RNN) options: Liquid Time-Constant
(LTC), Closed-form Continuous-time Neural Network (CfC), Long Short-Term
Memory (LSTM), Liquid Resistance Liquid Capacitance Networks (LRC)

The common sequence length for all RNNs is sixteen. In Closed-form Continuous-time
Neural Network (CfC) and Liquid Time-Constant (LTC), an Neural Circuit Policy
(NCP) with 19 neurons (12 inter-neurons, 6 command neurons, 1 motor neuron) was
used [CFRG25]. Long Short-Term Memory (LSTM) and LRC employ 64 features in their
hidden state [CFRG25].

5.2.2 Modular Architectural Design
Leveraging the theoretical grounds introduced in Chapter 2 and the related works
described in Chapter 3, different model classes were implemented, inheriting the PyTorch
Module class. The module responsible for initializing the models was implemented using a
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5.2. Model Architecture

Figure 5.2: A detailed illustration of the layer order in the convolutional heads is provided.
The initial feature extractor accepts an RGB input of dimensions 3×120×212. Under
the early fusion approach (EARLY), an input of 4×120×212 is processed, whereas the
late fusion scheme (LATE) applies the extractor twice, handling RGB and depth inputs
of sizes 3×120×212 and 1×120×212, respectively, merging their outputs after the final
layer. Additionally, the depth-adapted feature extractor is offered in two variants: (1)
DCN, which integrates an offset extraction module, and (2) ZACN [WASD20], which
employs geometric offset computations. Notations in the hyperparameter settings are
defined as follows: F for filter count, K for kernel dimension, S for stride length, and P
for padding. From [CFRG25].

factory pattern [GHJV95]. BaseModel encapsulates common functionalities shared by all
models, such as standardized initialization, weight configuration, forward propagation, and
checkpoint management. Each model type (EarlyFusionModel, LateFusionModel,
RGBModel, DeformableDepthModel) inherits from the BaseModel class, minimizing
code duplication while maintaining clear distinctions between architectures. Additionally,
the use of enumerations (such as RNNEnum, ExtractorEnum) standardizes model
selection and simplifies configuration handling.

Unimodal Architecture

The implemented unimodal architecture is inspired by [LHA+20], having the convolu-
tional head (Figure 5.2) use 6 convolutional layers, the output of which is forwarded to
the following RNN. By extracting the most important RGB features, the RNN is used to
make predictions based on past memories [CFRG25].

Early Fusion Architecture

The early fusion technique for multimodal extraction uses the depth information as
an additional channel in the previously described convolutional head [CFRG25]. The
technique placed first amongst counterparts both in [XCG+19] and [MVLÁCBAM24].
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Late Fusion Architecture

Similar to [ESS+15], the third architectural technique is late fusion. In this two-stream
layout, separate CNNs process the RGB and depth data. However, while the first
approach finds ways to transform the 1-channel depth input into 3-channel RGB input,
this thesis immediately uses the original 1-channel values. The motivation behind this is
that the former uses the same pre-trained CNN for each stream (i.e., ImageNet), which
was trained on RGB inputs. This is not necessary when the models are trained from
scratch.

Depth-Adaptive Fusion Architecture

Finally, the architecture referred to in this thesis and the published counterpart [CFRG25]
as depth-adaptive fusion. This processes both inputs with Deformable Convolutional
Network (DCN)s. This too branches into two choices, as illustrated in Figures 5.1,
and 5.2. Both versions employ a single deformable layer. The motivation behind this is
that, although it is desirable for the filters to be guided by depth information, it is more
computationally efficient to introduce the offsets at a later stage. This thesis aims to
prove that later stage offset use is more efficient for the computational constraints on the
future deployment platform while still remaining properly influenced by depth cues.

To best implement this decision while maintaining minimal overhead, the Deformable-
DepthModel class is divided at the forward call based on the selected deformable convo-
lution type. In the case of the DCN approach, the offsets are computed by executing off-
sets = self.offset_generator(depth), where self.offset_generator is
implemented as a convolutional layer tailored to process depth data. Conversely, when the
model type is set to ZACN, the depth-adaptive sampling method is called to compute the
offsets. This design decision encapsulates the specific behaviors within a single class while
maintaining modularity, as each method is isolated and can be modified independently.

DCN

On the one hand, the depth-adaptive fusion models employ an architecture in which the
offsets are learned using a secondary CNN. After experimenting with several PyTorch
implementations of DCNs, the implementation available at [Ins24] was chosen. The
choice was motivated by both the faster computation time during stress-testing (as
opposed to the one contained in the torchvision package), and the availability of the
Deformably-Scaled Transposed Convolution (DSTC) implementation.

ZACN

On the other hand, models were trained using depth-adaptive sampling [WASD20]
in their architectures (described in Subsection 2.2.2). As the implementation of the
authors is, at the time of writing, open-source, it was immediately integrated using
a convolutional head illustrated in Figure 5.2. Not many changes were necessary to

36



5.2. Model Architecture

introduce the implementation into the stack, most being syntax-related or driven by
improving computational efficiency. The intrinsic camera parameters used by this method
were obtained from the device used during data collection of Section 4.1.

Optional Blocks

Although the hyperparameters of the convolutional layers replicate the best-performing
values obtained by [LHA+20], additional configurations were experimented with.

We introduced per-image normalization layers atop the convolutional heads and gave
the option to train the models with and without the padding configurations described in
Figure 5.2 in order to determine which layout best suits each architecture.

Per-image channel-wise normalization was tested to verify its benefits before
feature extraction in the CNN heads. We experimented with min-max normalization
given by Equation (5.1) per each channel in the image, Z-score normalization given by
Equation (5.2), and min-max followed by Z-score. The normalization strategy can be
selected via an enumeration (NormalizationEnum).

xnorm = x − xmin

xmax − xmin
(5.1)

z = x − µ

σadj
(5.2)

where:

µ =
∑︁N

i=1 xi

N
(5.3)

σadj = max
(︃

σ,
1.0√

N

)︃
(5.4)

σ =

√︄∑︁N
i=1(xi − µ)2

N
(5.5)

Normalization is introduced as a layer rather than normalizing the dataset image-wise
beforehand because the goal is to deploy the models on hardware. This way, streams are
automatically normalized frame by frame inside the models.

The optional PaddingLayer was introduced due to PyTorch not supporting padding
when strides are > 1. The layer calculates the necessary amount of padding on all four
sides of the input based on the input shape, kernel size, and stride, then pads the input
tensor using zero values.
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5.3 Training and Metrics
The training pipeline consists of a primary training loop, with train, validation, and test
steps. The methods implement forward propagation, loss computation, backpropagation,
and parameter updates. Furthermore, all steps include logging via Tensorboard, while
the validation step implements an early-stopping mechanism to avoid overfitting.

The experiments were initialized with different configurations and were run automatically
using a shell script. The script systematically iterates over multiple model types (CfC,
LTC, LSTM, LRC), learning rates, and normalization/padding options. This approach
enhances reproducibility and facilitates extensive hyperparameter tuning with minimal
manual intervention.

The following arguments are offered at runtime:

• Input mode: unimodal (RGB), multi-modal (RGB-D)

• Fusion technique for multi-modal architectures

• Including/omitting the normalization layer

• Normalization technique to be used in the normalization layer: Min-Max, Z-Score,
Min-Max followed by Z-Score

• Including/omitting padding in the convolutional head

• Learning rate

• Seed to be used for reproducibility

The maximum number of epochs was set to 100, and the batch size to 20 [CFRG25].
The reason for selecting this batch size was constrained by the computational resources
available. Tensorboard was used during training, validation, and testing [CFRG25].

An early stop [MB89] patience of 3 was introduced for training all models. Therefore,
in cases where the validation loss did not improve, the training was stopped early to
prevent overfitting of the models. Moreover, the models were saved after each epoch
where the validation loss improved.

The optimization algorithm used was Adam [KB14], with β1 = 0.9, and β2 = 0.999. The
value of ϵ = 10−7 was chosen to enhance numerical stability during parameter updates in
scenarios with very small gradients. The following learning rates were used in the search
for a balance between convergence speed and stability: 10−3, 10−4, 10−5.

As the task at hand does not involve concrete labeling using classes, quality assessments
of classification, such as precision and accuracy, were not used. Instead, with the goal
of predicting continuous steering commands based on multi-dimensional input, Mean
Squared Error (MSE) given by (2.4) was used as a loss function. Based on the MSE
metric, losses closest to 0 are ideal as they represent qualitative predictions [CFRG25].
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CHAPTER 6
Results

The following chapter presents the outcome of the training procedures on the various
model architectures presented in Section 5.2 and discusses them in detail. As a first
approach, it starts with the "passive" evaluation of the model on the recorded test dataset.
In continuation, the hardware deployment of the best models is explained and the outcome
of the active testing session is presented.

6.1 Open-loop Results
The training procedure described in Section 5.3 is followed. In the open-loop setting, the
previous prediction of the model does not influence the next input frame (the model is
evaluated on a static dataset).

The process began with the training of unimodal RGB models across all possible config-
urations. The analysis of the validation losses for each model is conducted to find the
optimal combination of learning rate, normalization technique, and padding for each
RNN architecture.

6.1.1 Validation Analysis Across Learning Rates
For the experiments conducted with a learning rate of 10−5 shown in Table 6.1, MinMax
normalization with padding emerged as the most promising configuration for most
architectures over three different seeds. However, additional experiments were performed
at higher learning rates (10−4 presented in Table 6.2 and 10−3 in Table 6.3) using the
same seed to investigate their impact on convergence.

At a learning rate of 10−4 (see Table 6.2), certain configurations (e.g., CfC under MinMax
normalization with padding) achieved a lower validation loss (e.g., 7.58) compared to
other settings. However, these lower losses were typically reached after only 6 epochs, in
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Table 6.1: Best validation losses, averaged over 3 seeds for learning rate of 10−5. Loss
values are scaled by ×10−3. The symbols ’N’ and ’P’ denote the normalization technique
and whether padding was used for training. ’Epochs’ denote the number of epochs that
each model trained for until ’early stop’ (during the same seed run).

N P LSTM LTC CfC LRC Epochs

None ✗ 10.74 ± 1.82 10.61 ± 1.62 10.87 ± 0.92 9.71 ± 1.87 8/11/11/10
✓ 8.78 ± 1.89 10.98 ± 3.41 12.16 ± 6.05 9.48 ± 3.14 11/10/4/5

MinMax ✗ 7.28 ± 1.91 11.12 ± 1.26 10.27 ± 1.37 10.93 ± 2.22 20/17/13/9
✓ 8.51 ± 1.30 10.30 ± 0.63 9.44 ± 0.48 8.86 ± 0.65 28/11/9/20

Z-score ✗ 12.32 ± 2.73 12.17 ± 3.05 10.47 ± 1.38 8.89 ± 1.55 7/10/29/15
✓ 10.03 ± 2.60 10.69 ± 1.30 10.23 ± 1.56 7.72 ± 1.51 6/14/7/17

Both ✗ 10.30 ± 0.72 11.98 ± 2.69 11.27 ± 3.59 8.85 ± 1.08 22/18/8/17
✓ 10.34 ± 2.73 10.31 ± 1.00 10.30 ± 2.17 7.88 ± 1.12 5/13/7/24

Table 6.2: Best validation loss for learning rate of 10−4. Loss values are scaled by ×10−3.
’Epochs’ denote the number of epochs that each model trained for until ’early stop’
(during the same seed run).

Normalization Padding LSTM LTC CfC LRC Epochs

None ✗ 11.03 12.68 11.57 11.90 5/11/8/10
✓ 8.61 32.30 7.58 29.50 10/5/6/4

MinMax ✗ 11.27 12.46 12.89 11.27 8/7/6/6
✓ 8.79 32.70 10.78 7.60 9/4/5/15

Z-score ✗ 10.74 12.89 9.50 12.62 9/13/10/7
✓ 14.87 32.71 13.66 10.68 5/6/6/7

Both ✗ 13.48 14.21 11.13 11.22 5/5/6/10
✓ 11.45 32.63 10.60 10.28 6/4/6/5

contrast to the more gradual training (spanning 9 to 28 epochs) observed with a learning
rate of 10−5. As demonstrated in Figure 6.1, the apparent benefit at 10−4 is misleading:
while the loss initially drops to a very low value at epoch 2, it then becomes highly
unstable, with fluctuations and a subsequent spike when early stopping is activated. This
behavior underscores that the smooth and consistent convergence achieved with a 10−5

learning rate more accurately reflects robust learning dynamics.

When the learning rate was increased further to 10−3, presented in Table 6.3, validation
losses across all architectures deteriorated heavily (with losses around 29-32 for LSTM,
LTC, and CfC), indicating that such high learning rates hindered effective convergence.

The experiments demonstrate that high learning rates were prone to unstable convergence
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Table 6.3: Best validation loss for learning rate 10−3. Loss values are scaled by ×10−3.
’Epochs’ denote the number of epochs that each model trained for until ’early stop’
(during the same seed run).

Normalization Padding LSTM LTC CfC LRC Epochs

None ✗ 29.27 28.14 31.93 27.39 4/4/4/4
✓ 28.83 28.33 31.87 27.29 4/4/4/4

MinMax ✗ 29.74 28.35 32.23 27.64 4/4/4/4
✓ 29.68 28.50 32.18 26.55 4/4/4/4

Z-score ✗ 29.73 27.11 31.41 23.49 4/4/4/4
✓ 29.50 28.17 32.24 27.91 4/4/4/4

Both ✗ 29.68 28.14 31.52 27.50 4/4/4/4
✓ 28.76 27.78 32.24 27.59 4/4/4/4

Figure 6.1: Comparison of validation losses for the CfC model using learning rates of10−5

and 10−4. The plot shows that the learning rate of 10−5 converges smoothly, while the
learning rate of 10−4 exhibits an erratic trajectory: it reaches a low loss at epoch 2, then
fluctuates wildly before spiking as early stopping is triggered.

in a small number of epochs, even though they sometimes yielded lower loss values early
on. Thus, the lower learning rate of 10−5, despite requiring more training epochs, appears
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more promising due to its consistent and gradual convergence, resulting in lower and less
variable validation losses.

6.1.2 Normalization and Padding

The different configurations were evaluated using multiple seeds, revealing key insights
into the effects of normalization and padding across the RNN architectures. Among all
tested configurations of Table 6.1, MinMax normalization with padding proved to be
the most effective technique, consistently yielding lower validation losses across multiple
architectures and runs. This trend is particularly evident for CfC, which achieved its
best performance with MinMax normalization and padding, recording a validation loss
of 9.44 ± 0.48. The relatively small standard deviation in this setting suggests greater
training stability, reinforcing the suitability of MinMax normalization for this architecture.

For LSTM, the lowest validation loss was observed in the MinMax normalization without
padding setting (7.28 ± 1.91). However, the high standard deviation in this case indicated
considerable variability across training runs. To ensure stability, MinMax with padding
was selected as the optimal configuration for LSTM (8.51 ± 1.30), as it offered a more
reliable trade-off between performance and consistency. This highlights the impact of
padding, which, in some cases, can contribute to more predictable training dynamics.

LTC demonstrated minimal sensitivity to normalization techniques compared to the other
architectures, but it still followed the general trend where MinMax with padding provided
the lowest validation loss (10.30 ± 0.63). While this performance did not dramatically
differ from other settings, its smaller deviation made it a preferable choice. Notably,
Z-score normalization resulted in consistently higher losses for LTC, indicating that this
approach might not be well-suited for this architecture.

For CfC, the results demonstrated a clear preference for MinMax normalization with
padding, achieving the lowest validation loss at 9.44 ± 0.48. This configuration not only
provided the best overall performance but also exhibited a remarkably low standard
deviation, indicating consistent training behavior across different seeds. In contrast, other
normalization techniques, such as Z-score and Both, resulted in higher losses and greater
variability. Notably, when no normalization was applied, CfC’s performance suffered,
with a validation loss of 10.87 ± 0.92 without padding and an even higher deviation
when padding was introduced. This highlights the importance of selecting an appropriate
normalization method, as improper preprocessing can lead to instability and degraded
performance, particularly for architectures like CfC that may be more sensitive to input
scaling variations.

The performance of LRC shows that the MinMax normalization with padding is still
among the top-performing configurations. Although Z-Score with padding and Both
with padding have low MSE values, their standard deviation is very high, exceeding 1.
However, MinMax technique shows a deviation of only 0.65, which makes it the better
choice to train LRC architectures.
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Table 6.4: Averaged MSE test losses computed over three independent seeds. The models
were trained and evaluated on validation and test subsets using the recorded dataset,
with loss metrics scaled by ×10−3. The bold text emphasizes the two best-performing
recurrent models for each feature extractor. From [CFRG25].

LSTM LTC CfC LRC
EARLY 7.53 ± 0.49 11.73 ± 3.82 12.60 ± 4.42 8.23 ± 1.71
LATE 5.93 ± 0.77 9.93 ± 1.02 8.97 ± 1.63 7.80 ± 0.92
ZACN 8.27 ± 1.22 10.27 ± 0.90 9.53 ± 1.17 8.07 ± 1.10
DCN 8.77 ± 1.63 22.50 ± 9.75 11.65 ± 1.85 9.37 ± 1.88
RGB 9.57 ± 2.37 13.30 ± 1.91 11.87 ± 1.74 12.00 ± 2.14

Beyond individual architectures, the overall comparison of normalization strategies
indicates the robustness of MinMax normalization when paired with padding. While
other techniques like Z-score and no normalization occasionally yielded competitive results,
they were generally associated with higher variability and inconsistent performance.

In summary, the validation experiments using RGB input revealed that:

• Although certain configurations at a learning rate of 10−4 exhibited lower valida-
tion losses, these were often associated with erratic convergence during training,
suggesting that the models may not generalize as well.

• A learning rate of 10−3 consistently produced higher validation losses, highlighting
the risk of instability and insufficient convergence at excessively high learning rates.

• The learning rate of 10−5 resulted in more stable and consistent training across
different architectures.

Based on these observations, MinMax normalization with padding at a learning rate of
10−5 is selected as the optimal configuration for training the multimodal models.

6.1.3 Evaluation on the Test Dataset
The open-loop test results, as reported in Table 6.4, reveal an interesting behavior for
the RGB modality. While the two best-performing recurrent models for most feature
extractors are LSTM and LRC, RGB exhibits an exception where CfC delivers competitive
performance, despite being outperformed by LRC in other modalities. Specifically, LSTM
achieves a test loss of 9.57±2.37 compared to CfC’s 11.87±1.74. This divergence suggests
that the architectural differences impact the way spatial and temporal information are
integrated. The lower loss obtained by LSTM on the RGB dataset indicates that its
dynamics may be better suited to capturing the underlying features of the RGB input,
whereas CfC, which relies on a different recurrence mechanism, might require additional
tuning or a different preprocessing strategy to fully leverage the RGB modality.
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Table 6.5: Maximum pairwise difference in steering angle [rad] predictions for the models
over the first lap in one of the test dataset recordings (with the same seed). The maximum
difference between two successive steering commands given by the human expert during
the lap was 0.081.

LSTM LTC CfC LRC
EARLY 0.125 0.043 0.123 0.078
LATE 0.052 0.039 0.143 0.044
ZACN 0.129 0.077 0.126 0.061
DCN 0.067 0.072 0.103 0.048
RGB 0.072 0.026 0.057 0.031

Table 6.5 can be used to interpret the smoothness of the steering commands. Ideally,
a model that accurately replicates human behavior should produce steering commands
with relatively small differences between successive values, mirroring the human expert’s
maximum difference of 0.081 rad. The revised results show that models exhibit a range
of maximum differences, with some configurations achieving very low values (RGBLTC at
0.026 rad and RGBLRC at 0.031 radians). On the one hand, this could suggest highly
stable predictions. Other configurations, such as LATECfC at 0.143 rad and DCNCfC
at 0.103 rad, provide sparser predictions, which could indicate a more erratic control
behavior.

On the other hand, too small a difference may suggest the inability to steer more when
necessary. Essentially, if a model’s maximum difference is significantly smaller than the
human reference, this could imply an inability to react to sudden but necessary steering
changes, such as sharp turns or obstacles. Therefore, these values must be complemented
with the MSE values from Table 6.4. A reliable model should be able to produce smooth
transitions without being overly slow in response.

6.2 Closed-loop Results
After training and evaluating the models on the passive dataset, it became interesting to
explore how they would adapt to a closed-loop setting in which the controller is deployed
in the real world.

6.2.1 Selected Models
Given that the total number of models amounted to twenty (five distinct feature extractors,
each combined with one of four possible RNN options), it was considered practical to
select only the models that had the best performance on the dataset for further evaluation.

Models were ultimately selected for closed-loop testing on the basis of the lowest test
losses and minimal standard deviations observed over three seeds from Table 6.4, as these
metrics are considered to provide a more robust and statistically sound measure of overall
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Table 6.6: Summary of the closed-loop testing, with results organized according to
different feature extractors. For each feature extractor, the two most effective RNN
options were deployed. ’Success’ refers to the successful completion of five consecutive
laps on the test track. From [CFRG25].

Feature Extractor RNN Success

EARLY LSTM ✓
LRC ✗

LATE LSTM ✗

LRC ✗

ZACN LRC ✓
LSTM ✗

DCN LSTM ✓
LRC ✗

RGB LSTM ✗

LRC ✗

performance. It is believed that the consistency across multiple training runs offers a
far more reliable indication of a model’s suitability for real-world deployment than the
maximum steering difference observed over a single test lap from Table 6.5. Nevertheless,
the maximum difference metric is maintained as an important check, and its predictive
value regarding driving smoothness will be revisited during real-world testing.

In order to ensure a balanced and comprehensive assessment, test groups were structured
to account for both the feature extractors and the RNNs. Specifically, the two best-
performing recurrent models were chosen for each feature extractor, while conversely, the
two most effective feature extractors were identified for each recurrent model across all
tested seeds. The results of the closed-loop experiments are systematically categorized in
Tables 6.6 and 6.7.

Many of the trained models encountered a considerable degree of difficulty when subjected
to the real-world setup, with only a subset demonstrating the capability to complete five
continuous laps without experiencing a crash. The specific locations at which crashes
occurred have been marked in Figure 6.2. In comparison to the maps built for dataset
recordings, which are described in Table 4.1, the map is 24.25m long (shorter on average
by 9.07m). The map has average left and right distances of 0.5m and 0.55m, respectively,
which is very close to the dataset maps, which have an average width of 0.562m and
0.53m. The human driver recorded laptimes of ≈ 27.93s in ACW direction (8.569s faster
than the average 36.492s lap time on the dataset). These metrics enforce the balanced
design of the circuit for closed-loop testing. Notably, the human driver’s faster lap time
was likely due to the significantly shorter track length, all while maintaining a level of
navigational difficulty comparable to that of the dataset maps.
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Table 6.7: Summary of the closed-loop testing, with results organized according to
different recurrent models. For each RNN, the two best-performing feature extractor
options were selected based on the test results obtained from the recorded passive dataset.
’Success’ refers to the successful completion of five consecutive laps on the test track.
From [CFRG25].

RNN Feature Extractor Success

LSTM LATE ✗

EARLY ✓

LTC LATE ✗

ZACN ✗

CfC LATE ✓
ZACN ✓

LRC LATE ✗

ZACN ✓

Figure 6.2: The map of the test circuit used in active closed-loop evaluations. Critical
turning points that led to irrecoverable crashes are marked with an ’X’, along with
annotations that identify the responsible models. From [CFRG25].

Of particular note is the observation that the LATE feature extractor achieved success
only when paired with the CfC model, despite the fact that this particular recurrent
model had not been among the two highest-performing models for the LATE type in the
passive open-loop evaluation (Table 6.4). This outcome shows the sim-to-real gap: how
performance in the open-loop training setup can diverge from deployment on hardware.
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Figure 6.3: Attention maps produced during closed-loop testing, evaluated for the
RGBLSTM model and the models that achieved full autonomy across five consecutive
laps. The chosen frame corresponds to the moment immediately preceding the crash of
the RGBLSTM model at landmark 5, as indicated in Figure 6.2.

6.2.2 Visualizing Models’ Attention
To better understand the underlying mechanisms governing model behavior, the focus was
shifted to identifying the specific regions of the input to which model attention was most
strongly directed. Offline analysis of the recordings for each run was conducted using
VisualBackProp [BCC+16]. Bright regions in the attention maps in Figure 6.3 indicate
areas of focus, and overall suggest that each model has a unique attention pattern.

Interestingly, although the EARLYLSTM model tended to maintain its attention on more
distant regions, the remaining models focused primarily on the road immediately ahead.

Furthermore, the LATECfC, ZACNLRC, and DCNLSTM models demonstrated a tendency
to direct attention toward the right side of the road.

In contrast, the RGBLSTM model distributed its focus evenly in front without concentrat-
ing sufficiently on upcoming turns. It is possible that this failure to adequately anticipate
turns contributed significantly to the eventual crash of the RGBLSTM model.

6.3 Robustness to Noise
The models that successfully completed five consecutive laps without crashing were
selected to evaluate robustness under noisy conditions. These included EARLYLSTM,
LATECfC, ZACNLRC, and DCNLSTM. To assess their resilience, additional Gaussian
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Figure 6.4: Attention maps from closed-loop recordings are shown for noise-free input
as well as for Gaussian noise levels with variances of σ = 0.1, 0.2, and 0.3. Evaluations
on the top-performing EARLYLSTM network reveal that its focus remains consistently
directed at the same region despite increasing noise. From [CFRG25].

noise, characterized by a mean of 0 and a variance of 0.1, was introduced into the input
stream.

The experiment had an intriguing result, with EARLYLSTM being the only model able
to maintain full autonomy when subjected to sensor noise (over both RGB and depth
streams). The other models failed, resulting in crashes occurring at Points 2, 7, and 3, as
indicated in Figure 6.2.

The series of images in Figure 6.4 illustrates the effects on EARLYLSTM’s attention of
both a noiseless input and an input that has been increasingly perturbed by Gaussian
noise with variances of σ = 0.1, σ = 0.2, and σ = 0.3, respectively. For the visualizations,
the original perturbed stream and predictions were used.

The EARLYLSTM model withstood all increasing levels of input noise without a de-
grading in performance. Notably, the model maintains its focus on a stable region of
interest consistently, despite the introduction of perturbations. This constancy in the
region of interest has been interpreted as a strong indicator of the model’s resilience to
environmental uncertainties.

6.3.1 Quantifying Attention

Although the models’ attention maps are visually compelling, a numerical estimate helps
establish the extent to which they were altered under increased noise levels.

The Structural Similarity Index (SSIM) [WBSS04] was used to quantify these alterations.
SSIM assigns each pairwise comparison of images a score in the [0, 1] interval. In this
case, it represents an indication of the extent to which the network’s focus remained
unaffected by noise. Higher SSIM values, approaching 1, relate to the model’s sustained
attention.
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Figure 6.5: Calculated SSIM metrics for the EARLYLSTM, LATECfC, ZACNLRC, and
DCNLSTM networks, assessing the stability of their attention mechanisms amid noise.
The EARLYLSTM network achieved the best scores, reflecting its robustness to noisy
inputs compared to the other models. From [CFRG25].

When the EARLYLSTM model was subjected to increased noise conditions, its resulting
SSIM values were observed to be significantly higher than those of other models, as has
been illustrated in Figure 6.6.

With the purpose of further testing EARLYLSTM’s robustness, two more experiments were
conducted where the noise variance was incrementally adjusted in 0.1 steps. Remarkably,
the model exhibited high robustness to these heightened perturbations.

Particular attention was given to how the model maintained focus on key input features
without being distracted by noise. Figure 6.4 shows the attention maps obtained through
VisualBackProp [BCC+16].

After examining the corresponding SSIM values presented in Figure 6.6, it was determined
that, even under conditions of considerable noise, the EARLYLSTM model succeeded in
preserving an impressive degree of attention stability. Specifically, the similarity scores
were measured at 86%, 75%, and 67%, respectively, for the cases of σ = 0.1, σ = 0.2, and
σ = 0.3.

Though there is a decline in these values as noise levels increased, the rate at which
they decreased was not strictly linear; rather, a deceleration in the rate of decline with
reductions of −14%, −11%, and −8% was observed in succession.
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Figure 6.6: Assessment of noise robustness during closed-loop trials was conducted
using the EARLYLSTM network, which maintained complete autonomy even with in-
creased noise levels. This figure presents SSIM indices comparing attention maps from
noise-free conditions to those with Gaussian noise variances of σ = 0.1, 0.2, and 0.3.
From [CFRG25].

This finding suggests that while the influence of noise was not entirely negligible, the
model’s ability to sustain stable attention was preserved to a considerable extent, even in
the presence of substantial perturbations.

This suggests that this robustness may play a most significant role in enabling the model
to maintain consistent performance under the challenging and unpredictable conditions
of noisy environments.

6.4 Comparison with Human Expert Driver

The success of the EARLYLSTM model under increasingly demanding conditions was
followed by conducting a comparison between the model’s behavior and that of the expert
human driver who had controlled the roboracer during the data collection sessions. To
this end, a driving session was held in which the driver completed five continuous laps on
the same test track.
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6.4.1 Commanded Steering Angles
Firstly, it was necessary to account for the discrepancy in steering commands frequencies,
as the human driver’s data were recorded at 30fps while the model’s predictions were
issued at a lower frequency. This issue, which is discussed in greater detail in Section 6.5,
was addressed by estimating the effective frame rates. Specifically, the number of camera
topic messages in the rosbags was compared to the number of predictions published on
the /drive topic during recordings. Using the estimated fps, the model predictions were
interpolated to a common timeline shared by both the human and the model data.

Although the steering time series were aligned on a common timeline, matching the
values was essential to calculate comparative metrics. Given that both the human driver
and the model navigated the same track for the same amount of time and under the same
speed cap, their steering commands are inherently expected to exhibit similar patterns.
Dynamic Time Warping (DTW) [Sak78, Vin68] is an alignment-based metric that is used
to assess the similarity between time series as the sum of the distances between matched
features. As opposed to just Euclidean distance matching, the DTW method accounts
for temporal distortions and is able to assign several matching features from the base
series to one in the other series, obtaining the best alignment between similar time series.
In [Tav21], DTW is formulated as the following optimization problem:

DTWq(x, x′) = min
π∈A(x,x′)

 ∑︂
(i,j)∈π

d(xi, x′
j)q

 1
q

(6.1)

where x, x′ are the time series, q is the Lq norm parameter, π is the alignment path, A
is the set of admissible paths.

The time series used by DTW must have a matched start and end index, which is done
in this thesis in the previous step during interpolation. The solution to the optimization
problem is solved using dynamic programming and further detailed in [Tav21], resulting
in an O(mn) algorithm, where m, n are the lengths of the series. The implementation
used in this thesis is from the DTAIDistance package, available at [DTA25].

Successful models

As can be seen in Figure 6.7, EARLYLSTM shows slight overshooting tendencies when
taking turns. The magnitude of the overshooting is consistent (although not identical) over
the 5 laps, with no particular bias to turn directions. Compared to the commands issued
by the expert driver, the plot reflects the computed RMSE value of 0.0323, displayed in
Table 6.8. EARLYLSTM had the lowest latency average and standard deviation, 5ms away
from the second lowest, which explains its incredibly fast reaction times and success even
under very noisy input. The approach to directly include depth in the convolutional head
significantly cuts down computational costs, which is high in all other RGB-D models.
Moreover, the computed maximum steering differences also reflect the overshooting of
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Figure 6.7: Comparison between the steering commands predicted by the EARLYLSTM
model and those of the human expert driver.

the model and the more consistent driving style of the human driver. The noticeable
spikes in the interval around DTW Matched Indices 500-800 overlap with the interesting
behavior illustrated by the trajectories in Figure 6.15. In this window, while the human
driver goes straight on the middle of the track (steering angle 0 radians), the model
sways slightly right, then left (following the outer pipeline).

The LATECfC commanded steering values are illustrated in Figure 6.8. Interestingly,
the model exhibits a high tendency to overshoot in left turns. However, on the same
interval window, where EARLYLSTM wobbles (500-800 matched indices), LATECfC keeps
more closely to steering 0 radians. When looking at the plotted trajectory of the model
in Figure 6.16, it is evident that it is the only model that keeps more to the middle of
the track, similar to the human driver. Table 6.9 reflects that this model has the lowest
Dmax, which coincides with the plotted steering commands. Moreover, it also has the
second lowest RMSE value of all successful models. Interestingly, the latency is not very
far from the other LATE models that failed the full autonomy tests.

ZACNLRC exhibits smooth steering behavior and a tendency to keep right, as shown
in Figure 6.9. This is evident in its trajectory in Figure 6.16, driving very close to the
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Figure 6.8: Comparison between the steering commands predicted by the LATECfC
model and those of the human expert driver.

outer pipeline after the first turn. Remarkably, the model had the highest latency at
20.54ms in Table 6.8, but the lowest Dmax and RMSE of all successful models. The
latency is attributed to the deformable convolution operation in its last layer. Although
not immediately apparent from the trajectory in Figure 6.16, the commanded steering
values do overlap very often with the human driver’s, which could explain the low error
value. The shift in trajectory is caused by the model’s rightward bias in driving style.
Although the overshooting magnitude is not high enough to affect the RMSE, it alters
the trajectory.

The upper plot in Figure 6.10 shows the human driver’s commands aligned to the ones
of the DCNLSTM model. The commanded steering values have smooth transitions,
which is also evident in the recorded Dmax value in Table 6.8 (the second lowest value).
However, the calculated RMSE also reflects the overshooting behavior of the model at
every turn. Its trajectory is very similar to ZACNLRC, prone to follow the outer pipeline
very closely, with a rightward driving bias. With a latency twice that of EARLYLSTM, the
second convolutional head necessary for offsets computation seems to be computationally
faster than its ZACN counterpart (2ms difference on average).
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Figure 6.9: Comparison between the steering commands predicted by the ZACNLRC
model and those of the human expert driver.

Behaviors prior to crashing

Figure 6.11 shows the commanded steering angles during the recording of LATELTC
and ZACNLTC models. Both models crashed in the same spot, very early on the circuit
(position 1). The behaviors of the two models differ, the LATE fusion LTC is smoother
in predictions than its ZACN counterpart, as shown also in Table 6.9 in the Dmax values
of each. However, ZACN seems to follow the human commands more closely, although
not with the same magnitude. Judging by the place of the crash (at the beginning of
the first turn) and by the commanded steering angles, neither of the two models was
able to anticipate the turn in time. They both start steering very late, with an RMSE
to the human driver of 0.0851 for the LATELTC and 0.0884 for ZACNLTC. The error
values are similar to the ones the models achieved during open-loop testing in Table 6.4
(when the squared root is applied). Although the latencies registered for each of the
two models are similar to some registered by successful models, given the discrepancy in
steering commands (compared to the human driver’s), the failure can be attributed to
computational overload. One cause can be that the late model uses two convolutional
heads to extract features from RGB and depth streams in parallel. As such, the only
successfully tested LATE model was using a CfC backbone, while the ZACN models
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Figure 6.10: Comparison between the steering commands predicted by the DCNLSTM
model and those of the human expert driver.

using CfC and LRC both achieved full autonomy, which can indicate that they are more
computationally lightweight than LTC on such a resource-constrained platform.

The commanded steering values for the models that crashed at position 4 on the testing
circuit are shown in Figure 6.12. The two LATE fusion models achieved the best losses
on the test dataset (Table 6.4) and show similar latencies in Table 6.8. Although the
LSTM model has a Dmax almost identical to the human’s on the portion up to the
crash position, its LRC counterpart has a very low maximum difference. Moreover, all
LRC backbones display the same trend of very close steering predictions. However, when
aligned on a common timeline and also matched with the human driver commands, the
LATE models that crashed at position 4 were steering right instead of left. Given that
the area on the circuit represents the exit coming from a right turn, it seems probable
that this behavior was caused by computational delay, given that these models use more
complex feature extractors. The ZACN model, although close to human behavior,
overshoots when steering outside the turn, which causes its trajectory to be off-course.
Overall, their predictions seem more influenced by inputs received at past locations
(during the right turn) than the present.

The RGB models that were deployed crashed before and after the second turn in the
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Figure 6.11: Common timeline comparison between the steering commands predicted by
the LATELTC and ZACNLTC models and those of the human expert driver, up to the
irrecoverable crash at position 1 in Figure 6.2.

map, at positions 5 and 6 shown in Figure 6.2. Assessing the predictions given by
the models in Figure 6.13, the LRC model has considerably fewer spikes, which can
be attributed to its being able to take the turns better than its LSTM counterpart.
Tables 6.8 and 6.9 reveal that the RGBLRC model had the highest standard deviation in
latency compared to all other models, which is not the case for any other LRC-based
models using multimodal feature extractors. Moreover, the higher fluctuations of the
RGBLSTM are also reflected in the Dmax values. Both unimodal models make highly
incompatible predictions given the map location: the LSTM model fails to steer left in
time to enter the turn, while the LRC model perturbs its own trajectory by suddenly
steering left, thus crashing into the wall. Both models seem to be unable to react to
sudden changes in the circuit. The failure of the unimodal models was also foreseen by
the test results in Table 6.4, where all RGB models scored higher MSE values than the
best multimodal models.

The DCNLRC model crashed very late, at position 7 on the circuit. While exiting
the second turn, it is obvious in Figure 6.14 that the steering commanded by the model
suddenly diverges from the human counterpart. Both latency and RMSE values are on
the higher side in Table 6.8. The high error is reflected in the steering plots in sudden
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Table 6.8: Quantifiers of model behavior during closed-loop testing, grouped by feature
extractors. ’S’ denotes successful completion of all laps, ’Latency’ is the mean and
standard deviation of recorded latency during testing, ’Dmax’ is the maximum difference
recorded between two successive steering commands (radians), and RMSE is calculated
for all steering commands interpolated over a common timeline for the model and human
driver. DHuman

max is calculated for the same driving interval as the model counterpart (i.e.,
up to the crashing point).

Feature
Extractor RNN S Latency [ms] DModel

max [rad] DHuman
max [rad] RMSE

EARLY LSTM ✓ 8.26 ± 7.86 0.1918 0.0544 0.0323
LRC ✗ 8.61 ± 7.51 0.2465 0.2525 0.0916

LATE LSTM ✗ 12.66 ± 11.63 0.2996 0.2999 0.1519
LRC ✗ 13.38 ± 7.98 0.0616 0.3014 0.0455

ZACN LRC ✓ 20.54 ± 11.97 0.1394 0.0544 0.0246
LSTM ✗ 19.77 ± 12.55 0.1209 0.3015 0.0396

DCN LSTM ✓ 18.55 ± 12.11 0.1497 0.0544 0.0339
LRC ✗ 16.82 ± 9.32 0.092 0.159 0.0630

RGB LSTM ✗ 8.78 ± 7.66 0.1151 0.0323 0.0622
LRC ✗ 11.27 ± 15.939 0.0627 0.0323 0.026

spikes right before or during an existing maneuver: around DTW matched index 380,
while increasingly steering left, the model makes a sudden rightwards prediction, yet
recovers immediately, at indices 580 and 630, the model also abruptly steers left during
a right steering maneuver. This behavior ultimately leads to an irrecoverable crash
when the model fails to finish the turn exit, continuing to steer in the opposite direction.
Although the steering values are smooth (Dmax is 0.092), as anticipated in 6.2.1 when
interpreting Table 6.5, too small of a Dmax leads to inability steer more when actually
needed, especially compared to human behavior with Dmax 0.159.

6.4.2 Trajectories

The movements of the model and the human driver were tracked in the video recordings
from a ceiling-mounted dome camera via object tracking. The implementation is as
follows: the roboracer is selected in the first frame of the videos, then, using template
matching from OpenCV [Bra00], the object is tracked frame by frame, and a trajectory
is drawn on the image.

The results of this comparative analysis with the best performing model are shown in
Figure 6.15. Interestingly, the side-by-side comparison shows that while the trajectory
produced by the EARLYLSTM model is smooth, it does not entirely replicate the driving
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Table 6.9: Quantifiers of model behavior during closed-loop testing grouped by RNN
backbone. The other table headers are as in Table 6.8.

RNN Feature
Extractor S Latency [ms] DModel

max [rad] DHuman
max [rad] RMSE

LSTM LATE ✗ 12.66 ± 11.63 0.2996 0.2999 0.1519
EARLY ✓ 8.26 ± 7.86 0.1918 0.0544 0.0323

LTC LATE ✗ 13.67 ± 7.80 0.0210 0.0203 0.0851
ZACN ✗ 21.20 ± 14.87 0.0228 0.2030 0.0884

CfC LATE ✓ 13.85 ± 9.25 0.1029 0.0544 0.0251
ZACN ✓ 21.00 ± 12.22 0.2925 0.0544 0.0352

LRC LATE ✗ 13.38 ± 7.98 0.06165 0.3014 0.0455
ZACN ✓ 20.54 ± 11.97 0.1394 0.0544 0.0246

Table 6.10: Quantifiers of model behavior during closed-loop testing, with noised inputs,
of variance level ’σ’. The other table headers are as in Table 6.8.

Model σ S Latency [ms] DModel
max [rad] DHuman

max [rad] RMSE

EARLYLSTM

0.1 ✓ 8.705 ± 21 0.2791 0.0544 0.0417
0.2 ✓ 7.4514 ± 19.912 0.2204 0.0544 0.0371
0.3 ✓ 4.987 ± 11.47 0.2132 0.0544 0.0391

LATECfC 0.1 ✗ 14.5 ± 33.47 0.0860 0.4306 0.05932
ZACNLRC 0.1 ✗ 14.36 ± 12.1 0.1961 0.149 0.0652
DCNLSTM 0.1 ✗ 15.18 ± 18.73 0.09 0.3545 0.0517

style of the human driver. This discrepancy may be attributed to the expert’s extensive
driving experience.

Although the model’s training included five distinct tracks, with a variety of data
(as argued in Section 4.2.1), introducing more track layouts into the training dataset
could enhance generalization capabilities. This would enable the model to more closely
approximate the driving behavior demonstrated by a human expert.

6.5 Impact of Frame Drops on Model Performance

The analysis of the recorded rosbags and model predictions indicates that the model
experienced frame drops during the sessions. The frame rate loss is approximately seven
frames per second, most likely due to limitations in computational resources caused by
the lack of hardware acceleration for machine learning inference.
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However, the model made accurate steering predictions, demonstrating a substantial
degree of robustness. The results indicate that the frame drops did not hinder the
model’s performance, as it successfully completed five fully autonomous laps in all four
test scenarios, including the three with additional noise.

Nonetheless, it is useful to also numerically quantify the exact impact of the frame drops
on the model’s behavior. Therefore, post-hoc inference was carried out on a virtual
machine by extracting the rosbag messages from the depth camera. This enabled a direct
comparison between the real-time inference, which was affected by dropped frames, and
the post-hoc inference, in which all frames were fully retained.

Figure 6.17 shows the histogram of the pairwise absolute steering differences under both
conditions. The distribution of these differences, when examined for both real-time
inference (in which frame drops were experienced) and post-hoc inference (in which all
recorded frames were utilized), are extremely similar.

This finding suggests that, even under unintentional frame loss, the model’s predictions did
not exhibit substantial erratic behavior or significant deviations. The similarity between
the two distributions confirms that the frame drops did not meaningfully compromise
the model’s overall performance.

6.6 Limitations
While additional configurations of the recurrent network could have been explored, this
thesis primarily focused on investigating feature extractors. In this context, recurrent
networks were employed solely as a component of the pipeline responsible for making
sequential predictions. Therefore, further refinements to the recurrent architecture remain
beyond the immediate scope of this thesis.
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Figure 6.12: Comparison between the steering commands predicted by the models that
crashed at position 4 in Figure 6.2 and those of the human expert driver.
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Figure 6.13: Comparison between the steering commands predicted by the RGBLSTM and
RGBLRC models and those of the human expert driver, up to the irrecoverable crashes
at positions 5 and 6 in Figure 6.2.
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Figure 6.14: Comparison between the steering commands predicted by the DCNLRC
model and those of the human expert driver, up to the irrecoverable crash at position 7
in Figure 6.2.

62



6.6. Limitations

Figure 6.15: The upper image shows the trajectory of the human operator on the test
circuit, and the lower image depicts the route followed by the best model, EARLYLSTM,
determined via object tracking. Although the model’s trajectory is smooth, it does not
entirely replicate the human driving style. From [CFRG25].
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Figure 6.16: From left to right, trajectories of the successful models: LATECfC, ZACNLRC,
DCNLSTM, and the crash of LATELSTM, the model that had placed first in Table 6.4.
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Figure 6.17: Histogram displaying the variations in steering angles between successive
predictions, serving as a measure of steering consistency (lower variation denotes smoother
control). Distributions of model-generated commands are contrasted with those issued by
human operators during closed-loop tests. The top histogram reflects real-time inferences
with ≈ 7 frames per second lost due to hardware constraints, while the lower plot was
obtained from post-hoc analysis. The close similarity between these distributions indicates
that dropped frames had minimal impact on overall performance. From [CFRG25].
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CHAPTER 7
Conclusion

Overcoming the sim-to-real gap in the deployment of autonomous agents is an un-
doubtedly complex challenge, requiring controllers that are not only accurate but also
robust. This complexity arises from factors such as noise affecting sensor readings and
computational delays from heavy processing, both of which can significantly impair an
agent’s performance. As human control relies heavily on stereoscopic vision to navigate
surroundings, this thesis explores the effects of different RGB-D fusion techniques on
autonomous agents.

Based on an in-depth study of state-of-the-art approaches to RGB-D agents, this thesis
investigates the potential of multimodal RGB-D recurrent controllers that make accurate
and fast predictions even on platforms lacking dedicated hardware acceleration for machine
learning inference.

Following the collection of high-quality data and the establishment of the methodology
to be used for training the models, the research continues with empirical evaluations.
Experimenting in open-loop and closed-loop settings confirms the validity of the systematic
testing approach. Through various numerical analysis methods and attention mechanisms,
the models’ behavior, stability, and resilience to noise are quantified and interpreted.

All in all, this thesis comprises a comprehensive study of developing vision-based neural
controllers capable of performing under real-world conditions. Moreover, it paves the
way for further advancements in the field, contributing valuable knowledge toward the
development of robust autonomous systems.
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7. Conclusion

7.1 Key Insights

To what extent does depth improve steering performance?

First and foremost, this thesis answers the question concerning the extent to which depth
information may improve steering control.

During closed-loop testing, it is demonstrated that depth perception is not merely
advantageous to RGB but rather indispensable. The unimodal RGB feature extractor
proves inadequate, crashing in sharp turns during hardware deployment. Models relying
solely on RGB information fail to identify the open path in corners and struggle to
determine the correct steering direction.

By contrast, the controllers that incorporate RGB-D feature extractors attain full
autonomy. As depth information provides crucial spatial awareness, RGB-D agents
recognize areas with more free space and adjust their steering accordingly.

Which fusion method provides the best balance between robustness and
efficiency?

Secondly, the results reveal that early depth fusion strikes the best balance between
robustness and computational efficiency.

The early fusion model proves more robust in conditions involving both unpredictable
data loss and varying levels of input noise, consistently outperforming late fusion and
depth-adaptive fusion models. This finding provides strong evidence in support of early
fusion mechanisms as an effective means of integrating multimodal sensory inputs while
maintaining computational efficiency.

Can full autonomy be achieved with a lightweight multimodal control
system?

Last but not least, this thesis proves it is possible to achieve full autonomy by using
lightweight recurrent controllers with RGB-D input.

Models using multimodal feature extractors maintain autonomy over continuous laps,
with the early fusion extractor overcoming severe sensor noise. Moreover, despite frame
drops during real-time inference, the deployed models make consistent steering predictions,
confirming the viability of lightweight multimodal control for autonomous agents.

7.2 Further Research

While this thesis proves the importance of multimodal fusion in robust autonomous
control, it also opens the way for several research opportunities.
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7.2. Further Research

Analyzing attention patterns

On the one hand, a more in-depth examination of attention behavioral patterns within
the different recurrent neural networks is planned.

As this thesis suggests that attention plays a crucial role in sequential decision-making,
the investigation will continue to implement alternative attention visualization methods
beyond VisualBackProp. These new insights could lead to improvements in architectural
design, ultimately contributing to safer and more reliable models.

Enhancing the visual field

On the other hand, it is possible to improve the hardware stack and the collected data.
More specifically, increasing the agents’ field of view is achievable by incorporating
multiple cameras in the hardware stack.

Additional cameras positioned on the sides of the agent can enhance perception in
challenging scenarios, such as sharp turns or obstacle-rich areas. Clearly, this approach
requires revisiting the feature extraction process, as additional input streams need to
be processed and fused. However, such an approach has the potential to allow higher
driving speeds and more reliable obstacle avoidance.
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APPENDIX A
Explanation of Preprint Citation

in Figures and Tables

This appendix clarifies that specific figures and tables included in this thesis were first
published in the conference paper preprint [CFRG25]. The conference paper, submitted
for the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2025), was prepared as a concise 8-page summary of a subset of the research
results obtained during the evolution of the project. The paper was submitted on March
1, 2025, with notification of acceptance to be received on June 30, 2025, and scheduled
to be held during October 19-25, 2025.

Given the possibility of the paper being accepted, a preprint was published on arXiv
[CFRG25] to facilitate timely citation. The decision to submit the paper to IROS was
made because the results were considered relevant to the robotics research community. It
is emphasized that the paper is a spin-off of the thesis, summarizing key findings in a
condensed format, while the thesis provides a comprehensive account of the research with
additional experiments, data, and analyses beyond the scope of the conference paper.

For clarity and proper attribution, each figure and table that has been reused includes an
in-caption note stating: "From [CFRG25]". This measure is taken to explicitly indicate
the first source of publication of the figures and tables.

The reuse of figures and tables does not compromise the originality or completeness of the
thesis content but rather is used to ensure consistency in the communication of results
across publications.

71





APPENDIX B
Steering Angle Histograms

Figure B.1: Steering angle histograms, including KDE curves, generated from 1 lap on
each of the tracks in anti-clockwise direction.
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B. Steering Angle Histograms

Figure B.2: Steering angle histograms, including KDE curves, generated from 1 lap on
each of the tracks in clockwise direction.
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