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Kurzfassung

Infrastructure as Code (IaC) ist essenziell für die Verwaltung von Cloud-Infrastrukturen,
aber Laufzeitfehler treten selbst in den am sorgfältigsten geschriebenen Programmen
auf, was zu teuren Ausfallzeiten und Sicherheitslücken führt. Trotz der weit verbreiteten
Nutzung von Tools wie Pulumi zeigt unsere Arbeit, dass eine bedeutende Möglichkeit zur
Reduzierung dieser Fehler durch statische Typensysteme ungenutzt bleibt. Diese Arbeit
befasst sich mit der kritischen Frage, wie die statische Typentheorie genutzt werden kann,
um Laufzeitfehler in IaC-Programmen zu verringern.

Wir finden und unterteilen echte Laufzeitfehler in drei Kategorien zunehmender Komple-
xität — Enumerations, Refinements und Dependencies — und verbinden sie mit
Enums, Refinement Types und Dependent Types aus der statischen Typentheorie. Zur
Formalisierung dieser Typen führen wir einen minimalen Lambda-Kalkül λ→ und darauf
basierende Erweiterungen ein, um diese Fehler statisch zu erkennen. Unsere Analyse
zeigt, dass viele Laufzeitfehler in IaC-Programmen durch statische Typanalyse verhindert
werden können.

Durch eine umfassende Evaluierung von Pulumi, einem führenden IaC-Tool, das mehrere
Programmiersprachen unterstützt, stellen wir fest, dass Pulumi statische Typinformatio-
nen oft nicht nutzt, selbst wenn sie verfügbar sind. Konkret zeigen wir, dass bis zu 48.68%
der AWS-Repositories, 22.29% der Azure-Repositories und 28.45% der GCP-Repositories
aus einem Datensatz von 1023 Repositories von Enums profitieren würden – diese werden
jedoch in den am häufigsten genutzten Pulumi-Provider-Varianten ignoriert. Darüber
hinaus zeigen wir, dass Pulumi Refinement Types in Form von Validierungsparametern,
die in den Cloud-Provider-APIs vorhanden sind, übersieht und somit eine Möglichkeit
zur Vermeidung von Laufzeitfehlern verpasst.

Wir zeigen außerdem, dass während Dependent Types die komplexesten Fehler, bei denen
Parameter voneinander abhängen, abfangen könnten, weder Cloud-Provider-APIs, noch
Pulumi, noch die von Pulumi unterstützten Programmiersprachen native Unterstützung
für Dependent Types bieten.

Diese Arbeit schließt mit der Empfehlung, diese statische Typinformation zu verwenden,
um die Zuverlässigkeit von IaC-Programmen zu verbessern, Laufzeitfehler deutlich zu
reduzieren und das Management von Cloud-Infrastrukturen zu optimieren.
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Abstract

Infrastructure as Code (IaC) is essential for managing Cloud infrastructure, but runtime
errors occur even in the most carefully written programs, leading to costly downtime and
vulnerabilities. Despite the widespread adoption of tools like Pulumi, our investigation
reveals that a significant opportunity to mitigate these errors through static type systems
is being missed. This thesis addresses the critical issue of how to leverage static type
theory to reduce runtime errors in IaC programs.

We find and divide real runtime errors into three categories of escalating levels of
complexity — Enumerations, Refinements, and Dependencies — and connect them
to enums, refinement types, and dependent types from static type theory. To formalise
them, we introduce a minimal lambda calculus, λ→, and extensions to it to recognise
these errors statically. Our analysis shows that many runtime errors in IaC programs
can be prevented by statically enforcing enums, refinement types and dependent types.

Through an extensive evaluation of Pulumi, a leading IaC tool supporting multiple
programming languages, we find that Pulumi often fails to use static type information,
even when it is readily available. Specifically, we show that up to 48.68% of AWS
repositories, 22.29% of Azure repositories, and 28.45% of GCP repositories of a dataset
of 1023 repositories would benefit from enum types—yet these are ignored in Pulumi’s
most common provider variants. Additionally, we demonstrate that Pulumi overlooks
refinement type information in the form of validation constraints present in Cloud provider
APIs, missing an opportunity to prevent runtime errors.

We show that, while dependent types could mitigate the most complex errors involving
interdependent parameters, neither Cloud provider APIs, Pulumi, nor the programming
languages it supports offer native support for dependent types.

This thesis concludes by advocating for the adoption of these type systems to enhance
the reliability of IaC programs, making significant strides toward reducing runtime errors
and improving Cloud infrastructure management.
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CHAPTER 1
Introduction and Problem

Description

Infrastructure as Code (IaC) [92] has revolutionised the way modern software systems
are deployed and managed, offering significant advantages [12, 73, 111] in automating
and scaling infrastructure. However, as IaC practices become more prevalent [12], it
is increasingly critical to ensure the correctness and reliability of IaC programs. A
fundamental challenge in this domain is to manage and mitigate runtime errors. These
errors can lead to costly and disruptive failures [27, 56].

Static type safety is a powerful tool [91, 80] for improving the reliability of software systems
by catching errors at compile time rather than at runtime. In conventional programming,
static type systems help prevent a range of issues by enforcing type constraints and
validating type correctness before the code is executed. However, the integration of
static type safety into IaC programs presents challenges as well as opportunities for
improvement.

Pulumi [20] is a prominent IaC tool that leverages conventional programming languages
to define and manage Cloud resources. Unlike other IaC tools, such as Ansible [10], Chef
[6], Terraform [28], or Puppet [22], which use a domain-specific language, or AWS Cloud
Development Kit (CDK) [7] and CDK for Terraform (CDKTF) [34], which offer limited
capabilities when compared to Pulumi (see Section 2.6.1), Pulumi allows users to write
infrastructure code in familiar languages such as C#, Go, Java, TypeScript, and Python
for multiple different Cloud providers. This integration provides a powerful means to use
existing type systems but also introduces complexities related to ensuring comprehensive
type safety across diverse programming environments and Cloud ecosystems.

This thesis addresses the need for improved static type safety in IaC programs by focusing
on Pulumi. We explore the kinds of runtime errors commonly encountered in IaC
programs and investigate how these errors can be mitigated through improved static
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1. Introduction and Problem Description

type analysis and type system enhancements. Our approach involves categorising errors,
formulating a minimal lambda calculus framework to represent and address these errors
formally, and evaluating the applicability of this framework within the Pulumi ecosystem
with concrete code examples.

The core objectives of this research are to answer the following research questions:

• RQ1: What are common errors in IaC programs that could be prevented statically?

• RQ2: How can such errors be prevented?

By advancing static type safety in IaC programs, particularly in the context of Pulumi, this
thesis aims to contribute to more reliable and maintainable infrastructure management
practices. In contrast to the existing scientific literature (see Section 2.1) that focusses
on errors in IaC programs, our research is unique in a number of ways.

• This thesis focuses on a concrete subset of the most prevalent errors in IaC programs,
that is, type-related, erroneous infrastructure configuration.

• We highlight a proper correspondence between a set of well-defined error categories,
based on real IaC runtime errors, and static types.

• We offer a comprehensive “end-to-end” perspective on (1) how type-related runtime
errors can be expressed as static types in type theory, (2) how these types are
implemented in existing programming languages, and (3) their applicability within
Pulumi, a specific IaC tool.

• Finally, we assess the potential impact of improving static type safety in Pulumi
based on its integration with three major public Cloud providers.

The remainder of the thesis is structured as follows. It begins with a background chapter
that provides foundational knowledge on types, including enums, refinement types, and
dependent types, and introduces Pulumi in detail, as well as related work. The next
chapter starts with an analysis of existing runtime errors in IaC. Afterwards, we establish
a dataset of Pulumi repositories and conduct some data analysis on it. The succeeding
chapter continues with strategies for improving static type safety idiomatically within
Pulumi using enums, refinement types, and dependent types, by using the established
dataset. We continue with evaluating and discussing our findings, before the final chapter
summarises our results.
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CHAPTER 2
Background and Related Work

This chapter starts by presenting the current state of the art in scientific literature
concerning errors in IaC. It continues by introducing a minimal, simply typed lambda
calculus to define typing problems in a formal way. We present how to formulate errors
in our error categories formally and define typing rules, with which the characteristic
errors can be handled statically. We discuss IaC and Programming Languages IaC in
general and the role that Pulumi plays within it. Finally, this chapter concludes with a
detailed description of Pulumi, for which we will analyse if the runtime errors from our
categories can be mitigated statically.

2.1 Related Work
Infrastructure as Code is an active research area with a community researching IaC
best-practices, patterns, errors, properties of, and verification tools for IaC programs.
However, the majority [103] of the research goes towards proposing additional frameworks
or tools for existing IaC tools and libraries.

Rahman et al. [102] categorise defects in IaC programs and found that most defects are
related to erroneous assignments and configurations, implying that handling this kind of
errors more effectively will provide great benefit to the reliability of the configured infras-
tructure. Notably, our thesis focuses on the subset of this set of erroneous assignments,
that is, type-related runtime errors.

Sharma et al. [110] and Schwarz et al. [108] defined code smells for Chef, an IaC tool
with strong integration into traditional server management tools. Although the research
focuses on Chef, it is argued that the proposed code smells are agnostic to the IaC
technology in use.

Using a machine learning algorithm, Chen et al. [57] identified IaC errors from git commit
histories and proposed a JSON-based rule set of 30 rules, which was able to find 60%
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2. Background and Related Work

of all identified error patterns in Puppet artefacts. Similarly, Dai et al. [62] created
an analysis framework to find risky code patterns in Ansible playbooks. However, this
approach requires a third-party analyser, searching for error patterns using the predefined
rules, instead of relying on established static code validation, like static type systems of
programming languages.

Other research focusses on providing formal frameworks and tools to assess desired
qualities of IaC solutions, like idempotency and determinism. Shambaugh et al. [109]
create a formal verification tool to analyse idempotency, determinism and other properties
in Puppet, an IaC tool to configure physical and virtual machines, while Hummer et al.
[77] design a similar verification tool for Chef.

Sokolowski et al. [114, 115, 113] conducted extensive research on automated IaC program
testing and verification with a focus on Pulumi programs by proposing Automated
Configuration Testing (ACT) and creating ProTI, an implementation of ACT for Pulumi.

2.2 Types

In general, types restrict the possible values that can be used in certain contexts. From a
programmer’s point of view, that context is a computer program, where types restrict the
values of input parameters to and output parameters of functions, variables, or constants.
The underlying formal theory for types systems of programming languages is called type
theory. Type theory [60, 107] is a branch of logic based on types that first appeared as
an alternative to set theory, after discovering a paradox in set theory that causes the
theory to lead to contradictions, commonly known as Russell’s paradox. Russell further
presented type theory as sufficiently expressible to act as a foundation of mathematics
[101].

A type theory consists of a handful of components that form a framework to test “well-
typedness” of terms within the theory. These include, syntax definition of the formal
language in the theory and typing rules, which will be explained in the following sections.

2.2.1 Type Theory Syntax

One of the most prevalent formal notations for a type theory is the simply typed lambda
calculus [58] by Alonzo Church, which is usually denoted in Backus-Naur form. We will
introduce a very basic form of the simply typed lambda calculus, which we will call λ→.
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2.2. Types

Types τ ::= Bool
| Int
| . . .
| τ → σ type of functions

Terms e ::= x variable
| λx : τ.e abstraction, i.e. function definition
| e1 e2 function application

Contexts Γ ::= ∅
| Γ, x : τ context containing variable binding x to type τ

Table 2.1: Syntax of λ→

Table 2.1 shows the syntax of the simply typed lambda calculus. It consists of types,
terms and contexts.

• Types can be any kind of primitve type like Bool or Int, in additional to function
types τ → σ, which represents functions mapping values of type τ to values of type
σ.

• Terms may be variables x, abstractions λx : τ.e, function applications e1 e2, atomic
values or conditional terms.

• Contexts are sets with variable bindings. They are either the empty set ∅ or
contain bindings of variables x to types τ .

2.2.2 Typing Rules
Typing rules are the formal rules for assigning types to terms. They usually take the form
of Gentzen-style inference rules [71], where the premises and consequences are divided by
a horizontal line. A set of typing rules can look similar to the following.

(x : τ) ∈ Γ
Γ ⊢ x : τ

(a) T-Var

Γ, x : σ ⊢ e : τ

Γ ⊢ λx : σ.e : σ → τ

(b) T-Abs

Γ ⊢ e1 : σ → τ Γ ⊢ e2 : σ
Γ ⊢ e1 e2 : τ

(c) T-App

Figure 2.1: Typing Rules of λ→

The typing rules are explained in the following enumeration. Note that we do not use all
the typing rules that are typically used in simply typed lambda calculus. For a more
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2. Background and Related Work

comprehensive coverage of the simply typed lambda calculus, the reader is referred to
Benjamin C. Pierce’s Types and Programming Languages [99].

1. T-Var: If (x : τ) ∈ Γ, then x is well-typed under τ in context Γ.

2. T-Abs: If e : τ is well-typed in context Γ, which includes x : σ, then abstraction
λx : σ.e has type σ → τ in Γ

3. T-App: If e1 : σ → τ is a function and well-typed in Γ and e2 : σ is a term and
well-typed in Γ, e1 e2, i.e., applying e1 to e2, has type τ in Γ.

Usually, a type system additionally contains typing rules for primitive types, for example,
to define which type a constant has. These typing rules are merely consequences without
premises (or with the premises set to ⊤). Figure 2.2 shows typing rules for constants.
For convenience sake, we included T-Cons to denote the intuitive notation of a constant
belonging to a matching type, if not defined more precisely.

⊤
Γ ⊢ true : Bool

(a) T-True

⊤
Γ ⊢ false : Bool

(b) T-False

(c is a constant of type τ)
Γ ⊢ c : τ

(c) T-Cons

Figure 2.2: Typing Rules for Giving Types to Constants

2.2.3 Example
At this point, our small type system is already able to express basic static typing. Consider
the trivial TypeScript code in Listing 2.1

1 func t i on i d e n t i t y ( x : number ) : number { re turn x}
2 var a : number ;
3 i d e n t i t y ( a )

Listing 2.1: Example for Function Application

Certainly a programmer would want the static type checker of TypeScript to validate if
the invocation of identity (a) is well-typed. In the Lambda Calculus, functions calls are
typed by T-App. The type checker expands the proof tree “upwards” by applying the
typing rules. If the term can be derived from rules, the program is considered well-typed.
At the time of the function call in line 7 in Listing 2.1, we already bound the variable a
to the type number, therefore Γ = {a : Int}.
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2.3. Enums

x : Int ∈ {a : Int, x : Int}
{a : Int, x : Int} ⊢ x : Int

{a : Int} ⊢ λx : Int.x : Int → Int

(a : Int) ∈ {a : Int}
{a : Int} ⊢ a : Int

{a : Int} ⊢ (λx : Int.x) a : Int

Figure 2.3: Complete Proof Tree for Proofing that the Identity Function is Well-Typed

The proof tree in Figure 2.3 shows that the identity function for number values im-
plemented in Listing 2.1 is correctly typed. It also shows that even proofs for simple
programs produce large proof trees. While being occasionally useful for checking type
safety, the presented simply typed lambda calculus fails to validate anything but the
simplest types. More precisely, it has no means of addressing the typing errors discussed
in Section 3.3. The following sections will build upon this basic lambda calculus and
add new syntax and typing rules, to be able to handle enums, refinement types, and
dependent types.

2.3 Enums

In type theory, enums are a special case of what are called (labelled) variants. A
variant is a type that encompasses one or multiple other types, which are labelled
by the so-called field labels. For example, consider the variant type IpAddress =
⟨ip4 : Ip4Address, ip6 : Ip6Address⟩. Intuitively, an ip address can be either an ip4
address or an ip6 address. An example value for type IpAddress would be written as
address = ⟨ip4 = i⟩ as IpAddress, where i is a value of type Ip4Address. Enumerations,
or enums, are a simpler version of variants in that every type Ti in ⟨li : Ti{i ∈ . . . n}⟩ is
Unit.

Unit is a type that represents a singleton. There is only one value that has the type Unit
(with a capital U) and that is the value unit (with a lowercase u), which is formalised by
the typing rule T-Unit below.

As in λ→, we will introduce the syntax and the typing rules needed to formalise enums,
before presenting an example.

2.3.1 Syntax

Table 2.2 shows extensions for the syntax definition τ of λ→ that we need to formalise
enums.

7



2. Background and Related Work

Types τ ::= . . .
| Unit
| ⟨li : Ti

i∈1...n⟩ type of variants
Terms e ::= . . .

| unit
| ⟨l = t⟩ as T tagging

Table 2.2: Syntax Extensions for τ and e to support Enums

2.3.2 Typing Rules
As with the syntax extensions, the typing rules in Figure 2.4 are extensions to the typing
rules we used for λ→.

Γ ⊢ unit : Unit

(a) T-Unit

Γ ⊢ tj : Tj

Γ ⊢ ⟨lj = tj⟩ as ⟨li : Ti
i∈1...n⟩ : ⟨li : Ti

i∈1...n⟩

(b) T-Variant

Figure 2.4: Typing Rules Extension for the Simply Typed Lambda Calculus to Support
Enums

The two additional typing rules are explained in the following enumeration.

• T-Unit: value unit is of type Unit.

• T-Variant: If tj has type Tj in context Γ, the term ⟨lj = tj⟩ can be considered to
belong to the broader variant type ⟨li : Ti

i∈1...n⟩, provided Tj matches the type
labeled by lj in the variant type.

2.3.3 Example
Listing 2.2 shows another simple code example, this time containing enums. The code
defines an enum with two possible values and a function that flips between those two
values.

1 enum Coin {HEAD, TAIL}
2 func t i on f l i p ( c : Coin ) { re turn c == Coin .HEAD ? Coin . TAIL : Coin .HEAD}
3 f l i p ( Coin .HEAD)

Listing 2.2: Example for Function Application with Enums

8



2.4. Refinement Types

Figure 2.5 shows a complete proof of the typing in Listing 2.2 , where type Coin is
defined as Coin = ⟨HEAD : Unit, TAIL : Unit⟩. Note that the structure is very similar
to the proof in Figure 2.3, even though the implementation of the function is completely
different. In fact, the implementation does not even matter in our current form of the
calculus, since we are only dealing with uninterpreted functions, which have no
semantic, other than being a function.

x : Coin ∈ {x : Coin}
{x : Coin} ⊢ x : Coin

{} ⊢ λx : Coin.x : Coin → Coin

{} ⊢ unit : Unit

{} ⊢ ⟨HEAD = unit⟩ as Coin : Coin

{} ⊢ ((λx : Coin.x) (⟨HEAD = unit⟩ as Coin)): Coin

Figure 2.5: Complete Proof Tree for Proofing that the Program in Listing 2.2 is Well
Typed

2.4 Refinement Types
Refinement types [67, 78, 119], predicate subtypes [106] or liquid types [104, 105]
describe types in programming languages that are defined by a base type b and a decidable
logical predicate p. A value v is valid for the refinement type t, if v is of type b and
p evaluates to true. As with enums in Section 2.3, we will extend the syntax and set
of typing rules of our simply typed lambda calculus with a minimal set of additions to
be able to represent refinement types within our calculus. For a more comprehensive
presentation of the refinement types, we recommend the work of Jhala and Vazou [78],
including the refinement type implementation of Liquid Haskell [120].

2.4.1 Syntax
Again, we extend the syntax of λ→ to formalise refinement types. Note that now a type
is made up of two parts, basic types and refinements, summarised in Table 2.3.

Basic Types b := int,float,string. . . as defined by the type system
Refinements r := {v : p} a predicate p, parameterised by v
Types τ := . . .

| b{r} refined base

Table 2.3: Syntax Extensions for τ and e to Support Refinement Types

• Basic Types b are primitive types directly exposed by the type system.

• Refinements r are SMT-solvable predicates p parameterised by v, e.g. {v : p =
5 ≤ v}

9



2. Background and Related Work

• Types τ are refined base types b{r} like the type int : {v : 0 ≤ v}, which represents
N

2.4.2 Typing Rules

The following typing rules in Figure 2.6 extend the typing rules we used for λ→.

SmtValid(c)
∅ ⊢ c

(a) Ent-Emp

Γ ⊢ ∀x : b.p =⇒ c

Γ, x : bx : p ⊢ c

(b) Ent-Ext

Figure 2.6: Typing Rules Extension for the Simply Typed Lambda Calculus to Support
Refinement Types

As with enums, there are two additional typing rules that we need to validate refinement
types.

1. Ent-Emp: if a logical constraint c is deemed valid by a SMT solver, c is valid
under the empty context ∅

2. Ent-Ext: if for all x of type b predicate p implies c under context Γ, c is valid,
after adding the variable binding x : b{x : p} to context Γ.

2.4.3 Predicates

Refinement types augment base types by an additional logical predicate p. The validity of
p implies that the program is well-typed. In theory, p could be drawn from any decidable
logic. In practise, many refinement type verification implementations leverage SMT
solvers [93], to check type validity and therefore p has to be decidable by an SMT solver.
Satisfiability Modulo Theories (SMT) generalise the Boolean Satisfiability Problem (SAT)
to mathematical formulas, which may include different kinds of numbers and strings and
even data structures, like lists or arrays.

Table 2.4 summarises the syntax of predicates in Liquid Haskell [120], a refinement imple-
mentation for Haskell. To stay decidable, predicates do not possess the full expressibility
of an arbitrary Haskell program, but rather are taken from the set of the quantifier-free
fragment of linear arithmetic with uninterpreted functions (QF-UFLIA) [53].

10



2.4. Refinement Types

Constants c := 0, 1, 2, . . .
Variables v := x, y, z, . . .
Expressions e := v variable

| c constant
| (e + e) addition
| (e − e) subtraction
| (c ∗ e) multiplication by constant
| (v e1 e2 . . . en) uninterpreted function application
| (if p then e else e) if-then-else

Relations r := == equality
| / = disequality
| >= greater than or equal
| <= less than or equal
| > greater than
| < less than

Predicates p := (e r e) binary relation
| (v e1 e2 . . . en) predicate (or alias) application
| (p && p) and
| (p||p) or
| (p =⇒ p) implies
| (p ⇔ p) iff
| (not p) negation
| true|True
| false|False

Table 2.4: Syntax of predicates in Liquid Haskell

• Constants are numeric values

• Variables are references to binders in the source programs

• Expressions are either variables, constants or linear, arithmetic expressions over
variables and constants and uninterpreted function applications.

• Relations are comparison operators

• Predicates are comparisons of two expressions, applications of predicate functions
to a list of arguments or any Boolean combination of predicates.

The predicates p are translated into Verification Conditions (VC), which are checked
by an SMT solver. The SMT solver tries to find counterexamples such that p is not
valid. If it fails to find any counterexample, the VC is considered valid, implying the
source program is well-typed. For example, consider Listing 2.3 and the resulting VC in
Equation (2.1).
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2.4.4 Example

For example, Listing 2.3, shows some Liquid Haskell code, defining a variation of the
identity function.

1 {−@ type Int4 = {v : In t | v < 4} @−}
2 {−@ type Int5 = {v : In t | v < 5} @−}
3
4 {−@ a : : In t4 @−}
5 a = 2
6
7 a : : Int
8
9 {−@ i d e n t i t y 5 : : In t5 −> Int5 @−}

10 i d e n t i t y 5 : : Int −> Int
11 i d e n t i t y 5 v = v
12
13 b = i d e n t i t y 5 a

Listing 2.3: Example Liquid Haskell Code with function application

The above code does the following.

• Lines 1-2 define datatypes Int4 and Int5 for integers smaller than 4 and smaller then
5, respectively

• Line 4 declares variable a as liquid type Int4

• Line 5 initialises a with value 2

• Line 7 declares a as Haskell type Int

• Lines 9-11 declare a function identity5 that takes an argument of the Haskell type
Int and produces an output as Int. Both, input and output have been refined to
liquid type Int5

• Line 13 shows the function application application to the argument a

Since every parameter of type Int4 is also a valid value of type Int5, this version of the
identity function allows for a simple kind of polymorphism. A proof that the function
call is well typed for the refinement type based identity function is presented below in
Figure 2.7, where the context at the time of the function application Γ is {a : Int{a < 4}}.
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x : Int{x < 5} ∈ Γ, x : Int{x < 5}
Γ, x : Int{x < 5} ⊢ x : Int{x < 5}

Γ ⊢ λx : Int{x < 5}.x : Int{x < 5} →: Int{x < 5}

SmtValid(∀x : Int.x < 4 =⇒ x < 5)
{} ⊢ ∀x : Int.x < 4 =⇒ x < 5

{a : Int{a < 4}} ⊢ a : Int{x < 5}
Γ ⊢ ((λx.x) a) : Int{v < 5}

Figure 2.7: Complete Proof Tree for Proofing that the Refinement Type Based Identity
Function is Well-Typed

This will result in the VC in Equation (2.1), which is deemed valid by an SMT solver.
Therefore, in turn, the program is considered well typed.

∀x : Int.x < 4 =⇒ x < 5 (2.1)

2.5 Dependent Types
Dependent types and programming languages that natively implement them in their
type systems blur the line between “conventional” programming and formal verification.
It is no coincidence that these programming languages are also partly referred to as
“proof assistents” or “theorem prover” [30]. Many such programming languages are based
on type systems which are based on intuitionistic logic, like Martin-Löf’s type theory
[89, 90, 95]. These type systems leverage the observed isomorphism between computer
programs and the construction of formal proofs, which can be validated by formal
verification. This isomorphism is known as Curry-Howard isomorphism and will be
explained in Section 2.5.1. There is a great deal of literature on (programming languages
with) dependent types [52, 126, 127, 54, 59], intuitionistic logic [88, 74, 63] and the Curry-
Howard isomorphism [75, 96, 61, 118], including the lectures of Sørensen and Urzyczyn
[116] on which we lean heavily when explaining the Curry-Howard isomorphism. We will
focus on what we consider to be the essential parts for understanding dependent types,
how they are connected to formal verification, and what their benefits and drawbacks
are, without diving too deep into logic and mathematics.

2.5.1 Intuitionistic Logic and Type Theories
Intuitionistic (or constructive) logic, is a branch of formal logic, which places emphasis
on constructive proofs. In contrast to classical logic, proofs in intuitionistic logic not only
proof the validity of logical formulas. Instead, they provide a method (an algorithm) to
create an “object” that proves the formula. To give a very basic and simplified example,
a proof in classical logic might be interpreted as a statement like “prime numbers greater
than 1000 exist”, without explicitly listing any. On the other hand, a proof in intuitionistic
logic would provide a method, an algorithm, to generate prime numbers greater than
1000, proofing that prime numbers greater than 1000 exist. In particular, intuitionistic
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logic does not accept the general validity of the law of excluded middle and the
double negation elimination, which are both fundamental inference rules of classical
logic [125].

.P ∨ ¬P (2.2)

Equation (2.2) shows the law of excluded middle. In classical logic, a statement is
considered either true or false. In intuitionistic logic, neither is true, without giving
constructive proof.

.¬¬P =⇒ P (2.3)

Equation (2.3) on the other hand shows the double negation elimination rule, which is
also not considered generally valid in intuitionistic logic.

Intuitionistic logic uses the same alphabet and grammar as classical logic. However, the in-
terpretations are slightly different. For example, consider the Brouwer–Heyting–Kolmogorov
interpretation [118] of some of the logical connectives.

• A proof for P ∧ Q consists of two constructive proofs. One for P and one for Q

• A proof for P =⇒ Q consists of a function that translates any proof for P to a
proof of Q

• A proof for P =⇒ ⊥ (¬P ) consists of a function that translates any proof for P
to a proof of ⊥. The symbol ⊥ indicate a contradiction.

Curry-Howard Isomorphism

The Curry-Howard isomorphism, also called the Curry-Howard correspondence or equiva-
lence, is a combination of observations between Haskell B. Curry and William A. Howard,
where they notice an equivalence between logical proof theories and computational calculi,
like type theory. In particular, dependent types can be translated into predicates in
first-order logic. A dependent type for strings of fixed length can be formulated as
string(n) with n: int, which translates to a predicate over int in intuitionistic logic. For
example, consider Table 2.5, which informally translates type system terms to their
counterpart in intuitionistic logic.

Interpretation

We started Section 2.5 by stating that programming languages with built-in dependent
types “blur the line” between what might be considered as “conventional” programming
and formal verification. This is because these programming languages are usually built
on intuitionistic logic and leverage the observations of the Curry-Howard isomorphism.
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Programming (Intuitionistic) Logic
type A proposition A

dependent type B(a) exist. quantification over predicate B for a

dependent function type a− > B(a) univ. quantification over predicate B for a

a term of type A a proof of formula A

Table 2.5: The Curry-Howard Isomorphism exemplified by mapping programming terms
to logic

Intuitively, this means that a programmer does not need to construct a proof to show
that their program is well-typed. The program already is the proof.

However, this expressibility does not come without drawbacks. Dependently-typed
programming languages might be considered harder to learn since they require some basic
understanding of formal informatics, which could help explain the low rate of adoption
discussed in Section 2.5. Furthermore, this degree of sophistication in a type system
causes the type checking problem to be undecidable in some programming languages [52].

In contrast to refinement types, which allow the specification of a logical constraint
alongside base types, dependent types allow the definitions of types that are dependent
on values. Dependent types enable the definition of complex types in programs that can
be checked for validity by formal verification tools. They tend not to be implemented
in “mainstream” programming languages, like Java or JavaScript. In fact, none of the
51 most commonly used programming, scripting, and markup languages in the annual
StackOverflow report [26] implements dependent types natively. Programming languages,
which natively integrate dependent types into their type systems, include, but are not
limited to Agda [2], Coq [30] F* [8] and Idris [11].

The syntax and typing rule extensions we are about to introduce are the absolute minimum
we need to further understand type evaluation for dependent types. In particular, we
omit any definitions of Kinding or dependent pairs and limit our discussion to dependent
function types. For a much more extensive coverage of this topic, we again refer the
reader to the works of Benjamin C. Pierce [100].

2.5.2 Syntax

Again, we extend the syntax of λ→ to formalise dependent types, summarised in Table 2.6.

Types τ, σ := . . .
| Πx : τ.σ dependent product type

Table 2.6: Syntax Extensions for τ to Support Dependent Types

The only addition to our simply typed lambda calculus is the dependent product type.
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• Πx : τ.σ formulates a dependent product (or Π) type and replaces the “arrow type”
τ → σ in λ→, generalising function types. Basically, a Π type is a function, mapping
elements t of type τ to elements of type [x �→ t]σ. The expression [x �→ τ ]σ means
to replace every occurrence of x in σ with t, assuming σ is parameterised by the
variable x of type τ .

2.5.3 Typing Rules

Figure 2.8 shows two typing rules from λ→ that have to be adjusted for dependent types.

Γ, x : σ ⊢ e : τ

Γ ⊢ λx : σ.e : Πx : σ.τ

(a) T-Abs

Γ ⊢ e1 : Πx : σ.τ Γ ⊢ e2 : σ

Γ ⊢ e1 e2 : [x �→ e2]τ

(b) T-App

Figure 2.8: Typing Rule Extensions of λ→ to Support Dependent Types

• T-Abs replaces T-Abs of λ→ by generalising it. Given context Γ with variable
binding x to type σ and e is being a term of type τ , the return type of a function
applying x to e depends on the value of x.

• T-App, on the other hand, replaces T-App of λ→. In context Γ, applying e1 to e2
returns a value, whose type is given by evaluating replacing every free occurrence
of x in τ with e2, if e1 has Π type Πx : σ.τ and e2 has type σ.

2.5.4 Examples

Showing examples for dependent types and presenting their formal representation becomes
increasingly challenging. Especially with dependent types, the examples would have to be
so trivial to not let the size of the proof tree explode, that the value and expressiveness
of dependent types would be under-represented. However, we will at least take a look at
how a dependent function in Idris would be formalised in our calculus.

1 i s S i n g l e t o n : (b : Bool ) −> Type
2 i s S i n g l e t o n True = Nat
3 i s S i n g l e t o n Fa l se = L i s t Nat

Listing 2.4: Example for a Dependent Function Type in Idris

Listing 2.4 shows a short code snippet of Idris code, defining a dependently typed function.
In Idris, types are “first-class citizens” and can be returned by function. The function
isSingleton takes a boolean value b and returns a type depending on the value of b.
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b : Bool ∈ Γ, b : Bool

Γ, b : Bool ⊢ e : isSingleton(b)
Γ ⊢ λb : Bool.e : Πb : Bool.isSingleton(b)

Figure 2.9: Expanded Abstraction for Dependent Function isSingleton

Figure 2.9 shows how the function definition for isSingleton would translate to our calculus,
where e is the function body, deciding whether the provided b:Bool is True or False.

Another common example for dependent types that is often used in the literature is the
vector, i.e. a list with a fixed length. Consider the definition of the datatype Vect from
the dependent type examples for Idris.

1 data Vect : ( l en : Nat ) −> ( a : Type ) −> Type where
2 Ni l : Vect 0 a
3 ( : : ) : ( x : a ) −> ( xs : Vect n a ) −> Vect (S n) a

Listing 2.5: Example for datatype definition for the dependent type Vect

In Listing 2.5 a new datatype Vect is defined. Datatype Vect depends on two parameters.
The second parameter, (a: Type) defines the type of elements in the resulting vector.
However, Vect is not only dependent on type a, but also depends on value (len : Nat),
which is a natural number and defines the number of elements in the vector. Lines 2
and 3 recursively define Vect via the type constructors Nil and :: . The type constructor
Nil constructs the type Vect 0 a, i.e., an empty vector of elements of arbitrary type a.
The type constructor :: takes an element x of type a (x:a) and a vector xs for elements
of type a with length n (x: Vect n a) and constructs the type Vect (S n) a, that is, the
vector a of length n+1 for elements of type a. The definition of the function S is omitted
here, but it represents the “successor function ” of Peano arithmetic, where the natural
numbers N are defined recursively by providing an element 0 and a successor function
that increments a natural number by 1. The next Idris example is more complex but will
be more applicable in our problem domain.

2.6 Infrastructure as Code
Infrastructure for software is an umbrella term for all of the underlying systems that
need to be in place for software to run properly. This includes, but is not limited
to, databases, networks, virtual machines, Kubernetes clusters, load balancers, users,
or even complete development stages and isolated tenants. A continuously available
infrastructure is therefore crucial for the overall availability of a software product. Cloud
computing, virtualisation and the increasing amount [98] of cloud infrastructure have
made this issue even more prevalent. Historically, infrastructure deployments have been
treated differently than the development and deployment of software, in that it was
often manually managed, while testing and automation were rare [111, 72]. Additionally,
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organisational teams were often isolated in so-called “silos”, disconnected teams and
departments, with little connection with and limited insight into other teams. This led
to poor communication and collaboration.

The DevOps [64] movement aims to connect these isolated silos, by establishing “end-
to-end” processes and practices, in order to enable a team to build, test, deliver, and
run software. One of those practises is Infrastructure as Code (IaC), which aims to
bring well-known, established software development techniques and best practices to
infrastructure provisioning. Morris et al. [92] define the following three core practises of
IaC.

• Define everything as code

• Continuously test and deliver all work in progress

• Build small, simple pieces that you can change independently

Defining infrastructure components as code makes them subject to established, rigorous
software practices, like continuous testing, frequent integration, and continuous deploy-
ment. This increases reusability, consistency, and transparency, because infrastructure
can be deployed multiple times, using the same mechanisms, while being subject to
reviews from other developers. One of the most prominent [48] IaC tools at the moment
is Terraform [28] by HashiCorp, which defines its own scripting language, HCL, for
defining Cloud resources. Other IaC tools include Puppet, Chef, and Ansible. While
Ansible defines the target state of the infrastructure with YAML files, the others define
the desired infrastructure resources in a custom Domain-Specific Language (DSL).

1 r e s o u r c e " aws_db_instance " " changeme_simple_aws_db_instance " {
2 a l l o ca t ed_ s t o ra ge = 5
3 eng ine = " mysql "
4 eng ine_vers ion = " 5 . 7 "
5 i n s t a n c e _ c l a s s = " db . t3 . micro "
6 name = " changeme_simple_aws_db_instance "
7 username = " changemeusername "
8 password = " changeme_password "
9 sk ip_f ina l_snapshot = true

10 }

Listing 2.6: Terraform Resource Defining a MySQL Database

For example, consider Listing 2.6, which defines an AWS managed MySQL database
with parameters, like the engine_version, or the initial provisioning of a database user
changeusername. This resource definition is part of a Terraform project, which will create
a MySQL database in AWS according to the specification. This process is repeatable,
should always yield the same result, and is completely transparent to any developer
reviewing the code.
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2.6.1 PL-IaC
In contrast to the previous examples, Programming Languages Infrastructure as Code
(PL-IaC) [114] describes IaC, where developers define infrastructure resources in general-
purpose programming languages. This allows developers to leverage their existing
knowledge, tools, and coding practices of a supported language and apply them to IaC.
It also allows developers to use the expressiveness of a general-purpose programming
language for provisioning infrastructure. Currently, there are three “industrial-grade”
PL-IaC solutions available.

• The Cloud Development Kit for AWS (AWS CDK) [7]

• The CDK for Terraform (CDKTF) and [34]

• Pulumi [20]

All three allow developers to define the target state of their Cloud infrastructure to be
defined in programming languages, like TypeScript, Java, or Python. However, only
Pulumi lets developers use post-deployment state [112]. This means that only in Pulumi
programs, developers can use values in their programs, which are only calculated during
and available after the deployment of a Cloud resource. Consequently, AWS CDK and
CDKTF do not leverage all of PL-IaCs capabilities.

2.7 Pulumi
Pulumi is not a monolithic program. Rather, it is a collection of smaller programs used
to generate language-specific software development kits (SDKs), which can, in turn, be
used by developers to manage their infrastructure. To understand which parts of the
Pulumi ecosystem have to be adjusted in order to facilitate better type safety, we first
have to understand how these components interact with each other.

In contrast to IaC tools like Terraform, Pulumi does not rely on a custom configuration
language to deploy infrastructure components. Rather, Pulumi provides SDKs for a list
of supported programming languages and software development ecosystems. At the time
of writing, these are NodeJS, Python, Go, Java,.NET, and YAML. Language-specific
SDKs are called provider packages or providers.

2.7.1 Providers
Providers offer language-specific and idiomatic APIs for developers to deploy infras-
tructure. Most importantly, for this thesis, they also provide static types for these
infrastructure components. Therefore, tinkering with the Pulumi type system means
adjusting the types supplied by the language-specific Pulumi Providers. Here is a minimal
example of a Pulumi program using the Java Pulumi provider:
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1 package myproject ;
2
3 import com . pulumi . Pulumi ;
4 import com . pulumi . aws . s3 . Bucket ;
5
6 public class App {
7 public stat ic void main ( St r ing [ ] a rgs ) {
8 Pulumi . run ( ctx −> {
9

10 // Create an AWS resource ( S3 Bucket )
11 var bucket = new Bucket ( "my−bucket " ) ;
12
13 // Export the name o f the bucke t
14 ctx . export ( " bucketName " , bucket . bucket ( ) ) ;
15 }) ;
16 }
17 }

Listing 2.7: Minimal Pulumi example for Java. This programs creates a new AWS S3
bucket called "my-bucket"

Notice in Listing 2.7 that in Pulumi infrastructure components, such as AWS S3 buckets,
are formally described as classes in Java. Pulumi establishes static type safety by
providing programming language constructs, like Classes or Structs for infrastructure
components managed by Pulumi. Parameters to these resources are typically described
by a static type, such as an integer or string. In the Java example, the Pulumi.run(...)
function creates infrastructure resources corresponding to the objects created in the
Lambda expression body.

1 @ResourceType (
2 type = " aws : s3 / bucket : Bucket "
3 )
4 public class Bucket extends CustomResource {
5 @Export (
6 name = " arn " ,
7 r e f s = { St r ing . class } ,
8 t r e e = " [ 0 ] "
9 )

10 private Output<Str ing > arn ;
11 . . . .
12 }

Listing 2.8: Snippets of the Class definition for com.pulumi.aws.s3.Bucket

Listing 2.8 shows parts of the Class definition for AWS S3 buckets. All of the parameters
shown are of type String, wrapped in Pulumi’s own generic type Output. The types
Pulumi offers are generated by the code generation capabilities of a component of the
Pulumi ecosystem, named CrossCode [21]. The source of code generation is the Pulumi
Package Schema or Pulumi Schema.
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2.7.2 Pulumi Schema
The Pulumi Schema [25] is a formal definition of infrastructure components, functions,
and types of resources and their parameters. It also supports language-specific extensions
to manipulate code generation for different target languages. A package definition is a
JSON file that validates and conforms to this Pulumi Schema.

1 {
2 "name " : " aws−nat ive " ,
3 " displayName " : "AWS nat ive " ,
4 " r e s o u r c e s " : {
5 " aws−nat ive : s3 : Bucket " : {
6 " p r o p e r t i e s " : {
7 . . .
8 " arn " : {
9 " type " : " s t r i n g " ,

10 " d e s c r i p t i o n " : "The Amazon Resource Name (ARN) o f the s p e c i f i e d
bucket . "

11 } ,
12 . . .
13 }
14 }
15 } ,
16 " types " : {
17 . . .
18 " aws−nat ive : s3 : BucketAcce l e ra teConf igurat ion " : {
19 " p r o p e r t i e s " : {
20 . . .
21 " a c c e l e r a t i o n S t a t u s " : {
22 " $ r e f " : "#/ types /aws−nat ive : s3 :

Bucke tAcce l e ra t eCon f i gu ra t i onAcce l e ra t i onSta tus " ,
23 " d e s c r i p t i o n " : " Conf igures the t r a n s f e r a c c e l e r a t i o n s t a t e f o r an

Amazon S3 bucket . "
24 }
25 } ,
26 " type " : " o b j e c t " ,
27 } ,
28 . . .
29 }
30 }

Listing 2.9: Excerpt from the Pulumi Schema for the AWS native provider.

Listing 2.9 shows part of the Pulumi Schema from which the AWS native provider
packages are generated. Using CrossCode to generate code from this Schema will yield
the code from the previous Listing 2.8. With a Schema, package developers can define
the following properties about their provider packages:

• Package Information, like name, authors, homepage URL, etc.

• Package Metadata

21



2. Background and Related Work

• Infrastructure resource definitions and

• Type definitions

The type definitions adhere to the Pulumi type system. At the time of writing, this type
system supports Primitive Types, like boolean, integer, number, string, and array, and
Complex Types or object types for nested type definitions. Complex Types also allow
Schema developers to define a type as enum, as can be seen in Listing 2.10.

1 " types " : {
2 " aws−nat ive : s3 : BucketDefaultRetentionMode " : {
3 " type " : " s t r i n g " ,
4 "enum " : [
5 {
6 "name " : " Compliance " ,
7 " va lue " : "COMPLIANCE"
8 } ,
9 {

10 "name " : " Governance " ,
11 " va lue " : "GOVERNANCE"
12 }
13 ]
14 } ,
15 }

Listing 2.10: Complex Type definition for a property of an AWS S3 bucket.

Listing 2.11 shows the (abbreviated) central type information specification of the Pulumi
Schema. At the core, the Pulumi Schema distinguishes five kinds of types.

• Primitive Types are not subject to any further indirection and manifest in the
types boolean, integer, number and string.

• Array Types represent arrays of items with the same type.

• Map Types represents maps, mapping strings to values of arbitrary type.

• Named Types are types that use the $ref$ property to reference types declared
elsewhere in the specification.

• Union Types combine multiple types. Values can be of either type included in
the union type.

1 {
2 . . .
3 " $de f s " : {
4 " typeSpec " : {
5 " t i t l e " : " Type Reference " ,
6 " type " : " o b j e c t " ,
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7 . . .
8 " oneOf " : [
9 {

10 " t i t l e " : " Pr imi t ive Type " ,
11 . . .
12 " type " : " o b j e c t " ,
13 " p r o p e r t i e s " : {
14 " type " : {
15 " d e s c r i p t i o n " : "The p r i m i t i v e type , i f any " ,
16 " type " : " s t r i n g " ,
17 "enum " : [ " boolean " , " i n t e g e r " , " number " , "

s t r i n g " ]
18 } ,
19 " a d d i t i o n a l P r o p e r t i e s " : f a l s e ,
20 " i tems " : f a l s e ,
21 " oneOf " : f a l s e ,
22 " $ r e f " : f a l s e
23 } ,
24 " r equ i r ed " : [ " type " ]
25 } ,
26 {
27 " t i t l e " : " Array Type " ,
28 . . .
29 " type " : " o b j e c t " ,
30 " p r o p e r t i e s " : {
31 " type " : {
32 " const " : " array "
33 } ,
34 " i tems " : {
35 " d e s c r i p t i o n " : "The element type o f the array " ,
36 " $ r e f " : "#/ $de f s / typeSpec "
37 } ,
38 " a d d i t i o n a l P r o p e r t i e s " : f a l s e ,
39 " oneOf " : f a l s e ,
40 " $ r e f " : f a l s e
41 } ,
42 " r equ i r ed " : [ " type " , " i tems " ]
43 } ,
44 {
45 " t i t l e " : "Map Type " ,
46 . . .
47 } ,
48 {
49 " t i t l e " : "Named Type " ,
50 . . .
51 } ,
52 {
53 " t i t l e " : " Union Type " ,
54 . . .
55 }
56 ]
57 } ,
58 }
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59 . . .
60 }

Listing 2.11: Type Definition Structure in Pulumi Schema.

Based on the type definitions in the Pulumi Schema, we can already draw some conclusions
about the expressibility of the Pulumi type system.

1. If the target language supports Enums, they can be generated from the Schema.

2. Types cannot be further refined by logical constraints, i.e. refinement types can
currently not be generated from the Schema.

3. An idiomatic extension of the type system of Pulumi will involve adjusting the
Pulumi Schema and the code generation capacities of CrossCode, such that it
supports the extensions in the Schema.

To make matters more complicated, there are different flavours for some large providers.
Amazon Web Services (AWS), as well as Microsoft Azure and Google Cloud Provider
(GCP) providers, are available as “classic” and “native” variants. For a Cloud infras-
tructure provider i ∈ I = {AWS, Azure, GCP}, ci denotes the classic, and ni denotes
the native variant of a Pulumi provider for i. Table 2.7 gives an overview of the Pulumi
providers for AWS, Azure and GCP and their development status.

Provider Name Status Initial Commit
cAW S pulumi-aws [40] Productive 17.07.2017
cAzure pulumi-azure [42] Deprecated 11.09.2017
cGCP pulumi-gcp [44] Productive 17.07.2017
nAW S pulumi-aws-native [41] Preview 04.11.2019
nAzure pulumi-azure-native [43] Productive 24.02.2019
nGCP pulumi-google-native [45] Preview 22.12.2020

Table 2.7: Pulumi Provider Overview

2.7.3 Classic Providers
Historically, the classic provider variants are the older, in part deprecated versions of
provider packages for large Cloud providers. Although cGCP and cAW S are still recom-
mended providers for their respective Cloud environments, cAzure is already deprecated
in favor of nAzure. What distinguishes the classic provider ci from the native provider ni

is the source from which the Pulumi Schema and, therefore, the providers are generated.
Every classic provider ci generates its SDKs from Terraform providers. Figure 2.10 shows
the high-level architecture of how provider packages and Pulumi Schema are created in
classic providers.
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Figure 2.10: High Level Architecture of Pulumi classic provider package generation.

A software component in the Pulumi ecosystem, called the Pulumi Terraform Bridge
[46] accepts Terraform provider metadata as input and generates a Pulumi Schema file
or Pulumi provider packages in supported languages. Consequently, the types provided
by ci depend on the type information of the underlying Terraform schema.

Terraform Schema

The Terraform Schema [19] supports, similar to the Pulumi Schema, complex types called
Aggregate Types, like maps, lists, and sets, and Primitive Types, like boolean, integer
and string. A noteworthy difference, however, is the usage of validation functions in
Terraform Schema type definitions.

1 type SchemaValidateFunc func ( i n t e r f a c e {} , s t r i n g ) ( [ ] s t r i n g , [ ] e r r o r )

Listing 2.12: Go function signature for Terraform Schema validation function.

Listing 2.12 shows the function signature of validation functions. A validation function
accepts a generic object and a string and returns a list of warnings and errors. An
empty list of errors can be interpreted as a successful validation. By leveraging these
validation functions, it is possible to describe complex types. For example, Listing 2.13
shows the definition of the string property expiration. The value of expiration must validate
successfully against the validation .IsRFC3339Time(...) function.

1 " e x p i r a t i o n " : {
2 Type : schema . TypeString ,
3 ValidateFunc : v a l i d a t i o n . IsRFC3339Time ,
4 } ,

Listing 2.13: Type definition for a String in date-time format.

The primitive types and validation functions from the Terraform Schema effectively form
refinement type definitions. However, since the Pulumi Schema does not support logical
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constraints on type definitions, the type information of the validation functions is lost.
Interestingly, even validation functions that could be represented in Pulumi Schema are
ignored.

1 " secur i ty_posture_con f i g " : {
2 Type : schema . TypeList ,
3 Optional : true ,
4 MaxItems : 1 ,
5 Computed : true ,
6 Desc r ip t i on : ‘ De f ine s the c o n f i g needed to enable / d i s a b l e f e a t u r e s f o r

the Secur i ty Posture API ‘ ,
7 Elem : &schema . Resource {
8 Schema : map [ s t r i n g ] ∗ schema . Schema{
9 "mode " : {

10 Type : schema . TypeString ,
11 Optional : true ,
12 Computed : true ,
13 ValidateFunc : v a l i d a t i o n . S t r i n g I n S l i c e ( [ ] s t r i n g {"

DISABLED" , "BASIC" , "MODE_UNSPECIFIED"} , f a l s e )
14 }
15 } ,
16 } ,
17 } ,

Listing 2.14: Schema for GCP resource with enums properties.

Listing 2.14 shows a type definition in Terraform schema. The property mode is a string
and can take one of three possible values, DISABLED, BASIC and MODE_UNSPECIFIED.
As discussed in Section 2.7.2, enums can be represented in Pulumi Schema. However,
the generated Pulumi Schema does not define mode in terms of enums, as can be seen in
Listing 2.15.

1 " gcp : conta ine r / C lus t e rSecur i tyPos tureCon f i g : C lu s t e rSecur i tyPos tureCon f i g " :
{

2 " p r o p e r t i e s " : {
3 "mode " : {
4 " type " : " s t r i n g " ,
5 " d e s c r i p t i o n " : " Set s the mode o f the Kubernetes s e c u r i t y posture API ’ s

o f f −c l u s t e r f e a t u r e s . Ava i l ab l e opt ions i n c l ude ‘DISABLED‘ and ‘
BASIC ‘ . \ n "

6 } ,
7 }
8 }

Listing 2.15: Pulumi Schema generated from enums property.

2.7.4 Native Providers
In contrast to their classic variants ci, native providers ni are not generated from
Terraform providers. Instead, they use Cloud provider APIs and registries directly to
generate Pulumi packages, in theory, enabling same-day delivery of resource additions
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and changes. Notably, neither cAW S , cAzure, nor cGCP define enums, while their native
provider variants offer 2385, 2601, 1616 definitions [124] of enum type, respectively. In
classic providers, these enums are formalised as simple strings, without any further static
validation. However, currently, only the native variant of the Azure Pulumi provider
nAzure [43] is recommended for production usage, while native providers nGCP and
nAW S are in preview. One reason for this is that especially for AWS and GCP, the
native providers tend to lack the support for some resources, which are available in the
corresponding classic provider. This will be further discussed in Section 6.2. Figure 2.11
shows which Cloud provider APIs are used to generate Pulumi provider packages and
the Pulumi Schema.

Figure 2.11: High Level Architecture of Pulumi native Provider package generation.

Pulumi’s code generation package uses the AWS CloudFormation API [4], the Azure
Resource Manager API [5] and the GCP Discovery API [9] to generate the provider
packages and the Pulumi Schema. Since native providers ni generate their Schema
and provider packages from these APIs directly, the resources and types are directly
dependent on the expressibility of the APIs. Cloud provider APIs are all based on a
common specification language.

2.8 Cloud Provider APIs

The APIs on which Pulumi native providers for AWS, Azure and GCP are built share a
common original specification language, the JSON Schema.
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2.8.1 JSON Schema
The API specifications of AWS, Azure and GCP are all directly, or indirectly, based on
the JSON Schema specification [130]. JSON Schema comes in many revisions, and the
API specifications of the three Cloud providers are based on different versions of the
JSON Schema specification. However, all versions share the following primitive types.

• array
• boolean
• integer
• number
• null
• object
• string

In addition to primitive types, the validation of the JSON Schematic defines two kinds of
type refinements, formats and validations.

Formats

The Format Attribute is used for the semantic validation of values, based on some well-
defined, potentially external, specification. For example, the date−time format defines
that a string must adhere to the date−time format, as defined in RFC 3339 [94]. JSON
Schema validation defines the following formats date−time, email, hostname, ipv4, ipv6,
uri and Password. OpenAPI extends this list by formats int32, int64, float , double, byte
and binary.

Validations

Validations are additional constraints on datatypes. Examples are listed below.

• multipleOf
• maximum
• exclusiveMaximum

2.8.2 AWS Cloud Formation
The AWS Cloud Formation API [4] is a proprietary, JSON-formatted text file that defines
Cloud resources and their types. Because resource availability varies depending on the
geographical location, AWS provides API specifications per region. The type definitions
and validation properties are based on Draft 7 [14] of the JSON Schema. Therefore, it

28



2.8. Cloud Provider APIs

inherits its primitive types, such as booleans, integers, numbers, and strings. Additionally,
the schema allows one to specify further constraints on the properties, such as maximum,
minimum, format or enum.

2.8.3 Azure Resource Manager API
Azure Resource Manager [33] provides OpenAPI (formerly known as Swagger) specifica-
tion [17] for the description of their REST API. Currently, only the version v2.0 of the
specification is supported. OpenAPI and its types are based on JSON Schema Draft 4
[68]. Therefore, Resource Manager type definitions are limited by the expressiveness of
OpenAPI. Resource Manager supports integer, number, string, and boolean types. Further-
more, some types support additional format constraints, like int32, or date−time. Enums
are also supported.

2.8.4 GCP Discovery API
GCP’s Discovery API [9] is defined as a proprietary JSON format based on JSON Schema
Draft 3 [130]. It supports all types and validations defined in the JSON Schema but
defines its own set of format attributes, like google−datetime, while omitting formats like
regex. The type support of the Discovery API ranges from primitive types like boolean,
integer, number, and string. Enums are also supported, as well as validation keywords like
maximum and minimum.

2.8.5 Summary
Table 2.8 summarises details about the Cloud provider APIs and their corresponding un-
derlying API specifications. Note that all Cloud provider APIs are based on some version
of the JSON Schema. AWS and GCP provide their own proprietary API specification
format, based on JSON Schema versions, while Azure provides API specification in the
form of OpenAPI specification files, which are in turn also based on JSON Schema.

Cloud API Specification JSON Schema Version
AWS Cloud Formation proprietary Draft 7
Azure Resource Manager OpenAPI version 2 Draft 4
GCP Discovery proprietary Draft 3

Table 2.8: Cloud Provider APIs and their corresponding underlying API specification
formats
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CHAPTER 3
Finding and Categorising Runtime

Errors

In this chapter, we establish error categories based on runtime errors found in GitHub
Issues. We show later that all errors in a category can be mitigated by the same kind of
static type.

3.1 Motivation and Challenges
To do a systematic analysis of runtime errors that occur in IaC programs, we search
through GitHub repositories and related issues to find runtime errors related to typing.
Our goal is to find runtime errors in the IaC programs that could have been mitigated
with more restrictive types. A rigorous search that would establish ground truth for
all runtime errors that occur in IaC programs is a challenging task, even if we reduce
the search to include only Pulumi repositories on GitHub. This is because (1) finding
runtime errors is difficult to automate, (2) errors might have been removed from the
programs before ever being published on GitHub, and (3) the search space is vast due to
the following dimensions:

1. The number of repositories to be searched for errors.

2. The number of Pulumi projects within a repository.
For example, Pulumi has an “examples” repository containing hundreds of Pulumi
projects.

3. The number of commits in a repository.
Some repositories contain thousands of commits. Errors might have been introduced
or fixed in earlier commits of the repository.
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3.2 Methodology

Executing the IaC programs inside the found repositories to (automatically) find runtime
errors is also not feasible. Presumably, many programs would run correctly, leading to the
creation of various Cloud resources, resulting in unacceptable monetary costs. Therefore,
a manual search is necessary.

Pulumi’s own repositories are a good place to start looking for functional examples of
Pulumi projects. In addition to the Pulumi examples repository, almost all Pulumi
repositories tend to have a folder with examples for the specific Cloud provider or library.
In total, we analyse 5 Pulumi repositories and their GitHub Issues to find runtime
errors related to types. The GitHub Issues in the analysed Pulumi repositories mostly
have common labels that helped to narrow down the search. Most repositories define a
kind/bug label to mark GitHub Issues as bugs, which helps to narrow down GitHub
Issues to only include those related to erroneous behaviour.

3.3 Runtime Error Categories

Using the methodology described previously, we find 7 different type-related runtime
errors in 5 repositories, which will act as case studies for the remaining thesis. Table 3.1
shows the GitHub repositories, the label we used for a specific repository to narrow down
the search space, the GitHub issue numbers, and the category in which we place the
error.

Repository Issue Labels Issue Numbers Category

Pulumi Examples [39] kind/bug 1427 Enumerations
1392 Refinements

Pulumi Templates [47] kind/bug 501 Dependencies
Pulumi Azure [42] kind/bug 615 Refinements

Pulumi Azure Native [41] kind/bug 3414 Dependencies
3074 Dependencies

Pulumi GCP [44] kind/bug 813 Refinements

Table 3.1: GitHub Issues for Runtime Errors in Pulumi Repositories

The errors can be categorised into three different categories of increasing complexity.
Coincidentally, the errors in the three categories naturally correspond to errors that
can be mitigated using static type techniques. Errors in category Enumerations map
naturally to enums, runtime errors in the category Refinements can be mitigated
statically through refinement types and errors of category Dependencies correspond
to dependent types in static type systems.
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3.3.1 Enumerations
This error class describes issues where the static type of a parameter allows arbitrary
string values, despite the fact that only a well-defined, finite set of values is allowed.
This finite set of values can commonly be formalised as enums in many languages,
such as Java or Python. Cloud providers might allow only a certain set of values for
a parameter, while the type system in an IaC program allows any string. For example,
Listing 3.1 shows (part of) the Pulumi program that causes GitHub issue number 1427
in the Pulumi examples repository. The program tries to configure the cluster arguments
for a Kubernetes cluster with version 1.18.14 in Azure. However, at the time of running
the program, Azure no longer supported Kubernetes version 1.18.14.

1 . . .
2 managed_cluster = c o n t a i n e r s e r v i c e . ManagedCluster (
3 managed_cluster_name ,
4 resource_group_name=resource_group . name ,
5 agent_poo l_pro f i l e s =[{
6 " count " : 3 ,
7 "max_pods " : 110 ,
8 "mode " : " System " ,
9 "name " : " agentpoo l " ,

10 " node_labels " : {} ,
11 " os_disk_size_gb " : 30 ,
12 " os_type " : " Linux " ,
13 " type " : " Vi r tua lMach ineSca leSet s " ,
14 " vm_size " : " Standard_DS2_v2 " ,
15 } ] ,
16 enable_rbac=True ,
17 kubernetes_vers ion ="1 . 18 . 14 " ,
18 . . .

Listing 3.1: Outdated Kubernetes Version

Issues like this could be mitigated if the type system of the program would define the set
of valid Kubernetes versions as enums, instead of arbitrary an string.

3.3.2 Refinements
Some parameters of Cloud resources do not require a certain set of allowed values, but
rather have limitations on the format or require additional constraints to be fulfilled.
This includes parameters like IP ranges in CIDR notation or Cloud resource names. For
example, Listing 3.2 shows the Pulumi code that caused GitHub Issue number 813 in the
Pulumi GCP provider. GCP HTTP health checks are Cloud resources that require that
their names have a certain format. In this instance, the resource name must match the
regular expression (regex) ’(?:[a-z](?:[-a-z0-9]0,61[a-z0-9])?)’. Since the author of the
GitHub issue did not name the resource explicitly, Pulumi automatically generated a
name that did not match the regex. However, no static error was produced, since the
generated name matched the declared type, string, of HTTP health check names.
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1 import ∗ as pulumi from " @pulumi/pulumi " ;
2 import ∗ as gcp from " @pulumi/gcp " ;
3
4 export = async ( ) => {
5
6 const defaultHttpHealthCheck = new gcp . compute . HttpHealthCheck ( "

defaultHttpHealthCheck " , {
7 // name : " abs123 " ,
8 requestPath : " / " ,
9 check In t e rva lSe c : 1 ,

10 t imeoutSec : 1 ,
11 }) ;
12 re turn {
13
14 }
15 }

Listing 3.2: Invalid HTTP Health Check Name in GCP

Validating parameters in this category against a known set of valid values would not work
since, theoretically, there might be an infinite number of them. Depending on the data
type of the parameter, additional conditions must be in place to verify that a value is
valid. For string , this might be a regular expression. For integer, this might be an interval
that contains all valid values. In general, the types of parameters in this category can be
defined by two aspects.

• A base type, like string to integer.

• A predicate, which further restricts the base type.

3.3.3 Dependencies
In some cases, the valid values of the parameters are dependent on the values of other
parameters. For example, Listing 3.3 shows part of the Pulumi program that caused
GitHub issue number 501 in the Pulumi templates repository. The creation of a Kuber-
netes cluster in AWS led to a runtime error, even though all parameters had valid values
according to the AWS API description and documentation. Although every individual
value used to create the Kubernetes cluster was valid, the combination of two parameters
was not.

In particular, Cloud providers might offer different machine types for their VM instances
depending on the geographical region the VMs should be deployed to. In this case, the
developer tried to create a Kubernetes cluster, in which the underlying VMs should be
deployed to the region eu-north-1 with machine types t2.medium.

1 c o n f i g :
2 aws : r eg i on : eu−north −1
3 . . .
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4 he l l o −eks : eksNodeInstanceType : t2 . medium
5 . . .

Listing 3.3: Invalid parameter combination. The region eu-north-1 does not supported
VMs of type t2.

At the time, AWS did not support VMs of type t2 in region eu-north-1, making the
combination of the parameter values invalid.
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CHAPTER 4
A Pulumi Repository Dataset

Because the source of initial type information for the Cloud infrastructure provider i
depends on whether ci or ni is used, the strategies to improve static type safety vary
between them. To assess the impact of improving the static types of either variant of
provider and to quantify how big the impact of improving static type safety in general
would be, we create a dataset of Pulumi repositories from public GitHub repositories.

4.1 Methodology and Dataset
GitHub offers a vast REST API [31] for searching repositories based on various criteria.
Every Pulumi project requires a project file, that is, a YAML file containing metadata
about the Pulumi project. This project file must be named Pulumi.[yml|yaml]. Therefore,
Pulumi repositories can be found using the GitHub API by searching repositories con-
taining a Pulumi.yaml or Pulumi.yml file. Conducting such a search results in a dataset
of 1023 Pulumi repositories. All scripts used for our analysis can be found in Table 7.2
in the appendix (see Chapter 7) and the list of repositories is publicly available in Google
Sheets [123].

4.2 Provider Usage
Analysing the dataset, we calculate the occurrences of dependency declarations for each ni

and ci. Let R be our dataset. Then Rci ⊆ R and Rni ⊆ R are the subsets of repositories
in which the dependency declarations for ci and ni can be found, respectively. We found
24766, 9608 and 4581 occurrences of dependency declarations for cAW S , cAzure, and
cGCP in 498, 228 and 291 repositories, respectively. For native providers, we found 567,
4585 and 381 occurrences of dependency declarations for nAW S , nAzure, and nGCP in
70, 141 and 117 repositories, respectively.
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occ. of cAW S(24766)
occ. of nAW S(567)

(a) cAW S/nAW S Provider Declarations

RcAW S (498)
RnAW S (70)

(b) RcAW S
/RnAW S

Size Comparison

occ. of cAzure (9608)
occ. of nAzure (4585)

(c) cAzure/nAzure Provider Declarations

RcAzure(228)
RnAzure(141)

(d) RcAzure
/RnAzure

Size Comparison

occ. of cGCP (4583)
occ. of nGCP (40)

(e) cGCP /nGCP Provider Declarations

RcGCP (291)
RnGCP (117)

(f) RcGCP
/RnGCP

Size Comparison

Figure 4.1: Classic Provider Compared to Corresponding Native Provider Usage in our
Dataset

While distribution between classic and native providers varies between AWS, GCP, and
Azure, the native providers still appear significantly less frequent. Although nAzure is
the recommended Azure provider, it is still only used in roughly 32.3% of all repositories
using Azure providers. Analysing the use of Pulumi provider NPM [16] packages reveals
a similar picture. NPM provides a public API [24] to retrieve the download counts
of packages in a certain time range. Figure 4.2 shows a comparison of the number of
downloads between classic and the respective native providers. The numbers indicate a
much greater adoption of cGCP and cAW S compared to their native variants. This is almost
certainly related to the fact that nAzure is still the only native provider recommended for
production use.
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Figure 4.2: Provider Downloads According to the NPM Public API

When looking at claims of often superior static type safety and same-day delivery of
native providers, one could argue that switching to native providers could already solve a
lot of type-related runtime errors. However, our analysis indicates that classic providers
are significantly more prevalent than native providers. Therefore, enhancing static type
safety in classic providers is likely to yield a more substantial impact than exclusively
focusing on native providers.
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4.3 Enum Usage Analysis
As discussed in Section 2.7.4, native provider variants offer enum definitions that are
missing in classic provider variants. The large number of enum definitions shows the
potential for improving static type safety. To quantify the impact of using ni instead of
ci, we will investigate the potential impact within our dataset. We do this by searching
for occurrences of string values in ci, which would likely be replaced by the use of an
enum in the corresponding native provider ni.

Figure 4.3: Enum Usage Analysis Process

Since our dataset of 1023 Pulumi repositories with thousands of different Pulumi projects
is too large for manual migration and analysis, we first have to filter the repositories
for potential migration candidates. To accomplish this, we extract all possible enum
values from the native providers and perform a full-text search of these values in the
repositories. The occurrence of an enum value in a Pulumi project using ci indicates
that after upgrading to ni, an enum value can be used instead. If, for example, a
Pulumi project using cAW S contains the string “POST”, then it could be because it uses
a property, which is formulated as an enum in nAW S . The process of filtering the Pulumi
repositories in this way is visualised in Figure 4.3 and explained below.

1. For every ni where i ∈ I, the respective Pulumi Schema schemani contains all type
definitions for ni, including all possible enum values for ni: enumni .

2. For all ni we extract enumni and produce the unique set of all possible enum values
for i: enumuniq

ni
.

3. All enumuniq
ni

values are then passed as input to step 8.
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4. Our dataset contains 1023 repositories. Let the set of these repositories be R where
|R| = 1023.

5. This step yields Rci , the subsets of repositories, containing dependency declarations
of classic providers for each i.

6. The dataset contains a lot of forks of Pulumi repositories, including the native
provider repositories. Since we are only interested in “real-world” applications
using Pulumi, we identify repositories that were forked from Pulumi repositories
and remove them from the set. The resulting sets R′

cAW S
, R′

cAzure
and R′

cGCP
are

smaller with 207, 31 and 75 repositories respectively.

7. For all i ∈ I the tuple (enumuniq
ni

, R′
ci

) is used as input to step 8.

8. All possible enum values of ni are combined with all repositories containing references
to ci for all i ∈ I.

9. The individual combinations of step 8 are used as input for step 9, which searches
for occurrences of the enum values in the repositories. This step filters out false
positives. For example, it ignores findings in included “node_modules” folders,
which are included in some repositories.

10. The resulting sets Renum
ci

⊆ R′
ci

| i ∈ {AWS, Azure, GCP} are the sets of reposi-
tories containing dependency declarations for ci and at least one enum value of
enumuniq

ni
. There are 13052, 1912 and 1389 enum findings in 204, 31 and 69

repositories for AWS, Azure and GCP respectively.

Table 4.1 shows that out of the 1023 repositories 498, 228, and 291 repositories use
the classic provider variants of AWS, Azure and GCP respectively. However, only
207(41.56%), 31(13.6%), and 75(23.71%) of those repositories are no forks from Pulumi
repositories. Out of these 204, 31, and 69 non-Pulumi repositories almost all (204, 31, and
69) repositories contain at least one string value that corresponds exactly to the value of
an enum in the corresponding native provider. In total, of the 1023 repositories 19.94%,
3.03%, and 6.74% of them use classic providers for AWS, Azure and GCP respectively
and contain enums values.

Cloud |R| |Rci | |R′
ci

| (|R′
ci

|/|Rci |) × 100 |Renum
ci

| enums in Renum
ci

|Renum
ci

|/|R|
AWS 1023 498 207 41.56 204 13052 19.94
Azure 1023 228 31 13.6 31 1912 3.03
GCP 1023 291 75 23.71 69 1389 6.74

Table 4.1: Overview of the individual results of the enum usage analysis

Figure 4.4 shows the distribution of enum values in individual Pulumi repositories.
Each data point represents the number of enum value findings in repository r ∈ Renum

ci
.

Generally our findings reveal the following insight.
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1. The number of enum findings is not distributed equally, but rather follows a power
law distribution. That is, a relatively small number of repositories contain the
majority of enum findings. The rest of the repositories each contain only a “small”
amount of enum values, leading to a so-called “long tail”, as can be seen in Figure 4.4.
Each data point represents the number of enum findings in an individual repository
r ∈ Renum

ci
.

2. 48.68%, 22.29% and 28.45% of the repositories in our dataset use AWS, Azure, and
GCP classic providers, respectively.

3. 41.56%, 13.6% and 23.71% of repositories with classic provider dependency decla-
rations from AWS, Azure, and GCP respectively in our dataset were no Pulumi
repositories forks.

4. 19.94%, 3.03% and 6.74% of repositories use classic providers for AWS, Azure and
GCP, respectively, are not forked from Pulumi repositories and contain enum values
that are equal to predefined enum values in the corresponding native providers.
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Figure 4.4: Enum Findings in Renum
ci
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CHAPTER 5
Mitigating Errors

In order to mitigate runtime errors in all three error categories Enumerations, Refine-
ments, and Dependencies statically, static type information for enums, refinement
types, and dependent types must be present at three levels, the Cloud provider, the
intermediate type representation of the IaC tool, and the target programming language.
For Pulumi, this means that type information has to be present in the following three
points in the Pulumi SDK generation pipeline.

1. The source APIs: This includes the Cloud providers APIs, on which Pulumi
native providers are based on, as well as the Terraform Schema, on which Pulumi
classic providers are based on.

2. The Pulumi Schema: Since Pulumi SDKs are generated from the Pulumi Schema
specification file, static type information has to be present in the Pulumi Schema.

3. The target Programming Language: Depending on the error category, enums,
refinement types, or dependent types must be supported by the target programming
languages, either natively or via third-party extensions.

The following sections each address these three levels. Depending on whether the necessary
static type information is present at each level or not, we show how Pulumi programs
can leverage the improved static types and discuss the impact they would have.

5.1 Mitigating Enumerations Errors
All three levels in the Pulumi SDK generation pipeline support enums, at least in parts.
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5.1.1 Enum Type Information in the Source APIs
As discussed in Section 2.8, AWS CloudFormation, Azure Resource Manager, and GCP
Discovery API are based on JSON Schema. Since JSON Schema natively supports the
definition of enums, the three Cloud provider APIs do so as well. For example, consider
the AWS CloudFormation type specification of an S3 bucket in Listing 5.1. The property
AccessControl is defined as an enum.

1 {
2 " typeName " : "AWS: : S3 : : Bucket " ,
3 " d e s c r i p t i o n " : " Resource Type d e f i n i t i o n f o r AWS: : S3 : : Bucket " ,
4 " a d d i t i o n a l P r o p e r t i e s " : f a l s e ,
5 " p r o p e r t i e s " : {
6 " AccessContro l " : {
7 " d e s c r i p t i o n " : " This i s a l egacy property , [ . . . ] " ,
8 "enum" : [ " AuthenticatedRead " , " AwsExecRead " , "

BucketOwnerFullControl " , " BucketOwnerRead " , " LogDel iveryWrite " , "
Pr ivate " , " PublicRead " , " PublicReadWrite " ] ,

9 " type " : " s t r i n g "
10 } ,
11 }
12 }
13 }

Listing 5.1: AWS CloudFormation API Description Snippet of a S3 Bucket

5.1.2 Enum Type Information in the Pulumi Schema
As presented in Section 2.7.2, the Pulumi Schema is also based on JSON Schema and,
therefore, also supports enums natively. Taking the definition of S3 bucket AccessControl
from the AWS CloudFormation API in Listing 5.1, Listing 5.2 shows the equivalent
definition in the Pulumi Schema.

1 {
2 " aws−nat ive : s3 : BucketAccessControl " : {
3 " type " : " s t r i n g " ,
4 "enum " : [
5 {"name " : " AuthenticatedRead " , " va lue " : " AuthenticatedRead "} ,
6 {"name " : " AwsExecRead " , " va lue " : " AwsExecRead "} ,
7 {"name " : " BucketOwnerFullControl " , " va lue " : " BucketOwnerFullControl "} ,
8 {"name " : " BucketOwnerRead " , " va lue " : " BucketOwnerRead "} ,
9 {"name " : " LogDel iveryWrite " , " va lue " : " LogDel iveryWrite "} ,

10 {"name " : " Pr ivate " , " va lue " : " Pr ivate "} ,
11 {"name " : " PublicRead " , " va lue " : " PublicRead "} ,
12 {"name " : " PublicReadWrite " , " va lue " : " PublicReadWrite "}
13 ]
14 }
15 }

Listing 5.2: Pulumi Schema Generated from AWS CloudFormation API
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5.1.3 Enum Type Support in Pulumi Target Languages
While not all programming languages supported by Pulumi implement enums natively,
Pulumi translates enums from the Pulumi Schema into idiomatic enums in the pro-
gramming languages that do. Finalizing the example of the S3 bucket AccessControl type
definition, Listing 5.3 shows the generated enum in the Java provider.

1 @EnumType
2 pub l i c enum BucketAccessControl {
3 AuthenticatedRead ( " AuthenticatedRead " ) ,
4 AwsExecRead ( " AwsExecRead " ) ,
5 BucketOwnerFullControl ( " BucketOwnerFullControl " ) ,
6 BucketOwnerRead ( " BucketOwnerRead " ) ,
7 LogDel iveryWrite ( " LogDel iveryWrite " ) ,
8 Pr ivate ( " Pr ivate " ) ,
9 PublicRead ( " PublicRead " ) ,

10 PublicReadWrite ( " PublicReadWrite " ) ;
11 }

Listing 5.3: Java Code Generated Pulumi from AWS CloudFormation API

Table 5.1 summarises which programming languages supported by Pulumi support enums
natively. Programming languages like C#, Java, TypeScript, and Python support enums
natively, while Go and YAML do not.

Programming Language Enum Support
.NET (C#) ✓
Go ×
Java ✓
NodeJS (TypeScript) ✓
Python ✓
YAML ×

Table 5.1: Enum Support in Programming Languages Supported by Pulumi

5.1.4 Impact
When it comes to mitigating errors in the Enumerations category (Section 3.3.1), it
is only necessary to focus on classic providers, since native providers already generate
enums idiomatically in the target SDKs for supported programming languages. We
propose two different mitigation strategies: updating to the respective native provider,
or enhancing the Pulumi Terraform Bridge to generate enums, where applicable. Both
strategies present challenges.

Upgrading to Native Providers

There is no automated way [15] to migrate Pulumi resources from ci to ni. This means
that developers must do manual work to change the underlying providers of their Pulumi
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programs. Ignoring the additional benefits of native providers, such as same-day delivery
and the potential risks of using them, due to their prevalent “preview” status, developers
may be reluctant to commit to upgrading to native providers if there is no consequent
benefit to static type safety. To benefit from enums, Pulumi programs have to manage
resources which use the enum types provided by the native providers. For example,
developers who manage AWS Lambdas with the AWS classic provider will benefit from
upgrading to the AWS native provider.

1 " aws : lambda/ FunctionUrlCors : FunctionUrlCors " : {
2 " p r o p e r t i e s " : {
3 " allowMethods " : {
4 " type " : " array " ,
5 " i tems " : {
6 " type " : " s t r i n g "
7 } ,
8 . . .
9 }

10 }
11 }

Listing 5.4: Schema for AWS Lamda CORS Settings in the AWS Classic Provider

Listing 5.4 shows the definition of the allowMethods property. According to the type, any
string is applicable. However, in practice, only valid HTTP methods [65] are allowed.
The corresponding type definition of the AWS native provider in Listing 5.5 shows how
this is already encoded directly into the type system.

1 " types " : {
2 " aws−nat ive : lambda : UrlCors " : {
3 " p r o p e r t i e s " : {
4 " allowMethods " : {
5 " type " : " array " ,
6 " i tems " : {
7 " $ r e f " : "#/ types /aws−nat ive : lambda :

UrlAllowMethodsItem "
8 } ,
9 } ,

10 . .
11 }
12 }
13 " aws−nat ive : lambda : UrlAllowMethodsItem " : {
14 " type " : " s t r i n g " ,
15 "enum " : [
16 {
17 "name " : " Get " ,
18 " va lue " : "GET"
19 } ,
20 {
21 "name " : " Put " ,
22 " va lue " : "PUT"
23 } ,
24 {

48



5.1. Mitigating Enumerations Errors

25 "name " : " Head " ,
26 " va lue " : "HEAD"
27 } ,
28 {
29 "name " : " Post " ,
30 " va lue " : "POST"
31 } ,
32 {
33 "name " : " Patch " ,
34 " va lue " : "PATCH"
35 } ,
36 {
37 "name " : " De lete " ,
38 " va lue " : "DELETE"
39 } ,
40 {
41 " va lue " : " ∗ "
42 }
43 ]
44 } ,
45 }

Listing 5.5: Schema for AWS Lamda CORS Settings in the AWS Native Provider

Users of nAW S can use the enums provided by the respective schema. Invalid values for
the allowMethods property will therefore result in a static type error, instead of a runtime
error. The results of the enum usage analysis in Section 4.3 quantify how many Pulumi
projects would benefit from upgrading from classic to native providers.

Impact on the Dataset The above-presented example shows that upgrading to native
providers can have distinct benefits on static type safety. Taking the analysis results
from Section 4.3 into account shows how big the impact of upgrading to native providers
would be on our dataset.

1. 48.68%, 22.29% and 28.45% of the repositories in our dataset use AWS, Azure, and
GCP classic providers, respectively, and could therefore benefit from better static
type safety by upgrading to the corresponding native providers.

2. 19.94%, 3.03% and 6.74% of repositories use classic providers for AWS, Azure and
GCP, respectively and contain enum values that are equal to predefined enum
values in the corresponding native providers and are therefore likely to benefit from
the static type safety that enums provide.

Adding Enums to Classic Providers As we have shown in Section 2.7.3, Terraform
providers, which are the foundation of the Pulumi classic providers, include type definitions
using string as the base type and validation functions in the form of validation . StringInSlice
() to denote enum types. This type information is, in part, lost during the conversion

49



5. Mitigating Errors

from Terraform provider to the Pulumi Schema, because the validation functions are
not considered during translation. In theory, it should be possible to enhance the
Pulumi Terraform Bridge to respect this validation function, to generate enums in
Pulumi classic providers, where applicable. The issue [46] has been recognised by Pulumi
developers, although there is currently no implementation for this enhancement.

5.2 Mitigating Refinements Errors

In contrast to enums, refinement type information is not available at every point of the
Pulumi SDK generation pipeline. However, we argue that on the level of the Pulumi
Schema, static refinement type information can be added idiomatically. Although there
are no native refinement type implementations in the supported programming languages,
there are viable options developed by third parties.

5.2.1 Refinement Type Information in the Source APIs

As presented in Section 2.8, all APIs from the three analysed Cloud providers support the
type information necessary for refinement types. Depending on the JSON Schema version
the APIs are based on, the support for validation keywords, which can be translated to
logical constraints for refinement types, varies. Table 5.2 lists all primitive types available
in Cloud provider APIs. In addition to primitive types, properties might define further
validation keywords, including the format property.

Type
Name

Supported By DescriptionAWS Azure GCP
any ✓ ✓ property can have any of the defined types
array ✓ ✓ ✓ array values must have one of the defined types
boolean ✓ ✓ ✓ true|false
file ✓ defined in OpenAPI spec
integer ✓ ✓ ✓
null ✓ ✓ ✓
number ✓ ✓ ✓
object ✓ ✓ ✓ for nested types
string ✓ ✓ ✓ arbitrary string

Table 5.2: Primitive Types Supported by the Different Cloud Provider APIs

Table 5.3 shows all format values supported by the Cloud provider APIs. Notice that the
AWS CloudFormation API supports the most format values, since it takes them directly
from JSON Schema Draft 7, while GCP and OpenAPI version 2, which is the basis of
Azure Resource Manager API, provide their own smaller set of allowed format values.
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Primitive
Type

Format
Value

Supported By
AWS Azure GCP

integer
int32 ✓
int64 ✓
uint32 ✓

number double ✓ ✓ ✓
float ✓ ✓ ✓

string

binary ✓ ✓ ✓
byte ✓ ✓ ✓
date ✓ ✓ ✓
date-time ✓ ✓ ✓
email ✓
google-datetime ✓
google-duration ✓
google-fieldmask ✓
hostname ✓
idn-email ✓
idn-hostname ✓
iri ✓
iri-reference ✓
ipv4 ✓
ipv6 ✓
int32 ✓
int64 ✓
json-pointer ✓
regex ✓
relative-json-pointer ✓
password ✓ ✓ ✓
time ✓
uri ✓
uri-reference ✓
uri-template ✓

Table 5.3: Format Values Supported by the Different Cloud Provider APIs

Primitive Type Validation Supported By
AWS Azure GCP

integer|number

exclusiveMaximum ✓ ✓ ✓
exclusiveMinimum ✓ ✓ ✓
divisibleBy ✓
maximum ✓ ✓ ✓
minimum ✓ ✓ ✓
multipleOf ✓ ✓

array

contains ✓
maxItems ✓ ✓ ✓
minItems ✓ ✓ ✓
uniqueItems ✓ ✓ ✓

string

enum ✓ ✓ ✓
maxLength ✓ ✓ ✓
minLength ✓ ✓ ✓
pattern ✓ ✓ ✓

Table 5.4: Validations Supported by the Different Cloud Provider APIs
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Table 5.4 shows all supported validation keywords and their base primitive types. Valida-
tion keyword support is very similar between all three Cloud providers. AWS supports
the most validation keywords because it is based on the newest version of the JSON
Schema specification. Note that divisibleBy has been renamed to multipleOf after JSON
Schema Draft 3.

Terraform Schema

As presented in Section 2.7.3, Pulumi classic providers do not use the Cloud provider
API descriptions directly to generate their SDKs, but rather are built on the Terraform
providers for the respective Clouds. Terraform providers contain multiple validation
functions [19, 29] that could be used to formulate the logical constraints necessary for
refinement type definitions. The validation functions include

• string validations for maxLength and minLength

• string validations for pattern matching for specific formats like date−time, uuid or
ipv4 and ipv6

• number validation for maximum, minimum or divisibleBy

• list validations for verifying that a list only has unique items

The examples listed above map well to the validations offered by JSON Schema and the
Cloud providers APIs. This is not surprising, since the Pulumi native providers and
the Terraform provider target the same Cloud provider APIs. Therefore, it should be
possible to apply logical constraints in the form of Terraform validation functions to the
Pulumi Schema, in a similar way, as with the validation keywords offered by the Cloud
providers.

5.2.2 Refinement Type Information in the Pulumi Schema
As discussed in Section 2.7.2, the Pulumi Package Schema does not support validations
and formats as presented in Section 5.2.1, although issues [1] for this improvement have
already been raised. To bring the refinement type information to the Pulumi Schema, we
propose extending the definitions for Primitive Types and Array Types in the #/defs
/typeSpec property in the Pulumi Schema by validation and format properties. Listing 5.6
shows how primitive type definitions in the Pulumi Schema can be extended to support
the validation attributes.

1 {
2 " $de f s " : {
3 " typeSpec " : {
4 . . .
5 " oneOf " : [
6 {
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7 " t i t l e " : " Pr imi t ive Type " ,
8 " type " : " o b j e c t " ,
9 " p r o p e r t i e s " : {

10 " type " : {
11 " d e s c r i p t i o n " : "The p r i m i t i v e type , i f any " ,
12 " type " : " s t r i n g " ,
13 "enum " : [ " boolean " , " i n t e g e r " , " number " , "

s t r i n g " ]
14 } ,
15 . . .
16 "maximum " : {
17 " d e s c r i p t i o n " : "Maximum value " ,
18 " type " : " number "
19 } ,
20 " format : {
21 " d e s c r i p t i o n " : " Allowed format " ,
22 " type " : " s t r i n g "
23 "enum " : [ " date−time " , " time " , . . . ]
24 }
25 } ,
26 " r equ i r ed " : [ " type " ]
27 }
28 }
29 }
30 }
31 }

Listing 5.6: Proposed Pulumi Schema Extension for Validations of Primitive Types

Array validation properties such as maxItems will have to be added to the respective array
type definitions, as can be seen in Listing 5.7.

1 {
2 " $de f s " : {
3 " typeSpec " : {
4 . . .
5 " oneOf " : [
6 {
7 " t i t l e " : " Array Type " ,
8 " type " : " o b j e c t " ,
9 " p r o p e r t i e s " : {

10 " type " : {
11 " const " : " array "
12 } ,
13 " i tems " : {
14 " d e s c r i p t i o n " : "The element type o f the array " ,
15 " $ r e f " : "#/ $de f s / typeSpec "
16 } ,
17 . . .
18 " maxItems " : {
19 " d e s c r i p t i o n " : "Maximum number o f i tems al lowed

in the array . " ,
20 " type " : " i n t e g e r "
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21 }
22 } ,
23 " r equ i r ed " : [ " type " , " i tems " ]
24 }
25 }
26 }
27 }
28 }

Listing 5.7: Proposed Pulumi Schema Extension for Validations of Array Types

The proposed extensions would allow Pulumi Schema specification files to formulate the
logical constraints provided by the Cloud provider APIs and make them available for
Pulumi Codegen. Codegen could use the constraints to generate refinement types in the
supported target languages, for which refinement type implementations exist.

5.2.3 Refinement Type Support in Pulumi Target Languages
Pulumi Codegen currently generates SDKs in five different programming languages (not
counting YAML), (1) C#, (2) Go, (3) Java, (4) JavaScript, and (5) Python, none of
which have native refinement type implementations. However, there are a handful of
third-party implementations for these programming languages.

Third-Party Implementations

Using the GitHub API we found a set of refinement type implementations for programming
languages for which Pulumi generates SDKs. Table 5.5 shows an overview of our findings.
Some repository findings turned out to be false positives, because they did not contain
implementations for refinement types for the respective language. For completeness’ sake,
we included them in the table, but marked them by striking through their names.

Language Implementation Created At Latest Commit Archived

JavaScript intro-refinement-types [50] 11.01.2016 23.06.2017
refinement.js [86] 05.06.2018 11.06.2018

Python
deal [38] 25.01.2018 23.03.2024
Phantom Types [51] 07.02.2020 09.02.2024
refined [117] 23.09.2021 04.10.2021

Go refined [66] 03.07.2022 21.07.2022
refinement [81] 04.08.2019 09.08.2019 ✓

C# ConstraintComposite [83] 04.12.2022 08.12.2022
Java regex-refined [97] 06.11.2018 23.11.2018

Table 5.5: Refinement Type Implementations for Supported Programming Languages on
GitHub

Further research reveals some additional implementations that are not covered by our
GitHub API search. The findings are summarised in Table 5.6.
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Language Implementation Created At Latest Commit Archived

JavaScript ts-refined [76] 16.08.2017 18.08.2017
refscript [49, 121] 10.04.2024 14.01.2019

Java OpenJML [18, 85, 55, 13] 30.06.2015 15.02.2024
Liquid Java [70, 69] 23.04.2020 07.12.2023

Table 5.6: Further Refinement Type Implementations for supported Programming Lan-
guages

Using the base types already supported by the Pulumi Schema and the logical predicates
of our proposed solution, Pulumi developers could extend the capabilities of Codegen
to generate refinement types in the SDKs. For example, Phantom Types provide a
Python implementation for refinement types that map very naturally to the definition of
refinement types presented in Section 2.4 and to the types and constraints provided by
our proposed addition to the Pulumi Schema.

Phantom Types Creating refinement types with Phantom Types works by defining
subclasses for the class Phantom and providing a predicate function. A predicate function
is a function that accepts an argument of a base type, such as str and returns a bool
value. For example, Listing 5.8 shows a code snippet from the Python SDK, which was
generated by the Pulumi native provider for Azure. The snippet shows the definition of a
class Origin that accepts an argument of type Optional[pulumi.Input[int ]] , which represents
an http port.

1 class Orig in ( pulumi . CustomResource ) :
2 @overload
3 def __init__ ( __self__ ,
4 . . .
5 http_port : Optional [ pulumi . Input [ int ] ] = None ,
6 . . .

Listing 5.8: Class Definition from the Azure Native Provider for Python

Listing 5.9 shows the corresponding Azure Resource Manager specification for HTTP
ports, which limits the applicable values to integers between 1 and 65535.

1 " httpPort " : {
2 " d e s c r i p t i o n " : "The value o f the HTTP port . Must be between 1 and

6 5 5 3 5 . " ,
3 " type " : " i n t e g e r " ,
4 " format " : " in t32 " ,
5 "maximum " : 65535 ,
6 " exclusiveMaximum " : f a l s e ,
7 "minimum " : 1 ,
8 " exclusiveMinimum " : f a l s e
9 } ,

Listing 5.9: Azure Resource Manager API Specification for HTTP Ports
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A Phantom Type implementation for the type of HTTP ports could look something like
in Listing 5.10

1 def i s_val id_http_port ( i n s t a n c e : int ) −> bool :
2 return i n s t a n c e >= 1 and i n s t a n c e <= 65535
3
4 class HttpPort ( int , Phantom , p r e d i c a t e=is_val id_http_port )
5 . . .
6
7 class Orig in ( pulumi . CustomResource ) :
8 @overload
9 def __init__ ( __self__ ,

10 . . .
11 http_port : Optional [ pulumi . Input [ HttpPort ] ] = None ,
12 . . .

Listing 5.10: Phantom Types Implementation for HTTP ports

Although implementing refinement types in the Pulumi target languages is possible, a
handful of caveats apply.

• Since none of the languages supported by Pulumi implement refinement types
natively, they rely on libraries, IDE plugins, or additional software to provide static
type checking. Therefore, the responsibility of setting up those tools lies with
the developers and users of Pulumi SDKs, even if refinement type information is
provided.

• Many refinement type implementations we listed in Table 5.5 and Table 5.6 have
not been committed to in years, indicating that the projects have been abandoned.

• Depending on the implementation, adding refinement types to the generated SDKs
will most likely break backward compatibility.

• Even though AWS, Azure, and GCP APIs offer validation keywords, not all
Cloud resource properties use them where they would be applicable. For example,
according to AWS documentation, the S3 bucket names must adhere to a certain
pattern [4]. This pattern could be formalized with the pattern keyword provided by
the AWS CloudFormation API. However, the API description for S3 bucket names
only specifies that they can be an arbitrary string.

5.2.4 Impact
To measure the impact that refinement types could have on static type safety, if they
would be implemented in the Pulumi Schema and subsequently in the SDKs, we analyse
the API specification file of AWS CloudFormation, Azure Resource Manager, and Google
Discovery. Using the API specification files for Cloud providers included in the git
repositories of native providers, we calculate how many resource properties use the logical
constraints and formats presented in Section 2.8.5. Let Pc be the set of properties defined
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in the API description of Cloud c, where c ∈ {AWS, Azure, GCP}. Furthermore, let
P ′

c ⊆ Pc be the set of properties for Cloud c that use any validation keyword applicable.
The findings are summarised in Table 5.7

Cloud c |Pc| |P ′
c| (|P ′

c|/|Pc|)| × 100 Native Provider Version
AWS 20606 5777 28 8a4a7d82
Azure 972740 123578 12.7 d00db35d
GCP 105335 18672 17.7 4511d6e8

Table 5.7: Cloud API Validation Keyword Usage

Our analysis shows that if the Pulumi Schema gets extended to be able to formulate the
same constraints as the Cloud provider APIs, this would affect a significant percentage
of all Cloud resource properties. 28%, 12.7% and 17.7% of all Cloud resource properties
of AWS CloudFormation, Azure Resource Manager, and GCP Discovery API, respec-
tively, use logical constraints that can be used to generate refinement types. This type
information is currently lost in the Pulumi Schema.

5.3 Mitigating Dependencies Errors
As with errors in the Enumerations and Refinements error categories, the dependent
type information must be presented in three stages, (1) the source APIs, (2) the Pulumi
Schema, and (3) the target programming languages to leverage the power of dependent
types.

5.3.1 Dependent Type Information in the Source APIs
While certainly being available in some form, neither of Amazon’s CloudFormation API,
Microsoft’s Resource Manager API, nor Google’s Discovery API provides dependency
type information in a machine-readable format. Usually, this kind of information is
presented in a human-readable format in the form of documentation. For example, GCP
provides a table in their documentation [23], listing all available VM machine types for
each compute region.

5.3.2 Dependent Type Information in the Pulumi Schema
As presented in Section 2.7.2, the Pulumi Schema currently does not have a way to
present dependent type information.

5.3.3 Dependent Type Support in Pulumi Target Languages
As discussed in Section 2.5, only very few programming languages support dependent
types natively. Furthermore, none of these programming languages, like Idris or Coq, is
supported by Pulumi.
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Third-Party Implementations

For supported languages, we search for third-party implementations on GitHub, which
would enable the support of dependent types, Table 5.8 sums up our findings.

Language Implementation Created At Latest Commit Archived

JavaScript λC+ [79] 12.02.2021 13.02.2023
AutoNomic-pyco [82] 31.01.2019 24.02.2019

TypeScript

cicada-solo [36] 28.03.2021 11.05.2024
cicada-plct [35] 07.08.2022 17.05.2024
nominal [37] 28.03.2021 03.05.2024
proof-cat [131] 10.01.2024 28.01.2024
ts-dependent-types [84] 05.02.2022 14.02.2022
pie-ts [122] 03.05.2023 17.09.2023
x-json [128] 11.04.2023 10.09.2023

Python coq_jupyter [87] 26.12.2018 25.01.2024
Go - - -
C#
Java Aya Prover [129, 32] 09.11.2020 06.06.2024

Table 5.8: Dependent Type Implementations for Supported Programming Languages on
GitHub

All but two of the dependent type implementations on GitHub are false positives. The
two remaining are ts-dependent-types and nominal. Both are implementations in
TypeScript.

• ts-dependent-types has not seen active development since 2022 and is not
available on NPM. According to the documentation, however, the functionality
seems to be very limited, since it only provides “wrappers” for TypeScript union
types, like type SupportedRange = Range<−24, 24>; // −24 | −23 | ... | 24

• nominal actually is a library to support nominal typing in the otherwise structural
typed TypeScript. However, it also claims to support a very limited form of what
the documentation calls “pseudo-dependent types”, in which properties that can
be defined on a type level, are propagated over multiple function calls.

To leverage the full expressibility of dependent types, Pulumi would have to support
programming languages like Idris, which have native dependent type support. The
errors, such as those presented in Section 3.3.3 could then be mitigated by defining the
appropriate dependent types. If Pulumi supported a programming language like Idris,
these dependencies could be encoded like in the following code snippet.

58



5.3. Mitigating Dependencies Errors

1 −− Step 1 : Def ine the Region record
2 record Region where
3 c o n s t r u c t o r MkRegion
4 avai lableMachineTypes : L i s t S t r ing
5
6 −− Step 2 : Def ine a type−l e v e l f unc t i on to check i f a machine type i s in

the a v a i l a b l e machine types
7 data Elem : St r ing −> L i s t S t r ing −> Type where
8 Here : Elem x ( x : : xs )
9 There : Elem x xs −> Elem x ( y : : xs )

10
11 −− Step 3 : Def ine the VirtualMachine datatype
12 data VirtualMachine : ( r eg i on : Region ) −> ( machineType : S t r ing ) −> Type

where
13 MkVirtualMachine : ( r eg i on : Region ) −>
14 ( machineType : S t r ing ) −>
15 { auto p r f : Elem machineType ( avai lableMachineTypes

r eg i on ) } −>
16 VirtualMachine r eg i on machineType
17
18 −− Example usage
19 awsRegion = MkRegion [ " t2 . micro " , "m5. l a r g e " , " c5 . x l a r g e " ]
20
21 −− Valid VM
22 awsT2Micro = MkVirtualMachine awsRegion " t2 . micro "
23 −− I n v a l i d VM
24 awsInva l id = MkVirtualMachine awsRegion " unknownType "

Listing 5.11: Cloud Regions and Virtual Machines with Dependent Types in Idris.

Listing 5.11 shows how Cloud regions and machine types can be defined using dependent
types in Idris.

• Lines 2-4 define the new record Region. A Region instance takes a parameter of type
List String, which defines the machine types available in that region.

• Lines 7-9 define a new datatype that represents the occurrence of an element of
type String inside of a list of Strings.

• Lines 12-16 define the datatype VirtualMachine. It’s constructor, MkVirtualMachine,
takes a parameter region of type Region and a parameter machineType of type String
to automatically construct the proof in line 15 that machineType is contained in
availableMachineTypes of region.

• Line 19 defines a new Region with a list of available machine types.

• Finally, lines 22 and 24 show two VirtualMachine instances.
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The first instance is deemed valid by the Idris compiler, as t2.micro is contained in
availableMachineTypes of awsRegion. However, awsInvalid cannot be instantiated, as unknownType
is not contained in availableMachineTypes. Compilation of the program fails with the error

message shown in Listing 5.11.
1 Error : While p r o c e s s i n g the r ight −hand s i d e o f awsInva l id . Can not f i n d an

implementation f o r Elem " unknownType " [ " t2 . micro " , "m5. l a r g e " , " c5 .
x l a r g e " ]

Listing 5.12: Error Message from the Idris Compiler Trying to Compile the Code in
Listing 5.11.
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CHAPTER 6
Evaluation and Discussion

The preceding chapters show the viability and impact of adding more static type in-
formation in IaC programs and in Pulumi programs in particular, while qualifying the
potential impact on the basis of a dataset of Pulumi repositories. The following chapter
discusses the varying viability of adding more static type information to IaC programs,
the impact of this addition, and caveats that apply, beginning with the quality of our
dataset.

6.1 Quality of the Dataset
A significant portion of our empirical analysis is based on a data set from GitHub
repositories. However, due to the availability constraints of private or organisation-owned
repositories, our dataset is subject to substantial caveats.

• All of the repositories in our dataset are public repositories. That is, there is likely
a large “dark figure” of private repositories, which are hypothetically more complex
and useful IaC programs.

• A significant portion of the repositories in our dataset are forks of official Pulumi
repositories, resulting in some redundancy and limiting the dataset’s reflection of
real-world scenarios.

6.2 Pulumi Native Providers
As we have shown, Pulumi native providers for AWS, Azure, and GCP tend to offer better
static type safety by specifying enums for their respective cloud resources. However, in
practise, native providers will not always pose an improvement for Pulumi programs.
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There are at least two reasons why upgrading to native providers might not be feasible
for developers.

• The feature coverage of native providers tends to be worse than the feature coverage
of the respective classic provider. For example, while the AWS classic providers
allow managing 27 [40], the AWS native providers only allow managing 10 [41]
different resources in the AWS S3 module. This is because, since native provider
SDKs are automatically generated from the underlying API descriptions, they can
only offer what was provided by the API descriptions in the first place.

• In theory, native providers offer enums, which are not available in classic providers.
However, there are still properties that could be enums, but are string because of
bad type specification. For example, the description [41] of the outputSchemaVersion
property of the BucketDataExport resource in the AWS native provider reads: “Must
be V_1”. However, the type of outputSchemaVersion is string, while it could be an
enum, only allowing value V_1.

6.3 Mitigating Enumerations Errors
Our analysis highlights the role of enums in Pulumi’s support for AWS, Azure, and GCP
providers. While enums are natively supported by both the underlying Cloud APIs and
the Pulumi Schema, they are lost in translation when using classic providers derived
from Terraform. The following points detail these issues and the current limitations in
enum support.

• Enums are supported by all of the underlying APIs of AWS, Azure and GCP for
the corresponding Pulumi providers.

• The central API Schema for Pulumi SDKs, the Pulumi Schema, supports enums
natively.

• Native providers for AWS, Azure and GCP already support enums natively and
translate Pulumi Schema enums to idiomatic programming language structures for
each SDK programming language.

• Classic providers for AWS, Azure and GCP generate the Pulumi Schema from their
corresponding Terraform providers. While these Terraform providers support enums,
the Pulumi code generation pipeline does not translate enums in the Terraform
provider to enums in the Pulumi Schema. Therefore, enum type information is
currently lost in this translation step, despite being readily available.

• Developers using classic providers could change to using the corresponding native
provider variants, to get better static type safety with enums. However, native
providers of AWS and GCP are currently in preview and should not be used in
production.
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6.4. Mitigating Refinements Errors

• Classic providers are significantly more prevalent than native providers. In our
dataset of 1023 GitHub repositories only 3.46%, 32.3% and 7.68% of repositories
that use AWS, Azure and GCP provider, respectively, use the native provider
variants.

• In our dataset 48.68%, 22.29% and 28.45% of all repositories use AWS, Azure and
GCP classic providers, respectively, and would therefore benefit from upgrading to
the corresponding native provider variants, since they offer enum types.

• However, only 19.94%, 3.03% and 6.74% of all repositories use AWS, Azure and
GCP classic providers, respectively and contain strings that are exactly equal to
any enum value of their corresponding native provider, suggesting that in these
cases, instead of strings, enums could have been used, either by adding enum
support to classic providers, or by migrating to native providers.

• While it is possible for classic providers to provide enums in the generated SDKs, this
feature is not currently implemented. An issue has been raised by the developers,
but as of the time of writing, no progress has been made.

6.4 Mitigating Refinements Errors
Validation constraints, which can be used for defining refinement types, are expressible
in the public Cloud APIs of AWS, Azure, and GCP. However, the Pulumi Schema does
not offer this feature. Additionally, there is no native support for refinement types in
programming languages compatible with Pulumi. The following points summarise our
findings.

• AWS, Azure, and GCP APIs are based on the JSON Schema and therefore support
validation constraints for parameters in addition to the format parameter, which
can be used to formulate refinement types.

• AWS supports the most validations and formats, followed by GCP and Azure. This
is because the AWS CloudFormation API is based on the latest version of the JSON
Schema.

• The Pulumi Schema currently does not support validation constraints or formats.
However, since the Pulumi Schema is also based on JSON Schema, like the un-
derlying public Cloud APIs, we argue that an extension to the Pulumi Schema to
support validation constraints and formats is viable.

• 28%, 12.7% and 17.7% of properties in the AWS, Azure, and GCP API descriptions
contain at least one kind of validation keyword, respectively, and would therefore
benefit from refinement type support in the Pulumi SDKs.

• However, none of the programming languages for which Pulumi SDKs are generated
natively support refinement types.

63



6. Evaluation and Discussion

• Third-party implementations of refinement types in programming languages sup-
ported by Pulumi, such as Phantom Types, can be used to mitigate Refinements
errors. However, most of the available implementations for refinement types have
not seen active development in the last year.

6.5 Mitigating Dependencies Errors
Despite the benefits of dependent types, their use in IaC programs is limited by several
factors. These include the absence of dependent type information in Cloud provider
APIs, the lack of support in the Pulumi Schema, and the fact that Pulumi-compatible
languages do not natively support them. Existing third-party implementations are
outdated or inadequate, further hindering their practical application. In detail, our thesis
demonstrates the following points.

• Dependent type information is not available in the APIs of neither AWS, Azure,
nor GCP.

• Dependent type information is currently not provided by AWS, Azure, or GCP in
a machine-readable format, but rather distributed informally via human-readable
documentation.

• The Pulumi Schema does not support the definition of dependent type information.

• None of the programming languages supported by Pulumi supports dependent
types natively.

• Third-party dependent type implementations for programming languages supported
by Pulumi have either not seen any active development in years, or they only
support a very limit version of dependent types, making them unpractical for
general use.

• Provided that dependent types information is made available, programming lan-
guages with native dependent type support, like Idris, can be used to mitigate
errors in the Dependencies error category.
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CHAPTER 7
Conclusion

This paper identifies prevalent runtime errors that occur in IaC programs, which can be
divided into three categories of increasing complexity. We highlight the correspondence
of errors in these error categories with techniques of static type analysis. We analyse a
concrete ecosystem of IaC programs, Pulumi, which leverages the power of conventional
programming languages and their type systems. We show that errors in the three error
categories can be handled statically, depending on the type information provided by
the underlying Cloud provider APIs, Pulumi and the type systems of the supported
programming languages. In particular, we answer our two research questions.

There are at least three categories of runtime errors in IaC programs that stem from
inadequate static type validation. For each category, specific static type validation
techniques (enums, refinement types, and dependent types) are available to mitigate
these errors, answering RQ1.

Finally, we answer RQ2 by showing that applying these three static types to an existing
IaC solution such as Pulumi can offer significant benefits in ensuring type safety.

Error Categories We find 7 type-related runtime errors in 126 Pulumi repositories,
which can be divided into three different error categories, with increasing complexity.

1. Enumerations: The errors in this category describe parameters in a program
that expect a value from a certain set of allowed values, while not restricting them
statically. For example, in available machine types for virtual machines of Cloud
providers are usually a fixed set of possible values. Nevertheless, these parameters
are often represented as arbitrary strings in programming languages.

2. Refinements: Errors in this category appear when parameters are expected to
have a certain static type, but also adhere to additional constraints. For example,
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7. Conclusion

while port numbers are usually correctly typed as integers within programming
languages, typically only port numbers between 1 and 65535 are allowed port
number values.

3. Dependencies: The final and most complex category of errors occur, when the
allowed values of one parameter is dependent on the value of another parameter.
For example, Cloud providers usually do not support all machine types of virtual
machines in all geographical regions of the world. The set of allowed machine types
is therefore dependent on the value of the geographical region, the virtual machine
should be deployed in.

Correspondence Between Error Categories and Static Types There is a corre-
spondence between the runtime errors in our three defined categories and the errors that
can be prevented statically by three different kinds of static types. This correspondence
is summarised in Table 7.1.

Error Category Static Types
Enumerations Variants (Enums as special case)
Refinements Refinement Types

Dependencies Dependent Types

Table 7.1: Correspondence Between Runtime Error Categories of IaC Programs and
Static Types

Mitigating Runtime Errors The use of enums, refinement types, and dependent
types can theoretically mitigate the errors in the defined error categories. In general,
whether or not these static types can be used in IaC programs depends on three aspects.

1. Whether or not static type information is present at the Cloud provider API.

2. Whether or not static type information is expressible by the specification Schema
of the IaC tool.

3. Whether or not static type information is expressible in the programming language
used by the IaC tool.

For Pulumi, the answer to those three questions varies between enums, refinement types,
and dependent types.

• Enums: Static type information for enums is present at the APIs of AWS, Azure,
and GCP, as well as in Pulumi and in most of the programming languages supported
by Pulumi. The native provider variants already leverage this type information and
produce idiomatic enums in the SDKs for the supported programming languages.
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However, the more prevalent variant, the classic providers, do not. Upgrading
to the respective native provider variants would result in better enum support.
This poses the challenge that AWS and GCP native providers are currently not
recommended for production use. Adding enum support to classic providers is
possible, but not currently implemented. From our dataset of 1023 repositories
48.68%, 22.29%, 28.45% use AWS, Azure and GCP classic providers respectively
and would therefore benefit from having additional enum type information.

• Refinement Types: Static type information for refinement types is present
in the APIs of AWS, Azure, and GCP in the form of validation keywords but
missing in Pulumi, although an addition would be viable. Adding these validation
keywords to Pulumi would affect 28%, 12.7% and 17.7% of properties configurable
in AWS, Azure and GCP Pulumi providers. There is no programming language
supported by Pulumi that implements refinement types natively. However, third-
party implementations exist, which would make it possible to mitigate Refinements
errors statically.

• Dependent Types: Neither the APIs of AWS, Azure, and GCP, nor Pulumi can
express the static type information needed for dependent types. Additionally, none
of the programming languages supported by Pulumi supports dependent types
natively. Third-party implementations for dependent types are rare and unusable
for general dependent types. However, provided that dependent type information
is available, a programming language that can express dependent types natively is
able to mitigate errors in the Dependencies category statically.
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Appendix

Table 7.2 lists all scripts that have been used in this thesis. All scripts are publicly
available on GitHub [3].

Script Name Description
Enum Analysis

filter_pulumi_forks.sh Takes a set of repositories
and remove all that are forks of Pulumi repositories.

find_enum_values.sh Finds all Enums values used in a Pulumi Schema JSON file.

find_classic_provider_repos.sh Finds Pulumi classic providers for AWS, Azure and GCP
by searching for dependency declarations.

find_enums_in_repos.sh Finds strings in .go, .java, .cs, .js, .ts, .py, .scala and .kt files.
Used to find enums values in Pulumi projects.

find_native_provider_repos.sh Finds Pulumi native providers for AWS, Azure and GCP
by searching for dependency declarations.

Refinement Type Analysis

find_constraints.sh Finds logical constraints in OpenAPI specs for AWS, Azure and GCP
and calculates how many properties use some kind of constraint.

find_on_github.sh Searching for refinement type projects in GitHub for languages java,
javascript, typescript, python, go and c#.

Dependent Type Analysis

find_on_github.sh Searching for dependent type projects in GitHub for
Java, Javascript, Typescript, Python, Go, and c#.

Table 7.2: Scripts used for Analysis done in this Thesis
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