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Kurzfassung

Ein virtuelles privates Netzwerk (VPN) ermöglicht den verschlüsselten Zugriff auf private
Netzwerke. In Umgebungen mit besonders hohen Anforderungen an die Sicherheit kann
es notwendig sein, die geheimen Schlüssel, die für den Betrieb von VPNs erforderlich
sind, in besonderem Maße vor physischen Zugriffen zu schützen. Durch das Speichern der
geheimen Schlüssel in einem Hardware-Sicherheitsmodul (HSM) können diese zwar vor
physischen Angriffen geschützt werden, jedoch müssen alle kryptografischen Operationen,
die diese Schlüssel nutzen, innerhalb des HSM durchgeführt werden. Dies kann je nach
Einsatzumgebung bedeuten, dass im HSM wenige Hundert bis zu einigen Tausend Be-
rechnungen pro Sekunde durchgeführt werden müssen. Diese Diplomarbeit untersucht die
Eignung von HSMs zur physischen Absicherung von VPNs in Hochleistungsumgebungen.

Im Rahmen dieser Diplomarbeit wurde ein Prototyp einer Leistungstestumgebung ent-
wickelt. Anhand von Laborexperimenten mithilfe des Prototyps konnten verschiedene
theoretische Testszenarien in der Praxis getestet werden.

Die Resultate dieser Arbeit zeigen, dass HSMs geeignet sind, den physischen Schutz von
VPNs zu verbessern. Obwohl sich dadurch Leistungseinbußen im Vergleich zu einem VPN
ohne besonderen physischen Schutz ergeben, war der getestete Prototyp in der Lage,
mehrere tausend VPN-Clients ohne Störung zu bedienen. Dies zeigt, dass HSMs auch in
Hochleistungsumgebungen performant genug sind, um ein VPN abzusichern.

Keywords: Hardware-Sicherheitsmodul, Virtuelles Privates Netzwerk, Leistungsmessung
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Abstract

A Virtual Private Network (VPN) enables encrypted access to private networks. In
environments with particularly high security requirements, it may be necessary to protect
the secret keys required for VPN operation from physical access to an exceptional degree.
By storing the secret keys in a Hardware Security Module (HSM), these keys can be
protected from physical attacks, but all cryptographic operations using these keys must
take place within the HSM. Depending on the deployment environment, this may mean
that the HSM has to perform several hundred to several thousand calculations per
second. This thesis examines the suitability of HSMs for physically securing VPNs in
high-performance environments.

As part of this thesis, a prototype of a performance testing environment was developed.
Through laboratory experiments using the prototype, various theoretical test scenarios
were tested in practice.

The results of this thesis show that HSMs are suitable for improving the physical protection
of VPNs. Although this leads to performance losses compared to a VPN without any
special physical protection, the tested prototype was able to handle several thousand
VPN clients without interruption. This demonstrates that HSMs are powerful enough to
secure a VPN even in high-performance environments.

Keywords: Hardware Security Module, Virtual Private Network, Performance Measure-
ment
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CHAPTER 1
Introduction

This chapter will present a detailed problem statement, the motivation, the expected
results, the structure of this thesis, and the used methodology.

1.1 Problem Statement
A Hardware Security Module (HSM) is a hardened physical computing device that
specialises in cryptographic key creation, key storage, and execution of cryptographic
processes, as stated by Kamaraju, Ali, and Deepak [51]. HSMs come in different form
factors, such as smartcards, PCI plugin cards, or Local Area Network (LAN)-based
appliances, according to Ivarsson and Nilsson [48]. HSMs are used in a wide variety
of industries, including banking, insurance, and blockchain applications, as stated by
Sommerhalder [86]. HSMs can support a wide range of security operations, such as
the generation and protection of Personal Identification Numbers (PINs), protecting
transactions on the Internet, or automatic signature confirmation, according to Truong
and Dang [93]. Another possible area of operations for an HSM is the key management
for secure remote access.

A LAN is a network of systems within a small geographic area such as an office or building
and is considered a private network, as stated by Elahi and Cushman [32]. Access to such
a private network is only possible by being on-site. By connecting a private network to the
Internet, it is possible to access the network from remote. Companies and organisations
that handle sensitive data need to protect access to their private networks.

Communication over the Internet is generally unencrypted. Anyone who is able to see the
communication can usually read it, as stated by Jyothi and Reddy [50]. A Virtual Private
Network (VPN) allows secure and authenticated remote access to a private network by
tunnelling all communication between two endpoints through a cryptographically secured
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1. Introduction

channel, as stated by van Oorschot [97]. This also adds the benefit of an additional layer
of encryption and integrity.

In highly security-sensitive contexts, the requirements for VPNs can state that the
generation and storage of all cryptographic keys must be done in a secure and tamper-
resistant environment. An HSM can provide logical protection by isolating cryptographic
processes, such as key generation, from other operations. By storing generated keys on the
device, an HSM can also provide physical protection. Some HSMs can provide additional
security by providing tamper-proofing features, as stated by Sommerhalder [86]. A VPN
can be extended with an HSM such that key management tasks are carried out by the
HSM. This allows the separation of a network from the Internet, enforcing authentication,
and securing the generation and storage of cryptographic keys used during the process.

In high performance environments, such as in cloud environments, companies and
organisations typically have to satisfy some availability metrics. A VPN might be
required to serve hundreds or even thousands of users. While commonly used VPN
protocols have proven themselves in practice to be able to handle thousands of users, the
suitability of HSMs in such a scenario is an open question.

1.2 Motivation
As stated before, HSMs are used in various industries, such as banking and insurance, and
in critical infrastructure such as payment solutions and encryption schemes [86]. Although
HSMs can be used to increase the security of a system, they can incur additional financial
costs as well as cause a performance overhead (see, for example, Aref and Ouda [7]). This
overhead is especially critical in high-performance environments.

HSMs are typically used in environments where high security requirements are specified.
Due to the high security requirements they have to fulfil, HSMs are expensive to purchase.
Depending on the design and the computing power provided, HSMs can cost several
thousand euros.

The actual performance provided by HSMs can only be roughly estimated before purchase,
based on data sheets provided by the manufacturer. An accurate assessment of the
performance provided can help keep procurement costs low.

The motivation of this thesis is to strengthen the security of information systems by
evaluating the suitability of HSMs securing remote access in production systems with a
high-performance demand.

1.3 Expected Results
The main hypothesis of this thesis is that HSMs are suitable in securing the remote
access in high-performance environments. To this end, this thesis aims to answer the
following questions:
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1.4. Structure

RQ1. To what extent does secure access to remote services influence performance from
an end user’s perspective?

RQ2. How can secure remote access to central resources be scaled?

RQ3. Which characteristics are relevant to assess the suitability of secure cryptographic
key storage in a high-performance environment?

The usage of specialised hardware for cryptographic operations could improve performance
in comparison to processing on general server hardware. However, calling an HSM for
cryptographic operations introduces some overhead compared to carrying out these
operations directly on the VPN host. The result of the first research question is to
determine the performance impact on a remote access that uses an HSM for cryptographic
operations and whether an overall performance increase can be achieved.
Central resources, such as files, databases, or repositories might have to be available to a
multitude of users. Even if a current solution is able to serve the current number of users
satisfactorily, it is necessary to take into account the needs of a growing user base. For
this reason, secure remote access solutions must offer a way to scale easily and efficiently.
The third question aims to identify the characteristics that are relevant to determining the
suitability of a cryptographic key storage for securing remote access in high-performance
environments. Identifying the relevant characteristics allows for a specific selection of
hardware or software to be made.
The expected result of this thesis is a prototype for testing secure remote access solutions.
Additionally, this thesis will present a concept for scaling secure remote access solutions
in high-performance environments.

1.4 Structure
Chapter 2 will present scientific research related to this thesis.
Chapter 3 will start by laying the groundwork for this thesis. It will first cover the
fundamental aspects of Information Security that are relevant for VPNs. Following that,
it will present the fundamental aspects of computer networks necessary for the rest of
the thesis. Additionally, a brief discussion of the basic elements of cryptography required
for this thesis will be provided. The chapter will also discuss general aspects of software
testing. Lastly, a brief discussion on statistics will conclude the chapter.
Chapter 4 will discuss what an HSM is and how it is commonly used in practice. Two key
aspects of HSMs, key management and physical security, will be discussed in more detail.
Existing scaling methods for HSMs are discussed. The chapter concludes by presenting
examples of actual HSMs to provide context for the thesis.
Chapter 5 will discuss VPNs in detail. Based on the foundations in Chapter 3, it will
discuss how a VPN works and what its limitations are and will provide use cases for
VPNs. A specific example of a VPN protocol will be presented at the end of the chapter.
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1. Introduction

Chapter 6 will discuss a specific type of software test, namely performance testing. It
will provide an outline of the definitions, goals, purposes, and challenges of performance
testing. Common performance testing types and strategies as well as performance metrics
commonly captured during testing will be presented as well. The chapter will present
how workloads are generated during performance testing. Finally, a general concept of a
performance test environment is presented.

Chapter 7 will present the results of this thesis. It will start by discussing how the
performance tests were carried out and which performance metrics were used. Afterwards,
it will discuss how performance metrics were captured during testing and how the raw
data was processed for visualisation. Finally, the chapter will present and discuss the
performance test results in detail.

Chapter 8 will discuss the results of the thesis and Chapter 9 will summarise the contents
of this thesis and provide an outlook on future work.

1.5 Methodology
In the beginning, literature research is carried out to determine the foundations and
the state-of-the-art in the area of remote access, secure cryptographic storages, and
performance testing.

A prototype is created to answer question RQ1. Performance test methods suitable for
remote access testing are identified in the literature. This includes test types, inputs, and
performance metrics. A prototype of a test environment for testing secure remote access
solutions is devised. Performance tests of secure remote access solutions are carried out
using the prototype. The first question is answered using the results of the performance
tests.

For the purpose of answering RQ2, existing scaling methods are identified based on
literature research. Suitable scaling methods are identified and evaluated in the course of
a laboratory experiment within the test environment. For this purpose, the prototype is
adapted or expanded if necessary. Performance tests are carried out and compared with
previous results to determine whether the identified scaling methods are effective.

Based on literature research, common characteristics of secure cryptographic storages are
collected. Afterwards, using the results of the prototype created for question RQ1 and
the results of the laboratory experiment for question RQ2, the relevant characteristics
can be identified or even extended.
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CHAPTER 2
Related Work

Aref and Ouda [7] argue that security and privacy are paramount concerns for busi-
nesses and organisations and that mechanisms to protect integrity, confidentiality, and
authenticity are necessary to allow the exchange of sensitive information across a network.
Their work focuses on securing intra-domain communication, that is communication
confined within a network administered by a single organisation. They argue that, in
order to achieve secure intra-domain communication, Secure Socket Layer (SSL) needs to
be integrated with all relevant networking protocols, which requires the use of numerous
cryptographic keys and effective certificate management. HSMs can offer such security
mechanisms. However, HSMs require the use of vendor-specific libraries for operation,
making it hard to change vendors. The provided solution, named “HSM4SSL”, addresses
this vendor issue by proposing a specific architecture where HSMs are provided as a
service to multiple organisations. They claim that their solution can be easily expanded
for more client organisations without compromising security. Performance measurements
were carried out for up to 100 concurrent clients. The latency results show a linear
increase of latency suggesting it is not able to handle thousands of clients.

Han et al. [42] propose a scalable and secure system for key management in a cloud
environment. The proposed solution achieves multi-tenancy by providing multiple virtual
HSMs within a single HSM device. Their solution incurs a performance degradation in the
case of keyless SSL for Transport Layer Security (TLS) private key offloading compared
to a stand-alone HSM. Performance tests were carried out for up to 32 concurrent clients.

Urien [96] argues that the off-loading of cryptographic operations into an HSM can
increase the performance and security of a system. The author presents a solution for
off-loading SSL/TLS operations and measures the performance achieved by the new
approach. The results show a speed-up for specific SSL/TLS configurations.

Goethals et al. [38] argue that the edge devices used in Internet of Things (IoT) have
become powerful enough to run virtual containers. VPNs can aid in the deployment and
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2. Related Work

operation of containers on edge devices. They go on to argue that a suitable VPN must
be able to handle a large number of simultaneous connections. They aim to evaluate the
ability of VPN protocols to scale with the size of an IoT network. The VPN protocols
considered in this paper were OpenVPN, WireGuard, ZeroTier, Tine, and SoftEther.
They concluded that WireGuard showed remarkable performance and scaled better than
the other protocols.

Mackey et al. [61] argue that a fundamental problem incurred by VPNs is the overhead
they cause on the network throughput. They created an automated test framework
to carry out a performance comparison between WireGuard and OpenVPN in a local
environment and on AWS by using iperf3 as a load generation tool. Their results reveal
that WireGuard outperforms OpenVPN on all testing setups and especially on multicore
machines due to its efficient multi-threading code.

Chua and Ng [23] argue that there is a growing trend towards open source VPN solution.
They carry out performance tests for the three popular open source VPN protocols
WireGuard, OpenVPN, and OpenConnect across different client devices and deployment
scenarios. The test setup includes different client devices and multiple network topologies.
The tests focused on the bandwidth and speed of the VPN clients. They concluded that
WireGuard performs best on platforms where the kernel version can be used and that
performance on more restrictive systems where the kernel version cannot be used is an
open question.

Antoniuk and Plechawska-Wójcik [5] argue that VPNs are increasingly being used by
organisations as well as private individuals. Their thesis aims to compare the performance
of WireGuard with that of older VPN protocols such as OpenVPN and Layer 2 Tunneling
Protocol (L2TP). The performance tests were carried out using the ping tool, Speedtest-
cli, and iperf3. Their results show that the performance of WireGuard decreases for a
mobile client.

Akter et al. [2] argue that it is a critical challenge for organisations to select an appropriate
VPN protocol in the plethora of protocols. The purpose of this paper is to determine
the suitability of IPSec, L2TP, and Multiprotocol Label Switching (MPLS) for different
service requirements. The performance tests focus on metrics such as throughput, Round-
Trip Time (RTT), and jitter. They concluded that MPLS performs best in both elastic
and time-sensitive applications.

The aim of Gentile et al. [36] is to build an Open Source infrastructure for Smart Devices
in an IoT environment. They argue that VPNs can be used to create secure connections
between user clients and remote endpoints but, the choice of the VPN protocol affects
performance. The goals of this paper were to find the VPN protocol with the best
efficiency, the widest spectrum of compatibility, and to find an open firmware on a
constrained system that is compatible with different VPN protocols. The iperf tool
was used to generate the workload for the performance tests and the atop tool was used
to monitor the test targets. The result was an OpenWrt system that performed well with
all tested VPN protocols.
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Aung and Thein [9] argue that layer 2 VPN protocols allow the usage of software developed
for LAN such as printer sharing, some database protocols and others. In their work,
they compare different layer 2 VPN protocols such as L2TP, Point-to-Point Tunneling
Protocol (PPTP), OpenVPN, Ethernet over Internet Protocol (EoIP), and MPLS. The
Wide Area Network Emulator (WANem) was used to emulate an Internet connection and
the iperf tool was used to generate throughput and measure performance. Protocols
are compared with each other on the basis of security, scalability, and cost. The results
of the paper are inconclusive and can not recommend a specific protocol over another.

Budiyanto and Gunawan [20] analyse the quality of service of Voice over Internet Protocol
(VoIP) using different VPN protocols. Performance metrics considered were delay, jitter,
throughput, and packet loss.

Ghanem et al. [37] argue that smart grid networks need secure and reliable communication.
While wireless communication is effective to reach a large amount of devices spread over
a wide geographic area it is necessary to secure this over-the-air communication. VPNs
can be used to secure such networks. The paper aims to determine the overhead caused
by utilising a VPN. Considered VPN protocols were OpenVPN and Internet Protocol
Security (IPsec). The result of the paper shows that IPsec created a larger overhead
compared to OpenVPN.

Nawej and Du [71] argue that VPN protocols can be an issue to network performance.
Measurements were carried out in a simulated environment. No specific VPN protocol
was examined, but rather a generic model of a VPN. Considered network performance
metrics were throughput and delay. The result of the paper shows that VPNs have a
negative impact on network performance.

None of the research described above considers the performance impact of extending a
VPN with an HSM for the purpose of key management.

Donenfeld [29] presents the WireGuard VPN protocol in detail. The paper provides
insight into the inner workings, stating the design principles and the cryptographic
schemes and functions used. The paper concludes with a short section comparing the
performance of WireGuard with IPsec and OpenVPN in a single-user setting.

In a recent paper by Master and Garman [62] the security design principles of the Wire-
Guard protocol are summarised, and the protocol itself is reviewed and also implemented.
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CHAPTER 3
Foundations

This chapter will lay the groundwork for all sections thereafter by presenting important
concepts and definitions on the topic of information security in Section 3.1, computer
networks in Section 3.2, cryptography in Section 3.3, software testing in Section 3.4 and
statistics in Section 3.5.

3.1 Information Security
To understand the importance of VPNs and why measuring its performance is of interest,
it is necessary to first understand the importance of information security.

3.1.1 Motivation and Goals
According to Sharp [85], “Information security is an old discipline, whose aim is to ensure
that only the right people can get hold of and possibly also change or delete information”.
Although technology evolved, the goal of information security did not. In the early
days of computer technology, during the mid-1980s, when mainframe and mid-level
computers dominated the market, according to Bishop [18], computer security problems
and solutions centred on securing files on single systems. Sharp [85] points out that
information security was only relevant to governments and the military especially since
they were the first users of computers. However, with the rise of the Internet, computer
security changed focus to the new network environment, according to Bishop [18].

Sharp [85] agrees by stating that in the early days of computer technology, the “focus
was mostly on large centralised computers, where user terminals, if any, were directly
connected to the computer by dedicated cables rather than a network as we know it
today.” Additionally, when the Internet was first developed it was mainly used by a
small group of technically proficient people who were willing to accept a certain risk in
making use of it. In short, security was not an important issue. This changed when more
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3. Foundations

and more services were developed and made available on the Internet, such as banking,
commerce, or public administration, causing people without technical backgrounds to
begin to use the Internet without understanding the risks of using it.

Schneier [82] points out that “Although attacks in the digital world might have the same
goals [. . . ] as attacks in the physical world, [. . . ] They will be more common” because
digital attacks can be automated. Kappes [52] argues that know-how has become the
most important economic factor today for defining the value of a company and that ever
more information, which makes up the know-how of a company, resides in digital form
which is why physical security measures alone are insufficient.

The three main goals commonly defined for information security are confidentiality,
integrity, and availability (see, for example, [85, 52]) which are commonly referred to as
the CIA triad.

• Confidentiality: Van Oorschot [97] states that the aim of this goal is that non-
public information, stored and in transit, is only accessible to authorised parties.
Bishop [18] adds to this an important aspect by arguing that the mere existence of
data can also be confidential.

• Integrity: Property of data, software, and hardware is only alterable by authorised
parties [97]. National Institute of Standards and Technology (NIST) is using a more
comprehensive definition by which this goal aims at “Guarding against improper
information modification or destruction, and includes ensuring information non-
repudiation and authenticity” [94]. Sharp [85] makes an important distinction that
“assets can only be modified by authorised parties in authorised ways”.

• Availability: Van Oorschot [97] states that the aim of this goal is that information,
services, and computing resources remain accessible for authorised use. An attacker
could target this goal by deliberately denying authorised users access to systems or
services [18].

Some authors add additional security goals to the previously discussed one, such as
authenticity and non-repudiation [52].

• Authenticity: Kappes [52] defines this goal as the unambiguous identification of
the sender during communication and as the unambiguous identification of a com-
munication party, in general. Alsmadi et al. [3] explain that during authentication
a user proves his claimed identity. NIST [68] is using a more detailed definition by
enumerating “user, process, or device” as relevant parties for which the identity
must be verified. In addition, identity verification might often be a prerequisite
before access to resources is allowed.

• Non-repudiation: Bishop [18] argues that repudiation of origin is a false denial
that an entity sent something. Kappes [52] states that this security goal aims to
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3.1. Information Security

allow the sender and contents of a message to be assigned to a user. Alsmadi
et al. [3] expand this from the sender not being able to deny sending a message
to the receiver also not being able to deny receiving a message. A more general
definition is given by van Oorschot [97] who describes the aim as “the ability to
identify principals responsible for past actions”.

Section 5 will discuss how VPNs can help protect the digital information of a company
by supporting some of the information security goals discussed in this section, such as
confidentiality, integrity, and authenticity.

3.1.2 Threat Sources and Motives
To understand how a VPN can aid in achieving security goals it is first necessary to
understand where threats to digital information stem from and what motivation lies
behind them.

Bishop [18] defines a threat to be a potential security violation. According to the NIST [22],
a threat is “the potential cause of an unwanted incident, which can result in harm to a
system or organization”. Eckert [31] defines a threat as the intention to use one or more
vulnerabilities to undermine one or more security goals. All definitions for threat have in
common that they describe a potential event that harms security goals.

Threats can arise from different sources. Sharp [85] distinguishes four groups of threats:

1. Hardware related threats: physically affect the system, such as heat, water, or dust.

2. Software related threats: affect the software on the system and can be attributed to
flawed software or intentionally malicious programmes.

3. Data related threats: can lead to unauthorised processing of data, such as modifica-
tion, disclosure, or deletion.

4. Liveware related threats: stem from human errors by system users and cover mistakes
as well as intentional attacks.

Intentionally malicious programmes and intentional attacks are created and carried out
by attackers. These attackers can have different motives for their actions. Lincke [59]
distinguishes three different motives.

• Cybercrime relates to all attacks that have criminal intent.

• Espionage is concerned with the theft of intellectual property.

• Information Warfare is the act of attacking critical infrastructure.

Schneier [82] provides a more nuanced discussion and groups adversaries, who are
threatening the digital world, into several groups:
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• Hackers describe persons “with a particular set of skills and not a particular set
of morals”. Hackers are interested in the inner workings of a system to such an
extent that they can have more expertise about a system than the designers of the
systems themselves.

• Lone Criminals usually don’t have much expertise and can be insiders or outsiders
who notice a flaw in a system and decide to exploit it. They are responsible for
most computer crimes.

• Malicious Insider is already inside the system and may be regarded as trustworthy
with a high level of access to sensitive systems. The malicious insider could be
motivated by revenge, financial gain, or publicity.

• Industrial Espionage aims at illegally acquiring competitor trade secrets to gain an
advantage over competition.

• The Press is interested in getting a newsworthy story and can be motivated by
financial gain or by the belief in a just cause.

• Organized Crime pursues financial gain and can purchase expertise to attack financial
systems.

• Police is interested in collecting information and is not above breaking the law.

• Terrorists are typically motivated by geopolitics, moral or ethical beliefs, and rather
interested in causing harm than anything else.

• National Intelligence Agencies are capable and dedicated adversaries interested in
gaining access to military information, weapons designs, and diplomatic information
but can also be linked to industrial espionage.

• Infowarriors are military adversaries that focus on the short-term goal of affecting
the ability of their target to wage war.

Knowing about the different sources of threats and the motives and intentions of attackers
can help to assess the risks a system faces, which will be discussed in the next section. A
VPN can help protect individuals and organisations from malicious actors.

3.1.3 Risk Assessment and Management
Assessment of risks is an important first step in identifying threats to information security
goals. According to Eckert [31], the importance of a threat depends on the context. For
example, unauthorised read access does not pose a threat to a public database, but it
certainly does to a private database. A risk assessment can help to determine which
threats are relevant for a given context. Schneier [82] argues that it is necessary to
understand the real threats to the system and assess the risk of these threats. Otherwise,
the system might not be protected against the threats that matter.
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A wide array of different definitions of risk can be found in the literature. Eckert [31]
defines the risk of a threat as the probability of the occurrence of a damaging event and
the amount of potential damage that can be caused by it. Parkinson [74] defines risk as
the quantitative probability that an error situation occurs. Kappes [52] states that risk,
in the context of computer systems, is the probability that an existing vulnerability is
being used for an attack. According to the definition by the NIST [40] a risk is

[ . . . ] a measure of the extent to which an entity is threatened by a potential
circumstance or event, and is typically a function of: (i) the adverse impacts
that would arise if the circumstance or event occurs; and (ii) the likelihood
of occurrence. Information security risks are those risks that arise from the
loss of confidentiality, integrity, or availability of information or information
systems and reflect the potential adverse impacts on organisational operations.

Crouhy, Galai, and Mark [26] specifically define cybersecurity risk as “vulnerabilities
of information or information systems and any related consequences”. Rausand and
Haugen [78] point out that the word “risk” has varying meanings in the general public
and the scientific community, ranging from “change”, “likelihood”, and “possibility” to
“hazard”, “threat”, or “danger”. Rausand and Haugen [78] go on to define risk as

The combined answer to the three questions: (1) What can go wrong? (2)
What is the likelihood of that happening? and (3) What are the consequences?

Bishop [18] argues that potential threats to a system and the likelihood that they occur
must be assessed to determine whether an asset should be protected and to what extent.
According to Schneier [82], risk assessment considers all threats and estimates the expected
loss per incident and the expected number of incidents per year. A definition provided
by the American National Standards Institute [76] defines risk assessment as “a process
that commences with hazard identification and analysis, through which the probable
severity of harm or damage is established, followed by an estimate of the probability of
the incident or exposure occurring, and concluding with a statement of risk”. Rausand
and Haugen [78] differentiate between risk analysis as “systematic study to identify and
describe what can go wrong and what the causes, the likelihoods, and the consequences
might be” and risk assessment which is “The process of planning, preparing, performing,
and reporting a risk analysis, and evaluating the results against risk acceptance criteria”.

Once risks have been identified, they have to be addressed, constantly monitored, and
periodically re-assessed. This process of addressing, monitoring, and re-assessing is
referred to as risk management. Sharp [85] states that risk management “deals with all
the activities which are related to evaluating and reducing risks”. Lincke [59] similarly
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states that risk management “includes all stages of managing risk” and goes on to define
the stages as:

1. Establish scope and boundaries

2. Risk assessment

3. Risk treatment

Rausand and Haugen [78] define the risk management process similar to Lincke [59] but
point out that risk management is an iterative process.

An important distinction between risk and uncertainty has been made by Knight [54] in
1921 where risk is a variability that can be quantified in terms of probabilities whereas
uncertainty is a variability that cannot be quantified at all. Schneier [82] argues that
“there’s going to be a lot of guesswork” in the risk assessment because “the particular risks
we’re talking about are just too new and too poorly understood to be better quantized”.

Kappes [52] also argues that neither the probability of the occurrence of a damaging
event nor the amount of potential damage can be quantified in practice. Kappes [52]
goes on to say that not all risks can be completely mitigated but that there remains some
residual risk.

Rausand and Haugen [78] state that “All results from a quantitative risk analysis are
uncertain to some degree”. This uncertainty can have different causes, ranging from the
use of inadequate models to the failure to identify potential threats.

Determining threats and assessing risks is not a precise science, but rather relies on
expertise. In addition, new threats can emerge at any time that were unknown at the
time of the risk analysis. These are some reasons why complete security can not be
achieved.

3.2 Computer Networks
As Sharp [85] points out, “computers seldom work completely alone”, many tasks which
computers solve require other computers. Similarly, Tanenbaum and Wetherall [91]
argue that in the past an organisation’s computational needs could be met by a single
computer, but over time needs changed such that numerous interconnected computers,
called computer networks, are necessary to meet them. This section will discuss the
design and organisation of computer networks.

3.2.1 Types of Networks
According to Sharp [85], computer networks consist of nodes, connected wirelessly or by
cable. Users connect their end systems to these networks as hosts. Computer networks
can be classified by the size of the area the network should cover.
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Personal Area Network (PAN): A PAN covers communication “over the range of
a person”, according to Tanenbaum and Wetherall [91], or “just a few meters” [85]. An
example of a PAN would be the connection of peripherals, such as a mouse or keyboard,
to a computer using Bluetooth [91, 31].

Local Area Network (LAN): A LAN spans across “an apartment, a building,
company site or a university campus”, according to Baun [12], or in other words, it
spans “a few kilometers” [85]. They are privately owned networks, used to connect
personal computers such that they can exchange information and share resources, such
as printers [91].

Metropolitan Area Network (MAN): Different sizes for a MAN can be found in
literature, such as covering a city [91], “extending from 2 to 50 km” [80] or extending
across a big city with a maximum expansion of up to 100 km [12]. A MAN connects
several LANs and can be considered the middle ground between a LAN and Wide Area
Network (WAN) [80]. Early examples of MANs are cable television networks [91].

Wide Area Network (WAN): Most sources state that a WAN covers a country or
continent [91, 12, 80, 85]. Some sources extend the range even to the entire world [80,
85].

Tanenbaum and Wetherall [91] discuss WANs in great detail, stating that they are used
to connecting offices that contain hosts to each other. The part of the WAN connecting
the hosts is called the subnet, consisting of transmission lines and switching elements. It
should be noted that the term subnet was used to only refer to this part of the network
but has gained additional meaning in the context of network addressing. Two important
distinctions are made between LANs and WANs. The first difference is that the hosts
and the subnet are owned and operated by different people. The second difference lies in
what is connected to the network. While only individual computers are connected to a
LAN, in the case of a WAN it could be individual computers or even entire LANs, or
even MANs [12].

Global Area Network (GAN): Baun [12] introduces the GAN as a WAN that is
covering an unlimited geographic area. Examples of GANs are the Internet or globally
distributed offices of a company.

3.2.2 Networking Models
Tanenbaum and Wetherall [91] explain that networks are organised in layers or levels.
The number and purpose of each layer can differ from network to network. A protocol
defines how communication between layers is organised and will be discussed further in
Section 3.2.4. The combined set of layers and protocols is called a network architecture.
There are two important network architectures which are typically discussed in the
literature (see, for example, [91, 52, 80, 12]):
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1. The Open Systems Interconnection (OSI) Reference Model

2. The TCP/IP Reference Model

The OSI Reference Model: According to Kizza [53], in the early days of computing,
computers were standalone machines where the moving of files between computers was
done manually by removable disks. Due to the need for multiple computers to be able
to talk to each other, the International Standards Organization (ISO) was tasked with
developing the OSI model. The model consists of seven layers. While the logical data
flow occurs between layers of the same level, the real data flow is more complicated.
A message sent from system A to system B is passed down through the layers, each
overlying layer passing the message on to the next underlying layer until the message is
finally sent over a physical medium to the next system by the lowest layer. Each layer
adds control information that is used during communication. A message received at
system B takes the opposite direction through the layers where each layer is using the
provided control information to process the message. For higher layers, data transfer
appears as an end-to-end communication. Figure 3.1 presents the logical and real flow of
messages in this model.

Following is a description of the seven layers of the OSI model [80]:

1. The Physical Layer is concerned with the transmission of raw bits over the
network. Its main focus lies on the mechanical, electrical, and timing issues of
transmission. It has to define how 1-bit and 0-bit are represented.

2. The Data Link Layer packs the packets of the network layer into frames. It
attaches a checksum to each frame, allowing it to identify randomly occurring
transmission errors.

3. The Network Layer has the main task of finding a suitable path for the messages
to be transmitted by routing them from source to destination.

4. The Transport Layer enables the overlying layers to establish end-to-end com-
munication channels between two systems.

5. The Session Layer establishes, manages, and terminates connections or sessions
between applications on different machines.

6. The Presentation Layer is concerned with the syntax of a message to allow
computers with different internal data representations to communicate with each
other.

7. The Application Layer provides a variety of protocols that provide services to
users, such as Hypertext Transfer Protocol (HTTP).
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Figure 3.1: Layers of the OSI Reference Model [31].

The TCP/IP Reference Model: According to Tanenbaum and Wetherall [91], the
TCP/IP Reference Model was used in the Advanced Research Projects Agency Network
(ARPANET) and the worldwide Internet. The ARPANET was a research network that
eventually connected hundreds of universities and government installations. The name
of the TCP/IP model comes from the two primary protocols used in this architecture.
Major design goals were the ability to connect multiple networks seamlessly even if some
machines between source and destination would suddenly be put out of operation.

The model is organised into four layers [12] or five layers [80].

• The Link Layer: is responsible for the transmission of raw bits over various media.
Can be split into physical layer and network interface layer in a five-layered model.

• The Internet Layer: enables hosts of a network to insert messages to the network
and route them to their target independently. The messages could arrive out-of-
order at the destination, which requires that higher layers might need to rearrange
them.
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• The Transport Layer: is concerned with host-to-host communication and is
responsible for the reliability, flow control, and correction of messages.

• The Application Layer: contains all higher-level protocols such as HTTP, Secure
Shell (SSH), File Transfer Protocol (FTP), or Simple Mail Transfer Protocol
(SMTP).

3.2.3 Network Devices
A computer network is a system of loosely coupled devices that can communicate with
each other [53]. The end systems of a computer network are commonly called hosts, and
the intermediate switching devices are called network elements [53]. Network elements
can be attributed to the type of network they are used in or to the layer of the network
architecture they operate on. This section will present network devices relevant to this
thesis.

• Router: Routers operate mainly on the network layer [80, 53]. They are used to
interconnecting two or more networks [53] such as connecting a LAN to a WAN [80,
12]. Routers maintain dynamically updating routing tables [80, 53] which they use
to determine the best, fastest, and most efficient way of routing a packet to its
destination [53].

• Gateway: Gateways, which are also known as protocol converters [80] or protocol
translators [12], perform all functions of a Router and more [53] and operate at
any network layer [80]. They can perform protocol conversion between different
types of networks, architectures, or applications [53, 12]. They can be divided into
transport gateways that connect computers using different transport protocols and
application gateways that can translate messages between different formats.

3.2.4 Network Protocols
According to Baun [12], protocols are an agreement between participants of a communi-
cation inside a computer network on how to structure their messages. As discussed in
Section 3.2.2, network architectures are separated into layers. Each layer of a network
architecture has its protocols, defining the syntax and semantics of messages exchanged,
starting at the transmission of bits on the bottom layer to specifying how information
is displayed at the higher layers. Each layer addresses certain aspects of the overall
communication and provides an interface to the layer above and below. An interface
provides a set of operations that put together define a service.

Tanenbaum and Wetherall [91] argue that a service provides its interface only to the
layer above it, where the lower layer is the service provider and the upper layer is the
service user. The service defines operations it is ready to perform without revealing how
the operations are implemented.
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Two network protocols are important to this thesis, the Internet Protocol (IP) and User
Datagram Protocol (UDP).

IP: The IP forms the backbone of today’s Internet [52, 91]. It is located on the network
layer [83, 91]. Its first version IPv4 was designed in 1981 at a time when it was impossible
to predict how the Internet would develop [52]. Its successor IPv6 was supposed to
address some shortcomings such as the small address space [52]. It is a connection-less
protocol, meaning packets can be sent without having to establish a connection to the
destination prior [83]. Each packet could get routed over different paths, without the
sender knowing whether packets were received by intermediate nodes or the receiver [52].
Packets are being transported on a best-effort basis, meaning that the receiving of the
packets at the destination is not guaranteed [91].

IP is split into header and body payload [91]. The header consists of a fixed part of 20
bytes and a variable length optional part [91] and is shown in Figure 3.2. Schwenk [83]
describes the parts of the IP header as follows:

• Version: Contains the version this IP packet is using. Allowed values are 4 and 6.

• IHL: The Internet Header Length (IHL) describes the length of the header in
multiples of 32 bits.

• Differentiated services: This field allows routers to assign preference to IP
packets.

• Total length: This field contains the total length of the entire IP packet in bytes.

• Identification, Flags, and Fragment offset: Each network limits the packets
travelling on it to a maximum size. By splitting up larger packets into fragments,
they can be sent over the network [91]. These fields are used to control the
fragmentation of the IP packet.

• Time-to-live: This field’s value is decremented by each router it passes through,
preventing IP packets from circulating endlessly.

• Protocol: This field specifies which transport layer protocol the packet is trans-
porting.

• Header checksum: This checksum is calculated over all header fields and must
be recalculated if some header fields change, such as the time-to-live field.

• Source address: The source address of the IP packet, allows returning responses
or error messages to the sender.

• Destination address: The IP packet is forwarded to this address on the network.
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Figure 3.2: The IPv4 header [91].

Figure 3.3: The UDP header [91].

UDP: According to Kappes [52], UDP provides a connection-less, best-effort service.
A connection-less service does not have to establish a connection with the receiving
system. An application passes the UDP service a datagram which the service can send
out immediately. The term best-effort refers to the fact that UDP will not try to resend
lost datagrams. A UDP message consists of a header and a payload [91]. The UDP
header consists only of four parts [80], as shown in Figure 3.3:

• Source port: Contains the address of the application that created the message.

• Destination port: Contains the address of the application that receives the
message.

• UDP length: Contains the total number of bytes of the message, including the
header.

• UDP checksum: This optional field is used for error detection [91].

3.2.5 Static and Dynamic Routing
Network devices, such as routers, need to know where to route received data packets.
According to Sadiku and Akujuobi [80], there are two ways through which a router can
receive this information:

1. Static Routing: In this case, the routing information is stored in the routing table
manually [80]. Because routing decisions are made in advance, it is not possible to
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respond to failures [91]. Since the routing table has to be updated manually, static
routing is only feasible for small environments [80].

2. Dynamic Routing: Dynamic routing algorithms change their routing decisions
based on changes in the network or network traffic itself [91]. Routers can acquire
necessary information by using certain protocols [80] such as the Intermediate
System to Intermediate System Protocol (IS-IS) or Open Shortest Path First
(OSPF) protocol.

3.2.6 Computer Network Performance
This thesis will measure the performance of the WireGuard VPN protocol. This section
will take a look at the performance metrics of computer networks in general. Section 7.2
will then go on and discuss performance metrics for testing WireGuard in particular.

Obaidat and Boudriga [73] provide common goals for the evaluation of the performance
of communication networks. Of interest for this thesis are the following:

• Capacity planning: The goal of capacity planning is to make sure that sufficient
resources are available to meet the demand cost-effectively. Steps during capacity
planning consist of instrumenting the system, observing the system, selecting the
workload, and selecting the best configuration.

• Performance debugging: In case a system is working as intended but displays a
poorer performance than expected it might be necessary to carry out a performance
analysis.

Three general methods for evaluating the performance of a computer and telecommuni-
cation system can be discerned [73]:

1. Analytic Modeling: Analytic models provide an approximation of the test system
and are computationally inexpensive.

2. Simulation: Simulations provide flexible, accurate, and credible results. How-
ever, designing, verifying, and validating the model requires a considerable time
investment.

3. Measurement and Testing: While real measurements and experiments on a
test system or the actual system are the most expensive, they provide the most
accurate results.

An important part when evaluating the performance of a system is determining adequate
performance metrics. Lilja [58] states that a performance metric is a measured value
that describes the performance of a system. According to Obaidat and Boudriga [73],
performance metrics should be relevant and meaningful and allow a comparison between
systems. The basic characteristics that can be measured are [58]:
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• Count: For example, how many requests were received, or how many requests were
not answered.

• Duration: It is typically of interest how long some operation takes to return a value.

• Size: The size of a response or the storage a system requires could be of interest.

Sadiku and Musa [81] provide a list of common performance metrics for computer
networks:

• Capacity: A counted metric that provides a value for the quantity of traffic with
which a network can cope. This metric provides an upper limit which the network
can handle in theory. It does not provide any insights into the actual performance
of a network but is useful for planing networks.

• Throughput: This counted metric expresses how much traffic was received suc-
cessfully at the intended destination. The throughput can be at most equivalent to
the capacity of the network. Although it is a vital metric, it does not tell about
data loss or whether the data arriving at the destination was corrupted. It is an
important metric in high traffic environments.

• Latency: The latency is a duration-based metric that describes the time required
to transmit a certain amount of data. It does indicate the responsiveness of a
system. However, this metric is comparatively volatile, potentially increasing at
times of high load. It is a crucial metric in time sensitive communication systems.

• Loss Probability: Traffic can get lost during communication. This counted
metric expresses the probability of traffic being lost. A high loss probability can
increase latency if data has to be re-sent. A low loss probability indicates a reliable
network which can be crucial for ensuring the integrity of systems. However, low
loss probability alone does not indicate a fast network. Other metrics such as
throughput or latency could still be an issue. Thus, this metric is best used in
conjunction with other performance metrics.

• Queue length: This measure provides the length of a buffer in case a queue is
necessary during communication and is a size-based metric. A long queue can
indicate congestion in the network or simply high traffic in normal operation.
As such, this metric alone can be misleading and is best used for fine-tuning
performance.

• Jitter: Jitter is the change in delay from packet to packet, or in other words, the
variation in packet delivery timing. Similar to queue length, it can indicate network
congestion. However, the root cause of high jitter can be manifold, and thus this
metric is often used for fine-tuning performance. This metric is of importance for
streaming services [73].
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This thesis will focus on the two fundamental metrics in which network performance
is measured: throughput and latency [12, 75]. Peterson and Davie [75] discuss the
relationship between throughput and latency. While throughput and latency can define
the performance characteristics of a network, their importance depends on the application.
For a client sending only a 1-byte message and receiving a 1-byte response in return, the
latency of the network will have more impact on the communication than the throughput.
In contrast, a client trying to receive 25 MB will be more affected by the throughput
the network can provide than the latency. Throughput, and implicitly capacity, is a
central performance metric for a VPN server as it directly affects the number of users
that can work in parallel. In the case of the WireGuard VPN regarded in this thesis,
VPN clients are expected to send messages of a few hundred bytes as well as multiple
megabytes. The latency of WireGuard handshakes, which will be discussed in more detail
in Section 5.4.2, directly affects the performance of a WireGuard VPN as a handshake
needs to be exchanged before encrypted data can be sent. Because of this, throughput
as well as latency are considered to be of the most importance and will be discussed in
more detail here.

Throughput: The terms bandwidth, capacity, throughput, and data rate can be found
in the literature with slightly different meanings.

Peterson and Davie [75] explain that bandwidth used to denote the width of a frequency
band. A telephone line supporting the frequency from 300Hertz (Hz) to 3300Hz would
have a bandwidth of 3000Hz. In the context of computer networks, bandwidth typically
refers to the number of bits per second a communication line can transmit. According
to Peterson and Davie [75], this is also sometimes called the data rate. Peterson and
Davie [75] go on to define throughput as the measured performance of a communication line
whereas bandwidth denotes the maximum data rate. In contrast, Sadiku and Musa [81],
as discussed above, define the maximum data rate as the capacity and uses the term
throughput similar to Peterson and Davie [75]. This thesis will use the term capacity as
denoting the maximum data rate of the communication line and throughput as denoting
the measured data rate of the test target.

The throughput of a communication line is given by the number of bits that can be
transmitted in a certain period [75]. The unit that is typically used is bits per second
(bs) or sometimes bytes per second (Bs). For example, a throughput of 1Mbs states that
the network can transmit one million bits in a second. Another way of thinking about
throughput is that in a network of 1Mbs it takes 1 microsecond (µs) to transmit a single
bit [75].

In order to provide context to the performance measurements in Section 7, this para-
graph will provide some common network capacity values. Ethernet is one of the most
pervasive network access methods used, commonly used in LANs [80]. Tanenbaum and
Wetherall [91] provide a detailed description of different Ethernet standards. Classical
Ethernet used a single long cable around a building where all computers were attached.
These cables were limited by a maximum length of a couple of hundred metres and could
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only connect around 100 computers. Repeaters (see Section 3.2.3) had to be used to
extend the networks. This early form of the Ethernet was standardised for a capacity
of 10Mbs. Moving away from the single long cable architecture, a station called hub
(see Section 3.2.3) was used where each computer was connected by a dedicated cable.
However, the hub architecture was logically equivalent to the single cable architecture,
thus not increasing the capacity of the network. The switched Ethernet was developed
to address the increasing capacity demand by using switches instead of hubs (see Sec-
tion 3.2.3). A switch was able to use the available capacity of 10Mbs more efficiently by
only forwarding frames to destined ports. To meet the continually increasing capacity
demand, further Ethernet standards were devised. Fast Ethernet increased the capacity
of the network from 10Mbs to 100Mbs and Gigabit Ethernet up to 1000Mbs (or 1Gbs).
The 10-Gigabit Ethernet, with a capacity of 10Gbs, was intended to be used in data
centres and with MANs. According to Gumaste [41], standards for 200-Gigabit and
400-Gigabit were ready in 2020 and the arrival of terabit Ethernet was just a matter of
time. The highest currently available Ethernet capacity is standardised in IEEE P802.3df
consisting of 800-Gigabit Ethernet and was approved in 2024 [46].

Latency: The terms latency and delay are either used synonymous or with different
meanings in the literature. To avoid confusion, throughout this thesis the term latency
will denote the sum of all delays that can occur when a message is transmitted. Peterson
and Davie [75] state that latency can be thought of as consisting of three parts:

1. Propagation delay: The transmission speed of any message can not surpass that
of the speed of light. A lower bound for this delay can be calculated by dividing the
distance the message has to travel over the speed of light. However, light travels
across different media at different speeds, resulting generally in higher propagation
delays.

2. Transmit delay: The transmission delay depends on the size of the packet that
has to be sent and the capacity of the network. If, in theory, the packet size would
only be one bit, the transmission delay becomes irrelevant [12].

3. Queue delay: Intermediate devices inside the network, such as switches and
routers, might introduce some delay as these devices generally need to store packets
for some time before being able to process and forward them.

The total latency can thus be defined as Latency = Propagation delay+Transmit delay+
Queue delay. According to Peterson and Davie [75], rather than the one-way latency,
the RTT, which indicates how long it takes to send one message from one end of the
network to the other and back, is sometimes of more interest.

RIPE Atlas [79] is a global open measurement network, measuring Internet connectivity.
It provides geographically distributed devices to carry out active measurements, as stated
by Alvarez and Argyraki [4]. To present some typical RTT values for Austria, the open
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Target: Austria (193.171.255.2)
Austria 8.152 ms
Germany 16.554 ms
France 18.96 ms
Netherlands 17.983 ms
Hungary 4.515 ms
Sweden 29.883 ms
USA 93.726 ms

Table 3.1: Minimum RTTs from different countries to Austria.

database was searched for measurements targeting IP addresses in Austria. Some of the
results are presented in Table 3.1.

3.2.7 Network Security and Threats

Schneier [82] argues that “network security goes hand in hand with computer security”
since many devices are nowadays connected to the Internet. Since it is already difficult
to secure a standalone computer, it is even more difficult to secure a connected computer
because attackers can use the network to access the system.

Sharp [85] argues that wanted network traffic needs to be protected such that the
appropriate information security goals, as discussed in Section 3.1.1, are met while
preventing unwanted network traffic from passing. Sharp [85] goes on to argue that
threats to meeting the security goals come from three fundamental difficulties:

1. Physical Security: It is difficult or even impossible to assert that all physical
connections in a network are protected. Hence, it should be accepted that all traffic
passing through a network could potentially be monitored, recorded, or modified.
As a result, security goals discussed in Section 3.1.1 cannot be achieved without
further measures.

2. Limited Bandwidth: One possible threat to the availability security goal is the
fact that all communication networks have a limited capacity. By overloading a
communication network, it becomes unavailable for other transmissions.

3. Authentication: Asserting the identity of a communication partner is difficult
because it is not possible to directly see the other partner. Protocols such as IP or
UDP do not provide any form of authentication (see Section 3.2.4).

Schwenk [83] is dividing threats encountered on the Internet into two categories, passive
and active threats:
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1. Passive Threats: Passive attacks aim at acquiring data transmitted over a
network. This could break the confidentiality of the transmission. Using a private
network can help protect against such a threat.

2. Active Threats: In an active attack, the attacker is modifying transmissions
or even inserting fake transmissions. Modification of messages would break the
integrity of transmissions while faking transmissions would break authenticity. The
availability could be broken by dropping intercepted packets instead of passing
them on.

Kappes [52] argues that the transmission between two participants could be disrupted in
the following four ways:

1. Intercept: By intercepting a message an attacker could read the contents of the
message.

2. Manipulate: An attacker could change transmitted messages.

3. Deceiving: An attacker could impersonate the sender, receiver, or even both ends
of a communication.

4. Interrupt: An attacker could disturb the communication by interrupting the
transmission.

Similar to the threats discussed by Schwenk [83], these four attacks target the confiden-
tiality, integrity, authenticity, availability, and non-repudiation of the network.

3.2.8 Cloud Computing Model
According to Surianarayanan and Chelliah [90] different computing models fit different
needs. Cloud computing is an Internet-based computing model where resources are rent
out in order to efficiently utilize computing resources.

Two major cloud models can be distinguished, public and private cloud. According to
Sehgal, Bhatt, and Acken [84] a public cloud offers its services to a wide range of users
that can be anywhere around the world. In a private cloud access is restricted to a certain
set of users and can be accessed over a private LAN.

An example of a cloud computing application, according to Surianarayanan and Chel-
liah [90], is the storage of patient data in health care contexts. Personal information and
health data can be stored in the cloud and accessed by doctors anytime and anywhere.

Surianarayanan and Chelliah [90] discuss security threats related to cloud computing
models. When data is being sent between user and cloud an attacker could passively
intercept it. This would result in a loss of confidentiality (see Section 3.1.1). By using
encryption this eavesdropping attack can be prevented. During a man in the middle
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attack, an attacker sitting between the user and the cloud could impersonate the user by
actively intercepting and changing messages. Such an attack can be prevented by utilising
authentication and message integrity checks. Section 3.3 will discuss the prevention
methods in more detail.

3.3 Cryptography
Schwenk [83] argues that cryptographic methods are essential for protecting Internet
communication and can be used to support the security goals discussed in Section 3.1.1.
After introducing fundamental definitions in Section 3.3.1 the Sections 3.3.2 through 3.3.6
will discuss cryptographic primitives that are used by WireGuard. A detailed description
of WireGuard is given in Section 5.4.

3.3.1 Motivation and Fundamentals

Literature provides different meanings of cryptography. Eckert [31] discusses that cryp-
tography is an old teaching about the encryption and decryption of messages to keep
information confidential from third parties. Similarly, Bishop [18] argues that the word
cryptography comes from the Greek meaning ’secret writing’ and that it is the science
of concealing meaning with the aim of keeping enciphered information secret. Today,
cryptography provides the cornerstone for secure communication. Sharp [85] discusses
that cryptography is a fundamental technique to prevent the disclosure of confidential
data and in its modern form it can be used to achieve security goals such as confidentiality,
authenticity, and non-repudiation. Wong [100] explains that cryptography is “the science
aiming to defend protocols against saboteurs”. Menezes, Van Oorschot, and Vanstone [67]
define cryptography to be “the study of mathematical techniques related to aspects of
information security such as confidentiality, data integrity, entity authentication, and data
origin authentication”. Taken together it can be stated that cryptography is concerned
with the protection of security goals by utilising mathematical techniques to allow for
encryption and decryption of messages.

Cryptography considers three participants in a two-party communication, the sender
which is the legitimate transmitter of information, commonly referred to as Alice, the
receiver which is the intended recipient of information, commonly referred to as Bob, and
the adversary, commonly referred to as Eve, which tries to defeat the security goals [67].
A plaintext m is the original, understandable form of a message and the ciphertext c is
the scrambled form of the message [85]. Encryption is the method of disguising the actual
data of a plaintext, decryption is the reverse process, as stated by Rao and Nayak [77].
An encryption scheme consists of an encryption function E and a decryption function D
such that D(E(m)) = m [100]. By using an encryption scheme, Alice and Bob can send
messages over an unsecured channel without Eve being able to read the content of the
messages. Figure 3.4 presents the fundamental notions of a cryptographic scheme, as
described above.
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Figure 3.4: Two-party communication using a cryptographic scheme (based on [100]).

Figure 3.5: Exemplary workings of a hash function [100].

3.3.2 Hash Functions
According to Wong [100], “hash functions are everywhere in cryptography”. A hash
function takes any data as input, such as files, videos, or messages, and produces a string
in return, called a digest. Figure 3.5 shows an example of a hash function. A hash
function is deterministic, it produces the same output whenever given the same input.
While the input can be of any size, even empty, the output is of fixed length. Hash
functions must provide three security properties in order to be of cryptographic use:

1. Pre-image resistance: This property, also referred to as one-wayness, ensures
that it is computationally infeasible to recover the input if given an output.

2. Second pre-image resistance: If given a hash input and the resulting digest,
it should be computationally infeasible to find a different input that produces the
same digest.

3. Collision resistance: This property states that it is computationally infeasible to
produce two different inputs that generate the same digest.

Bishop [18] provides this practical example: assume Alice wants to send Bob a message
such that Bob can verify that the message has not been altered. Alice applies a hash
function on the message to generate a digest. Alice then sends the message and the digest
to Bob using two different channels. Bob can generate a digest from the message and
compare it to the digest he received. If both digests match, Bob can assume the message
has not been altered.
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Figure 3.6: Exemplary workings of a MAC function [100].

Figure 3.7: Exemplary workings of a HMAC function (based on [100]).

3.3.3 Message Authentication Codes
Wong [100] argues that there can be no confidentiality and authentication without using
secret keys. By mixing a hash function with a secret key, the resulting function is called
a Message Authentication Code, sometimes also keyed hash [31]. Wong goes on to state
that a Message Authentication Code (MAC) can be used to protect the integrity of
data. Similar to a hash function, a MAC takes as input any data and additionally also a
secret key and produces as output an authentication tag. A MAC can be thought of as a
personalised hash function where only the participants in possession of the secret key
can produce the authentication tag. See Figure 3.6 of an example MAC function.

A standardised MAC that is widely used in practice is the hash-based Message Authentica-
tion Code (HMAC) [100, 83], which was invented by Bellare, Canetti, and Krawczyk [13].
The main idea behind the HMAC is to use hash functions to create a MAC algorithm, as
stated by Banoth and Regar [10]. The general HMAC algorithm is as follows [100]:

1. Create two new secret keys from the secret key.

2. Concatenate the first secret key with the message and hash the result.

3. Concatenate the second secret key with the result from the previous step.

By chaining two hash calculations the risk of collisions is reduced significantly [85]. See
Figure 3.7 for an example of an HMAC algorithm.

Blake2, which is used by WireGuard, is a hash function designed by Aumasson et al. [8].
The Blake2 hash function can be adopted for different use cases:
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Figure 3.8: Exemplary workings of an AEAD construction [100].

1. Blake2s is a hash function specifically designed for small architectures.

2. Keyed-Blake2s is a keyed version of the hash function used for MACs.

3. HMAC-Blake2s is an HMAC construction using Blake2s.

3.3.4 Authenticated Encryption with Associated Data

Wong [100] argues that history has shown that developers are having a hard time
applying cryptography in the real world. Efforts have been made to standardise all-in-one
constructions that should simplify the use of encryption. Authenticated Encryption with
Additional Data (AEAD) is such an all-in-one construction.

Authenticated Encryption (AE) in its broader sense refers to the combination of encryption
with integrity protection and in its narrower sense only to those modes that use MAC to
protect the integrity [83]. Because the MAC calculations can be done independently of
the encryption it is possible to include additional associated data besides the ciphertext,
resulting in AEAD [83] which is the most current way of encrypting data [100]. This
associated data is optional and can contain metadata or be empty and will not be
encrypted [100]. See Figure 3.8 for an example AEAD.

A widely adopted AEAD construction is ChaCha20-Poly1305 [100]. It combines the
ChaCha20 stream cipher with the Poly1305 MAC, both designed by Bernstein [16]. A
stream cipher produces a series of random bytes with the same length as the plaintext
and generates a ciphertext by XORing the plaintext with the random bytes [100].
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Figure 3.9: Illustration of the Diffie-Hellman key exchange [10].

3.3.5 Diffie-Hellman Key Exchange
In a symmetric encryption scheme, messages between sender and receiver are secured by
a single secret key which is assumed that only those two parties know [83]. If Alice and
Bob want to communicate using symmetric encryption, one of them needs to create the
secret key and send it to the other. Sending a secret key over a network where an attacker
is passively snooping in on the transmission would result in the attacker acquiring the
secret key and being able to decrypt all messages [100]. A key exchange is an asymmetric
cryptographic primitive that allows two peers to agree on a shared secret [100]. The key
exchange starts with the participants Alice and Bob each generating a key pair, consisting
of a private (or secret) key and a public key [100]. Alice and Bob can then exchange
their public keys and use them together with their respective private keys to derive the
same shared secret [100]. The first practical asymmetric key exchange was proposed by
Diffie and Hellman [27] and is commonly referred to as Diffie-Hellman Key Exchange
(DHKE) [100, 83] or Diffie-Hellman Key Agreement [85, 67]. The concept behind DHKE
is illustrated in Figure 3.9, where the common colour represents the public keys of Alice
and Bob and the secret colours represent the private keys.

The DHKE algorithm can be implemented using different kinds of mathematical groups.
Elliptic curves (EC) are a type of curves studied in mathematics and can be used
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to implement DHKE. A DHKE using elliptic curves is referred to as Elliptic Curve
Diffie-Hellman Key Exchange (ECDH) [100].

3.3.6 Key Derivation Function
A Key Derivation Function (KDF) is a common pattern in cryptography that can derive
several secrets from one initial secret [100]. Krawczyk [55] states that the goal of a KDF
is to derive a cryptographically strong key from an initial random keying material, such
as from the result of a DHKE. The notion of a cryptographically strong key means that
the key cannot be distinguished from a random string of the same length in a feasible
time. The most popular KDF is the HMAC-based Key Derivation Function (HKDF) [83]
introduced by Krawczyk [55] and is built on top of HMAC [100].

3.4 Software Testing
According to Mishra and Mohanty [69], software testing fulfils a variety of objectives.
The main objective of software testing is the verification and validation of software.
Verification is concerned with checking whether the software meets its specifications.
Validation checks whether the software meets its user needs.

The performance of a software system, such as a VPN, is determined both by a specification
and user needs. O’Regan [72] points out that performance testing is one of multiple test
types performed during the development of a software system.

This section will present the fundamentals of software testing. Section 6 will then go into
more detail about performance testing.

3.4.1 Motivation and Limits
As Bernhart and Breiteneder [15] point out, no software is without defects. This is why,
according to Leloudas [56], software testing is essential to ensure the quality of a software
system and that it performs as expected.

Subramanian et al. [89] state that software testing as a separate entity evolved later in
the history of software development. In the beginning, testing was limited to debugging
to develop a bug-free product. However, the absence of bugs does not mean that the
software will meet the expected requirements. Over time, testing evolved into a way of
thinking, identifying testing areas of interest and what can and cannot be tested.

Some limiting factors restrict the results of software tests. According to Leloudas [56], a
lack of clear requirements and time constraints are common challenges in software testing
as well as a shortage of skilled testers.

O’Regan [72] states that the test manager provides crucial recommendations in the
decision of whether a software system should be released or not by highlighting any risks
that are associated with a software product. Software development is deadline-driven,
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missed deadlines can lead to a compressed testing schedule. This in turn may lead to
a shortened testing cycle, which could result in insufficient data to make an informed
decision about the state of the software system.

Software testing is tasked with determining if the functionality of a software product is
correct and complete. However, software testing cannot prove such claims [15].

3.4.2 Functional- and Non-Functional Testing
There are two common testing types defined in the literature, functional and non-
functional testing (see, for example, [56, 15]).

Functional testing is concerned with whether a software product meets the user’s re-
quirements and works as expected [56]. The primary focus lies on the product’s func-
tionality [56] and “what” the system should do [88]. The main objective is to check the
functional verification of the product [15], such as the correctness, appropriateness, and
completeness [88]. This type of testing is most commonly associated with testing [88].

Non-functional testing covers everything not regarded as plain functionality. This includes
but is not limited to, the performance, security, and usability of a product [56]. It checks
“how” a system behaves [88]. Non-functional testing should be done at the earliest
stage and all test levels [88]. The model of quality by ISO Central Secretary [47]
forgoes the usage of the non-functional category and defines nine quality characteristics
for a product: functional suitability, performance efficiency, compatibility, interaction
capability, reliability, security, maintainability, flexibility, and safety.

Testing of the performance efficiency will be further discussed in Section 6.

3.4.3 Test Planning, Analysis and Design, and Execution
O’Regan [72] states that the quality of software testing relies on the maturity of the
testing process. A good test process must include test planning, analysis and designing,
and execution. Stapp, Roman, and Pilaeten [88] argue that the test process may or may
not be formally defined.

Test planning: According to Leloudas [56], test planning is an essential activity
in software testing. It involves creating a comprehensive test plan, starting with the
definition of testing objectives. A testing objective defines the goals and outcomes that
testing should achieve. Testing objectives can vary, but one of the main objectives is
ensuring the quality of the software product. Defining the scope of a test is critical, as
it identifies the areas and functions of interest and critically also the boundaries. Test
planning involves selecting an appropriate testing approach and technique. Additionally,
the identification and preparation of test data is also part of the test planning phase.
Stapp, Roman, and Pilaeten [88] state that during the planning phase it is determined
“what to test”.
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Test analysis and design: Stapp, Roman, and Pilaeten [88] state that during the
analysis and design phase the question of “how to test the system” is being addressed. It
starts by transforming the test objectives of the planning phase into test conditions. Test
conditions are any kind of feature that can be checked during testing and typically do
not contain expected results. Test cases and test data can then be derived from the text
conditions. The high-level test cases are then implemented into concrete test procedures
which are grouped into test suites. The test environment needs to be built during this
phase.

Test execution: According to Stapp, Roman, and Pilaeten [88], during this phase the
test suites are carried out. The version data of test items, test tools, and other testware
must be registered. Tests are carried out manually or automated. The obtained test
results are compared to the expected results. The test results are analysed to determine
their cause and found defects are reported. The execution of the test is logged.

The basic test process outlined above was followed during the performance tests discussed
in Section 7.

3.5 Statistics
Test data sets collected during software testing might make it necessary to use statistical
analysis methods to present and comprehend the underlying information. As stated by
Molyneaux [70] “statistical analysis lies at the heart of all automated performance test
tools”. This section will introduce the fundamental notions for analysing and displaying
data sets.

According to Levine and Stephan [57], a variable is a characteristic of an item. Variables
can be either categorical or numerical. While values of categorical variables are selected
from a fixed list of categories, numerical variables are counted or measured. A counted
numerical variable is called discrete, a measured numerical variable continuous.

3.5.1 Statistical Measures
According to Levine and Stephan [57], most numerical variables tend to cluster around
a specific value that describes the central tendency of the variable. There are two
common methods of identifying this property of a variable, the mean and the median.
Fahrmeir et al. [33] explain that the mean and median characterise the centre of a data
set distribution.

The mean is defined as the sum of all data values divided by the number of data values.
Because the mean uses all data values in a set it can be distorted by individual extreme
values [57].

The median is defined as the middle value of an ordered set of data values when the
number of data values is odd. In case the number of data values is even, the mean of the
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Figure 3.10: Example of a pie chart [57].

middle two data values is considered the median. The median is not affected by extreme
values [57]. At least 50% of values of the data set are smaller or equal to the median,
and at least 50% of values are equal or larger than the median [33].

While mean and median describe the central tendency of a data set, quartiles describe
the relative position of a data value to the other values of a numeric variable, as discussed
by Levine and Stephan [57]. Quartiles split a data set into four equal parts such that
25% of the ordered data values are smaller than the first quartile and 75% of the data
values are smaller than the third quartile. The second quartile is the same as the median.

3.5.2 Displaying Statistical Results
Wilke [99] argues that the primary aim of data visualisation is to convey data accurately
and must not be misleading. Yet, good visualisation can enhance the message of the
visualisation. Thus, data visualisation should aim to be aesthetically pleasing. Wilke [99]
acknowledges that aesthetic aspects are subjective and can vary over time. The plots
presented in this section will be used to create aesthetically pleasing and accurate figures
for performance test results.

Pie charts can be used for categorical variables. A pie chart presents the amount of
each category as wedges of a circle where the angle of the wedge, and thus its area, is
proportional to the amount [33]. Wilke [99] argues that pie charts work best to visualise
simple fractions in small datasets. Figure 3.10 presents an example pie chart of a survey
on how adults pay their monthly bills. The answers were grouped into the categories
“Cash”, “Check”, “Electronic/online”, and “Other/don’t know”.

A bar plot is another way to present categorical variables. For each category, a separate
bar is drawn typically on the horizontal axis with the height of the bar representing
the amount of that category in the data set [33]. In a grouped bar plot a group of bars
is drawn on the horizontal axis based on one category and the height for each bar is
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Figure 3.11: Example of a stacked bar plot [99].

Figure 3.12: Example of a time-series plot [99].

determined by another category [99]. By stacking the bars instead of drawing them side
by side, the resulting plot is a stacked bar plot. Wilke [99] argues that a stacked bar plot
is useful when the sum of the amounts of each bar are meaningful and that this plot
“works well for the visualisation of many sets of proportions or time series of proportions”.
Figure 3.11 presents an example of a stacked bar plot on the number of passengers on
the Titanic. The gender of the passengers was used as a category.

A time-series plot can be used to present numeric variables. The time-series plot
conventionally presents units of time on the X-axis and units of the variable on the
Y-axis [57]. This plot is used to visualise temporally ordered data [99]. Figure 3.12
presents an example of a time-series plot. The data presents the monthly submissions to
the preprint server bioRxiv.

The boxplot is a way to visualise the shape of a set of data values. According to Levine
and Stephan [57], a boxplot is a five-number summary of a data set, consisting of the
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Figure 3.13: Example of a boxplot [99].

smallest value, the first quartile, the median, the third quartile, and the largest value.
These five values are typically plotted as horizontal lines, connected by a vertical line,
with the first quartile, median, and third quartile forming a box. Wilke [99] states that
the first and last value of the boxplot could, instead of the smallest and largest value,
extend to the maximum or minimum values that fall within 1.5 times the range of the
box. Data values lying outside this range are referred to as outliers. Figure 3.13 presents
an example box plot. On the left is a random cloud of points and on the right is the
corresponding boxplot.

Wilke [99] argues that a more modern presentation of a data set shape is the violin plot,
which provides a more nuanced picture. The violin plot begins at the minimum data
value and stops at the maximum data value. The thickness of the plot corresponds to
the density of the data set. Figure 3.14 presents an example violin plot. On the left is a
random cloud of points and on the right is the corresponding violin plot.

As pointed out by Matejka and Fitzmaurice [64], different distributions can result in the
same boxplot. For this reason, this thesis will make use of both, boxplot and violin plot.
While the boxplot provides a quick overview of the underlying distribution, the violin
plot can provide additional insight into a distribution.
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Figure 3.14: Example of a violin plot [99].
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CHAPTER 4
Hardware Security Modules

This thesis will measure the performance of a VPN that is using a HSM in order to
determine if this setup is capable of serving in a high-performance environment. This
chapter will discuss what an HSM is in Section 4.1, Section 4.2 will discuss how keys are
managed and Section 4.3 issues about physical security. Section 4.4 will present methods
of scaling HSMs that can be found in the literature. Finally, Section 4.5 will present two
HSMs as examples used during performance testing.

4.1 Purpose and Use Cases
A broad definition of an HSM by Mavrovouniotis and Ganley [65] is that an HSM is “any
hardware device, with some level of tamper-resistance, which is used for cryptographic
processing”. A more detailed definition of an HSM is provided by Sommerhalder [86],
stating that HSMs are specialised devices that perform cryptographic operations. They
can use a random number source to generate public-private key pairs, manage keys, and
store them. Additionally, they can be used to do encryption, decryption, and hashing.
Some devices provide tamper-proofing features such as logging, and alerting mechanisms.

A comprehensive description of HSMs by Kamaraju, Ali, and Deepak [51] states that an
HSM is a hardened physical computing device that specialises in key creation, key storage
and execution of cryptographic processes. HSMs can be used in the form of a plug-in
card that is used directly inside a device or as a network-accessible device. The aim is to
provide a trusted computing platform that protects confidential materials. Kamaraju,
Ali, and Deepak [51] go on to argue that the separation of cryptographic operations from
business and database logic increases security.

HSMs are typically deployed in highly security-sensitive environments. In order to ensure
that HSMs demonstrate a certain level of quality these devices commonly comply with
one or more standards [65]. These standards specify security requirements that cover the
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Figure 4.1: Example 3-tier architecture using an HSM [65].

design and implementation of an HSM. Examples of such standards are FIPS 140 [87],
Common Criteria [25], or PCI-HSM [24].

As discussed in Section 1.1, HSMs can be used in a variety of situations and use cases.
They are used for protecting personal data such as health records, for bulk encryption
in satellite broadcasting, and as trusted third-party services [65]. Their primary use is
for key management and payment [86]. Figure 4.1 presents a typical 3-tier architecture
containing an HSM. Data received by the web server is passed to the application server,
which encrypts the data with the help of the HSM and passes it on to the database server
for storage.

4.2 Key Management
Kamaraju, Ali, and Deepak [51] state that security services such as encryption and
decryption of data rely on cryptographic keys. Managing these keys securely is of
importance. Tasks include key generation and distribution, storage and secure usage, and
lifecycle management such as key rotation, backup, revocation, suspension, and deletion.

Mavrovouniotis and Ganley [65] argue that cryptography relies on the protection and
proper use of keys. All keys stored inside the HSM should be backed up. Secret keys
stored by the HSM must never appear in plain outside the confines of the HSM. Aside
from protecting the confidentiality of secret keys, the integrity must also be protected.
To this end, attackers must not be able to modify or misuse a key.

Mavrovouniotis and Ganley [65] state that there are two methods for protecting keys
used by an HSM:

40



4.3. Physical Security

1. Storing all keys inside the HSM: All keys are stored inside the HSM. When
using the HSM a pointer to the key to be used must be provided in the command.
This method has two drawbacks. First, in case the HSM loses its keys all keys
must be reloaded into the HSM. Second, key management becomes more difficult if
multiple HSMs are used.

2. Storing a single master key inside the HSM: A single master key is stored
inside the HSM. All other keys are encrypted with the master key. The encrypted
keys are stored in a key database accessible to applications.

4.3 Physical Security
According to Mavrovouniotis and Ganley [65], physical security of an HSM device is a
crucial aspect of providing high-grade security. An HSM contains a tamper-resistant core
that contains all sensitive components. All cryptographic processing is carried out in the
core system. The core system is provided with battery-backed volatile memory for the
storage of plaintext cryptographic keys. Tamper-resistance can be achieved by wrapping
the core system around with a fine electronic mesh and encasing it all in epoxy resin.
An attacker trying to penetrate the resin would likely break the mesh. In case the core
system detects such a physical attack, the secure memory will be deleted.

Physical security around the device needs to be strict. An HSM is typically locked inside
a secure cabinet, located within a high-security area. The doors of the secure cabinet
can be secured with dual physical control, meaning they need two controls to be opened.
Controls could be a key, number combination, or a biometric key.

4.4 Scaling Methods
Two general ways to scaling resource can be distinguished, according to Sehgal, Bhatt,
and Acken [84]:

• Vertical Scale (scale up): With this scaling method, the resources of existing
systems are increased, for example by adding memory, Central Processing Unit
(CPU) cores or hard disk space. Another option would be to replace existing
systems with systems having more resources.

• Horizontal Scale (scale out): This scaling method adds systems of similar or
the same size to the existing system to increase overall available resources. The
applications must be able to run in a distributed manner in order to be able to
scale in this way.

On-premise HSMs have only limited scalability, according to Han et al. [43]. Because
all operations that require the secret keys managed by the HSM have to be carried out
inside the HSM, the HSM becomes a performance bottleneck of the overall system.
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Han et al. [43] propose a solution where a single HSM works in tandem with multiple
software Key Management Systems (KMSs). In their solution the HSM is storing a root
secret key that derives, rotates, and revocates derived keys for the KMSs. The KMSs
handle user requests such as encryption and decryption by using the derived keys.

4.5 Examples of Hardware Security Modules
This section will present two examples of real-world HSMs from two different manufactur-
ers. These HSMs were used during the performance tests discussed in Section 7 and will
be presented in more detail in the following sections. These devices will be referred to
as HSM-1 and HSM-2 for pseudonymity. While HSM-1 is more of an entry level device,
HSM-2 represents a high-end device.

4.5.1 HSM-1
The HSM-1 is a network-attached peripheral device. It provides cryptographic services
as a shared network resource. This device is FIPS 140-2 and Common Criteria EAL4+
certified. The following abstract of the HSM-1 data sheet provides some details about
the performance, given in transactions per second (tps), and the supported cryptographic
primitives.

• Rivest-Shamir-Adleman (RSA) performance: The data sheet states a perfor-
mance of 430 tps for RSA-2048 and 100 tps for RSA-4096.

• Elliptic curve cryptography performance: The data sheet provides a perfor-
mance value of 680 tps for the P256 curve.

• Supported algorithms: This HSM supports a wide range of symmetric and
asymmetric primitives as well as hash functions. Of importance for this thesis is
the support of ECDH, which this device supports.

4.5.2 HSM-2
The HSM-2 is a network-attached peripheral device. This device offers the maximum
performance in this producer’s product line. The device is certified according to FIPS 140-
2 Level 3, Common Criteria EAL4+, and NATO Approved for Use up to Restricted. The
following abstract of the HSM-2 data sheet provides some details about the performance
and the supported cryptographic primitives.

• RSA performance: The data sheet states a performance of 10000 tps for RSA-
2048 and no values for RSA-4096.

• Elliptic curve cryptography performance: The data sheet provides a perfor-
mance value of 22000 tps for the P256 curve.
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• Supported algorithms: This HSM supports a wide range of symmetric and
asymmetric primitives as well as hash functions, similar to HSM-1. This device
supports ECDH.
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CHAPTER 5
Virtual Private Networks

The WireGuard protocol used in this thesis is a VPN protocol. VPNs are used to
connect similar networks over a dissimilar middle network and enterprises use VPNs to
supplement their WANs [80]. Section 5.1 will discuss the motivation of using a VPN,
provide useful definitions, and discuss the limitations of VPNs. Section 5.2 will discuss
the general underlying concept of VPNs. Section 5.3 will present some common use cases
of VPNs. Section 5.4 will discuss the WireGuard protocol in detail.

5.1 Motivation, Definitions, and Limitations
Companies might have offices spread over many cities and countries. In order to connect
these offices, companies used to lease dedicated lines between their office locations [91].
These leased lines provided a secure and private connection [80] but they were expen-
sive [91]. With the rise of the Internet, connecting offices over the Internet became a
more interesting and inexpensive option [80]. Additionally, the Internet allows mobile
users, such as field staff, to connect to the corporate network [80]. However, normal
TCP/IP traffic over the Internet is plaintext allowing every party with access to the
packet stream to read, alter, or drop packets [97]. This would violate security goals such
as confidentiality, integrity, and authentication (see Section 3.1.1). A naive approach
would be to simply encrypt packets. However, such an approach would break existing
protocols as they rely on plaintext header fields to allow for packet processing [97] (see
Section 3.2.2).

Tanenbaum and Wetherall [91] define a private network as a network that is built from
company computers and leased telephone lines. van Oorschot [97] takes the definition
of a private network a step further by defining it as a “network intended for access
only by trusted users, with security (e.g., confidentiality, integrity) relying on a network
architecture providing physical isolation”. This definition stresses that the physical
isolation of the leased line provides the desired security goals. van Oorschot [97] goes
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on to define a VPN as a private network that is not secured by physical isolation but
by the use of encrypted tunnels and special-purpose protocol software and hardware.
Sadiku and Akujuobi [80] state that a VPN simulates a private network over a public
network. It allows multiple devices to communicate with each other, using a combination
of hardware and software. It is private because it is inaccessible to unauthorised parties
and because the routing and addressing plans are independent of the public network.

At this point, it should be noted that the assumption that only trusted users have access
to a private network may no longer be adequate. Finney and Kindervag [34] argue that
the common trust model separates a network into an untrusted side, typically the Internet,
and a trusted side. While the untrusted side is the focus of security considerations, the
trusted side does not receive any real security considerations. Finney and Kindervag [34]
state that almost all data breaches are an exploitation of this broken trust model. Garbis
and Chapman [35] state that zero trust security follows the principle of least privilege for
networks and applications where trusted users should only have the minimum necessary
access. VPNs can provide an additional layer of security in a zero trust model.

Carmouche [21] argues that VPNs exist to protect data that is transmitted between
two networks. To this end, a VPN must meet the four goals of confidentiality, integrity,
non-repudiation, and authentication. These security goals are discussed in Section 3.1.1.

Some challenges arise when using a VPN:

• The encryption and decryption of data, as being done by a VPN, is a computing-
intensive and expensive task [80].

• A VPN requires a certain quality of service, e.g., a minimum guaranteed bandwidth
for connections between end points [80].

• Incompatibility issues can arise if devices from different vendors are being used [80].

• Because of the ubiquitous use of VPNs in the corporate world, it has become a
point of interest for attackers. Gaining access to a corporate VPN can open a
backdoor to the network [80].

• Network-based monitoring becomes more difficult when packets are being en-
crypted [97].

5.2 Tunnelling
According to Tian and Gao [92], the basis for VPNs is encryption and tunnelling.

A typical case of tunnelling, given by Tanenbaum and Wetherall [91], is the case where
two networks, such as two remote offices, are using the same network protocol but are
connected with a network that uses another protocol. By encapsulating the network pro-
tocol message of the source network inside the network protocol used by the intermediate
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network, the message can travel across the intermediate network. Upon arrival at the
destination network, the intermediate network protocol is removed from the message and
the message can travel on to its destination. The path through the intermediate network
can be seen as a tunnel where the messages enter one side of the intermediate network,
travel across the intermediate network, and can only exit at the destination network.

In contrast to the standard network protocol design where protocols lower in the OSI
layer carry payloads of protocols of higher layers (see Section 3.2.2) tunnelling may
involve one protocol carrying a protocol of the same layer [97]. Tunnels do not necessarily
provide security features [92]. A VPN is an encrypted tunnel [80].

According to Tian and Gao [92], the creation of a VPN requires three types of protocols:

1. A passenger protocol: This protocol contains the original data to be transported
between two VPN connected networks. The IP protocol discussed in Section 3.2.4
is an example of such a protocol.

2. An encapsulation protocol: This protocol encapsulates the passenger protocol.
It defines how the passenger protocol is being encapsulated and whether it is
encrypted.

3. A carrier protocol: This network transport protocol must be supported by the
transit network. It carries the encapsulation protocol over the intermediate transit
network. One such protocol would be the Point-to-Point Protocol (PPP).

Although tunnelling can be implemented at virtually any layer it is commonly implemented
at Layer 2 and Layer 3 of the OSI model (see Section 3.2.2) [80].

Layer 2 VPNs: According to Baun [12], a layer 2 VPN can be designed as both a
site-to-site and a remote access VPN. In layer 2 VPN the VPN clients and VPN gateways
are encapsulating the data packets. An example of a layer 2 VPN protocol is the L2TP.
L2TP is based on two older layer 2 protocols [44]. It is considered to be lightweight and
robust [92] and can be used on non-IP-based networks [80].

Layer 3 VPNs: A layer 3 VPN operates at the network layer of the OSI model. Such
a VPN can occur over any TCP/IP network, such as the Internet [44]. The IPsec is a
typical protocol for layer 3 VPN [12]. IPsec is a popular layer 3 tunnelling protocol that
operates directly on top of the IP protocol [92]. It extends IP to provide support for
security features just as authentication and integrity [44].

5.3 VPN Applications
VPNs can be used in different application scenarios.
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Figure 5.1: A Site-to-Site VPN (top) compared to a Remote Access VPN (bottom) [12].

Remote Access VPN: The workforce is becoming more and more mobile making it
necessary to provide employees with remote access to the corporate network [80]. In order
to allow field staff and employees working from home to connect to the corporate network,
a remote access VPN can be set up [44] (also referred to as end-to-site VPN [12]). The
VPN client establishes connection to a VPN gateway [12] or a router [44].

Site-to-Site VPN: A Site-to-Site VPN connects two locations, such as a branch office
and headquarters, via a public network [44]. It can also be used to connect the networks
of two different companies [44]. The hardware on which the VPN terminates can be a
router with VPN capabilities, a firewall, or a VPN gateway [44] (see Section 3.2.3 on
routers and gateways). A Site-to-Site VPN is used to either supplement or replace leased
lines [80]. Figure 5.1 presents the difference between a remote access VPN and site-to-site
VPN.

Client-to-Site VPN: Tian and Gao [92] discuss that a Client-to-Site VPN is similar
to a Remote Access VPN by providing individual users with secure remote access to a
network resource over the Internet. Thus, the terms Remote Access and Client-to-Site are
often used interchangeably. The main difference is that a Remote Access VPN connects
clients to the company-owned network and resources, while a Client-to-Site VPN typically
provides access to a network resource hosted by a third party.

5.4 Case Example: WireGuard
This section will present key aspects of the WireGuard VPN protocol. WireGuard is a
secure network tunnel devised by Donenfeld [29]. It is an encapsulation protocol that
operates on layer 3 of the OSI, as stated by Abdulazeez et al. [1]. It is typically used in
remote-access applications but can also be used in Site-to-Site scenarios.

WireGuard is an open-source VPN protocol focusing on high speed and simplicity,
as stated by Donenfeld [29]. Due to its small code base, as noted by Dowling and
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Paterson [30], WireGuard lends itself to making changes to the code that allow a
connection to an HSM.

5.4.1 Design Principles
This section will present the main design principles that the WireGuard protocol is
following.

Cryptokey Routing: According to Donenfeld [29], the fundamental principle of
WireGuard is called cryptokey routing. It associates each peer with a list of allowed
IP addresses. A peer is strictly identified by its public key. Public keys are points on
the Curve25519. The Curve25519 is an elliptic curve that is nowadays used by most
applications in an ECDH [100] (see Section 3.3.5). The cryptokey routing table, therefore,
contains a list of public keys, each associated with its own set of allowed IP addresses.
The cryptokey routing table is used for incoming packets as well as outgoing packets. In
the case of an outgoing packet, the table is consulted to find out which public key to
use for encryption, by looking up which public key is associated with the destination
IP of the packet. In the case of an incoming packet, after the packet is decrypted and
authenticated, the packet will only be accepted if its source IP corresponds to the public
key that was used during decryption. The benefit of this design is that all packets that
are accepted are authentic. This routing algorithm used by WireGuard can be considered
static (see Section 3.2.5).

Silence is a Virtue: Master and Garman [62] argue that WireGuard is a silent protocol.
In case a WireGuard peer does not have messages to send out, it refrains from sending out
keepalive messages by default. However, it is possible to change this default behaviour by
enabling keepalive messages via a configuration option. WireGuard does not respond to
unauthenticated packets. A packet is unauthenticated if it does not match an appropriate
tunnel IP or associated public key.

Pre-shared Keys: WireGuard offers an option to mitigate future advances in quantum
computing by allowing each pair of peers to add a 256-bit symmetric key to the encryp-
tion [30]. While WireGuard does not offer full post-quantum security, pre-shared keys
provide an additional layer of encryption that can help mitigate the impact of quantum
computing. Symmetric encryption is considered to be relatively secure to quantum
attacks, as stated by Bernstein [17].

Denial of Service Mitigation: When receiving a handshake message, the responder
needs to authenticate the message by computing a Curve25519 point multiplication. Even
though Curve25519 is a fast curve, this multiplication is CPU intensive. This opens up a
possibility of a resource exhaustion attack, targeting the availability of the system [29].
Lipp, Blanchet, and Bhargavan [60] state that the recipient of a handshake message can
decide to not process a handshake message if it is under load and instead reply with a
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cookie message. The initiator can use the received cookie in the next message and have
it be accepted. A cookie is the result of computing a MAC of the initiator’s source IP
using a secret key as the MAC key. This ties the sender of a message to an IP address.

Persistent Keepalive: WireGuard implements a keepalive mechanism that allows
sessions to stay active. This mechanism is disabled by default. This keepalive mechanism
allows peers to determine passively whether a connection has failed or was disconnected.
Donenfeld [29] argues that every transport data sent, warrants some kind of response,
whether that a response generated by the nature of the encapsulated packet or this
keepalive message. If a peer has received a data message from another peer but does not
have to send any packets itself, it will send out a keepalive message. A keepalive message
is simply a zero-length encapsulated inner packet and can thus be easily distinguished
from other messages. In case a peer has not received any transport messages for a certain
time, it can be concluded that the secure session is broken.

5.4.2 Message Flows

This section will discuss how two WireGuard peers are communicating with each other.
Foundations on cryptography relevant to this section can be found in Section 3.3. Fig-
ure 5.2 presents the general handshake message flow as well as how the handshake
message flow could look in case the responder is under load. WireGuard uses four types
of messages [29]:

• Handshake Initiation

• Handshake Response

• Cookie Reply

• Transport Data

According to Appelbaum, Martindale, and Wu [6], WireGuard is using IP as carrier
protocol and UDP as passenger protocol for all messages (see Section 5.2).

Each peer maintains two kinds of keys that are used during the message exchange [29]:

• A static private key. This key is set once and used to authenticate one peer to
another peer (see Section 5.4.1). The static private key is typically stored inside
a configuration file. This thesis discusses the performance impacts if the static
private key is stored inside an HSM.

• An ephemeral private key. This key is generated new for each session.
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Figure 5.2: The WireGuard handshake message flow in general (left) and in case the
responder is under load (right) [29].

Handshake Initiation: The first message sent by a peer is referred to as handshake
initiation. This message consists of the following fields [29] as presented in Figure 5.3:

• type: This field contains the type of the message. In the case of the handshake
initiation, this value is set to “1”.

• reserved: This field is reserved to allow reading the type field as a 4-byte field.

• sender: This 4-byte field represents a peer and is generated randomly. Subsequent
messages can be tied to the session created by this initiation message using this
index.

• ephemeral: This field contains the ephemeral public key of the initiator. The
Curve25519 private key is generated randomly and the corresponding public key is
used for the ECDH (see Section 3.3.5).

• static: This field contains the result of a ChaCha20Poly1305 AEAD using the
initiators static public key as input.

• timestamp: This field contains the result of a ChaCha20Poly1305 AEAD using
the current time as input. This timestamp is included to prevent attackers from
replaying handshake initiations.

• mac1: This field must always contain a valid MAC. Otherwise, the receiver will
drop the message without responding to the sender. This follows the “silence as a
virtue” property of WireGuard, as discussed in Section 5.4.1.

• mac2: This field is zero in case the initiator does not have a valid cookie available
from the responder. Otherwise, this field contains a MAC using the valid cookie as
MAC key.
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Figure 5.3: WireGuard handshake initiation message.

Handshake Response: The responder completes the ECDH by using the provided
ephemeral public key from the initiator [30]. In case the static private key of the
responder lies inside an HSM, this computation is done inside the HSM. After processing
the handshake initiation message, the responder sends back the handshake response as
presented in Figure 5.4. The message consists of the following fields [29]:

• type: This field contains the type of the message. In the case of the handshake
response, this value is set to “2”.

• reserved: This field is reserved to allow reading the type field as a 4-byte field.

• sender: This 4-byte field represents a peer and is generated randomly. Subsequent
messages can be tied to the session created by this initiation message using this
index.

• receiver: This field is set to the peer index received in the handshake initiation.

• ephemeral: This field contains the ephemeral public key of the responder. The
Curve25519 private key is generated randomly and the public key is derived from
it.

• empty: This field contains the result of a ChaCha20Poly1305 AEAD using an
empty string as input.

• mac1: This field must always contain a valid MAC. Otherwise, the receiver will
drop the message without responding to the sender. This follows the “silence as a
virtue” property of WireGuard, as discussed in Section 5.4.1.

• mac2: This field is zero in a handshake response.
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Figure 5.4: WireGuard handshake response message.

Figure 5.5: WireGuard transport data message.

Transport Data: After exchanging handshake messages, the sender and receiver can
start exchanging transport data messages. Transport data messages contain encapsulated
encrypted data. The message consists of the following fields [29] as presented in Figure 5.5:

• type: This field contains the type of the message. In the case of the transport
data message, this value is set to “4”.

• reserved: This field is reserved to allow reading the type field as a 4-byte field.

• receiver: This field is set to the peer index received in the handshake initiation or
handshake response.

• counter: This message counter is used as nonce for the ChaCha20Poly1305 AEAD.
The counter is incremented with each transport data message and serves to avoid
replay attacks.

• packet: This field contains the encapsulated data encrypted using ChaCha20Poly1305
AEAD. This field contains n bytes from the encapsulated data plus a 16-byte au-
thentication tag from the ChaCha20Poly1305 AEAD.

Cookie Reply: As discussed in Section 5.4.1, the receiver of a handshake initiation
can decide to respond with a cookie reply instead of a handshake response in case the
receiver is under load. The message consists of the following fields [29] as presented in
Figure 5.6:
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Figure 5.6: WireGuard cookie reply message.

• type: This field contains the type of the message. In the case of the cookie reply,
this value is set to “3”.

• reserved: This field is reserved to allow reading the type field as a 4-byte field.

• receiver: This field is set to the peer index received in the handshake initiation.

• nonce: This field contains random data. It is used in the creation of the cookie
value.

• cookie: This field contains the cookie value. It uses the sender’s source IP as well
as a random secret value to create a cookie.

5.4.3 Rekeying and Rejecting
WireGuard has defined some constants and timeouts which are of interest for this thesis.
This section will discuss the following constants and timeouts in more detail [29]:

• Rekey-After-Time and Rekey-After-Messages

• Reject-After-Time and Reject-After-Messages

Rekeying: WireGuard defines a constant and a timeout that relates to rekeying, the
Rekey-After-Time timeout, and the Rekey-After-Messages constant. The Rekey-After-
Messages constant defines the number of messages a peer can send before it has to create
a new session by sending a new handshake initiation. This behaviour applies to both
sides of a session, the initiator and the responder. The Rekey-After-Time timeout on
the other hand applies only to the initiator of a session. It defines that the initiator will
try to establish a new session after the timeout has passed by sending a new handshake
initiation. Since the value for Rekey-After-Time is only 120 seconds and the value for
Rekey-After-Messages is 260 a rekeying likely occurs around every two minutes. The
RekeyTimeout constant, set to 5 seconds, defines how long WireGuard will wait for a
handshake response before sending a new handshake initiation.
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Rejecting: In case the rekeying of a session is unsuccessful, WireGuard defines the
Reject-After-Time timeout, and the Reject-After-Messages constant. The timeout Reject-
After-Time is set to 180 seconds. In case the ephemeral key of a session is older than
the timeout, WireGuard will not send or receive any more packets from this session.
The constant Reject-After-Messages will do the same after 264 − 213 − 1 transport data
messages are exchanged.

55





CHAPTER 6
Performance Testing

Performance testing is concerned with evaluating the behaviour of a system under test.
This thesis will carry out performance tests on a WireGuard VPN extended with an
HSM. Section 6.1 will present definitions, discuss the goals and purpose of performance
testing, and the challenges that come with performance testing. Section 6.2 will go on to
discuss different performance testing types and strategies. Section 6.3 will discuss which
metrics are commonly considered during performance testing. Section 6.4 will discuss
how workload is generated in performance testing. Finally, Section 6.5 will present a
general performance test setup.

6.1 Definitions, Goals, Purpose, and Challenges
No clear definition of performance can be found in the literature and the term perfor-
mance testing is also defined differently in many sources. For example, Yorkston [101]
states that performance testing is “testing to determine the performance of a software
product”. Yorkston [101] goes on to provide a vague definition of performance, stating
that “performance is a component of a user’s “good experience” and forms part of an
acceptable quality level”. Yorkston [101] acknowledges that it is difficult to define “good”
and “bad” performance and that it is the task of a performance engineer to define how
performance is to be quantified and measured. Molyneaux [70] similarly argues that
“performance really is in the eye of the beholder”.

Jiang and Hassan [49] provide a comprehensive review of existing definitions of the term
performance testing and provide the following definition:

[. . . ] performance testing is used to measure and/or evaluate performance
related aspects (e.g., response time, throughput and resource utilisation)
of algorithms, designs/architectures, modules, configurations, or the overall
systems.
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Matam and Jain [63] take a similar approach by defining performance testing over the
attributes that are being tested:

Performance testing is the testing performed on a system or application to
measure some of its attributes such as response time, throughput, scalability

The significance of performance testing is given by Bennett [14] who agrees with the
above definition by stating that performance testing plays a critical role in ensuring
that a software system delivers “optimal speed, responsiveness, scalability, and stability”.
Matam and Jain [63] add to this by arguing that a performant software system, such as
a website, increases the profitability of a business by providing a better user experience,
utilising fewer resources, and using resources more efficiently.

Matching to the definitions given above, Gregg [39] as well as Bennett [14] state that the
goal of performance testing is to improve the end-user experience.

Long lists of challenges concerning performance testing can be found in the literature
(see, for example, [39, 14, 70]).

• The performance of a software system is subjective. It is unclear what constitutes
“bad” performance and at what point it is fixed [39].

• Due to the complexity of systems, performance can be a challenging discipline.
This is especially true in cloud computing environments where it can be difficult
to even find a starting point for analysis. Performance issues in complex systems
can stem from the interactions between systems that perform well when analysed
separately but perform poorly when put together, making the analysis even more
difficult [39].

• Performance issues can have multiple contributing factors where multiple normal
events result in a performance issue [39].

• Complex software systems often have many performance issues, sometimes even
known to the developers. The important part is finding the performance issues
that matter the most [39].

• Acquiring accurate data for performance testing can be challenging. Working with
inaccurate data can lead to misleading results [14].

• The interpretation of performance results can be challenging. Knowledge of the
goals and user expectations in the context of the project is important [14].

• Quantitative testing alone might not be sufficient to get the full picture. It might
be sensible to supplement quantitative testing with qualitative tests such as user
feedback [14].
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• The iterative and dynamic nature of software development can pose a challenge
to performance testing. Adapting performance testing strategies to the software
development process can be beneficial [14].

• Creating realistic test inputs for performance testing can be challenging. Under-
standing real-world user usage patterns is crucial in creating adequate performance
tests [14].

6.2 Testing Types and Strategies
Multiple different performance testing types can be found in the literature that can
help with evaluating the performance of a software system. Yorkston [101] provides the
following performance testing types:

• Load testing: Load testing evaluates the systems’ performance under various
workloads. The workload can range from anticipated realistic load [101] to peak
load [56].

• Stress testing: Stress testing evaluates the system’s performance under conditions
at or beyond the anticipated limit. Stress tests are usually derived from Load tests.
Stress testing aims to identify the breaking point of the system.

• Scalability testing: The goal of Scalability testing is to determine the system’s
ability to grow which can be tested in different ways. One approach is to increase
the system’s resources, either by scaling the system up or by adding more systems
of the same specification and testing with the same workload. Another approach
would be to simulate different levels of load and measure the system’s response time
and resource utilisation [56]. Doubling the load should result in double resource
utilisation.

• Spike testing: Spike testing focuses on evaluating the system’s ability to handle
short and sudden bursts of peak loads. The system is expected to recover from a
short spike in load and return to a ready state afterwards.

• Endurance testing: Endurance tests evaluate the system’s performance over an
extended period to determine if the system can maintain its performance [56]. The
main difference to Load testing lies in the duration of the test. Endurance tests
may execute for several hours up to days or even weeks.

• Concurrency testing: Concurrency testing forms a cornerstone of performance
testing. Although a single user can generate load on a system, that load might not
be enough to truly test a system. Concurrency testing aims to evaluate a system
when a large number of users use it simultaneously.
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• Capacity testing: In contrast to Stress testing, which is trying to cause a failure
in the system, Capacity testing is trying to establish how many users the system
can support at most. Capacity testing is typically carried out with a performance
objective in mind, e.g., keeping RTT below a certain threshold. Results from these
tests can help an organisation determine if an expected growth rate can be met.

• Configuration testing: Configuration testing is testing the same system using
different configurations to determine how changes to the configuration affect its
performance.

• Comparative testing: By comparing the performance of different systems or the
same system in different configurations it is possible to determine which system
performs the best.

Literature provides some insights into how to successfully set up performance tests:

• Performance goals: Defining performance goals is essential to align business and
user expectations [14]. Results of performance tests can be compared to defined
performance goals to assess the state of the software system [70].

• Test environment: It is important that the test environment closely resembles
the production environment in order for the test results to be representative [14].
Ideally, the test environment would be an exact copy of the production environment,
but this is rarely possible [70]. Performance testing should not be carried out in
the production environment as this could negatively impact the performance and
security of the system [63].

• Baseline testing: Establishing a baseline performance level of the system under
normal conditions provides a reference point for future evaluations [14]. Baseline
testing should be carried out without any activity on the system to provide a
best-case measurement [70].

6.3 Performance Metrics
According to Bath et al. [11], it is necessary to understand which measurements and
metrics are needed before carrying out performance tests. Performance goals can only be
defined after performance metrics have been defined. Metrics will vary depending on the
context of the software system.

General performance metrics discussed in the literature include throughput and delay
which are also relevant network performance metrics, as discussed in detail in Section 3.2.6.
Another performance metric typically discussed in literature is resource utilisation (see,
for example, [101, 63, 14, 70]). The system may be restricted in the amount of resources
it is allowed to use [70]. Utilisation is the ratio of used capacity to available capacity [63].
Resources of interest generally include CPU, memory, and disk usage [14].
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A resource of interest for this thesis is the CPU. The CPU utilisation is measured as the
time a CPU instance is busy performing work during an interval [39]. This utilisation is
typically expressed as a percentage [39]. Gregg [39] argues that a high CPU utilisation is
not necessarily a problem because performance does not degrade under high utilisation.
Even further, a high CPU utilisation can be viewed as a good return on investment.
Matam and Jain [63] point out that the system utilisation should not exceed 80% to
allow the system to handle spikes in the load.

According to Bovet and Cesati [19], every Unix kernel keeps track of CPU activity. This
activity can be monitored using different Unix tools, such as top or uptime. These tools
present the CPU activity as load average relative to the last minute. A load average of 0
means there are no active processes, while a value of 1 means the CPU is 100% busy.
The manual page of uptime [95] states that on a CPU system with 4 cores a value of 1
means the system was idle 75% of the time.

After performance test result data is gathered the results need to be analysed. Bath
et al. [11] argue that analysis of raw test data can be misleading. The aggregation of
the raw test data allows the data to be presented in a simpler and clearer way and the
results of the tests to be communicated and reported in a simple form.

6.4 Workload Generation
In order to carry out performance tests, it is necessary to define the workload first. The
definition and creation of workload for performance testing presents some challenges.
Obaidat and Boudriga [73] argue that it might not be clear what level of detail is necessary
for the workload and that identification of relevant aspects of the workload can be difficult.
Weyuker and Vokolos [98] point out that the acquisition of test data can be difficult in
itself. An operational profile created from the monitoring log files of a system similar to
that of interest can be used as a basis.

Bath et al. [11] point out that performance test workload differs in some aspects from
the test data input of functional tests. Performance workload must represent multiple
user inputs, not just one. The generation of performance workload may require dedicated
tools or hardware. Additionally, the system under test should be free of functional defects
that could impact the results of the performance tests.

Jiang and Hassan [49] argue that performance testing is trying to uncover load-related
problems. Based on this observation, Jiang and Hassan [49] present two workload design
strategies:

1. Designing realistic loads: The idea behind this strategy is to generate a workload
that resembles realistic system usage. The target is to ensure that the system
functions correctly in the field. If the system can handle a realistic workload without
any functional or non-functional issues, it passes the performance test.
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2. Designing fault-inducing loads: This strategy is actively trying to provoke
functional and non-functional issues by generating a workload that is likely to cause
issues.

Bath et al. [11] provide a list of workload generation approaches:

• Load Generation via the User Interface

• Load Generation using Crowds

• Load Generation via the Application Programming Interface

• Load Generation using Captured Communication Protocols

The above strategies are presented in the context of web applications but can also be
transferred to network applications.

Jiang and Hassan [49] provide a general list of workload generation approaches:

• Live-user based executions: A load performance test examines the behaviour of
a system used by multiple users. Employing human testers to generate a workload
is, therefore, an intuitive solution. An advantage to this approach is that human
testers can provide feedback about the system.

• Driver based executions: This approach overcomes the scalability issues of
the live-user generation by generating the workload automatically. However, load
drivers need setup and configuration. Tracking the behaviour of the system can be
challenging too.

• Emulation based executions: The previous two approaches required a fully
functional test system in a production-like environment. The emulation-based
approach is conducted on a special platform that can emulate parts of the system.
This allows for performance tests of parts of the system throughout the development
lifecycle, before the system is completely ready.

6.5 Testing Environment
Yorkston [101] provides a general concept of a performance test environment, as presented
in Figure 6.1.

A performance testing environment generally consists of three parts:

• Test Controller: The performance test controller executes the performance tests.
It triggers the Load Generators at the beginning of a test and collects testing logs
from the Load Generators and the system under test afterwards.
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Figure 6.1: The general concept of a performance testing environment (based on [101]).

• Load Generators: The Load Generators are one or more machines that generate
the workload as requested by the Test Controller and send it to the system under
test. The Load Generators can act as one or more users.

• System under test: The system under test reacts to the workload it receives
from the Load Generators. Performance metrics such as response time and resource
utilisation are captured during the test.

In general, a performance test contains the following steps:

1. Start Load Generators: The Test Controller contacts the Load Generators and
provides configuration details for the desired workload.

2. Send Workload: The Load Generators start sending out load to the system under
test according to the configuration provided by the Test Controller.

3. Performance Monitoring: The performance monitoring logs are collected at the
Test Controller for further processing and analysis.
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CHAPTER 7
Performance Measurement of

WireGuard with HSM

The focus of this chapter is to present the results of the performance measurements of a
WireGuard VPN with and without an extended HSM. Section 7.1 will detail how the
performance tests were designed. Section 7.2 will discuss the considered performance
metrics, and Section 7.3 will present how the performance metrics were monitored and
logged while Section 7.4 will discuss how the logged metrics were visualised. Finally,
Section 7.5 will present the test results.

7.1 Performance Test Planning
This section will provide a general outline of the carried-out performance tests. Sec-
tion 7.1.1 will discuss the test targets, and Section 7.1.2 will delineate the used test setup.
Section 7.1.3 will present the test plans, and Section 7.1.4 will show which test inputs
were used for the test plans.

7.1.1 Test Targets
The following test targets were considered during the performance tests:

• WireGuard Kernel:1 The Linux kernel implementation of the WireGuard pro-
tocol. This test target will serve as the baseline for all other test targets as it is
expected to provide the best performance. The WireGuard kernel version was
acquired from the official package repository of the operating system of the host
system in version 1.0.20210914-1ubuntu2.

1https://github.com/WireGuard/wireguard-linux
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• WireGuard Go:2 A WireGuard protocol implementation in the Go programming
language. This test target will be of interest in two ways, on the one hand in
comparison to the kernel version and on the other hand to the Go version using an
HSM. WireGuard Go was acquired from the official WireGuard GitHub repository
master branch in commit version 12269c2 and built manually.

• WireGuard Go with HSM: An adaptation of the WireGuard Go implementation
to allow for storing a private key in an HSM. Test plans were executed for two
different HSM. See Section 4.5 for details on the HSMs under test.

7.1.2 Test Environment
Following the observation discussed in Section 6.2 that the test environment should
resemble the production environment as closely as possible this section will present the
test setup that was used. The test setup for the performance tests consisted of these
parts:

1. Server Host

2. Load Generator Host

3. HSM with KMS

4. Test Controller

In general, during each test plan execution, the Test Controller would first start monitoring
scripts on the Server Host. Next, the Test Controller would tell the Load Generator
Host which test to start. The Load Generator would then in turn start generating the
requested load and send it to the Server Host.

The Server Host would contact the KMS and HSM during the test when necessary (see
Section 5.4). Once the test execution was completed, the Test Controller would collect
monitoring data from the Server Host and test reports from the Load Generator Host.

While the Load Generator Host was located as a virtual container in Austria, the Server
Host, as well as the HSM and KMS, were located in Germany. The Test Controller was a
laptop located in Austria. A performance test, where the Load Generator Host was also
deployed in Germany, close to the KMS and HSM, showed similar results and mostly
differed by an expected RTT decrease. The test results presented in this thesis refer to
the setup where the Load Generator Host is located in Austria.

The RTT (see Section 3.2.6) between the Load Generator Host and the Server Host was
measured to be around 18ms and the RTT between the Server Host and the KMS to
be around 0.5ms. Figure 7.1 presents the general test setup that was used during the
WireGuard performance testing.

2https://github.com/WireGuard/wireguard-go
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Figure 7.1: General test setup for the WireGuard performance tests.

Server Host: This host was used to run all tested versions of WireGuard. A script was
used to generate the necessary private- and public-key pairs for the peers and write them
to configuration files. The configuration files for the peers were collected by the Test
Controller and transferred to the Load Generator Host. The peers were configured using
the pre-shared key option and without the persistent keepalive option (see Section 5.4.1).
These options were enabled and disabled respectively based on the requirements of the
production system. The same configuration files were used for all tests. Another script
that was based on the wg-quick [28] tool by WireGuard, was used to set up WireGuard
on the Server Host. The hardware resources of the Server Host were chosen to be similar
to that of the production system. Equally, the Server Host operating system was set
up similarly to that of the production system, installing the same software to operate
and monitor the host as in the production environment. Details about the hardware
resources and the operating system of the server host can be found in Table 7.1.

Load Generator Host: This host was used to generate the test inputs for the test
plans discussed in Section 7.1.3. To ensure the repeatability of tests, the input generation
was done inside containers on the host. Details about the hardware resources and the
operating system of the load generator host can be found in Table 7.1.

HSM with KMS: This system manages the generation and storage of cryptographic
keys. The KMS provides an abstraction layer of the HSM. Systems such as the WireGuard
server which need to access the HSM do not access it directly but through an interface
provided by the KMS. During the performance tests, the KMS and HSM were considered
as a black box and one related part.

Test Controller: This host was used to orchestrate the execution of tests. It was used
to start monitoring on the Server Host, trigger the workload generation on the Load
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Server Host
CPU Memory Operating System
12 cores, 2744.844 MHz 15 GiB Memory, 1 GiB Swap Ubuntu 22.04

Load Generator Host
CPU Memory Operating System
8 cores, 2744.844 MHz 7 GiB Memory, 1 GiB Swap Ubuntu 22.04

Table 7.1: Hardware resources of the test setup.

Generator Host, and collect the results of the tests from both hosts once the test was
finished.

7.1.3 Test Suites
As discussed in Section 3.4.3, the first steps in performance testing are the planning
and designing of the test plans. Based on the performance testing types discussed in
Section 6.2 the following test plans were devised:

Latency Test Suite: This test suite aimed to establish a baseline of the performance
of the test targets, allowing a comparison afterwards. The baseline was established by
measuring the RTT for single and concurrent WireGuard handshake requests.

As discussed in Section 5.4.2, a handshake request is the first message from a peer to
a server to initiate an encrypted communication. No communication can take place
until the handshake has been carried out. Additionally, the performance of the HSM
directly impacts the RTT of WireGuard handshakes since the DHKE is carried out inside
the HSM (see Section 5.4.2). Therefore, the latency of the handshake request affects
all subsequent messages. Of particular interest was also the concurrent processing of
handshake requests by multiple peers. The here presented test plans aim to provide a
baseline of the test target’s performance on response times for handshake requests.

The aim was to carry out measurements for 1, 10, 25, 50, 100, 200, 500, 1000, 2000,
4000 and up to 8000 concurrent peers. By starting the tests with only one peer and
then roughly doubling the number of peers with each additional test plan, a baseline of
the test target’s latency and a thorough overview of the test target’s behaviour under
load can be obtained. The maximum number of 8000 peers was the desired test target’s
maximum number of peers. The tests were stopped as soon as it was clear that the test
system was at capacity.

As discussed in Section 5.4.3, the rekey timeout of WireGuard is set to five seconds. By
setting the delay between each handshake request to 10 seconds, the test target has more
time to recover between each request than in a real-world scenario.

The number of requests per peer for each test plan needs to be large enough to allow for
statistical calculations but low enough such that the test plans can be carried out in a
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reasonable time frame. With a delay of 10 seconds between each handshake initiation,
choosing a total of 100 requests per peer results in a runtime of almost 17 minutes, thus
requiring almost four hours to execute all test plans.

Table 7.2 provides an overview of the devised test plans. Besides the test plans discussed,
additional plans were used during the creation of this thesis, with a different number of
peers, number of requests, or delay if necessary to get a more detailed picture of the test
target.

Throughput Test Suite: This test suite aimed to determine the throughput the test
targets can provide. Since the encryption and decryption of packets on the server are
causing a workload for the server, it is necessary to determine how much throughput
the provided resources can provide. While the expected bandwidth could simply be
calculated by multiplying the expected number of peers with an upper bound of expected
throughput per peer, the resulting load on the test target is unknown. Measurements were
carried out for 1, 10, 20, and 50 concurrent peers which were all sending as much traffic
as possible at the same time. As discussed in Section 5.4.3, rekeying of the encrypted
communication is carried out every 120 seconds. The throughput test plans were carried
out for 180 seconds to allow for rekeying to occur once during testing. Table 7.3 provides
an overview of the used test plans.

Load Test Suite: This test suite aimed to measure the maximum amount of peers the
test target can serve reliably. These test plans are defined by the total number of peers
and the total throughput they create.

WireGuard peers generate load on the HSM by sending handshake initiations (see
Section 5.4). A peer sends handshake initiations initially when establishing a connection
and then at least every 120 seconds to maintain the connection. This means that a test
target can only support as many peers as the underlying HSM can process requests in
this period. Therefore, the highest load on the HSM would be created by spreading out
the total number of peers over this period.

Peers were started consecutively in batches with a delay between each batch. For each
batch, the batch size defines the number of peers that are started in parallel. The runtime
defines how long each peer is running. All tests were run for more than 120 seconds to
allow for rekeying to occur (see Section 5.4.3).

The initial load test for a test target was defined based on latency test results. Subsequent
tests also took the previous load tests into account during their design.

A good starting position for a load test would be a latency test run whose results had no
cookie responses or timeouts. This would suggest that the test target was able to handle
the concurrent load (see Section 7.2). The test result should have a low maximal RTT,
compared to other test runs, so that it is possible to start as many batches as possible.
Additionally, the range of the latency test result should be small, as this would suggest
that the HSM could provide reliable results.
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Plan Name Peers Requests per
Peer Delay

1p100c10s 1 100 10
10p100c10s 10 100 10
25p100c10s 25 100 10
50p100c10s 50 100 10
100p100c10s 100 100 10
200p100c10s 200 100 10
500p100c10s 500 100 10
1000p100c10s 1000 100 10
2000p100c10s 2000 100 10
4000p100c10s 4000 100 10
8000p100c10s 8000 100 10

Table 7.2: List of latency test plans used for measuring the baseline response time of the
test target.

Plan Name Peers Runtime
1p180s 1 180
10p180s 10 180
25p180s 20 180
50p180s 50 180

Table 7.3: List of throughput test plans used for measuring the baseline capacity of the
test target.

Plan Name Number of
Batches

Batch
Size

Batch De-
lay

Bandwidth
per Peer Runtime

70p10x7b16s50Kbs400s 7 10 16 50Kbs 400
600p15x40b3s1000Bs400s 40 15 3 1000Bs 400

Table 7.4: Exemplary list of load test plans used for measuring the maximum amount of
peers for the test target.

The number of peers per batch was set to the number of peers of such a latency test
result. The delay between each peer batch was initially chosen such that it is slightly
larger than the maximum observed RTT of the identified latency test.

The throughput per peer was typically set to be 1000 bytes per second, as this was the
expected load on the production system. Based on the results of the initial test, the
number of peers per batch, the delay between batches, or both were changed to increase
the total number of peers. The total number of peers would be increased until the test
target shows clear signs of performance issues. Table 7.4 provides some examples of used
test plans.
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7.1.4 Test Inputs
The generation of workload is a central point in performance testing. Each of the test
plans described in Section 7.1.3 needs a specific workload which will be discussed in
this section. Based on the workload generation strategies discussed in Section 6.4 the
following test inputs were used for performance testing.

The Latency Test Data: The latency test suite uses WireGuard handshake requests
as input to determine the response time for a handshake. A Go script was created that
could create and send handshake requests for 8000 individual peers within 400ms. The
script uses the generated peer configuration files from the Server Host, which contain all
the necessary information to create a valid handshake, as discussed in Section 5.4.2. By
taking the number of peers to simulate, the number of handshakes to send per peer, and
the time to wait between each request as an argument, the script would then send out
concurrent handshake requests for each peer, measure the time for a response to arrive,
and write the results to a file. Section 7.3 will discuss this report in more detail.

The Throughput Test Data: The throughput test suite needs to generate as much
network traffic as possible to determine the throughput (see Section 3.2.6) of the test
target. The iperf [66] tool can measure the maximum achievable throughput of a
network. To this end, iperf uses a client instance on one host and a server instance on
another host. By generating as much traffic as computationally possible on the client
instance and sending it over the network to the server instance it is possible to measure
the data rate of a network. Both, the client and server, generate reports containing
information about the test. Section 7.3 will discuss the iperf reports in more detail.
Because the iperf tool can be configured to use a VPN connection, it is a prime option
to test the throughput of WireGuard, like it has been done by Donenfeld [29]. The
general test setup consists of an iperf client instance on the Load Generator Host
and an iperf server instance on the Server Host. By starting multiple instances of
clients and servers in parallel, each using a different WireGuard peer configuration (see
Section 5.4), it is possible to simulate multiple peers.

The Load Test Data: The load test suite needs to simulate any given number of
peers, ranging from one to possibly thousands. Furthermore, it must be possible to start
and stop peers in a defined way to create the highest possible load. A Go script was
created, based on the WireGuard Go code, that could simulate WireGuard peers to a
WireGuard server. To this end, the script would send out handshake initiations, read
the received handshake response, and send encrypted data using the derived key (see
Section 5.4). The script would measure the RTT for handshakes and write the results to
a file. Section 7.3 will discuss this report in more detail. Just like an actual WireGuard
peer, the script would send another handshake initiation after five seconds in case it did
not receive a handshake response. In case of a cookie response, it could generate the
correct handshake initiations afterwards, similar to an actual WireGuard peer.
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7.2 Performance Metrics
Choosing adequate performance metrics to determine the performance of a test target is
a crucial part of performance testing [11]. As discussed in Section 4, access to an HSM
is restricted which limits the possibilities of collecting performance metrics severely. In
this thesis, the Server Host performance is observed in detail. If the test target shows
signs of performance problems, but the Server Host performance logs are unremarkable,
it can be concluded that the HSM had performance problems. Based on the performance
metrics discussed in Section 6.3 the following metrics were determined to be meaningful
for WireGuard with HSM performance testing.

1. CPU usage: Monitoring the CPU usage on the Server Host was of critical
importance to ensure that the Server Host has enough available resources to serve
the presented traffic.

2. Load average: Similar to the CPU usage, the load average of the Server Host was
of interest to determine if the Server Host has enough resources.

3. Memory usage: Should the Server Host run out of available memory it can no
longer operate. It is, therefore, necessary to know how much memory the Server
Host is using under load. During the performance test in this thesis, it was observed
that the Server Host uses very little memory and never reaches the limits of the
available memory. Therefore, it was decided not to graphically display the memory
usage (see Section 7.4).

4. Throughput: Measuring the throughput of the test target is essential to determine
if the traffic generated by the peers is arriving at its target. For each load test plan,
there is an expected data throughput based on the number of peers and how much
data each peer is sending each second. A mismatch between the measured and the
expected throughput could point to lost network packets which would result in a
performance loss for affected peers.

5. Latency: As discussed in Section 5.4, a WireGuard peer can not send encrypted
packets until the first handshake is complete. The RTT of the first handshake
affects the throughput to a large degree and is, therefore, of utmost importance as a
performance metric. Subsequent handshakes are not as critical for the performance
because WireGuard tries to refresh the encryption key 60 seconds before it is
invalidated (see Section 5.4). However, if WireGuard would not be able to refresh
the encryption key within this period, it would not be able to transmit any more
data until the key has been refreshed.

7.3 Performance Monitoring
In order to monitor some of the metrics discussed in Section 7.2 a system monitor written
in Python using the psutil library was used. This system monitor was logging the CPU
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Timestamp CPU
usage CPU load average Memory

usage Top process Received
Bytes

Packets
dropped

2024-03-29
13:05:00 0.3%

(0.134765625,
0.0546875,
0.0087890625)

10.8% systemd
(0.0% CPU) 21018684280 0

2024-03-29
13:05:01 0.5%

(0.134765625,
0.0546875,
0.0087890625)

10.8% systemd
(0.0% CPU) 21018684280 0

2024-03-29
13:05:02 7.5%

(0.134765625,
0.0546875,
0.0087890625)

11.2%
puppet
(103.8%
CPU)

21018684280 0

2024-03-29
13:05:03 8.6%

(0.134765625,
0.0546875,
0.0087890625)

11.3% puppet
(17.1% CPU) 21018684280 0

Table 7.5: An example output of a system-monitor output file.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Server l i s t e n i n g on UDP port 5001 with pid 2338714
Binding to l o c a l address 1 0 . 1 . 1 0 4 . 2 2 2
Read b u f f e r s i z e : 1 . 4 4 KByte ( Dist bin width= 183 Byte )
UDP b u f f e r s i z e : 208 KByte ( d e f a u l t )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 1 ] l o c a l 10 .1 .104 .222% ens3 port 5001 connected with 1 0 . 1 3 . 0 . 2 port 47849 ( sock =3) (

peer 2 . 1 . 9 ) on 2024−03−29 0 9 : 2 5 : 3 2 (CET)
[ ID ] I n t e r v a l Trans fe r Bandwidth J i t t e r Lost / Total Latency

avg/min/max/ stdev PPS NetPwr
[ 1 ] 0.0000 −1.0000 s e c 1 5 . 8 KBytes 129 Kbits / s e c 3 .671 ms 0/11 (0%)

9.508/ −0.081/104.551/45.681 ms 12 pps 2
[ 1 ] 1.0000 −2.0000 s e c 1 2 . 9 KBytes 106 Kbits / s e c 2 .072 ms 0/9 (0%)

−0.005/ −0.046/0.095/0.042 ms 9 pps −2835
[ 1 ] 2.0000 −3.0000 s e c 1 2 . 9 KBytes 106 Kbits / s e c 1 .193 ms 0/9 (0%)

−0.008/ −0.070/0.193/0.077 ms 9 pps −1726
. . .
[ 1 ] 0.0000 −400.0112 s e c 4 . 8 9 MBytes 102 Kbits / s e c 0 .749 ms 0/3486 (0%)

0.382/ −0.113/104.551/2.883 ms 9 pps 34

Figure 7.2: An example output of an iperf server report file.

usage, load average, memory usage, the top process as well as the number of received
bytes on the Ethernet interface on a per-second basis. The reason for logging the top
process was to identify issues with the operating system setup of the Server Host, since
the host had more than just a minimal WireGuard installation but, as discussed in
Section 7.1.2, also had software to operate the host. Table 7.5 shows an example output
file of the system monitor used to monitor the performance of the WireGuard server host.

The iperf tool, used to simulate the network traffic of peers as discussed in Section 7.1.4,
generates a detailed second-by-second report about transferred bytes and bandwidth.
While the client reports also contain write errors and the packets per second transferred,
the server report additionally reports on the jitter of the received traffic. To cover the
throughput metric discussed in Section 7.2 the transferred bytes of the server report
have been regarded. Figure 7.2 shows an example iperf report of an iperf server and
Table 7.3 shows an example iperf report of an iperf client.
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
C l i e n t connect ing to 1 0 . 1 . 1 0 4 . 2 2 2 , UDP port 5001 with pid 38416 v i a peer1 (1 f l o w s )
TOS s e t to 0x0 ( Nagle on )
Sending 1470 byte datagrams , IPG t a r g e t : 114843.75 us ( kalman a d j u s t )
UDP b u f f e r s i z e : 208 KByte ( d e f a u l t )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ 1 ] l o c a l 10 .13 .0 .2% peer1 port 47849 connected with 1 0 . 1 . 1 0 4 . 2 2 2 port 5001 ( sock =3)

on 2024−03−29 0 9 : 2 5 : 3 1 . 7 2 4 (CET)
[ ID ] I n t e r v a l Trans fe r Bandwidth Write / Err PPS
[ 1 ] 0.00 −1.00 s e c 1 4 . 4 KBytes 118 Kbits / s e c 9/0 11 pps
[ 1 ] 1.00 −2.00 s e c 1 2 . 9 KBytes 106 Kbits / s e c 9/0 9 pps
[ 1 ] 2.00 −3.00 s e c 1 2 . 9 KBytes 106 Kbits / s e c 9/0 9 pps
. . .
[ 1 ] 0.00 −400.12 s e c 4 . 8 9 MBytes 102 Kbits / s e c 3485/0 9 pps
[ 1 ] Sent 3487 datagrams
[ 1 ] Server Report :
[ ID ] I n t e r v a l Trans fe r Bandwidth J i t t e r Lost / Total Latency avg/

min/max/ stdev PPS Rx/inP NetPwr
[ 1 ] 0.00 −400.01 s e c 4 . 8 9 MBytes 102 Kbits / s e c 0 .748 ms 0/3486 (0%)

0 . 3 8 2 / 4 2 9 4 9 6 7 . 1 8 3 / 1 0 4 . 5 5 1 / 0 . 9 5 7 ms 8 pps 8/0(0) pkts 33 .54

Figure 7.3: An example output of an iperf client report file.

Thread Sent Elapsed Type Passed
2401 2024-03-29 09:23:53 100025 2 true
2401 2024-03-29 09:23:58 95063 2 true
2401 2024-03-29 09:24:03 95034 2 true
2401 2024-03-29 09:24:08 87799 2 true

Table 7.6: An example report output of the Go script used for latency tests.

As discussed in Section 7.1.4, test inputs for the latency test plans were created using
a Go script. The time measurements for the handshake responses were written to an
output file, consisting of the peer number, a timestamp, the measured response time
in milliseconds, the type of the response, and whether a response was captured at all.
Table 7.6 shows an example Go script report. “Thread” marks the peer number, “Sent”
marks the timestamp of the handshake request, “Elapsed” logs the RTT of the handshake,
“Type” marks the type of handshake response (response or cookie) and “Passed” logs
whether a response was captured at all. The report generated by the Go script for the
load test input has the same structure.

7.4 Visualising Test Results
During performance testing, a large amount of data is generated which needs to be
processed in order to make it usable, as discussed in Section 6.3. Foundational notions
on statistics and their presentation are discussed in Section 3.5. Performance metrics
reports were processed using Python and visualised using matplotlib [45].

Visualising Latency Test Results: When visualising the latency test results, it is
of interest to present the distribution of the measured values as well as the types of
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responses. As presented in Figure 7.4, the plot for latency test results was split in half,
where the upper half is concerned with the response time values and the lower half with
the response types. To compare the test runs of the same test target and the test runs
between different test targets, all latency test run results of a test target were visualised
in a single plot.
As discussed in Section 3.5.2, two possible ways of plotting a distribution are to use a
boxplot or violin plot. A blend of both plots was used to visualise the distribution of the
response time values by overlaying the violin plot with a boxplot without outliers, to
gain the advantages of both plots. Comparison of test runs with different numbers of
peers is possible by plotting the results for each test run next to each other.
Visualisation of response types was done using pie charts. A separate pie chart was
created for each test run to compare the amount of successful, cookie, and timeout results.

Visualising Throughput Test Results: When visualising the throughput test results,
it is of interest to visualise the total amount of the throughput, the change of the
throughput over time as well as the individual throughput of each simulated peer for test
plans with more than one peer. As discussed in Section 3.5.2, a stacked bar plot is a way
to achieve the desired goals.
Results of the throughput tests were presented for different numbers of simulated peers.
The throughput test results are presented as a stacked bar plot. Each simulated peer was
assigned a unique colour inside the stacked bars. Thus, in the case of a single simulated
peer, the stacked bar plot consists only of a single colour bar. The height of each bar
presents the achieved throughput for this peer at this point during the performance test.
The height of the stacked bar presents the total throughput achieved. For each plot, the
median total throughput was marked in the plot. See Figure 7.14 for an example of such
a plot.

Visualising Load Test Results: The main goal when visualising the load test results
was to determine whether peers would experience availability issues and if the provided
hardware resources of the Server Host were sufficient to handle the load. To that end,
the plot of a load test result is split into three parts. See Figure 7.7 for an example of
such a plot.
The upper plot shows the CPU usage and load average as a time-series plot on the same
X-axis because, as discussed in Section 6.3, CPU usage and load average are tied to each
other.
The middle plot is visualising the total throughput during the test. The iperf reports
created during testing were aggregated and plotted as a time-series plot. Additionally,
received bytes of the network interface captured by the system monitor discussed in
Section 7.3, were added on the same X-axis.
The lower plot is concerned with the visualisation of the measured response times to
handshake initiations. Because it was of interest to visualise a general trend in response
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times and not response times for individual peers, the results were plotted as a time-series
plot with single plots for each measurement. The type of the response was encoded by
colour.

By plotting the latency response times as well as CPU usage and load average alongside
the throughput results it is possible to determine the cause of a throughput interruption.

7.5 Test Results
This section presents the results of the performance tests of a WireGuard server. Sec-
tions 7.5.1 through 7.5.4 will present the results of the test suites discussed in Section 7.1.3.

7.5.1 WireGuard Kernel Test Results
As discussed in Section 7.1.1, an original and unaltered version of WireGuard for the
Linux kernel was used to create a baseline of comparison for all other test targets. As
discussed in Section 7.1.4, latency tests were performed for up to 4000 concurrent peers.
The result of the latency tests for the Linux kernel version of WireGuard can be seen in
Figure 7.4, see Section 7.4 for a general description of the plot.

The median value of response times over all test runs lies between 18.97ms and 23.18ms.
The lowest median RTT was measured with 100 simultaneous peers and the highest RTT
with 4000 simultaneous peers.

Of interest is the performance drop-off between 500 and 1000 peers. Up until 500 peers all
handshake requests were answered successfully. Starting with 1000 peers some handshake
requests were not answered within 10 seconds (timeout) and starting with 4000 peers
some handshake requests were answered with cookie replies.

The number of timeouts during WireGuard kernel latency tests was as follows:

• 1000 peers: 85 of 100000 (0.085%.)

• 2000 peers: 7 of 200000 (0.0035%)

• 4000 peers: 1 of 400000 (0.00025%)

The number of cookie replies during WireGuard kernel latency tests:

• 4000 peers: 35644 of 400000 (8,911%)

7.5.2 WireGuard Go Test Results
As discussed in Section 7.1.1, an original and unaltered version of WireGuard written in
Go was used to compare its performance with the Linux kernel version of WireGuard
and with the altered version of WireGuard Go using an HSM. Comparing the latency
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Figure 7.4: Comparison of individual latency test runs for the Linux kernel version of
WireGuard.
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Figure 7.5: Comparison of individual latency test runs for WireGuard Go.

test results of WireGuard kernel version in Figure 7.4 with the test results of WireGuard
Go version in Figure 7.5 it is apparent that the kernel version performs better than the
Go version, even in the single peer test run.

The median value of response times over all test runs lies between 19.53ms and 32.9ms.
The lowest median RTT was measured with 100 simultaneous peers and the highest RTT
with 2000 simultaneous peers.

Of interest is the fact that during the WireGuard Go latency tests much fewer timeouts
were recorded. No timeouts occurred during the 1000 peer test run. The first timeouts
appeared during the 2000 peer test run with 5 out of 200000 (0.0025%) timeouts which
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Figure 7.6: Comparison of individual delay test runs for WireGuard Go with HSM-1.

is similar to the 4000 peer WireGuard kernel test run.

7.5.3 WireGuard Go with HSM-1 Test Results

Latency tests with WireGuard Go together with the HSM-1 were carried out. Details
about HSM-1 can be found in Section 4.5. The results of the latency tests for WireGuard
Go with HSM-1 can be seen in Figure 7.6.

Compared to the latency test runs with the WireGuard kernel and Go version it is
apparent that the test target using HSM-1 performed significantly worse. The single
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Figure 7.7: Load test for WireGuard Go with HSM-1, simulating 120 peers in total.

peer latency baseline test shows a median RTT of 909.96ms. There even occurred some
timeouts during this test. During the 10 peer latency test run, the median RTT already
rose to 3819.42ms. Although around 33% of all handshakes of this test run resulted in a
timeout, WireGuard did not once answer with a cookie reply. This suggests that while
WireGuard can handle the simultaneous load, the HSM seems to be having issues with
it. During the 25 peer latency test run, none of the handshakes were answered within
the given timeout.

As discussed in Section 7.1.3, based on the results of the latency tests the following
initial load test was devised. Since the HSM was not able to handle 10 simultaneous
peers, a batch size of five peers was chosen. A delay of five seconds between each batch
was chosen because the violin plot of the 10 peer latency test run suggests that most
successful answers were within that time. The resulting load test run simulated a total
of 120 peers.

Although some timeouts were captured during the initial load test run, the overall result
was positive. As can be seen in the top plot of Figure 7.7, resources on the Server Host
were not nearly exhausted. Although the test run encountered two timeouts during the
initial build-up of the load, as can be seen in the middle plot, the overall progress was
satisfactory. The lower plot reveals that most handshake requests were answered between
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Figure 7.8: Load test for WireGuard Go with HSM-1, simulating 168 peers in total.

one and four seconds. This result aligns perfectly with the latency test results discussed
earlier. An additional test run was carried out with one peer per batch and a delay of one
second between each batch, based on the results of the single peer latency test results.
The results were identical and did not suggest any advantages over the previous test run.

Although the initial load test was successful, the encountered timeouts suggest that the
test target would not be able to handle more peers. Additional test runs were carried
out trying to raise the total peer number. The results of one such run can be seen in
Figure 7.8.

In contrast to the initial test run, the peers per batch were raised from five to seven,
resulting in 168 total peers. Although some of the initial handshake requests were
answered and some traffic was received at the Server Host, the test target was quickly
overwhelmed and could not answer any more handshakes within the timeout. The result
was that only a fraction of the peers were able to send traffic through the VPN, as can be
seen in the middle plot of Figure 7.8. However, after 180 seconds the keys were discarded
(see Section 5.4) and since the HSM was unable to answer any handshakes within the
timeout, no more throughput was achieved. Because the Server Host did not experience
significant CPU load, as can be seen in the top plot of Figure 7.8, it can be concluded
that the HSM did reach its performance limit.
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Figure 7.9: Comparison of individual latency test runs for WireGuard Go with HSM-2.

7.5.4 WireGuard Go with HSM-2 Test Results
Latency tests with WireGuard Go together with the HSM-2 were carried out. Details
about HSM-2 can be found in Section 4.5. The results of the latency tests for WireGuard
Go with HSM-2 are shown in Figure 7.9.

Compared to the latency test runs with the WireGuard kernel and Go version it is
apparent that the test target using HSM-2 performed worse. However, compared to the
test results with HSM-1 it is a clear improvement. In contrast to the test targets without
an HSM, this test target shows the best performance for the single peer test run. The
test target performance decreased with increasing peer number and the median RTT
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roughly doubled with double the peer number.

The first timeouts appeared during the 200 peer test run with 3 out of 20000 (0,015%)
timeouts. The number of timeouts during WireGuard kernel latency tests:

• 200 peers: 3 of 20000 (0.015%)

• 500 peers: 41 of 50000 (0,082%)

The first cookie replies were recorded during the 500 peer test run. The number of cookie
replies during WireGuard Go HSM-2 latency tests:

• 500 peers: 42761 of 50000 (85,522%)

As discussed in Section 7.1.3, based on the observations from the latency tests, load test
runs were carried out. The starting point for the load tests was the 10 peer latency test
run.

The initial load test involved initiating 10 peers every 150ms, culminating in a total of
8000 peers. Results of this load test are presented in Figure 7.10. Of interest are two
occurrences where the handshake latency rose to around 4 seconds, presented in the
bottom plot. However, the test target managed to get the latency down again without
the use of cookie replies. The middle plot shows that the received network traffic was
stable throughout the test run. CPU usage and load average are well within acceptable
limits, as shown in the top plot. The result suggests that the test target could handle
the load well.

The next load test involved initiating 10 peers every 120ms, culminating in a total of
10000 peers. Results of this load test are presented in Figure 7.11. Similar to the previous
load test run, there is an occurrence where the handshake latency rose to around 4
seconds, presented in the bottom plot. In contrast to the previous load test run, the
test target had to make use of cookie replies to manage the load. Nonetheless, the
received network traffic presented in the middle plot does not reveal any issues with
the throughput. The CPU usage peaked at around 35%, which is 5% more than in the
previous load test run. Of concern is the spike in load average, around 180 seconds into
the test run, presented in the top plot. A detailed review of the monitor log files suggests
that the spike in the load average can be attributed to monitoring software installed on
the system that is used in the production environment and not related to the test target.
In any case, the spike in the load average only lasted for a short period and did not seem
to influence the throughput. The result suggests that the test target could handle the
load well.

The next load test involved initiating 10 peers every 100ms, culminating in a total
of 12000 peers. Results of this load test are presented in Figure 7.12. Similar to the
previous load test runs, there are occurrences where the handshake latency rose to around
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Figure 7.10: Load test for WireGuard Go with HSM-2. The test starts 10 new peers
every 150ms for 120 seconds.

4 seconds, presented in the bottom plot. The test target had to make use of cookie
replies to manage the load. While the test target was able to handle the load during the
first occurrence, the test target seemed to struggle after the second occurrence which is
noticeable by the constant appearance of cookie replies in the bottom plot. From around
350 seconds after the test started, the throughput decreased continuously suggesting that
some clients were not able to send packets because of outdated keys (see Section 5.4.3).
The CPU usage peaked at around 40%, which is again 5% more than in the previous load
test run. Although the Server Host did experience some CPU load, as can be seen in the
top plot of Figure 7.12, the Server Host was far from its limit. It can thus be concluded
that the HSM did reach its performance limit.

Based on the results of the 200 peer latency test runs a final load test involved initiating
200 peers every 2000ms, culminating in a total of 12000 peers. Of interest was to evaluate
how the test target would handle the longer delay paired with the larger peer batch.
Results of this load test are presented in Figure 7.13. A quick review of this test run
presents a noticeably worse performance compared to the previous test run. The result
suggests that the test target could not handle the load and that the test target is better
able to handle smaller peer batches in shorter delays.
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Figure 7.11: Load test for WireGuard Go with HSM-2. The test starts 10 new peers
every 120ms for 120 seconds.

7.5.5 WireGuard Throughput Test Results

This section will discuss the results of the throughput test suite as presented in Sec-
tion 7.1.3. See Section 7.4 for a description of the presented figures in this section.

The results of the throughput test runs for the WireGuard kernel version can be seen in
Figure 7.14. It presents the results of test runs for 1, 10, 16, and 20 peers. Observing the
CPU usage during the 1 peer throughput test run revealed that iperf was utilising only
one CPU core but to 100%. This indicates that a single iperf instance was not enough
to fully load the system. The 10 peer test run increased the throughput, in contrast to
the 1 peer run, by 9% from 759.3Mbs to 828.3Mbs. The 16 peer test run increased the
throughput, in contrast to the 1 peer run, by 11% from 759.3Mbs to 843.5Mbs. However,
the 20 peer run showed a decrease in throughput in contrast to the 16 peer run by
0.3%. This suggests that using one instance of iperf for each available CPU core would
produce the highest possible throughput. Because of this, 16 peer test runs were used to
compare the throughput test results between the test targets. Although individual peers
did experience some throughput fluctuations during test runs, the overall throughput
was relatively stable during all runs that used multiple peers.
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Figure 7.12: Load test for WireGuard Go with HSM-2. The test starts 10 new peers
every 100ms for 120 seconds.

Figure 7.15 presents a comparison between the 16 peer throughput test runs for each test
target. The WireGuard kernel version showed the highest throughput of 843.5Mbs. The
WireGuard Go version showed a decrease in throughput, compared to the WireGuard
kernel version, by 5.4% from 843.5Mbs to 800.15Mbs. The WireGuard Go version
extended with HSM-2 showed a decrease in throughput, compared to the WireGuard Go
version, by 3% from 800.15Mbs to 776.15Mbs.
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Figure 7.13: Load test for WireGuard Go with HSM-2. The test starts 200 new peers
every 2000ms for 120 seconds.
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Figure 7.14: Throughput test results for the Linux kernel version of WireGuard.
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Figure 7.15: Comparing throughput test results between different test targets.
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CHAPTER 8
Evaluation/Discussion

This chapter will first discuss the research questions presented in Section 1.3 and then go
on to discuss the main hypothesis of this thesis.

RQ1. To what extent does secure access to remote services influence perfor-
mance from an end user’s perspective? Because an HSM is a dedicated device
that is built to perform cryptographic operations it is expected to generally perform cryp-
tographic operations faster than a general purpose server [51]. It could be expected that
moving security-sensitive tasks, such as key management and cryptographic operations,
inside an HSM could result in a performance increase. However, the results of this thesis
show that this is not always the case. Because the WireGuard protocol is already very
fast with its cryptographic operations (see Section 7.5.1), the introduction of an HSM is
adding overhead that is decreasing performance.

Comparing the results of the tests without an HSM (see Section 7.5.2) and with an HSM
(see Section 7.5.4) suggest that there is a performance decrease when using an HSM
to secure a remote access. However, from an end user’s perspective, this performance
decrease might only become noticeable if the remote access in use is prone to latency.
Otherwise, the performance decrease might go unnoticed, such as in the case of WireGuard
because of the grace period allowed by the protocol (see Section 5.4.3).

RQ2. How can secure remote access to central resources be scaled? Based on
literature research this thesis presented three different scaling methods in Section 4.4.

The scaling method proposed by Han et al. [43] is already indirectly used in the case of
WireGuard. The WireGuard server stores the ephemeral keys itself and only contacts
the HSM to carry out the DHKE to generate them, which involves the static secret keys
(see Section 5.4.2).

91



8. Evaluation/Discussion

Horizontal scaling (scaling out) by adding additional HSMs can be difficult. It requires
load balancing between HSMs which can be difficult because it would require current
performance data, such as CPU load and memory usage, of the running HSMs. HSMs
typically do not provide an easy way to acquire such performance data. An example of a
horizontal scaling solution given by Aref and Ouda [7] showed a decrease in performance.

Vertical scaling (scaling up) an HSM by increasing its resources is not possible because it
would harm the integrity of the hardware and might even lead to its destruction because
of its tamper resisting features. An HSM modified in this way would likely also lose its
certification.

Instead, this thesis tested vertical scaling by replacing an HSM with a stronger model.
The results showed an increase in concurrent users and a decrease in response time when
using a more powerful HSM (compare Sections 4.5.1 and Section 4.5.2).

RQ3. Which characteristics are relevant to assess the suitability of secure
cryptographic key storage in a high-performance environment? Table 8.1
presents a summary of the performance test results discussed in Section 7.5. The results
of the performance test presented in Section 7.5.3 and Section 7.5.4 suggest that the
performance of the test target depended largely on the performance of the HSM in use.
The HSM-2 (22000 tps) has a stated performance roughly 32 times higher than the
HSM-1 (680 tps), or in other terms, the HSM-1 has 3.09% of the performance of HSM-2
(see Section 4.5).

During the latency tests, the test target using HSM-2 displayed a latency 13.5 times
smaller (67.45ms) than the test target using HSM-1 (909.96ms), or in other terms, the
latency with HSM-2 was 7.4% of that of HSM-1. The HSM-1 has achieved a maximum
stable user count of 120 (see Section 7.5.3), whereas the HSM-2 has achieved a maximum
stable user count of 10000 (see Section 7.5.4). Expressed in percent, the test target using
HSM-1 reached only 1.2% of the stable users reached with HSM-2.

Taken together, it can be concluded that the stated performance of an HSM roughly
translates to the number of users the test target can handle. Although the actual
performance of a secure remote access is difficult to predict using the performance data
provided by manufacturers, it is possible to estimate the performance of other HSMs
based on measured performance data and the stated performance.

Based on the answers to the research questions, the main hypothesis will now be discussed.

HSMs are suitable in securing the remote access in high-performance environ-
ments. Although the performance of WireGuard with HSM-2 is not as good as that of
the WireGuard Go or kernel version, it was still possible to achieve a performance that
could handle multiple thousand peers. The measured performance would be sufficient
to be used in a production environment. Thus, the main hypothesis of this thesis is
considered to be valid.
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WireGuard
Kernel

WireGuard
Go

WireGuard
Go HSM-1

WireGuard
Go HSM-2

Concurrent
peers Median RTT

1 19,54ms 19,88ms 909,96ms 67,45ms
10 19,25ms 19,75ms 3819,42ms 93,73ms
25 19,10ms 20,01ms >10000ms 131,08ms
50 19,00ms 20,16ms - 231,45ms
100 18,97ms 19,53ms - 537,18ms
200 19,07ms 20,51ms - 1025,15ms
500 19,41ms 21,98ms - 342,43ms
1000 21,25ms 28,17ms - -
2000 23,18ms 32,90ms - -
4000 22,59ms - - -

Median bandwidth for 16 concurrent peers
843,50Mbits/s 800,15Mbits/s - 776,10Mbits/s

Maximum stable user count
- - 120 10000

Table 8.1: Summary of performance test results presented in Section 7.5.
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CHAPTER 9
Conclusion and Future Work

HSMs are hardened physical computing devices, dedicated to performing cryptographic
operations and for key management [51]. These devices are used in security-sensitive
contexts, such as banking, insurance [86], and health [65]. However, frequent key
operations can cause an HSM to become the bottleneck of a system [42]. This thesis
addresses whether a remote access that moves cryptographic operations into an HSM in
an environment that frequently performs cryptographic operations is performant enough
in a high-performance environment. The author is not aware of any scientific work
devoted to this topic.

To answer this question, the VPN protocol WireGuard was used as an example of
a remote access application that frequently performs cryptographic operations. The
WireGuard protocol is rotating its session key every 120 seconds. This key rotation
causes a WireGuard server, handling multiple thousands of peers, to potentially calculate
numerous DHKE per second. By moving this workload into an HSM this thesis aims to
evaluate the suitability of on premise HSMs to operate in highly performance demanding
environments.

Performance tests were carried out to determine the impact of extending a WireGuard
server with an HSM. The most important performance metric in this context was
determined to be the RTT of WireGuard handshakes as this latency is directly related to
the computing performance of the HSM. The performance tests consisted of concurrent
baseline testing and load testing. Baseline testing was used to measure the RTT of
WireGuard handshakes for single and multiple peers. Based on these tests, load tests
were formulated that simulated multiple concurrent peers.

A literature research on scaling methods revealed three solutions. This thesis showed
that vertical scaling, by exchanging the HSM in use with a more powerful one, is a simple
solution that increases the performance of the secure remote access. Aref and Ouda [7]
showed that horizontal scaling is possible, however with a performance decrease.
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This thesis tested two different HSMs. The results of the performance tests show a
noticeable drop-off in peers that a WireGuard server extended with an HSM can serve, in
contrast to a WireGuard server without an HSM. However, the results of the load tests
revealed that the number of peers a WireGuard server can handle largely depends on the
computing power of the used HSM. The more capable HSM of the two tested was able
to achieve a performance that could be used in a real-world production environment.

Common HSM characteristics provided by manufacturers are given in transactions per
seconds for a set of cryptographic operations. Characteristics are typically given for RSA
and some elliptic curve cryptography. This provided performance characteristics roughly
translates into actual performance for securing a remote access in a high performance
environment. The results of this work indicate that the impact on performance depends
in large part on the communication path between the test target and the HSM which
negatively affects the overall performance of the system and must be kept as small as
possible. It can be concluded that HSMs can provide cryptographic operations and
key management in environments with high-performance requirements, but with some
performance loss.

In the course of this thesis, various topics were identified for future work.

The performance tests revealed a performance drop-off between the WireGuard kernel
version and the Go version. It would be interesting to see if the performance drop-off
would be less significant if the kernel version of WireGuard were extended with an HSM.
Additionally, versions of WireGuard using other programming languages such as Haskell
might be of interest.

This thesis did consider the union of KMS and HSM as a black box. The author suspects
that performance improvements can be achieved by examining the behaviour of those
components during performance testing more closely. Additionally, the results of the
HSM-1 performance tests suggest there might be some performance improvements possible
in the source code of the HSM.

In the case of the WireGuard VPN the main load of cryptographic operations inside
the HSM is caused by session handshakes. The main reason for this is that WireGuard
rotates the session keys every 120 seconds. Future work could evaluate the effects of
raising this rekeying interval.

The thesis found that the network latency between the Server Host and the KMS makes
a significant contribution to the overall RTT and thus the performance of the system.
Future work could focus on network architectures and technologies that could lower this
latency.

During the test of HSM-1, the WireGuard server did not respond with cookie replies
although it took the HSM a considerable while to answer its requests. The exact conditions
under which a WireGuard server responds with a cookie reply are not discussed in the
original paper by Donenfeld [29]. A code review of the WireGuard Go code indicates
that cookies are sent as soon as a queue, which is holding incoming handshakes, has
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reached a certain capacity. Future work could focus on coordinating the WireGuard
cookie mechanism better with the used HSM for example by coordinating queue sizes
and timeouts.

Molyneaux [70] argued in 2009 that performance testing is an informal discipline. Acquir-
ing adequate literature on how to set up performance testing was hard to come by back
then. From the experience of this thesis’s author, this situation still needs improvement.
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Glossary

iperf Iperf is a network performance measurement tool. It can create a data stream
between two instances to measure throughput.

Go Go is a typed high-level programming language.

WireGuard WireGuard is a free and open-source virtual private network protocol.
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Overview of Generative AI Tools
Used

1. Google Translate

• Usage: Was used as a starting point to translate more complex ideas from the
native language into the thesis language.

• Place of use: Whole thesis.

2. Grammarly Free Version

• Usage: Was used for grammar and spell-checking.
• Place of use: Whole thesis.
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