
Visualizing Historical Ownership
with Code City Metaphor

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Enrik Ndou
Matrikelnummer 01426910

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Thomas Grechenig

Wien, 25. Jänner 2025
Enrik Ndou Thomas Grechenig

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Visualizing Historical Ownership
with Code City Metaphor

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Enrik Ndou
Registration Number 01426910

to the Faculty of Informatics

at the TU Wien

Advisor: Thomas Grechenig

Vienna, January 25, 2025
Enrik Ndou Thomas Grechenig

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Enrik Ndou

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die ver-
wendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen, die
ohne substantielle Änderungen übernommen wurden, habe ich jeweils die von mir formu-
lierten Eingaben (Prompts) und die verwendete IT-Anwendung mit ihrem Produktnamen
und Versionsnummer/Datum angegeben.

Wien, 25. Jänner 2025
Enrik Ndou

v

Kurzfassung

Software-Projekte haben während ihrer Entwicklung ständig Veränderungen, die für die
verschiedenen an der Projektentwicklung interessierten Akteure nicht ganz offensichtlich
sind. Studien haben gezeigt, dass es Interesse gibt, um zu wissen, wer an welchem
Bereich arbeitet oder wie man den richtigen Entwickler findet, den man für einen Teil
des Quellcodes kontaktieren soll. Im Rahmen dieser Forschungsarbeit wird ein 3D-
Prototyp vorgestellt, um Ownership Fragen zu beantworten, der auf einer der populärsten
3D-Metaphern basiert ist: „Code City“. Forschungsarbeiten haben eine Vielzahl von
Visualisierungen vorgeschlagen, die die Code-City-Metapher verwenden, jedoch fehlt eine
Studie, die einen Überblick darüber gibt, wie die Metapher verwendet wurde.

Diese Arbeit wird eine Mapping-Studie liefern, die aufzeigt, wie die Code-City-Metapher
in der Softwarevisualisierungsforschung verwendet wurde. Die Mapping-Studie enthält
und beschreibt eine Liste von mehr als dreißig verschiedenen Visualisierungen, die ähnliche
Konzepte wie die Code-City-Metapher verwenden, zum Beispiel, Gebäude und Städte.
Die Studie enthält Tabellen, aus denen die wichtigsten Unterschiede, Gemeinsamkeiten
und Besonderheiten zwischen den Visualisierungen leicht ersichtlich sind.

Die Erkenntnisse aus der Mapping-Studie und der Umfrage über den Informationsbedarf
von Software-Ingenieuren halfen, die Skizzen für den Prototyp zu verbessern. Die Anfor-
derungen wurden durch semistrukturierten Interviews mit Experten auf diesem Gebiet
validiert und nach der Analyse der Interviewergebnisse definiert. Auf der Basis dieser Er-
gebnisse wurde ein Code-City-Artefakt entworfen und implementiert, das das historischen
Owenership analysiert. Vier Softwareentwickler nahmen an separaten szenariobasierten
Experteninterviews teil, um die Visualisierung hinsichtlich ihrer Zweckmäßigkeit für
historische und eigentumsrechtliche Fragen zu bewerten. Die Ergebnisse der Interviews
zeigten, dass die Visualisierung nützlich bei der Beantwortung von Owenerships-Fragen
ist, insbesondere bei historischen Fragen oder Szenarien, bei denen es darum geht, her-
auszufinden, wer an bestimmten Dateien oder Ordnern gearbeitet hat. Außerdem gaben
sie Verbesserungsvorschläge für Szenarien, in denen der Benutzer sehen und vergleichen
kann, wann bestimmte Dateien und Ordner implementiert wurden.

Schlägworte: Slide City, Code City, Visualisierung, Code Ownership, Git, Repository,
Mapping-Studie, semistrukturierten Interviews, szenariobasierten Experteninterviews

vii

Abstract

Software projects face continuous changes during development which are not quite obvious
to various stakeholders interested in the project evolution. Studies have shown interest in
knowing who is working on what area or how to find the appropriate developer to contact
for a source code part. This research will introduce a 3D prototype to answer ownership
questions based on one of the most popular 3D metaphors: „Code City“. Research papers
have proposed a variety of visualizations using the code city metaphor, however, a study
is missing that provides a survey on how the metaphor has been used.

This work will provide a study mapping how the code city metaphor has been used in
software visualization research. The study mapping includes and describes a list of more
than thirty different visualizations using concepts similar to the code city metaphor,
such as buildings and cities. The study contains tables where the major differences,
similarities, and unique features between the visualizations can be easily seen.

The knowledge gained from the mapping study and the survey on the software engineer
information needs helped to improve the sketches for the prototype. The requirements
were validated with semi-structured interviews with experts in the field and defined after
analyzing the interview results. Based on these results, a code city artifact that analyzes
historical ownership was designed and implemented. Four software engineers participated
in separate scenario-based expert evaluation interviews to evaluate the visualization on
how purposeful the visualization is for historical and ownership questions. The interview
results showed that the visualization is very useful in answering ownership questions,
especially historical ones or scenarios that involve finding who has been working in some
particular files or folder. Additionally, they provided improvement feedback for scenarios
where the user can see and compare when particular files and folders were implemented.

Keywords: Slide City, code city, visualization, code ownership, Git, repository, mapping
study, semi-structured interviews, scenario based expoert evaluation

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Expected Results . 2
1.4 Structure . 3

2 Methodology 5
2.1 State of the Art Review & Systematic Mapping Study 6
2.2 Requirements . 7
2.3 Iterative Implementation . 8
2.4 Scenario-Based Expert Evaluation . 8

3 State of the Art 11
3.1 Information Needs . 11
3.2 Ownership and Authorship Effects on Software Quality 13
3.3 2D Historical Code Visualizations . 17
3.4 3D Historical Code Visualizations . 21

4 Systematic Mapping of Code City Visualizations 29
4.1 Visualizations Using City Metaphor 29
4.2 Code Cities Tables . 51

5 Requirements 55
5.1 Vision & Derived Requirements . 55
5.2 Proposed Features (Open questions - Semi-Structure Expert Interviews) 59
5.3 Semi-Structure Expert Interview Results 70

6 Implementation 77

xi

6.1 Architecture . 77
6.2 Repository Metadata . 80
6.3 Mining Configuration . 80
6.4 Visualization Configuration . 83
6.5 Live Configuration . 86
6.6 Requirements Deviation . 89

7 Evaluation & Results 93
7.1 Test Plan . 93
7.2 Demographics . 94
7.3 Scenarios . 94
7.4 Results . 96
7.5 Threats to Validity . 104

8 Findings 107

9 Conclusion 109
9.1 Future Work . 110

List of Figures 113

List of Tables 117

Bibliography 119

Appendix 129
Semi-Structured Expert Interview——Questions 130

Acronyms 137

CHAPTER 1
Introduction

Since the software coding phase and later during its maintenance, the code faces continuous
software changes, whether for fixing bugs or introducing new features [1]. Software change
is one of the essential characteristics, and understanding its impact has been a challenge
since the first software systems. This chapter will give an introduction to the problem
that this thesis is going to tackle and the motivation for the topic.

1.1 Problem Statement
Code evolution and ownership are necessary information in medium and large software
[2]. Before developers introduce further changes, they need to understand the current
implementation. When there are uncertainties or questions about already implemented
features, it is helpful to know beforehand the developers who have worked or are still
working on the feature. Looking only at the ownership of the current code state may
be misleading. If refactoring, code clean-up, or linting has happened lately, the current
code ownership will also change. Code ownership may change even if the order of the
functions in a file has changed without changing the functions’ content. Another factor
that needs to be considered to have the correct overview of who has been working on a
particular feature is the code history.

Modern IDEs like IntelliJ provide code annotation of historical changes for a selected
file or some selected lines. For example, it shows the author’s name and the date the
developer introduced the line. Other researchers have proposed visualizations that offer a
general view of the historical changes, such as an author’s behavior [3] or the committers
per file [4]. However, it is still hard to understand where a developer has been working
or who and when has contributed the most to a particular part of the project.

Researches for handling source code evolution were done in the past by Girba et al., who
implemented a 2D visualization „Chronia“. Researches in 3D tackling the code evultion

1

1. Introduction

are [5, 6, 4, 7], where each of them proposes a variation of the code city. The code city
metaphor maps various data sources into city objects, such as streets, flat, districts and
in some cases even windows [8, 9]. The advantage of the code city objects is that any user
is familiar with the city metaphors. Additionally, a code city object such as the buildings
can map multiple data sources in one object, for instance, the building can represent
a file, while the height can represent the number of lines and the width can represent
the number of functions in that file. These factors made the code city metaphor, such
as from Wettel et al. [10], one of the most popular research areas in the visualization
research field. The first proposals were in 1999 [8], and later Panas et al. added some
other concepts [11]. Lately, only VISSOFT21 had five research studies [12, 13, 14, 15, 16]
related to the code city metaphor.

However, due to the abundance of code city research, there is no clear research direction.
Moreover, the current visualizations do not show „real“ ownership, for example, who
was the most extensive file or package owner during different implementation periods.
Another essential factor that is missed in the mentioned research papers for source
code evolution is the visualization granularity. The granularity depends on who the
stakeholders are and what their interests in data are. For example, developers may need
the history of some particular code lines during product development. However, during a
more abstract discussion over a feature, even the file-level visualization may cause too
much information noise when a more general view is necessary.

1.2 Motivation
Understanding how the code has changed and its impact on the system has been
challenging since the first software systems [1]. The motivation for the topic is to make
it easier for different stakeholders to find and understand information about a software
product. Some of the information needs are to know who has implemented a particular
software part or in which parts a developer has been working. The abstraction level
should also differ depending on the user’s interest. For example, a manager that needs to
find the right developer to ask for a feature may need a different abstraction level than
another developer that needs to find the correct person to ask for a specific part of code.
In the first case, the folder and package level ownership makes it easier for the manager,
while in the second case, the file level ownership helps the developer find the right person.

The proposed visualization aims to answer such information needs by combining code
history and ownership into one interactive 3D visualization. This visualization’ s main
benefits are comprehending the code’s history, finding the implementation expert, and
seeing collaboration insights.

1.3 Expected Results
This thesis will evaluate the proposed visualization of code ownership with a particular
emphasis on historical ownership using the code city metaphor [10]. Because of the rising

2

1.4. Structure

popularity of the code city metaphor without having a clear literature review, the first
research question is:

RQ1: How has the city metaphor been used in the software visualization research?

The results of the research question will provide an overview of the current state of the
art and different categorizations of the code city visualizations. The result will make it
easier to see similarities and differences between different code city visualizations. Some
categorization examples are the visualization’s features or the software aspect, visualized
in the code city metaphor.

The thesis will include the design of a prototype to treat the problem stated in Section 1.1.
The intention of this prototype is to simplify getting information related to the history of
a source code project, for example, who has been working the most in different periods
with a file, folder or package. It should support various software stakeholders, therefore,
this thesis will include semi-structured interviews of different selected stakeholds to study
their needs and extract knowledge on how to shape the prototype. This research goal is
formalized into the second research question:

RQ2: How to visualize the historical code ownership with a city metaphor?

After the requirements have been discussed and validated, the artifact will be implemented
and applied to a real-world context. This will help to achieve the third research goal
of the ”implementation evaluation” to describe, explain, and evaluate the effects of the
prototype. This has been formalized into the last research question:

RQ3: How purposeful is the visualization for answering historical and ownership
questions?

1.4 Structure
After the Introduction chapter, the thesis includes the State of the Art, which contains
a review of the information needs and research related to code ownership and code
cities. Chapter 2 will describe the methodology used to answer the research question
and construct the visualization. Chapter 4 introduces a mapping study of code cities.
Chapter 5 discusses the main requirements for the prototype and an overview of the Semi
Structured Interview results. Chapter 6 describes the technical aspects of the artefact
implementation. Chapter 7 discusses the scenario-based expert evaluation and Chapter 8
dicusses the answers to the research questions. The last chapter concludes the thesis and
including discussions for future work.

3

CHAPTER 2
Methodology

This chapter describes the methodology used to build the prototype and answer the
research questions. Initially, the literature was reviewed to describe the state of the art
of information needs and historical ownership visualizations. To answer the research
questions, the thesis used different methodologies:

• RQ1: How has the city metaphor been used in the software visualization
research?
The methodology used for the first research question is a systematic mapping of
visualizations using the code city metaphor.

• RQ2: How to visualize the historical code ownership with a city metaphor?
The initial requirements were derived from the vision and the visualizations’ state
of the art. After the initial requirements were set, they were validated will semi-
structured expert interviews. The requirements validation was followed with an
iterative implementation.

• RQ3: How purposeful is the visualization for answering historical and
ownership questions?
The scenario-based expert evaluation was organized to determine the visualization’s
purposefulness. They included questionnaires about scenarios related to different
project levels.

5

2. Methodology

2.1 State of the Art Review & Systematic Mapping Study
The code city research area has been continuously growing, where only VISSOFT2021
had five papers related to code cities, increasing the need for structuring the research
area. The systematic mapping study is an adequate research review for this case [17]. To
conduct the systematic mapping, the thesis follows the guidelines of Petersen et al. [17].

The state of the art and systematic mapping research involves finding many research
papers using the code city metaphor. The primary method to find these research papers is
using keywords in search engines like Google Scholar1, IEEE2, ACM DL Digital Library3,
and Mendeley4.

Many different keywords are used to find state-of-the-art research papers for ownership
information needs. The main keywoards that were used to find information needs related
to ownership questions are: „historical ownership,“ „information needs,“ „software
developer comparison,“ and „software evolution“. However, the search keywords were
also combined with other keywords: „code,“ „source code,“ „evolution,“ and „quality.“
The formed expressions were combined again with the keywords „visualization“ and
„statistics“ to find state-of-the-art visualizations that answered information needs in code
ownership.

The main keyword used for the systematic mapping of code city visualizations is „code
city,“ but also combined with words like „visualization,“ „3D,“ or „software.“ Many
research papers on visualization are found in IEEE VISSOFT5, which contains research
publications each year. The papers are found in IEEE6 using keywords like „code city“
and „VISSOFT.“

Besides the keyword search, forward and backward snowballing have been used. Forward
snowballing involves searching studies that cite the found ones [18], for example, finding
all research papers that reference well-known visualizations, such as Wettel et al. [10].
The backward snowballing involves searching studies cited by the found paper [19]. This
method is conducted by reading the related work of the found code city studies. The
studies using or extending the code city metaphor were selected. A similar approach
was also conducted for the state of the art of historical ownership information needs and
visualization.

Fifty-six research papers were selected for the mapping study. These papers either
introduce a new visualization based on a „code city“ metaphor or extend a former
one, for example adding features like roads or wires or mapping other software data
to the city. Papers found while searching with the keywords combinations of „3D,“
„visualization,“ and „software“ were checked to see if the visualizations are related to the

1https://scholar.google.at/ version of 11.07.2024
2https://ieeexplore.ieee.org/ version of 11.07.2024
3https://dl.acm.org/ version of 11.07.2024
4https://www.mendeley.com/search/ version of 11.07.2024
5https://vissoft.info/ version of 11.07.2024
6https://ieeexplore.ieee.org/ version of 11.07.2024

6

https://scholar.google.at/
https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.mendeley.com/search/
https://vissoft.info/
https://ieeexplore.ieee.org/

2.2. Requirements

code city metaphor. Although some papers do not use code city metaphor namings such
as buildings, streets, or cities, they are still selected if the visualizations are close to a
code city, for instance, [20, 21]. Other papers were discarded.

Papers related to ownership, authorship, or code evolution were selected for the ownership
and authorship state of the art. However, papers that only mentioned these concepts but
did not provide any results or comparison of ownership or authorship to other software
code metrics were discarded.

According to the research age, a different approach was followed in selecting historical
ownership information needs research papers and code city research papers. The latest
studies on historical ownership information needs were prioritized as they describe the
recent stakeholders’ needs. However, on the code city systematic mapping, older studies
are also prioritized for being the first to introduce concepts and features used in code
city visualizations.

2.2 Requirements
Requirements definition involves several steps starting from literature research. The
state-of-the-art review on information needs related to code ownership help to understand
what the user needs are and how they differ to different stakeholders. This review also
inspired the vision that this thesis present. The proposed visualization vision is described
in more detail in Section 5.1.

However, the vision alone is not enough for a research process. The second step is
validating these requirements and defining the remaining requirements. To gather data
for the remaining requirements, semi-structured interviews are conducted. According
to Kallio et al. [22], interviews are the most used data collection method, whereas
semi-structured is the most used format. They found that one of the reasons for the
popularity of the semi-structured interview is because the method has successfully enabled
reciprocity between the interviewer and participant and allowed improvisations for follow-
up questions based on the participant’s responses [22]. The follow-up question can
be prepared or spontaneous. In both cases, they help to maintain the interview flow
and reduce misunderstandings. Based on Kallio et al. [22] results, the semi-structured
interview guide development included five inseparable phases:

1. Identifying the prerequisites for using semi-structured interviews
The selected interviewees are experts in the field of software engineering. The
interview results will help define additional requirements and shape the visualization.
Firstly, the interviewer will explain the vision, and then the interview will be
conducted after the participants understand the research and visualization goals.

2. Retrieving and using previous knowledge
Previous knowledge has been retrieved from state-of-the-art reviews (see Chapter
3).

7

2. Methodology

3. Formulating the preliminary semi-structured interview guide
During this phase, the previous knowledge will be used to prepare the list of
questions. The questions may have additional follow-up questions to extract as
much information as possible to define the remaining requirements.

4. The pilot test interview guide
Kallio et al. [22] analyzed three different pilot test techniques: internal testing,
expert assessment, and field-testing. For this topic, the field-testing technique is
chosen. The field-testing technique involves testing the preliminary interview with
a potential study participant.

5. Presenting the complete semi-structured interview guide
The interview results will be discussed in Section 5.3, and the interview questions
are attached at the end of the thesis. The gathered data will be analyzed to validate
the existing features and define the remaining ones.

2.3 Iterative Implementation
Two key points on visualization implementation are the 3D implementation on the
front-end part and the mining of the ownership Git data for the visualization.

Git data mining involves a Git analysis to find efficient ways to fulfill the requirements.
This process may take a lot of time, and it is inappropriate if it is done in real time
when the user is using the visualization. Therefore the data mining is done before the
visualization is ready to use. The mined data are organized and stored in the database.
An important goal, discussed in the Chapter „5“, is that user interactions should not be
followed by major delays. The stored data structure is designed so that it is efficient to
load when required from the visualization on the front-end part.

The front-end part of the visualization uses these data and shows the 3D Slide City
visualization.

The method to build the visualization is the iterative implementation with agile method-
ology. After each iteration, a validation of the implementation is done. The agile
methodology is appropriate as it is very robust in delivering continuous results and
adaptable to changing requirements [23].

2.4 Scenario-Based Expert Evaluation
A scenario-based expert evaluation will be conducted to answer the third research question,
i.e., to determine the visualization’s purposefulness in practice and to validate it. This
step is based on technical action research (TAR). TAR is a single case study to validate
experimental artifacts and is used in moving from laboratory experiments to unprotected
conditions [24]. TAR is artifact driven where the roles during the research are „techincal
researcher“, „emprical researcher“ and „helper.“ The scenarios are real-world problems

8

2.4. Scenario-Based Expert Evaluation

that the visualization helps to solve. The underlying visualized software project may
be a project that the user is already familiar with or an unknown one. Additionally, a
prepared set of rating questions for the participants will help determine their experience
with the visualization, for example, how useful or helpful it is.

9

CHAPTER 3
State of the Art

This section discusses information needs about code ownership and visualizations that
show code ownership information or have similar 3D features as the proposed artefact,
for example, like the code city metaphor.

3.1 Information Needs
Begel, Phang, and Zimmerman [25] surveyed inter-team coordination needs for various
software team roles in 2009. The results showed that the top two needs are about
finding the people responsible or knowledgeable in a feature, API, product, or service.
Furthermore, five more of the top ten are also for finding people to get programming
advice or discuss a bug. They found out while interviewing thirteen engineers that these
needs were mainly accomplished by asking colleges. Colleagues would then route them
to other colleges that may be more appropriate to answer their questions if they could
not answer themselves. Begel et al. [25] introduced the „Codebook“ framework to find
an automatic solution to help developers with those questions. Codebook mines multiple
repositories and generates relations between issues and bug tickets, mined from an issue
tracking system to people and source code. From this information, Codebook creates a
large graph with different node types and relates them. Each node has a list of metadata,
which the user can filter with a search keyword.

Hoozizat (Figure 3.1) is a web search application built on top of the Codebook framework.
It does not include a visualization to get a general overview. However, it lists relevant
information to the search text. Figure 3.1 shows an example when searching with the
keyword „foo.“ in Hoozizat. Each column shows a different type of result, from left
to right; people, work items, source code, and files. Small photos next to each result
show the associates for people, owners, or artifacts; hovering the mouse cursor over the
photos shows a tooltip with contact information for that person. Codebook uses a confi-

11

3. State of the Art

Figure 3.1: Screenshot of Hoozizat [25]

dence score to find the most relevant connection to features or classes containing this word.

In 2014, Begel and Zimmerman [26] did two surveys about questions that software
engineers would like data scientists to answer. The first one gathered questions from
software engineers about software processes and practices, and the second survey rated
those questions. Among the questions for teams and collaborations were those for shared
knowledge and code ownership (e.g., „How can I find the best developer to contact for a
piece of apparently ‚abandoned‘ code“? [26]).

Fritz and Murphy [2] interviewed 11 developers for questions requiring information from
different domains such as source code, change sets, teams, work items, websites, wiki
pages, comments on work items, exception stack traces, and test cases. The interviews
determined 78 questions and divided them into eight domains. Two of the domains also of
interest for the proposed visualization contain questions like „Who is working on what“?
(person-specific) and „Changes to the code.“ (code specific).

Fritz and Murphy introduced the information fragment model (a prototype that extends
the IBM Rational Team Concept) that composes and shows information from multiple
domains (Figure 3.2). However, this model works best for information related to a short
period. For example, Fritz and Murphy consider the question „What have people been
working on?“ the case where a developer comes back after a week or two of holidays and
wants to know what has been happening during this time. Figure 3.2(d) shows how the
model answers this question. This approach may be inconvenient if the question is done

12

3.2. Ownership and Authorship Effects on Software Quality

for a more extensive time range, for example, for a year or since the project has started.

Figure 3.2: Approach to answering the question „What have people been working on“?
[2].

These studies emphasize the need for automated systems to help developers and managers
find the relevant people and information quicker on various challenges during software
development.

3.2 Ownership and Authorship Effects on Software Quality

Besides answering developers’ questions to know who implemented or can share informa-
tion about a feature, code ownership visualizations may help in defect prediction, such
as finding potential bugs or lack of quality code.

Bird et al. [27] examined two Microsoft operating systems, „Windows Vista“ and
„Windows 7“, to find out if there exists a relationship between bugs and ownership. They
divided the developers of a particular package (binary) into two categories „Major“ and
„Minor“ contributors. „Minor“ are the developers who have contributed less than 5%
of the commits; otherwise, Bird et al. categorized them as „Major.“ They calculated
the „Ownership“ degree of a package by dividing the number of „Major“ by „Minor.“
For example, Figure 3.3 shows the ownership of the example.dll. Top contributer has
done 41% of the commits. Five developers are called „Major“ contributer because each
of them has contributed more than 5% of the commits. Twelve have committed less than
5% and therefore are considered „Minor“ contributers.

13

3. State of the Art

Figure 3.3: Ownership of example.dll by developers [27].

During the interviews, they found that many developers were „Major“ contributors in
some binaries but „Minor“ in others. One reason is that the owner of a binary needs
to do compatibility changes to another binary where another developer is the owner,
thus resulting in the developer being a major contributor to one binary but minor to
another. Without proper coordination, this may risk a mismatch between dependencies
and a decrease in quality [28], and according to Handerson and Clark [29], minor changes
may sometimes result in drastic consequences. Bird et al. [27] found that „Ownership“
relation to code quality was small but had a statistically significant effect in pre- and
post-release failures for Vista and pre-release failures for Windows 7. However, including
the number of „Minor“ developers in the analysis improved the regression models for both
pre and post-release failures to a statistically significant degree. This model supported
their hypothesis that the involvement of many „Minor“ contributors in a component
resulted in more failures than the components that had fewer. According to Bird et
al., using these metrics may help managers make better decisions on the development
processes and policies.

On the other side, Foucault et al. [30] tested the same metrics as Bird et al. [27] on
seven Java free/libre and open-source software (FLOSS) projects. Unlike Bird et al., they
found a weak correlation between code ownership metrics and software quality, and in
some projects, non at all. In particular, they found no correlation in the experiments
done at the file level; however, they found some correlation at the package level. The
package level correlation corresponds to the binaries level used by Bird et al. [27] because
the package level is comparable in size to the Windows binaries.

According to Foucault et al., this difference may be due to the differences between
industrial and FLOSS projects. One example is the way how developers contribute to
the software. In Bird et al. [27] investigation sample, a minor developer of a binary
A was also a major developer of another binary B that had dependencies on binary
A. However, in open-source projects, a few major developers contribute to all modules,
while the minor developers implement only a single feature or fix a few bugs. Foucault
et al. conclude that for these reasons, before the release of open-source software, the

14

3.2. Ownership and Authorship Effects on Software Quality

contributions were mainly from major developers, or the number of contributions per
module was not enough to have minor developers.

Foucault et al. did another research [31] using the Bird et al. metrics on seven open-source
projects implemented in different programming languages. Although they confirm the
relationship between ownership metrics and software quality, they found the usefulness
of ownership metrics debatable. They found that the „Minor“ metric is co-linear with
the number of developers. However, they argue that most contributors are „Minor“
contributors in the open-source case. Additionally, they tested the „Most valued owner“
(MVO) metric. A high MVO means that the highest contributor has a high contribution
percentage on that module, while a low MVO implies that the highest contributor has a
low contribution percentage. Foucault et al. found a negative correlation between MVO
and the number of bugs confirming that stronger ownership results in fewer bugs.

Rahman and Devanbu [32] did a fine-grained line-level study of authorship by considering
„general“ and „special“ experience on four different medium- to large-sized open-source
projects. They define „general“ experience as the author’s general contribution to all
project files and „special“ experience as the author’s contribution at a specific file and
time. The research examined, in particular, the implicated code, i.e., the lines of codes
that were changed to fix the bug or were responsible for the bug (Figure 3.4). The
hypothesis that implication code hunks typically have different authors was not supported;
however, they found out that the author of the implicated code resulting in a bug has
a lower contribution at the file level and that the file owner is less likely to introduce
implicated code. To conduct the research, Rahman and Devanbu used the source code
(i.e., the current state of the files) and the feature of the git blame to find the authors
with general and special experience.

Figure 3.4: Rahman and Devanbu [32] marked as „implicated code“ the code that needed
to modified to fix a defect.

Lately, ownership has become controversial, especially regarding the agile movement
[32]. Extreme Programming (XP) involves collective ownership, which encourages each

15

3. State of the Art

team member to contribute to any part of the code [33]. Scrum includes collective
code ownership and collective product ownership [34]. In Scrum, the ownership is a
collaboration between the product owner, who is accountable for achieving business
objectives, and the developers, who take responsibility for technical execution. However,
Scrum collective product ownership is neither dominated by the product owner nor
contains strict boundaries between a team and the product owner [34]. In large software
with multiple agile teams, the teams avoid code ownership by pair programming and
rotating people between teams [35].

Nevertheless, there are still reasons why code ownership metrics are beneficial in agile
environments. Augustine et al. [36] included in their analytic solution implementation
Qlik Sense Metrics Portal (QSMP) four metrics where one of which is code ownership
(Figure 3.5). The main benefit of the visualization is to make it easier to the developers
to find the right person for guidance on a particular unfamiliar part of the code. Another
benefit was finding parts of code owned by a developer leaving the project and sharing
the information with the team.

Figure 3.5: The heat map shows each file as a rectangle, where the contributors are
displayed based on the commits number. [36]

Orru and Marchesi [37] investigated the relationship between refactoring and code
ownership in a preliminary study, which gives further insight to teams that adopt collective
ownership (i.e., Agile methodologies). They analyzed the refactoring activity that the
developers did on Apache Ant to empirically find if and to what extent relationships
exist between different refactoring methods and code ownership. They calculated two
ownership metrics similar to Bird et al. [27] by counting commits instead of lines of
code. They set the subjective ownership (SO) of a developer on a specific file (F) and
commit (C) by dividing the commits amount performed by the developer in F by the
commits amount authored by the same developer on other files of the C. For the relational
ownership (RO), they divide the commits number the developer has performed in a file
by the commits number performed by all developers in that file.
They concluded that developers tend to refactor those files with a high RO (i.e., the files
that they have worked with more than other developers). Moreover, the findings show
that SO was even more significant, i.e., the developers selected to refactor the files where
they have mostly worked. Considering that SO is calculated by counting the number of
commits until a specific time, it can imply that developers tend to refactor those files
where they have higher historical ownership.

16

3.3. 2D Historical Code Visualizations

Thongtanunam and Tantithamthavorn [38] compared two different kinds of ownership.
They called „commit ownership“ when the high ownership is defined by the higher amount
of commits that changed a file (Bird et al. [27] used this technique) and they called „line
ownership“ when ownership is calculated based on the lines of code a developer owns
from the total lines of code the file has. However, line ownership includes only current
ownership and not historical ownership. Historical ownership, also used by Girba et
al. [3], can be seen as a combination of both where each committed change includes
additionally the line ownership calculated at that time.

Moura et al. [39] used similar historical data to provide equations that help for Software
Developer comparison. In their research, they analyze up to line-level granularity, where
they check each line if it is newly added modified, or deleted. Their equations provide
results on the effort that a developer has contributed and about the code’s survival. The
code-survival result indicates the code that a developer has added and was not changed
by anyone. Besides the code survival, the introduced equations for finding how often it
happens that the code of developer A is modified by developer B. They consider this
important for managers because if a manager detects low-performing developers then
the equation would help to know who is changing or refactoring their lines. Moreover,
they introduced equations, which can compare developers with different commit habits.
Some developers commit more often and therefore they may introduce more changes to
the same line rather than developers that commit less regularly. For this, they would
compress the history of a line if it is modified by the same developer. The case study
interview showed the results of the equations were consistent with the perception of the
managers.

These studies examined the importance of code ownership and software quality, however,
the results were different in different contexts. Bird et al. [27] found a significant
correlation between ownership metrics in industrial software. On the other side, Foucault
et al. [31] found out weak or no correlation between ownership metrics and quality in
open-source projects, indicating that their effectiveness depends on the project type.
Additionally, the development model influences the effectiveness of the metrics. For
example, Agile methodologies have collective ownership, however, the ownership metrics
still proved useful for identifying key contributors and developer behavior (e.g., which
files are the developers more willing to refactor.)

3.3 2D Historical Code Visualizations
A variety of visualizations have shown different aspects of code history and evolution. Eick
et al. [40] implemented Seesoft in 1992, one of the oldest code history visualizations. The
visualization shows columns of files, where the small rows inside each column represent
the lines of code. The lines are colored blue if they are the most recently changed rows
and red if they are the least recently changed ones. Although it is simple and does not
show the whole file history, Eick et al. made an essential contribution to the source code
history visualization.

17

3. State of the Art

The code history visualization study has been further extended, showing different historical
aspects. Some aspects examples are performance evolution in different versions [41]; static
code evolution in different versions offered in multiple radial trees [42], with analog clocks
by using pie charts [43] or flow graphs [44, 45]; production and test code co-evolution
visualization [46, 47]; and as well other evolution visualizations [48, 49, 50, 51]. However,
this section will focus on 2D evolution visualization related to code authorship and
ownership.

Grabner et al. [52] present the Code Ownership River (Figure 3.6) to assess how much
code is currently owned by which developer. The visualization combines all commits over
time in a two-dimensional graph. The horizontal axis represents time, and the vertical
axis is the aggregated amount of commits per author.

Figure 3.6: Code Ownership River [52]

CHRONOS [53] provides the history of detailed semantic source code changes. The
visualization focus is to help developers interested to know more information about some
specific lines of code. The user can select a couple of lines of code in one or more files,
and CHRONOS will determine and distinguish only the relevant commits. Figure 3.7
shows the history of the selected lines in two different files. Each vertical blue line in
the gray row represents all related commits to a particular file. The blue lines are the
commits that include changes for the selected line. CHRONOS shows the source code
additionally with the changed lines of the selected commit. The source code provides
meta information such as date, author, and commit message.

Figure 3.7: Screenshot of CHRONOS [53]

18

3.3. 2D Historical Code Visualizations

Nowadays, IDEs include features to show the history of a selection, for example, the
feature „Viewing the History for a Selection“ 1 in IntelliJ. However, CHRONOS can
display in one view selection for more than one file. This way, it allows seeing whether
they typically were changed simultaneously or if there are other relationships between
them by looking at the source code.

Yoon et al. [54] present „Azurite“ (see Figure 3.8), an Eclipse plugin visualization. It has
two user interfaces to visualize fine-grained code change history: a timeline visualization
and a code history diff view.

The timeline visualization is a 2D presentation of all files. Each row represents the edit
history of a single file. The rectangles inside the rows represent the edits, colored red
for deletes, green for inserts, and blue for replacements. The horizontal location means
the time when the developers performed the change. Its width represents the duration.
The vertical location and height represent the position of the changes on the file and
the size. There is a fixed minimum height and width not to lose the minor edits. The
timeline is interactive, so the user can generally see all files and their history or specific
details. Users can zoom, scroll horizontally and vertically, filter, and search changes.
The order of the files could have been supported by the drag & drop feature; however,
currently, it is sorted by the latest edit file, where the most recently edited ones are on
top. When selecting edits, Azurite offers the possibility to see the previous state of the
file together with the files that the developer changed simultaneously. Then the user has
the opportunity to undo the changes.

Figure 3.8: Screenshot of Azurite. The above part shows the code history diff of an edit,
and the below part is the edits timeline of all files. [53]

When selecting a particular rectangle, the timeline visualization shows the Code History
Diff view. The above part of Figure 3.8 shows the lines of code that were changed during a
specific period. The red vertical marker on the bottom part of the visualization indicates
the code part, which the Code History Diff shows. The user can dynamically move the

1https://trunkbaseddevelopment.com/ version of 11.07.2024

19

https://trunkbaseddevelopment.com/

3. State of the Art

marker left or right or click Prev and Next on the top right corner to show different file
versions. On the left side of the code history, the diff shows the current state, while the
right side shows the state of the code on a selected previous state. The user can click
revert to only revert the selected lines to the selected state.

A closely related visualization to the proposed one is Chronia. Girba et al. [3] designed
in their research an ownership map visualization Chronia. It shows the evolution of the
software by using metrics such as added and removed lines and authorship from the CVS
versioning system. Each horizontal line in Figure 3.9 represents a file, and each circle is a
commit or a group of consecutive commits that the same author does. The size of the cir-
cle depends on the added lines. The color represents the author with the most added lines.

These features combined make it possible to see the behavioral patterns of the developers.
Figure 3.9 shows the colors of four different authors, particularly their behavioral patterns,
for example, familiarization or the expansion of the blue author, followed by minor edits
in multiple files and later a takeover of ownership from the green author. However, it

Figure 3.9: Chronia [3]

is not easy to see in Chronia what the developers are working on, which is an essential
factor in the ownership maps. To see what a line or a circle represents, one has to first
click on it. Then it is possible to see its metadata. Just by looking at the visualization,
it is hard to see which features a developer has been working on.

Kuhn and Stocker [55] enhanced the Chronia visualization. They added on top of Chronia
a further layer with user-contributed lifetime events and a timeline that marks major
releases (Figure 3.10).

20

3.4. 3D Historical Code Visualizations

Figure 3.10: Timeline of Outsight [55]

Over time, code history visualizations have evolved to provide insights into software
development and ownership. Seesoft [40] is the earliest contribution in 1992, which
focused on showing which files had recently changed. CHRONOS [53] refined this by
enabling to track of selected line changes across multiple files. Code Ownership River [52]
showed how much code is currently owned by each developer. Azurite [54] introduced
interactive timelines helping to explore the history of the code changes. Girba et al.
[3] introduced Chronia allowing for a deeper understanding of developer behavior and
contributions. These studies were the first contributions to 2D visualizations, which
improved the way developers and managers understand code evolution and offered insight
into the history of team collaborations.

3.4 3D Historical Code Visualizations
The 2D visualizations use only two of the space axes: the x-axis and the y-axis. This is
easily supported by computers because also the screens are two-dimensional. Adding a
third axis, the z-axis, we have a 3D space, allowing us to map three different variables to
the three axis2. Using 3D may be very useful when visualizing multidimensional data, to

2Besides the three variables provided by the 3D space, other variables can be mapped using other
visualization techniques, such as color, opacity, size, etc.

21

3. State of the Art

avoid overlapping and visual noise that can happen when showing the same information
in 2D. Additionally, 3D space is naturally tuned to the human perception making it
easier to understand the information [56]. Ware et al. concluded in an experimental task
to find paths between highlighted nodes with abstract data that the erroneous graphs
represented in 2D can be up to 3 times higher than those represented on a virtual reality
display [57, 58].

However, there have been pro- and contra-arguments regarding whether 3D visualizations
are better than 3D visualization [59]. A 3D visualization requires extra rendering because
the third axis does not exist on a computer screen. Although the projection may be
transparent to the user, it may be less performant than 2D when rendering a high amount
of data. Moreover, to grasp all the information the 3D needs to be interactive[60]. The
user may need at least to rotate the visualization to see all the axes. A 3D can have also
additional interactions like zooming or rending different models based on user clicks. On
the other side, Wettel and Lanza [61] argue that too much freedom of movement can be
an argument against 3D visualization because it leads to disorientation.

The visualization mode depends on which data it will represent and its goals [56].
In contrast to 3D, a 2D visualization does not necessarily require user interaction to
understand and see all the presented information, and a 2D visualization may be more
performant when showing a lot of data. On the other side, the 3D visualization can
support and communicate more data dimensions in a natural way tuned to human
perception, however, the visualizations’ design, the implemented interactions, and the
data mapping are crucial to its success [62].

A popular 3D metaphor for software visualization is the „Code City“. The first proposals
were in 1999 [8, 11], and lately, only VISSOFT21 had five research studies [12, 13, 14,
15, 16] related to the code city metaphor.

Wettel and Lanza [10, 61, 63] proposed the city metaphor that could be used for medium
and large software named CodeCity. CodeCity shows all files of one project as building
blocks (Figure 3.11), while it shows packages as different blue shades on the ground. The
parameters mapped to the buildings are the number of methods and attributes of one file.
The building height represents the methods’ number, and its width and length represent
the attributes’ number.

22

3.4. 3D Historical Code Visualizations

Figure 3.11: ArgoUML as a CodeCity [10]

Wettel and Lanza argued whether the data should be mapped linearly on the visualization
or adjusted to avoid extra-large or wide buildings. For example, in Figure 3.11, some
buildings are too tall, wide, or small to be seen.

Figure 3.12: CodeCity building types [10]

To adjust the visualization to look more like a compact city with a uniform of buildings,
they changed the mapping algorithm from linear to Boxplot-based or Threshold-based
mapping [10]. This method will map all the files into one of the building’s heights or
areas from Figure 3.12. Whether one approach or the other is more effective depends on
the question that the user has to answer. A linear method may be more helpful if the
user’s objective is to find the files with the most attributes or methods. The user may
have it easier to see the highest or the most expansive buildings. However, if the users
want to compare a district with another, it is easier to compare a group of similar and
uniform shapes.

Wettel and Lanza extended the code city metaphor to represent the software evolution.
They followed two approaches to show this by using the time travel and age map methods.

23

3. State of the Art

The time travel method (see Figure 3.13 left) shows the software in different periods.
Building heights show in code city the number of methods. The user can compare the
height of the buildings between different cities to see how the number of methods changes.
They also introduced the fine-grained method, which shows each method as a small
square (see Figure 3.13 right). The fine-grained method helps the user to see which
methods were added or removed in different periods.

The second approach, the age map, uses colors instead of multiple code cities to show
the code evolution. Figure 3.13 right shows the old sections with dark blue and the new
ones with green and yellow. The city on the right side of Figure 3.13 contains some small
buildings with some yellow squares, which indicates that they were added to the latest
version.

Figure 3.13: Coarse-grained time travel through software history (left) and fine-grained
age map (right) [5]

Steinbrückner and Lewerentz [6] used the software city metaphor to represent the
development history. They used the street layout where streets connect buildings (Figure
3.14). In comparison, Wettel and Lanza used squares on the ground to represent the
packages. When new files are added to a package, the streets representing the package
are extended to support more buildings. Steinbrückner and Lewerentz extended the
Evo-Streets with the hill metaphor to give more insight into when a file was created.
The buildings on a high hill represent an old file. The low hills indicate the continuously
grown modules. The classes that were removed or moved to another package left a space
in the former district.

24

3.4. 3D Historical Code Visualizations

Figure 3.14: Evo-Streets visualization. The modification map (left) and the authorship
map (right) [6]

The buildings are constructed by the layer of the modifications mined from SVN that the
developers have done to a file since its creation. A high building represents a building that
has been changed often. The building colors can be configured. On the left of Figure 3.14,
the building is colored by the last modification date. The user can distinguish by color
the files that have been lately changed. Figure 3.14 right shows buildings with different
layer colors. The layers are colored by the author who implemented the modification.

Liu et al. [4] used the 3D city metaphor of [10] to implement a source code visualization
tool named TeamWATCH. Like Evo-Streets [6], its goal is to show the revision history of
the files. TeamWatch uses data from Git and builds for each file a cylinder. The cylinder
is vertically split into sections where each section references a revision. The cylinder
section’s color represents the author. By this coloring technique, the visualization shows
the historical ownership of the files based on the commits. While the cylinders represent
the files, the blue squares on the visualization plane represent the folders. Figure 3.15 (g)
shows shades of blue under the folder hierarchy cylinders.

25

3. State of the Art

Figure 3.15: „TeamWATCH visualization (a) Revision statistics; (b) Developer statistics;
(c) A single cylinder; (d) A stack of cylinders; (e) Filters; (f) Time Slider; (g) Blue district;
(h) Transparent cylinders representing deleted files; (i) Return to the main menu.“ [4]

Figure 3.16: Another implementation of TeamWATCH. Commits are filtered by a period
and are colored by the author. [64]

TeamWATCH offers interaction for the user to filter the information. One can filter
by the author (e.g., in Figure 3.16, revision, or filename. The time slider helps filter
and show only the revision from a particular time. Additionally, the user can see more
information about a file by pointing to the cylinder with the mouse cursor.

Pfahler et al. [7] present M3triCity, which uses the code city metaphor to show the
software evolution (see Figure 3.17). The city allocates enough space to fit every file and
folder in history. Compared to the bin-packing layout that allocates as much space as
there are currently buildings, the history-resistant layout assures that during the software
timeline movement, the buildings will not jump around because of district resizing. The
building’s parameters represent static metrics such as lines of code or the number of
methods. Edges assist the movement of files to see the movement’s source and target.
M3triCity has a timeline at the bottom where users can move to different periods. It
also summarizes the changes in time.

26

3.4. 3D Historical Code Visualizations

Figure 3.17: M3triCity shows the movements of files. [7]

Evo-Streets [6] and TeamWatch [4] show authorship aspects, such as buildings that
represent files layered by the related commits. However, none of the above visualizations
shows how the code ownership of the files has changed. The four software evolution
visualizations show the city on the file level. However, if the user needs a more abstract
overview, then the file-level visualization may be noisy and hard to comprehend or
compare. The more general level also correlates with the ownership effects on the
software quality discussed in Section 3.3. When Foucault et al. used their research [30] on
the ownership metric of Bird et al. [27] at the file level, they got no correlation between
quality and ownership metrics. However, the correlation improved when they used the
same metrics on the package level. Similarly, Bird et al. [27] used the ownership metrics
at the binaries level when testing the metrics on Windows Vista and Windows 7.

The use of 3D visualizations in software development, particularly the „Code City“
metaphor, has been researched to show the structure and evolution of the source code.
This approach uses the three axes of space to map more data offering more flexibility
and reducing visual clutter compared to 2D visualizations. However, they come with
challenges such as rending costs and the need for interactivity to rotate or zoom, to fully
grasp the data. The „Code City“ metaphor, first proposed in 1999, has been applied in
several tools, including in visualizations for source code evolution, which help to show
software revision histories, authorship, and code ownership. However, the visualizations
still struggle to provide a clear overview of changing ownership and how it impacts
software quality, especially when data is presented only at the file level, which can become
cluttered and difficult to interpret without a higher-level abstraction.

27

CHAPTER 4
Systematic Mapping of Code City

Visualizations

This section presents the mapping study to structure the code city research area.

4.1 Visualizations Using City Metaphor
This sub-section briefly describes all code cities categorized in this mapping study.

1. FileVis: Young and Munro [20] presented FileVis in 1998, one of the earliest
visualizations that shows a file like a city. The visualization aims to help developers
familiarize themselves with the new software. Figure 4.1 shows the representation of
a file in FileVis. The orange plane represents a file, and the buildings on the plane
its internal functions. Figure 4.1 left shows the zoomed-out mode. The zoomed-in
mode in Figure 4.1 right shows more details about the methods (e.g., lines, space
attributes).

Figure 4.1: FileVis [20]

29

4. Systematic Mapping of Code City Visualizations

2. Software World: Before the code city metaphor was well known, Knight and
Munro [8, 9] introduced the Software World to visualize Java applications. In
Software World, the world represents the whole system; the countries represent
the directory structure (i.e., the Java packages); the cities represent the files; the
districts represent the classes in the file; the buildings represent the methods. The
Software World visualization helped to identify the densest cities to indicate the
need for refactoring those files. Building attributes such as height, doors, and
windows represent details for attributes and the number of code lines inside the
method (Figure 4.2).

Figure 4.2: Overview of a district (i.e., a class) in Software World [8]

3. Software Landscapes: Deussent et al. [65] used spheres and sub-spheres to show
the package hierarchy in Java. The visualization shows files of a particular package
under their respective sphere as a city. The city, representing a file, contained
cuboids symbolizing methods and attributes (Figure 4.3).

Figure 4.3: Software Landscapes [65]

4. 3D City: In 2003, Panas et al. [11] proposed a 3D city metaphor concept to
visualize packages and files. 3D City represents packages with cities connected by
roads (Figure 4.4). The concept is very rich with features. For example, it proposes
to use street lamps and trees to map software metrics. However, this concept was
not implemented.

30

4.1. Visualizations Using City Metaphor

Figure 4.4: 3D City visualization proposal. On the left are the packages as cities; on the
right are the files as districts and methods as buildings. [11]

Vizz3D: Panas et al. [66] visualized in Vizz3D their city metaphor in 2005. Panas
et al. [67] extended Vizz3D again later in 2007 to the shape in Figure 4.5. Vizz3D
shows C++ methods as building. The blue plains displayed as cities represent
the files, and the green planes represent the packages. The water towers represent
header files.

Figure 4.5: Code Cities in Vizz3D [67]

5. VERSO: Langelier et al. [68] proposed an approach to visualize metrics such
as coupling, cohesion, and complexity (Weighted methods per Class). They later
called the visualization VERSO [69]. Cuboid buildings represented classes. They
mapped coupling to the building’s color and complexity to the building’s height.
They twisted the buildings from 0 to 90 degrees to visualize the cohesion. Cylinders
were used to represent the interfaces [70]. To group the building according to the
folder structure, they used the modified Treemap technique and Sunburst technique
(Figure 4.6).

31

4. Systematic Mapping of Code City Visualizations

Figure 4.6: VERSO in modified Treemap technique (left) and modified Sunburst technique
(right) [68]

Benomar et al. [71] extended Verso with heat maps (see Figure 4.7). Heat maps
represent the time dimension of the software, e.g., how often an event has happened
or when was the last time a file changed.

Figure 4.7: VERSO extended with heat maps. [71].

6. CodeCity: Wettel and Lanza [10, 61, 63] proposed the first city metaphor that
users could use for medium and large software named CodeCity. CodeCity shows
all project files as building blocks and the packages as different blue shades of the
ground (Figure 4.8). The height represents the number of methods, and the width
and length of the building represent the number of variables.

Later they extended the code city to localize design problems [72] or show software
evolution [61] using colors. For example, they assign vivid colors to buildings with
design problems, such as files with too many attributes or methods.

32

4.1. Visualizations Using City Metaphor

Figure 4.8: ArgoUML as a CodeCity [10]

7. CocoViz: Boccuzzo and Gall [73] introduced three metaphors to represent classes:
house metaphor, table metaphor, and spear metaphor. The idea behind the three
metaphors is that a well-designed software entity will result in a well-designed
metaphor. For example, each house represents one class. The house has four
parameters: width and height of the body and width and height of the roof.
Metrics are normalized to show a well-designed class as a well-designed house. The
classes not in this category will result in badly shaped houses (see Figure 4.9).
Boccuzzo and Gall [74] extended CocoViz with audio to detect code smells. For
example, when clicking a house, it will give audio feedback about the state of the
class.

Figure 4.9: House metaphor in CocoViz [74]

8. UML-City: Lange et al. [75] present UML-City to show UML aspects by combining
two other visualizations, MetaView and MetricView. MetaView visualizes inter-
diagram relations in 2D, and MetricView visualizes three different metrics on top
of a regular class diagram.

33

4. Systematic Mapping of Code City Visualizations

Figure 4.10: MetricView [75] Figure 4.11: UML-City [75]

9. EvoSpaces: Alam et al. [76] render JAVA and C/C++ software in EvoSpaces.
EvoSpaces shows different types of buildings that depend on the file type (e.g., small
hall buildings represent the header files) and the file size (e.g., skyscrapers represent
large C/C++ files). The green plains represent packages. The visualization also
shows relations between buildings with pipes that connect them. On building zoom,
it is possible to see the internals of the file, like methods, macros, and classes
divided into different floors.

Figure 4.12: EvoSpaces visualization. The left shows the relations between files. The
right shows the methods and properties inside a file [76].

10. Evo-Streets: Steinbrückner and Lewerentz [6] used the software city metaphor
to represent the development history. They used the street layout where streets
connect buildings. Additionally, Evo-Streets introduces the hill metaphor. Buildings
on higher hills represent the older classes. The buildings in the lower hills indicated
the continuously grown modules. The removed or moved classes leave a space in
the former district.

The user can configure the building colors. They can represent a period when
it was last changed or the author that changed the class (see Figure 4.13). The
viewpoints on top of Figure 4.14 connect the buildings which contain the same
clone (i.e., copied code). The viewpoint size is related to the size of the copied part
[77].

34

4.1. Visualizations Using City Metaphor

Figure 4.13: The modifica-
tion map [6].

Figure 4.14: The view-
points in Evo-Streets [77].

11. VizzAspectJ City/VizzJava City Bentrad and Meslati [78] presented a visual-
ization based on CodeCity to visualize an aspect-oriented paradigm (see Figure
4.15). They added two city visualizations. „VizzJava City“ shows the classes, and
„VizzAspectJ City“ shows the aspects. The buildings can be different, also the
color. The classes are blue, and the aspects are pink. The shades of blue are used
to differentiate between abstract classes, classes, and interfaces, and the shades of
pink are used to differentiate between the abstract and concrete aspects.

Figure 4.15: VizzAspectJ City and VizzJava City [78]

12. VITRAIL: Caserta et al. [79] implemented in VITRAIL the „3D Hierarchical
Edge Bundles“ technique on top of two different layouts. The two layouts they
used are the city metaphor (Figure 4.16) and the street metaphor (Figure 4.17).
The buildings represent classes. However, their size is not related to any attribute.
VITRAIL’s main purpose is rendering the edges that represent the call operations.

35

4. Systematic Mapping of Code City Visualizations

Figure 4.16: The city metaphor from Caserta et al [79].

Figure 4.17: The street metaphor from Caserta et al [79]

13. SkyscrapAR: Souza et al. [80] introduced SkyscrapAR, an augmented reality
visualization for software evolution. It uses districts for packages and buildings for
files. The city metaphor is inspired by Wettel et al. [10]. However, the buildings
use different metrics. The surface of the building represents the size of the file in
lines of code in the first revision, and its height represents the code churns. A code
churn represents the changes that have happened after each revision.

36

4.1. Visualizations Using City Metaphor

Figure 4.18: The JUnit framework in the SkyscraperAR [80]

14. SynchroVis: Waller et al. [81] visualized in SynchroVis dynamic aspects of
software during its runtime. SynchroVis helps best to find deadlocks between
different threads. Like Panas et al. [67] city metaphor, they showed packages as
green planes (Figure 4.19). However, buildings differ from other visualizations.
Only the ground floor represents the class, while the other upper floors represent
the number of created instances. Edges between floors represent a relation between
instances. Waller et al. [81] use the term „street.“ However, the term streets in
SynchroVis correlates with the edges used in other visualizations [65, 66, 76] and
not with the street layout like in Figure 4.17. Other visualizations like [6] render
the street metaphor on the city floor and may connect buildings and other streets.
SynchroVis’s edges connect floors when the call is executed from one instance to
another. If the call is a constructor call, it adds another floor for the newly created
instance.

37

4. Systematic Mapping of Code City Visualizations

Figure 4.19: SynchroVis visualization [81]

15. SeeIT 3D: Sharif et al. [21] introduced an eclipse framework that renders the
software in 3D. The poly cylinders shown in Figure 4.20 can represent different
things depending on the code granularity the user selects. They can be packages,
classes, methods, or lines of code.

Figure 4.20: SeeIT 3D [21]

16. ExplorViz: Fittkau et al. [82, 83] introduced a visualization to show the system
behavior on runtime (Figure 4.21). They visualized the replication of nodes in

38

4.1. Visualizations Using City Metaphor

a cloud computing system [84] and used the code city metaphor to visualize the
application’s runtime behavior. ExplorViz shows the number of instances created
for each class. In their code city metaphor, they show information details on
demand. The user can interactively open and close the components/folders when
more details are needed. When a component building is opened, it becomes a
district.

Figure 4.21: The left side shows the Screen as a closed component, and the right shows
its details [84]

Fittkau et al. [85] presented a VR approach to explore the ExplorViz. Additionally,
Fittkau et al. [86] created a physical 3D-printed model of ExploreViz. The model
in Figure 4.22 took 58 hours to print with a budget of 9€ for the materials [86].

Krause et al. designed a heat map for ExploreViz [15] (see Figure 4.23), like
Benomar et al. [71] did for the Verso [68] visualization.

Figure 4.22: ExploreViz 3D printed
[86].

Figure 4.23: ExploreViz with heat map over-
lay. [15].

17. TeamWATCH: Using the 3D city metaphor, Liu et al. [4] implemented a source
code visualization tool, TeamWATCH, with data from the SVN versioning system.
The goal of the visualization is to show the revision history of the files. In
TeamWatch, each cylinder represents a file. The cylinder is vertically split into
sections where each section references a revision. The cylinder section’s color

39

4. Systematic Mapping of Code City Visualizations

represents the commit’s author. By this coloring technique, the visualization shows
the historical ownership of the files based on the commits.

The blue squares on the visualization plane represent the folders. Figure 4.24
shows different shades of blue under the cylinders. For example, (g) in Figure 4.24
represents the folder hierarchy.

TeamWATCH offers interaction for the user to filter the information. One can filter
by the author (e.g., in Figure 3.16), revision, or filename. The user can use the
time slider to filter and show only the revisions from a particular time or see more
information about a file by pointing to the cylinder with the mouse cursor.

Figure 4.24: „TeamWATCH visualization (a) Revision statistics; (b) Developer statistics;
(c) A single cylinder; (d) A stack of cylinders; (e) Filters; (f) Time Slider; (g) Blue district;
(h) Transparent cylinders representing deleted files; (i) Return to the main menu.“ [4]

18. CodeMetropolis: Balogh et al. [87] used the code city and the Minecraft
metaphor1 to visualize the source code (Figure 4.25). CodeMetropolis allows users
to move into the city and visit the buildings to see more information. At a high
level, their metaphor assigns classes to buildings and other metrics to length or
height, while at the low level, they assign methods to buildings. A flat platform
represents the hierarchical structure of packages.

1https://www.youtube.com/watch?v=O5Ijvs44vv4 version of 11.07.2024

40

https://www.youtube.com/watch?v=O5Ijvs44vv4

4.1. Visualizations Using City Metaphor

Figure 4.25: CodeMetropolis [87]

19. Rocat: Ichinose et al. [88] implemented Rocat, which uses Kataribe - a hosting
service for Historage repositories that contain fine-grained source code repositories
(Figure 4.26). Kataribe helps Rocat to get incrementally updated on the latest
version when developers push new commits. Rocat is based on the code city
metaphor of Wettel et al. [10].

Figure 4.26: Rocat [88]

20. Origin City: Ishizue et al. [89] used the code city metaphor of Wettel et al.
[10] to create Origin City (OC). According to their findings, software applications
changed from different organizations may introduce more bugs. They created OC
to visualize the origin of files and their functionality. Each building represents a
file. Buildings’ horizontal layers represent the functionality of the file. A crucial
role in OC is the positioning of buildings. OC places files that belong to the same
organization near each other and files that belong to more organizations in a center
point of gravity between the organizations.

41

4. Systematic Mapping of Code City Visualizations

Figure 4.27: Origin City [89]

21. VR City: Vincur et al. [90] visualized Java software in their city metaphor VR
City. Their buildings represent the Java classes. The floors of the building represent
methods. The size of the district is dependent on the size of the method. For
example, on the left side of Figure 4.28, the tall skinny buildings represent the
interface, while those with a more extensive base but thin on top are abstract
classes. VR City uses colors and edges to map more metrics to the visualization;
for example, the right side of Figure 4.28 shows two authors’ recent activities.

Figure 4.28: VR City visualization. [90]

22. CityVR: Merino [91] used the code city metaphor to show the source code in
virtual reality (Figure 4.29). They mapped metrics such as lines of code, number
of methods, and number of attributes into the buildings’ surface, height and color
[92].

42

4.1. Visualizations Using City Metaphor

Figure 4.29: (1) City metaphor; (2) The user; (3) The user interaction with the city. [91]

23. High-Rising Cities: Ogami et al. [93] visualize the system’s performance in
their code city metaphor. The districts represent packages or classes. Methods are
mapped to buildings. The buildings’ height shows the number of events related
to the method during runtime. For example, in Figure 4.30, the blue building
represents the events that have occurred in a particular fixed time.

Figure 4.30: High-Rising Cities [93]

24. Code Park: Khaloo et al. [94] implemented the „Code Park“ visualization that
incorporates the source code into the visualization. It shows the files as 3D cuboids
(left side of Figure 4.31). The user, however, can find inside the cuboids the source
code on one of the wallpapers. Code park includes interactions to jump from one
file, for example, when clicking a variable to see where it was defined.

Figure 4.31: Code Park [94]

43

4. Systematic Mapping of Code City Visualizations

25. Linked Data City (LD-City): Andries et al. [95] proposed Linked Data City
to help users analyze linked data structures and browse linked data repositories.
Figure 4.32 shows a screenshot of the LD-City based on DBpedia data retrieved
using a SPARQL query. The buildings represent ontology classes, and the buildings’
height represents the ontology instances. They used the color to distinguish between
internally defined classes in a linked data repository or externally.

Figure 4.32: Linked Data City [95]

26. GoCity: Brito et al. [96] used the code city metaphor to visualize software written
in the Go language (Figure 4.33). Unlike Java or C++, Go has struct types
containing attributes and methods. However, methods may also be outside of
the struct. They adapted the building to represent files and structs. The grey
structure represents the files. On top of it, there may be additional sub-buildings
that represent the structs inside the file (see Figure 4.33). The large grey building
on the right of Figure 4.33 is an example of a large file with two buildings over it
which represent two structs in the file. The building parameters are similar as in
CodeCity 4.8, i.e., representing the number of attributes, methods, and lines.

44

4.1. Visualizations Using City Metaphor

Figure 4.33: GoCity [96]

27. IslandViz: Schreiber et al. [97] introduced IslandViz, which visualizes software
in Virtual and Augmented Reality. IslandVis is based on islands that represent
bundles. The colors of the island’s land represent the packages, and the buildings
represent the classes. Buildings get an additional floor for every amount n of lines.
Each island may have ports representing imports and exports, like the red and
green ones on the left of Figure 4.34. IslandViz can also show with edges the
dependencies between bundles (right side Figure 4.34).

Figure 4.34: IslandViz [97]

28. PerfVis: Merino et al. [98] designed Perfvis using the code city metaphor to
visualize software performance through immersive augmented reality. Perfis is
designed to support dynamic and static data. It can show metrics from the current
state of the source code but also data from the live performance of the system.
The city visualization is very similar to the CodeCity [10]. The buildings represent
classes, and their parameters map metrics such as the number of methods, attributes,
and lines of code. The color shows the dynamic aspect of the visualization by
encoding the number of times the methods of the class are called.

The scatter plot on the right side of Figure 4.35 helps the developer analyze dynamic
aspects missed from the code city itself.

45

4. Systematic Mapping of Code City Visualizations

Figure 4.35: PerfVis [98].

29. Software City in VR: Jung et al. [99] mapped the packages and files to districts
and buildings in their code city metaphor. The buildings could contain courtyards
that represent inner classes. The user can dynamically change the metrics used
for size and colors. The visualization supports dynamic features such as showing
method calls with edges.
The visualization improves the collaboration between multiple users in a virtual
mode with an avatar (see Figure 4.36). The avatar is useful to help point out
buildings in the virtual mode.

Figure 4.36: An avatar pointing at a building [99]

30. Memory Cities: Weninger et al. [24] present Memory Cities to visualize the
heap memory in time (see Figure 4.37). Programming languages such as Java or
JavaScript use garbage collectors to clean up the memory. The garbage collector
finds objects that are not referenced anymore and removes them. However, a long
living object may unnecessarily reference an object, blocking the garbage collector
from removing it. Memory Cities shows buildings representing heap object groups

46

4.1. Visualizations Using City Metaphor

and organizes them into districts based on shared heap object properties such as
type (e.g., object or list) and their allocation site (the function hierarchy that
created the object).

Memory Cities changes constantly during runtime; therefore, the user will need to
move the city back in time to analyze the memory. The buildings’ height and color
help the user to search for heap objects groups that may be growing fast and are
part of a memory leak.

Figure 4.37: Memory Cities [24]

31. M3triCity: Pfahler et al. [7] presented a visualization for software evolution called
M3triCity (see Figure 4.38). M3triCity buildings represent classes. Its height and
depth can be configured to represent static metrics such as lines of code, number of
methods, number of for loops, or number of variables. The city allocates enough
space for any file or package regardless of when it has existed. The timeline is shown
at the bottom of the visualization, which the user can use to move in different
periods. The timeline also summarizes the evolution of the building metrics.

47

4. Systematic Mapping of Code City Visualizations

Figure 4.38: M3triCity [7]

32. M3triCity2: Ardigo et al. [12] extended M3triCity to include data files in the
visualization. They added a special building to represent data files, binaries, and
tables (see Figure 4.39).

Figure 4.39: M3triCity2 [12]

33. Layered Software City: Dashuber et al. [100] used the code city metaphor to
show the class dependencies (Figure 4.40). Each building represents a class, and its
height represents its dependency number. They designed their visualization into
two different layouts.

The TreeMap Layout uses rectangle districts to group the buildings. It shows with
edges all the dependencies, which adds a lot of information noise.

The Graph Layout Technique organizes nodes in layers. It positions the buildings
in layers to show the dependencies hierarchy from back to front (see Figure 4.40).
The Graph Layout Technique uses edges only for dependency cycles with as few
crossings in the opposite direction to indicate a potential architectural violation.

48

4.1. Visualizations Using City Metaphor

Figure 4.40: The Layered Software City [100]

34. DynaCity Dashuber and Philippsen [16] present DynaCity (see Figure 4.41), which
extends the Layered Software City. DynaCity shows dynamic data, such as calls
between functions. The edges and buildings’ brightness represents the number of
calls. Buildings represent classes, where its height shows the fan-in (number of calls
initiated from the class), and its surface shows the fan-out (number of calls to this
class).

Figure 4.41: DynaCity [16]

35. BabiaXR-CodeCity Moreno-Lumbreas et al. [13] reimplemented CodeCity [10]
with BabiaXR tools to make CodeCity accessible on-screen and in an immersive VR
environment. Buildings represent files. Its surface is proportional to the number of
functions, its height to lines of code per function, and its color to the Cyclomatic
Complexity Value [101]. The positioning of buildings uses a spiraling algorithm
where the first building is positioned in the middle and then the rest in a spiral.
The algorithm is applied recursively on the directories.

49

4. Systematic Mapping of Code City Visualizations

Figure 4.42: BabiaXR-CodeCity [13]

36. VariCity Mortara et al. [14] designed VariCity (Figure 4.43) to visualize relation-
ships and design patterns. They calculate for classes variation points (vp-s) and
variants. Variation points identify locations where a variation may occur; for exam-
ple, a constructor of an abstract class is a variation point, while the constructors in
the inheriting classes are variations. Buildings represented files, where the height
represents the number of variants at the method level, while the building’s base
surface represents the number of variants at the constructor level. Moreover, the
building may have on top structures representing the used design pattern, such as
pyramids for an entry point class; domes for the strategy pattern; chimneys for the
factory pattern; inverted pyramids for the template pattern; and spheres for the
decorator pattern. The city uses streets to show usage relationships and edges to
show inheritance.

Figure 4.43: VariCity [14]

50

4.2. Code Cities Tables

4.2 Code Cities Tables
The tables below show a summary of the listed code cities to see their differences. From
the thirty-six code cities, six of them involve multiple cities in one visualization, where
one city can represent a file (three of the visualizations), class, bundle or package. Twenty-
eight from the rest of the visualizations render the software source code into one city
visualization where CodeMetropolis can switch between showing the whole source code
to showing only one file as a city. The most special are UML-City and Linked Data City
which show UML and linked data respectively with the code city metaphor.

Visualization Name Year Multiple
Cities

Augmented
Reality

City Repre-
sents

Directories / Pack-
ages Representa-
tion

1 FileVis [20] 1998 ✓ file n/a
2 Software World [8] 1999 ✓ file country
3 Software Landscapes [65] 2004 ✓ class hierarchical spheres
4 Vizz3D [66, 67] 2005-2007 ✓ file landscapes with dif-

ferent depths
5 VERSO [68, 69, 70] 2005-2008 software hierarchical tree

lines over the base
6 CodeCity [10, 61, 72, 63,

102]
2007-2008 software districts over base

7 CocoViz [73] 2007-2008 software n/a
8 UML-City [75] 2007 UML n/a
9 EvoSpaces [76] 2007 software green shades direc-

tory depth
10 Evo-Streets [6] 2010 software streets
11 VizzAspectJ City / Vizz-

Java City [78]
2011 software districts over base

12 VITRAIL [79] 2011 software streets, districts over
base

13 SkyscrapAR [80] 2012 ✓ software districts over base
14 SynchroVis [81] 2013 software districts over base
15 SeeIT 3D [21] 2013 software could be a building
16 ExplorViz [82, 84, 86, 83,

85]
2013 planned software buildings, districts

over base
17 TeamWATCH [64] 2015 software districts over base
18 CodeMetropolis [87] 2015 software, file a district or a build-

ing
19 Rocat [88] 2016 software districts over base
20 Origin City [89] 2016 software n/a
21 VR City [90] 2017 planned software colored base
22 CityVR [91, 92] 2017 ✓ software districts over base
23 High-Rising Cities [93] 2017 planned software districts over base
24 Code Park [94] 2017 software n/a
25 Linked Data City [95] 2017 linked data n/a
26 GoCity [96] 2019 software districts over base
27 IslandViz [97] 2019 ✓ ✓ bundle district inside the is-

land
28 PerfVis [98] 2019 ✓ software districts over base
29 Software City in VR [99] 2020 ✓ package districts over base
30 Memory Cities [24] 2020 software districts over base
31 m3triCity [7] 2020 software districts over base
32 m3triCity2 [12] 2021 software districts over base
33 Layered Software City

[100]
2021 software districts over base

34 DynaCity [16] 2021 software districts over base
35 BabiaXR-CodeCity [13] 2021 ✓ software districts over base
36 VariCity [14] 2021 software streets

Table 4.1: Systematic mapping study: First table shows an overview of the city metaphor.

51

4. Systematic Mapping of Code City Visualizations

Building
Visualization
Name

Represents Height Color Programming
Language

1 FileVis [20] method method length method complexity C
2 Software World [8] method method length private, public method JAVA
3 Software Landscapes

[65]
method at-
tribute

n/a (future work: method length) method vs. attributes JAVA

4 Vizz3D [66, 67] function n/a n/a C, C++, JAVA
5 VERSO [68, 69, 70] class weighted method (complexity) coupling between objects JAVA
6 CodeCity [10, 61, 72,

63, 102]
class number of methods (config-

urable)
design problems JAVA

7 CocoViz [73] class methods, lines attributes (config-
urable)

see god classes object oriented

8 UML-City [75] UML-
metric

value size high, low value UmL

9 EvoSpaces [76] file loc (configurable) header, implementation C, C++, JAVA
10 Evo-Streets [6] class number of modifications modification time, au-

thor
any

11 VizzAspectJ City /
VizzJava City [78]

class, aspect number of methods the distinction between
class and aspect

JAVA, AspectJ

12 VITRAIL [79] class n/a n/a JAVA (object
oriented

13 SkyscrapAR [80] class, file code churn, changes per revision highlights, current revi-
sion

JAVA + (future
others)

14 SynchroVis [81] class dynamically created objects floors (instances) colored
by thread

JAVA

15 SeeIT 3D [21] can be a line of code, a method, a class, or a package JAVA
16 ExplorViz [82, 84,

86, 83, 85]
component,
file

number of instances component - file (JAVA) Object
oriented

17 TeamWATCH [64] file - commit
history

commit number author any

18 CodeMetropolis [87] classes,
methods

loc configurable JAVA

19 Rocat [88] file loc top contributor multiple
20 Origin City [89] file configurable horizontal layer by func-

tionality
multiple

21 VR City [90] class number of methods author JAVA
22 CityVR [91, 92] class count lines, method, attributes number of lines, methods,

attributes
JAVA

23 High-Rising Cities
[93]

method,
classes,
packages

dynamic fluctuation of the
method execution

n/a JAVA

24 Code Park [94] file class size class size C#, can any ob-
ject oriented too

25 Linked Data City
[95]

ontology
class

ontology instances internally and externally
defined data

Linked data

26 GoCity [96] file, struct -
GO specific

method number darker more lines of code GO

27 IslandViz [97] class lines of code n/a JAVA
28 PerfVis [98] class number of methods number of called meth-

ods
object oriented

29 Software City in VR
[99]

class loc configurable configurable object oriented

30 Memory Cities [24] heap objects object replications object replications JAVA
31 m3triCity [7] class lines of code, number of

methods, number of for loops or
number of variables

n/a multiple (only
JAVA examples)32 m3triCity2 [12] class, data,

Binaries
33 Layered Software

City [100]
class number of incoming dependencies

(depth outgoing)
red for cycles JAVA

34 DynaCity [16] class fan-in is a measure of the number
of functions or methods that call
some other function (depth fan-
out)

brighter has more calls JAVA

35 BabiaXR-CodeCity
[13]

file lines of code per function cyclomatic complexity
value

any

36 VariCity [14] class method variants hotspot, high variability object oriented

Table 4.2: Systematic mapping study: Second table lists how the buildings are constructed
in different code cities and the programming languages of the software projects that the
visualizations render.

52

4.2. Code Cities Tables

Beside the common features of buildings, districts, floors and colors, some features were
used only in a few code city visualizations. Table 4.3 shows how often these feature
occurred and Table 4.4 lists the visualizations using these features.

Feature Ocurrence
1 Zoom: Rendering other details on zoom 6
2 Wires: mapping data on wires/coords which connects buildings 15
3 Building position: The placement of the building represent a specific metric from

the source-data
8

4 Dynamica data: The code city renders live runtime data 7

Table 4.3: Systematic mapping study: Special features occurence that are not commonly
found in other code cities.

Visualization Name Special Attributes Dynamic Data Static Data
1 FileVis [20] on zoom: line code information current state of the code
2 Software World [8] on zoom: different levels such as coun-

tries, cities, buildings, floors
current state of the code

3 Software Landscapes [65] on zoom: each sphere has cities inter-
nally representing files; wires: function
calls, inheritance, attribute access

current state of the code

4 Vizz3D [66, 67] wires: call operation (special color for
more calls)

current state of the code

5 VERSO [68, 69, 70] buildings position: twists the buildings code quality, cohesion,
coupling complexity

6 CodeCity [10, 61, 72, 63,
102]

current state of the code

7 CocoViz [73] buildings position: maps metrics to x-,
y-axis like a graph; interaction: audio
feedback on house design state

current state of the code
quality

8 UML-City [75] wires: show UML relationships UML-data
9 EvoSpaces [76] on zoom: inner metrics of the file; wires:

indicate relationships
current state of the code

10 Evo-Streets [6] buildings position: central buildings
are older

code history svn

11 VizzAspectJ City / Vizz-
Java City [78]

current state of the code

12 VITRAIL [79] wires: call operation (special color for
more calls)

files and static calls

13 SkyscrapAR [80] code churn history
14 SynchroVis [81] wires: call operations (multiple edges for

more calls)
objects on run-
time

15 SeeIT 3D [21] current state of the code
16 ExplorViz [82, 84, 86, 83,

85]
wires: function calls; interaction: open
close folders

objects on run-
time

17 TeamWATCH [64] all commits splited
18 CodeMetropolis [87] on zoom: go inside the building to

see more metrics; interactions simulates
Minecraft

current state of the code

19 Rocat [88] interactions change code dynamically current state of the code
20 Origin City [89] buildings position: groups buildings by

organization
functionality

21 VR City [90] wires: implemented by same author current code
22 CityVR [91, 92] current code
23 High-Rising Cities [93] interaction: life fluctuation of method

execution
method execu-
tion fluctation

24 Code Park [94] on zoom: shows code inside the room, source code
25 Linked Data City [95] - data
26 GoCity [96] current state of the code
27 IslandViz [97] wires: show dependencies; buildings po-

sition: group buildings in islands
current state of the code

53

4. Systematic Mapping of Code City Visualizations

28 PerfVis [98] interaction: runtime method calls color repre-
sent number of
method calls

current state of the code

29 Software City in VR [99] wires: method calls; buildings position:
attraction force by calls

calls methods current state of the code

30 Memory Cities [24] buildings position: distributed by type
and then by allocation

heap objects

31 m3triCity [7] wires: file movements current state of the code
32 m3triCity2 [12] wires: file movements current state of the code
33 Layered Software City

[100]
buildings position: based on depen-
dency hierarchy; wires: indicate depen-
dency cycles;

dependencies

34 DynaCity [16] wires: function calls - brighter colors in-
dicate more calls

show the run-
time amount of
calls

35 BabiaXR-CodeCity [13] current state of the code
36 VariCity [14] wires: inheritance relationships; inter-

action: show design patterns
current state of the code

Table 4.4: Systematic mapping study: Third table lists special features that are not
commonly found in other code city visualization and the kind of data mapped to the city.

54

CHAPTER 5
Requirements

This chapter describes the requirements that the visualization implementation will follow
next. The vision and state of the art derive the initial requirements, as described in
Section 5.1. Then the requirements will be validated by the semi-structured expert
interviews described in Section 5.3. The questionnaires may include questions to define
further requirements.

5.1 Vision & Derived Requirements

The proposed visualization Slide City is a software evolution visualization based on the
code city metaphor. The back-end side of the software mines all the commits of a selected
Git branch to show ownership information, such as the highest owner. The highest owner
of a fileor folder is the developer with the highest authorship of the file or folder in terms
of lines of code. Depending on the added and removed lines, the highest owner may
change with every commit.

Slide City maps the historical data mined from Git into the height of the respective
buildings they relate to, starting from the earliest commits at the bottom to the latest
commit on the top of the building (see Figure 5.2). The user can slide up the buildings’
floors representing commits to see the timeline (see Figure 5.1).

55

5. Requirements

Figure 5.1: A sketch of slide city.

5.1.1 Slide City Buildings
The city base consists of cylindric buildings representing files and cuboid buildings
representing folders. Folder buildings can become districts when the user opens them to
see their internal files and folders as buildings in a recursive order. The sketch in Figure
5.2 shows the two different buildings that Slide City contains.

The building’s surface shows the current file or folder size in lines of code, i.e., a wider
building contains a larger code base. In the folder’s case, its surface represents the source
code of all the files inside, making the whole city surface relative to the source code size.

The building floors represent the commits. Each floor’s volume is related to the commit
size. The visualization calculates the height of the floor by dividing the floor volume (i.e.,
the size of the commit) by the building’s surface (i.e., the current size of the building).

Slide City colors the floors according to the highest owner at that specific commit. New
commits from new authors may not necessarily imply that the new author also has the
highest code ownership. Therefore, the highest owner color may be combined with the
commit’s author color. For example, Figure 5.2 has colored stripes in the middle of the
buildings that represent the committer. The floors’ colors on the left side of Figure 5.2

56

5.1. Vision & Derived Requirements

Figure 5.2: Slide City buildings: The left building represents a folder. The building on
the right represents a file.

shows that the first commits of the „blue“ author (the first and second floor from the
bottom) are too small to take ownership of the „red“ author.

5.1.2 Opened & Closed Folder

Liu et al. [4] code city metaphor show all the project files as cylinders, while the districts
on the floor represent the folders (see Figure 3.15). However, different stakeholders may
be interested in various levels of the project. For example, if a manager wants to see the
historical ownership of a large folder or compare it to another large folder, then showing
all the inner files may bring too much noise. Turning districts into buildings interactively
may help the user to pick out the needed information efficiently. Fittkau et al. [83]
implemented a similar approach for ExplorViz, where the number of created instances
could be mapped per file or package into buildings. The user could manually turn the
package buildings into districts to see more details.

Figures 5.3 and 5.4 show a simplified example of folder X in two modes. Figure 5.3 shows
folder X as a district containing one file and two other sub-folders. While Figure 5.4
shows folder X as a building. Both figures have red lines that tell the commit’s hash
mapped to the floor. The hash are simplified for readibility into names from r1 (the
earliest commit) to r7 (the latest commit) and colored according to their author. The
label’s color corresponds with the stripes in the middle of the buildings because both
represent the committer.

The perspective of Figure 5.3 is helpful if the user is interested in a detailed history of the
sub-parts of the selected folder. However, commits can change several files simultaneously.
Without the labels telling the commits, it would be impossible to figure out how many
commits are involved in the X folder. In Figure 5.4, it is immediately visible that the X

57

5. Requirements

folder has only seven commits. Additionally, it is easier to figure out the order of the
commits and how the ownership of the X folder has changed.

Figure 5.3: The detailed level of folder X. Figure 5.4: The general level of folder X.

Figure 5.4 shows that even though there have been commits from three different authors,
there are only two authors that had the largest ownership during the folder X implemen-
tation; the „yellow“ had the largest ownership on the first commits; the „blue“ author
had the largest ownership on the latest commits. The top floor may look intuitive that
the „blue“ author is the highest owner even when looking at Figure 5.3 because the blue
author keeps the highest ownership of the largest sub-folder. However, this can also be
misleading. Another case would be that the „blue“ author owns the largest sub-folder in
Figure 5.3 only by a slight degree higher than the „red“ author1. While the „red“ author
overtakes with the commits R6 and R7 a high degree of ownership of both the file and
the smaller sub-folder resulting in a overtake of the ownership of X. This example shows
that analyzing the rich information of the sub-parts of X may be misleading to have
exact ownership information for a folder. The general level may be more helpful when
seen as a part of the city (see Figure 5.5).

5.1.3 Slide Feature

Commits can be related to multiple files and folders. Each building floor can be only a
part of such commits. Using edges to connect the floors that belong to the same commit
may risk covering the whole city with wires. Slide City allows moving the floors up
regardless if they are closed folders or files and automatically connects the floors that
belong to the same commit. The user can see from a horizontal point of view the list of
commits going up from the latest to the earliest (see Figure 5.1).

1The supposed case example might not be quite exact because the „red“ author has pushed no
commits in the largest sub-folder and therefore has an ownership degree of zero

58

5.2. Proposed Features (Open questions - Semi-Structure Expert Interviews)

Figure 5.5: Slide City sketch. The folder on the top-left corner is shown on a general
level on the left and on a detailed level on the right.

5.2 Proposed Features (Open questions - Semi-Structure
Expert Interviews)

The „Information Needs“ described in Section 3.1 and the vision from Section 5.1 gives
insight into a large part of the requirements. However, there are still open questions on
how the visualization should behave or look. This section describes the proposed features
that will be defined and validated with semi-structured interviews.

5.2.1 Committer Color Mapping

The visualization colors each building floor according to the highest owner. However,
the floor may also show the committer. Figure 5.6 shows different cuboid and cylindric
building options, combining the committer color with the highest owner color. For
example, the first options represent the committer with stripes in the middle of the
buildings, while the color surrounding the floors represents the highest owner. However,
looking from a general level (e.g., Figure 5.1), the stripes may need to be clearer. Figure
5.6 shows further options to tackle this problem, for example, small circles in the middle
of the floor or multiple diagonal stripes.

59

5. Requirements

Figure 5.6: Different possibilities to color the committer.

5.2.2 Mapping Colors to Multiple Authors
A large project may have many authors. Especially open source projects have a lot of
minor developers who commit small fixes [30]. Having colors with shades close to each
other mapped to authors may make it difficult to differentiate them. Some options on
how to tackle this problem are:

• Assign all authors random colors.

• Let the user assign the colors. This option can be selected combined with other
options.

• Assign to minor authors only shades of a particular color (e.g., red) and assign the
rest of the colors to the primary authors. When many developers have contributed,
for example, more than twenty, the user may be interested in those who have
contributed the most. The minor developers, in this case, can be those who have
contributed less than 20% combined.

• Assign to authors only dark colors. The user can then manually switch authors of
interest to a bright color. The bright color can be selected automatically as the

60

5.2. Proposed Features (Open questions - Semi-Structure Expert Interviews)

opposite of the dark or a random bright one. The chosen authors (those with a
bright color) will be distinguished easier than the rest.

5.2.3 Height of the Building
The volume of the floor can represent only the added lines or both added and deleted
lines. An indication that many lines were deleted is when the building is tall but has a
small surface, i.e., several lines were added but also deleted. However, when the deleted
lines are not included in the floor volume brings the drawback that the user cannot see
with which commit the code was deleted, and commits that have only deleted lines will
not be shown at all.

5.2.4 Metrics Mapping Technique
Wettel et al. [61] used two methods to map the attributes of the buildings. The linear
mapping (Figure 5.7-left) renders into the buildings the exact proportional size of the
metrics. It gives a precise overview of the metrics. However, it comes with the cost that
there will be a few buildings too high and a few others too small. Mapping the attributes
to a prepared set of buildings using the box plot and threshold-based mapping techniques
renders a more uniform view of the city (see Figure 5.7 right).

Figure 5.7: Linear and box-plot mapping [61]

Another anomaly may happen when the visualization shows a few very large (e.g., with
50000 lines of code) and a few very small files; then the 99% of the files that are in
the range of 100 to 200 lines of code may risk looking equal if they are mapped into
a range from 0 to 50000 lines. Some techniques to handle mapping the metrics to the
visualization are listed below:

• Linear mapping: Maps attributes one to one from Git-data to slide city.

• Box-whisker plot: Maps data into four quartiles and shows data between a range
as equal (see Figure 5.8 b).

61

5. Requirements

• Histogram: Similar to the Box-whisker plot, but instead of 4 quartiles, there can
be n range separation (see Figure 5.8 a).

• Threshold: Different from the histogram, the selected ranges are not split in-
dependently from the current data set. Helpful to compare different code cities.
However, inside one code city, data distribution will be skewed to only small or
large buildings.

• Logarithmic mapping: As larger the numbers become, the less their effect is
seen in the visualization. For example, some values with their logs:

1 -> 0
10 -> 1 100 -> 2 1000 -> 3
20 -> 1,301 110 -> 2,041 1010 -> 3,004
50 -> 1,699 500 -> 2,699 5000 -> 3,699

Table 5.1: Logarithmic mapping results. The first mapping, where 1 becomes 0, can be
replaced with a default minimum, e.g., 0.001.

Figure 5.8: Histogram & Box-whisker equalization [56]

5.2.5 Commits Order

The Slide City buildings look like a solid construction where each commit comes after the
other. However, this is not quite the reality of how it looks in Git history. Developers
can update the same files and folders in their feature branches and later merge them at
the main branch. Figure 5.9 shows a part of the file history. The branch on the left is the
main branch. Commit A and E are part of a feature branch. The second feature branch
is shown on the right with commits K, L, and B. Commit F may be from another author
who helped on the second feature branch and then merged it to the feature branch with
commit B. Note that the commit H changes the file directly in the main branch.

62

5.2. Proposed Features (Open questions - Semi-Structure Expert Interviews)

Figure 5.9: The Git history of a file changed in parallel.

The first feature branch is merged with the commit D. The developer implementing the
second feature branch pulls the main branch and resolves conflicts with commit I. Then
the developer merges the second feature branch with main by creating the commit G.
There are different ways how the commits in Figure 5.9 can be sorted:

1. By date: This sorting ignores the branches and simply lists them by date. In this

63

5. Requirements

case, the order would be J, C, K, A, H, F, E, B, D, I, and G. This sorting also
correlates with the slide feature (see Section 5.2.9).

2. The branch with the first merge commit comes earlier: This sorting
prioritizes the merge commits. The commits before the earliest merge commit are
sorted into the front. In Figure 5.10, the earliest merge commit from commit J is
B. Therefore, the branch starting in K is sorted first: K, L, F, and B. The next
merge commit from commit J is D. Commit A from the first feature branch is
before commit H, so this branch gets priority. However, it is arguable if the first
feature branch should be sorted after H because it contains commits after H (e.g.,
commit E). The sorting would then be C, A, E, D, and D or C, H, A, E, and D. At
this point, the algorithm has sorted J, K, L, F, B, C, A, E, H, and D. The next
merge commit I has all its previous commits sorted, so the algorithm adds it at the
end of the list. It follows the same logic also with G. The result would be: J, K, L,
F, B, C, A, E, H, D, I, G or J, K, L, F, B, C, H, A, E, D, I, G.

5.2.6 Consecutive Commits

Consecutive commits from the same author can be merged and visualized as a single
floor. Girba et al. [3] used a similar feature in Chronia visualization. However, the
colored lines in Chronia (see Figure 3.9) represent only the committers. Slide City shows
the code ownership, which may or may not be changed by the commit of a new author
(e.g., the first floor in Figure 5.10 represents a commit from a new author but not as
large to overtake the ownership). The third and the fourth commit come from the same
committer and have the same ownership. As they follow each other, they are shown as
merged in the second building of Figure 5.10. However, there are also other possibilities to
combine the floors. For example, the third building in Figure 5.10 merges all consequent
commits from the same author and calculates the largest ownership. The fourth building
merges those commits with the same author as the highest owner, regardless of who the
committer is.

Figure 5.10: Different visualization of merged commits.

64

5.2. Proposed Features (Open questions - Semi-Structure Expert Interviews)

5.2.7 Merge Commits

Merge commits are the commits that have one or more parents. Git flow workflow
suggests that features should be done in a separate branch and later merged into the
main or develop branch with a merge commit2. Although a merge commit may have
more than two parents, according to Git-Workflow2, this is not a good practice and is
rarely used. The merge commits should introduce no changes. However, merge conflicts
may happen. The conflicts require the developer’s attention to resolve and push the
conflict’s solution with the merge commit. The merge commit diff in Git shows all the
differences with any parent branches (i.e., it lists all the changes that are not contained,
at least in one of the parent branches). However, in the visualization, this may duplicate
the previous commits because every change from one parent branch is not present on the
other. Another approach, except for ignoring the merge commits, is to show only when a
change differs from all the parent branches. This change happens when the developer
has manually resolved a conflict.

5.2.8 Building construction strategy

During project implementation, the structure of folders and files may change several
times. Depending on the situation, the developer may rename files or folders or move
them to other places. Developers may remove folders and split their content into current
or new folders. The files themselves can be split, removed, or maybe added again later.
These structures can become even more complex when considering branches, like in
Section 5.2.5. Files and folders can be changed, moved, and deleted differently and
simultaneously in different branches. Slide City must consider these special cases when
rendering the software history in its buildings.

Showing the whole history of the files and folders may sound intuitive, but it includes
several trade-offs. The following example will be used to illustrate the different strategies:

1. Commit 1: Red author creates Folder A and Folder B;
creates File C in Folder B.

2. Commit 2: Yellow author commits changes to Folder B;
moves File C to Folder A;
deletes Folder B,

3. Commit 3: Green author commits changes to Folder A;
creates Folder D, and
moves File C to Folder D.

2https://www.atlassian.com/de/git/tutorials/comparing-workflows/
gitflow-workflow version of 11.07.2024

65

https://www.atlassian.com/de/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/de/git/tutorials/comparing-workflows/gitflow-workflow

5. Requirements

Figure 5.11: Intact File history (left) and Split File History (right)

Figure 5.11 shows two slide city bases options of how the example can be visualized.
It shows the history of folder A from a general level and the history of file C, which
is currently in folder D. For simplicity, the example assumes that the committer also
overtakes the ownership; therefore, the committer color is the same as the highest owner
color. The main point of the example is how to show the history of file C. File C is
initially created in folder B, then moved to Folder A, and lastly moved to folder D. The
movement of files and the restructuring of folders often happens during refactorings. The
following two options discuss the techniques for handling file movements and the pro and
contra arguments.

1. Intact File history: This technique keeps every commit related to a folder intact
in one building. If the file has moved, its whole history moves together with it.
This solution may be the most intuitive one for Git users. Git tracks only files
instead of folders. It considers folders only as a path of the file that it is tracking.
When moving a file, Git considers it a rename of the file (i.e., a rename of the path).
Figure 5.11 left shows this solution. Although file C was part of folder A in the
second commit, file C is currently part of folder D. Therefore, all the changes to
file C are shown inside folder D (i.e., in the history of file C).
The drawback of this strategy is that it ignores the history of the folders. The
strategy considers the folders as a grouping of files in the current state (i.e., in the
last commit). This folder structure, even when shown as a building, shows the
history of the files it contains instead of its history itself. For example, on the left
of Figure 5.11, folder A does not include file C in its commit even though it was
part of it in the second commit, and Folder B is not shown at all because it does
not have any files.

2. Split File History: This technique shows each file modification inside the folder
where it was changed. In contrast to the „Intact File History“ strategy, the latest
folder where the file was moved includes only the changes of the file that happened
in that folder. Figure 5.11 right shows this solution. The second commit of folder
A is larger than on the left Figure because Folder A contains the code from file C
at that commit.

66

5.2. Proposed Features (Open questions - Semi-Structure Expert Interviews)

This approach has the drawback that the whole file’s history may not be shown.
Folder D now includes only the latest commit of file C (i.e., the commit when file C
was moved to folder D). The second commit of File C is integrated into the second
commit of Folder A. However, if the folder is opened to a district, this commit
cannot be shown until the timeline returns. Showing the proper folder’s history
comes with the disadvantage of splitting the file’s history.

The second drawback is that the visualization loses the first commit because it
belongs to a previously removed folder. The floor can be reshown when the user
slides the city towards the past, which will be discussed in Section 5.2.9. However,
much of its history will be hidden at the initial view of the code city.

5.2.9 Slide feature

One of Slide City’s most innovative code city features is the slide feature. The user can
slide up the building’s floors representing the pieces of the commits. While the floors
slide up, the visualization connects the floors representing pieces of the same commit by
wires. The connected floors slide vertically in parallel to make it easier to identify the
relation.

Moreover, while the city slides to the top, it should keep the detailed level the user has
set. For example, the user can leave opened a couple of folders and others closed. After
some of the commits have moved up, the city base shows a paste state of the software.

Commits contain information about renames or movements of files and folders besides the
added and deleted code lines. Folders and files can be renamed, split, merged, or deleted.
Therefore when the commits move up, besides reversing the changed lined numbers, the
city base has to handle the revert of the folder structure, which in large refactorings can
change drastically.

However, the slide feature depends on how the buildings are structured, discussed in
Section 5.2.8. The strategy followed to construct the buildings influences how the
buildings will be deconstructed when the commits slide up. Below are described both
construction techniques with slide strategies and how the example from Section 5.2.8
would look like when sliding up:

1. Intact File history:

This technique ignores the movement of files when creating the buildings. Figure
5.12 shows in four timestamps how the floors would move in this case. From the
example File C was created inside folder B the first commit. However, the file C is
together with its history in folder D, therefore it remain in all sliding sequences in
the same folder. Folder B remains hidden in the visualization.

67

5. Requirements

Figure 5.12: Slide City, where file buildings always contain full history.

2. Split File History:
This strategy considers additionally to the file history also the folder history.
Therefore, a file building has only part of its history intact as long as it is part of
the same folder’s history.
Figure 5.13 shows the slide city in different timestamps following this strategy. In
the first stage, file C has only the commit that is also part of folder D. When the
yellow commit moves up at the third timestamp, folder D, which the green commit
had created, disappears from the base with its content the file C. This timestamp
shows Folder B, created during the first commit and has the first commit of File C.
The second commit of file C is inside the second floor of folder A.

Figure 5.13: Slide City, where buildings consider file and folder history.

5.2.10 Apply generality level
Slide City provides the possibility to close and open folders manually. The user can open
a folder to see its content, and Slide City renders its internal folders and files as buildings.
However, it can be very cumbersome to open the details level of multiple folders. This
concern can be solved by a feature that allows opening and closing all folders at a specific
level of generality.

68

5.2. Proposed Features (Open questions - Semi-Structure Expert Interviews)

For example, if the user selects the fourth level, all the folders, from the project’s root
folder to depth four, will be shown as districts on the city base. The rest of the folders
will be rendered into cuboid buildings.

After applying the generality level, the user can still manually close or open other folders.
If the user opens a folder manually, it remains to decide whether the visualization should
keep the state of this folder after the user re-applies the generality level.

5.2.11 Filter by Authors, Files and Folders
To answer questions like „Where is someone working?“, it is helpful to filter and spotlight
the commits related to the author. Slide City may offer two filtering methods. One is by
commits, and the other by authors. The user may select more than one author to make
a comparison.

Slide City can render the city when filtering by author in two possibilities. It can show
only the buildings and floors related to the author and hide the rest, or the whole city
but color only the floors related to the author. A similar decision can also be taken for
filtering by files and folders.

5.2.12 Blocklist
Usually, developers leave artifacts and generated files and folders out of the repository
and do not commit them3. However, they do not always apply this rule to any file,
especially in the project start phase. For example, package-lock.json4 from npm projects
written in JavaScript or TypeScript projects is usually kept in a repository. This file may
become very large in comparison to others. While the largest implemented files may be a
few hundred lines of code, package-lock.json can reach a hundred thousand lines. Files
like package-lock.json can make some commits look very large when only a dependency
version is changed. Slide City can offer the possibility to blocklist files to deal with the
noise of generated files kept in the repository.

A similar solution can also be done for some particular commits. For example, Slide
City can exclude from rendering some blocklisted commits. However, the effects of one
commit are not shown only on the floors representing the commit but also on the floors
above. For example, a file contains two commits from different authors: Author A pushes
the first large commit, and author B the second smaller one. The first commit is added
to the blocklist, which results in Slide City rendering only the second commit. The real
largest owner of the file is author A, even after the second commit, because the first
commit is much larger. In this case, it can be possible that the user not only blocklists
the commit not to be shown as a floor but also from the ownership calculation and the
files’ surface.

3https://www.atlassian.com/git/tutorials/saving-changes/gitignore version of
11.07.2024

4https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json version of
11.07.2027

69

https://www.atlassian.com/git/tutorials/saving-changes/gitignore
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json

5. Requirements

5.3 Semi-Structure Expert Interview Results
Semi-structured interviews will be conducted to gather data for the proposed features in
Section 5.2. According to Kallio et al. [22], interviews are the most used data collection
method, whereas semi-structured is the most used format. They found that one of the
reasons for the popularity of the semi-structured interview is that the technique has
successfully enabled reciprocity between the interviewer and participant and allowed
improvisations for follow-up questions based on the participant’s responses [22]. The full
questionnaire is in Appendix 9.1.

5.3.1 Pilot Phase
The pilot phase was conducted to find any issues with the questionnaire before the
interviews. The pilot phase helped identify too complex questions. Those questions
were improved further with sketches, graphs, and terms descriptions. During this phase,
we concluded that a handout that contains a summary of sketches and terms would be
helpful to the interviewee. The introduction and questions with long descriptions, such
as the first question in Section 4 or the question about scaling the metrics, were copied
to the handout. Additionally, we decided to allow voting options with similar ranks for
the ranking questions.

5.3.2 Questionnaire Phase
The interviews were held in online meetings, which lasted around 1 hour. The interviewer
shared their screen and sent the handout so each interviewer would receive the same
introduction. Further explanations in cases where necessary were handled with short
questions and answers. Most of the questionnaire is composed of ranking questions;
therefore, the interviewer asked questions about the reasons why a particular ranking
was preferred. The ranking questions are followed by an optional question where the
interviewee can suggest further options. The full questionnaire can be found in Appendix
9.1.

5.3.3 Results
The results of the interviewee provided an important starting base to figure out which
features and how they should be implemented. However, during the implementation, some
options showed that they did not result as expected, and sometimes they would hinder
the performance. This section summarises the interviewees’ answers and preferences.
The Implementation chapter (Chapter 6) discusses cases where deviation from the
requirements was necessary.

Demographics

Two of the interviewees were two male junior software engineers under thirty years old
with five to ten years of experience with Git, and the third interviewee was a senior

70

5.3. Semi-Structure Expert Interview Results

female engineer aged thirty to forty years old with more than ten years of experience in
Git and having leading roles in software engineering.

Information needs

The pre-given options for the first question, „Who has been working on a feature?“ were
ranked differently (see Figure 5.14), indicating that it is unclear how the visualization
would help answer the question. A high ranking received the „Last committer,“ the
„Present ownership at the file level,“ and the optional suggestion to use the issues and
their relation to commits with commit id instead of the given options.

However, the ranking of the second question, „Which features has a developer imple-
mented?“ resulted in more equal answers (see Figure 5.15). The interviewees gave a high
rank to all the options and uniformly ranked option „Historical ownership at file level“
as the most important one.

Figure 5.14: Graph for „Who has been working on a feature?“

Figure 5.15: Graph for „Which features has a developer implemented?“

Slide City Features

This interview section included questions about preferences for visualization details.

71

5. Requirements

• How should the committer color be shown along with the highest code
owner color?
The preferences for showing the committer and the owner color varied highly between
the three interviewees. For example, the two options to show the committer as a
rectangle or circle for each floor were voted the best choice by the first interviewee.
The second interviewee also ranked them high and suggested as a more favorable
option to combine both, such as showing circles for files and rectangles for folders,
would be better. However, the third interviewee ranked both with the lowest score,
considering them confusing. The third interviewee preferred the striped design; the
first two interviewees ranked it the lowest. However, they all ranked the option to
have it configurable in the top two ranks.

• How to map colors to multiple authors?
The most preferred option was to assign all authors random colors, and the second
most preferred one was to assign authors dark colors and let the user manually
switch them to bright colors.

• What should the height of a floor represent?
All interviewees preferred including the added- and deleted lines into the building’s
height instead of just the added lines. One of the interviewees suggested as a third
option to identify and calculate the modifications, and another suggested designing
different floors for added and deleted lines.

• How should the visualization map the metrics?
The histogram mapping was the most ranked option (see Figure 5.16). The
third interviewee suggested a configurable option between linear, histogram, and
logarithmic mapping.

Figure 5.16: Graph for „How should the visualization map the metrics?“

• How should the commits be sorted?

72

5.3. Semi-Structure Expert Interview Results

The first interviewee found that if the commits were sorted by the date, they would
be more understandable. The second one found the sort-by date valid; however, he
preferred seeing the alternative option where branches are considered. The third
interviewee ranked the sort based on branches as more helpful.

• How should consecutive commits be shown?
The interviewees did not prefer combining commits into one floor because the infor-
mation would be lost. The second interviewee agreed to combine for performance
reasons only if two consecutive commits had the same author and owner.

• How should merge commits be shown?
The first two interviewees ranked the highest the option to show only changes
different to every parent commit, otherwise to hide them. The third interviewee
found both options equally valid depending on the situation; therefore, she suggested
making it configurable for the user instead.

Building Construction and Deconstruction

Building construction and deconstruction is the feature that affects the visualization
the most. Predominately, the interviewees preferred the option „Intact File History“
over „Split File History.“ The third interviewee suggested having it configurable, as
both methods show different aspects. For example, „Intact File History“ tells compact
information about the code history, while „Split File History.“ shows more information
about the recording. However, she finds that the user mostly would need to see the
compact information rather than refactorings, which makes the „Intact File History“
method more useful.

Filter Features

• Should the generality level affect folders opened or closed manually by
the user or only those not touched?
The first interviewee found the generality level useful. However, they did not prefer
any of the options. He suggested changing the level only for the files and folders
the user had already changed. In contrast, the second interviewee preferred the
second option, i.e., to change the level only for the files and folders the user had
not changed. The third interviewee suggested that the user should be allowed to
choose between the first two options, i.e., to change the generality level for all files
and folders or only for those files and folders not touched by the user.

• How should the visualization be filtered by the author?
The most preferred option was „Show the whole city but color only the commits
related to the author,“ followed by „Show only the buildings related to the author“
(see Figure 5.17).

73

5. Requirements

Figure 5.17:
Graph for „How should the visualization be filtered by the author?“
Option 1: Show the whole city but color only the commits related to the author.
Option 2: Show only the buildings related to the author.
Option 3: Show only the floor buildings related to the author.
Other options: -

• How useful is it to exclude files?

The interviewees found excluding the file before construction helpful for performance
reasons (see Figure 5.18).

Figure 5.18: Graph for „How useful is it to exclude files?“

• How should the blocklisted commits be excluded?

All the interviewees found blocklisting commits helpful and not showing the floors
representing them. Two interviewees preferred not to include lines from the block-
listed commits in the ownership calculation, and only one preferred excluding the
lines from the building’s surface.

74

5.3. Semi-Structure Expert Interview Results

Figure 5.19: Graph for „How should the blocklisted commits be excluded?“

• Which features are more important?
Showing ownership and committer was chosen as the most important feature for
the visualization. „Exclude commits“ and „Change generality level for all folders“
received the lowest rank.

Figure 5.20: Graph for „Which features are more important“

5.3.4 Threats to Validity
One of the main threats to the validity is the number of participants. Three participants
are only a few to identify software engineers’ general opinions. Secondly, only one of the
interviewees was a senior software engineer.

A major threat is also the questionnaire’s complexity. Some of the questions were too
complex to understand and to decide on a ranking in a short amount of time. For
example, scaling techniques need a separate introduction before deciding how and where
to use them.

The main tools to help the interviewees were textual description, sketches, and the
possibility to rank given options. However, it is hard to foresee the pitfalls of the
visualization, for example, how a particular feature may look in small or large software.

Because of the many features the visualization offers, some of them may conflict. For
example, merging consecutive commits into one may conflict with the feature of commits’

75

5. Requirements

sliding as separate commits. All this information may be too much for a participant to
process in one hour, understand the main concepts, and determine the inconsistencies.

76

CHAPTER 6
Implementation

A few configuration steps must be followed to show the Slide City visualization. This
chapter describes the technical steps and the background of the software to configure and
show the visualization. Firstly, it describes the technologies used and the architecture
of the software. Then it shows the steps and the involved modules that provide the
functionality.

6.1 Architecture

The visualization has a simple architecture (see Figure 6.1). The front end is implemented
in Typescript language using the Angular 15 framework. The 3-D visualization uses a
library called angular-three1, which internally uses ThreeJS. ThreeJS uses the low-level
graphics APIs of WebGL and provides a higher-level API for JavaScript. Angular-three
wraps the ThreeJS functionality by providing prepared components for the ThreeJS
concepts, such as Meshes, Geometries, and Materials.

1https://www.npmjs.com/package/angular-three version of 11.07.2024

77

https://www.npmjs.com/package/angular-three

6. Implementation

Figure 6.1: Architecture

The back end is also implemented in Typescript using the NestJS language. NestJS is a
framework built on top of NodeJS that provides in the back end a similar functionality
as Angular in the front end. It gives the possibility to inject services and modularize
the application with modules. By using MongosseJS2, NestJS makes easier the ORM
mapping. The back end uses a No-SQL database MongoDB to store metadata about
repositories and the mined data from Git.

6.1.1 Backend Architecture

The backend is split into three NestJS modules: „GitRepoModule,“ „RepoMetaModule,“
and „RepoFilesModule.“

„GitRepoModule“ does not contain any controllers or database repositories. Its goal is to
manage the downloaded Git-repositories and provide services to the other modules, such
as prepared Git functions for cloning and removing repositories or getting the commits
list. The module uses the simple-git3 library to access the repositories.

„RepoMetaModule“ provides API for the repository metadata and the commits’ lists.
The clients can clone the repositories by sending with a POST-Request the name, URL,
branch name, and credentials to access the Git-repositories. These metadata are stored in
the database to be accessed later. The „RepoMetaCommitsController“ provides metadata
for the commits. The metadata includes the hash, date message, and author information.

„RepoFilesModule“ is the module that does the repository mining and prepares the
visualization data. The module uses the provided „GitRepoModule“ functionality and
the „simple-git“ library for special Git commands such as diff, log, and blame. Section
6.3 explains in more detail the mining process.

2https://mongoosejs.com/ version of 11.07.2024
3https://www.npmjs.com/package/simple-git version of 11.07.2024

78

https://mongoosejs.com/
https://www.npmjs.com/package/simple-git

6.1. Architecture

6.1.2 Front-end Architecture
The Front-end contains standalone components, which behave as a single module, services
to retrieve data from the backend or do front-end business logic, and stores for data man-
agement. The main component groups are „repo-management,“ „medium-configurator,“
„dashboard,“ and „visualization“ set inside the „dashboard“ folder. Each group may have
one of the following folders:

• data-access: contains the related service to get data from the backend or business
logic done on the front-end side. However, they do not cache data in Subjects. The
Stores cover data management.

• feature: contains components aware of the services. They are usually called „Smart
Components“4.

• ui: contain components that do not know about services and the components’
relations. They are usually called „Presentation Components“4.

The Front-end uses NgRx5 stores, which provide reactive state management for Angular
apps inspired by Redux. Each store has its actions, effects, reducers, and selectors.
Front-end contains the following stores:

• repo-meta contains the metadata of the current repository that is or will be
shown.

• medium-configurator contains the configuration that the user applies during
the „Visualization Configuration.“ Section 6.4 explains the applied configuration in
more detail.

• repo-files contain the repository data received from the backend, which will be
rendered in the visualization.

• dashboard-details are updated dynamically when a commit is selected or a
commit slides. It stores metadata about the commit, the file, and information
about the commit’s changes in the file.

• hoover stores the last hoovered FileCommit. The visualization containers get this
information to display the commit hash, the author, and the current owners of the
hoovered FileCommit.

• light-configurator stores the configuration, which the user can change on the top
left side of the UI without reloading the visualization. Section 6.5. shows in more
detail the data stored in the light-configurator.

4https://blog.angular-university.io/ version of 11.07.2024
5https://ngrx.io/ version of 11.07.2024

79

https://blog.angular-university.io/angular-2-smart-components-vs-presentation-components-whats-the-difference-when-to-use-each-and-why/
https://ngrx.io/

6. Implementation

6.2 Repository Metadata
The website’s home page starts with the list of mined repositories and the possibility
of mining a new one. To mine a new open source repository it is required an arbitrary
name, the repositories clone HTTP-URL without the „https://“ prefix and the branch
name. For private repositories, the user must have a read access token. After adding the
required data, the front end sends a post request to the back end to create the metadata
for the repository. The back-end clones the repository to return feedback to the user
on whether the given repository details are correct. The information that the back-end
will mine from the repository is bound to the repository URL and the selected branch.
Therefore, those two inputs cannot be updated when reselecting the same repository
metadata.

6.3 Mining Configuration
Upon applying the new repository meta-data, the back end confirms whether the reposi-
tory could be cloned. On success, it sends back metadata for all the repository commits.
On the next page, the front end shows the mining configuration options.

Data mining involves the longest process, where the back end iterates all the commits of
the selected branch and creates an object from the RepoFiles class. Therefore it is done
only once when a new repository is applied, and the repoFiles object is stored in the
Mongo database. The RepoFiles schema includes an array of metadata for each commit
sorted by date, the list of the blocklisted commits, and the file list. The file list is an
array of objects representing the files that will be rendered as cylinders in the front end.
Each file contains its list of partial commits, called FileCommit, related only to that file.
The back end stores in FileCommits information such as the added and deleted lines,
ownership data, and further metadata from the commit.

FileHistoryBuilderService is a back-end service that has only one public function
called buildFileHistory(), which receives as arguments:

• repoId: string - the ID of the repository metadata is also used as the folder name
of the cloned project.

• commitsToBeHandled: CommitDto[] - the list of all the commits sorted by date.

• repoFiles: RepoFiles - the repoFiles object where the service will store its result.

• configuration: MiningConfigurationDto - the mining configuration received from
the front end.

The method processes all the commits from the first to the last from the selected branch,
including the unselected commits to find the file movements. For each commit, it runs
the „git log,“ and the „git diff“ command (see Section 6.3.1 and 6.3.2). Several Git

80

6.3. Mining Configuration

commands are executed during this process to mine the necessary data; however, this
section will discuss the most important ones: „git log,“ „git diff,“ and „git blame.“

6.3.1 Git Log
Upon starting with the first commit, it logs all the changed files by calling the following
command in the repository path:

git log -c -1 –name-status –pretty=format: commit-hash

This command lists the file path and names together with their file status6. The result is
stored in the commits meta-data to be displayed in the UI under commit details (see
Figure 6.2).

Figure 6.2: Example of Commit log

6.3.2 Git Diff
The „git diff“ command lists for each file changed from the commit the number of added
and deleted lines. The command also contains custom flags that the user can define
during mining configuration, for example, „–ignore-all-space“ and „–find-copies-harder“.
The „git diff“ command is shown below, where the „diffConfiguration[]“ array is replaced
with the custom flags.

git diff –numstat diffConfiguartion[] parent-hash commit-hash

This command is executed only for the commits which have one parent. When more
parents are involved, the git diff command shows, besides the new changes, also the
differences between branches, which are irrelevant to the visualization. Showing differences
to each parent was explicitly discouraged during the semi-structured interviews in favor
of showing only the resolved conflicts for merge commits. The added lines for merge

6https://git-scm.com/docs/git-status#_short_format version of 11.07.2024

81

https://git-scm.com/docs/git-status#_short_format

6. Implementation

commits are set in a later step. The result of the „git diff“ command is stored in the
commit object so the user can see the result for any commit besides the visualization
(see Figure 6.3).

Figure 6.3: Example of Commit Diff

6.3.3 Git Blame

After the log and diff command, a sub-iteration starts for each file from the „git log“
result. During this sub-iteration, the process creates the FileCommit object, which has
the fundamental data on rendering visualization floors and buildings. The FileCommit
contains the information that a specific commit has affected on one specific file. The
FileCommit receives the relevant result from the „git log“ and „git diff,“ such as the
status, added and deleted lines that the commit changed in the file, path changes, holds
a flag whether the commit was blocklisted during configuration, and the „owners“ object.

The „Owners“ object is a map object where the key is the author, and the value is the
number of lines the author has in the file after the commit, i.e., it contains the ownership
of each author that has changed the file. The following Git command is executed to
calculate the ownership for a FileCommit:

git blame -l -e blameConfiguration[] commitHash filePath

The „git blame“ command is executed for each commit and file. The „blameConfigura-
tion[]“ array contains the custom flags the user can add during the mining configuration.
The result contains a list of all the file’s lines combined with the line owner.

The FileCommits are added into separate lists grouped by files. This list also contains
flags to check at which FileCommit the name or the path of the file has changed.

82

6.4. Visualization Configuration

6.4 Visualization Configuration
After mining the repository data or selecting an already mined repository, the front end
gets the RepoFiles from the backend and is routed to the visualization configuration.
This configuration is not stored in the backend and is applied to RepoFiles as soon as the
frontend receives them. The main advantage of splitting the mining and visualization
configuration is that the second one does not need to send further requests to the backend.
The visualization configuration can be redone several times; however, it will rerender the
visualization from the start, which may take time and a lot of processing power on the
client. This section lists the options that the user can choose.

6.4.1 Visual Material
The user can select visualization aspects such as the material of the rendered objects. The
„Phong“ material offers a better 3D user experience, however, with more performance
costs. The „Basic“ material does not render shadows, which sometimes makes it difficult
to see object edges, but it offers a more performant and convenient environment for large
repositories.

6.4.2 Deleted Lines
The user can select whether the floor height shall contain only the added lines or
additionally the deleted lines.

6.4.3 Exclude & Include Files
The user can exclude files or folders or include only some of them. The algorithm checks
for each file or folder if it contains at least one exclude line in its path. Then if an input
is added to the include section, the algorithm checks if the file or folder contains at least
one of the include lines in its path. For a file to be rendered, it should not match any of
the excluded lines; if there are any included lines, it must match one.

6.4.4 Commit Mapping
The top surface of a building is defined to show the latest size of the file in LoC. The
height of the floors represents the size of the commit in LoC. The user can select if the
commit sizes should be mapped into the volume or the surrounding floor area. The floor
height is calculated accordingly.

6.4.5 Commit Height Scaling:
The interviewees in Section 5.3. preferred linear, histogram, and logarithmic mapping.
The Box-Whisker plot mapping can also be achieved with the histogram, while threshold
mapping was not preferred. The visualization allows the user to choose between the
first three mappings (i.e., linear, histogram, and logarithmic mapping), and it allows

83

6. Implementation

the user to set a coefficient that further decreases (if the coefficient is smaller than one)
or increases (if larger then one) the height. Before mapping the height, the front end
creates objects for each possible floor that may appear, for example, a folder or a file
floor. Below is described how the calculation of each mapping is done.

• Linear mapping: The linear is the simplest one. After all floors (for files and
folders) have been defined, each of their heights is multiplied by the selected
coefficient. If the coefficient is one, then all buildings will represent one-to-one the
sizes of files and folders (see Figure 6.4).

Figure 6.4: Project rendered with linear mapping. On the left, the coefficient is 1, while
on the right, the coefficient is 0.3. The thin blue line is the tallest floor in the visualization.
On the first commit, it contained more than 400 lines. However, on a second commit, it
was reduced to 1 line. The second commit shapes the building with a top surface of 1
and a first floor of size 400.

• Histogram mapping: The floor heights are sorted by size and split into buckets.
The user can define the bucket amount during the mapping selection. Eventually,
the algorithm maps the same height to each element in the bucket. The heights
range from the lowest to the tallest bucket. However, the differences between
each bucket and its successor are the same. Each floor height is multiplied by the
coefficient, similar to linear mapping (see Figure 6.5).

84

6.4. Visualization Configuration

Figure 6.5: Histogram mapping with coefficient 0.1 in 20 buckets.

• Logarithmic mapping: The visualization calculates the logarithm with base
two for all the heights to reduce the extreme height differences between different
floors. However, usually, the commit size of a file is smaller than the size of the file.
Thus, regardless of whether the commit size is mapped to the volume or the area of
the floor, the height will be smaller than one. Logarithms calculated for numbers
from 0 to 1 result in larger numbers that may increase the height differences.
Therefore before calculating the logarithm, each height is first multiplied with a
small coefficient to make each height larger than one. Then after the logarithm is
calculated, the floor height is multiplied by the coefficient, similar to linear mapping
(see Figure 6.6).

85

6. Implementation

Figure 6.6: Logarithmic mapping with coefficient 0.2.

6.5 Live Configuration

The section on the visualization’s top left corner provides features to update the visual-
ization on the runtime (see Figure 6.7). The configuration is grouped and stored in the
„light-configuration“ store in the front end. In contrast to the visualization configuration,
the live configuration does not trigger the rendering of the floors and allows the user to
change the visualization dynamically. Similar to the architecture of the whole front-end
application, the responsible components listen to the events to execute the expected
changes upon configuration change.

86

6.5. Live Configuration

Figure 6.7: Live configuration section. Figure 6.8: Commits and files details section.

6.5.1 Colors & Filtering

The main feature is related to the authors’ colors. The functionality is based on interview
results. The colors are distributed randomly. Each author is assigned a random hexa
code where each of the six digits is less than „A.“ Although the user can set any color
for any author, the light colors are free to select. Additionally, the checkbox allows the
user to deselect the author. Deselecting will not automatically hide everything related
to the author but will turn the buildings into wireframes. Two other inputs below can
dynamically change the visibility of deleted files and folder and wireframed structures.

87

6. Implementation

6.5.2 Hoover & Selection
The next feature is the Hoover and selection. Hoover makes it possible to see a few pieces
of information inside the visualization frames. For example, upon hoovering a floor, on
the top left corner is shown the path with the name of the file or folder; on the top right
corner is shown the commit hash; on the bottom left corner is shown are shown all the
author with the ownership that they had then. These three make identifying and getting
brief information about the floors easier. However, the Hoover feature slows down the
performance in large software, for example, with more than 700 commits. Therefore, it is
possible to disable it. The user can change the hoovered floor’s color.

Likewise, the user can change the color of the selected file or folder. Upon selecting one
floor, three sections are shown on the right side (see Figure 6.8).

• The first gives general information about the related commit, such as the author’s
name, date, and message. Additionally, it contains also the commit’s log and diff
information which were stored during the mining.

• The second shows information about the commit part related only to the selected
file or folder, such as how many lines were added and the ownership during that
period. This ownership is the same that is shown on Hoover at the bottom left of
the visualization.

• The third section shows the current state of the file in the folder, including how
many commits are involved, how many lines are currently, and who is the present
owner.

All three sections’ data are stored in „dashboard-details“ and used by the component
with the same name-prefix.

6.5.3 Primary & Secondary
By default, the primary color (i.e., the floor surrounding color) represents the ownership,
and the secondary color (i.e., the color in the floor middle) shows the committer. This
feature allows swapping the colors depending on which is more important for the use
case. Additionally, it makes also possible to hide the second color so the user can see
either the ownership or the committers only.

6.5.4 Generality Level
The interviewees of the semi-structured interview showed a preference for changing the
generality level (i.e., at which depth should the folders open automatically). However,
every interviewee expressed a different opinion on what they expected from it. The first
interviewee expected that the generality level would change the generality level only to
the folders that the user has opened and closed. The most common case is when the

88

6.6. Requirements Deviation

user changes a few folder-building into districts. During the implementation, another
feature already nearly covered this aspect. Upon double-clicking on a district, it would
unite all its sub-buildings and become a single building, regardless of how many levels
the sub-district was open. During the implementation, another challenge was observed.
Changing the generality level requires all the folder floors shown on the visualization to
be deconstructed and create new floors for all their sub-buildings. Therefore, because of
the prolonged time for the process, the initial idea to set the generality level in a slider is
not user-friendly. Secondly, the implementation showed that it is not easy to differentiate
between the folders that the user has or has not touched. A simple example is when the
user opens the root folder-building. In this case, if the algorithm marks the district and
the shown folders as touched by the user, then the generality level would no longer affect
any building. If the algorithm would mark only the root folder as touched, it is still to
be determined when these buildings should become unmarked.

Because of the above mentioned issues, the generality level affects all files and folders
and is presented by input to enter the generality level (i.e., the depth level where the
folders should be opened). Instead of sliding on several time-consuming generality levels,
the user has to write one depth level. Additionally, it includes a warning above it that
the process may take a prolonged time.

6.6 Requirements Deviation
The implementation followed the described requirements and the semi-structured interview
results. However, it also showed that some requirements could be inconsistent. For
example, the interviewees preferred to keep consecutive commits as separate floors.
However, combining them into one floor would make it incompatible with the slide
feature because the commits move one by one on the slide; if some partial commits are
„squashed“ and slid together, then the user can not determine the commit size. Moreover,
it would also force floors in other buildings to be combined, which would not always be
meaningful. Another inconsistency is the slide feature and the commit sort. If the slide
should be based on time, then it would not fit with the commit sort by considering the
branches.

The second challenge is the visualization performance, which relies heavily on the ThreeJS
library and its wrapper Angular Three. The circle geometry is constructed from several
triangles7. Although a perfect circle is impossible, the more triangles are added to
the geometry, the more it looks like a perfect circle. However, this comes with a large
performance cost. In a large software visualization, there are many files, and each is
represented with cylinders. Each file in itself has cylinder floors for each FileCommit.
For performance reasons, the circle contains a small number of triangles where it is
possible to distinguish it from the rectangles, and it is possible to differentiate in its side
the primary from the secondary color. Figure 6.9 shows files as cylindrical buildings.
They have nine segments (i.e., nine triangles), which make them distinguishable from

7https://threejs.org/docs/#api/en/geometries/CircleGeometry version of 11.07.2024

89

https://threejs.org/docs/#api/en/geometries/CircleGeometry

6. Implementation

the cuboid buildings, and the primary color is set thrice into two consecutive segments
in contrast to the secondary color set thrice into one segment. Conversely, cuboids are
more performant because a square can be built with only four triangles, unlike a circle
with nine triangles. Therefore, where possible, squares are prioritized against circles; for
example, the secondary color is shown as a rectangle instead of a circle, regardless if it is
a folder or a file.

Figure 6.9: Cylindrical building.

The semi-structured interview showed different preferences in many features; therefore,
many features have more than one option and are configurable. The user can configure the
options before mining the data, before rendering the visualization, or after the visualization
has been generated. For instance, the author’s colors are distributed randomly to the
authors. However, in the top left corner, the user can change the colors automatically
without restarting the visualization. During the visualization configuration, the user
can select one of the three most preferred options to map the data (i.e., logarithmic,
histogram, and linear) or if the deleted lines should be included. During the mining
configuration, the user can select which commits to be shown by deselecting one by one,
using the time range, or generally deselecting merge commits.

The testing phase showed that almost every project had developers using multiple
accounts. This made it more difficult to show correct ownership because the visualization
would favor the developers with one account. For example, a floor would show the color

90

6.6. Requirements Deviation

of a developer with 50 lines instead of another developer, which has 60 lines split into
two accounts. Therefore a new feature was added to merge the accounts. As soon as the
visualization has started, below the live configuration is the Section „Author mapping“.
The user can select another target account for each account to which the ownership will be
merged. For example, Figure 6.10 shows that the account „1226762@student.tuwien.ac.at“
is going to be merged to „e1226762@student.tuwien.ac.at“. This will result in combined
ownership in the visualization, and the committer color of the mapped account will be
replaced with the target account color.

Figure 6.10: Cylindrical building.

91

CHAPTER 7
Evaluation & Results

This chapter describes the scenario-based expert evaluation process to validate the
prototype. This process aims to answer the third research question „How purposeful is
the visualization for answering historical and ownership questions?“. The scenarios were
selected based on real-world use cases where the visualization would answer ownership
questions. After the pilot phase feedback, the process including the questions was
reformed. This chapter will first describe the pilot phase, the scenarios, and the results.

7.1 Test Plan
The goal of the scenario-based expert evaluation is to test the implemented prototype
with real-world problems. The approach is based on technical action research (TAR),
an artifact-driven single case study that helps to evaluate laboratory experiments. This
phase gathers and analyzes the participant’s feedback to find a conclusion about the RQ3.
The test includes eight scenarios where for each scenario the participant will answer two
questions about the visualization’s purposefulness for the scenario and how clearly it
shows the results.

The scenarios were planned to be conducted online over Zoom with a timeslot of around
one hour per participant. During the pilot phase, we decided, that the interviewer
start with an introduction of the visualization and its most important features, which
came across as more appropriate than prepared recordings of the introduction. For the
introduction, a PowerPoint presentation with five slides was planned to be held in under
15 minutes.

Next, the scenarios were conducted. The interviewer read the problem that should be
solved and prepared the prerequisites for the scenario. Initially, it was planned that the
participant find the solution, however, during the pilot phase, this seemed infeasible to do.
The first reason is that some scenarios required a large amount of data and conducting the

93

7. Evaluation & Results

process online over Zoom made this more unpleasant. Another aspect that contributed to
the complexity was the difficulty of combining all the secondary features, such as mining
the correct commits, filtering, and the time slide. The available time was not enough
for the participants to familiarise themselves with all the features and learn to combine
them to find a solution. Therefore, we decided in the pilot phase that the interviewer
would show how the problem of the scenario could be solved and, then the participant
was asked the two following questions:

• How purposeful is the visualization idea for this scenario?
The question aims to gather feedback on whether the visualization idea fits to give
answers for similar scenarios. The answer can be given in 5-point scale from 1 (not
purposeful) to 5 (purposeful).

• How clearly does the visualization show the expected result?
This question seeks to assess if the prototype clearly presents the expected outcomes.
The answer can be given on a 5-point scale from 1 (not clear) to 5 (clear).

The participants discussed the questions about the solutions for each scenario while the
interviewer took down notes. Additionally, the meetigns were also recorded for later
processing.

7.2 Demographics
Similar to the semi-structured interviews, the first section’s questions aim to gather
demographic data for the participants. The questions focused on their age, gender,
experience with Git, general experience with software engineering, and their roles in
projects, such as whether they held leadership positions. Due to the limited number of
participants, not all possible demographic variations were covered. However, the collected
data might help explain differences in test results across similar cases.

It was possible to re-interview only one of the semi-structured expert interview participants.
All participants were male. One of them had less than five years of experience with Git,
two of them had more than five years and one had more than ten years. Two participants
had leading roles in software engineering projects; one in teaching and another one worked
once as a tech lead. While the other two were more familiar with software visualizations.

7.3 Scenarios
The listing below contains the scenarios and a short explanation of the benefits of using
such scenarios.

• Which developers have currently more ownership in frontend source
code (i.e. in frontend/src)?

94

7.3. Scenarios

The first question is also the easiest to familiarize the user with the prototype. On
the other side, it is an example of a scenario where a manager or a developer wants
to know who is the user that owns most of the lines in a particular file or folder.

• Which developers had historically more ownership in frontend/src?
This is similar to the first scenario, however, this relates to the use cases when
someone wants to know how a feature has evolved until now. In these cases,
a developer who has the highest ownership for a longer time may have more
information about the feature that has evolved.

• Who are the main developers that added the most changes and the
developers that have the highest ownership on files related to „user“
(frontend & backend)?
This question is related to use cases where the user needs to know ownership and
code contribution information only about a particular feature. The prototype
supports, however, only search and filtering by file and folder name. Usually, files
containing the core features include that part in the name.

• When were the files related to „user“ implemented (backend & frontend)?
The use cases when this feature is necessary is if the user is interested to know in
which periods a particular feature was implemented.

• Which developer currently owns more services (i.e. it has the highest
ownership on those services) and which developer is currently the highest
owner of all services combined?
The visualization provides information in different levels such as project, packages,
or file levels as long as they are in one repository. This scenario shows the difference
when observing a particular folder at different levels.

• Which developers have added consistently unit tests for the services and
which do not?
This question is relevant especially in the academic context when the tutors need to
check the consistency that the students follow when implementing a project. This
particular question is about the unit tests.

• Which were the developers that changed more code in the service folder
in the last two weeks? Who owns most of the code added in the last two
weeks?
The metrics comparison between developers that join the project in different periods
is more difficult than the usual academic projects where students start and end
the project at the same time. This scenario, although using an academic project,
shows the comparison of developers’ contributions only for a particular period.
For example, if a developer has joined the last two weeks, only the developers’
contribution of the last two weeks is compared.

95

7. Evaluation & Results

• Which angular components (typescript files) have the highest owners
switched the most?
Bird et al showed in their research [27], that packages that have a lot of major
owners (i.e. developers that own more than 5% of the code) may have a higher
risk of bugs. This scenario goes a bit further to find files, which have switched the
highest owner more than once.

7.4 Results
The participants expressed different opinions for different scenarios. Figure 7.1 and Figure
7.2 show the results for each scenario and each interview. Figure 7.1 shows the result
of the first question „How purposeful is the visualization idea for this scenario?“ and
Figure 7.2 shows the result of the second question „How clearly does the visualization
show the expect result?“

Figure 7.1: Results for each scenario of the question: „How purposeful is the visualization
idea for this scenario?“ (1 not purposeful - 5 purposeful)

Figure 7.2: Results for each scenario of the question: „How clearly does the visualization
show the expect result?“ (1 not clear - 5 clear)

Below is described the solution and the results for each scenario.

1. Which developers have currently more ownership in frontend source
code (i.e. in frontend/src)?

96

7.4. Results

The solution is to find and click the frontend/src folder that is by default opened
as a district and then see on the left side the calculated ownership (see Figure 7.3).

Figure 7.3: The simplest way to see the current ownership of a folder.

The participants rated the idea and the clarity between four and five. The main
observed issue is that the user would need to hover in different folders to find the
correct one. This could be improved by adding labels to the districts.

The fourth participant valued the purpose of the idea with three. The argument
was that the buildings shown were not representing the result. This could have also
been achieved if the district had collapsed into a building because the question was
generally for the src/ instead of its inner details.

2. Which developers had historically more ownership in frontend/src?

The solution is to show the frontend/src building, which by default needed to be
collapsed from a district. The highest owner is directly visible on every commit
while the second and the rest of the owners can be seen on the bottom-left while
hoovering on the floors (see Figure 7.4).

97

7. Evaluation & Results

Figure 7.4: The hoovered building in the middle, shows from bottom to the top the
turquoise color indicating that F(l) has been the highest owner from beginning up to
now.

The participants rated this visualization also between four and five.

3. Who are the main developers that added the most changes and the
developers that have the highest ownership on files related to „user“
(frontend & backend)?

The solution is to filter only the files and folders that have the keyword user in
the file path and then see by color who are the committers and largest owners (see
Figure 7.5).

98

7.4. Results

Figure 7.5: The building on the left represents the frontend. The stripes in the middle
show the commits which indicate that the red and the blue author have added the most
changes. However, when looking the current ownership on the details on the right, we
see that the blue color comes last. This happens because the code added by the blue
author was removed again. The building on the right is backend which is predomenly
tourquise followed next by red and green commits.

The participants rated both the idea and the clarity with five except the first
participant rated the idea with four and the third participant rated the clarity with
four.

4. When were the files related to „user“ implemented (backend & frontend)?

The solution is to use the slide feature on the user-filtered folders and see the
periods when the frontend and backend are implemented (see example in Figure
7.6).

99

7. Evaluation & Results

Figure 7.6: The time slider is set to 25th of May which is almost the middle of the
project-timeline. We can see on the top the commits that come after this date and at
the bottom the commits that come before. It can be observerd, that most of the user
related files in backend were implemented before and in frontend after the 25th of May.

This scenario got different ratings from the participants. The first participant rated
with three both the idea and the result clarity; the second rated with three and
four; the third both five and the fourth one both four. A suggestion to improve the
visualization for showing the implementation period is that the visualization would
be capable of showing all the floors distributed by time at once, where floors of
different buildings can be vertically compared to each other.

5. Which developer currently owns more services (i.e. it has the highest
ownership on those services) and which developer is currently the highest
owner of all services combined?
The solution is to show only the service implementation folder as a building and
see who is the largest owner from the ownership color. Then, upon double-clicking
the building, the user can count for each user how many buildings (i.e., services)

100

7.4. Results

they own. Figure ?? shows the difference between the folders largest owner and
the author who owns more services.

Figure 7.7: On the left, we can see that the blue and as well the violet author own 3
services. However, on the right, we see all the services combined and it appeares that
overall the turquise author has the highest ownership.

The participants gave a different rating for the idea and the result clarity. The first
participant found it as a good use case for visualization and rated both with five.
The second participant did not like the fact that the size of the building would
influence the service counting, for example, when two users own three services then
the one who owns larger services may be selected first. Therefore he rated the idea
with three and the clarity with two. Contrary, the fourth participant would rate
both five for counting which developer owns more services but with four and three
for the combined ownership. The third participant rated both with four because of
the minor difficulty in knowing what you should do to find which developers own
more services. Overall, the idea was rated with 5, 3, 4, and 4.5; the result clarity
was rated with 5, 4, 4, and 4.

6. Which developers have added consistently unit tests for the services and
which do not?

The solution is to filter and show only the two relevant folders. The user can filter
a few developers to see if their implementation commits are followed by testing
commits (see Figure 7.8).

101

7. Evaluation & Results

Figure 7.8: Both images have on the right the service implementation and on the left the
service unit tests. We can see in this comparison that there is a consistency of unit test
commits in regard to the implementation changes from the green author but not from
the violet author which is shown in the right image.

The first participant rated with four and three, with the argument that there could
be a better comparison mode between the two folders. Perhaps an example could
be the similar option as for the fourth question, where more than one commit is
distributed in a time axe (preferably all of them for this use case). The second
participant argued that the visualization helps to see if the developer wrote tests
and how much however is hard to see if they wrote tests for their features. He rated
the idea with three and the clarity of the result for this scenario with two as this
visualization would not fit these use cases. The third and the fourth participants
found the differences between users clear and therefore rated both with five. The
differences in rating also depend on how much and what kind of information the
user expects from the visualization.

7. Which were the developers that changed more code in the service folder
in the last two weeks? Who owns most of the code added in the last two
weeks?
The solution: This scenario needs to reconfigure the mining process, where only
the commits of the last two weeks will be included. Anything implemented before
this date will be ignored not only as commit changes but also when calculating the
ownership after each commit. Then, the user has to filter only the service/impl
folder or simply find it in the visualization and show it as a building to see how
the ownership color has changed. Figure 7.9 shows that the blue author had been
working at the beginning of the last two weeks, but then was continued by the
green and the violet author. On the right side in the selected commit details, we
can see that in the end 64% of the last two weeks’ code belong to the violet author.

102

7.4. Results

Figure 7.9: Service implementations folder of the last two weeks.

The first and the second participants voted for the clarity of the result with two
but three for the idea. The first participant found that the purpose about the
above scenarios was less relevant while the second participant would rather rely on
numbers and also seeing the code rather than relying on visualizations. Overall the
clarity of the result was rated with 4, 4, 5, and 5, while the purpose of the idea was
rated with 3, 3, 5, and 5.

8. Which angular components (typescript files) have the highest owners
switched the most?

The solution is to filter only the „component.ts“ files and show them at the file
level, by using the „Open folder level“ feature. Hiding the stripes and showing only
the ownership simplifies distinguishing the ownership changes. Figure 7.10 shows
each component as a separate building. With a few rotations of the view, the user
can find the two buildings pointed by the arrows that have the ownership switched
the most.

103

7. Evaluation & Results

Figure 7.10: Each component is shown as a separate building. The marked files have the
ownership changed the most.

All participants rated the idea with five. The second and the third participants
rated also the result clarity with five. The first participant rated the result clarity
though with three. He argued that the example is clear but if there would have
been more files then the answer would have been more difficult to find with the
visualization. He proposed that a different coloring scheme would have helped in
this case, for example, a coloring scheme that shows the hotspots. The fourth
participant was between four and five but decided on four as there was a difficult
factor in finding the files.

7.5 Threats to Validity

The environment where the scenario evaluation interviews were done is very similar to
the semi-structured interviews. Therefore most of the risks are similar. The interviews
were done over Zoom. During the pilot phase, it was observed that it was too difficult to
let the user take control and use the prototype.

The sample of the interviewees was small. Only one of the semi-structured interviews
was available for the scenario evaluation. Overall, four interviewees with Git experience
from less than five years up to more than 10 years participated in the interviews. Some of
the questions got very opposite opinions on some feature usefulness in the same scenarios.
This may come due to the demographics, of the participants’ previous experience with
the software visualizations. However, a larger sample would give better results on the
scenario’s purpose- and usefulness.

104

7.5. Threats to Validity

Some of the implemented features were removed from the questionnaire because of their
complexity. For example, the mapping of the entities into the city mapping was available
as linear, logarithmic, and histogram. The mapping was preselected as linear with a
factor scaling of 8 on the commit height. The semi-structured interviews showed that
explaining the differences between mapping methods would take too much time.

105

CHAPTER 8
Findings

Besides the threats to validity, the scenario-based expert evaluation gave enough infor-
mation to answer the third question. This chapter discusses the research question results
starting with the first one:

• RQ1: How has the city metaphor been used in the software visualization
research?
Chapter 4 describes extensively in a study mapping on the question of how the
code city metaphor has been used and improved for various research goals. The
chapter lists thirty-six visualizations that relate to the concept of a building or
a 3D building-like structure to visualize and show information about a software
project. The listed visualizations are introduced in research papers. They may
have been improved by further research to add features or to use the same visu-
alization to show different aspects of the visualization. For example, CodeCity
[10, 61, 72, 63, 102] and ExplorViz [82, 84, 86, 83, 85] have been researched and
extended in five research papers. The study mapping showed how and what aspects
of the software have been visualized with the code city metaphor. The tables at
the end of the chapter help to differentiate and categorize the visualizations easily.
The first columns show meta information such as the name and the date when the
visualization was first introduced. The next columns list how the city concepts
have been used. Most of the research papers introduced visualization where the
software was mapped into only one city metaphor, similar to Slide City. The next
columns show the data that are mapped to the code city elements, for example,
whether the height of a code city building represents the size of a file in lines of
code, the number of functions or methods in a file, or runtime data such as the
number of instances of a particular class. The last table shows the attributes and
features that make the visualization different from the rest and shows the main

107

8. Findings

static and dynamic data represented in the visualization.

• RQ2: How to visualize the historical code ownership with a city metaphor?
The survey on information needs (discussed in Section 3.1) showed that software
project stakeholders had different interests in the source code including questions
about who has been working on some files or folders. Section 5.1 describes the vision
of the proposed artifact, which is based on the code city metaphor using ownership
data. The hypothesis over the proposed features was validated with semi-structured
interviews. A sample from a different pool of software engineering roles where
interviewed to give their opinion and arguments on how the artifact could help
them solve their needs. The results were gathered and set as requirements for the
Slide City prototype, which was then later implemented on an agile approach (see
Chapter 6).

• RQ3: How purposeful is the visualization for answering historical and
ownership questions?
During the implementation were found and resolved some inconsistencies in the
requirements (see Section 6.6) and some features were left out due to their complexity
for this thesis. Nevertheless, a new set of hypotheses and questions were prepared
to validate whether the prototype was helpful for the users. The semi-structured
expert interviews included eight scenarios where the participants rated the idea
of the prototype solving the scenario and they rated how clear the visualization
showed the expected result. During the pilot phase, it was observed that the
implementation had useability issues due to the high workload to finish all the
details and because the interviews were conducted online. Therefore, the interviewer
executed the solutions with the visualization, and the participants rated and argued
their opinions. All the scenarios received different positive ratings from three to five
(see Section 7.4), except the scenario where unit testing consistency was evaluated.
This clarity of the expected result clarity for this scenario was evaluated twice with
five, once with three, and once with two. The participants suggested improvements
that may help further the user to see and compare in the Slide City when particular
files or features were implemented and also see their behavior, for example, how
often is the implementation combined or followed by unit tests. The improvements
are summarised in the Future Work chapter (see Chapter 9.1). For an overall view
of the both questions results for each scenario see Figure 7.1 and Figure 7.2.

108

CHAPTER 9
Conclusion

This thesis conducted two main types of research on the code city visualization area. The
first contribution is the „Systematic Mapping Study for Code Cities“, which answered the
first research questions „How has the city metaphor been used in the software visualization
research?“. The research showed how the metaphor was used in software engineering
to visualize the projects’ source code. Key factors to group the visualizations are the
features they used and what the visualization represents. The common attribute of the
visualization is its three-dimensional state and the objects where the source code was
mapped to represent buildings. Different visualization mapped different aspects of the
code into the building such as classes, files, packages, or even more granular aspects
like methods, functions, or structs. Most of the visualizations used the height and color
aspect to represent code metrics, which were also different such as the number of lines of
code or methods in a file, number of dependencies, or mapping dynamic aspects during
runtime as such object replication from a class. Some of the visualizations included also
special features such as wires, interaction by zooming, or usi the building location to
further show more information about the project.

The second part of the research question deals with researching the preferences of software
stakeholders on how a code city visualization can help them get historical ownership
information about a software project. The thesis includes a survey on the information
needs of different stakeholders related to the source code and how ownership is used to
help a part of these needs. The prototype was adjusted based on the survey and the
findings of the mapping study. Then, to answer the RQ2, its requirements were validated
and prioritized with semi-structured interviews. After the implementation phase, the
scenario-based expert evaluation helped to answer the RQ3 on finding out how purposeful
is the idea and how clear the results were to the participants. In both interviews, the
semi-structured and scenario-based expert evaluation included ratings from one to five,
where one is the lowest and five is the highest rating. All the scenarios received different
positive ratings from three to five except the scenario where unit testing consistency was

109

9. Conclusion

evaluated. This visualization result clarity for this scenario was evaluated twice with five,
once with three, and once with two. The participants who ranked it with two and three
added their feedback on how this can be improved which is discussed in Section 9.1.

9.1 Future Work
The need to improve further the prototype came during different phases of the research.
The incremental implementation approach showed after the semi-structured interviews
that a few requirements needed to be adjusted to be consistent with each other. The
adjustments and added requirements that were applied in the visualization were discussed
in Section 6.6. However, during the implementation, it was observed that due to the
large amount of data in some repositories, the visualization needs to be further simplified.
The visualization suffers in performance in particular when all the history is displayed
and also all folders are opened up to the file level. Additionally, further improvements
were discussed during the scenario-based expert evaluation which will be listed below.

• Performance
From the mining up to interacting with the visualization, some separate processes
could be more performant such as mining, loading, and rendering the data. The
mining part can be considered the least problematic one because it is done only
once per project. Additionally, the implementation and the data structure are
designed in a way that if new commits were added to the project, then only the new
commits are required to be processed. The loading of the data from the backend to
the frontend is done upon visualization initialization. One reason is that initially
the whole project history is rendered and this requires data from all the commits
stored in the database. However, most of the folders are shown initially collapsed
without all the internal file details. Therefore for a design that loads only the
overview information of a folder and then later the file information on demand may
be more performant. The drawback of this approach is that it may require, for
example during the mining process, to have the overview data result of the folder
saved additionally in the database.
Although the data loading part may take a few seconds, the most process-intensive
phase is rendering the visualization initially. By default, the visualization renders
the whole history of the project which means that there are at least as many floors
as there are commits. Besides this, by default is set to open the folders up to the
third level as districts, i.e. the cuboid buildings represent a fourth-level child folder
and the cylindric buildings represent a file that can be found from the first to the
fourth level. It is not expected that every commit to have affected every file or
folder instance up to the fourth level, however, the permutation results in large
numbers of floors, where each represents a part-commit that has changed a specific
file or folder. Depending on the project’s size, this requires a lot of GPU power
to render. An improvement here would be to merge floors, especially those that

110

9.1. Future Work

can be hardly visible. For example, when showing the history of a folder without
the internal information, consecutive commits that have changed only a few lines
may not be of importance in a list of hundred commits that have changed a large
amount of the folder. For example, the Figure 9.1 has a building in the middle
of the yellow district which represents almost all the frontend source code. The
building has 404 commits resulting in 404 floors, which makes it very difficult to
render inside the given height but still to be visible by the human eye. Another
case when merging consecutive commits is if they come from the same author in
one branch.

Figure 9.1: Building with many floors

Another option to improve the performance is by constraining the user to the
number of floors that can be visible at once in the visualization. For example, if a
folder is opened to see its inner details then another one is automatically collapsed
to have fewer buildings in the visualization. If the user needs both folders at the
same time, then the application should instruct to use the time filter or only filter
to show the folders and files of interest.

• Slide multiple commits at the same time
The current implementation supports sliding only one commit at once. The vertical
slide is split into three parts and each functions differently. The initial state of the
parts of a commit can be in different high levels because the buildings have different
highest and commits. The bottom part of the slide is used to get the next commits
parts into the same level. Then the middle part is where the commit moves up
and the third part is where the commit parts go to their upside-down buildings
place. During the slide each of these parts has one commit moving. However,
the middle part of the slide can have more than one commit sliding at the same

111

9. Conclusion

time, while still keeping one at the bottom and one at the upper part. A reason
why this was not covered during the thesis is that in some mapping modes (for
example linear mapping), some floors may be too high and when a lot of floors with
a large height are sliding simultaneously then a very large amount of light needs
to be reserved initially. This however can be further studied and researched to
find better solutions on how to show multiple commits sliding. The suggestion to
slide multiple commits simultaneously came also during the sixth scenario, which
involves checking the developer’s inconsistency in adding unit tests.

• Coloring schems
The colors of the „Slide City“ are bound to the author. The user can change the
color that represents the author, but not the meaning of the color. During the
last scenario, which involves finding a file or folder where a lot of developers have
switched ownership, one of the interviewees suggested using the colors differently
in a way that color does not show anymore the author but rather has different
shades of the same color depending by how many different developers switched
the ownership. This configuration can help also in other scenarios where the user
should find something that can be calculated and found by the visualization logic.

• Commit sorting
During the semi-structured interviews, the participants expressed curiosity about
sorting the commits not by date but by considering the branches. Sorting by date
may list two different branches by combining and mixing them. In some special
cases, it may result in having the ownership being switched multiple times during
the history of a folder, whereas in reality, the ownership belonged to one developer
in one branch and the other developer on the other branch. If they had been sorted
by considering the branches, then the building would have at the bottom all the
commits of one branch and then next the commit of the other branch. The concept
may conflict with the fact that the slide city uses time in the legend to slide the
commits, which results in breaking the order that the commits had while they
were on the building. To avoid these problems, Git graphics use the tree system
to represent both the time and the relation between commits, for example, its
predecessor and its successor. However when showing in one line, for example on a
vertical building, one of the information will be lost.
Another problem with prioritizing the branches over the commit time is the com-
plexity that some branches may have. If the Git workflow is implemented correctly,
then the instruction to implement the Git workflow can be used to sort the commits.
However, if branches are similar to the example in Figure 5.9, then it becomes
very hard to prioritize the branches in a user-friendly way for the user. A separate
specific study and analysis is needed to handle these special cases.

112

List of Figures

3.1 Screenshot of Hoozizat . 12
3.2 Information Fragment Model . 13
3.3 Major and minor owners . 14
3.4 Implicated code . 15
3.5 The heat map . 16
3.6 Code Ownership River . 18
3.7 CHRONOS . 18
3.8 Azurite . 19
3.9 Chronia . 20
3.10 Timeline of Outsight . 21
3.11 ArgoUML as a CodeCity . 23
3.12 CodeCity . 23
3.13 CodeCity history visualization . 24
3.14 Evo-Streets . 25
3.15 The heat map . 26
3.16 The heat map . 26
3.17 M3triCity . 27

4.1 FileVis visualization . 29
4.2 Software World visualization . 30
4.3 Software Landscapes visualization . 30
4.4 3D City proposal . 31
4.5 Vizz3D visualization . 31
4.6 VERSO visualization . 32
4.7 VERSO extended visualization . 32
4.8 CodeCity visualization . 33
4.9 CocoViz visualization . 33
4.10 MetricView visualization . 34
4.11 UML-City visualization . 34
4.12 EvoSpaces visualization . 34
4.13 Evo-Streets visualization . 35
4.14 Evo-Streets wires visualization . 35
4.15 VizzAspectJ City & VizzJava City visualizations 35
4.16 VITRAIL City visualization . 36

113

4.17 VITRAIL Streets visualization . 36
4.18 SkyscrapAR visualization . 37
4.19 SynchroVis visualization . 38
4.20 SeeIT 3D visualization . 38
4.21 ExplorViz Application visualization . 39
4.22 ExploreViz 3D printed model . 39
4.23 ExploreViz with heat map overlay . 39
4.24 TeamWATCH visualization . 40
4.25 CodeMetropolis visualization . 41
4.26 Rocat visualization . 41
4.27 Origin City visualization . 42
4.28 VR City . 42
4.29 CityVR visualization . 43
4.30 High-Rising Cities visualization . 43
4.31 Code Park visualization . 43
4.32 Linked Data City visualization . 44
4.33 GoCity visualization . 45
4.34 IslandViz visualization . 45
4.35 PerfVis visualization . 46
4.36 Software City in VR visualization . 46
4.37 Memory Cities visualization . 47
4.38 M3triCity visualization . 48
4.39 M3triCity2 visualization . 48
4.40 The Layered Software City visualization 49
4.41 DynaCity visualization . 49
4.42 BabiaXR-CodeCity visualization . 50
4.43 VariCity visualization . 50

5.1 Slide city . 56
5.2 Abstract buildings . 57
5.3 Opened folder . 58
5.4 Closed folder . 58
5.5 Proposed visualization . 59
5.6 Committer color . 60
5.7 Code city . 61
5.8 Histogram & Box-whisker equalization . 62
5.9 Git Branches . 63
5.10 Merged commits . 64
5.11 File Movements . 66
5.12 Slide City sketch . 68
5.13 Slide City sketch . 68
5.14 Ranked answers for „Who has been working on a feature?“ 71
5.15 Ranked answers for „Which features has a developer implemented?“ . . . 71

114

5.16 Ranked answers for „How should the visualization map the metrics?“ . . 72
5.17 Ranked answers for „How should the visualization be filtered by the author?“ 74
5.18 Ranked answers for „How useful is it to exclude files?“ 74
5.19 Ranked answers for „How should the blocklisted commits be excluded?“ . 75
5.20 Ranked answers for „Which features are more important?“ 75

6.1 Architecture . 78
6.2 Commit log . 81
6.3 Commit diff . 82
6.4 Linear Mapping . 84
6.5 Histogram mapping . 85
6.6 Logarithmic mapping . 86
6.7 Live Configuration . 87
6.8 Commit and Files Details . 87
6.9 Cylindrical building . 90
6.10 Cylindrical building . 91

7.1 Visualization purposful . 96
7.2 Visualization clarity . 96
7.3 Scenario result 1 . 97
7.4 Scenario result 2 . 98
7.5 Scenario result 3 . 99
7.6 Scenario result 4 . 100
7.7 Scenario result 5 . 101
7.8 Scenario result 6 . 102
7.9 Scenario result 7 . 103
7.10 Scenario result 8 . 104

9.1 Building with many floors . 111

115

List of Tables

4.1 Systematic mapping study: First table . 51
4.2 Systematic mapping study: Second table 52
4.3 Systematic mapping study: Special features occurence 53
4.4 Systematic mapping study: Special feature per city 54

5.1 Logarithmic mapping results . 62

117

Bibliography

[1] R. Purushothaman and D. E. Perry, “Toward understanding the rhetoric of small
source code changes,” IEEE Transactions on Software Engineering, vol. 31, pp. 511–
526, jun 2005.

[2] T. Fritz and G. C. Murphy, “Using information fragments to answer the questions
developers ask,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - ICSE ’10, vol. 1, (New York, New York, USA), p. 175,
ACM Press, 2010.

[3] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers drive software
evolution,” International Workshop on Principles of Software Evolution (IWPSE),
vol. 2005, pp. 113–122, 2005.

[4] C. Liu, X. Ye, and E. Ye, “Source code revision history visualization tools: Do
they work and what would it take to put them to work?,” IEEE Access, vol. 2,
pp. 404–426, 2014.

[5] R. Wettel and M. Lanza, “Visual exploration of large-scale system evolution,”
Proceedings - Working Conference on Reverse Engineering, WCRE, pp. 219–228,
2008.

[6] F. Steinbrückner and C. Lewerentz, “Representing Development History in Software
Cities,” Proceedings of the ACM Conference on Computer and Communications
Security, 2010.

[7] F. Pfahler, R. Minelli, C. Nagy, and M. Lanza, “Visualizing Evolving Software
Cities,” Proceedings - 8th IEEE Working Conference on Software Visualization,
VISSOFT 2020, pp. 22–26, sep 2020.

[8] C. Knight and M. Munro, “Comprehension with[in] virtual environment visuali-
sations,” Proceedings - 7th International Workshop on Program Comprehension,
IWPC 1999, pp. 4–11, 1999.

[9] C. Knight and M. Munro, “Virtual but visible software,” Proceedings of the In-
ternational Conference on Information Visualisation, vol. 2000-July, pp. 198–205,
2000.

119

[10] R. Wettel and M. Lanza, “Program comprehension through software habitability,”
IEEE International Conference on Program Comprehension, pp. 231–240, 2007.

[11] T. Panas, R. Berrigan, and J. Grundy, “A 3D metaphor for software produc-
tion visualization,” Proceedings of the International Conference on Information
Visualisation, vol. 2003-Janua, pp. 314–319, 2003.

[12] S. Ardigo, C. Nagy, R. Minelli, and M. Lanza, “Visualizing Data in Software Cities,”
Proceedings - 2021 Working Conference on Software Visualization, VISSOFT 2021,
pp. 145–149, 2021.

[13] D. Moreno-Lumbreras, R. Minelli, A. Villaverde, J. M. Gonzalez-Barahona, and
M. Lanza, “CodeCity: On-Screen or in Virtual Reality?,” Proceedings - 2021
Working Conference on Software Visualization, VISSOFT 2021, pp. 12–22, 2021.

[14] J. Mortara, P. Collet, and A. M. Dery-Pinna, “Visualization of Object-Oriented
Variability Implementations as Cities,” Proceedings - 2021 Working Conference on
Software Visualization, VISSOFT 2021, pp. 76–87, 2021.

[15] A. Krause, M. Hansen, and W. Hasselbring, “Live Visualization of Dynamic
Software Cities with Heat Map Overlays,” Proceedings - 2021 Working Conference
on Software Visualization, VISSOFT 2021, pp. 125–129, 2021.

[16] V. Dashuber and M. Philippsen, “Trace Visualization within the Software City
Metaphor: A Controlled Experiment on Program Comprehension,” Proceedings -
2021 Working Conference on Software Visualization, VISSOFT 2021, pp. 55–64,
2021.

[17] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic
mapping studies in software engineering: An update,” 2015.

[18] K. R. Felizardo, E. Mendes, M. Kalinowski, É. Ferreira Souza, and N. L. Vijaykumar,
“Using Forward Snowballing to update Systematic Reviews in Software Engineering,”
Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2016.

[19] S. Jalali and C. Wohlin, “Systematic Literature Studies: Database Searches vs.
Backward Snowballing,” Proceedings of the ACM-IEEE international symposium
on Empirical software engineering and measurement - ESEM ’12, 2012.

[20] P. Young and M. Munro, “Visualising software in virtual reality,” in Proceed-
ings. 6th International Workshop on Program Comprehension. IWPC’98 (Cat.
No.98TB100242), pp. 19–26, IEEE Comput. Soc, 1998.

[21] B. Sharif, G. Jetty, J. Aponte, and E. Parra, “An empirical study assessing the
effect of SeeIT 3D on comprehension,” 2013 1st IEEE Working Conference on
Software Visualization - Proceedings of VISSOFT 2013, 2013.

120

[22] H. Kallio, A. M. Pietilä, M. Johnson, and M. Kangasniemi, “Systematic method-
ological review: developing a framework for a qualitative semi-structured interview
guide,” Journal of Advanced Nursing, vol. 72, pp. 2954–2965, dec 2016.

[23] J. Dahmann, D. Gregorio, and P. Modigliani, “Systems engineering processes for
agile software development,” SysCon 2013 - 7th Annual IEEE International Systems
Conference, Proceedings, pp. 351–355, 2013.

[24] M. Weninger, L. Makor, and H. Mossenbock, “Memory Cities: Visualizing Heap
Memory Evolution Using the Software City Metaphor,” Proceedings - 8th IEEE
Working Conference on Software Visualization, VISSOFT 2020, pp. 110–121, sep
2020.

[25] A. Begel, K. Y. Phang, and T. Zimmermann, “Codebook: Discovering and Exploit-
ing Relationships in Software Repositories,” Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - ICSE ’10, vol. 1, pp. 125–134,
may 2010.

[26] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data scientists in
software engineering,” Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014, pp. 12–23, 2014.

[27] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch my code!
Examining the effects of ownership on software quality,” SIGSOFT/FSE 2011 -
Proceedings of the 19th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pp. 4–14, 2011.

[28] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley, “Identification
of coordination requirements: Implications for the Design of collaboration and
awareness tools,” Proceedings of the ACM Conference on Computer Supported
Cooperative Work, CSCW, pp. 353–362, 2006.

[29] R. M. Henderson and K. B. Clark, “Architectural Innovation: The Reconfigu-
ration of Existing Product Technologies and the Failure of Established Firms,”
Administrative Science Quarterly, vol. 35, p. 9, mar 1990.

[30] M. Foucault, J.-R. Falleri, and X. Blanc, “Code Ownership in Open-Source Software,”
Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering - EASE ’14, 2014.

[31] M. Foucault, C. Teyton, D. Lo, X. Blanc, and J. R. Falleri, “On the usefulness
of ownership metrics in open-source software projects,” Information and Software
Technology, vol. 64, pp. 102–112, aug 2015.

[32] F. Rahman and P. Devanbu, “Ownership, experience and defects: A fine-grained
study of authorship,” Proceedings - International Conference on Software Engi-
neering, no. 11, pp. 491–500, 2011.

121

[33] K. Beck, “Embracing change with extreme programming,” Computer, vol. 32,
pp. 70–77, oct 1999.

[34] K. H. Judy and I. Krumins-Beens, “Great scrums need great product owners:
Unbounded collaboration and collective product ownership,” Proceedings of the
Annual Hawaii International Conference on System Sciences, 2008.

[35] J. Sutherland, G. Schoonheim, E. Rustenburg, and M. Rijk, “Fully distributed
scrum: The secret sauce for hyperproductive offshored development teams,” Pro-
ceedings - Agile 2008 Conference, pp. 339–344, 2008.

[36] V. Augustine, J. Hudepohl, P. Marcinczak, and W. Snipes, “Deploying Software
Team Analytics in a Multinational Organization,” IEEE Software, vol. 35, pp. 72–76,
jan 2017.

[37] M. Orrú and M. Marchesi, “A case study on the relationship between code ownership
and refactoring activities in a Java software system,” Proceedings - 7th International
Workshop on Emerging Trends in Software Metrics, WETSoM 2016, pp. 43–49,
may 2016.

[38] P. Thongtanunam and C. Tantithamthavorn, “Code Ownership: The Principles,
Differences, and Their Associations with Software Quality,”

[39] M. H. D. D. Moura, H. A. D. D. Nascimento, and T. C. Rosa, “Extracting new
metrics from version control system for the comparison of software developers,”
Proceedings - 28th Brazilian Symposium on Software Engineering, SBES 2014,
pp. 41–50, 10 2014.

[40] S. G. Eick, J. L. Steffen, and E. E. Sumner, “Seesoft—A Tool for Visualizing Line
Oriented Software Statistics,” IEEE Transactions on Software Engineering, vol. 18,
no. 11, pp. 957–968, 1992.

[41] J. P. S. Alcocer, F. Beck, and A. Bergel, “Performance evolution matrix: Visualizing
performance variations along software versions,” Proceedings - 7th IEEE Working
Conference on Software Visualization, VISSOFT 2019, pp. 1–11, sep 2019.

[42] A. Hanjalić, “ClonEvol: Visualizing software evolution with code clones,” 2013 1st
IEEE Working Conference on Software Visualization - Proceedings of VISSOFT
2013, 2013.

[43] C. V. Alexandru, S. Proksch, P. Behnamghader, and H. C. Gall, “Evo-clocks:
Software evolution at a glance,” Proceedings - 7th IEEE Working Conference on
Software Visualization, VISSOFT 2019, pp. 12–22, sep 2019.

[44] A. Telea and D. Auber, “Code Flows: Visualizing Structural Evolution of Source
Code,” Computer Graphics Forum, vol. 27, pp. 831–838, may 2008.

122

[45] M. Wittenhagen, C. Cherek, and J. Borchers, “Chronicler: Interactive exploration
of source code history,” Conference on Human Factors in Computing Systems -
Proceedings, pp. 3522–3532, may 2016.

[46] B. Ens, D. Rea, R. Shpaner, H. Hemmati, J. E. Young, and P. Irani, “ChronoTwigger:
A visual analytics tool for understanding source and test co-evolution,” Proceedings
- 2nd IEEE Working Conference on Software Visualization, VISSOFT 2014, pp. 117–
126, dec 2014.

[47] C. Klammer, G. Buchgeher, and A. Kern, “A retrospective of production and test
code co-evolution in an industrial project,” 2018 IEEE 2nd International Workshop
on Validation, Analysis and Evolution of Software Tests, VST 2018 - Proceedings,
vol. 2018-March, pp. 16–20, mar 2018.

[48] J. Wu, C. W. Spitzer, A. E. Hassan, and R. C. Holt, “Evolution spectrographs:
Visualizing punctuated change in software evolution,” International Workshop on
Principles of Software Evolution (IWPSE), pp. 57–66, 2004.

[49] L. Voinea, A. Telea, and J. J. Van Wijk, “CVSscan: Visualization of code evolution,”
Proceedings SoftVis ’05 - ACM Symposium on Software Visualization, pp. 47–56,
2005.

[50] M. Ogawa and K. L. Ma, “Code-swarm: A design study in organic software
visualization,” IEEE Transactions on Visualization and Computer Graphics, vol. 15,
pp. 1097–1104, nov 2009.

[51] S. Rufiange and G. Melancon, “AniMatrix: A matrix-based visualization of software
evolution,” Proceedings - 2nd IEEE Working Conference on Software Visualization,
VISSOFT 2014, pp. 137–146, dec 2014.

[52] J. Grabner, R. Decker, T. Artner, M. Bernhart, and T. Grechenig, “Combining
and Visualizing Time-Oriented Data from the Software Engineering Toolset,” in
Proceedings - 6th IEEE Working Conference on Software Visualization, VISSOFT
2018, pp. 76–86, Institute of Electrical and Electronics Engineers Inc., nov 2018.

[53] F. Servant and J. A. Jones, “Chronos: Visualizing slices of source-code history,”
2013 1st IEEE Working Conference on Software Visualization - Proceedings of
VISSOFT 2013, 2013.

[54] Y. S. Yoon, B. A. Myers, and S. Koo, “Visualization of fine-grained code change
history,” Proceedings of IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC, pp. 119–126, 2013.

[55] A. Kuhn and M. Stocker, “CodeTimeline: Storytelling with versioning data,”
Proceedings - International Conference on Software Engineering, pp. 1333–1336,
2012.

123

[56] W. Aigner, S. Miksch, H. Schumann, and C. Tominski, Visualization of Time-
Oriented Data. 2011.

[57] C. Ware and G. Franck, “Viewing a graph in a virtual reality display is three times
as good as a 2D diagram,” IEEE Symposium on Visual Languages, Proceedings,
pp. 182–183, 1994.

[58] C. Ware, D. Hui, and G. Franck, “Visualizing Object Oriented Software in Three
Dimension s,”

[59] S. K. Card, J. D. Mackinlay, and B. Shneiderman, “Readings in information
visualization: using vision to think,” Technical Communication Quarterly, vol. 9,
pp. 347–351, 2000.

[60] G. S. Hubona, G. W. Shirah, and D. G. Fout, “3D object recognition with motion,”
Conference on Human Factors in Computing Systems - Proceedings, vol. 22-27-Marc,
pp. 345–346, mar 1997.

[61] R. Wettel and M. Lanza, “Visualizing Software Systems as Cities,” VISSOFT 2007
- Proceedings of the 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, pp. 92–99, 2007.

[62] A. Marcus, L. Feng, and J. I. Maletic, “3D representations for software visualization,”
p. 27, 2003.

[63] R. Wettel and M. Lanza, “Code city: 3D visualization of large-scale software,”
Proceedings - International Conference on Software Engineering, pp. 921–922, 2008.

[64] M. Gao and C. Liu, “TeamWATCH demonstration: A web-based 3D software
source code visualization for education,” 1st International Code Hunt Workshop on
Educational Software Engineering, CHESE 2015 - Proceedings, pp. 12–15, jul 2015.

[65] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz, “Software Landscapes :
Visualizing the Structure of Large Software Systems,” Joint EUROGRAPHICS-
IEEE TCVG Symposium on Visualization, 2004.

[66] T. Panas, R. Lincke, and W. Löwe, “Online-Configuration of Software Visualizations
with Vizz3D,” Proceedings of the ACM 2005 Symposium on Software Visualization,
St. Louis, Missouri, USA, May 14-15, 2005, 2005.

[67] T. Panas, T. Epperly, D. Quinlan, A. Sæbjørnsen, and R. Vuduc, “Communicating
software architecture using a unified single-view visualization,” Proceedings of the
IEEE International Conference on Engineering of Complex Computer Systems,
ICECCS, pp. 217–226, 2007.

[68] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based analysis of quality
for large-scale software systems,” 20th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2005, pp. 214–223, 2005.

124

[69] G. Langelier and K. Dhambri, “Visual analysis of Azureus using VERSO,” VIS-
SOFT 2007 - Proceedings of the 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, pp. 163–164, 2007.

[70] G. Langelier, H. Sahraoui, and P. Poulin, “Exploring the evolution of software
quality with animated visualization,” Proceedings - 2008 IEEE Symposium on
Visual Languages and Human-Centric Computing, VL/HCC 2008, pp. 13–20, 2008.

[71] O. Benomar, H. Sahraoui, and P. Poulin, “Visualizing software dynamicities with
heat maps,” 2013 1st IEEE Working Conference on Software Visualization - Pro-
ceedings of VISSOFT 2013, 2013.

[72] R. Wettel and M. Lanza, “Visually localizing design problems with disharmony
maps,” SOFTVIS 2008 - Proceedings of the 4th ACM Symposium on Software
Visualization, pp. 155–164, 2008.

[73] S. Boccuzzo and H. Gall, “CocoViz: Towards cognitive software visualizations,”
VISSOFT 2007 - Proceedings of the 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, pp. 72–79, 2007.

[74] S. Boccuzzo and H. C. Gall, “Software visualization with audio supported cognitive
glyphs,” IEEE International Conference on Software Maintenance, ICSM, pp. 366–
375, 2008.

[75] C. F. Lange, M. A. Wijns, and M. R. Chaudron, “A visualization framework for
task-oriented modeling using UML,” Proceedings of the Annual Hawaii International
Conference on System Sciences, 2007.

[76] S. Alam and P. Dugerdil, “EvoSpaces visualization tool: Exploring software archi-
tecture in 3D,” Proceedings - Working Conference on Reverse Engineering, WCRE,
pp. 269–270, 2007.

[77] M. Steinbeck, R. Koschke, and M. O. Rudel, “How EvoStreets Are Observed in
Three-Dimensional and Virtual Reality Environments,” SANER 2020 - Proceedings
of the 2020 IEEE 27th International Conference on Software Analysis, Evolution,
and Reengineering, pp. 332–343, feb 2020.

[78] S. Bentrad and D. Meslati, “2D and 3D visualization of AspectJ programs,” Pro-
ceedings of the 10th International Symposium on Programming and Systems, ISPS’
2011, pp. 183–190, 2011.

[79] P. Caserta, O. Zendra, and D. Bodenes, “3D hierarchical edge bundles to visualize
relations in a software city metaphor,” Proceedings of VISSOFT 2011 - 6th IEEE
International Workshop on Visualizing Software for Understanding and Analysis,
2011.

[80] R. R. G. e. Souza, T. Mendes, B. c. da Silva, and M. Mendonça, “SkyscrapAR: An
Augmented Reality Visualization for Software Evolution,” 2012.

125

[81] J. Waller, C. Wulf, F. Fittkau, P. Döhring, and W. Hasselbring, “SynchroVis: 3D
visualization of monitoring traces in the city metaphor for analyzing concurrency,”
2013 1st IEEE Working Conference on Software Visualization - Proceedings of
VISSOFT 2013, 2013.

[82] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live trace visualization for
comprehending large software landscapes: The ExplorViz approach,” 2013 1st
IEEE Working Conference on Software Visualization - Proceedings of VISSOFT
2013, 2013.

[83] F. Fittkau, A. Krause, and W. Hasselbring, “Software landscape and application
visualization for system comprehension with ExplorViz,” Information and Software
Technology, vol. 87, pp. 259–277, jul 2017.

[84] F. Fittkau, S. Roth, and W. Hasselbring, “ExplorViz: Visual runtime behavior
analysis of enterprise application landscapes,” 2015.

[85] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring software cities in virtual
reality,” 2015 IEEE 3rd Working Conference on Software Visualization, VISSOFT
2015 - Proceedings, pp. 130–134, nov 2015.

[86] F. Fittkau, E. Koppenhagen, and W. Hasselbring, “Research perspective on sup-
porting software engineering via physical 3D models,” 2015 IEEE 3rd Working
Conference on Software Visualization, VISSOFT 2015 - Proceedings, pp. 125–129,
nov 2015.

[87] G. Balogh, A. Szabolics, and A. Beszedes, “CodeMetropolis: Eclipse over the city
of source code,” 2015 IEEE 15th International Working Conference on Source Code
Analysis and Manipulation, SCAM 2015 - Proceedings, pp. 271–276, nov 2015.

[88] T. Ichinose, K. Uemura, D. Tanaka, H. Hata, H. Iida, and K. Matsumoto, “RO-
CAT on KATARIBE: Code Visualization for Communities,” Proceedings - 4th
International Conference on Applied Computing and Information Technology, 3rd
International Conference on Computational Science/Intelligence and Applied Infor-
matics, 1st International Conference on Big Data, Cloud Computing, Data Science,
pp. 158–163, 2016.

[89] R. Ishizue, H. Washizaki, Y. Fukazawa, S. Inoue, Y. Hanai, M. Kanazawa, and
K. Namba, “Metrics Visualization Technique Based on the Origins and Function
Layers for OSS-Based Development,” Proceedings - 2016 IEEE Working Conference
on Software Visualization, VISSOFT 2016, pp. 71–75, dec 2016.

[90] J. Vincur, P. Navrat, and I. Polasek, “VR City: Software Analysis in Virtual Reality
Environment,” Proceedings - 2017 IEEE International Conference on Software
Quality, Reliability and Security Companion, QRS-C 2017, pp. 509–516, aug 2017.

126

[91] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “CityVR: Gameful software
visualization,” Proceedings - 2017 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2017, pp. 633–637, nov 2017.

[92] L. Merino, J. Fuchs, M. Blumenschein, C. Anslow, M. Ghafari, O. Nierstrasz,
M. Behrisch, and D. A. Keim, “On the Impact of the Medium in the Effectiveness
of 3D Software Visualizations,” Proceedings - 2017 IEEE Working Conference on
Software Visualization, VISSOFT 2017, vol. 2017-Octob, pp. 11–21, oct 2017.

[93] K. Ogami, R. G. Kula, H. Hata, T. Ishio, and K. Matsumoto, “Using High-Rising
Cities to Visualize Performance in Real-Time,” Proceedings - 2017 IEEE Working
Conference on Software Visualization, VISSOFT 2017, vol. 2017-Octob, pp. 33–42,
oct 2017.

[94] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner, and J. Laviola, “Code Park: A
New 3D Code Visualization Tool,” Proceedings - 2017 IEEE Working Conference
on Software Visualization, VISSOFT 2017, vol. 2017-Octob, pp. 43–53, oct 2017.

[95] K. Andries De Graaf and A. Khalili, “Visualizing Linked Data as Habitable Cities,”
Third International Workshop on Visualization and Interaction for Ontologies and
Linked Data co-located with the 16th International Semantic Web Conference, 2017.

[96] R. Brito, A. Brito, G. Brito, and M. T. Valente, “GoCity: Code City for Go,”
SANER 2019 - Proceedings of the 2019 IEEE 26th International Conference on
Software Analysis, Evolution, and Reengineering, pp. 649–653, mar 2019.

[97] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, and M. Misiak, “Visualization of
Software Architectures in Virtual Reality and Augmented Reality,” IEEE Aerospace
Conference Proceedings, vol. 2019-March, mar 2019.

[98] L. Merino, M. Hess, A. Bergel, O. Nierstrasz, and D. Weiskopf, “PerfVis: Perva-
sive Visualization in Immersive Augmented Reality for Performance Awareness,”
ICPE 2019 - Companion of the 2019 ACM/SPEC International Conference on
Performance Engineering, vol. 4, 2019.

[99] F. Jung, V. Dashuber, and M. Philippsen, “Towards Collaborative and Dynamic
Software Visualization in VR,” Proceedings of the 15th International Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics Theory and Applications
(VISIGRAPP 2020) - Volume 3: IVAPP, pages 149-156, 2020.

[100] V. Dashuber, M. Philippsen, and J. Weigend, “A Layered Software City for De-
pendency Visualization,” Proceedings of the 16th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications -
Volume 3: IVAPP, vol. Proceeding, 2021.

[101] W. Harrison, K. Magel, R. Kluczny, and A. DeKock, “Applying Software Complexity
Metrics to Program Maintenance,” Computer, vol. 15, no. 9, pp. 65–79, 1982.

127

[102] R. Wettel, M. Lanza, and R. Robbes, “Software Systems as Cities: A Controlled
Experiment,” Proceedings - International Conference on Software Engineering,
pp. 551–560, 2011.

128

Appendix

129

Semi-Structured Expert Interview——Questions

130

131

132

133

134

135

136

Acronyms

FLOSS Ree/libre and open-source software
LD-City Linked Data City
MVO Most valued owner
OC Origin City
QSMP Qlik Sense Metrics Portal
RO relational ownership
SO subjective ownership
TAR technical action research
vp-s variation points
XP Extreme Programming
LoC Lines of Code

137

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Motivation
	Expected Results
	Structure

	Methodology
	State of the Art Review & Systematic Mapping Study
	Requirements
	Iterative Implementation
	Scenario-Based Expert Evaluation

	State of the Art
	Information Needs
	Ownership and Authorship Effects on Software Quality
	2D Historical Code Visualizations
	3D Historical Code Visualizations

	Systematic Mapping of Code City Visualizations
	Visualizations Using City Metaphor
	Code Cities Tables

	Requirements
	Vision & Derived Requirements
	Proposed Features (Open questions - Semi-Structure Expert Interviews)
	Semi-Structure Expert Interview Results

	Implementation
	Architecture
	Repository Metadata
	Mining Configuration
	Visualization Configuration
	Live Configuration
	Requirements Deviation

	Evaluation & Results
	Test Plan
	Demographics
	Scenarios
	Results
	Threats to Validity

	Findings
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography
	Appendix
	Semi-Structured Expert Interview–-—Questions

	Acronyms

