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Kurzfassung

In den letzten Jahren hat das Property-Graph-Datenmodell zunehmend an Popularität
gewonnen, da es die Darstellung komplexer und stark vernetzter Daten ermöglicht. Ein
wesentlicher Grund für die weitverbreitete Nutzung von Graphdatenbanken ist ihre inhä-
rente Flexibilität. Sie erfordern in der Regel kein vordefiniertes Schema und unterliegen
keiner starren Struktur. Diese Flexibilität macht sie besonders geeignet für sich schnell
entwickelnde Umgebungen und unterstützt gleichzeitig eine skalierbare Datenverarbei-
tung. Allerdings bringt dieser schemafreie Ansatz auch verschiedene Herausforderungen
mit sich. Er kann zu Inkonsistenzen führen, die Optimierung von Anfragen erschweren
oder die Datenintegration komplizieren. Die manuelle Definition eines Schemas ist oft
unpraktikabel, da sie umfangreiches Domänenwissen erfordert und Graphdatenbanken oft
sehr groß sind. Dies führt zum sogenannten Schema-Discovery-Problem. In dieser Arbeit
adressieren wir das Schema-Discovery-Problem in Property-Graphs und präsentieren
eine neuartige Methode zur automatischen Schema-Extraktion auf Basis der "Formal
Concept Analysis". Formal Concept Analysis ist ein mathematisches Framework, das
primär für die Datenanalyse genutzt wird, dessen Werkzeuge sich jedoch auch für die
Schema-Extraktion als besonders geeignet erweisen. Wir schlagen eine vollständig auto-
matisierte Methode zur Schema-Extraktion für Property-Graphs vor und implementieren
diese. Dabei nutzen wir Formal Concept Analysis, um Knoten- und Kantentypen an-
hand der Ähnlichkeit ihrer "Labelsünd "Propertiesßu identifizieren. Unsere Methode
wird experimentell mit dem aktuellen Stand der Technik verglichen, und wir entwickeln
einen Prozess zur synthetischen Graphgenerierung, um eine detaillierte Evaluierung zu
ermöglichen. Darüber hinaus geht diese Arbeit auf die Herausforderung ein, Schemata
für mehrere Property-Graphs zu extrahieren. Dazu wird ein Schema-Merging-Verfahren
vorgestellt, das iterativ auf die extrahierten Schemata angewendet werden kann, um
mehrere Graphen zu berücksichtigen.
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Abstract

In recent years, the property graph data model has gained increasing popularity due
to its ability to represent complex and highly interconnected data. One of the key
reasons for the widespread adoption of graph databases is their inherent flexibility. They
typically do not require a predefined schema and impose no rigid structure. This flexibility
makes them well-suited for rapidly evolving environments while also supporting scalable
data processing. However, while this schema-less approach is desirable, it also presents
several challenges. It can lead to potential inconsistencies, hinder query optimization
or complicate data integration. Manually defining a schema is often impractical due
to the required domain knowledge and the size of graph databases, giving rise to the
schema discovery problem. In this thesis, we address the schema discovery problem in
property graphs and present a novel schema discovery method based on Formal Concept
Analysis. Formal Concept Analysis is a mathematical framework primarily used for data
analysis, and its tools naturally lend themselves to schema extraction. We propose and
implement a fully automatic schema discovery method for property graphs, leveraging
Formal Concept Analysis to identify node and edge types based on the similarity of their
labels and properties. Our method is experimentally evaluated against state-of-the-art
approaches, and we develop a process for synthetic graph generation to facilitate a
more intricate evaluation. Additionally, this thesis addresses the challenge of extracting
schemas from multiple property graphs by introducing a schema merging method, which
can be iteratively applied to the extracted schemas to accommodate multiple graphs.
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CHAPTER 1
Introduction

In recent years, property graphs have gained significant traction due to their ability
to model complex and interconnected data with rich semantic information. They are
extensively utilized in domains such as social and transportation networks, biological
networks, logistics, finance and cybersecurity. The property graph data model effec-
tively represents interconnected, multi-labeled data enhanced with properties defined
by key/value pairs [SBV+21]. The rich formalism of property graphs allows to rep-
resent complex relationships in heterogeneous data while maintaining a compact and
expressive data model. Unlike traditional relational databases, graph databases typically
do not enforce strict schema constraints, making them highly flexible and adaptable to
evolving data. This inherent a priori schemaless nature is particularly advantageous
in scenarios involving large-scale and rapidly changing datasets [BDM22]. While this
flexibility facilitates scalable storing of data, it poses significant challenges for various
data management tasks, such as data integration, query optimization, visualization, and
metadata management [SMS+20]. In these contexts, the absence of an explicit schema
can hinder efficiency and usability. A well-defined schema is essential for structuring and
interpreting data effectively. Manually designing an appropriate schema requires both
data modeling expertise and domain knowledge, making it a time-consuming and complex
task. For large-scale property graphs, manually inspecting the data to infer structural
patterns is nearly infeasible. Therefore, automated schema extraction techniques are
necessary to bridge this gap, providing structured representations of data while preserving
the flexibility of property graphs. The need for schema discovery in graph databases
extends beyond property graphs, as evidenced by the wide variety of existing methods for
schema extraction [KMKT+22]. Most of these methods focus on Resource Description
Framework (RDF) graphs and are not directly applicable to databases following the
property graph data model. Currently, state-of-the-art schema discovery methods for
property graphs comprise only three approaches [BDM22, LBH21, Lei21], all of which
primarily rely on clustering techniques. Although these methods have achieved remark-
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1. Introduction

able results, they have been evaluated on relatively simple property graphs. Moreover, an
important aspect of schema discovery is the detection of type hierarchies, which has not
yet been successfully achieved. While Bonifati et al. [BDM22] address this issue, they
provide a limited evaluation of their method’s ability to capture hierarchical relationships.
Moreover, none of these methods provide a solution for incremental maintenance, making
it challenging to handle updates in evolving graphs. This highlights the need for further
research in schema discovery for property graphs.

1.1 Solution Concept
In addition to machine learning techniques such as clustering, formal methods have also
been explored for schema discovery in graph data [KMKT+22]. One such method is
Formal Concept Analysis (FCA), a mathematical framework primarily used for data anal-
ysis, which has already been applied to schema extraction by Kirchberg et al. [KLT+12].
More recently, Bonifati et al. [BDM22] suggested investigating FCA for schema discovery
in property graphs and comparing its effectiveness to their approach. In this thesis, we
build upon this suggestion and evaluate FCA as a schema extraction method for property
graphs.

A central task in schema extraction is the identification of types, which group structurally
similar instances. In property graphs, this structure is defined by labels and properties.
For example, a PersonType may represent nodes labeled "Person" that share properties
such as "Name" and "Age". FCA provides a formal mechanism to analyze relationships
between objects and attributes through a structured representation known as a formal
context. This context is typically modeled as a cross-table, where rows correspond to
objects (e.g., graph nodes), columns correspond to attributes (e.g., labels or properties),
and an entry in the table indicates the presence of an attribute in a given object. By
leveraging FCA, we can systematically uncover types based on how nodes and edges are
associated with labels and properties.

To illustrate how FCA can facilitate schema extraction, consider the example property
graph shown in Figure 1.1. For simplicity, we focus only on nodes and their labels,
disregarding edges and properties. One could consider a graph with more than just
four nodes, where all additional nodes are similar to the given four. These nodes may
be connected by relationships such as is_friend_of or works_for. However, for
readability, we limit our example to four nodes. Given this graph, we construct a formal
context where nodes serve as objects and labels as attributes. Applying FCA to this
context produces a set of concepts, each represented as a tuple containing a set of objects
and a set of attributes. A concept ensures that all objects within it share the same
attributes, and all attributes within it are present in the same objects. The resulting
concepts, depicted in Figure 1.2, provide a preliminary grouping of instances based on
their structural similarities.

Beyond identifying concepts, FCA also generates a concept lattice, shown in Figure 1.2,
which captures hierarchical relationships among concepts. In this lattice, a subconcept’s
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1.1. Solution Concept

Figure 1.1: Example of a property graph with nodes and their labels and the corresponding
formal context.

objects form a subset of those in its superconcept, while a superconcept’s attributes
form a subset of those in its subconcept. These hierarchical relationships provide
valuable insights into potential subtype and supertype associations. For instance, in our
example, if we consider the concepts to be types, PersonType could be considered a
supertype of both EmployeeType and ManagerType, as these subtypes retain all the
labels of PersonType while introducing additional distinguishing labels. This example
demonstrates that the concept lattice provided by FCA constitutes a strong starting
point for identifying schema-related structures.

Figure 1.2: Concept lattice from the formal context of Figure 1.1.

A key advantage of FCA for schema discovery is its ability to handle overlapping types
and hierarchical relationships, both crucial features, as highlighted by Kirchberg et
al. [KLT+12]. Because FCA allows concepts to share objects, it naturally accommo-
dates overlapping types. Additionally, the concept lattice structure helps identify type
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1. Introduction

hierarchies, offering a systematic way to infer inheritance relationships within the data.

However, while FCA provides a strong foundation for schema extraction, the raw concept
lattice can be overly complex, making direct schema derivation impractical. To refine
the extracted schema, additional post-processing steps are necessary, including outlier
removal, type merging to create more general types, and type enrichment to enhance
schema quality. Furthermore, FCA can be extended beyond node types to incorporate
properties into the formal context, and the same methodology can be applied to extract
edge types, broadening its applicability in schema discovery.

In this thesis, we implement an automatic schema discovery method based on FCA,
incorporating a validation process to validate that the input graph conforms to the
extracted schema. The schema produced by our method will be based on PG-Schema,
the schema language introduced by Angles et al. [ABD+23], which represents the first pro-
posal for a standardized schema language for property graphs. As discussed in [BDM22]
and [KMKT+22], a key requirement for schema discovery methods is their ability to
handle multiple and evolving graphs, i.e., datasets that change over time. To address this
aspect, our method includes a schema merging process that allows the user to provide an
existing schema as input. The extracted schema and the input schema will be a merged
such that the result incorporates the structural elements of both schemas, ensuring that
any graph valid under either of the original schemas remains valid in the merged schema.
To evaluate our method, we compare its performance against state-of-the-art approaches
on real-world datasets. Additionally, we implement a PG-Schema parser and a graph
generator that constructs graphs based on a given schema. This approach enables us to
systematically generate graphs with diverse schema structures and assess whether our
method can accurately reproduce them.

1.2 Research Questions
This thesis is guided by the following research questions:

RQ 1: How can FCA be effectively applied to discover schemas, including types and type
hierarchies, in property graphs?

RQ 2: How does the performance of the FCA-based schema extraction framework compare
to existing schema discovery methods in terms of accuracy and scalability?

RQ 3: What are the limitations of using FCA for schema discovery in property graphs?

1.3 Thesis Structure
This thesis is structured as follows. Section 2 lays the foundation by introducing the key
concepts and frameworks necessary to understand the methodology and contributions of
this work. In Section 3, we review the relevant literature and state-of-the-art approaches
in schema discovery, schema merging, and FCA. Section 4 provides a formal explanation
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1.3. Thesis Structure

of our proposed method, which is further elaborated in Section 5, detailing its practical
implementation. The effectiveness of our approach is then assessed in Section 6, where
we present a comprehensive evaluation of our method. Finally, Section 7 summarizes our
findings, discussing both the strengths and limitations of our approach while outlining
potential directions for future research.
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CHAPTER 2
Background

This Section lays the foundation for the concepts and frameworks necessary to understand
the methodology and contributions of this work. It begins by introducing property graphs
and then explains the specific fragment of the PG-Schema used for the proposed method.
Then the concept of schema discovery, as applied in the context of this work, will be
defined. Next, it examines the foundational principles of FCA, highlighting its theoretical
framework and the concepts that make it a powerful tool for data analysis and organization.
Finally this Section examines schema merging. This comprehensive overview ensures
clarity and provides the conceptual tools required for the discussions and analyses in
subsequent sections.

2.1 Property Graphs
Property graph is a type of graph data model that extends traditional graph structures
by allowing both nodes and edges to hold properties, represented as key-value pairs.
More specifically, a property graph is a directed labeled multi-graph that allows for
properties on both nodes and edges. We follow the formal definition of a property graph
as presented in [Ang18]. For the following definitions, let for a set X, 2X denote the
set of all finite subsets of X, L is an infinite set of labels, K is an infinite set of property
names (keys), V is an infinite set of atomic values. Let R be the set of all records. A
record with keys from K and values from V is a finite-domain partial function o: K →
V .

Definition 2.1.1 (Property Graph). A property graph is a tuple G = (N, E, ρ, λ, σ)
where:

1. N is a finite set of nodes,

2. E is a finite set of edges such that N and E have no elements in common,
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2. Background

3. ρ : E → (N × N) is a total function that associates each edge in E with a pair of
nodes in N ,

4. λ : (N ∪ E) → 2L is a partial function that associates a node or edge with a set of
labels from L,

5. σ : (N ∪ E) → R is a function that maps nodes and edges to records.

Property graphs enable the representation of complex, interconnected data where entities
(represented as nodes/vertices) are connected by relationships (represented as edges).
Each node and edge can hold arbitrary labels and properties, offering a highly flexible
and extensible way to model real-world data. For example, a node representing a "Person"
might have properties such as name, age, and address. While an edge representing a
"Friendship" might include a property like since, denoting when the relationship began.

The key advantage of property graphs lies in their ability to model both structure and
semantics in a single framework, making them particularly well-suited for applications in
social networks, knowledge graphs, and the Internet of Things, among others [AAB+17].
Unlike relational databases, where data is stored in tables with fixed schemas, property
graphs allow for more dynamic, schema-less representations, making them ideal for
domains where the relationships and properties between entities may evolve over time
[AFB24].

For illustration, consider the following example of a property graph G = (N, E, ρ, λ, σ)
defined below and visually depicted in Figure 2.1, where:

− N = {n1, n2, n3, n4}
− E = {e1, e2, e3, e4}
− ρ : e1 → (n1, n2), e2 → (n1, n3), e3 → (n2, n4), e4 → (n3, n4)
− λ : n1 → {"Person"}, n2 → {"Person"}, n3 → {"Business"}, n4 → {"City"},

e1 → {"knows"}, e2 → {"works_at"}, e3 → {"lives_in"}, e4 → {"is_located"}
− σ : n1 → {"name": "Peter", "age": 30}, n2 → {"name": "Sonja", "age": 42},

n3 → {"founded": 2002}, n4 → {"name": "Vienna", population: 2M},

e1 → {"since": 2013}, e4 → {"address": "First Street"} .

2.2 PG-Schema
In [ABD+23], PG-Schema was proposed as the standardized schema language for property
graphs. The method developed in this thesis generates schemas that conform to the
PG-Schema definition. However, due to inherent limitations in the information that
can be extracted from datasets, the schemas produced by our method utilize only a
subset of the PG-Schema. Consequently, our approach focuses on a specific fragment of
PG-Schema, which we describe in this section.

8



2.2. PG-Schema

Figure 2.1: Visualization of the Example Property Graph.

PG-Schema consists of two main components:

• PG-Types: These define the fundamental topological structure of the graph,
including node types, edge types, and their associated labels and properties.

• Constraints: These specify additional conditions on the property graph, such as
cardinality or value constraints.

Our method outputs only the PG-Types component and does not include constraints,
as the extraction of such detailed information is beyond the scope of the current imple-
mentation. In addition to omitting constraints, our approach restricts other features of
PG-Schema as follows:

1. Single Graph Type: PG-Schema supports the definition of multiple graph types
and allows one graph type to import another. Since our method generates a schema
for a single graph instance, we limit the schema to a single graph type with no
imports.

2. Strict Type Graph: PG-Schema allows to define a graph type as STRICT or
LOOSE, which specifies how the graph should be typed against the schema. If the
schema is STRICT, for a graph to conform to the schema, every node and edge in
the graph must have at least one type it conforms to. A loose schema allows for
partial validation. For this thesis, we only consider strict schemas.

9



2. Background

3. Simplified Label Grammar: PG-Schema allows the use of both the &-operator
(and-operator) and the |-operator for combining labels and supertypes. In our
fragment, we only permit the &-operator. In this form a type can be seen as a list
of possible labels and properties. The |-operator can be utilized in two distinct ways.
First, it can define a union type of supertypes, allowing a subtype to inherit from
either one of the supertypes. Second, the |-operator can serve as a choice operator
between labels, permitting the presence of one label or the other. However this
we omit the |-operator, as we cannot derive this information using our FCA-based
approach. We further discuss this limitation in the conclusion 7.

Despite these restrictions, the schemas produced by our method conform to the syntax
and semantics of PG-Schema as defined in [ABD+23]. The resulting schemas are:

• Constraintless: They include only type definitions without additional constraints.

• Single Strict Graph Type: They define types for nodes and edges within a
single strict graph instance.

• Without Choice Operator: They rely exclusively on the &-operator for combin-
ing labels and supertypes.

2.2.1 Syntax and Semantic
In this section we formally define the syntax and semantic of the relevant parts of PG-
Schema. For the specification of the grammar we refer to the original work [ABD+23].
We begin by outlining the syntax independent definition of a formal graph type and when
a property graph conforms to a formal graph type. Next, we present the syntactical
representation of a graph type. Then we provide an explanation of how the syntactical
representation relates to the formal definition, establishing the semantics for the schema
by detailing the connection between the two.

We first define the concept of a formal base type, which serves as the building block for
graph elements such as nodes and edges.

Definition 2.2.1 (Formal Base Type). Let R be the set of all records. A record with
keys from K and values from V is a finite-domain partial function o: K → V . A formal
base type is a pair (L, R), where:

• L ⊆ L is a set of labels, and

• R ⊆ R is a set of records (property values).

We write T for the set of all base types. A node or edge with label set K and content o
conforms to a formal base type (L, R) if K = L and o ∈ R. Building on the formal base
type, we now introduce the formal graph type.

10



2.2. PG-Schema

Definition 2.2.2 (Formal Graph Type). A formal graph type is a tuple S = (NS , ES , νS , ηS),
where:

• NS is a finite set of node type names, and ES is a finite set of edge type names.

• νS : NS → 2T is a function that maps node type names to sets of formal base types.

• ηS : ES → 2T ×T ×T is a function that maps edge type names to sets of triples of
formal base types, specifying the source node, the edge itself, and the target node.

Building on this formalization, we now define the notion of conformance, which establishes
when a property graph adheres to a given formal graph type

Definition 2.2.3 (Conformance of Graph Elements). Let G = (NG, EG, λG, ρG, σG) be
a property graph and S = (NS , ES , νS , ηS) be a formal graph type.

• A node v ∈ NG conforms to a node type τ ∈ NS if it conforms to a formal base
type in νS(τ).

• An edge e ∈ EG conforms to an edge type σ ∈ ES if for the pair (v1, v2) = ρG(e),
there exists a triple (t1, t, t2) ∈ ηS(σ) such that v1 conforms to t1, e conforms to t,
and v2 conforms to t2.

A property graph G conforms to a formal graph type S if every element in G conforms
to at least one type in S.

With the conformance criteria established, we now introduce the syntactical representation
of graph types. A graph type is syntactically represented by the following components:

1. Node Types are denoted as (τ : F ), where F is an expression constructed from:

F = E1 & E2 & . . . & Em [OPEN] r ,

where Ei ∈ {ℓ[?], σ}, is either label ℓ ∈ L or a node type name σ. A label is
optionally followed by "?", determining if it is mandatory or optional. OPEN is an
optional keyword allowing additional labels beyond those explicitly defined. The
content description r is specified as:

r = {[OPTIONAL]k1b1, . . . , [OPTIONAL]knbn, [OPEN]}

, where square brackets indicate optional elements, ki are keys from K and bi are
base property types, such as INT, STRING, DATE, etc.

11



2. Background

2. Edge Types are denoted as:

(: Fsrc) − [τ : F ] → (: Ftgt) ,

where Fsrc and Ftgt represent the source and target endpoints (nodetypes). [τ : F ] is
syntactically defined similarly to node types, following the same structure described
above with the exception that it can contain edge types names instead of node type
names.

With the syntactical structure in place, we now describe the process of schema compilation.
This process bridges the gap between syntax and semantics by interpreting the syntactical
expressions in terms of formal base types.

Schema Compilation. We now define how the syntactical representation of node and
edge types is to be interpreted. The expression F defines the set ∥F∥ ⊆ T of formal base
types allowed for the corresponding type τ .

Let t∅ = (∅, {⊥}) and tl = ({l}, {⊥}), with ⊥ being the empty record. These are the
formal base types for the empty type and a type with a single label.

We proceed by adding the content description r. Let Bi be the extent of bi (e.g. Z
for INT), and dom(o) denote the keys for a record o. If r contains the keyword OPEN,
then the semantics ∥r∥ of r is the set of all records o ∈ R, such that for every i ≤ n, if
ki ∈ dom(o), then o(ki) ∈ Bi. Additionally, ki is required to be an element of dom(o),
unless it is prefixed by the keyword OPTIONAL. In the absence of the keyword OPEN, it
is additionally required that dom(o) ⊆ {k1, . . . , kn}.

So far, the semantics of node types with a single label and a content description have
been defined. For more complex types, we first have to define how to combine formal
base types. For the combination of records, we first define the notion of compatibility.
Two records o1, o2 ∈ R are compatible if o1(k) = o2(k) for each k ∈ dom(o1) ∩ dom(o2).

The combination of two compatible records o1 and o2 is defined as:

(o1 ⊕ o2)(k) =
{︄

o1(k) for k ∈ dom(o1),
o2(k) for k ∈ dom(o2) \ dom(o1).

For two sets O1, O2 ⊆ R, their combination O1 ⊕ O2 is defined as the set of all records
of the form o1 ⊕ o2 for compatible o1 ∈ O1 and o2 ∈ O2. The combination of two formal
base types is then defined as:

(L1, R1) ⊕ (L2, R2) = (L1 ∪ L2, R1 ⊕ R2).

12



2.2. PG-Schema

Now we can define the semantics recursively for all subexpressions of F as follows:

∥ℓ∥ = {tℓ},

∥σ∥ = νS(σ),
∥F1?∥ = ∥F1∥ ∪ {t∅},

∥F1 & F2∥ = {(L1, R1) ⊕ (L2, R2)|(Li, Ri) ∈ ∥Fi∥ for i = 1, 2},

∥F1 OPEN∥ = {(L, R) | ∃L′ ⊆ L such that (L′, R) ∈ ∥F1∥},

∥F1 r∥ = {(L, R ⊕ ∥r∥)|(L, R) ∈ ∥F1∥}.

With that the semantics for a node type τ is defined as

νS(τ) = ∥F∥
. We now define the semantics for edge types. Consider an edge type defined as:

(: Fsrc) − [τ : F ] −→ (: Ftgt)

, where Fsrc and Ftgt specify the source and target endpoints. The node types inside the
endpoint specifications are concatenated with "|", like (F1|F2|...|Fn), and are interpreted
as ∥F1∥ ∪ ∥F2∥ ∪ ... ∪ ∥Fn∥. The expression F defines the set |⟨F ⟩| ⊆ T × T × T of triples
of formal base types by the following rules:

|⟨ℓ⟩| = {(t∅, tℓ, t∅)},

|⟨σ⟩| = ηS(σ),
|⟨F1?⟩| = |⟨F1⟩| ∪ {(t∅, t∅, t∅)},

|⟨F1 & F2⟩| = |⟨F1⟩| ⊕ |⟨F2⟩|,
|⟨F1 OPEN⟩| = {(t1, (L, R), t2) | ∃L′ ⊆ L such that (t1, (L′, R), t2) ∈ |⟨F1⟩|},

|⟨F1 r⟩| = {(t1, (L, R ⊕ ∥r∥), t2) | (t1, (L, R), t2) ∈ |⟨F1⟩|}.

where the ⊕ operator for two sets Y1, Y2 ⊆ T × T × T of triples of formal base types is
defined as:

Y1 ⊕ Y2 = {(s1 ⊕ t1, s ⊕ t, s2 ⊕ t2) | (s1, s, s2) ∈ Y1, (t1, t, t2) ∈ Y2} .

.

The semantics of an edge type τ is then specified by (: Fsrc) − [τ : F ]− > (: Ftgt), as:

ηS(τ) = (∥Fsrc∥ × {t0} × ∥Ftgt∥) ⊕ |⟨F ⟩|
.

Having established the semantics for node and edge types, we now examine an example
of a syntactic representation of a graph type, the formal base types corresponding to
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Figure 2.2: Example of a graph type.

its node and edge type definitions, and two property graphs: one that conforms to the
graph type and one that does not. In Figure 2.2 we can see a quite simple example of a
schema, defining four node types and 4 edge types.

Unraveling the formal base types for each of the types present in the example schema,
we get the following formal base types, where we omit to explicitly repeat the formal
base types for the source and target endpoints of the edge types:

• ∥PersonType∥ = {({Person}, {{name: STRING, age: INT}, {name: STRING}})}

• ∥EmployeeType∥ = {({Person, Employee}, {{name: STRING, age: INT, role: STRING},
{name: STRING, role: STRING}})}

• ∥CityType∥ = {({City}, {name: STRING, population: INT})}

• ∥BusinessType∥ = {({Business}, {founded: DATE})}

• ∥KnowsType∥ = {(νS(PersonType), ({knows}, {since: DATE}), νS(PersonType))}

• ∥WorksType∥ = {(νS(EmployeeType), ({works_at}, {⊥}), νS(BusinessType))}

• ∥LivesType∥ = {(νS(PersonType), ({lives_in}, {⊥}), νS(CityType))}

• ∥LocatedType∥ = {(νS(BusinessType), ({is_located}, {address: STRING}), νS(CityType))}

Now we take a look at two property graphs depicted in Figure 2.3. The first one (left
one) conforms to the schema, as every node and edge conforms to at least one type in the
schema. The second property graph (right one) does not conform to the schema. The
upper node is missing the mandatory property "name" to still conform to Persontype
and the lower node, which previously conformed to CityType, now has a different label
and therefore does not conform to any type in the schema.
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Figure 2.3: Two property graphs: the first conforms to the example graph type and the
second one does not.

2.3 Schema Discovery
Schema discovery is the process of uncovering the implicit structure of data within
semi-structured or schema-less formats, by identifying patterns, types, and relationships
[KMKT+22]. In the context of this work, schema discovery aims to extract a schema
that enables better understanding, querying, and integration of graph-based datasets. To
position the method proposed in this thesis within the research field of schema discovery,
we examine the characteristics of schema discovery methods outlined in [KMKT+22]
and other related works. By classifying schema discovery along these dimensions, we
clarify the specific type of schema discovery targeted in this thesis and its suitability
for addressing the challenges of property graph schema inference. These characteristics
include:

1. Target Problem: Schema discovery methods can address different objectives,
such as:

• Implicit Schema Discovery: The goal is to identify new classes or types
without relying on existing schema declarations.

• Explicit Schema Enrichment: The goal is to enrich existing schemas.

The main target problem of this thesis can be classified as Implicit Schema Discovery.
Formally the target problem is:

Definition 2.3.1 (Schema Discovery Problem). Given a property graph G =
(N, E, ρ, λ, σ), to extract a formal graph type S = (NS , ES , νS , ηS) such that G
conforms to S.
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But since our method also tries to tackle the problem of evolving graphs by
incrementally building on a previous discovered schema, this work can also partly
be seen as an Explicit Schema Enrichment.

2. Underlying Techniques: Methods leverage various techniques such Machine
Learning (e.g. clustering), statistical methods or formal methods. We try to
leverage FCA, a formal method, which is further described in Section 2.4.

3. Features: Schema discovery can further be characterized by the following features:

• Scalability: This features determines the ability of a given schema extraction
approach to deal with huge datasets.

• Incrementality: Describes the ability to adapt schemas to dynamic datasets
with insertions and deletions.

• Stability: A schema discovery method is stable, if it always provides the
same schema for a given input dataset.

• Online capability: Describes the ability to process remote data sources.
• Hybrid: A schema discovery approach is hybrid, if uses both structure of the

instances and existing schema information.

Which of these characteristics apply to this method will be discussed further in
Section 6.7.

4. Inputs: The current implementation of our method allows for a property graph
instance running in Neo4j [neo]. However, the design is flexible and can be
extended to accommodate other property graph formats or databases. Furthermore,
the method requires several parameters to be specified prior to execution. A
comprehensive description of these parameters and their usage can be found in
Section 5.1.

5. Outputs: Schema discovery approaches can produce various outputs. The outputs
of our method are specified in 5.5:

6. Quality Aspects: These include for example schema relevance, schema complete-
ness and class accuracy. The quality aspects will be further discussed in Section
6.

2.4 Formal Concept Analysis
Formal Concept Analysis (FCA) is a mathematical framework primarily used for data
analysis, knowledge representation, and information retrieval. It has been successfully
applied in various domains such as text mining, ontology engineering, and software
engineering to uncover hidden structures and relationships within datasets [FHK+20].
The framework of FCA is fully described in [GW12]. In this section we formally define
the elements of FCA that are integral to the methodology of this thesis.
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In its basic form, the input data for FCA is a table (also called "cross-table") capturing the
relationship between two sets: objects, which are represented by the rows, and attributes,
which are represented by the columns. An entry in the table in row X and column Y
indicates that object X has attribute Y . This table is called Formal Context and formally
defined as:

Definition 2.4.1 (Formal Context). A formal fontext is a triplet K = (G, M, I), where:

• G is a non-empty and finite set of objects.

• M is a non-empty and finite set of attributes.

• I ⊆ G × M is a binary relation between G and M , indicating which objects have
which attributes. If (g, m) ∈ I, we say that object g has attribute m.

Next we take a look at the fundamental building block of FCA, the formal concept. In
terms of the cross-table, a formal concept can be understood as a cluster of objects,
defined by attribute sharing. Formally defined as:

Definition 2.4.2 (Formal Concept). A formal concept of a context K = (G, M, I) is a
pair (A, B), where:

• A ⊆ G is the extent (the set of objects in the concept).

• B ⊆ M is the intent (the set of attributes common to all objects in A).

• The pair (A, B) satisfies the following conditions:

A = {g ∈ G | ∀m ∈ B, (g, m) ∈ I},

B = {m ∈ M | ∀g ∈ A, (g, m) ∈ I}.

This means A is the set of all objects sharing the attributes in B, and B is the set
of all attributes shared by the objects in A.

Based on the definition of a formal concept we continue with the concept lattice based
on a partial ordering of formal concepts.

Definition 2.4.3 (Concept Lattice). The concept lattice of a formal context K =
(G, M, I) is a collection of all formal concepts of K, ordered by the subconcept-superconcept
relation:

(A1, B1) ≤ (A2, B2) ⇐⇒ A1 ⊆ A2 (equivalently, B2 ⊆ B1).

Key properties of the concept lattice:

• (A1, B1) is a subconcept of (A2, B2) if every object in A1 also belongs to A2, and
the attributes of B2 include those of B1.
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• The lattice has a greatest concept(supremum), representing all objects and their
shared attributes.

• The lattice has a least concept(infimum), representing all attributes and the objects
that share them.

The concept lattice provides a hierarchical visualization of the relationships between
objects and attributes, which is what we want to use for finding types and type hierarchies
in a property graph. There exists several algorithms on how to compute the formal
concepts and the corresponding concept lattice [FHK+20]. In Section 5.3, we further
discuss the algorithms that are used for our method.

For illustration we reuse the example from [GSW03] about the destinations of Star
Alliance airlines. In Figure 2.4 we can see the cross-table representing the formal context,
showing which airline has which destinations.

Figure 2.4: Formal Context of the destinations of the Star Alliance members from
[GSW03].

In Figure 2.5 we can see the resulting concept lattice. In the lattice, it becomes evident
which destinations are served by nearly all airlines and which airlines operate flights to
almost every destination.
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Figure 2.5: Concept lattice of the airline example from [GSW03].
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2.5 Schema Merging
Schema merging is an essential operation for resolving heterogeneity between different
data sources, particularly in the context of multiple or evolving data models. In this
work, we extend the schema extraction process by providing the option to specify an
existing schema, which is then merged with the extracted schema. This approach is
designed to address the challenge of incrementality as discussed in Section 2.3. The core
idea is to handle multiple graphs or changes in a graph by allowing users to provide
an existing schema (which could have been created by our method or elsewhere) to the
merging process. When a second graph is provided or the original one evolves, its new
type information can be extracted and merged into the existing schema, ensuring that
the schema adapts to both graphs or to the changes of the original one.

Formally we consider the Schema Merging Problem as follows:

Definition 2.5.1 (Schema Merging). Given two formal graph types S1 = (NS1 , ES1 , νS1 , ηS1)
and S2 = (NS2 , ES2 , νS2 , ηS2), the schema merging operation produces a new formal graph
type Smerged = (Nmerged, Emerged, νmerged, ηmerged) such that:

∀G1 ∈ G(S1), G1 ∈ G(Smerged) and ∀G2 ∈ G(S2), G2 ∈ G(Smerged) ,

where G(S) denotes the set of graphs that conform to the schema S. The merged schema
Smerged is more general than the input schemas S1 and S2, in the sense that any graph
valid under either S1 or S2 remains valid under Smerged. This ensures that the merged
schema can accommodate both sets of data without violating integrity or constraints.

However, a key design goal is to avoid excessive generalization. A trivial solution would
be to create a schema that allows all possible types, which would render the schema
meaningless. Instead, our approach aims to construct the least general merged schema
that still preserves validity. That is, Smerged should be as specific as possible while still
accommodating both input schemas, ensuring meaningful type constraints and structural
coherence.

To further define our schema merging approach, we draw upon principles from the field of
ontology integration, as discussed in [OYD21], which are applicable to schema merging.
Based on these principles, we outline the key features of our schema merging approach:

• Schema Language: Both schemas involved in the merging process adhere to the
fragment structure defined in 2.2. This ensures that the schemas are compatible
and focused on a specific subset of the overall data model, making the merging
process more efficient and precise.

• Pairwise Merging: Our approach follows a pairwise schema merging strategy,
where two schemas are merged into a single new schema. This is a straightforward
method that enables clear comparison and alignment of the two input schemas.
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• Generalization of the Merged Schema: One of the core requirements of our
merging process is that the resulting schema must be more general than the input
schemas. This means that any graph that is valid under Schema 1 must also remain
valid under the merged schema, and the same holds for graphs valid under Schema
2.

• Entity Similarity Based on Structure: The similarity between entities in the
two schemas is determined by the structure and the values of labels and properties,
rather than relying on name-based matching. This ensures that the merging process
considers the underlying semantics of the entities, avoiding potential mismatches
due to differences in names.

• Oriented Merging: Our approach adopts an oriented merging strategy, where
the merging is unidirectional, from a source schema to a target schema. This
orientation is important because certain information, such as the names of types or
classes, is taken from the input schema (the provided schema) rather than from
the extracted schema. This ensures that the new schema reflects the most accurate
and up-to-date information from the user-specified schema.

• Full Merge: According to the taxonomy in [OYD21], our merging approach is
considered a "full" merge. This means that instead of merely providing alignments
between similar entities (as in other approaches), our method generates an entirely
new schema. This new schema integrates the structures and relationships from
both input schemas, ensuring consistency and compatibility without simply linking
similar elements.

By following these principles our schema merging approach ensures that the resulting
schema is both general and that both graphs still conform to the merged schema if they
conformed to the original ones. Additionally, it maintains the ability to accommodate
evolving data by merging newly extracted type information with existing schema struc-
tures. This approach provides a flexible and robust solution to handle schema changes,
making it suitable for dynamic and evolving graph-based datasets.
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CHAPTER 3
Related Work

In the previous chapter, we laid the groundwork for this thesis by introducing the
necessary preliminaries. This included defining property graphs, the PG schema and
FCA, as well as clarifying the concepts of schema discovery and schema merging within
the scope of this work.

Building on that foundation, this chapter examines related works. We explore research
that addresses methods for schema or type discovery in graph databases, including but
not limited to property graphs. Additionally, we review studies that leverage FCA for
data analysis in ways similar to our approach and consider works that focus on schema
merging.

3.1 Schema Discovery
In this section, we focus on studies related to schema discovery, beginning by discussing
the studies that address schema extraction specifically for property graphs. Following
this, we extend our discussion to studies that explore schema discovery in other graph
data models.

The masters thesis by Xue Lei [Lei21] presents a framework for schema extraction in
property graphs, notable for incorporating topology as a similarity measure alongside
labels and properties. The framework includes a bottom-up approach, which computes
attribute and topology similarities to partition objects and infer node and edge types, and
a top-down approach, which starts with all objects in a single partition and iteratively
refines them based on these similarities.

Lbath et al. [LBH21] propose a method based on MapReduce, which combines individual
type inference (Map operation) with type reduction (Reduce operation) to merge types
based on equivalence relations. Additionally, they attempt to detect node hierarchies
by analyzing the inferred node types. Their approach considers either label or property
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equivalence for type inference. Building on this work, Bonifati et al. [BDM22], who also
contributed to the MapReduce method, introduce a hierarchical clustering approach
that, according to their findings, outperforms their previous approach. This new method
employs a Gaussian Mixture Model and is capable of simultaneously accounting for both
label and property similarities.

Though there are relatively few studies on schema inference for property graphs, a wide
range of research exists for RDF (Resource Description Framework) graphs [MMM14].
An RDF graph is represented as a labeled directed multi-graph, constructed from triples
in the subject-predicate-object format. Each triple can represent either a property of
a node or a relationship (edge) between two entities. This dual interpretation presents
challenges unique to RDF schema inference, as opposed to property graphs, where labels
and properties are explicitly associated with nodes and edges. Additionally, RDF graphs
lack explicit edge types, and edges cannot have properties, as they are solely characterized
by predicates. Despite these differences, both data models describe directed graphs with
labels on nodes and edges, making the techniques and insights from schema inference
studies in RDF graphs highly relevant. These studies provide valuable approaches and
methodologies that can inform schema discovery in a broader context.

A study closely related to our work, which leverages FCA to identify concepts from
RDF data, was published by Kirchberg et al. [KLT+12]. They explore the application of
FCA tools and algorithms to the Semantic Web and examine whether state-of-the-art
concept discovery algorithms can scale with the number of data objects retrieved from the
Web. Tsuboi and Suzuki [TS19] adopt a clustering approach using KMeans++ to derive
types described by Shape Expressions. Lutov et al. [LRKCM18] propose a hierarchical
clustering method using a statistical type inference approach called StaTIX, which infers
types from RDF data in a fully unsupervised manner.

Christodoulou et al. [CPF13] employ hierarchical clustering based on Jaccard similarity
to infer types as well as hierarchical and semantic links between these types. Similarly,
Chen et al. [CR14] use hierarchical clustering with Jaccard similarity but differ in allowing
instances to correspond to multiple inferred types. Kellou-Menour and Kedad [KMK15,
KMK16] introduce a method combining density-based clustering with Jaccard similarity
to extract types along with hierarchical and semantic links from RDF data. Bouhamoum
et al. [BKMLK18, BKL20] also apply density-based clustering; however, their method
derives only types and does not infer hierarchical relationships.

For a comprehensive survey of schema discovery in semi-structured data, we refer to the
works of Kellou-Menour et al. [KMKT+22] and Gomez et al. [GEMC18].

3.2 Formal Concept Analysis
In the field of schema discovery and ontology creation, several studies have explored the
use of FCA. Razieh Mehri Dehnavis work in [Deh14] applies FCA to identify and formalize
conceptual relationships within linked data to infer missing schema elements. Similarly,

24



3.3. Schema Merging

Uta Priss’s "Formal Concept Analysis in Information Science" [Pri06] investigates the
application of FCA in uncovering hidden structures and relationships within semantic
web data, emphasizing the theoretical foundations and practical applications of FCA
in information science. The study in [Kri24] focuses on using FCA to create efficient
and structured OWL 2 EL ontologies, highlighting the method’s effectiveness in ontology
axiomatization. In the healthcare domain, Cristea et al. [CSS20] demonstrate the
utility of FCA in extracting and visualizing meaningful patterns from complex healthcare
datasets. The studies [Haa04] and [Fu16] both propose semi-automated methods for
ontology design and data integration, using FCA to streamline the process and ensure
consistency. Lastly, Touzi et al. [TMA13] combine FCA with clustering techniques to
automatically generate ontologies for data mining, enhancing the capability to manage
and interpret large datasets. These works collectively showcase the versatility of FCA in
various domains and its potential to improve schema discovery, ontology creation, and
data integration through structured and formalized approaches.

FCA has also been applied extensively in the Semantic Web. For instance, Tane et
al. [TCH06] utilized FCA to develop a browsing interface for ontological data, enabling
both querying and visualization of the data. Maedche and Staab [MS01] incorporated
FCA into an ontology-learning workbench to interactively merge conceptual structures
into a unified ground truth. Cimiano et al. [CHS05] employed FCA to derive taxonomies
and conceptual hierarchies from textual data. Similarly, Völker and Rudolph [VR08]
used FCA in interactive ontology design to resolve underspecified logical dependencies
within textual definitions of ontology axioms.

3.3 Schema Merging
Resolving semantic heterogeneity in data integration, caused by differences in formats, ter-
minologies, structures, or, as in our case, through multiple and evolving graph databases,
is a well-known and significant challenge [RAAI24]. In the context of semantic data
modeling, terms such as schema, vocabularies, taxonomies, and ontologies are often used
interchangeably. These concepts fall under the broader umbrella of ontologies [PHP24].
Therefore, we investigate the broader field of ontology integration, matching, and merging,
understanding these methods as applicable to the matching of semantic models in general,
including schemas.

One of the earliest approaches for onotlogy merging is PROMPT [NM03], which provides
merging suggestions and aftereffects correspodning to the suggestions. CoMerger [BKR23]
is a fully automatic method capable of handling multiple ontologies. It operates by
grouping similar concepts across the input ontologies into partitions. Within these
partitions, the concepts are first merged locally, followed by merging across partitions
to produce a unified ontology. Lou et al. [LPWJ20] address the computational cost
of similarity calculations in ontology fusion by leveraging binary metrics. Their tool,
BMOnto, is a fully automated fusion method designed to merge two ontologies with a
focus on scalability. Stoilos et al. [SGSK18] adopt an incremental approach, starting with
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an initial seed ontology, which is iteratively enriched by incorporating new ontologies. For
detailed survey on onotlogy integeration, we refer to the study of Osman et al. [OYD21]

FCA has also been applied to ontology merging. Stumme and Maedche [SM01] propose
a method that constructs a formal context using instances extracted from the textual
descriptions of ontologies. The contexts are then merged, and a concept lattice is
generated. This lattice serves as the foundation for the manual selection of concepts and
relations to form the target ontology.

An important aspect of schema merging is the method by which entities or types are
matched during the integration process. Cupid [MBR01], for instance, matches entities
between schemas by computing similarity based on several criteria. It evaluates the
overlap of attributes, corresponding to properties in property graphs, by analyzing the
syntactic similarity of attribute names, the data types of their values, and their semantic
overlap, which corresponds to the overlap of labels in property graphs. COMA [DR02]
extends this approach by incorporating additional criteria into its similarity computation.
In particular, it also considers the actual values of properties or attributes. For a
comprehensive evaluation and survey of ontology and schema matching methods, we refer
readers to the works of Portisch et al. [PHP24] and Koutras et al. [KSI+21].
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CHAPTER 4
Methodology

The previous sections established the foundation of this thesis by introducing the necessary
concepts and frameworks, as well as discussing relevant related work. This section presents
the proposed method of this thesis. We begin by outlining the schema discovery process,
detailing how FCA is utilized to extract a schema from a property graph. Finally, we
explore the schema merging process.

4.1 Types
The primary objective of schema extraction is to identify types that define the structure
of groups of nodes or edges in a property graph. As outlined in the introduction, we
define a type in a property graph based on its labels and properties, aligning with the
definition used in PG-Schema 2.2. In the case of edge types, their definition additionally
depends on the node types of their source and target endpoints.

One could argue that the topology of instances in a property graph also serves as a
defining characteristic of types, as proposed by Lei [Lei21]. However, in our approach, we
restrict the defining attributes to labels and properties. This decision is motivated by the
interdependence between node and edge types. Extracting edge types requires knowledge
of the corresponding node types to define endpoint types, whereas incorporating topology
into node type extraction would necessitate prior knowledge of edge types. A possible
solution to this challenge is an iterative approach, where node types are first extracted,
followed by edge types, and subsequently refined based on the extracted edge type
information. However, integrating this information would require encoding additional
constraints within the PG-Schema language. Since this lies beyond the scope of our work,
we leave it as an avenue for future research.

In Section 2.2 we already defined a syntactical representation of a schema, node and edge
types for the PG-Schema language and their semantic interpretation onto formal base
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types. However, this syntactical representation is not well-suited for implementation or
for clearly explaining the method developed in this thesis. Therefore, we introduce our
own notion of a property graph schema, including node and edge types, to provide a more
practical and intuitive framework. Our definition closely mirrors the structure of objects
used in the implementation of this method. Additionally, we present a translation from
our representation to the PG-Schema language, demonstrating how the PG-Schema is
derived from our model at the final stage of our method and establishing their equivalence.

Definition 4.1.1 (Property Graph Schema). A Property Graph Schema is a tuple
(N T , ET ) with N T a set of node types and ET a set of edge types.

Definition 4.1.2 (Node Type). A node type N is a tuple defined as:

N = (Lmand, Lopt, Pmand, Popt, S) ,

where:

• Lmand ⊆ L is a set of (mandatory) labels that are not optional for the type T .

• Lopt ⊆ L is a set of labels that are optional for the type T .

• Pmand ⊆ R set of properties/records that are not optional for the the type T .

• Popt ⊆ R set of properties/records that are optional for the the type T .

• S: Set of supertypes of T ∈ N T (node types).

Definition 4.1.3 (Edge Type). An edge type E is a tuple defined as:

E = (Lmand, Lopt, Pmand, Popt, S, Ts, Tt) ,

where:

• Lmand, Lopt, Pmand and Popt are defined as for node types.

• SE: Set of supertypes of T ∈ ET (edge types).

• Ts: Set of valid source node types T ∈ N T (node types).

• Tt: Set of valid target node types T ∈ N T (node types).

In our method each of the types are associated with a unique name. Note that these
definitions align with the syntactic representation of types in the PG-Schema, as intro-
duced in Section 2.2, where we restrict types to the “&”-operator. As a result, the node
and edge types defined in this section correspond precisely to the types of PG-Schema
and can be interpreted accordingly. To formally establish this correspondence, we now
provide a translation from our structured representation to the PG-Schema notation.
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In PG-Schema, a node type is expressed as

(τ : F ) ,

where F is an expression combining labels, supertypes, and property specifications. The
translation proceeds as follows. For a nodetype of our representation

N = (Lmand, Lopt, Pmand, Popt, S)

1. Each supertype s ∈ S is included in F as a conjunctive component. Thus, if
S = {s1, s2, . . . , sm}, then the supertype expression in PG-Schema is given by:

s1&s2& . . . &sm.

2. Each mandatory label ℓ ∈ Lmand is directly included in F , whereas each optional
label ℓ ∈ Lopt is marked with ?:

ℓ1&ℓ2& . . . &ℓk&ℓ′
1?&ℓ′

2?& . . . &ℓ′
k′?,

where Lmand = {ℓ1, . . . , ℓk} and Lopt = {ℓ′
1, . . . , ℓ′

k′}.

3. The property set is expressed as a content description r, where each mandatory
property p ∈ Pmand is represented as kb, with k denoting the property key and b its
associated base type. Optional properties p ∈ Popt are prefixed with OPTIONAL:

r = {[OPTIONAL]k1b1, . . . , [OPTIONAL]knbn, [OPEN]}.

If additional labels or properties beyond those explicitly defined are permitted, the
keyword OPEN is included.

Thus, a node type N in our representation is translated into the PG-Schema expression:

(τ : s1&s2& . . . &sm&ℓ1& . . . &ℓk&ℓ′
1?& . . . &ℓ′

k′? [OPEN] {[OPTIONAL]k1b1, . . . , [OPTIONAL]knbn, [OPEN]}).

In PG-Schema, an edge type is represented as:

(: Fsrc) − [τ : F ] → (: Ftgt),

where Fsrc and Ftgt encode constraints on the source and target node types. The
translation proceeds as follows. For an edge type of our representation

E = (Lmand, Lopt, Pmand, Popt, S, Ts, Tt) ,

where in addition to the elements defined for node types, Ts ⊆ N T and Tt ⊆ N T define
the sets of permissible source and target node types respectively:
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1. Labels, supertypes, and properties are translated analogously to the node type
case.

2. The sets Ts and Tt determine the valid source and target types. Each node type
τs ∈ Ts contributes to Fsrc, and each τt ∈ Tt contributes to Ftgt.

This translation formally establishes the equivalence between our structured representation
and PG-Schema notation, preserving the constraints and semantics of property graph
schemas.

An essential concept for our method is the supertype relation. In the semantics of the
syntactical type expressions in PG-Schema, the formal base types derived from such
expressions inherit all labels and properties from the formal base types of their supertypes.
To ensure that the supertype relation of our representation is also valid in PG-Schema’s
notion after translation, we define the relation as follows:

Definition 4.1.4 (Supertype Relation). A node type T 1 = (L1
mand, L1

opt, P 1
mand, P 1

opt, S1) ∈
N T is a supertype of a node type T 2 = (L2

mand, L2
opt, P 2

mand, P 2
opt, S2) ∈ N T iff:

• L1
mand ⊆ L2

mand and P 1
mand ⊆ P 2

mand.

An edge type T 1 = (L1
mand, L1

opt, P 1
mand, P 1

opt, S1, T 1
s , T 1

t ) ∈ ET is a supertype of an edge
type
T 2 = (L2

mand, L2
opt, P 2

mand, P 2
opt, S2, T 2

s , T 2
t ) ∈ ET iff:

• L1
mand ⊆ L2

mand and P 1
mand ⊆ P 2

mand.

• For every node type N1 ∈ T 2
s , there exists a node type N2 ∈ T 1

s , such that N1 = N2

or N2 is a supertype of N1.

• For every node type N1 ∈ T 2
t , there exists a node type N2 ∈ T 1

t , such that N1 = N2

or N2 is a supertype of N1.

In our approach, we initially consider all supertype relations suggested by the superconcept
relations in the concept lattice. However, these relations may not always align with the
semantics of PG-Schema. For node types, the extracted supertype relations from the
concept lattice inherently satisfy our defined constraints. However, for edge types, we
must verify whether their endpoints adhere to the supertype constraints, as the relations
suggested by the concept lattice do not always guarantee compliance. Furthermore,
merging types during the extraction process or in schema merging (Section 4.4) may
introduce violations of these constraints. Therefore, after each merging operation, we
must validate that all supertype relationships continue to satisfy the required conditions.

It is important to note that in the resulting PG-Schema, the subtype also inherits optional
labels and properties of its supertype. However, the constrains that have to be satisfied
for it to be a valid supertype relation are defined above.
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4.2. Schema Discovery with FCA

4.2 Schema Discovery with FCA
For schema extraction, we consider a single property graph as input. In the Introduction,
we provided a brief example demonstrating how FCA can be leveraged to extract types
from a property graph. In that example, the formal context was constructed using nodes
and labels. However, as discussed above, properties also play a crucial role in defining
types, and our method must also support the extraction of edge types.

The definition of types in property graphs varies. Some graphs define types solely through
labels, while others omit labels entirely, making properties the primary distinguishing
characteristic. In many cases, types are determined by a combination of both labels and
properties. To accommodate this diversity, we propose three different schema extraction
approaches: one that relies primarily on labels, another that focuses on properties, and a
third that considers both equally in type definition and differentiation.

Our schema discovery method utilizes the concept lattice derived from FCA to identify
types and potential supertype relationships among them. The first step in this process is
constructing the formal context. Given a property graph as input, we define the following
three mappings onto the formal context. For now, we assume that the set of properties
in the input graph contains no conflicts—i.e., there are no properties with the same key
but different data types for their values. Practical handling of such conflicts is further
discussed in Section 5.

Definition 4.2.1 (FCA-based Schema Discovery Mappings). Given a property graph
P = (N, E, ρ, λ, σ), the mappings for schema discovery using FCA are defined as follows:

1. Label-based Mapping: A formal context K = (G, M, I) where:

• G is the set of objects, which can be either N (nodes) or E (edges).
• M ⊆ L, the set of labels associated with the objects in G.
• I ⊆ G × M , such that (g, m) ∈ I if and only if m ∈ λ(g), where g ∈ G and

m ∈ M .

2. Property-based Mapping: A formal context K = (G, M, I) where:

• G is the set of objects, which can be either N (nodes) or E (edges).
• M ⊆ K , the set of property keys associated with the objects in G.
• I ⊆ G × M , such that (g, m) ∈ I if and only if m ∈ dom(σ(g)), where

dom(σ(g)) is the domain of the record σ(g).

3. Label and Property-based Mapping: A formal context K = (G, M, I) where:

• G is the set of objects, which can be either N (nodes) or E (edges).
• M ⊆ L ∪ K , the combined set of labels and property keys associated with the

objects in G.
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• I ⊆ G × M , such that:

(g, m) ∈ I ⇐⇒
{︄

m ∈ λ(g), if m ∈ L
m ∈ dom(σ(g)), if m ∈ K

One formal context is created for the nodes and a seperate one for the edges. Each of
them can be created in one of the three mappings defined above and do not have to be
similar in the mapping approach. To compute the set of all concepts and their respective
concept lattice, the Lindig-Algorithm [LG00] is used, resulting in one concept lattice for
potential node types and one concept lattice for potential edge types. Since edge types
include a definition of their source and target endpoint types, we first need to determine
the node types of the schema.

4.3 Type Extraction
In this section, we describe how the concepts from a concept lattice, derived from a
formal context as discussed in the previous section, are mapped onto types and how
these types are further processed. To provide a structured overview of this process, we
first present pseudocode outlining the key steps of our method (see Algorithm 4.1). This
is followed by a detailed explanation of each step, including the additional processing
required for edge types.

Given a formal concept lattice, the types are created as follows:

Initial Types: Create a node type T = (Lmand, Lopt, Pmand, Popt, S) for each concept
C = (AC , BC) in the lattice, except the supremum and infimum:

• The supremum is only considered as a type if its intent is non-empty or there
exist graph elements with no labels/properties, depending on the approach.

• The infimum is only considered as a type if its extent is non-empty.

• Each type is assigned a name associated with the concept id ensuring a unique
name.

Concept-to-Type-Mapping: Let IC(T ) denote the set of instances that conform to
type T . Map each concept to its corresponding node type:

• Label-Based: Set Lmand = BC . The mandatory labels of T correspond to the
intent of C. The concepts extent AC are nodes and correspond to IC(T ).

• Property-Based: Set Pmand = BC . The mandatory properties of T correspond
to the intent of C. The concepts extent AC are nodes and correspond to IC(T ).
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4.3. Type Extraction

Algorithm 4.1: FCA Type Extraction
Input : P - property graph,

nte - node type extraction approach (label/property/label-property),
ete - edge type extraction approach,
allowOpt - allow optional labels/properties (bool),
τoutlier - outlier threshold,
τlabel - min occurrences for label inclusion,
τproperty - min occurrences for property inclusion,
τsim - type similarity threshold,
τabs - abstract type merging threshold,
mergeMax - limit number of types (bool),
maxTypes - maximum number of types allowed.

Output : N T - set of extracted node types,
ET - set of extracted edge types.

// Extract Node Types
1: Kn ← BuildFormalContext(P, nte) ;
2: Ln ← BuildConceptLattice(Kn) ;
3: N T ← ExtractNodeTypes(Ln, nte) ;
4: RemoveOutliers(N T , τoutlier) ;
5: EnrichTypes(N T , P, allowOpt, τlabel, τproperty) ;
6: if allowOpt then
7: if mergeMax then
8: MergeToMaxTypes(N T , maxTypes) ;
9: end

10: else
11: MergeTypes(N T , τsim) ;
12: end
13: end
14: FindAbstractTypes(N T , τabs) ;

// Extract Edge Types
15: Ke ← BuildFormalContext(P, ete) ;
16: Le ← BuildConceptLattice(Ke) ;
17: ET ← ExtractEdgeTypes(Le, ete) ;
18: RemoveOutliers(ET , τoutlier) ;
19: EnrichTypes(ET , P, allowOpt, τlabel, τproperty) ;
20: if allowOpt then
21: if mergeMax then
22: MergeToMaxTypes(ET , maxTypes) ;
23: end
24: else
25: MergeTypes(ET , τsim) ;
26: end
27: end
28: ComputeEndpoints(P, ET , N T ) ;
29: return N T , ET ;
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• Label-Property-Based: Set Lmand = {ℓ|ℓ ∈ BC ∧ ℓ ∈ L} and Pmand = {k|k ∈
BC ∧ k ∈ K}. The concepts extent AC are nodes and correspond to IC(T ).

• For all three approaches: Let T1 and T2 be the corresponding types for arbitrary
concepts C1 and C2 respectively. If concept C1 is a superconcept of C2 in the
concept lattice, i.e.,

C1 ≥ C2,

then T1 is included in the set of supertypes of T2, formally:

T1 ∈ S2.

As per definiton of subconcept-superconcept 2.4.3, a superconcept’s attributes are a
subset of the subconcept’s attributes. Following the mapping from a concept to a
type, the superconcept relations can be exactly translated as a supertype relation
between the corresponding types.

Note that, up to this point, we have only considered the keys of properties, as records
themselves cannot be directly represented in the formal context. Moreover, for the
purpose of distinguishing types, it suffices to use property keys under the assumption
that no two records share the same key while differing in their data types. The correct
data type for each key is determined separately and incorporated into the type definition
after extracting the types from the concept lattice, as outlined in Section 5.2. At this
stage, the list of node types could already serve as a schema. However, in most cases, it
would lack expressiveness, practicality, and might not even fully conform to the input
graph. Depending on the extraction approach, the schema may only capture types based
on either labels or properties, leading to an incomplete representation. This limitation
highlights the need for additional processing steps to refine and enhance the resulting
types.

Outlier Detection: Even a single node with a unique combination of labels and
properties results in its own concept and, consequently, its own node type. However,
erroneous or inconsistent data in the input graph can lead to highly specific types that do
not meaningfully contribute to a well-structured schema. To address this, we introduce a
user-defined threshold τoutlier, which specifies the minimum number of nodes that must
conform to a type for it to be retained in the schema. Any type with fewer conforming
nodes than this threshold is removed. It is important to note that this filtering process
results in a schema where the input graph does not fully conform to the schema, as nodes
corresponding to the removed types will no longer have a designated type in the schema.

In the next step, each type is enriched with additional information that was not yet
extracted in the Concept-to-Type-Mapping. To achieve this, we analyze the set
IC(T ) for every node type T ∈ N T . Labels and properties that appear in all nodes of
IC(T ) are declared as mandatory attributes, whereas labels and properties that occur
only in a subset of IC(T ) can be considered optional attributes. Since optional labels and
properties may not always be desired in a schema, we allow the user to specify whether
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optional attributes should be included. Additionally, we introduce two user-defined
thresholds. τlabel: the minimum number of nodes in IC(T ) that must contain a label for
it to be included in the schema. τproperty: the minimum number of nodes in IC(T ) that
must contain a property for it to be included in the schema.

Enrichment: For each node type T ∈ N T , examine the set IC(T ) of nodes that conform
to it:

• Label-based Approach:

– Properties that are present in all nodes of IC(T ) are added to the set Pmand
of mandatory properties of T .

– If optional properties are allowed, properties that appear in more nodes in
IC(T ) than τproperty are added to the set Popt of optional properties of T .

• Property-based Approach:

– Labels that are present in all nodes of IC(T ) are added to the set Lmand of
mandatory labels of T .

– If optional labels are allowed, labels that appear in more nodes in IC(T ) than
τlabel are added to the set Lopt of optional labels of T .

• Label-property-based Approach: All labels and properties are already mapped
to the types.

In most cases, the number of labels and properties results in a concept lattice that is
overly granular for a direct one-to-one type mapping. This fine-grained structure may
not align with the desired level of abstraction for defining types. Therefore, it is essential
to identify types that share similar attributes and could potentially be merged.

For example, consider a group of nodes that exhibit nearly identical attributes. Ideally,
we would identify a single type to represent them. However, some nodes may possess
additional attributes not found in others. While these attributes could be treated as
optional, the concept lattice initially assigns each distinct attribute to a separate concept,
leading to an unnecessarily fragmented type structure.

To address this, if two types derived from the lattice share, for instance, 70% of their
attributes, they can likely be merged into a more general type. The attributes that are
not shared between them can then be designated as optional, ensuring a more practical
and generalizable schema.

The computation of similarity of two types is described in detail in Section 4.3.1. It is
important to note that merging types is only possible if the user has allowed optional
labels and properties. This is because merging two types may result in some mandatory
labels and properties becoming optional in the resulting type.
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Merge Types: Our method generally first looks for similar types along the sub/supertype
relations. As merging along these relations, makes it easier to preserve topological infor-
mation across the types, see 4.3.2. The method looks for the best pair of sub/supertype
related types based on their similarity score (see simliarity of types 4.3.1). If the score
exceeds the predefined threshold τsim:, the types are merged. This iterative process
continues until no pairs remain or the best similarity score falls below the threshold.
Users can also specify constraints on the resulting schema by setting a maximum number
of node types and edge types. If these constraints are active, the method prioritizes
merging types with no subtypes but existing supertypes, progressing bottom-up along
the lattice from the most specific types to the most general ones. The most similar pair
within this subset of sub/supertype-related types is selected and merged. If no further
sub/supertype-related pairs remain, the method proceeds to merge the overall most
similar pairs of types until the schema meets the specified maximum type limits.

In the last step of the type extraction, all labels and properties of each type that are
inherited are removed from the a type definition before translating it to PG-Schema,
ensuring that there are no redundant specifications that are already defined in a supertype.
After this process the node type extraction is finished. Having extracted the node types
succesfully the method continues with discovering edge types. In this process it is
necessary to already have the node types as we also have to identify the enpoint types of
an edge, which are based on the node types.

Edge Type Extraction: The process of extracting edge types begins with computing
a concept lattice, following the same three approaches available for node type extrac-
tion: label-based, property-based, or label-property-based. It is worth noting that the
approaches for node and edge type extraction can differ. For instance, the node con-
cept lattice might be label-based while the edge concept lattice is property-based. The
extraction of edge types follows the same process described for node types. Each edge
type is initially associated with a concept from the lattice, enriched with labels and
properties according to the chosen approach, and may get merged with other edge types.
However, an additional step is required to determine the endpoint types (source and
target node types) of the edge types. For this, the set IC(T ) of edges that conform to
an each edge type T (i.e. the edges classified as this type in the input graph) is analyzed.
The algorithm iterates through these edges, examining their source and target nodes.
Since node types are already known from the node type extraction process, the following
procedure is applied for each edge type T :

1. For each source node type N ∈ N T present in the edges of IC(T ), count the
number of edges that originate from nodes of this type.

2. If the count for a specific source node type N ∈ N T exceeds a predefined threshold,
this node type is added as a source node type for T .

3. Repeat the same procedure for the target nodes of the edges to determine the target
node types.
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After determining the endpoint types, we must verify whether the supertype relations
remain valid under the constraints defined in 4.1.4. If any relation fails to satisfy these
constraints, it is removed. This step concludes the type extraction process in our method,
having successfully inferred the node types and edge types that constitute a Property
Graph Schema (N T , ET ) from the input graph by leveraging the constructed concept
lattices.

4.3.1 Similarity of Types
In previous works for property graph schema discovery, the Dice Metric and the Jaccard
similarity were popular choices to compute the similartiy between types or graph entities
([BDM22], [Lei21]). In our method the similarity is calculated as follows:

The Jaccard similarity between two node or edge types T 1 and T 2 is computed as:

S(T 1, T 2) =

∑︁
X∈{Lmand,Lopt,Pmand,Popt}

(︂ |X1∩X2|
|X1∪X2| × |X1 ∪ X2|

)︂
∑︁

X∈{Lmand,Lopt,Pmand,Popt}
|X1 ∪ X2|

where for each set X, X1 and X2 represent the respective sets in T 1 and T 2.

The weighted Jaccard similarity metric was chosen as it delivered the most satisfactory
results in the experiments conducted. Future work could include exploring alternative
metrics and their variations. However, it is important to note that the performance of
similarity metrics is inherently dependent on the data of the input graph. Consequently,
the effectiveness of a given metric is influenced by the nature of the input dataset,
including the variability and distribution of labels and properties.

Currently, the similarity computation between two types is based solely on their labels
and properties. Additional topological information could be considered for the similarity
calculation, such as:

1. Neighborhood Information: Analyzing adjacent nodes to capture shared context
or structural patterns within the graph. This would help distinguish types that
appear similar in attributes but differ in their connectivity.

2. Incident Edges: Considering the types and properties of edges connected to the
nodes could enrich the representation of node types.

3. Edge Endpoint Types: For edge types, similarity computation could also take
into account the types of their source and target nodes. This would reflect the
semantic roles of edges more comprehensively.

4.3.2 Type Merging
When merging two types, it is crucial to ensure that the resulting type does not change
the schema such that the input graph does not conform to it anymore. This means
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that the new type must be more general, ensuring that every node or edge previously
conforming to type T 1 or T 2 also conforms to the newly merged type T 3. To achieve this,
mandatory labels and properties can remain mandatory only if they were mandatory in
both types, otherwise, they become optional.

Formally, if two node types T 1 ∈ N T and T 2 ∈ N T are merged into a new node type
T 3 ∈ N T , then:

L3
mand = L1

mand ∩ L2
mand ,

L3
opt = L1

opt ∪ L2
opt ∪ (L1

mandΔL2
mand) ,

P 3
mand = P 1

mand ∩ P 2
mand ,

P 3
opt = P 1

opt ∪ P 2
opt ∪ (P 1

mandΔP 2
mand) ,

where Δ denotes the symmetric difference.

For edge types T 1 ∈ ET and T 2 ∈ ET the merging process follows the same rules as for
node types. Additionally, the source and target node type sets are combined to preserve
all possible connections:

T 3
s = T 1

s ∪ T 2
s ,

T 3
t = T 1

t ∪ T 2
t .

This ensures that the newly merged edge type T C retains the connectivity characteristics
of the original edge types T 1 and T 2.

When merging two types, we must consider the impact on the sub/supertype relationships
within the schema. We differentiate two cases:

1. Merging Along Sub/Supertype Relations: When merging two types T 1 and T 2

where T 1 is a supertype of T 2, forming a new type T 3, we get:

• Since T 1 is a supertype of T 2, its mandatory labels and properties are a subset of
those of T 2:

L1
mand ⊆ L2

mand, P 1
mand ⊆ P 2

mand .

• Since mandatory attributes of T 3 are defined as their intersection:

L3
mand = L1

mand ∩ L2
mand , P 3

mand = P 1
mand ∩ P 2

mand ,

it follows that:
L3

mand = L1
mand, P 3

mand = P 1
mand .

Thus, T 3 maintains the same mandatory attributes as T 1, preserving its sub/supertype
relations. Consequently:

• Any supertype of T 1 remains a supertype of T 3.
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• Any type that previously had T 1 as its supertype now has T 3 as its supertype
instead.

• By transitivity, any type that had T 2 as its supertype (and thus, indirectly T 1)
now has T 3 as its supertype.

• However, supertypes of T 2 may no longer remain supertypes of T 3. This topological
information is effectively "lost" during the merging process.

2. Merging Non-Related Types: When merging two unrelated types T 1 and T 2 into
a new type T 3, the following conditions hold:

• Any subtype of T 1 remains a subtype of T 3.
For any subtype of T 1 to remain a subtype of T 3, the mandatory attributes of T 3

must be a subset of those of the subtype. Since mandatory attributes are defined
as the intersection:

L3
mand ⊆ L1

mand, P 3
mand ⊆ P 1

mand,

and since any subtype of T 1 must have at least the same mandatory attributes as
T 1, it follows that:

L3
mand ⊆ L1

mand ⊆ Lmand(subtype of T 1),

P 3
mand ⊆ P 1

mand ⊆ Pmand(subtype of T 1).

Thus, all subtypes of T 1 remain valid subtypes of T 3.

• Any subtype of T 2 remains a subtype of T 3 (by the same argument).

• The supertypes of T 1 and T 2 cannot be guaranteed to also be supertypes of T 3.

To demonstrate the impact of different merging strategies, we again consider the ex-
ample from the introduction where the graph contains nodes representing three types:
PersonType, EmployeeType, and ManagerType. In addition to their inherited
attributes, both EmployeeType and ManagerType have their own distinct proper-
ties, including a role-specific ID (employee_id for employees and manager_id for
managers), as well as optional properties such as an email address and a work location.

A possible type hierarchy, derived from the concept lattice of this example, is shown
in Figure 4.1, where the topmost type represents PersonType, the bottom-left types
correspond to EmployeeType, and the bottom-right types correspond to ManagerType.
This hierarchy is constructed using the label-property-based approach, resulting in five
distinct types. This occurs because FCA generates separate concepts for nodes that
contain optional properties. The supertype relationships are indicated by edges, with
edges pointing downward from more general types (supertypes) to more specific types
(subtypes).
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Figure 4.1: Hierarchical type representation of initial types extracted from a concept
lattice before merging.

If we merge purely based on similarity, without considering the hierarchy, the two most
similar types, the two types at the bottom of the hierarchy, would be merged first. This
results in a new type where the previously mandatory labels (Employee, Manager)
and mandatory properties (employee_id, manager_id) become optional. Otherwise,
instances of these types would not conform to any type in the schema. However, since
these attributes are no longer mandatory, the supertype relations that previously held
the hierarchy together become invalid. As a consequence, the hierarchical structure is
lost, and we end up with an isolated, generic type that does not accurately reflect the
data structure. This issue is illustrated in Figure 4.2.

Figure 4.2: Hierarchical type representation after merging non-related types.

Alternatively, if we prioritize merging along existing supertype-subtype relations, we
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first merge the two bottom-most types into their respective supertypes. Since each of
the bottom types inherits from a different intermediate type, merging them directly
into their supertypes maintains the relationships between the types while avoiding the
creation of an isolated type with weakened constraints. As a result, the final schema
includes the three node types that accurately represent PersonType, EmployeeType,
and ManagerType. The mandatory labels and properties remain properly assigned, and
all instances continue to conform to a well-defined type structure. This approach avoids
the loss of important type relationships and maintains the integrity of the type system,
as depicted in Figure 4.3.

Figure 4.3: Hierarchical type representation after merging related types.

To preserve as much information as possible about the hierarchical structure of the
schema, our method prioritizes merging types along existing supertype relationships.

4.3.3 Identify Abstract Types
Within the FCA framework, our method identifies only those types that have actual
instances present in the data. Consider the example used in the introduction 1.1, where
the graph contains nodes corresponding to the types PersonType, EmployeeType,
and ManagerType. In many cases, data models include abstract types, types that do not
have direct instances in the dataset. For instance, a graph may contain only instances of
EmployeeType and ManagerType, while PersonType exists solely as an abstraction
to group shared attributes. Since no node explicitly represents PersonType in the
data, our method would not detect it, resulting in EmployeeType and ManagerType
being treated as independent types without a hierarchical relationship, even if they share
common labels and properties.

To address this limitation, data models often introduce abstract types to encapsulate
shared attributes, thereby allowing for a structured hierarchy where new types can inherit
these common characteristics. To facilitate the discovery of such abstract types, our
method includes an optional mechanism for their identification. This process involves
computing the similarity between all detected types using the metric defined in Sec-
tion 4.3.1. If the most similar pair of types exceeds the predefined similarity threshold
τabs:, a new abstract type is inferred based on their shared attributes.
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Formally, if an abstract type T 3 is created from two types T 1 and T 2, then:

L3
mand = L1

mand ∩ L2
mand,

L3
opt = L1

opt ∩ L2
opt,

P 3
mand = P 1

mand ∩ P 2
mand,

P 3
opt = P 1

opt ∩ P 2
opt,

S1 = S1 ∪ T 3,

S2 = S2 ∪ T 3.

The abstract type T 3 is then added to the schema as a higher-level representation that
generalizes T 1 and T 2. This process is repeated until no pair of types is found whose
similarity exceeds the threshold.

4.4 Schema Merging
In scenarios where multiple instances of property graphs exist, such as different snapshots
of the same graph over time, it becomes essential to derive a general schema that
accommodates all instances. Our method addresses this challenge by allowing an existing
schema to be provided as input to the discovery process.

The method first extracts a schema from the given graph instance and then merges it
with the provided input schema. By applying this process iteratively to multiple graph
instances, a schema that fits all instances can be constructed. When an additional schema
(referred to as the "original schema") is supplied, it is merged with the newly extracted
schema (referred to as the "new schema"). Both schemas are represented as lists of node
types and edge types. The merging process identifies corresponding types across schemas
and combines them while ensuring structural validity and hierarchical consistency.

For each type T 1 in the original schema, the most similar type T 2 in the new schema
is identified based on a similarity score S(T 1, T 2), as defined in Section 4.3.1. If the
similarity score is greater or equal than a user defined threshold τsim2:

S(T 1, T 2) ≥ τsim2,

then the types are merged into a new type T 3 according to the merging rules detailed in
Section 4.3.2. If no sufficiently similar type is found, the type from the original schema is
directly added to the merged schema without modification. Likewise, types in the new
schema that do not have a corresponding match in the original schema are also included
in the final schema unchanged. This process is depicted in Algorithm 4.2

Schemas may include types with attributes specifying whether their labels and properties
are open or closed. Since these attributes cannot be automatically inferred in an
extracted schema, they must be specified by the user. During merging, the following rule
applies:
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Algorithm 4.2: Merge Types List
Input : T 1, T 2 - lists of types from two schemas,

τsim2 - type similarity threshold.
Output : T 3 - merged list of types.

1: T 3 ← ∅ ;
2: foreach T 1 ∈ T 1 do
3: T 2 ← arg maxT ∈T 2 S(T 1, T ) // Find most similar type
4: if S(T 1, T 2) ≥ τsim2 then
5: T 3 ← MergeTypes(T 1, T 2) // Merge according to rules in

Section 4.3.2
6: T 3 ← T 3 ∪ {T 3}
7: T 2 ← T 2 \ {T 2}
8: end
9: else

10: T 3 ← T 3 ∪ {T 1} // No match, keep original type
11: end
12: end
13: T 3 ← T 3 ∪ T 2 // Include unmatched types
14: return T 3

• If both types T 1 and T 2 have closed labels or properties, the merged type T 3 also
has closed labels/properties.

• Otherwise, T 3 adopts open labels/properties to ensure schema generality.

For example, assume:

• T 1 has closed labels and a mandatory label X,

• T 2 has open labels and also contains X.

If T 3 were to adopt closed labels, a node with labels {X, Y } would conform to T 2 but
not to T 3. To ensure that the merged schema remains more general and maintains
compatibility, T 3 adopts open labels.

At the conclusion of the merging process, the hierarchical structure of the merged schema
must be updated to ensure consistency. Specifically, some supertype relations may become
invalid due to the merging process, as discussed in Section 4.3.2, in the case of merging
unrelated types. During the schema merging process, we initially set the supertype set of
the merged type as follows:

S3 = S1 ∪ S2.
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Subsequently, each supertype relation is verified to ensure that it satisfies the necessary
conditions for a valid supertype relationship (see Definition 4.1.4). If any relation violates
these conditions, it is removed to maintain schema consistency.

In addition to verifying existing supertype relations, we also check for potential new
supertype relationships that may emerge through the merging process. Consider the
following scenario. Suppose we are merging schemas derived from two property graphs.
The first graph results in a schema that includes a type PersonType, which has multiple
subtypes, such as EmployeeType and ManagerType. The second graph does not
explicitly contain a PersonType, but it introduces a new type InternType, which
possesses all the labels and properties of PersonType, along with some additional ones.
Ideally, when merging the schemas, we want to detect that InternType is in fact a
subtype of PersonType and establish this relationship in the merged schema. To achieve
this, we systematically evaluate all pairs of types in the merged schema to determine
whether they satisfy the necessary conditions for a valid supertype-subtype relationship,
as defined in Definition 4.1.4. If these conditions are met, the corresponding relation is
added to the schema. This additional step ensures that the hierarchical structure remains
well-defined and accurately reflects the relationships present in the merged schema. The
complete schema merging process is formally outlined in Algorithm 4.3.
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Algorithm 4.3: Schema Merging
Input : N T 1, ET 1 - node and edge types from the original schema,

N T 2, ET 2 - node and edge types from the new schema,
τsim2 - type similarity threshold.

Output : N T 3, ET 3 - merged node and edge types.
// Merge Node Types

1: N T 3 ← MergeTypesList(N T 1, N T 2, τsim2) ;
// Merge Edge Types

2: ET 3 ← MergeTypesList(ET 1, ET 2, τsim2) ;
// Update Type Hierarchy

3: foreach T 3 ∈ (N T 3 ∪ ET 3 do
4: foreach S ∈ S3 do
5: if !IsValidSupertypeRelation(S, T 3) then
6: S3 ← S3 \ {S} // Remove invalid supertypes
7: end
8: end
9: end
// Infer New Supertype Relationships

10: foreach T a, T b ∈ N T 3, T a ̸= T b do
11: if IsValidSupertypeRelation(T a, T b) then
12: AddSupertypeRelation(T a, T b) ;
13: end
14: end
15: foreach T a, T b ∈ ET 3, T a ̸= T b do
16: if IsValidSupertypeRelation(T a, T b) then
17: AddSupertypeRelation(T a, T b) ;
18: end
19: end
20: return N T 3, ET 3 ;
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CHAPTER 5
Implementation

This section outlines the relevant implementation details of our schema discovery approach.
It begins by specifying the inputs to the method, including supported formats for property
graphs and the configurable parameters that guide its operation. Next, we outline the
functionality of our graph generator, which constructs synthetic graphs from a provided
schema, enabling us to test custom schemas and further evaluate our method. Then we
explain how we deal with data type inconsistencies in the values of properties. Next, we
describe the FCA library to uncover the topological and type-related structures within the
graph. Furthermore, we discuss the validation phase, where the input graph is checked
for conformance against the extracted schema. Lastly, we describe all the outputs our
method produces.

5.1 Input
This section begins by discussing the property graph formats supported by the method.
Next, we describe the functionality of our graph generator, which is designed to create
synthetic graphs based on a given schema. Following this, the parameters of the method
are specified in detail, highlighting their roles, configurations, and how they influence the
functionality and output of the method.

5.1.1 Input Property Graph

The property graph model is a versatile framework for organizing graph data, implemented
in various systems across different database paradigms. One prominent implementation
of the property graph model is Neo4j, which is widely used for research in property
graphs. Since the datasets used to evaluate existing approaches (as discussed in Section
3.1) are based on Neo4j, our method supports Neo4j as an input format.
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While Neo4j model restricts edges to a single label, our method supports multiple labels
on edges. Importantly, the method is designed to be easily adaptable to other input
formats. To achieve this, the Neo4j data graph is queried to extract all nodes, edges, and
their associated labels and properties, which are then converted into an internal data
graph structure. For extending the method to new formats, only this translation step
needs to be adapted to feed data into the internal structure. Once integrated, the core
processing pipeline remains unchanged, enabling compatibility with various property
graph implementations.

5.1.2 Graph Generator
The input to our graph generator is a schema, as outlined in Section 2.2. Accordingly,
the graph generator requires a parser to interpret the schema. The implemented parser is
designed solely for schemas adhering to the format described in Section 2.2. It is intended
for testing purposes only and does not fully validate the schema or provide detailed error
messages if the schema is invalid.

For each type defined in the input schema, the graph generator produces a number of
nodes or edges ranging between graph_generator_min_entities and
graph_generator_max_entities. Nodes and edges are assigned all mandatory
labels of their respective type definition, while optional labels are assigned based on a
50:50 random selection. Properties assigned in a similar way and receive random values
consistent with their respective data types.

The generation process proceeds in two steps: First, nodes for each node type are created.
Then the edges are created and based on the specified end-node types in the schema,
suitable source and target nodes are selected randomly from the pool of previously
generated nodes. The result is a graph that conforms to the provided schema and
represents the defined structure of the schema.

5.1.3 Parameters
This section provides a detailed description of the configuration file fields used in the
method. Each field’s purpose, allowed values, and behavior are explained below.

Data Source

• data_source[str]: Specifies the source of the data. Currently, only neo4j is
supported.

• neo4j.uri[str]: URI for connecting to the Neo4j database.

• neo4j.username[str]: Username for authentication.

• neo4j.password[str]: Password for authentication.
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Graph Generator Settings

• graph_generator[bool]: Enables or disables graph generation mode (true/false).
When set to true, the method ignores the data source given and tries to generate a
graph based on the schema given as input.

• graph_generator_schema_path[str]: Path to the schema file used for graph
generation. The graph generator creates a graph based on the schema given in this
file.

• graph_generator_max_entities[int]: Maximum number of entities to gen-
erate per type in the schema (positive integer).

• graph_generator_min_entities[int]: Minimum number of entities to gener-
ate per type in the schema (must be less than or equal to max_entities).

Schema Extraction Settings

• node_type_extraction[str]: Method for extracting node types. Allowed values:
label_based, property_based, label_property_based.

• edge_type_extraction[str]: Method for extracting edge types. Allowed values:
label_based, property_based, label_property_based.

• optional_labels[bool]: When set to true, the resulting schema includes op-
tional labels.

• optional_properties[bool]: When set to true, the resulting schema includes
optional properties.

• type_outlier_threshold[int]: Determines the minimum number of nodes or
edges that must correspond to a type for it to be considered valid. If the count
of nodes or edges associated with a type falls below this threshold, the type is
classified as an outlier. Such types are assumed to represent false, erroneous, or
insufficient data and are consequently removed from the schema.

• label_outlier_threshold[int]: Specifies the minimum absolute number of
nodes or edges of a type that must contain a label for it to be considered valid.
Labels appearing in fewer elements than this threshold are classified as outliers and
excluded from the schema.

• property_outlier_threshold[int]: Defines the minimum absolute number
of nodes or edges of a type that must include a property for it to be considered
valid. Properties appearing in fewer elements than this threshold are regarded as
outliers and removed from the schema.
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• endpoint_outlier_threshold[int]: Specifies the minimum absolute number
of edges of a specific type that must involve a source or target node type for the
endpoint type to be valid. Source or target node types appearing in fewer edges
than this threshold are treated as outliers and omitted from the schema.

• merge_threshold[float]: Similarity threshold for merging types during type
extraction.

• remove_empty_types[float]: If true, types that have no nodes/edges assigned
to them will be removed.

• max_node_types[int]: Maximum number of node types in the resulting schema.

• max_edge_types[int]: Maximum number of edge types in the resulting schema.

• max_types[bool]: Enables type merging to conform to the maximum number of
allowed types specified in max_node_types and max_edge_types.

• abstract_type_threshold[float]: Threshold for the similarity score of two
types such that an abstract type of their shared attributes will be created.

• abstract_type_lookup[bool]: Enables lookup for abstract types during node
type extraction.

• graph_type_name[str]: Name of the graph type (any valid string).

• out_dir[str]: Directory to save the results to.

Validation Settings

• validate_graph[bool]: Enables graph validation against the schema.

• open_labels[bool]: Our method lets the user define if labels should be open for
the types in the resulting schema. If a type has open labels it permits labels not
defined in the schema during validation (see 5.4). Consequently all types in the
resulting schema will have a open label declaration.

• open_properties[bool]: Our method lets the user define if properties should be
open for the types in the resulting schema. If a type has open properties it permits
properties not defined in the schema during validation (see 5.4). Consequently all
types in the resulting schema will have a open properties declaration.

Schema Merging Settings

• merge_schema[bool]: Enables schema merging functionality.

• schema_to_merge_path[str]: Path to the schema file to merge with the ex-
tracted schema.
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• schema_merge_threshold[float]: Similarity threshold for merging entities dur-
ing schema merging.

Schema that are provided as input, for example for schema merging or for the graph
generator, have to be defined in the PG-Schema language, as described in Section 2.2.

5.2 Data Type Inference
When data is successfully retrieved from the data source, the first step in this process is
to infer the datatypes of the properties. Each property can be viewed as a unique record,
and its datatype should be consistent across all its occurrences.

To determine the datatype for a property, the process examines all occurrences of a given
property key or name. For each instance, the value is checked to identify whether it
is an DATE, STRING, INT or any other supported datatype. All datatypes specified in
the PG-Schema are supported for inference. A count is maintained for each identified
datatype, and the datatype that appears most frequently is declared as the official
datatype for that property.

If the datatype of a property cannot be determined or is unsupported, it is assigned
the keyword "UNKNOWN" to signify its undefined datatype. This approach ensures
consistency and handles cases where data may be incomplete or ambiguous.

5.3 Formal Concept Analysis
After successfully extracting the input data source for nodes, edges and their corresponding
labels and properties, our method builds a formal context as described in Section 4. To
perform this task our method integrates the fcapy library [Dud24], which provides a
robust framework for FCA. Key features of the library utilized in our method include:

• Data structure for formal contexts: fcapy offers flexible representation for
formal contexts, which form the foundation for concept lattice computation.

• Concept lattice computation: The library supports multiple algorithms for gen-
erating concept lattices. For binary formal contexts, the Lindig algorithm [LG00]
is employed, which is the method implemented in our method. For multi-valued for-
mal contexts, fcapy also includes algorithms such as CbO [Kuz93] and approaches
based on Random Forest models. However, these algorithms are not relevant for
our binary context use case.

• Visualization capabilities: fcapy provides tools for visualizing the concept
lattices, allowing the generated lattices to be saved and analyzed in a graphical
format.

51



5. Implementation

With help from fcapy a concept lattice will be computed, which is the core structure
for our method.

5.4 Validation
After successfully extracting the schema from the input graph, the method performs
validation of the graph against the schema. Following the validation approach proposed
in [ABD+23], we verify that each node in the graph conforms to at least one type defined
in the schema. Once we know the valid nodes, we validate the edges by checking if their
endpoint types align with the defined types in the schema.

In Section 2.2 we discussed when a node or edge conforms to a type and when a property
graph conforms to a graph type. A node is considered to conform to a given type if it
satisfies the requirements of at least one of its defined formal base types. To verify this,
we check whether the node contains all mandatory attributes required by the type. For
types where labels or properties are defined as closed, any additional attributes in the
node must match the optional attributes specified by the type. Conversely, if a type is
open regarding labels or properties, the node remains valid as long as it includes all
mandatory attributes, even if it possesses additional attributes not explicitly defined
in the type. This behavior can be controlled using the parameters open_labels and
open_properties.

In the case of edges, validation extends beyond the attributes and also involves ensuring
that the endpoints of the edge conform to the specified types for the source and target
nodes.

For the input graph to conform to the schema, every node and edge must conform to at
least one of the defined types.

Requirements for a Valid Schema
In principle, the method generates a schema such that the input graph conforms to the
schema. However, this validity is only guaranteed when the outlier threshold parameters
are set to zero, specifically:

• type_outlier_threshold,

• label_outlier_threshold,

• property_outlier_threshold,

• endpoint_outlier_threshold.

These thresholds are used to exclude outliers during the type discovery process. Outliers
might arise due to errors in the data or other anomalies. While these thresholds help
refine type definitions by ignoring rare cases, they introduce the possibility that some
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nodes or edges in the graph do not fit any type in the schema. Consequently, when
validating the graph against the schema, such outliers may be marked as invalid since
they lack a corresponding type definition.
Additionally, the parameters optional_labels and optional_properties must
be set to true. These parameters allow users to specify whether optional labels and/or
optional properties should be permitted in the schema. This capability serves two primary
purposes:

1. To focus solely on discovering mandatory attributes of graph elements. This can
be useful in scenarios where optional attributes are irrelevant to the analysis.

2. To filter out optional labels or properties as outliers or false data automatically.
This is particularly helpful when the user knows that the input graph dataset
should not contain any optional labels or properties. In such cases, these elements
are excluded without requiring specific threshold values to be defined.

However, the same issues arise as with threshold values. Disallowing optional labels or
properties may result in the generation of a rigid schema. Such a schema might not
accommodate the input graph fully, leading to potential validation failures.

5.5 Output
The output of the method includes the following documents:

• PG-Schema: Our approach primarily delivers a schema for the input property
graph, adhering to the PG-Schema definition introduced in [ABD+23]. More
specifically, it generates a schema that corresponds to a fragment PG-Schema,
which is further described in Section 2.2.

• Graph-Entity to Schema-Type Mapping: If a valid schema was produced, our
method will output a JSON file containing a mapping of each node and edge to its
corresponding type of the schema.

• Invalid Elements: If the input graph does not conform to the produced schema
(for instance, due to outliers in the data), then the graph elements that do not
conform to any type in the schema will be included in a separate output file. This
file lists the invalid elements, enabling further analysis or refinement of the schema.

• Concept Lattice Visualization: The output of our method also contains a
visualization of the corresponding concept lattices produced in the process.

• Merged Schema: If an existing schema is provided as input, the method will
additionally produce a merged schema that combines the input schema with the
schema extracted from the property graph instance. This merged schema serves as
an integration of the predefined structure and the newly identified elements.
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CHAPTER 6
Evaluation

This section begins by outlining the experimental setup used for our evaluation. Next, we
present the datasets employed to assess our method against state-of-the-art approaches
in property graph schema discovery, followed by a comparative evaluation. We then
evaluate our method further by generating synthetic graphs based on a variety of different
schemas. Additionally, we evaluate our schema merging method. Finally, we discuss the
results and draw conclusions based on our findings.

6.1 Experiment Setup
In this section, we detail the hardware and software environment used to conduct the
experiments. Ensuring reproducibility and consistency across runs, we document the
specifications of the hardware, the versions of software and libraries. All experiments were
run in a controlled environment with the configurations and software versions specified
below. The codebase and datasets have been made available on GitHub [Hit25] for
reproducibility.

Hardware Specifications
The experiments were conducted on a machine with the following hardware configuration:

• Processor: AMD Ryzen 7 5800X 8-Core Processor (3.80 GHz)

• Memory: 32 GB DDR4 RAM at 3200 MHz

• Storage: 1 TB SSD for primary data processing

• Graphics: Radeon RX 580X

• Operating System: Windows 10 Pro 22H2
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Software Environment
The method is implemented using Python Version 3.10 and Neo4j Community Edition
5.3.0. In the following table are the most important libraries/packages and their version
listed.

Library/Package Version Description
caspailleur 0.2.0 Package for mining concepts and implications in binary

data with FCA framework.
fcapy 0.1.4.4 A python library to work with FCA.
graphviz 0.20.3 Python interface for Graphviz graph drawing software.
kiwisolver 1.4.7 A fast implementation of the Cassowary constraint

solving algorithm.
matplotlib 3.9.2 Comprehensive library for creating static, animated,

and interactive visualizations.
neo4j 5.25.0 Official driver for Neo4j graph database.
networkx 3.3 Python library for the creation, manipulation, and

analysis of complex networks.
numpy 2.1.2 Fundamental package for numerical computation in

Python.
pandas 2.2.3 Powerful data analysis and manipulation library.
pydot 3.0.2 Interface to Graphviz Dot language.
pyparsing 3.1.4 Parser library for defining and executing grammars.
pyroaring 1.0.0 Python bindings for Roaring bitmaps.
scikit-learn 1.5.2 Machine learning library for Python.
scikit-mine 1.0.0 Pattern mining algorithms for scikit-learn.
scipy 1.14.1 Library for scientific computing and technical comput-

ing.

Table 6.1: Software Libraries and Packages Used in the Experiments.

6.2 Evaluation Metrics
As discussed in [Lei21], the choice of a suitable schema for a database is dependent on
the specific use case, and there is no universally best solution. However, to evaluate our
method, it is essential to define metrics and use datasets as well as generated data graphs
that include a ground truth schema. This allows us to compare our inferred results
against a known solution.
The evaluation metrics we employ are precision, recall, and F1-score. We consider an
inferred type as True Positive (TP), if the the inferred type is also part of the ground
truth schema and as False Positive (FP) if the type is not part of the ground truth
schema. We further consider a type present in the ground truth that was not inferred as
False Negative (FN).
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We consider an inferred type as equivalent to a ground truth type if it correctly captures
most of the labels and properties of the original. This criterion, though loosly defined,
reflects our focus on practical accuracy, recognizing that minor differences do not signifi-
cantly affect the inferred types correctness. Since these differences often involve small
deviations, we treat such cases as successful type extraction while addressing notable
discrepancies in the evaluation of results.

Additionally, we measure the time required for the schema extraction process. This
measurement exclusively captures the time taken for extracting the schema from the
data graph. It does not include the time for querying the data graph, generating the
graph, or validating the graph against the schema. Further discussion about the runtime
performance of the method is provided in Section 6.6.

6.3 Evaluation on Datasets
The first part of our evaluation conducts experiments of our schema discovery method on
real-world datasets and synthetic datasets generated from real-world schemas. We chose
the following datasets since there exists a ground truth of their schemas, that we can
compare and evaluate our results against and because they were also used by existing
property graph schema discovery methods in [BDM22] and [Lei21]. This section starts
with a description of the datasets and is followed by a comparison and evaluation of the
results.

6.3.1 Real-world Dataset
There are relatively few property graph datasets publicly available that include an explicit
schema that can be used a ground truth. Two notable datasets that have been used in
the evaluation of schema discovery methods are MB6 [TAH+17] and Fib25 [TXL+15].
Both datasets are part of the NeuPrint project, with MB6 providing data on mushroom
bodies and Fib25 focusing on the fruit fly brain. The schema of the MB6 dataset is
depicted in Figure 6.1. The schema of the Fib25 dataset is almost identical and only
differs in the name of some labels. Both datasets are characterized by diverse node and
edge properties, as well as multi-labeled nodes and consist of 4 node types and five 5
types. Labels and properties can be optional. However, as they are modeled in a Neo4j
graph database, edges are restricted to having a single label.

6.3.2 Synthetic Dataset from Real-World Schemas
For further evaluation of our method, we use our graph generator to create property
graphs based on existing schemas.

The LDBC Social Network Benchmark (LDBC SNB) represents a synthetic property
graph modeling a realistic social network. Its schema is illustrated in Figure 6.2. This
property graph comprises 8 node types and 15 edge types. It is characterized by single-
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Figure 6.1: Ground-Truth Schema for MB6 dataset, from [Lei21].

labeled nodes with a diverse range of properties, as well as single-labeled edges that do
not have any properties.

Figure 6.2: Ground-Truth Schema for LDBC dataset, from [BDM22].

The Northwind dataset is typically a relational database containing information about
products, customers, and their orders. In [Fri16], the original schema is translated into
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a property graph schema, which is further refined in [Lei21]. For our evaluation, this
dataset is particularly interesting because its nodes do not have any labels. Instead, there
are 13 node types distinguished just by their properties, and 10 single-labeled edge types
without properties. The schema is depicted in Figure 6.3.

Figure 6.3: Ground-Truth Schema for Northwind dataset, from [Lei21].

6.3.3 Results and Comparison to existing Methods

For each of the four property graphs, we compare the results of our schema extraction
method against two existing approaches: the work of [BDM22], referred to as "DiscoPG"
(as per the name of their tool on GitHub), and the work of [Lei21], abbreviated as
"PGSE" (derived from the title of their thesis).

Both DiscoPG and PGSE use the same metrics as we do: precision, recall, and F1
score (with one exception: PGSE does not report execution time). Additionally, PGSE
considers the topology of types when evaluating type equality, whereas DiscoPG does not
clearly specify the conditions under which types are considered equivalent. As such, while
we compare the metrics directly, we acknowledge these differences in their approaches
and account for this uncertainty.

The performance metrics achieved by our method are presented in Figure 6.2.
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Dataset Precision Recall F1 Time Node Extraction Edge Extraction
MB6 1.0 1.0 1.0 20.46s label-based label-based
Fib25 1.0 1.0 1.0 36.9s label-based label-based
LDBC 1.0 1.0 1.0 52.88s label-based label-based
Northwind 1.0 0.85 0.92 151.52s property-based label-based

Table 6.2: Performance metrics of the FCA-based method across different datasets.

Results for the MB6 Dataset
The schema extracted by our method captures all types and relationships present in
the original property graph schema. But we observed several differences between the
schema and the actual dataset. Each label includes an additional identifier indicating
the corresponding neuprint dataset (e.g., "mushroombody" for the MB6 dataset),
which was not described in the original schema. Additionally, some properties defined in
the MB6 schema are missing from the dataset, while others present in the dataset are
absent from the schema. After manual inspection in the Neo4j instance, we conclude
that the schema description is not fully accurate. Nevertheless, the types are generally
consistent, and the resulting schema effectively captures the structure of the original.
Thus, we consider the types equivalent.

Figure 6.4: Resulting schema for MB6 dataset.

PGSE achieves a precision of 0.8, recall of 1.0, and an F1 score of 0.89 for node types
and 0.56 precision, recall of 1.0 and an F1 score of 0.81 for edge types. In this schema,
the topology of types should not influence the results. We hypothesize that PGSE failed
to recognize the "Neuron/Segment" type as a single type, instead splitting it into two
separate types. Based on this, we conclude that our method outperforms PGSE in this
case.

DiscoPG reports perfect scores for precision, recall, and F1. However, they claim to
have identified 19 node types and 27 edge types. It is unclear whether they further merge
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some of these types or consider subtype relationships within these types. DiscoPG does,
however, outperform our method in terms of execution time, completing the extraction
in just 4.53 seconds compared to our 20.46 seconds.

Results for the Fib25 Dataset

In the Fib25 property graph, we also observed differences between the schema specifica-
tion and the actual data graph. Similar to the MB6 dataset, we conducted a manual
verification of labels and properties in the Neo4j instance. Therefore we consider our
resulting schema to accurately reflect both the structure of the original schema and the
actual data in the graph.

Figure 6.5: Resulting schema for Fib25 dataset.

PGSE does not provide results for this dataset. DiscoPG, as with the MB6 data
graph, achieves perfect scores on all metrics and surpasses our method in execution time.
However, they report identifying 26 node types and 106 edge types. Similar to the MB6
evaluation the are some issues in the reported of the results. Moreover, it is unclear why
DiscoPG extracts significantly more types for the Fib25 dataset than for the MB6,
given that their original schemas are nearly identical and contain the same number of
types.

Results for the LDBC-SNB Dataset

We synthesized the LDBC-SNB property graph with 417,169 nodes and 831,818 edges.
Our method successfully captures the original schema with complete accuracy. The types
are clearly identifiable by their labels resulting in a accurate extraction of the schema.

The PGSE method achieves a precision of 1.0, recall of 0.79 and an F1 score of 0.88 for
node types and a precision of 0.52, recall of 0.65 and an F1 score of 0.58 for edge types.
Our method clearly devlivers better results compared to PGSE on this property graph.
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Figure 6.6: Resulting schema for LDBC dataset.

The DiscoPG method achieves perfect metrics but again contradicts itself with the
number of types extracted. With an execution time of 47.44 seconds, it slightly out-
performs our method. An interesting observation in their graph visualization of their
extracted schema is the discovery of two subtypes for the Post type. Although these
types are not present in the ground truth schema, they are not entirely incorrect. The
UML specification of the LDBC-SNB dataset reveals that Post and Comment share
a supertype called Message. While their method identifies similarities suggestive of a
super/subtype relationship, it incorrectly applies this only to the Post type.

We attempted different configurations of our method to uncover such relationships.
The absence of instances for the Message type, along with its lack of a label and high
property similarity across schema types, makes detecting these relations impractical while
preserving a coherent and useful schema. Using the abstract type lookup we were able
to detect the message type as an abstract type of both Post and Comment, but with
this setting we also retrieved several other abstract types that do not serve as a useful
schema. The high similarity between other types, like Tag and TagClass or Place and
Organisation lead to unwanted abstract types in the process.

Results for the Northwind Dataset
We synthesized the Northwind property graph with 731818 nodes and 454667 edges.
Using the property-based extraction for node types, our method achieves nearly perfect
metric score. Since there are two types for customer descriptions and region descriptions
that have the exact same attributes, our method cannot distinguish these and only
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extracts one type for both. Looking at the UML specification of the dataset, the property
graph translation we used regarding these 4 types can be questioned.

Figure 6.7: Resulting schema for Northwind dataset.

The PGSE method reports only F1 scores for this dataset under various parameter
settings, with a maximum of 0.88 for node types and 0.82 for edge types. Based on these
results, we conclude that our method outperforms PGSE.

DiscoPG did not include this property graph in their evaluation.

6.4 Evaluation on Self Generated Graphs
Since there are not many publicly available datasets with a ground truth schema, we
have created several schemas to test our method in detail, which have different features
and test different capabilities of the method. We use our graph generator (see 5.1.2) to
populate graph instances based on these schemas. In this section we explain what the
schemas should test, what features they have and what results our method has achieved.

All experiments are conducted using a synthesized graph containing 10,000 to 100,000
nodes and edges per type. The experiments including the test schemas, parameter settings

63



6. Evaluation

and results can be found in the repository [Hit25] in the experiments folder.

The BigUniversityGraphType schema is a schema where types are easily identified
by its labels but has a lot of different types, complex subtype hierarchies and diverse
properties. The goal of this example is to see if the number of types and the size of the
schema play any role in the quality of the schema discovery method. The extracted schema
accurately represents the original schema. The only difference is that our method does
not resolve subtypes in endpoint nodes but instead explicitly enumerates all permissible
types. This distinction is purely syntactical and does not affect the schema’s correctness
or functionality.

The concept lattice in FCA provides a hierarchy of concepts derived from graph data,
making it a compelling tool for exploring complex type hierarchies. To evaluate this
feature of our method, we tested it on several schemas with complex type hierarchies.

The first type hierarchy graph, referred to as TypeHierarchyGraph1, features multiple
inheritance and has a hierarchy depth of 3. Most types are identifiable by their label but
the ManagerType only by a single additional property. Using the label-based extraction
method for node types, the original schema could not be reconstructed correctly, as the
ManagerType was not identified as a distinct type. However, with the property-based
extraction method, we achieved a perfect result. This outcome can be attributed to the
fact that each type has a unique set of properties that allows for precise identification.

We evaluated our method with several different schemas and observed that as long as
types are clearly identifiable by a unique label or a distinct set of properties, our method
consistently extracted the original schema without any issues. To push the limits of our
approach, we tested it on a modified version of the previous schema. In TypeHierar-
chyGraph2, we removed the labels for Person and Worker, eliminated the username
property from the UserType, and made the age property of the PersonType optional.
Although this schema is unintuitive and impractical for structuring real data, it serves
as a challenging test case. The best result was obtained using the label-property-based
extraction method for node types, combined with the max-type merging feature, which
limited the output to a maximum of five node types and one edge type. While the overall
structure of the schema was partially extracted, it is evident that our method struggled
to correctly identify all types in this challenging scenario.

To further evaluate the capabilities of our method in extracting complex type hierarchies,
we present the TypeHierarchyGraph3 schema featuring a 3-1-3 structure with multiple
inheritance, extending to a depth of three. Using the property-based node type extraction
our method extracts the original schema perfectly. This setup demonstrates the ability
of our approach to handle intricate relationships and layered dependencies between types,
showcasing its effectiveness in reconstructing sophisticated schemas accurately.

To evaluate the extraction of type hierarchies comprehensively, we also tested whether
our method can successfully extract hierarchies involving edge types on the schema
EdgeTypeHierarchyGraph. The following schema exemplifies a scenario with mul-
tiple inheritance among edge types. Using property-based edge type extraction, our
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method successfully reconstructs the original schema with complete accuracy. This result
highlights our methods capability to handle complex edge type hierarchies effectively.

The AbstractGraphType schema illustrates a scenario where an abstract type com-
bining the properties of both ManagerType and EmployeeType could be beneficial.
This abstract type, referred to as PersonType, would include common properties such
as name, birthdate, email, and phone_number. The result demonstrates that
when the abstract_type_lookup parameter is set to true, our method successfully
identifies such structures and derives a useful abstract type. Furthermore, the rest of the
schema is extracted with 100 percent accuracy.

The LibraryGraphType schema illustrates a complex structure with type hierarchies
and optional attributes. During our experiments, we observed that subtype relationships
with optional attributes can pose challenges in schema extraction. Specifically, it can
be difficult to determine whether a particular value belongs to a subtype or is merely
an optional attribute of its parent type. For instance, when examining BookType and
its subtype PrintedBookType, it is possible that PrintedBookType might not be
identified as a distinct type. Instead, the additional labels and properties specific to
the subtype may be incorrectly interpreted as optional attributes of BookType. The
label-based or property-based approach fails in such cases. However, the label-property-
based method, when combined with the maximal number of types feature, successfully
reconstructs the schema perfectly.

In addition to the predefined schemas, we evaluated our method on various characteristics
of input property graphs. These included unconnected graphs, cyclic graphs, and graphs
where either only labels or only properties were present. Such characteristics did not
impact the method, and schemas were successfully extracted.

We also tested for outliers, such as single or small sets of nodes or edges where la-
bels or properties were misspelled, or where nodes and edges were entirely different
from the rest of the graph, representing erroneous data insertion. By appropriately
setting the parameters type_outlier_threshold, label_outlier_threshold,
and property_outlier_threshold, the method produced suitable results that ex-
cluded redundant types for outliers. However, in such cases, the resulting schema did not
conform to the input property graph, as the outliers did not belong to any type.

Additionally, we evaluated property graphs where some properties did not match, i.e.
cases where the property key was the same, but the associated values were of different
datatypes. Since our method determines the most frequent datatype for a property in
advance, it handled such inconsistencies effectively. However, the resulting schema will
not conform to the input graph in these cases, as instances with incorrect datatypes for
a property would deviate from the schema.
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6.5 Schema Merging

In this section, we present a series of test cases for our schema merging approach. Each
test involves an original schema provided as input and a new schema, representing
scenarios of an evolving graph. The graph generator creates a graph based on the new
schema, which is subsequently processed using our FCA-based method to extract its
schema. Finally, the extracted schema is merged with the original schema to evaluate the
merging process under various settings.The schemas of the experiments and the results
can be found in the repository [Hit25] in the experiments folder.

In the SchemaMergingGraphType1 test case, both the original and new schemas
include multiple node and edge types with notable similarities. The original schema
defines a type named PersonType with two subtypes, while the new schema introduces
an additional subtype for PersonType. This test case reflects a scenario where new
data in the graph leads to the creation of a new subtype. The results demonstrate that
the schema was successfully extracted, and the merging process effectively integrated the
new subtype into the original schema as a subtype of PersonType, ensuring seamless
schema consistency.

The original schema of the SchemaMergingGraphType2 test case again includes a
PersonType with two subtypes. In contrast, the new schema in this test case does not
explicitly include the PersonType. Instead, it defines three types that are semantically
subtypes of PersonType. Two of these types are similar to the subtypes in the original
schema, while the third is a completely new type not present in the original schema.
Our method extracts the new schema exactly as it was defined for the graph generator,
without explicitly detecting the PersonType. During the schema merging process, the
two identical subtypes are merged and remain subtypes of PersonType. The new type
is identified as a subtype of PersonType and is appropriately added as such, resulting
in a satisfactory and coherent merged schema.

SchemaMergingGraphType3 tests whether two schemas, the original and the new,
can still be correctly merged when they do not share any similar types. Our method
successfully handled this scenario and merged the schemas as expected.

In the SchemaMergingGraphType4 test case, the original schema contains several
node types that are also present in the new schema. However, the new schema extends
these types with additional labels and properties not found in the original schema.
This tests scenarios where new data or additional information is added to the graph.
Similarly, structural differences in the edge types are also tested. Notably, the original
schema includes an edge type called TeachesType, while the new schema introduces
TutorsType, which differs in name and labels but shares the same properties. This
scenario evaluates situations where newly added data uses a different name for what
should be the same kind of data. The result shows that both the additional information
is correctly added and merged, and that TeachesType and TutorsType are identified
as the same type and merged accordingly.
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The SchemaMergingGraphType5 test case, tests similarrly to SchemaMerging-
GraphType1 if a type in the new schema not present in the original one, that is
semantically a subtype of a type in the original one, will be merged as such, but for edge
types. Additionally it tests if similar types in the new schema with additional labels than
the corrsponding type in the orignal schema will be merged correctly. Our methods also
merges these scenarios correctly for edge types.

The SchemaMergingGraphType6 test case involves two highly complex schemas.
Both the original and the new schema feature multiple inheritance, combined with a
hierarchy depth of 4. The type structure is organized as follows: in hierarchy layer one,
there is one type; in layer two, two types that are subtypes of layer one; in layer three,
one type that inherits from all types in layer two; and in layer four, two types that are
subtypes of layer three. The original and new schemas differ in layers two and four,
sharing one of the two types in each layer, but each also has one additional type not
present in the other. This should result in a 1-3-1-3 hierarchy. While this scenario is not
intuitive for database modeling, it serves to test the limitations of our approach. For this
test case, our method was unable to perform the merging process as intended. Although
the new schema is extracted correctly, and the merging of layers one and two proceeds
as intended, the subsequent layers (three and four) fail to identify and merge the types
correctly. Instead, many properties are mistakenly identified as optional ones, rather
than being correctly assigned to their respective types.

6.6 Runtime Analysis
To evaluate the runtime of our method, we conducted experiments under various settings,
scaling different characteristics of the input property graph as well as the schema
from which the graph generator populates the graph. The default configuration for all
experiments consists of a schema containing 5 node types and 5 edge types, each with
one unique label and one unique property. For each type, 10,000 instances are generated.
Each setting is evaluated across the three main approaches of our method: label-based,
property-based, and label-property-based. The results for each setting compare the
overall runtime of the three methods and provide a breakdown of the runtime for each
stage: lattice computation, type extraction, which includes outlier removal, type merging,
type enrichment, type validity checks and endpoints computation. The experiments
including the test schemas can be found in the repository [Hit25] in the experiments
folder.

First we scaled the total number of unique labels and properties in the graph, ranging
from ten to one hundred. As shown in Figure 6.8, the lattice computation account for
the most time-consuming part of the entire process.

Overall, the number of labels and properties has little impact on the runtime. Even in
the maximum setting of 100 labels and 100 properties, the longest recorded execution
time was 14.01 seconds. Figure 6.9 illustrates that the label-property-based method takes
the longest, while the label-based and property-based methods exhibit similar runtimes.
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Attributes 10 25 50 75 100
Node Lattice 0.67s 1.27s 2.08s 2.95s 3.80s
NodeType Extraction 0.04s 0.04s 0.06s 0.07s 0.08s
Edge Lattice 0.63s 1.10s 1.99s 2.80s 3.67s
EdgeType Extraction 0.11s 0.12s 0.14s 0.15s 0.15s
Overall 1.54s 2.63s 4.36s 6.06s 7.79s

(a) Label-Based Method

Attributes 10 25 50 75 100
Node Lattice 0.65s 1.20s 1.98s 2.80s 3.72s
NodeType Extraction 0.03s 0.03s 0.04s 0.05s 0.05s
Edge Lattice 0.61s 1.04s 1.92s 2.65s 3.60s
EdgeType Extraction 0.10s 0.09s 0.11s 0.11s 0.12s
Overall 1.47s 2.47s 4.13s 5.69s 7.59s

(b) Property-Based Method

Attributes 10 25 50 75 100
Node Lattice 0.99s 2.03s 3.49s 5.43s 6.96s
NodeType Extraction 0.03s 0.03s 0.03s 0.05s 0.04s
Edge Lattice 0.94s 1.82s 3.46s 5.24s 6.83s
EdgeType Extraction 0.09s 0.09s 0.09s 0.10s 0.10s
Overall 2.16s 4.04s 7.16s 10.90s 14.01s

(c) Label-Property-Based Method

Figure 6.8: Comparison of different Methods on scaling Attribute Size(Labels + Proper-
ties).

Figure 6.9: Runtime for increasing Number of Attributes.

In the next set of experiments, we aimed to evaluate the impact of the input graph size
on runtime. We scaled the total number of instances (nodes and edges) in the graph
from 100 thousand to 10 million. As depicted in Figure 6.10c, the lattice computation
remains the most time-consuming part of the process.

Overall, the size of the input property graph has a significant effect on runtime (see
Figure 6.11). The longest recorded execution time for a graph with 10 million instances
was 228.34 seconds. Furthermore, the label-property-based method consistently exhibited
the highest runtime among the three approaches.

In the final set of experiments, our objective was to stress-test our method by significantly
increasing the complexity of the schema used by the graph generator. We scaled the
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PG Size 100k 250k 500k 1M 2.5M 5M 10M
Node Lattice 0.67s 1.42s 2.95s 5.94s 15.23s 31.56s 64.65s
NodeType Extraction 0.04s 0.11s 0.22s 0.45s 1.23s 2.48s 5.24s
Edge Lattice 0.63s 1.44s 2.97s 5.60s 15.23s 31.00s 63.54s
EdgeType Extraction 0.11s 0.32s 0.71s 1.90s 4.01s 8.65s 18.28s
Overall 1.54s 3.52s 7.31s 14.83s 38.05s 78.57s 161.68s

(a) Label-Based Method

PG Size 100k 250k 500k 1M 2.5M 5M 10M
Node Lattice 0.65s 1.39s 3.10s 5.65s 14.58s 29.59s 64.15s
NodeType Extraction 0.03s 0.08s 0.18s 0.39s 1.09s 2.35s 4.99s
Edge Lattice 0.61s 1.40s 2.73s 5.25s 14.27s 29.49s 62.07s
EdgeType Extraction 0.10s 0.30s 0.59s 1.77s 3.69s 8.03s 16.50s
Overall 1.47s 3.40s 7.05s 14.00s 35.99s 74.19s 157.19s

(b) Property-Based Method

PG Size 100k 250k 500k 1M 2.5M 5M 10M
Node Lattice 0.99s 2.13s 4.67s 8.94s 23.43s 51.54s 100.76s
NodeType Extraction 0.03s 0.07s 0.13s 0.26s 0.66s 1.41s 2.82s
Edge Lattice 0.94s 2.21s 4.45s 8.65s 23.24s 49.77s 99.70s
EdgeType Extraction 0.09s 0.30s 0.53s 1.55s 3.20s 7.60s 15.37s
Overall 2.16s 4.93s 10.23s 20.32s 52.86s 115.12s 228.34s

(c) Label-Property-Based Method

Figure 6.10: Comparison of different Methods on scaling Property Graph Size (Nodes +
Edges).

Figure 6.11: Runtime for increasing Property Graph Size.

number of types in the schema from 10 to 100, with each type having 3 labels and 3
properties. However, in this setting, attributes were not unique, instead, types shared
overlapping attributes. The intention behind this setup was to create concept lattices
with a high number of distinct concepts as well as numerous sub- and super-concept
relationships. While these schemas do not necessarily reflect realistic data models,
they were designed to generate large and intricate concept lattices. Additionally, we
restricted the maximum number of node and edge types in the extracted schema to 10,
further testing the efficiency of the type merging process during extraction. As shown in
Figure 6.12c, even with extensive type merging, lattice computation remains the most
time-consuming step.

Furthermore, with increasingly complex schemas and, consequently, highly intricate
concept lattices, the overall runtime rises significantly, as can be seen in Figure 6.13.
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Types 10 25 50 75 100
Node Lattice 0.66s 10.47s 35.77s 80.51s 139.93s
NodeType Extraction 0.04s 0.21s 0.51s 0.90s 1.25s
Edge Lattice 0.61s 8.83s 37.83s 77.87s 127.97s
EdgeType Extraction 0.10s 0.38s 1.04s 1.93s 2.23s
Overall 1.49s 20.11s 75.63s 161.91s 272.32s

(a) Label-Based Method

Types 10 25 50 75 100
Node Lattice 0.65s 10.29s 36.28s 82.60s 139.26s
NodeType Extraction 0.03s 0.18s 0.45s 0.83s 1.16s
Edge Lattice 0.61s 7.70s 45.86s 121.09s 270.89s
EdgeType Extraction 0.10s 0.37s 0.98s 1.75s 2.14s
Overall 1.47s 18.77s 84.05s 206.96s 414.40s

(b) Property-Based Method

Types 10 25 50 75 100
Node Lattice 0.99s 20.89s 71.08s 169.26s 277.02s
NodeType Extraction 0.03s 0.44s 1.46s 3.45s 5.67s
Edge Lattice 0.94s 29.75s 182.80s 506.79s 1119.92s
EdgeType Extraction 0.09s 1.02s 4.10s 9.08s 15.39s
Overall 2.16s 52.33s 259.92s 689.28s 1418.93s

(c) Label-Property-Based Method

Figure 6.12: Comparison of different Methods on Number of Types.

Similar to previous experiments, the label-property-based method exhibited the highest
runtime. The significant difference in runtime between the node lattice computation and
the edge lattice computation can be attributed to the differing patterns of attribute sharing
among edges. The attribute relationships between edges appear to be more complex,
leading to an increased computational overhead for constructing the corresponding
concept lattice.

Figure 6.13: Runtime for increasing Number of Types.

As anticipated, the label-property-based method exhibited the highest runtimes overall,
as this approach must account for both labels and properties during the computation of
the concept lattice. Another consistent trend observed throughout the experiments is
that the concept lattice computation constitutes the most time-consuming part of the
entire process. Notably, variations in the experimental settings had minimal impact on
the type extraction phase, even when extensively testing the merging procedures.
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Overall, the runtime of our method can be considered acceptable. Even for the most
complex schema tested, designed to be significantly more intricate than any real-world
schema, the method completed execution in under seven minutes. Given that schema
discovery is not an operation performed frequently but rather a one-time or occasional
process for a property graph, and that time constraints are typically not a critical factor
in such scenarios, we consider these results to be satisfactory.

6.7 Discussion
We draw the following conclusions from our evaluations. Based on the results from
both real-world datasets and experiments on synthesized property graphs, our method
demonstrates its ability to discover accurate and useful schemas. In comparison with
state-of-the-art approaches, we have shown that our method competes effectively. PGSE,
the method from the masters thesis of Lei [Lei21], was clearly outperformed across all
three datasets we compared it to. The approach from Bonifati et al. [BDM22] yielded
results similar to ours, although it was slightly faster in the schema extraction process.
However, the way they present their results is unclear to us, and further investigation or
clarification is necessary to ensure the correctness of their reported outcomes.

Given that the datasets used for comparison with state-of-the-art methods are relatively
simple schemas, we also evaluated our method on more complex schemas and settings to
assess its capabilities and limitations. A key reason for considering FCA as a promising
method for schema extraction was its ability to use the concept lattice to detect type
hierarchies. Our results confirm that such hierarchies can be successfully identified by
our method, but only to a certain extent. Our method is able to deal with multiple
inheritance and deep hierarchies (inheritance spanning more than one layer). However,
when inheritance is combined with optional attributes, our method occasionally struggles
to determine whether attributes should be optional or belong to their own type.

Moreover, our method can identify abstract types for node types, but this capability
heavily depends on the values of the parameters abstract_type_threshold and
merge_threshold. Since the similarity computation is shared between both the
merging process and abstract type detection, if the merge_threshold is lower than
the abstract_type_threshold, types will be merged before they are considered to
have an abstract type from which they inherit. This can limit the ability to identify
abstract types accurately.

An interesting observation is that when the types of a schema are easily identifiable by
either their labels or properties, our method successfully extracts the correct schema.
In practice, when designing schemas for databases or modeling data for graphs, it is
intuitive to use either labels to define type identities or properties to specify the type.
Our method takes advantage of both labels and properties independently as defining
features for types, yielding good results in cases like the LDBC database (for labels) and
the Northwind database (for properties). Even when the data is not optimally modeled,
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we provide the label-property-based method that considers both attribute categories for
type definition.

Another significant aspect is our methods capability to handle optional attributes. For
instance, in the MB6 and Fib25 databases, the segment type feature the Segment
label as mandatory but also allow the Neuron label. In this case, the concept lattice
identifies them as distinct concepts, but our similarity computation and type merging
process successfully detects them as the same type, marking Neuron as an optional
label. We believe that PGSE is less effective in detecting these optional attributes, as it
appears to extract one extra type, likely due to the Neuron label.

Regarding our schema merging process, we found that although it is relatively simple,
the method can successfully merge schemas and detect hierarchies between the types of
both schemas. This capability is valuable for scenarios where we have multiple graphs or
dynamic datasets that evolve over time.

Our method offers a range of parameters that must be carefully tuned to achieve optimal
results. On the one hand, this flexibility makes our tool highly adaptable to various
property graph structures, but on the other hand, it requires a clear understanding of
how to adjust the parameters correctly, which may necessitate several attempts before
extracting a useful schema. This should be considered when interpreting the evaluation
results, as we only tested our method against cases where a ground-truth schema was
available, making the parameter adjustment process easier.

Validity and Conformance: We validated all our results against the PG-Schema
parser [ABD+23]. Our schemas are valid according to the schema language definition
of PG-Schema, with only minor inconsistencies observed (e.g., the use of "type" as a
property key, which is not allowed according to the PG-Schema parser). We also checked
the conformity of the input graphs with the extracted schemas. As previously mentioned,
this was always the case, except for three situations: (i) when outliers were filtered out,
(ii) when optional attributes were not allowed in the parameters, and (iii) when properties
had the same key but different data types.

Finally, we categorize our method according to the features discussed in Section 2.3:

• Scalability: Our methods primary focus is on providing useful schemas rather than
achieving the fastest processing times. The runtime analysis shows that for complex
property graphs, our method can take several minutes. Considering that very large
graph databases can contain more than a billion nodes and edges [SMS+20], the
runtime of our method may become impractically long. Based on the trend observed
in our experiments regarding the impact of graph size on runtime, processing a
billion instances would likely exceed five hours. Furthermore, since our experiments
were conducted on synthesized data and did not account for the time required to
query an actual graph database, the overall runtime in a real-world setting could be
even longer. Therefore, we conclude that our method cannot be considered scalable
for extremely large graphs.
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• Incrementality: By providing the option to merge the extracted schema with a
user-provided schema, our method fulfills the incrementality requirement.

• Stability: As outlined in Section 4, our method always produces the same schema
for a given input property graph.

• Online Capability: Our method is not able to process remote data sources.
Although it could easily be extend to have this feature.

• Hybrid: Our method is not hybrid, as it only considers the structure of the input
graph for schema discovery. However, this feature could be explored in future work.
For instance, in the LDBC dataset, we were unable to detect an abstract type
that could have been beneficial. Considering additional schema-related information
could potentially improve the detection of such types.
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CHAPTER 7
Conclusion

7.1 Summary
In this thesis, we explored the use of Formal Concept Analysis for schema extraction in
the property graph data model. We proposed a fully automatic schema discovery method
based on the FCA framework. Our approach includes multiple strategies for constructing
a formal context and deriving types from the resulting concept lattice.

Throughout the course of this work, we not only investigated the applicability of FCA but
also implemented the entire methodology, including additional processes for evaluating
and validating the results. This ensures that our method is ready for practical use by
other researchers1.

Guided by the following research questions, we developed, implemented, and evaluated
our approach:

RQ 1: How can FCA be effectively applied to discover schemas, including types and type
hierarchies, in property graphs?

RQ 2: How does the performance of the FCA-based schema extraction framework compare
to existing schema discovery methods in terms of accuracy and scalability?

RQ 3: What are the limitations of using FCA for schema discovery in property graphs?

Section 4 and Section 5 address RQ 1, where we investigated and described in detail how
data from a property graph can be utilized to construct a formal context and, subsequently,
how the concept lattice can be leveraged to identify types for a meaningful schema. Our
analysis revealed multiple viable approaches, which were therefore incorporated into our
methodology. Labels and properties serve as key attributes for characterizing types in
property graphs and were accordingly used to construct various formal context variations.

1https://github.com/JakobRH/FCA_Schema_Discovery
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7. Conclusion

The set of concepts and the corresponding concept lattice generated by FCA proved to
be a valuable foundation for identifying types and supertype relations. However, since
the concept lattice alone cannot be directly mapped to a schema to produce a practically
useful structure, we demonstrated that several additional steps, such as type merging,
enrichment, outlier removal, and abstract type identification, are essential to achieving
satisfactory results.

To address RQ 2, we compared our method against two state-of-the-art schema discovery
approaches for property graphs, using the datasets employed in the respective studies.
The results indicate that our approach not only competes with these methods in terms
of schema quality and scalability but also, in some cases, outperforms them.

Although the FCA framework proved to be highly effective for schema extraction, it
also has certain drawbacks and limitations, which we discuss in relation to RQ 3. First,
the concept lattice does not provide information about all aspects of a schema. For
example, types and labels combined with the |-operator of the PG-Schema cannot be
directly extracted. As discussed earlier, the concept lattice groups nodes and edges based
on shared attributes. However, if a type were to theoretically inherit from two distinct
types combined using the |-operator, the FCA-framework would generate two separate
concepts without indicating that they could represent a single type inheriting from both.
When considering the combination of labels using the |-operator, the detectability of such
types depends on how the concept lattice is constructed. If the lattice is based on shared
label attributes, these types would appear as separate entities. On the other hand, if the
lattice is built solely on shared properties, one would need to check, across all instances in
the graph, whether the two labels (or label combinations) occur in a mutually exclusive
manner. Even in cases where this holds true, the original schema might have defined
them as optional labels. As a result, inferring schemas that incorporate the |-operator is
only partially feasible and inherently ambiguous.

Furthermore, certain schema constraints, such as range constraints for property values or
cardinality constraints, are desirable for a comprehensive schema but cannot be derived
directly from FCA and must be extracted separately using additional techniques.

Additionally, our runtime analysis revealed that lattice computation is the most time-
consuming step in the schema discovery process. As a result, the scalability of our
approach is limited for very large graphs, presenting a challenge for practical applications
in large-scale datasets. An alternative approach could involve partitioning large graphs
into smaller subgraphs and processing them iteratively using our schema merging method.
We leave the exploration of this idea for future work.

7.2 Future Work
The method presented in this thesis is already practically applicable for schema discovery.
However, there are several areas for future work that could enhance its usability and
extend its capabilities in schema extraction.
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Visualization: Providing users with a visual representation of the extracted schema, as
well as relevant elements of the input graph, could greatly improve interpretability. A
visualization approach similar to that of Bonifati et al. [BDM22] may be beneficial.

Similarity Measures: Our method currently employs the Jaccard similarity metric
to compare types, based on sets of labels and properties. Future work could explore
alternative similarity metrics or incorporate additional characteristics of types, such as
incident edges/nodes or, for edge types, the types of their endpoints.

Type-Defining Elements: In this thesis, we defined types based on labels and properties,
constructing the formal context accordingly. However, a more intricate approach could
be considered, such as incorporating datatype values and partitioning them into ranges
or leveraging graph topology, as proposed by Lei [Lei21].

Schema Constraints: Enhancing our method, independent of the FCA framework,
with techniques to detect and infer constraints over the extracted schema would be
valuable. This would require novel techniques for analyzing the input graph and extracting
constraint-related information.

Naming of Types: Currently, our method assigns type names based on the concept ID
from the concept lattice, ensuring uniqueness but lacking semantic meaning. A simple
approach could involve using the first label or property as a placeholder for the name, but
this is highly dependent on the input graph and may result in misleading or duplicate
names. An interesting direction for future work is leveraging Large Language Models to
generate meaningful type names, considering labels, properties, and type hierarchies.
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Overview of Generative AI Tools
Used

ChatGPT (Version 4o)2 was utilized to enhance the grammar and language quality of
this thesis. However, it is explicitly stated that it did not contribute to the content in any
way beyond language improvement. All suggestions provided by the tool were carefully
reviewed for consistency and errors.

2https://chatgpt.com/
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