
An Extendable Multi-Agent
System for Thermal Comfort
Control Leveraging KNX-IoT

Semantics

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Master program Computer Engineering

by

Thomas Rapberger, B.S.c.
Registration Number 51867996

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Ass. DDipl.-Ing. Dr.techn. Gernot Steindl, B.S.c.
Assistance: Christoph Gehbauer, M.S.c.

Vienna, March 31, 2025
Thomas Rapberger Gernot Steindl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Thomas Rapberger, B.S.c.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 31. März 2025
Thomas Rapberger

iii

Acknowledgements

I want to express my sincere gratitude to Dr. Gernot Steindl. His supervision during
the preparation of my master’s thesis was invaluable. Allowing me to work on such an
interesting topic was a fascinating time, and I am very grateful for this opportunity.
Throughout the many challenges I encountered, his constructive feedback and continuous
support enabled me to further enhance this work’s quality and scientific relevance.

I would also like to thank Mr. Christoph Gehbauer, whose expertise contributed to
this thesis, especially during the literature research on topics covering advanced control
strategies in building automation.

Furthermore, I am deeply grateful to my family and friends, who supported me throughout
my studies and always helped me during challenging times.

Lastly, I acknowledge all the resources used in this thesis, as they provided valuable
insights and allowed me to expand my knowledge in various areas.

v

Kurzfassung

Während des Bestrebens, die globalen Emissionen auf ein Minimum zu reduzieren, ist es
unerlässlich, den Energieverbrauch von Gebäuden zu berücksichtigen. Zur Senkung des
Energieverbrauchs in diesem Sektor ist die Implementierung fortschrittlicherer Regelungs-
strategien zur Steuerung der Innentemperatur und anderer Verbraucher unabdingbar.
Diese Strategien müssen eine Vielzahl von Variablen berücksichtigen, wie beispielsweise
Wettervorhersagen, Belegung und die thermischen Eigenschaften des Gebäudes. Die
Steuerung großer Gebäude mit vielen Zonen kann komplex sein, da viele Variablen
in einem Regler berücksichtigt werden müssen. Eine weitere Schwierigkeit besteht in
der Entwicklung eines Systems, das sich leicht erweitern und skalieren lässt. In dieser
Arbeit wird daher ein Multi-Agenten-System vorgestellt, das mit der KNX 3rd Party API
arbeitet, um eine bestehende Technologie mit unmissverständlicher Kommunikation zu
unterstützen. Die KNX 3rd Party API dient hierbei als Schnittstelle zwischen den steu-
ernden Agenten und den Gebäude-Aktoren und -Sensoren. Da KNX als standardisiertes
Bus-Kommunikationsprotokoll entwickelt wurde, unterstützt die für die Gestaltung des
Systemverhaltens verwendete Software, die sogenannte ETS, diverse Modellierungsinfor-
mationen eines Gebäudes. Daher ist es von entscheidender Bedeutung, zu analysieren,
welche Informationen innerhalb der ETS modelliert werden müssen, um den Agenten
genügend Informationen zur Verfügung zu stellen, und welche Informationen nicht mo-
delliert werden können. Darüber hinaus wird eine Ontologie erstellt, die es dem System
ermöglicht, Flexibilität zu gewährleisten, indem verschiedene Geräte, Zonen oder Agenten
zum System hinzugefügt oder entfernt werden können. Diese Ontologie wird verwendet,
um die Fähigkeiten der Agenten zu beschreiben. Da manche Agenten zusätzliche Fähig-
keiten anderer Agenten benötigen, veröffentlicht jeder Agent die Beschreibung seiner
Fähigkeiten in einem zentralen Datenspeicher, sodass andere Agenten diese finden und
mit ihnen kommunizieren können. Die Implementierung jedes Agenten erfolgt als Mitglied
des Web of Things (WoT). Die Fähigkeiten eines jeden Agenten werden innerhalb der
sogenannten Thing-Description beschrieben. Dies ermöglicht es anderen zu erkennen,
wie eine Interaktion mit dem Agenten durchgeführt werden soll. Das System wird in
einem simulierten Gebäude getestet, um die Implementierung zu evaluieren. Im Anschluss
werden die Ergebnisse diskutiert und die Effektivität der vorgeschlagenen Lösung analy-
siert. Hierzu wird der Controller mit einer Basisimplementierung verglichen, sowie die
Erweiterbarkeit und Skalierbarkeit des Systems untersucht.

vii

Abstract

In an effort to reduce global emissions to a minimum, the energy consumption of buildings
must also be considered. To reduce power consumption in this sector, more advanced
control strategies for controlling indoor temperature and other consumers have to be
implemented, including a variety of variables, e.g., weather predictions, occupancy,
thermal characteristics of the building, and many others. Controlling large-scale buildings
with many zones can become quite complex as many variables are considered at one
controller. Furthermore, developing a system that allows it to be easily extended and
scaled poses another difficulty. Therefore, this thesis proposes a Multi-Agent System
(MAS) that operates on the KNX 3rd Party interface to facilitate existing technology with
unambiguous communication. This interface will act as a bridge between the controlling
agents and the building actuators and sensors. As KNX was developed as a standardized
bus communication protocol, the software called Engineering Tool Software (ETS), which
is used to design the system’s behavior, does not support a great variety of modeling
information for a building. Therefore, it is essential to analyze which information has
to be modeled inside of the ETS to provide enough information for the agents and
which information cannot be modeled. Furthermore, an ontology is created that allows
the system to become flexible in the sense of adding and removing different devices,
zones, or agents to the system. This ontology is used to describe the skills of each agent.
Moreover, each agent also requires additional skills from other agents. Therefore, each
agent publishes a description of its skills to a central data storage to allow other agents
to discover these skills and communicate with the corresponding agent. Each agent is
implemented as a member of the Web of Things (WoT). The skills of each agent are
described inside of the Thing Description (TD), as this allows others to identify how an
interaction with the agent is carried out. The system is tested on a simulated building
in order to evaluate the implementation. It is shown that the system achieves better
performance than a benchmark controller and that it can be extended easily.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Problem description . 1
1.2 Research Questions . 3
1.3 Methodology . 4

2 State of the Art 7
2.1 Basic Concepts of Ontologies . 7
2.2 Building Control with Multi-Agent Systems 11
2.3 Multi-Agent System Development Methodologies 12
2.4 Web of Things . 19
2.5 Relevant Parameters for Thermal Control Strategies 21
2.6 BOPTEST . 27
2.7 KNX . 28

3 Proposed System Design 31
3.1 Use Case Description . 31
3.2 Multi-Agent System Design . 32
3.3 Skills Ontology Modeling . 41
3.4 KNX Semantic Modeling . 45
3.5 Extension of the Thing Description . 48
3.6 Proof of Concept - Multi-Agent System Implementation 54

4 Evaluation Results 63
4.1 Controller Performance . 63
4.2 Extendability of the Multi-Agent System 68

5 Discussion 73
5.1 Analysis of the Proof of Concept Implementation 73

xi

5.2 Discussion of Research Question 1 . 74
5.3 Discussion of Research Question 2 . 75

6 Conclusion and Future Work 79

Overview of Tools Used 81

List of Figures 83

List of Tables 85

Acronyms 89

Bibliography 91

CHAPTER 1
Introduction

Buildings are one of the primary energy consumers, as they account for about one-third
of the energy produced worldwide [GTPLC+22]. They also contribute in large numbers
to the CO2 emission. Based on the IEA, residential buildings directly produced about 2
Gt of CO2 [IEA23]. In recent years, there has been a growing trend towards sustainable
energy resources and the careful use of these resources to drastically reduce greenhouse
gas emissions. Single-family homes, as well as office buildings and industrial plants, have
the means to convert their energy in order to reduce emissions and lower the operating
costs of buildings. Photovoltaic systems, heat pumps, and batteries provide consumers
with different quantities of energy at different times. Also, net providers use Renewable
Energy Sources (RES) and sell them at varying prices as their generation depends on
the environment. Furthermore, buildings are equipped with increasingly more sensors,
allowing them to track user presence or measure the outdoor temperature making the
controllers more intelligent, flexible and efficient in achieving the users requirements.
Nevertheless, reducing greenhouse gases further requires more complex control strategies
as more variables are considered. This requires accurate modeling of the optimization
functions. In the following, a flexible and decentralized system is proposed that is able
to include different controllable assets within a building.

1.1 Problem description
KNX1 is a prominent standard for controlling buildings. It enables the integration of
many different components to create basic control systems. However, there are many other
technologies due to the emergence of the Internet of Things (IoT) that are installed and
interacted within the building. This led to a proliferation of different protocols, which lead
to interoperability issues between devices is no longer guaranteed. To overcome this issue,

1https://www.knx.org/knx-en/for-professionals/index.php

1

https://www.knx.org/knx-en/for-professionals/index.php

1. Introduction

the Web of Things (WoT) [Con] was established that allows one to semantically describe
what information a device can offer. It also regulates how devices can communicate with
each other to create an open standard that every vendor can participate in. This allows
WoT devices to exchange information without knowledge of a specific communication
protocol. This is particularly important in the building domain, as devices from many
manufacturers need to work together to achieve a common goal.
However, this brings with it another problem: the large number of variables in the
system leads to a very complex system with many volatile variables and uncontrollable
constraints. These include, for example, the weather, which greatly influences the indoor
temperature of buildings. Energy companies offer their services at varying prices and
at different times. Controllers are therefore required to also adapt to these variations.
Moreover, the energy demand in the building is not constant, as occupancy and outdoor
conditions influence the indoor temperature. In order to regulate the thermal comfort
of a room, it is necessary to consider several additional factors, including occupancy,
shading, ventilation, CO2 levels, and others.
A common approach for controlling these variables is to use a Building Management
Systems (BMS). This can be done at one central point, i.e., the data for each room is
gathered at one unit that solves the optimization problem. By using an accurate model of
the building, very precise results can be achieved. Creating such a model is very complex
and requires identifying unknown parameters of the building. These models become
convoluted, and finding an optimal solution will be even more complex [FLZ+22].
One solution to this problem is to simply address the optimization problem of each
zone individually. This approach reduces the complexity of the problem, as it no longer
has to consider all variables simultaneously. Also, other advantages are given with this
approach, as the system can be scaled more efficiently as different zones can be created
and removed as required. These zones will optimize a smaller subset of the global problem,
e.g., the thermal comfort in a zone. For each zone, a problem-solving instance is created
that communicates with other instances to achieve its goals. One example of such a
communication is that the instance optimizing the thermal comfort in a zone acquires
information of an instance having knowledge about weather predictions. This distributed
method is often referred to as a Multi-Agent System (MAS).
When a system consists of multiple entities, communication between the entities is an
important part. In addition to the usual requirements for a communication medium,
such as transmission security, throughput, etc., there is another important property
that such a system should have: the ability to share knowledge consistently. Existing
systems are often designed in such a way that only those who understand what data is
being exchanged and its meaning can participate in the network. The use of ontologies
creates a knowledge base that eliminates ambiguity. Especially in times when existing
infrastructure is being retrofitted with new components or control strategies, uniform
communication is vital. Ontologies are a suitable solution to that ensure that future
components can be integrated into the system. As already described, added devices
should also know how to interact with the system, and the existing agents should also be

2

1.2. Research Questions

able to interact with these devices. Unified interaction can be achieved using standards
like WoT. Therefore, this research aims to increase the efficiency of building controllers
by utilizing a MAS, which uses semantic messages to exchange information.

1.2 Research Questions
As mentioned, KNX is a well-established standard of building automation and represents
a possible candidate for overcoming the problem of ambiguity in BMS since they are
currently developing a new standard called the KNX-IoT 3rd Party Application Program-
ming Interfaces (API) This API is part of the KNX-IoT standard and should enable any
devices to extract semantic information from the system as well as control individual
components in the building. Currently, not all relevant data for a MAS can be modeled
with the Engineering Tool Software (ETS) software tool provided by KNX, which is
used to develop a BMS. Therefore, the question of what information has to be modeled
within the KNX system so that different optimization strategies like rule-based or Model
Predictive Control (MPC) can retrieve knowledge and optimize a building. Some of
this data will never be provided by KNX as its purpose is to create a standardized
communication for actuators and sensors in a building. Therefore, it necessitates the
research of what information is not provided by a KNX model and the KNX 3rd Party API
to determine which additional information must be added when developing a KNX-IoT
system to ensure that all essential data is available for a controlling system.

Research question 1:
What information has to be additionally provided along the KNX-IoT infor-
mation model in order to be capable of controlling and optimizing the thermal
comfort of a building with a multi-agent system?

The next step is to use the information provided by a uniform building interface, like
KNX, to develop a framework that optimizes the use of a building. Any controller will
be able to access information via the KNX-IoT interface and can also directly control
actuators. However, it must be considered that components can become defective and
have to be replaced. Also, new components and zones can be added during the lifecycle of
a building. To ensure the system stays operational, existing controllers must be informed
about these changes. In the best scenario, the system takes responsibility for changes
and recent integrations of devices and zones without requiring further input from the
user. However, at least within the context of the KNX-IoT system, these components
and zones must undergo another integration process since devices and usages of rooms
are configured when implementing the KNX project.

Since devices can be added to the building at any time, it is plausible that new controllers
will be added as well. Therefore, the Multi-agent System should allow the integration
of new agents at runtime with as little user interaction as possible. This raises another
problem: how do agents know what functionality other agents provide? An example

3

1. Introduction

that illustrates this use case is the installation of a heat pump in a building. The agent
responsible for energy-efficient heating should now consider the newly integrated device
with its controlling agent, as it can generate hot water at a lower cost. The system needs
to recognize the new device and determine what it can do. To solve this problem, the
capabilities of all agents are described by an ontology to later facilitate matching between
an agent that provides a capability and an agent that is looking for a specific capability.

Research question 2:
What is an appropriate architectural design within a multi-agent building
energy management system to facilitate a semi-automatic integration by using
existing information from the KNX IoT interface to provide a scalable and
extendable energy optimization solution?

1.3 Methodology
To answer the first research question, a literature review was carried out to identify
the most important parameters. Special interest was given to the heating of buildings
as this is the pronounced energy consumer. Therefore, primarily the IEEE Xplore,
MDPI, and ScienceDirect were queried for the following to identify relevant literature:
building control, thermal modeling, optimization techniques, and control strategies. By
systematically analyzing references from initial sources, further studies on heat transfer,
system identification, and predictive control were identified. These studies contribute
to the understanding of HVAC performance and building energy management. As the
prevalent heating system in Europe is radiator heating, it was necessary to be determined
which inputs and outputs are needed in this scenario. This work contributes to identifying
the most significant parameters. A parameter is considered in this thesis if it is relevant
for a controller that increases the comfort of the inhabitants, e.g., controlling the indoor
temperature, lighting, or ventilation. Furthermore, a parameter must be essential for
this controller or at least contribute to the overall goal of improving the user experience.
A parameter that does not meet these criteria was excluded from further consideration.
With this information, it is possible to discover if the modeling possibilities in the KNX
ETS software allow modeling those that are relevant for thermal control. The discovered
parameters were evaluated during multiple discussions with an expert in this field, who
provided extensive feedback and approved the final selection.

In order to find a remedy for the problem formulated in the second research question, a
MAS, as a proof of concept, was implemented. This system is the first iteration of the
artifact in the Design Science Research framework to show the feasibility of the developed
approach. To design the agents that are present in such a system, the methodology
Multiagent Systems Engineering (MaSE)[DWS01] was used. As mentioned briefly, special
attention has been given to how to make the system scalable, s.t. the installation of new
physical components with their corresponding agents will not result in ample integration
effort. The proof of concept was implemented to operate on a simulated building to provide

4

1.3. Methodology

fast and comparable results. To evaluate if the MAS facilitates effortless integration of
new components during simulation, different changes to the system were made, and it
was analyzed how much interaction with the system is necessary to include the new agent.
Furthermore, the effectiveness of the controller was analyzed by computing the total
discomfort and the total energy consumption. Thermal discomfort and energy demand
are the considered performance indicators for quantitatively evaluating the controller’s
performance. Furthermore, typical scenarios that occur over the lifetime of a building
were considered to provide a qualitative evaluation of the proposed system. These three
scenarios include integrating new equipment, scaling the number of zones, including new
agents, and replacing existing ones.

5

CHAPTER 2
State of the Art

This chapter briefly describes the most relevant topics and the concepts used for the
implementation are elaborated. To understand how the proposed system operates, the
basic concepts of an ontology, a MAS, the WoT, and the parameters that can be used
for controlling thermal comfort inside of a building are briefly explained. Ontologies help
to create an unambiguous understanding of a system, s.t. all agents of a MAS, which
might be implemented at different lifetimes of the building, have the same understanding
of exchanged information as well as their capabilities. For describing these capabilities,
the WoT can provide the means of a unified interface. The parameters used to model
the behavior of the building are explained to understand which information is relevant
when controlling different aspects of a building.

2.1 Basic Concepts of Ontologies
Ontologies help to represent knowledge and can be used to model systems. A detailed
description of ontologies and their creation can be found in [AH11]. However, the most
important contents are summarized here. Special attention must be given to unambiguity
when modeling systems that are extensible. Suppose a temperature value is transmitted
from a sensor to a controller in a BMS. For a newly added component to an already
existing system, it might not be clear what this value means because it could be the current
measurement value of a zone, a setpoint, or a control value for a heater. All of these
values are temperatures, but they have different meanings. Similar to Object-Oriented
Programming (OOP), they all derive from the class temperature value. Ontologies have
some similarities to object-oriented programming in that they permit the definition of
classes and the assignment of subclasses to them. In the previous example, one would
define the class TemperatureValue, which has the subclasses MeasuredValue, TargetValue
and HeaterSetpoint.

7

2. State of the Art

Furthermore, the classes must be related to each other. The simplest relation is the
hasSubclass-relation. A relation is called an object property, and it is also defined in
ontology. For instance, a class that represents a room in a building could have an
object property hasSensor that allows it to be associated with different sensors, such as
temperature or presence sensors. The TemperatureValue, hasSubclass, and TargetValue
form a triple of the type subject, predicate, and object. These triples are created with the
Resource Description Framework (RDF)[CWL14], which is a core utility of the Semantic
Web, which is a promotion of the web to a semantic level.

In contrast to typically used web pages, the Semantic Web also links data presented on
pages with a reference called Unique Resource Identification (URI), which is additionally
machine-readable. By uniquely identifying the data displayed on websites, the prolif-
eration of static references shall be avoided. Updates are, therefore, distributed to all
pages that reference such a triple. Also, search engines support reading these RDF-triples
to allow more accurate results. In the Semantic Web, ambiguity can be resolved by
referencing an already-defined triple. As mentioned, ontologies have some similarities to
OOP, but they also are different in many cases. OOP is only defined for a software system,
while ontologies are publicly accessible, s.t., they are reused and extended. Ontologies
rely on the fact that they are reused by others, as creating individual ontologies for
every system would defeat the purpose of unambiguity. Furthermore, ontologies use
an extension of RDF called Web Ontology Language (OWL). In [vHM04], additional
features are presented, which include cardinalities, equalities and other properties.

As already mentioned, it is important for ontologies to be reused by others. Suppose
each system was developed with a new ontology. Then, this would not fulfill the purpose
of an ontology because different devices from different manufacturers would not be able
to exchange data with each other. Ontologies must, therefore, be accessible to others
s.t. they can be used consistently. This allows developers to include those that are
appropriate for their domain and to reuse concepts that are used there. Known ontologies
in the building domain are briefly described below:

• Brick [BBF+16]: This ontology describes metadata in buildings. This includes,
among other things, the equipment, the data points, and the structure of the
building.

• QUDT [FAI15]: This ontology models a large set of quantities, units, dimensions,
and types. It can be used, for example, for units of temperature values.

• SAREF [GCLPVD23]: This ontology can be used for modeling smart applications.
SAREF offers several parts for different domains, such as Energy, Buildings, Smart
Cities, and the SAREF Core. The latter contains concepts for the general modeling
of smart applications.

• KNX Information Model [KNX23]: KNX is developing an ontology that should be
automatically generated when implementing a KNX installation. This exported

8

2.1. Basic Concepts of Ontologies

ontology can be used to generate an API that enables the user to interact with the
building by reading sensors, setting control variables, or extracting basic information
about the building structure.

• Real Estate Core (REC) [HWKH19]: With this ontology, a building with its assets
can be semantically described as classes about many building elements and types
of equipment are provided. The Brick ontology also heavily relies on this ontology,
by reusing these types instead of creating new ones.

A system can be modeled by combining different ontologies, usually a so-called domain-
specific and standardized ontology or sometimes referred to as an upper ontology. The
domain-specific ontology is mainly relevant to the system itself since it is highly specific
for this system and an upper ontology that enables a common vocabulary [INC08].
Different ontologies are also used in the system presented in this thesis, but in this case,
there are more than two. Still, they can also be divided into a generic ontology and
a domain-specific ontology. The generic ontology is intended to ensure that the data
exchanged is interpreted consistently. The ontologies mentioned above, as well as others,
are used for this purpose. Another important ontology is the one that classifies the skills
of the agents. This is explained in more detail in the next section.

2.1.1 Skills, Resources and Products
In order to build a modular agent-based system, the agents must be able to communicate
with each other, even if they are not from the same manufacturer. To provide the means
of unambiguous communication, an ontology can be used that describes a common
dictionary s.t. agents can exchange knowledge about their capabilities. Therefore,
creating this ontology is an important step that needs to be done carefully. In the system,
agents are looking for other agents that can help to better solve their own goals, e.g., an
agent controlling indoor temperature can look for knowledge about weather forecasts.
Therefore, it is essential to describe the capabilities of the agents. These capabilities are
made public by the agents so that other agents can use their knowledge. The ontology
aims to fully describe the capabilities of the agents so that they can describe their
required capabilities as well as their own skills. This description of requirements can also
be found in the skill-based engineering of industrial automation systems [Dor20]. The
aim here is to produce products faster and more cost-effectively by reusing machines.
This method should make it possible to describe production steps as skills, s.t., various
products that can make demands on the production facility when manufacturing them.
These requirements should now be matched with the skills in order to provide suitable
resources to carry out the production steps. These concepts are defined in more detail in
[MBW+18].

In skill-based engineering, a basic distinction is made between the product, which is
manufactured through a sequence of production steps, a resource such as a robot, and
a capability. The product goes through several production steps, which are described

9

2. State of the Art

by various requirements. Resources represent machines that are significantly involved in
production. The capabilities of the resources are also described semantically. To define
the capabilities of the resources, domain experts create descriptions that computers can
then interpret. Flowcharts are created to determine the requirements during production,
and the required skills are defined for each manufacturing step. The challenge here is
that the manufacturers of machines, and therefore also describers of the given skills and
producers of products, could use different vocabularies. Ontologies offer a remedy here
as they can be reused and expanded as required.

Another type of skill description can be found in [RWG+24], where the differences between
agents and digital twins are explained. In order to classify the differences and similarities,
the purposes, properties, and capabilities of each system are determined. The purpose
describes the future state to be achieved and is divided into different categories: planning,
scheduling, control, diagnosis, user assistance, monitoring, virtual commissioning, and
process optimization. The properties are used to characterize the system after it has
achieved its goals and are grouped into the following categories:

• Fidelity: Fidelity indicates how accurately the real system is captured by the
constructed abstraction and how precisely it can be interacted with.

• Intelligence: An intelligent system can react appropriately to changes in the
environment. Entities in the system must be able to decide how to respond to
changes as they sense their environment.

• Autonomy: Entities with this property operate continuously without user interven-
tion.

• Sociability: This property is assigned to entities that communicate with others. A
key characteristic is that the participants exchange information.

Finally, a total of 24 different capabilities have been defined. These can be used to
identify how the system will reach its goals. Some of them are presented below:

• Adaptability: The system is able to adapt to changes in the system itself.

• Condition Monitoring: To achieve the goal, the system can capture its environment.

• Mobility: Nodes are able to move within the network without losing their program
state.

• Pro-activity: The system achieves its goals by facilitating a strategy like rule-based
controllers.

• Prioritization: The system can prioritize different tasks and receive messages to
solve its given problem.

10

2.2. Building Control with Multi-Agent Systems

This classification into purpose, properties, and capabilities allows a much more flexible
design since no explicit processes need to be known, only the intention and capabilities
of an agent. Therefore, this classification could also be used to define the capabilities of
agents within a MAS. However, this flexibility comes with a certain degree of imprecision.
For example, using this procedure to define the production steps would result in a less
precise classification compared to the findings when using the skill-based engineering
methodology mentioned before. Overall, a trade-off will be necessary to unambiguously
define the capability of an agent’s skills without reducing the flexibility of the system.
This way, agents can be added or exchanged during the system’s operation.

Besides using concepts like these for skill-based engineering, they can also be adopted for
the purpose of creating an interoperable system. Instead of defining the skills required
for the fabrication of a product, the capabilities of the individual agents in a MAS have
to be specified. In the same fashion, agents will then be able to discover each other based
on which information they require. For example, a temperature-controlling agent may
also facilitate the information of a weather prediction agent by finding the corresponding
skill provided by an agent.

2.2 Building Control with Multi-Agent Systems
MASs have found great support in building control as they can work on complex tasks
by sharing their knowledge with other agents. One advantage of agents is that they are
capable of learning about their environment [YSX+21]. This allows them to adapt to
changes and also work under unexpected situations. In [DB00], a system is proposed that
allows runtime reconfiguration. This property is fundamental as buildings are currently
adapted to operate on RES, which is why equipment might be replaced at any time.
As presented in [MMK24], control algorithms are becoming increasingly sophisticated.
Model-based algorithms like MPC help to provide more accurate results by leveraging
detailed mathematical equations that represent the building’s thermal behavior. Model-
free approaches are also used in MAS, as they do not require the tedious step of creating
such a model. Instead, an agent perceives the environment and learns about how the
actions it applies influence it. Nevertheless, approaches that do not require a model
are based on a learning algorithm that also requires a thorough understanding of its
underlying mechanisms. Both approaches are currently used in MAS, as they provide
the means for learning, perceiving, and interacting with their environment as well as
exchanging information.

A crucial asset of agents is their information exchange, which requires an unambiguous
vocabulary. This is a challenge in many MAS, especially when a system is designed to
be extensible. The Semantic Web offers a remedy to this problem as it provides the
means for standardized communication [MKA+23, RCR17]. By exchanging information,
it is possible to apply divide-and-conquer mechanisms that solve complex problems by
delegating many small sub-problems to other agents. This is particularly important for a
building energy management system, as the number of zones to control varies for each

11

2. State of the Art

building. Therefore, a flexible and scalable solution is desirable. When implementing a
MAS, these properties can be achieved by designing a structured communication [SMK24].
Nevertheless, many of the reviewed papers face the problem of not having a standardized
way of interacting with the building. Therefore, this thesis also explores how a MAS can
be deployed on existing infrastructure, such as KNX.

2.3 Multi-Agent System Development Methodologies
As building automation systems become more complex and have to take into account a
greater number of variables, an approach is required that does not consider the complete
problem at one point but distributes a subset of it to multiple units. One way to
partition the problem is using a MAS that acts as a building energy management system.
Splitting the problem allows the agents to solve each sub-problem themselves, and by
communicating with other agents, the overall goal is solved based on the solutions of the
individual agents. This approach, called divide-and-conquer, is a well-known approach
in computer science and is often used for complex problems to achieve a solution faster
through parallelism. Another benefit such an approach brings with it is the separation
of different controllers. A centralized approach is less flexible as components cannot be
removed or added as easily, which also reduces the ability to be contentiously operational
even during the failure of one component.
A critical problem of the agents, which is not easy to solve, is their communication.
This aspect is often not described in detail in classical system modeling methods and,
therefore, requires a different methodology designed for MASs. This section explains the
basics of MASs, and then the different methodologies for creating such are presented.
Finally, one methodology has been chosen to be used for developing this system.

2.3.1 Background and Key Concepts
Agents are used in a wide variety of areas, which is why there are different definitions
for them. In [DKJ18], various MASs were examined in order to establish a standardized
definition:

An entity that is placed in an environment and perceives various parameters
that are used to make a decision based on the entity’s goal. Based on this
decision, the entity performs the necessary action in the environment.

In this definition, the entity is an agent that resides in an environment, e.g., a controller
for optimal thermal comfort inside an office building. This environment can vary in
complexity, depending on the parameters that the agent can read. An agent always
tries to achieve a certain goal. This does not necessarily have to align perfectly with the
overall system goal but contributes to the overall target by fulfilling its objective.
The agent can influence the system through its actions. For example, to control the valve
position of a radiator, one essential parameter would be the zone identifier of the zone

12

2.3. Multi-Agent System Development Methodologies

with the radiator to control. With this information, the agent gathers information on
the preferred setpoint and how the temperature must be adjusted. However, the systems
are not always as simple as here, as there are often influencing variables that cannot be
predicted, and the agents must, therefore, continuously react to their environment. For
example, when the sun shines through the window and increases the temperature inside.

Agents are often used in combination with artificial intelligence. Since agents can perceive
their environment, they are also able to learn something about it. The agents can
exchange the gained knowledge with other agents in order to solve the complex problem
collectively.

In [PEFST13], agents are assigned the following properties: Autonomy, reactivity and
pro-activity.

• Autonomy: This means that the agent can work independently, i.e., it pursues
its own goals and is not dependent on assistance from components outside of the
system to achieve its desired result.

• Reactivity: As already mentioned, an agent constantly reacts to changes in its
environment in order to reach its goal and stay there.

• Pro-activity: Furthermore, an agent must achieve its goal without being told to do
so, i.e., it is always searching for a better solution.

This also aligns if the first definition of an agent that states similar properties, apart
from the autonomy. Nevertheless, this is an important skill of an agent.

Most of the time, a fourth characteristic is assigned to agents: Sociability. This means
that agents can communicate with each other and exchange knowledge about their
respective areas of responsibility [PEFST13].

Agents can be composed into multiple modules that interact with each other. An agent’s
structure in an energy management system has been defined in [WXHG07]. The agents
can perceive the environment with sensors and monitor the received data to detect changes.
In this case, the agent will decide how to react to this event and apply corresponding
actions to the environment. Furthermore, an agent can exchange messages with other
agents via a communication module. The structure is also depicted in Figure 2.1. This
typical agent structure is later also used when implement the MAS.

MASs are capable of solving complex problems. The divide-and-conquer strategy divides
the overall problem into smaller sub-problems. Each agent considers only one part of
the problem, so fewer variables need to be considered for that part. A key feature
for success is that agents are able to communicate with each other. In the review
[MSC+19], a detailed introduction to MASs in the energy sector is given, as well as
the Agent Communication Language (ACL) is analyzed. Agents can use two different
types of languages: a standardized ACL like the one defined by the Foundation for the

13

2. State of the Art

Other Agents

Communication Module

Execution
Module

Thinker and
Decision

Reasoning
Module

Execution
Module

Environment Perception
ModuleAgent

Exotic Environment

Figure 2.1: The structure of an agent in energy management systems [WXHG07].

Intelligent Physical Agent1, which defines a syntax [FIP] that can be used to exchange
messages, or relying on a principle that facilitates the use of existing or specifically
created ontologies[Frü21]. The latter would make it possible to create a system that can
be easily extended without knowledge of the standardized ACL, while the first solution
has to be created during the design process with designated methodologies.

Furthermore, MASs can be easily extended. As all agents can communicate with each
other, the system can also scaled without great effort. As described in[DKJ18], a MAS
still differs from expert systems and object-oriented programs. Both are not as flexible
as MASs because their communication partners are predefined, and object-oriented
programs are often not designed to exchange semantic information.

These differences are also noticeable in the methodologies for developing complex systems.
Since communication is essential in MASs, special attention must be given to this when
designing such a system. For this reason, scientists have considered methodologies for
developing MASs.

As briefly mentioned above, there are similarities between MAS and object-oriented
programming. This is not the only area that has similarities to MASs, as a Microservice
System (MSS) also has some similarities. It is, therefore, understandable that the
question arises as to where the differences between the two systems lie and whether a
MSS would not be more suitable. This question was also addressed in [WCOLO19], and

1http://www.fipa.org/

14

http://www.fipa.org/

2.3. Multi-Agent System Development Methodologies

the differences were clarified. Both concepts divide the tasks into several sub-areas. In
addition, separate resources are used to solve each sub-area, s.t. several computers or
at least separate processes are required. Another key similarity is that both systems
are scalable. This means that nodes can be added and removed as required. Another
important feature of both systems that is essential for their function is the sociability of
the participants. Agents exchange semantically enriched messages, while RESTful APIs
are often used in a MSS. The autonomy of both systems is also similar, as both agents
and microservices operate independently without human intervention.

However, as stated in [WCOLO19], MSS and MAS are already somewhat different when
the reactivity of the two systems is compared. A microservice has been developed to
answer Hypertext Transfer Protocol (HTTP) requests. An agent, on the other hand,
perceives its environment and reacts to changes. Pro-activity is also a major difference
between the two systems, as an agent acts continuously and does not wait to be notified.
This is different from MSS because a microservice only starts to work when it receives a
request to do so. Both concepts can also be combined, which is also done for the proof of
concept.

2.3.2 Multi-Agent System Design Methodologies
As there are many different methodologies for designing a MAS, it is important to find the
right one for the corresponding use case [Frü21]. The following section briefly describes
three of them in order to explain why a particular methodology has been selected. Some
of the most used methods are Gaia, MaSE, and PASSI.

Gaia

The Gaia methodology [WJK00] requires an agent or the system to fulfill several require-
ments before the system can be modeled:

1. Agents have enough capacity to solve the assigned problem. So they need to run
on a computer or some other device.

2. Agents do not work against each other but follow a common goal.

3. The implementation is independent of the programming language or the system on
which the agent acts.

4. The MAS is static, which means that agents cannot be added to the system during
operation.

5. The functions of the agents do not change while the system is active.

6. Gaia allows you to design a system with a maximum of 100 different agents.

15

2. State of the Art

The basic process of Gaia can be seen in the figure 2.2. There are two phases in this
method: the analysis phase and the design phase. The analysis phase aims to retrieve a
description of the system based on the requirements. Then, roles can be defined along
with interactions that there will be. Roles are comparable to activities that have to
be carried out in the system. An agent can be responsible for one or more roles and
take on the associated responsibilities, authorizations, activities, and protocols. The
responsibilities define what should be achieved in this role, but also what should be
prevented. Activities are used to specify the individual tasks that are necessary to fulfill
the responsibilities. Finally, the protocols define how they communicate with other roles,
as help from others might be necessary. Gaia will not be used for developing the MAS,
as it requires agents to be static.

Requirements

Roles Model Interactions
Model

Acquaintance
ModelAgent Model Services

Model Design

Analysis

Figure 2.2: The fundamental process of Gaia[WJK00].

MaSE

Another commonly used methodology for creating MASs is one called MaSE. As with
Gaia, this method involves going through an analysis and design phase. In each phase,
different steps are performed, most of which involve the creation of diagrams. The steps
are usually performed in sequence. However, certain processes may be performed several
times to consider the findings of earlier iterations. This might be necessary as some
specialties are only noticed later. The phases of MaSE are described in detail in [DWS01]
but are also briefly discussed below.

As can be seen in Figure 2.3, this methodology involves several steps. First, the goals
of the system are defined and organized hierarchically. To give an illustration, the goal
optimal thermal comfort could have the sub-goals optimal temperature, optimal humidity,
and optimal CO2 level. The advantage of defining system goals is that they rarely change
over time compared to other general descriptions of systems. The functional requirements
serve as the first reference point from which the goals can be extracted.

The second step is to create use cases for the system. These are not based only on the
previously defined goals, but they help if they are already defined, as the goals can be
easily covered when defining the use cases. It is important to pay special attention to the
possible communications in the system, as the interaction with each other is of particular

16

2.3. Multi-Agent System Development Methodologies

Requirements

Goal
Hierarchy

Use Cases

Sequence
Diagrams

RolesConcurrent
Task

Conver-
sations

Agent Classes

Agent
Architecture

Deployment
Diagrams

Capturing Goals

Applying Use
Cases

Refining Roles

Creating Agent
Classes

Constructing
Conversations

Assembling
Agent Classes

System Design

D
eisgn

Analysis

Figure 2.3: The phases of MaSE [DWS01].

interest. Sequential diagrams are created based on the use cases. Tentative roles are
assigned to participants in the defined use case. For example, an interaction between
optimal temperature and weather forecasts may be necessary.

The methodology’s third step requires defining roles in the system. Similar to Gaia, roles
can be thought of as assigned areas of responsibility. The tentative roles of the sequence
diagrams help to create the actual roles. Roles are often directly assigned to a goal or at
least extracted from one. This is also a requirement for completing this step, as more
roles have to be assigned as long as some goals are not fulfilled by a role. Roles always
consist of at least one task, which will also be specified in a task diagram. It is important
to distinguish between persistent and transient tasks. In [DWS01], a transient task differs
from a persistent task as the transient has to wait for a specific event. For example,
an agent that controls room temperature continuously regulates the temperature, while
an agent that controls outdoor lighting waits for an event, the detection of a person.

17

2. State of the Art

Once the analysis phase has been completed, there should now exist a MaSE Role Model
diagram showing the roles, their assigned tasks, and the interaction between the roles.

The following steps are part of the design phase, which aims to create a complete
system design. The first step involves creating the agent classes. In this phase, roles
are combined into classes. The interactions between roles are maintained, but here, the
relations represent a semantic message exchange between agents. External resources such
as databases are also added to the diagram to obtain a complete view of the whole system.
The semantic communications are represented in more detail in additional diagrams.
There are always two diagrams required for each communication: one for the initiator of
the message and one for the receiver of the message. This step also includes how an agent
class reacts to erroneous messages. The last two steps describe the internal structure of
the agents and finally model the system. The necessary agents are instantiated during
these steps.

PASSI

The Process for Agent Societies Specification and Implementation (PASSI) methodology
is described in [CS14], but the essentials are summarized here. The phases are similar
to those of MaSE, but each consists of multiple sub-tasks, which are also described in
much more detail. This method is primarily used in large projects with many agents,
as at the end of each phase, documents are created that summarize the results. These
are then used in the subsequent steps. Moreover, graphs are created during this process,
similar to MaSE, but here they are Unified Modeling Language (UML)-based graphs.
The phases performed in PASSI are briefly described below:

1. System requirements: Initially, the use cases are identified and recorded in detail.
The second task is to define the agents and assign them to specific functionalities
within the system. The use cases serve as a basis for this. Roles and their tasks are
then defined. It also holds for this methodology: An agent plays at least one role,
which consists of at least one task.

2. Agent society: In this phase, the dependencies between agents are modeled. An
ontology is created, which is used to exchange messages between agents. Information
can be exchanged via existing protocols, or a new one is created and clearly described
in this phase. Finally, the roles of the agents are recorded in a document. As agents
can play different roles, it is defined here when the agent plays which role.

3. Agent implementation: As the name suggests, this phase documents how the agents
are structured and how they behave. A distinction is made between the whole
MAS and the individual agents.

4. Code: In this step, the agents are created based on the implementation. PASSI
tries to keep the effort low by using reusable programs.

5. Deployment: Finally, the agents are instantiated in the system.

18

2.4. Web of Things

In the PASSI methodology, the individual tasks described above are always assigned to
different people. For instance, a domain expert is required to specify the use cases once
they have been identified. Therefore, modeling with this methodology is very detailed
and thorough. It requires serval documents which is only essential for large projects.
This is why MaSE has been chosen to model the MAS.

2.4 Web of Things
The WoT is a specification that is intended to help avoid the large fragmentation of
IoT protocols. The standard has been developed to enable the vendors of IoT devices
to offer a uniform interface to create simple interoperability. Devices are called Things
and require a so-called Thing Description (TD). This description is a requirement as it
defines how devices can interact with each other, as well as what capabilities a device
has. Each interaction point can be referenced with a Uniform Resource Locator (URL).
By uploading the TD to a central server, called the Thing Description Directory (TDD),
other devices in the network can retrieve the TD of other Things in the network and
gain knowledge on how to interact with others.

The following explanations are based on the detailed descriptions in [KKM23] but have
been summarized here. The TD is created in a special JavaScript Object Notation
(JSON) format called JSON for Linked Data (JSON-LD). Therefore, the TD always
consists of key-value pairs, but with JSON-LD, it is possible to connect JSON and RDF.
Consequently, linking to external resources inside of the TD is possible. This allows
using a standardized vocabulary when defining the Thing’s properties. Some mandatory
attributes are required to create a valid description. One of these is title, to give an
example. The specified value is only used by the end user to easily recognize the device.
Another mandatory attribute is @context, which can specify a list of keys used in the
TD. This list always refers to an ontology describing the attributes used in the file. A
unique identification number is specified with the optional id field. The specified value
corresponds to a URI.

The functionality of a Thing is defined using properties, actions, and events,
which are also known as interaction affordances. Properties can be used to query an
internal status, such as a measured temperature value. Actions and events can be used
to perform an action or subscribe to a specific event. A useful value for the interaction is
the @type, which semantically describes the returned value. The value specified here is
usually defined within an ontology, which must be included in the context beforehand.
Each interaction affordance requires an endpoint through which the corresponding service
can be called. The forms attribute is therefore required for this. Not only a link but
also further information about how the interaction can be defined here.

An example of a TD can be found in Listing 1. The context contains an additional
attribute, namely brick, which is included in line 3. The value refers to the Brick
ontology. The Thing has only one affordance to interact with: getSetpoint (line
11). As can be seen from the description of this affordance, it requires the specification

19

2. State of the Art

of an input. The type of this input is of a type defined in the brick ontology, namely
a zone identification number. The device responds with an ordinary number of type
brick_Air_Temperature_Setpoint. The interaction must be started with the
specified link and query the data with a POST method. The content of the message
contains the zone ID encoded in JSON-LD format.

1 {
2 "@context": [
3 "https://www.w3.org/2022/wot/td/v1.1",
4 {"brick": "https://brickschema.org/schema/Brick#" }
5],
6 "id": "urn:uuid:12345-temp-cntrl-6789",
7 "title": "Temperature Controler",
8 "securityDefinitions": { "nosec_sc": { "scheme": "nosec" }},
9 "security": "nosec_sc",

10 "actions": {
11 "getSetpoint": {
12 "title": "Get setpoint for zone",
13 "description": "Returns the setpoint for a given zone.",
14 "input": {
15 "zoneId": {
16 "type": "string",
17 "@type": "brick:Zone",
18 "description": "The ID of the zone."
19 }
20 },
21 "output": {
22 "@type": "brick:Air_Temperature_Setpoint",
23 "type": "number",
24 },
25 "forms": [
26 {
27 "href": "http://tempcontroller/actions/getSetpoint",
28 "contentType": "application/json",
29 "method": "POST"
30 }
31]
32 }
33 }
34 }

Listing 1: Example of a Thing Description.

A Thing can, therefore, be a server that can be interacted with using various HTTP
methods. There are currently various frameworks that can be used to automatically
create a server from a TD. One of these is node-wot2, which is based on JavaScript. The
advantage of this framework is that it allows the use of complex TD containing different
contexts, thus incorporating the essential functionality of JSON-LD. As mentioned above,
a TDD is used to publish the description of the device. WoT-Discovery is a key feature

2https://github.com/eclipse-thingweb/node-wot

20

https://github.com/eclipse-thingweb/node-wot

2.5. Relevant Parameters for Thermal Control Strategies

that allows Things to find each other [MTCT23]. The simplest way to discover other
Things is just to provide a link to the TD. Another option is to use a directory, the TDD.
Here, all descriptions are simply added. Such TDD should also support updating a TD
and avoid creating duplicates of the same instance.

Additionally,SPARQL Protocol and RDF Query Language (SPARQL) [SH13] helps to
create complex queries on RDF to fetch only those TD of relevance. A server that
implements all the required functionality is wot-hive3. Various HTTP methods can be
used to add, remove, or modify TDs.

The combination of MAS and the WoT have already been researched in [RCR17]. In this
paper, the behavior of animals is analyzed with multiple agents. One essential benefit
of the WoT is that communication is standardized, allowing humans and computers to
query information from the system quickly. As the interface is machine-readable and
accessible through the Web, it is possible that a common goal can be divided and assigned
to multiple agents and that the agents exchange results.

2.5 Relevant Parameters for Thermal Control Strategies
The parameters relevant to implementing different control strategies are presented in this
section. It is important to understand which factors are relevant for most controllers, as
this information has to be queried in the MAS. This data ranges from the characteristics
of the building envelope to the type of heating system and occupancy predictions.

If MPC[DAC+20] is used to implement a control strategy, many parameters are required.
These controllers facilitate a model to predict how inputs to the system would change
the measured value. For example, when controlling the indoor temperature, a thermal
model of the room is used to predict how inputs and external factors influence the
temperature. Then, the inputs for the next k time steps are calculated to achieve the
desired temperature. After the first step, the calculations are repeated to account for
errors.

When using MPC for controlling the temperature inside of a building, a thermal model
of the whole building is used to predict how disturbances and heat inputs will change
the indoor temperature. The most common approach when creating such models is an
Resistor–Capacitor (RC) model, where thermal resistances and capacitances are used to
create an analogous electrical circuit, allowing the use of electrical engineering methods
when solving the problem. The concepts of RC modeling are now further elaborated.

A wall is constructed of multiple layers that act as an insulator and have the ability
to store heat. These resistances and heat storage elements can also be interpreted as
electrical resistances and capacitances. This allows the thermodynamic processes to be
represented in an electronic system, where each construction layer represents an RC
circuit. A series of RC components can represent an entire wall. The analogue of a

3https://github.com/oeg-upm/wot-hive

21

https://github.com/oeg-upm/wot-hive

2. State of the Art

heat source is a voltage source that can also be modeled in the electronic circuit. The
appropriate differential equations for the RC circuits must be identified and translated
into a state space representation to determine the indoor temperature for a given outdoor
temperature and heat load. The procedure is also explained in more detail in [BULA+19].

Usually, these sophisticated models can be avoided for simpler methods like rule-based
controllers[BB14]. Nevertheless, it is essential to know the type of heating system present
in the building since the rules for controlling a radiator differ from those for controlling an
electric air heater. Therefore, the following section briefly summarizes the most relevant
parameters. Many considerations are made for MPC because this control strategy is very
effective and widely used in the scientific community and because simpler controllers rely
on a subset of these parameters.

2.5.1 Parameters of Building Envelope Models
The thermal model of the envelope is a very important asset for thermal control. Therefore,
developing such a model is an important step that can be carried out in different ways.
A white-box model can be created if all physical parameters are known. Such models
have high complexity, which makes it hard to use optimization algorithms. According to
[PDKH17], such models are commonly only used in building energy simulation software
as extracting these parameters is quite complex. Therefore, data-driven models called
gray-box and black-box models are used instead. The black-box model automatically
determines and continuously adjusts the parameters based on algorithms, which are also
used to estimate these. The problem with black-box models is that they lack reliability
because they are trained to work only for the inputs they were taught. If the real building
receives abnormal inputs that are outside this range, the model may produce incorrect
outputs. Gray box models are a combination of the above. They depend on a subset
of the envelope parameters or linearize the state space to reduce complexity and also
use learning algorithms to determine more relationships between parameters or unknown
coefficients [AAC+15, DAC+20]. Hence, gray box models are commonly used for thermal
models of buildings.

Creating a gray box model requires information about the building envelope, such as
the dimensions, approximate resistances, and capacitances, which allows the learning
algorithm to find the optimal solution without getting stuck at a local optimum. In
[CFM+19], an RC model was created for a two-story building, which can be applied to
any other building. Equation 2.1 presents a simplified typical heat balance equation used
in a controller to calculate the air temperature within a zone.

Cz
dTz

dt
= Twall − Tz

Rw/2 + Tamb − Tz

Rwin
+ Tattic − Tz

Rattic

+ w1 · Qloss + w2 · Qhvac + w3 · Qsol (2.1)

The air capacity of the zone Cz, the temperature inside the zone Tz, the temperature of
the wall Twall, the temperature of the attic Tattic, and the ambient temperature Tamb are

22

2.5. Relevant Parameters for Thermal Control Strategies

considered. Additionally, the thermal resistance of the wall Rw, the window Rwin, and
the attic Rattic, as well as the building heat loss Qloss, the heating and ventilation gains
Qhvac, the solar gains Qsol, and a weighting factor wi are included in the analysis.

Indoor and outdoor temperatures can be measured easily, while determining the wall
temperature is not trivial. Some approaches try to estimate this state, while others rely
on a measurement or prediction of it. As mentioned, the RC parameters can be provided
by a white box model or a learning algorithm, but they still have to be determined at
some point for the controller.

2.5.2 Gains Through Solar Radiation
An important factor when considering the indoor temperature of a building is the gains
through solar radiation. These can vary heavily during different times of the day and
the year. A very detailed analysis has been carried out in [EM15]. The most important
findings are summarized next.

There exist three primary ways in which heat can be transferred from solar radiation to
the internal mass inside of a building. This mass is represented by the walls and interior
and the internal air, which heats up differently than the heavy mass. The ways how the
heat is transferred are the following:

1. Direct transmission through the glazing.

2. Radiation emitted by the glazing due to thermal absorption of the window.

3. Convective heat is also released by the window as it absorbs radiation from the sun.

All of these methods heat heavy internal masses. Therefore, the surfaces themselves
transfer heat to the indoor air temperature, which affects thermal comfort. The result-
ing equation, 2.2, describes the Solar Response Factor (SRF), which defines the total
convective heat flow from the indoor air temperature.

SRF = SRFt · τg + SRFr · rg,r + rg,c (2.2)

The formula consists of the SRF by direct transmission and the radiation of the window,
represented by SRFt and SRFr. τg, rg,r and rg,c, which are the solar transmittance of
the glazing, the solar energy absorbed by the glazing and then released as radiation
and convection, respectively. rg,r and rg,c require information about the shading of the
window, the area of the window, the solar radiation, and the G-factor of the window,
which represents the solar transmittance through the glazing. SRFt depends on the
absorption coefficient of the wall, the area of the wall, the thermal resistance of the
material, the reflectivity of the material, and the surface factor, which is a complex
number that describes the periodic and steady heat flow across the surface of the wall.
SRFr also depends on the dimensions of the room, the area of the window, the radiant
heat transfer coefficient of the glazing, and the complex surface factor of the window, in

23

2. State of the Art

addition to the thermal resistance of the window. For the final estimation of the solar
heat gain, a Fourier analysis must be performed. The equation 2.3 gives the Fourier
series with period P = 24 hours and order N .

Qsol(t) = Ag ·
[︄
SRF · Ig +

N∑︂
n=1

|SRFn| · |Ig,n| · cos

(︃2πn

P
· t + ϕSRFn

)︃]︄
(2.3)

Ag, SRF , Ig, Ig are the area of a given window, the mean solar irradiance, and the
measured solar irradiance.

Even more factors have to be considered, as the external walls and the roof are also
exposed to direct solar radiation. These masses also gain, store, and transmit heat. How
this can be modeled has already been explained in the previous section. Nevertheless,
the solar effects have to be explained more thoroughly. In [CFM+19], the equations to
include the solar gains are presented. These are also briefly explained here:

Tsol,w = αw

h
· Fw · Ig + Tamb (2.4)

Tsol,r = αr

h
· Fr · Ig + Tamb (2.5)

α and F are the absorption coefficient and the view factor, respectively. The convective
heat transfer h can be estimated with the following formula [JWC96]:

h = 5.7 + 3.8 · Sw (2.6)

where Sw is the current wind speed.

With this information, the RC model can be refined. The variables Twall and Tattic given
in equation 2.1 can be determined with the following equations:

Cw
dTwall

dt
= Tsol,w − Twall

Rw/2 − Twall − Tz

Rw/2 (2.7)

Cr
dTattic

dt
= Tsol,r − Tattic

Rroof
− Tattic − Tz

Rattic
(2.8)

2.5.3 Parameters of HVAC systems
Many controllers like the MPC can calculate the necessary heat input Q for a zone.
However, this value is not feasible to be given as input for, e.g., the KNX 3rd Party API
as this requires a concrete control value, like a partial load or a valve position. Therefore,
a controller placed in an actual building must calculate inputs that need to be applied.
In the case of radiator heating, a valve position may be relevant, while in the case of
Air Conditioning (AC) cooling, a percentage value representing the partial load may be
utilized. The actual values depend on the Heating, Ventilation and Air Conditioning
(HVAC) system, as well as its interface. Therefore, the heating system itself must be
specified. For the purpose of this research, only radiator heating will be assumed, as it is
one of the most prominent heating systems in Europe.

24

2.5. Relevant Parameters for Thermal Control Strategies

For this purpose, a heat curve has been derived in [LBW+22, PDKH17], which can be
used to determine the supply water temperature for the heating emission system. The
resulting equation is also given in 2.9, and the equation for determining the relative heat
load is given in 2.10.

Tsup = Tset +
(︃

Tsup,n + Tret,n

2 − Tz

)︃
· Q

1/m
rel + Tsup,n − Tret,n

2 · Qrel (2.9)

Qrel = Qcur

Qnom
= Tlim − Tamb

Tlim − Tair,n
(2.10)

The supply water temperature Tsup, the zone setpoint Tset, the nominal supply water
temperature Tsup,n, the nominal return water temperature Tret,n, the current heat input to
the zone Qcur, the nominal heat load Qnom, the heating limit temperature where heating
is still required Tlim, and the nominal outdoor air temperature Tair,n are considered in
this equations.

The heating limit temperature is the minimal outdoor temperature at which the heating
system can provide sufficient heat and typically varies with different climate zones.

Finally, a function to calculate the valve position has been presented in [TBB+21]. The
equation to determine the control value is also given in the equation 2.11.

uvalve = 1
1 + e−αv(Tset+To−Tz) (2.11)

αv and To are constants to modify the slope of the sigmoid function and the offset
temperature that is used to account for temperature differences between the temperature
sensor and the temperature at the valve. This function represents a sigmoid function.
This comes with a problem as it never reaches 0 or 1. Nevertheless, this problem can
easily be prohibited by rounding to a certain number of decimal points.

Additionally, ventilation and air infiltration, i.e., unwanted air exchange due to leakage,
also play an important role, as presented in [CFM+19]. The presented formulas allow for
this estimation of complex effects. These equations are also given below.

Qvent = Cp · V · ρ · (Tamb − Tz) (2.12)
Qinfli = Cp · Cw · Sw · (Tamb − Tz) (2.13)

Cp, V , ρ, and Cw are the specific heat capacity of air, the mass flow rate, the air density,
and a coefficient to scale the wind speed, respectively.

2.5.4 List of all Parameters
Table 2.1 presents a list of all parameters. Some additional variables are listed, such as
outputs from the controller to adjust actuators in the building. Also, the information

25

2. State of the Art

about the user’s preferred setpoint and energy costs are essential, as MPC implements a
cost function that needs to be minimized. This function usually consists of the deviation
from the setpoint and the total energy costs. Finally, it is shown whether parameters must
be instantiated (I.) or whether they can be learned (L.). However, a starting condition is
usually given to learn a parameter to guide the learning algorithm in the right direction.
If parameters are known in advance, they obviously do not need to be learned and can
be instantiated as well. The classification into these categories is not predefined and may
differ from implementation to implementation. Some of the presented parameters are
also identified in [GLW23], which includes a table with some relevant parameters.

Variable Description Unit Source I./L.
DNI Direct normal irradiance W/m2 Forecast -
DHI Diffuse horizontal irradiance W/m2 Forecast -
Tout Outdoor dry-bulb temperature °C Forecast -
Sw Wind speed m/s Forecast -
Pequip Equipment power use W Prediction L.
Qocc Sensible occupant load W Prediction L.
Oz Occupancy prediction for in zone z 1 Prediction L.
Renergy Rate for energy €/kWh Forecast -
Rdemand Rate for power demand €/kW Forecast -
µ HVAC heating efficiency 1 Setting I.
cop Cooling coefficient of performance 1 Setting I.
QHV AC_lim HVAC power limit W Setting I.
Tset Thermostat setpoint °C Output -
Uboi Boiler load 1 Output -
Tsup Supply water temperature °C Output -
uvalve Control value for a valve 1 Output -
V Mass flow rate of ventilation kg/s Prediction L.

R
Thermal resistances of building materi-
als W/K Setting L.

C
Thermal capacitance of building mate-
rials J/K Setting L.

Cair Thermal capacitance of indoor air J/K Setting L.
Cim Thermal capacitance of internal mass J/K Setting L.

Zdim
Dimension of a zone (length, width,
height) m Setting I.

Ag Area of the glazing m2 Setting I.
Tsup,n Nominal supply water temperature °C Setting I.
Tret,n Nominal return water temperature °C Setting I.
Qnom Nominal heat load W Setting I.

Continued on the next page

26

2.6. BOPTEST

Variable Description Unit Source I./L.

To
Temperature offset between sensor and
valve °C Setting I.

F
View factor for exterior walls, the roof,
and all windows 1 Setting I.

G G factor of glazing 1 Setting
α Absorption coefficients of materials 1 Setting L.

ρ
Reflectance of the internal and external
walls 1 Setting L.

S Surface factor of internal walls 1 Setting L.
wi Weighting coefficients - Setting L.
Cw Wind speed scaling coefficient - Setting L.

Table 2.1: List of all relevant parameters.

These parameters allow the implementation of many different controllers. If the KNX 3rd

Party API interface provides these, sophisticated controllers can be implemented without
additional information.

2.6 BOPTEST
A helpful tool for evaluating the performance of a controller is BOPTEST [DJS+21],
which is why it is also used for evaluating the proof of concept. It comes with several
building models that can be instantiated with different scenarios4. These scenarios allow
the user to simulate the thermal behavior of the building for a desired period, as well as
different energy price modes. The system also allows the collection of data in the building
that would usually be measured by sensors. In addition, input signals such as setpoints
can be passed to the simulation via a RESTful interface5. The simulation is controlled
with an endpoint that advances the simulation time for a specified number of seconds.
Another feature of BOPTEST is that it calculates a set of key performance indicators
ranging from thermal comfort dissatisfaction to total energy consumption, which can be
used to evaluate the controller. Since many control strategies such as MPC also require
predictions of the weather and occupancy, there is also an endpoint to query forecast
data.

Another advantage of BOPTEST is that it allows users to work with a simulated building
without developing a model, which is a highly complicated task and requires knowledge of
the tools used for this purpose. As mentioned above, a RESTful API allows accessing the
runtime environment. The emulator containing the simulated object can be instantiated
with different test cases. For each test case, there is information about some building

4https://ibpsa.github.io/project1-boptest/
5https://ibpsa.github.io/project1-boptest/docs-design/index.html

27

https://ibpsa.github.io/project1-boptest/
https://ibpsa.github.io/project1-boptest/docs-design/index.html

2. State of the Art

parameters that can be used for advanced control strategies. After specifying which test
case shall be simulated, a date is specified and a specific price scenario, that can either
be constant, dynamic, or highly dynamic.

After the initialization of the scenario, the simulation can be advanced using the
/advance endpoint by a desired number of seconds, which is specified using the /step
endpoint. In order to apply control values to the simulated building, the corresponding
values are passed when calling the advance endpoint. Since BOPTEST comes with a
benchmark controller to compare the results of newly implemented controllers, the corre-
sponding control signal must be overwritten if a value other than the one provided by the
benchmark controller is to be applied. For example, if the radiator valve is supposed to
be fully opened, the input conHeaLiv_oveActHea_u is set to 1 (as the allowed values
range from 0 to 1), but also the overwrite-bit conHeaLiv_oveTSetHea_activate
has to be set to 1. Note that the name of the input also indicates that the valve position
for the radiator in the living room will be changed.

The key performance indicators can be queried at any time to determine the effectiveness
of the controller. This can be done with the /kpi endpoint. Data relevant to controlling
the indoor temperature, like the zone temperature, can not be queried directly. All
current states are returned after advancing the simulation. Nevertheless, this interface
allows thermal controllers to be tested very efficiently. Also, it allows for the comparison
of different controls as their settings can be repeated as desired.

2.7 KNX
KNX is a standard used in building automation. It defines a protocol used to exchange
data between components in buildings. Mainly equipment like heaters, air conditioning,
blinds, and lights can be controlled with KNX. For communication, the devices use a bus
that follows the KNX specification. Other devices, like agents in a MAS, can, therefore,
not participate in the same network without the use of a gateway that translates incoming
requests from the agents to KNX messages and vice versa for responses. The functionality
of such a device is currently specified in the KNX-IoT 3rd Party API6. It allows devices
outside of the KNX network to communicate with the KNX devices by sending HTTP
messages to the KNX-IoT 3rd Party API Server, which is responsible for translating the
incoming requests.

To be able to provide functions for each device inside of the building, the KNX designer
models the system with a software provided by KNX called the ETS. Each physical device
inside the building capable of KNX must also added to the software model. Furthermore,
the functionalities are implemented, and communication between devices is specified. If,
for example, a light switch should control a specific light actuator, then a communication
object is created and assigned to both of the devices. This object is then used when an
action at the light switch is detected. Sophisticated models can be implemented to reduce

6https://support.knx.org/hc/en-us/sections/4404385397010-KNX-IoT-3rd-Party-API

28

https://support.knx.org/hc/en-us/sections/4404385397010-KNX-IoT-3rd-Party-API

2.7. KNX

energy consumption and increase the automation of the building to achieve greater user
comfort and a better user experience. Once the model is complete, it can be exported
from the ETS and imported into the KNX-IoT 3rd Party API to allow other devices to
access these communication objects.

The exported file semantically describes the modeled system. KNX created an ontology,
called the KNX Information Model, that is used to describe systems that can be modeled
with the ETS [KNX23]. This ontology has four primary parts:

• Core model: With this model, an asset, with its devices and the corresponding
software, is defined. The software consists of an application program, which is
hosted on a device and implements a functionality. Multiple points can be assigned
to a functionality. A point is used to interact with a device by reading or sending
data.

• Location model: This can be used to describe the model of the building, i.e., the
floors, rooms, spaces, etc.

• Tag model: Tags are used to provide any additional information. For example,
a device can have the tag tag:EquipmentType to provide information about
which equipment it actually is. This can be used to differentiate between a switch,
an actuator, and a vent.

• KNX model: This model is used to describe the concepts used inside the KNX
system. It specifies how the devices are implemented inside of the ETS.

Therefore, the functionality of the KNX gateway is solely based on the actual implemen-
tation inside the ETS. When developing the KNX functionality in the ETS software, the
designer can also provide additional data apart from the usual communication between
the devices. The software allows the creation of a rough building model by creating
spaces, floors, and rooms. These can also be assigned a function, which could be kitchen
or bathroom, among others. Devices can then be assigned to specific rooms, and the
communication objects that are used in the system can be linked to these arbitrary
functions.

These additional modeling options do not affect the system’s behavior, but within the
KNX-IoT 3rd Party API, they will be used for the server that allows access from other
devices. For example, when creating a model of the building, it is possible to query
which devices are present inside a specific zone. Therefore, internal resources can be
located based on their assigned room and functionality. External devices can then identify
which functions are available based on the assignments. For some control strategies, this
information might be necessary. A control system implemented as a MAS requires to
know which rooms are controlled by an agent.

The current modeling options are quite limited. Only very trivial design methods are
possible. For example, modeling the structure of the building is quite restricted. as it is

29

2. State of the Art

not even possible to define a floor level or specify which rooms are adjacent. Furthermore,
assigning devices to rooms is also not unambiguous, as it does not state if these devices
are located in this room or control it. For instance, a lighting actuator might be located in
a distribution box that is not inside the room it controls. As the development of the API
is currently not finished, this problem might be solved in future versions. Nevertheless,
to this date, this is an unsolved problem.

As KNX’s main usage is creating building automation, and it is not certain that they
will ever include typical information given in a Building Information Model (BIM), there
is a gap between the generated ontology and the necessary data provided in section 2.5.
Simple controllers, like rule-based systems, might not require additional information, as
they can operate with very few details. However, more advanced strategies might require
an additional source of information to be fully operational.

Nevertheless, every controller requires some data. In Table 2.2 is a list of all data that
must be queried from KNX. In a later chapter, it is analyzed whether this data can be
provided by KNX or if additional information needs to be inferred.

Name Description

Temperature-
controlled rooms

An essential information is which rooms are actually temperature
controlled. A unique zone ID can be used to query other databases
containing additional information later.

Heating system The heating system employed in the building (e.g., radiators and
floor heating).

Cooling system Determine which components are used to cool the building.

Sensor data

This comprises all observable data from the building. These include
metrics such as occupancy load, current zone temperature, inputs
from users like preferred setpoints, current weather measurements,
consumed energy, and numerous others. This data must be queried
from the ontology and serve as inputs to the controllers.

Actuator data Outputs in Table 2.1 must therefore, also be applied via the KNX
3rd Party API, which requires them to also be given in the ontology.

Table 2.2: List of parameters that should be provided by the KNX Ontology.

30

CHAPTER 3
Proposed System Design

In this chapter, the implemented system is presented. The first section explains the
modeling of the MAS. The MaSE methodology was used to discover a set of possible
agents, as this is essential for describing which skills have to be modeled in an ontology.
The development of the skills is explained in Section 3.3. A test case was chosen and
implemented with the ETS, in Section 3.4. Furthermore, the semantic export is analyzed
to determine what information can be described within the ETS software. Before the
agents are finally implemented, the skills are embedded into the TD of each agent in
section 3.5. The final section explains the implementation of the MAS. It presents how
each agent is created and how they compute control values for the simulated building.

3.1 Use Case Description
The test building simulated by BOPTEST is depicted in Figure 3.1. It consists of eight
zones, while only the living room Liv, the bathroom Bth and the three bedrooms Ro1,
Ro2 and Ro3 are equipped with controllable radiators. The attic, which is not given in
the picture, and the garage are unconditioned. At the same time, the hallway Hal does
have a radiator, which cannot be controlled to make sure that a water flow is always
possible through the emission system. The rooms that are equipped with a radiator also
have air conditioning installed to cool the building during summer, as the weather is
emulated from climate data given in Bordeaux. A gas-powered boiler is used to heat
water inside the emission system. Additionally, a three-way mixing valve and an emission
pump can be controlled.

The system design is depicted in Figure 3.2. It consists of the MAS, the ontologies,
the KNX 3rd Party API, the KNX system, and the building. Furthermore, there is a
component labeled BOPTEST, which is used instead of an actual building in the proof
of concept. The MAS consists of multiple agents, each with a corresponding TD. The
TDD is used to discover other agents, as each agent will publish its TD there. In the

31

3. Proposed System Design

Figure 3.1: The multizone residential hydronic building from BOPTEST1.

TD, an agent also describe its skills with the vocabulary defined in the Skills Ontology.
To interact with the building, a KNX model is created, which consists of all actuators,
sensors, zones, and communication objects used by the KNX components. This model
can then be exported as an ontology, depicted as KNX Ontology. This ontology can be
imported into the KNX 3rd Party Server, denoted with KNX IoT API. Currently, the
KNX IoT Server only supports the provided example ontology. Therefore, the agents
do not directly interact with the building, or in this case, the simulation; instead, they
are are querying BOPTEST directly. In Figure 3.2, the building and the KNX 3rd Party
Server are shown grayed as these components are not used in the implemented proof of
concept. Nevertheless, the system is highly flexible, allowing the replacement of only
the agent responsible for interacting with the building if the KNX IoT Server supports
other exports. The component BOPTEST is also marked differently, namely with dashed
lines, as it is used for testing purposes. A real-world implementation would not have this
component.

3.2 Multi-Agent System Design
The first step involves the selection of a suitable MAS development methodology. In
order to justify the choice of a particular methodology, it is necessary to have a basic
understanding of the requirements of the desired MAS. It should include different agents
with different tasks. The control of the internal zone temperature is of key interest.
The occupancy of the room and the outside temperature should be taken into account,
but only if data is available. This allows the agent system to be modular and different
functions to be added or removed at runtime. This is a challenge as dynamic MAS

32

3.2. Multi-Agent System Design

Building

KNX
Onotlogy

KNX

KNX IoT API

Agent

Agent

Agent

MAS

Skills
Ontology

WoT
TD

WoT
TD

WoT
TD

TDD

BOPTEST

Figure 3.2: The proposed system design.

are not described in every methodology. As required by the Gaia methodology, such
systems are unsuitable for modeling. The Gaia methodology also requires agents that
do not change their abilities. Nevertheless, suppose one considers an agent capable of
making predictions about the weather only if it has access to the necessary information.
In that case, this agent is also a dynamic structure and, therefore, unsuitable for the
aforementioned methodology.

With the PASSI methodology, on the other hand, the modeling process is very detailed
and thorough. It also involves the creation of several documents along the process, which
is essential for large-scale projects. For the required system, this imposes an overhead
that is not as beneficial as it would be for extensive systems. Therefore, the MaSE
methodology has been applied to construct a typical system that could be situated in
a building automation system. The achieved system is then used to determine which
agents are present. This step is crucial for developing the MAS and determining which
skills have to be described in an ontology. With these descriptions of the skills, the agents
inside the system can publish their abilities and search for other agents that might help
them achieve their goals.

The methodology for discovering the relevant agents has been applied to a universal
system consisting of many use cases. The agents that will later be implemented are only
a subset of those to show how the developed ontology can be used.

33

3. Proposed System Design

3.2.1 Methodology execution
As mentioned in the chapter explaining the MaSE methodology, the first step is to discover
the goals of the system based on the requirements. Multiple goals were considered to
describe a wide range of skills later. One goal is that the system controls the user’s
comfort, e.g., illuminance, temperature, and CO2 levels. While doing so, it should also
minimize energy consumption by preferably utilizing RES, but also utilize to other energy
sources if necessary. This goal has the following subgoals:

• The system reaches maximal comfort for all occupants present, considering their
preferred setpoints of all types.

– A controller will determine the suitable control values based on a reconciled
setpoint.

– Disturbances and other influencing factors are predicted and considered during
the calculation of the control values.

• The system optimizes energy efficiency.

– To optimally utilize RES, a unit will have to predict the energy demands as
well as the costs for it.

– A controller will distribute the available energy inside the building to different
consumers, i.e., batteries, electric vehicles, HVAC systems, and others.

These are just some goals of the system. Also, there are many additional subgoals to the
already provided ones. The main functionality can be summarized by the following:

The system is able to control the zone air temperature, lighting levels, and ventilation.
It determines the setpoints the users prefer and finds a consensus setpoint to achieve
maximal comfort averaged over all occupants. Weather and occupancy forecasts are
also taken into account. To reduce energy costs, the net price has to be determined.
Furthermore, the power consumption of electric vehicles, HVAC, domestic water, and
other equipment must be estimated to optimize the available resources across the building.
To achieve this goal, the energy generation has to be predicted as well. An energy mode
shall also be considered s.t. homeowners can save energy during more extended periods
of absence. The complete goal hierarchy can be seen in Figure 3.3.

Although the goals stating optimal occupancy comfort and energy efficiency are very
vague, they cover all of the essentials for implementing a BMS. One additional goal is very
important to the success of this system: The system has to be flexible enough s.t. it can
adapt to changes in the building. A possible use case is that a building is retrofitted with
photovoltaics, and the generated energy needs to be allocated throughout the building
as well as considered during the calculation of the energy costs. The main functionality
that helps to achieve this goal is a TDD. In this case, agents can publish their TD, which
contains information about their skills to allow other agents to discover them.

34

3.2. Multi-Agent System Design

1.
1.

1
M

ax
im

iz
e

us
er

co
m

fo
rt

1.
1.

1.
1.

1
D

et
er

m
in

e
te

m
pe

ra
tu

re
co

nt
ro

l

1.
1.

1.
4.

1
D

et
er

m
in

e
pr

ef
er

re
d

us
er

se
tti

ng
s

1.
1.

1.
2.

1
Pr

ed
ic

t
w

ea
th

er
fo

re
ca

st

1.
1.

1.
2.

2
Pr

ed
ic

t
oc

cu
pa

nc
y

1.
1

O
pt

im
iz

ed
 c

on
tro

l

1.
1.

2
O

pt
im

iz
e

en
er

gy
ef

fic
ie

nc
y

an
d

po
w

er
di

st
rib

ut
io

n

1.
2

Fl
ex

ib
le

 S
ys

te
m

1.
2.

1.
2

Ad
ve

rti
se

fu
nc

tio
na

lit
y

1.
2.

1.
1

D
is

co
ve

r
fu

nc
tio

na
lit

y

1.
 A

ut
om

no
um

ou
s

Bu
ild

in
g

En
er

gy
C

on
tro

l S
ys

te
m

1.
1.

1.
1.

2
D

et
er

m
in

e
illu

m
in

at
io

n
co

nt
ro

l

1.
1.

1.
1.

3
D

et
er

m
in

e
ve

nt
ila

tio
n

co
nt

ro
l

1.
1.

2.
1

Pr
ed

ic
t e

ne
rg

y
ne

ed
s

an
d

co
st

s

1.
1.

2.
2

O
pt

im
iz

e
po

w
er

 d
is

tri
bu

tio
n

ac
ro

ss
 s

ou
rc

es

1.
1.

2.
3

D
et

er
m

in
e

en
er

gy
 m

od
e

1.
1.

2.
1.

2
Pr

ed
ic

t e
ne

rg
y

co
ns

um
pt

io
n

pe
r c

on
su

m
er

1.
1.

2.
1.

3
Pr

ed
ic

t e
ne

rg
y

ge
ne

ra
tio

n

1.
1.

2.
1.

1
Pr

ed
ic

t e
ne

rg
y

ne
t p

ric
e

1.
1.

2.
2.

1
Ba

la
nc

e
po

w
er

 fr
om

 P
V,

ba
tte

ry
 a

nd
 g

rid

1.
1.

2.
2.

2
D

is
tri

bu
te

 e
ne

rg
y

op
tim

al
ly

 to
co

ns
um

er
s

1.
1.

2.
3.

1
Ef

fic
en

cy
,

co
m

fo
rt,

 c
os

t s
av

in
g

op
tio

ns

1.
1.

2.
1.

1.
1

Pr
ed

ic
t

en
er

gy
co

ns
um

pt
io

n
fo

r
EV

1.
1.

2.
1.

1.
2

Pr
ed

ic
t

en
er

gy
co

ns
um

pt
io

n
fo

r
H

VA
C

1.
1.

2.
1.

1.
3

Pr
ed

ic
t

en
er

gy
co

ns
um

pt
io

n
fo

r
ot

he
r c

on
su

m
er

s

1.
1.

2.
1.

1.
4

Pr
ed

ic
t

en
er

gy
co

ns
um

pt
io

n
fo

r
do

m
es

tic
 w

at
er

1.
1.

1.
2

Pr
ed

ic
t

in
flu

en
ci

ng
fa

ct
or

s

1.
1.

1.
1

D
et

er
m

in
e

co
nt

ro
l

va
lu

es

1.
1.

1.
4

D
et

er
m

in
e

zo
ne

pr
ef

er
en

ce
s

1.
1.

1.
4.

2
R

ec
on

ci
le

pr
ef

er
en

ce
s

1.
1.

1.
4.

1.
1

D
et

er
m

in
e

pr
ef

er
re

d
te

m
pe

ra
tu

re

1.
1.

1.
4.

1.
2

D
et

er
m

in
e

pr
ef

er
re

d
illu

m
in

at
io

n

1.
1.

1.
4.

1.
3

D
et

er
m

in
e

pr
ef

er
re

d
hu

m
id

ity

1.
1.

1.
2

R
ea

d
bu

ild
in

g
co

nd
iti

on
s

1.
1.

1.
3

Ap
pl

y
co

nt
ro

l
va

lu
es

Figure 3.3: The goal hierarchy of the proposed MAS.
35

3. Proposed System Design

reconreconcile

ReconciliationZone
Preferences

Preferred
User Settings

Building
Conditions

Determine Zone Preferences

users

get users in zone

get preferences

preferences
reconcile

user preferences

zone preferences

Figure 3.4: The sequence diagram depicts how the zone preferences are determined.

The next step in the MaSE methodology is to apply use cases, which are then depicted in
sequence diagrams. Here, tentative roles will be defined to indicate interaction between
roles. Figure 3.4 shows such a sequence diagram. It depicts the steps carried out to
determine the zone preferences. The role responsible for the zone preferences must know
which users are in the zone. Therefore, the first step is to get this information from the
building conditions role. This role is the interface to the building and has knowledge of
all the current sensor and actuator states. Here, the role is not named Building Interface,
even though this would seem more intuitive, as in this step of the methodology, only
roles are considered. The actual software components are extracted in subsequent steps.
The zone preferences role queries the building conditions role to determine the preferred
setpoint of each user present in the zone. The zone preferences role now interacts with
another role called Reconciliation, which can reconcile multiple preferred setpoints to
determine a harmonized setpoint for a given zone. After this step, any other role can
query these calculated zone preferences and use these for their computations.

Another important sequence of interaction is that used by the role that computes the
control values, which is depicted in Figure 3.5. It fulfills the goal of maximizing the
comfort and minimizing energy costs. To accomplish this, it has to acquire information
from multiple other roles. The first step is to determine the current discomfort, which is
done by querying the building conditions role to retrieve the current settings, i.e., indoor
temperature, humidity, and illuminance levels. Also, current and future predictions about
energy prices are acquired. After receiving each user’s preferences, the role can finally
compute the current discomfort. Forecasts about the weather are also fetched before
computing the subsequent control values. Finally, the occupancy and the energy mode
are considered, and the next inputs are determined.

36

3.2. Multi-Agent System Design

Determine
Control Values

Weather
Forecast

get occupancy

Zone
Preferences

get weather forecast

compute control
values

get zone preferences

Occupancy

zone preferences

weather forecast

occupancy

Maximize comfort and minimize energy costs

Apply Control
Values

update control values

apply
controls

Building
Conditions

building conditions

get building cond.

Energy Mode

get energy mode

energy mode

Energy Price

get energy price

energy price

Figure 3.5: The sequence through which the role that determines the control values has
to go through.

Note that most of the roles are optional, so if, for example, no weather predictions are
available, determining the control values will not fail. Instead, the agent responsible for
this role will continue to use default values or work around the missing data completely.
Moreover, the actual data that is exchanged may also vary. For instance, the occupancy
agent could only provide information about the current occupants or additionally provide
predictions, which again could be based on previous observations or fixed schedules set by
the users. Nevertheless, once the control values are computed, the role sends its updates
to the role responsible for applying them to the actuators.

Every goal given in the goal hierarchy depicted in Figure 3.3 has to be covered by at
least one sequence diagram. Nevertheless, not every goal must be covered by an explicit
sequence diagram, as some goals are combined into one sequence diagram. For example,
the sequences are identical for determining the preferred temperature, illuminance level,
and humidity.

In the third phase of MaSE, the roles are defined. As roles have already been used in
the previous step, the task here is to verify that the tentative roles actually cover all the
goals. Furthermore, roles can be combined or split into multiple ones if necessary. As
this step is closely related to the previous step, new interactions between roles might
be found, which entails that the sequence diagrams have to be revised. The resulting
role model, given in Figure 3.6, depicts the roles that have been discovered. Arrows
between roles indicate an interaction between them, e.g., the determine control values
role interacts with roles named energy needs and costs, occupancy, energy mode, zone
preferences, predict weather and building conditions, which has already been presented in

37

3. Proposed System Design

the previous step when explaining the sequence to determine the control values. Each
role also specifies which goal it covers. For example, the role that acts as the building
interface, namely building conditions, covers the goals read building conditions (1.1.1.2)
and apply control values (1.1.1.3).

Building
Conditions

1.1.1.2,
1.1.1.3

Occupancy
1.1.1.2,

1.1.1.2.2

Energy Mode
1.1.2.3

Predicted Energy
Production
1.1.2.1.3

Predicted Energy
Consumption

1.1.2.1.2

Predict
Weather
1.1.1.2,

1.1.1.2.1

Preferred User
Settings
1.1.1.4.1

Zone
Preferences
1.1.1.4.2,

1.1.1.4

Energy Needs and
Costs
1.1.2.1 Net Price

Prediction
 1.1.2.1.1

Distribute
Energy

1.1.2, 1.1.2.2

Determine Control
Values

1.1.1, 1.1.1.1

Functionality
Database

1.2

Role (Agent)
1.

Figure 3.6: The role model of the MAS.

Another important interaction is displayed in the bottom right corner of Figure 3.6. As
each agent in the MAS has to publish the skills it is capable of, a role called Functionality
Database is introduced. Every other role interacts with this role by publishing its skills
and discovering other skills it might need. For clarity, arrows connecting every other role
to these two are neglected in the figure.

The next step during the MaSE methodology is to define the tasks each role has to
perform. Each role has to have at least one task assigned to it. Figure 3.7 gives an
example of such a task. This task is executed by a role named Zone Preferences. The
syntax for a transition is as follows: trigger [guard] ˆ transmission. The first transition
is executed once the trigger receive(getZonePreferences(zone), initiator)
is received. The role essentially waits until another role, called initiator, triggers the
getZonePreferences function for a given zone. Then, the agent executing this task will send
a transmission to the agent responsible for the role called BuildingConditions to receive
information about the users in the given zone. If no response is received, the agent will try
to execute this request again. After the users are finally known, the preferred setpoint is

38

3.2. Multi-Agent System Design

queried from the UserManagment-role. Once all preferred setpoints are known, the agent
reconciles all setpoints to provide a collective setpoint that minimizes the discomfort
of all users later. It could also consider different user priorities if necessary. After the
reconciliation process, it sends an answer to the initiator containing the determined
setpoint and waits until a new request is received. Similar tasks are created for humidity
and illuminance levels.

receive(getZonePreferences(zone), initiator)

idle
i = 0

^ send(getUsers(zone),
 BuildingCondition)

get users in zone

receive(users, BuildingCondition)

[i == zones.size()]

^ send(getPreferredSettings(user),
UserManagement)

get user
user = users.get(i)

sendD
ata(setpoint, occupancy, initiator)

reconcile
setpoint = reconcile(Preferences)

[tim
eout(t)]

wait
t = setTimer(2.0)

[tim
eout(t)]

wait
t = setTimer(2.0)

[i < users.size()]

store list
Preferences.add(setpoint)

i++

receive(setpoint,
UserManagement)

Figure 3.7: The task executed by the zone preferences role.

Note that the agent who executes this task will not proactively calculate new setpoints.
Therefore, this is an indication that the agent performing this task is a microservice
rather than an agent. As noted in section 2.3.1, the main difference between an agent

39

3. Proposed System Design

and a microservice is that a microservice waits for incoming HTTP requests before it
starts operating in contrast to an agent.

To complete the analysis phase of MaSE, the MaSE role model is created. It provides an
overview of all roles and their corresponding tasks. The result is depicted in Figure 3.8.
In this picture, arrows indicate that there is communication with another task during the
execution of a task. The task from which an arrow comes is the initiator of a conversation,
and the task to which it points is the responder.

Building
Conditions

1.1.1.2, 1.1.1.3

Occupancy
1.1.1.2,

1.1.1.2.2

Energy mode
1.1.2.3

Predicted Energy
Production
1.1.2.1.3

Predicted Energy
Consumption

1.1.2.1.2

Predicted
Weather
1.1.1.2,

1.1.1.2.1

Preferred User
Settings
1.1.1.4.1

Zone Preferences
1.1.1.4.2,

1.1.1.4

Energy Needs and
Costs
1.1.2.1

get current
energy consumption

get occupancy (schedule)

get predicted
consumption

get current
energy production

Net Price
Prediction
 1.1.2.1.1

get net price
prediction

Distribute
Energy

1.1.2, 1.1.2.2

get energy needs and costs

update control valuesget data from
presence detector

read current
weather

get weather
predictions

get preferred
conditions

get user
setpoints

get current
users in zone

get energy
price

get occupancy
(schedule)

get user
defined mode

Determine Control
Values

1.1.1, 1.1.1.1

get energy mode

update control values

get energy costs

get preferences
for zone

get weather
predictions

get occupancy
(schedule)

Functionality
Database

1.2

Role (Agent)
1.

predict
weather

provide
predictions

predict energy
price

get current
power production

predict energy
production

determine user
preferences

determine collective
preferences in zone

determine
temperature, illumination

and ventilation
read building

conditions

apply control
values

get current control values

determine
energy mode

predict energy
consumption

control PV, battery
and net consumption

determine energy
needs and costs

get energy profile historypredict
occupancy

publish
skills

discover
skills

administer
skills

Figure 3.8: The MaSE role model.

For this system, assigning agents to roles is a one-to-one mapping. Nevertheless, the
subsequent steps of the MaSE methodology are skipped as the implemented system shall
only be a subset of the described role model to prove the concept and discover skills
agents might have. Furthermore, the agents will be instantiated as WoT devices. Hence,
the communication between agents does not need to be designed explicitly as the WoT
specification takes care of how this is done. The agents that are implemented are the
following:

• Building interface agent: An agent responsible for reading all sensor data and

40

3.3. Skills Ontology Modeling

applying the control values. As the implementation will work on BOPTEST, this
agent also advances the simulation, as explained in the later sections.

• Weather prediction agent: As the name indicates, this agent predicts the weather
forecast.

• Occupancy agent: This agent’s task is to predict the occupancy behavior and
provide the data to the agent, computing the control values.

• Zone preferences agent: The agent will provide a setpoint that shall be achieved in
a given zone.

• Determine control values agent: Such an agent is created for each zone. It uses
predictions from the occupancy and weather agents if available. The agent then
computes the next control values that shall be applied based on the desired zone
preferences.

3.3 Skills Ontology Modeling
This section examines how the skills of an agent can be properly described. The
potentially present agents in an energy-optimizing system have been discovered in the last
section. As mentioned in Section 2.1.1, there must be some tradeoff between flexibility
and unambiguity when describing the skills. When developing the ontology used to
describe the capabilities of the agents, a combination of the two described approaches was
used to create a flexible agent description that still provided the required unambiguity.
Furthermore, a helpful resource when developing the ontology was the sequence and
the task diagrams determined in the previous section, as they highlight the interaction
between agents.

By facilitating the skills ontology, the desired outcome is that agents can be added,
removed, or replaced at system runtime. Therefore, it must also be possible to semantically
describe the qualifications of agents that are added at a later point in time. Moreover, it
should be possible for new agents to be discovered and interacted with by existing agents.
For this reason, the description with capabilities, as in [RWG+24], is very suitable, as
this system also consists of agents with different functionalities. For example, an agent
might be capable of predicting the weather or controlling the indoor temperature.

For successful operation, this information must be offered by any agent and used by the
temperature controller. Therefore, it has been modeled that an agent offers different
capabilities but can also search for them at other agents. The matching of required and
available skills is similar to the concept presented in [MBW+18].

Capabilities alone might not offer complete unambiguity, and consequently, another piece
of information is modeled: A context allows the support of different types of agents. A
tuple is created, which consists of the context and the capability. An agent could have
the capability predict, but with the context energy price or PV production. Therefore, An

41

3. Proposed System Design

agent publishes one (or more) context-capability pairs and searches for them to increase
its performance.

Note that designing the ontology and creating the MaSE models were an interlinked
process, i.e., discovered capabilities or contexts were added to the MaSE model, and
roles elaborated during a MaSE phase, influenced the development of the ontology. For
example, there are agents that can predict the weather or the net price. Therefore, the
context Weather and EnergyPrice will be modeled in the ontology. When it comes to
price predictions, one can distinguish between the different energy types. Consequently,
a class EnergyType is created that has the following sub-classes: Gas, Electrical, Net,
Solar, and Hydrogen. Moreover, the building shall also be capable of determining the
temperature, illumination, and ventilation, as given by goal Determine control values
(1.1.1.1). The following considerations have been made to describe these contexts:

• Space heating and air conditioning can be used to bring the indoor temperature
in a desired range. Therefore, corresponding contexts (Space Heating and Air
Conditioning) are created. These are later combined with the capability External-
SystemControl to indicate that this agent can control, e.g., the air conditioning.

• To control the illumination, the lights inside a zone and the shutters can be used.
Therefore, a context called Lighting is created that has two sub-classes: Shutters
and Lights.

• A class called Ventilation, that is simply used for agents that are related to this
context.

The defined classes are also depicted in Figure 3.10. In this figure, all contexts and
capabilities of the ontology are displayed. An agent can then use any combination of
these to describe its skills.

As the presented MAS does not consider all possible automation areas in a building, other
typical sub-areas of a Building Automation Management System have been analyzed.
The usual areas are shown in Figure 3.9. These include the control of lighting and
HVAC systems, but also other services such as alarm systems and access control. For
example, light control classes have been previously determined, but others like FireSafety
or Window have been added to the ontology. Also, searching through existing ontologies
like Brick[BBF+16] helped to discover further contexts, as these contain classes for the
typical equipment inside of buildings.

The discovered capabilities are mainly derived from [RWG+24]. However, not every
single one of them is described there. Others are also significant when describing typical
agents. Moreover, not every capability given in [RWG+24] is also modeled in the proposed
ontology. For example, in this paper, context awareness has been defined, which would
not be a meaningful property of any agent in this case, as it is very ambiguous. As can
be seen in Figure 3.10, the capabilities that are going to be used for describing skills are

42

3.3. Skills Ontology Modeling

Building Automation Management System

Access
Control

Electric
Vehicles

Fire Alarm
System

Light
ControlBlinds and

Shutters

Monitoring
System

Domestic
Hot Water

Heating and
Cooling

RES

Figure 3.9: Components of a Building Automation Management System.

the following: computation, condition monitoring, data storage, external system control,
learning, negotiation, predict, prioritization, proactivity, and trading.

To show how an agent is related to the defined classes, an agent class and the one
representing a context-capability pair are also shown in Figure 3.10. The object properties,
i.e., the relationships between the agents, are shown with arrows. The has subclass
property is shown in blue. In addition, an orange and gray object property between the
agent and the context-capability-pair represents discovers and advertise, respectively.
Any number of pairs can be assigned to an agent with these relationships.

Moreover, object properties exist between the context-capability pair and the two classes
named Context and Capability. This is used to assign any available context and capability
to every pair. For example, an agent could discover a particular pair, which has assigned
the context EnergyPrice and Electrical, as well as the capability Predict.

Using sequence diagrams like the one depicted in Figure 3.5, the derived contexts and
capabilities can be applied to check whether the ontology allows modeling the skills of
the discovered agents. The agent in the role of determining the control values has to
discover agents with the following context-capability pairs:

• ⟨BuildingControl, ConditionMonitoring⟩: To gain access to current conditions inside
of a zone, an agent has to be discovered that advertises this pair.

• ⟨EnergyPrice, Predict⟩: This pair is given by an agent that can predict energy
prices. This skill can also be further refined to distinguish between gas or electrical
prices by adding another context to this pair.

• ⟨Setpoint, Negotiation⟩: To discover an agent that provides a negotiated setpoint
among all users in the zone.

43

3. Proposed System Design

Figure 3.10: The ontology used to describe an agent’s skills in the MAS.

• ⟨Weather, Predict⟩: As the agent should include weather forecasts, this pair is
discovered. An analogous pair can be created to represent the skill that enables
the prediction of occupancy.

• ⟨EnergyMode, Computation⟩: The agent that computes the energy mode advertises
this pair.

• ⟨HeatingDistribution, ExternalSystemControl⟩: This pair is given by the building
interface as it allows the control of the actuators responsible for heating distribution.

44

3.4. KNX Semantic Modeling

3.4 KNX Semantic Modeling

As mentioned in section 2.7, the ETS software does not allow a multiplicity of modeling
options for designing the model of the building. Therefore, the discovered parameters
presented in Table 2.1 cannot be queried from the KNX-IoT 3rd party server. This server
will later also be referred to as the gateway between the MAS and the KNX network.
Nevertheless, it is analyzed if enough data is given to instantiate a simple rule-based or
Proportional-Integral-Derivative (PID) control. For this purpose the BOPTEST test case
Multizone Residential Hydronic1 was chosen, as it provides multiple zones and radiator
heating.

3.4.1 Modeling in the ETS

First, the structure of the building presented in Section 3.1 was modeled using the ETS
software. Three spaces were created: the attic, the ground floor, and a garden. On the
ground floor, each room is added with its intended purpose. KNX allows one to choose
between a set of given purposes for each room. Some of the options are garden, bathroom,
bedroom, garage, hallway, living room and others. It seems natural that these purposes
are later used when creating the semantic export, i.e., the ontology used by the gateway.
Finally, KNX can also model a distribution box, and as most actuators are installed in
one, such an entity has also been created.

After roughly modeling the structure of the building, controllable radiator valves were
added to each room, as this information is mandatory for the agents. Otherwise, they
cannot determine whether a room can be heated. All valves are controlled by a central
unit that is located inside the distribution box. Next, communication objects for each
valve were created to specify a setpoint. Furthermore, communication objects used to
exchange the current indoor temperature and an object for determining if someone is
present inside of a room were created and assigned to corresponding devices. Devices for
temperature and presence measurements were added and linked to rooms equipped with
heating or cooling systems. Also, a sensor and a communication object were created and
placed in the garden to measure the outdoor temperature.

The last available modeling option within the ETS software is to define arbitrary functions
and assign them to the previously created rooms. Currently, there are five options when
creating such a function: switchable light, dimmable light, sun protection heating (switching
variable), heating (continuous variable), and custom. Each of those options will result
in similar results, as the designer can freely choose the name, and apart from the icon,
there are no differences visible in the ETS. After creating a function, communication
objects can be assigned to them. One example of why these functions might be necessary
is that they could help determine which rooms can be heated. In the next section, it will
be analyzed if this is the case.

1 https://ibpsa.github.io/project1-boptest/docs-testcases/multizone_residential_hydronic/index.html

45

https://ibpsa.github.io/project1-boptest/docs-testcases/multizone_residential_hydronic/index.html

3. Proposed System Design

3.4.2 KNX’s Semantic Export
The rooms created beforehand in the ETS can also be found in the exported ontology.
The Listing 2 shows an excerpt of the exported RDF code in turtle syntax. Here
prj:P-0C99-0_BP-4 is the subject of the RDF-triple, which is the living room in
the presented case. In line one of the code, the defined name is given. Line two shows
the implementation state, which can be set inside the ETS. It indicates if something
is still under development, being tested, or finished. As it has not been used during
modeling, it is set to Undefined. Followed by the state, the equipment located inside of
this room is listed: The temperature and presence sensor. The different functions that
were assigned to the room are also linked, as given in lines five and six. The presented
values are the IDs of the heating and presence functions created earlier. As mentioned
above, choosing between different purposes when creating a room is possible. This feature
is also reflected here, as the location usage is set to be a living room. Finally, it is defined
that the subject is of type loc:Room, with the a-keyword, which is shorthand for the
property rdf:type. Note that the tags in front of the colon are used to reference other
ontologies. Those have to be defined as prefixes to efficiently reference each foreign type
unambiguously later. Finally, the last line, which states owl:NamedIndividual, is
used to indicate that this subject is an individual and not a class in the ontology.

1 prj:P-0C99-0_BP-4 dct:title "Living Room";
2 core:state "Undefined";
3 loc:containsEquipment prj:P-0C99-0_DI-5,
4 prj:P-0C99-0_DI-12;
5 loc:hasApplicationFunction prj:P-0C99-0_F-18,
6 prj:P-0C99-0_F-19;
7 tag:hasLocationUsage tag:livingRoom;
8 a loc:Room,
9 owl:NamedIndividual.

Listing 2: The exported description of the living room.

Following the ID prj:P-0C99-0_F-18, the previously created function related to
the heating control inside of the living room can be found. This function is of type
ApplicationFunction, has the title HeatingLivingroom, and multiple Function Points
assigned to it. These function points represent the communication objects that have
been assigned during modeling. In line three of Listing 3, the object used to exchange
the current indoor temperature is given, line four is the ID of the object used to set a
new actuator state, and in line five, the object containing the current state is linked.
Furthermore, there is a comment that this function was created in the ETS with the
function type FT-8. Searching through the exported ontology, as well as the KNX
Information Model [KNX23], no function type with this ID, name, or any other value
can be found. This might be due to the current state of the development process of the
KNX 3rd Party API.

The easiest way to determine if a room’s indoor temperature can be controlled by an
agent will be to verify if this room contains a function to heat or cool the room. As

46

3.4. KNX Semantic Modeling

1 prj:P-0C99-0_F-18 rdf:type owl:NamedIndividual ,
2 core:ApplicationFunction ;
3 knx:hasFunctionPoint prj:P-0C99-0_GA-2 ,
4 prj:P-0C99-0_GA-23 ,
5 prj:P-0C99-0_GA-44 ;
6 dct:title "HeatingLivingroom" ;
7 core:comment "KIM Application Function created from original ETS

Function with Function Type: FT-8" ;↪→
8 core:state "Undefined" .

Listing 3: The exported application function responsible for the heating inside of the
living room.

already seen, each room can be assigned any application function. The KNX Information
Model [KNX23] defines all classes and properties introduced by the KNX 3rd Party API.
For example, this model specifies what an application function actually is: A partial
functionality of a control system. Furthermore, it has multiple function points assigned
to it. In this case, the application function corresponds to one of the modeling options
given in the ETS, namely the arbitrary functions that can be assigned to each room. In
contrast to what one might expect, the five different types do not have any meaningful
effect. Furthermore, the function points, also do not show any indication of what the
purpose of this function might be. Such a result is to be expected because the designer
does not specify any unambiguous functionality for these functions during modeling.
Therefore, with the current version of the semantic export feature from the ETS, it is
impossible to automatically create an ontology that provides enough information for the
proposed system to operate successfully.

Further investigation of the exported model showed that the possibility to model
the necessary information exists. A potential remedy is to use the subclasses of
core:ApplicationFunction as these differentiate between the different purposes a
function might have. The subclass Air Temperature Control could be used to indicate
that a room can be heated with radiators. However, this is still fraught with ambiguity as
zones could be equipped with different heating systems that require different controllers.
Another possibility is to relate the function points of the application function to the
heating system itself. In order to accomplish this, the points that the function point
groups can be composed by a so-called Functional Block. The function block class has a
greater variety of subclasses. Those include, for example, Room Temperature Controller,
Room Temperature Sensor or Outside Temperature Sensor. When using classes like
these, the same problem arises with the subclasses from the application function class.
Furthermore, it is not possible to assign subclasses of the application function or the
functional block during the modeling process.

To overcome this problem, the exported ontology is modified to query all of the rooms
that are heated. To find the rooms in question, a special instance of a function block is
created and named FunctionBlock_Heating. This block is assigned the ID of the function
block Room Temperature Controller, which has the ID fb.399 and is defined in the KNX

47

3. Proposed System Design

Information Model. Finally, the newly created function block is assigned to every data
point responsible for controlling the radiators. Querying the ontology for this function
block allows finding all rooms equipped with a radiator. Now, the living room has an
application function, which itself has multiple function points. As it has been defined
in the ETS, these also include one function point used to control the valve in the living
room. This specific function point groups multiple data points, which can be used to set
a control value for an actuator, for example. Such a data point is now assigned the new
function block.

3.5 Extension of the Thing Description
Each agent will be a WoT instance, as this comes with multiple benefits: The com-
munication between them is standardized but can be arbitrarily defined by letting a
Thing provide different interaction methods. Furthermore, the TD is given in JSON-LD,
allowing the previously modeled ontology to be included with its presented classes. Each
agent’s TD will be extended with the skills it advertises and discovers. As the TD is
published into the TDD, other agents can discover the additional skills by reading these
descriptions. Once an agent has found another agent that provides a useful skill, it looks
for an appropriate function to call. It can do this by inspecting the return types of the
properties, actions, and events the discovered Thing provides. Some methods also require
inputs to a function, such as a zone ID. This poses another challenge, as these types need
to be unambiguous.

Another important piece of information is which agents are implemented in the system.
Therefore, Figure 3.11 shows the MAS role model of the implemented system. It also
contains a green box labeled BOPTEST, which is not an agent or a role, but vital software
component some of the agents use it as a source of information. For example, the weather
prediction agent will query the weather data from this instance instead of retrieving the
information from, e.g., an online weather API. Note that the agent with the role Building
Conditions does not actively read the current state of the building from BOPTEST, as
this information is returned after advancing the simulation. Hence, this data is stored
locally at this agent.

The system consists of five different roles that agents must take:

• The Building Conditions role is used to provide the current state of the building
equipment and apply new control values upon available updates.

• To determine these control values, the role named Determine Control Values is
performed by an agent. Each zone in the building will have an agent with this role.
Agents in this role are called temperature agents. These agents require additional
information from the subsequent roles to compute the new outputs.

• To determine if the zone is occupied, an agent with the role Occupancy is used. It
also allows an agent to predict whether a zone will be occupied in the future.

48

3.5. Extension of the Thing Description

Building
Conditions

1.1.1.2, 1.1.1.3

Occupancy
1.1.1.2,

1.1.1.2.2

Predicted
Weather
1.1.1.2,

1.1.1.2.1

Zone Preferences
1.1.1.1.4.2,

1.1.1.1.4

get data from
presence detector

get preferred
conditions

Determine Control
Values

1.1.1, 1.1.1.1

update control values

get preferences
for zone

get weather
predictions

get occupancy
(schedule)

predict
weather

provide
predictions

determine collective
preferences in zone

determine
temperature

read building
conditions

apply control
values

get current control values

predict
occupancy

BOPTESTadvance simulation with
updated controls

get weather
predictions

Figure 3.11: The MaSE role model of the implemented system.

• One temperature agent is responsible for controlling the boiler. Computing corre-
sponding control signals require weather data and, therefore, discovers an agent
with such a skill. The discovered agent has the role Predict Weather and is later
referred to as the Weather Prediction Agent

• As the temperature agents need to know which is the optimal setpoint for a zone,
another role called Zone Preferences is utilized for this purpose.

3.5.1 Enriching Things with skills
The first step to use the developed skills ontology is to include the context into the TD.
This allows using the vocabulary defined in the ontology in the description of the Things.
In Listing 4, the context of the agent responsible for controlling the indoor temperature
inside of a zone can be seen. In line three of this listing, the created ontology has been
included. The ontology is reachable on a local Apache Jena Fuseki server at port 8000.
Other ontologies have also been included, namely Brick, QUDT, SAREF, Schema, and
QualityKind. Furthermore, in line six unit is included which is defined in the QUDT
ontology. It allows the use of a great variety of different units.

The Listing 4 contains additional properties called advertises and discovers. These are
used to list the context-capability pairs that an agent advertises and discovers. For
this purpose, the class ContextCapabilityPair is included as well in line 11. Finally, the
properties hasContext and hasCapabilities are added to the context to later assign a
context and a capability to a pair.

49

3. Proposed System Design

1 "@context": [
2 "https://www.w3.org/2022/wot/td/v1.1",
3 {"aso": "http://localhost:8000/agent_ontology.ttl#" },
4 {"brick": "https://brickschema.org/schema/Brick#" },
5 {"qudt": "http://qudt.org/schema/qudt/" },
6 {"unit": "http://qudt.org/vocab/unit/"},
7 {"saref": "https://w3id.org/saref#" },
8 {"schema": "https://schema.org/" },
9 {"qualityKind": "https://qudt.org/vocab/quantitykind/" },

10 {"advertises": "http://localhost:8000/agent_ontology.ttl#advertises" },
11 {"discovers": "http://localhost:8000/agent_ontology.ttl#discovers" },
12 {"ContextCapabilityPair":

"http://localhost:8000/agent_ontology.ttl#ContextCapabilityPair" },↪→
13 {"hasContext": "http://localhost:8000/agent_ontology.ttl#hasContext"},
14 {"hasCapabilities":

"http://localhost:8000/agent_ontology.ttl#hasCapability" }↪→
15]

Listing 4: The context field of the temperature agent TD.

The properties defined in previous sections are used to define the skills that the agent
advertises and discovers. In Listing 5, the part of the TD of the temperature agent is
given to show how an agent advertises different skills. In this case, the context-capability
pair SpaceHeating and ExternalSystemControl is depicted. In the implemented system,
there is only one agent that looks for such a pair: the agent responsible for applying
control values. This agent is called BuildingInterfaceAgent and also looks for agents that
provide the pair AirConditioning and ExternalSystemControl. The temperature agent
also computes control values for the air conditioning and, therefore, advertises this pair
as well. In Listing 5, it is not explicitly stated as it has the same structure as the other
pair it advertises.

1 "advertises": [
2 {
3 "@type": "ContextCapabilityPair",
4 "hasContext": {
5 "@type": "aso:SpaceHeating"
6 },
7 "hasCapabilities": {
8 "@type": "aso:ExternalSystemControl"
9 }

10 },

Listing 5: Excerpt of a TD to show how an agent advertises skills.

A TD of an agent also contains the skills it seeks in the same fashion as the skills it
advertises. Agents do not actively search for other agents that discover a particular pair,
but initiating a conversation with an agent that advertises a matching skill is possible.
Nevertheless, to make the matching between the skills easier, the skills an agent discovers

50

3.5. Extension of the Thing Description

have also been added to the TD. The temperature agent discovers a majority of the skills
used inside of the system. These include the following:

• ⟨Weather, Predict⟩: As the agent shall use weather predictions when computing its
control values, this pair is discovered by the temperature agent.

• ⟨Occupancy, Predict⟩: To reduce energy consumption due to heating and cooling,
the agent tries to save energy during unoccupied periods. For this reason, it searches
for an agent that provides predictions about these.

• ⟨Setpoint, Negotiation⟩: This skill is discovered as the agent is looking for a setpoint
that computes a setpoint that inflicts the least setpoint violation for all users.

• ⟨BuildingControl, ConditionMonitoring⟩: This skill is given by the building inter-
face and describes the means of monitoring the control variables applied to the
system. An agent that advertises these is capable of reading the current conditions
of installed building equipment.

3.5.2 Return types for Thing-Functions
Once Agents discover another skill they would like to use, they start exchanging messages,
but the returned type could significantly vary from one implementation to another.
Therefore, it is necessary to define types that are equivocal under every scenario. Assume
a simple MPC controller uses a lumped thermal capacitance model to compute the control
values. The agent capable of providing information about the thermal capacitance needs
to return something of this type, i.e., the returned type given in the TD, shall be defined
correctly. These types can be defined unambiguously by specifying the returned type
with an ontology.

As ontologies should be reused, it was prioritized to use existing types in well-known
ontologies like SAREF or QUDT. In the QUDT ontology, the quality kind called Ther-
malCapacitnace was found. A quality kind is defined as follows [FAI15]:

A Quantity Kind is any observable property that can be measured and quanti-
fied numerically. Familiar examples include physical properties such as length,
mass, time, force, energy, power, electric charge, etc. Less familiar exam-
ples include currency, interest rate, price-to-earning ratio, and information
capacity.

So a quality kind is the measurement of something. The quality kind also has a unit,
which will be in J/K, if a thermal capacitance is returned. The Thing will define its
return type as follows:

Note that the prefix qualityKind is defined in the context, ensuring it is strongly typed.
Also property qudt:unit defined by the QUDT ontology has been set to unit:J-PER-K.
This defines the returned type without any ambiguity.

51

3. Proposed System Design

1 "output": {
2 "@type": "qualityKind:ThermalCapacitance",
3 "type": "number",
4 "qudt:unit": "unit:J-PER-K",
5 "description": "The thermal capacitance of the zone."
6 }

Listing 6: The returned type when querying the thermal capacitance.

This solution seems to fix the problem and increase interoperability. Nevertheless, assume
that the controller given in the provided examples is replaced by another controller that
no longer uses a lumped model. Instead, it considers different thermal capacitances
for each zone. Now, different thermal capacitances are required, e.g., the one from the
internal mass, the exterior and interior walls separately, and finally, one for the roof and
the floor of each zone. If the same agent is queried for the different thermal capacitances,
the MPC-agent has no chance of distinguishing between the different components if no
additional information is given. Therefore, an extra input field along with the already
given zone ID is required to distinguish between the components. The REC ontology
defines a type named Wall, which is not specific enough. Other building elements found
are Slab and Roof. To describe the missing types, the REC ontology can be extended by
the classes provided in Listing 7. This allows for modeling all the different components
of a building.

1 @prefix rec: <https://example.org/rec#> .
2 @prefix aso: <http://localhost:8000/agent_ontology.ttl#>
3
4 aso:ExternalWall a owl:Class ;
5 rdfs:subClassOf rec:Wall ;
6 rdfs:label "External Wall" .
7
8 aso:InternalWall a owl:Class ;
9 rdfs:subClassOf rec:Wall ;

10 rdfs:label "Internal Wall" .
11
12 aso:InternalMass a owl:Class ;
13 rdfs:subClassOf rec:BuildingElement ;
14 rdfs:label "Internal Mass" .
15
16 aso:AirInsideZone a owl:Class ;
17 rdfs:subClassOf rec:BuildingElement ;
18 rdfs:label "Air Inside Zone" .

Listing 7: The extension of the REC ontology.

If the MPC controller now requests a thermal capacitance, it may specify what building
element it is looking for, and the agent returning the parameter knows which value shall
be returned. Adding additional inputs also helps to use more complex thermal models of
the building. For example, with R6C2, multiple resistances and capacitances are given

52

3.5. Extension of the Thing Description

for a single wall. Adding an input parameter defining the position inside the wall will
also allow the use of more sophisticated models.

The implemented system will compute the control values based on a closed-loop PID
controller, which does not include a thermal building model. Nevertheless, not all of the
types that can be found inside additional ontologies make it possible to define meaningful
return types. Therefore, the existing ontology is extended with the necessary types.

1 "setValvePosition": {
2 "title": "Set Valve Position for a zone",
3 "description": "Set the valve position for a given zone to control

heating.",↪→
4 "input": {
5 "type": "object",
6 "properties": {
7 "zoneId": {
8 "type": "string",
9 "description": "The ID of the zone to set the valve position

for.",↪→
10 "@type": "aso:ZoneId"
11 },
12 "position": {
13 "type": "number",
14 "description": "The position of the valve.",
15 "qudt:unit": "unit:PERCENT",
16 "@type": "aso:RelativeValvePosition"
17 }
18 },
19 "required": ["zoneId", "position"]
20 },
21 "output": {
22 "properties": {
23 "result": {
24 "type": "boolean",
25 "description": "True if the valve position was set successfully,

False otherwise."↪→
26 }
27 }
28 },
29 "forms": [
30 {
31 "href": "http://localhost:PORT/buildinginterfacemicroservice/

actions/setValvePosition",↪→
32 "contentType": "application/json",
33 "op": "invokeaction",
34 "method": "POST"
35 }
36]
37 }

Listing 8: The method used to update the valve position of a given zone.

53

3. Proposed System Design

To illustrate how such a function is used, inside a TD, the Listing 8 is presented. This
method is given in the TD of the building interface and is used to send an updated
valve position calculated by the temperature agent. In line 4, the input of this function
is defined. It requires a zoneId and a position to be specified. The property type and
@type do not contradict each other; they have different meanings. When defining the
property type, it indicates that the input has to be given as a character string. On
the other hand, @type is used to enrich this input with semantics. By specifying the
value aso:ZoneId, it is clarified that the given type is defined by the class ZoneId in the
ontology with namespace aso. The second input to the function is the position of the
valve. The value is passed as a percentage and of type aso:RelativeValvePosition. Line
19 of the listing specifies that these inputs are mandatory.

The function’s output is a boolean to indicate if the operation has been successful. Finally,
the forms property in line 29 is used to specify how this method can be invoked. A
URL, the required HTTP method, and the content type format are specified.

3.6 Proof of Concept - Multi-Agent System
Implementation

The parameters relevant to different control strategies have already been summarized
in Section 2.5. To implement this MAS, a PID controller, combined with rules, is used.
The reason for this is that some relevant information is not given in the BOPTEST
test case, and for proving the concept of a MAS operating on the KNX ontology, it
suffices to implement a simple controller. Table 2.1, which presents the parameters,
does not specify which are essential for this implementation’s operation. Even for more
complex controllers, not all of them might be given or are irrelevant for optimal control.
Depending on the controller implementation, the used variables differ. The implemented
system requires the following parameters:

• The outdoor dry-bulb temperature (Tout) is used to determine the setpoint of the
boiler.

• The presence of occupants (Oz) within the zone will also impact the system’s
functionality. If the zone is predicted to be unoccupied for a longer period, the
system will reduce the heating output.

• A preferred setpoint (Tset) must be queried to control for minimal discomfort.

• Nominal temperatures of the supply water (Tsup,n) and the return water (Tret,n)
are relevant to compute the supply water temperature for the radiators.

• An offset temperature (To) is also required, as it allows influencing the valve
position. Given the variability in radiator sizes and the unpredictability of the
supply temperature due to potential series connections of radiators, the required
temperature control deviates for each radiator. This parameter cannot be known in

54

3.6. Proof of Concept - Multi-Agent System Implementation

advance as it depends on many other variables. An agent responsible for estimating
the building parameters could be used to determine this value. However, in this
implementation, the value is determined manually.

The control values the MAS computes are the following:

• The boiler load (Uboi) to supply enough heat to the radiators.

• One agent also controls the supply water temperature (Tsup). This temperature is
not directly proportional to the boiler load, as the supply water temperature is the
temperature supplied to the radiators, so the temperature after the mixing valve.
No agent determines the control value of the mixing valve. Instead, this variable is
used to simplify the calculations. BOPTEST is capable of computing the desired
mixing valve value itself.

• The radiator valve (uvalve) in each zone. This value is given as a percentage.

The implemented agents have already been shown in Figure 3.11. Nevertheless, the
picture does not clarify how many temperature agents are used. In fact, there is one
temperature agent for each zone to reduce the computational complexity when there are
multiple zones. An agent can be in charge of controlling the boiler, if it is instantiated
with the corresponding flag. When a temperature agent is run, some parameters are
passed to the program. These consist of the following: the location of the TDD, which
port should be used, the location of the TD-file, and a flag used to indicate if the agent is
responsible for controlling the boiler. Therefore, the system consists of five temperature
agents. The agent responsible for the living room will also control the boiler.

Before all agents are instantiated, the exported ontology is queried to determine all
heated zones. This allows the system to create the necessary agents automatically. In
Listing 9, the query issued to the KNX ontology is shown. It follows the same path
described earlier in Section 3.4.2. This query returns all rooms that have a controllable
valve. Of course, this is only possible because the exported ontology is modified so that
the corresponding data point composes the function block with type 399. Once the rooms
are known, the temperature agents can be started.

The first task an agent fulfills is to start the WoT server and publish its TD to the TDD.
For every temperature agent, the same TD file is used. Therefore, it modifies this file
before publishing it to the TDD. One example of such a modification is that the agent
specifies the port in each URL.

After the initialization steps are done, the agent starts two tasks. One task repeatedly
looks for updates in the TDD to find new agents and detect updates to existing agents.
Once an agent’s TD containing a matching context-capability pair has been found,
the agent discovering agent can include information provided by the new agent in its
second task. In this second task, it carries out the main duties it is responsible for, e.g.,
computing control values.

55

3. Proposed System Design

1 SELECT DISTINCT ?id ?title ?locationUsage ?state
2 WHERE {
3 ?id rdf:type loc:Room ;
4 dct:title ?title ;
5 tag:hasLocationUsage ?locationUsage .
6 ?id loc:hasApplicationFunction ?appFunction .
7 ?appFunction knx:hasFunctionPoint ?functionPoint .
8 ?functionPoint core:groups ?datapoint .
9 ?datapoint knx:composes ?functionBlock .

10 ?functionBlock rdf:type knx:fb.399 .
11 }

Listing 9: The method used to update the valve position for a given zone.

3.6.1 Zone Preferences Agent

The building interface agent advertises the context-capability pair Setpoint - Condition
Monitoring. The zone preferences agent discovers this skill, as it intends to keep track of
the different preferred setpoints, each inhabitant has and reconciles these to a designated
setpoint for each zone. However, BOPTEST cannot distinguish between individual
persons in each room. Therefore, the zone preferences agent will simply use the setpoint
it receives from the building interface to compute the required setpoint range.

This temperature range defines a comfort span in which the inhabitants will not feel
discomfort. The heating setpoint is the lower bound, which is acceptable by the persons
inside, while the cooling setpoint is the maximum temperature before feeling uncomfort-
able. These setpoints define the target temperature for the heating and cooling systems.
To determine this range, the zone preferences agent first queries the building interface
agent for the user-defined setpoint using the defined method in the TD. In Listing 10,
the output of the function given by the building interface agent is depicted. It states
that the returned value is a temperature setpoint and given as a number in °C.

1 "output": {
2 "type": "object",
3 "properties": {
4 "setpoint": {
5 "@type": "brick:Temperature_Setpoint",
6 "type": "number",
7 "qudt:unit": "unit:DEG_C",
8 "description": "The setpoint for the whole building."
9 }

10 }
11 }

Listing 10: The output of the getSetpoint-method the building interface agent provides.

As depicted in Listing 11, the zone preferences agent uses this setpoint to compute the
setpoint range. It requires the input dateTime, which is the current time in seconds from

56

3.6. Proof of Concept - Multi-Agent System Implementation

the start of the year. This is necessary during simulation as this agent is not in direct
contact with BOPTEST, and it has no means of determining the current day and time
of the day. Therefore, this parameter is passed to this method. In line nine of Listing
11, the cooling setpoint is increased by two Kelvin during winter, and in line eleven, the
heating setpoint is reduced if it is summer. In lines 16-18, the agent checks whether the
time is between 10:00 and 19:00, and if the day is a working day. If so, the lower bound
of the setpoint range is set to 16°C and the upper bound to 26°C. This is because the
simulated building is considered to be unoccupied during this time. Since the benchmark
controller reduces its power consumption by following these setpoints, the implemented
MAS implements the same approach to allow better comparison.

1 thing.setActionHandler("getZonePreferences", async (params) => {
2 const { dateTime } = await params.value();
3 console.info(`Received 'getZonePreferences' request`);
4
5 let cooling_setpoint = setpoint;
6 let heating_setpoint = setpoint;
7
8 // Increase the cooling setpoint during winter and decrease the heating

setpoint during summer↪→
9 if (dateTime <= 24*60*60 * 90 || dateTime >= 24*60*60 * 270) {

10 cooling_setpoint += 2;
11 } else if (dateTime >= 24*60*60 * 120 || dateTime <= 24*60*60 * 240) {
12 heating_setpoint -= 2;
13 }
14
15 // Reduce cooling and heating during the unoccupied period
16 if(dateTime % (24*60*60) >= 10*60*60 &&
17 dateTime % (24*60*60) <= 19*60*60 &&
18 dateTime % (24*60*60*7) <= 24*60*60*5) {
19 heating_setpoint = 16;
20 cooling_setpoint = 26;
21 }
22
23 return { "heatingSetpoint": heating_setpoint, "coolingSetpoint":

cooling_setpoint };↪→
24 });

Listing 11: The action handler of the zone preferences agent, that computes the setpoint
range.

The zone preferences agent itself provides a method called getZonePreferences, which the
temperature agent uses to fetch the setpoint range. The output of this method is given in
Listing 12. The returned object consists of two properties: the heating setpoint and the
cooling setpoint. Both are given in °C and of the type brick:Heating_Temperature_
Setpoint and brick:Cooling_Temperature_Setpoint, which are defined in the
Brick ontology.

57

3. Proposed System Design

1 "output": {
2 "type": "object",
3 "properties": {
4 "heatingSetpoint": {
5 "type": "number",
6 "qudt:unit": "unit:DEG_C",
7 "description": "The heating setpoint of the zone.",
8 "@type": "brick:Heating_Temperature_Setpoint"
9 },

10 "coolingSetpoint": {
11 "type": "number",
12 "qudt:unit": "unit:DEG_C",
13 "description": "The cooling setpoint of the zone.",
14 "@type": "brick:Cooling_Temperature_Setpoint"
15 }
16 }
17 }

Listing 12: The output property of the getZonePreferences-method

3.6.2 Temperature Agent
As Figure 3.11 depicts, the agents controlling the temperature in each zone communicate
with the occupancy agent, the weather prediction agent, the building interface, and the
zone preferences agent. Therefore, it searches for the following context-capability pairs:

1. Weather - Predict

2. Occupancy - Predict

3. Setpoint - Negotiation

4. Setpoint - Condition Monitoring

5. Building Control - External System Control

The first three pairs are advertised by the weather prediction agent, the occupancy
prediction agent, and the zone preferences agent, respectively. The fourth pair is
advertised by the building interface. It indicates that the agent can read the current
setpoints inside the building. The final pair is also advertised by the building interface.
This pair is used to inform other agents that this agent can apply new control values to
the building.

As the task of discovering agents runs in parallel with the primary task responsible for
computing new setpoints, the temperature agent will wait until the building interface
agent has been discovered. Otherwise, it is not possible to read the current temperature
or apply new control values. As soon as the agent discovers the interface, it starts
querying the agents for which it has already found a TD.

58

3.6. Proof of Concept - Multi-Agent System Implementation

To compute the control values, a hysteresis loop is first used to determine if the zone
requires heating or cooling. If the measured zone temperature is less than the heating
setpoint plus one Kelvin, the agent is in heating mode and will compute a valve position.
If, on the other hand, the measured zone temperature is above the cooling setpoint minus
one Kelvin, it will compute control values for the AC, as it will go into cooling mode.
The two different operations are now explained in more detail:

1. An agent in heating mode will compute the valve position based on Equation 2.11.
Two parameters must be determined for successful operation: αv and To. The first
parameter, αv, is used to determine the slope of the sigmoid function, while the
second, To, is used to shift the function on the x-axis. Different configurations can
be seen in Figure 3.12. It clearly depicts how the offset To shifts the whole function
on the x-axis. Furthermore, the function’s slope is increased if αv is also increased.
Increasing this value will reduce the band where the valve is not fully opened or
closed. For the implementation, αv has been chosen to be ten while To is 0.5 for all
rooms except for the living room, which requires To = 0.7 for better operation.

2. For computing the AC control values, the agent simply uses a PID control strategy
to determine the partial load of the air-cooling system. The PID constants have
been determined manually but are the same for each zone.

Note that each agent receives the desired setpoint from the zone preferences agent. It will
then increase or decrease the setpoint by an additional 0.5 Kelvin, depending on whether
the agent is in heating or cooling mode. This allows the discomfort to be reduced further,
as slight variations do not fall below the heating setpoint or exceed the cooling setpoint.

Figure 3.12: The sigmoid function used to control the valve position.

Another important detail is how the system determines the controls for the boiler. As
noted before, agents are initialized with a flag indicating if it is responsible for controlling

59

3. Proposed System Design

it. The simulated building requires a supply water temperature as input, as well as a
boiler load. For computing the supply water temperature, Equation 2.9 is used. The
formula requires a nominal value of the supply water temperature and a nominal return
water temperature. As these values are not given in BOPTEST, they are estimated to
be 62°C and 55°C, respectively. Due to missing necessary data, an alternative formula,
as shown in Equation 2.10, has been selected. In [PDKH17] Qrel is expressed as the
following:

Qrel = Tset − (Tavg_out + ϵ)
Tz − (Tnom_out + ϵ) (3.1)

Tset, Tavg_out, ϵ, Tz and Tnom_out are the setpoint, the average outdoor temperature, a
correction term and the nominal outdoor temperature, respectively. This equation shows
that the outdoor temperature is necessary to compute the supply water temperature.
This is the sole reason why the weather prediction agent is required. Other agents do use
predictions about the weather in their computations. The final step is to compute the
boiler load, which is done with another PID controller.

Once each agent has computed its control values, it will send the new values to the
building interface, where the data is applied to the BOPTEST simulation. As the heating
emission system also contains a mixing valve and a pump, but the agent responsible for
the control of the boiler will only compute a supply water temperature and the boiler
load, the simulation automatically determines the value of the mixing valve. The emission
pump is not controlled and is always turned on.

3.6.3 Building Interface Agent
This agent has two main tasks: It receives new control inputs and provides an interface
for other agents to determine the current settings in the building. For this purpose, it
advertises the context-capability pairs Setpoint - Condition Monitoring, Occupancy -
Condition Monitoring, Setpoint - Condition Monitoring and Building Control - External
System Control. The zone preferences agent discovers the pair Setpoint - Condition
Monitoring, while the occupancy-prediction agent discovers the Occupancy - Condition
Monitoring pair. In the other main task, this agent advances the simulation once it
received new inputs from all agents. In an actual building, this would not be necessary,
and updates would be applied instantly.

The agent is also instantiated with a port number, the location of the TD, and the
address of the TDD. Also, this agent will start the WoT server first and then publish its
TD to the TDD. For starting an agent, the framework node-wot2 is used as it allows to
quickly start a Thing and implement its methods, properties, and events.

In Listing 13, the procedure of exposing a Thing is depicted. In line seven of the listing,
the Servient-class of node-wot is used to start a new WoT server. The corresponding

2https://github.com/eclipse-thingweb/node-wot

60

https://github.com/eclipse-thingweb/node-wot

3.6. Proof of Concept - Multi-Agent System Implementation

TD is passed in line eight. In the following lines, the handlers are implemented for each
method specified in the TD. In this listing, only the action to set the boiler load is
depicted. In line 16, the input is validated before it is stored in a data structure that
holds the new control values in line 20. At the end of the listing, in line 27, theThing is
finally exposed. Upon this point, other devices can communicate with this agent, but to
find this agent, it has to publish the TD now.

1 const Servient = require('@node-wot/core').Servient;
2 const HttpServer = require('@node-wot/binding-http').HttpServer;
3
4 const servient = new Servient();
5 servient.addServer(new HttpServer({ port: port }));
6
7 servient.start().then((WoT) => {
8 WoT.produce(thingDescription).then((thing) => {
9 console.log('Produced Thing:', thing.getThingDescription().title);

10 thingInstance = thing;
11
12 // Action handler for 'setBoilerLoad"
13 thing.setActionHandler("setBoilerLoad", async (params) => {
14 const { percent } = await params.value();
15 console.log(`Received 'setBoilerLoad' request for load:

${percent}`);↪→
16 if (percent < 0 || percent > 100) {
17 return { result: false };
18 }
19 // Update control value in data structure
20 controlValues.global.boi_oveBoi_u = percent / 100;
21 return { result: true };
22 });
23
24 // Other methods follow
25
26 // Expose the Thing
27 thing.expose().then(() => {
28 console.log(`${thing.getThingDescription().title} exposed`);
29 });
30 });
31 });

Listing 13: The exported description of the living room.

3.6.4 Other agents
Finally, the weather and occupancy prediction agent have a similar operation. In the
current implementation, they simply query BOPTEST for the required data once they
receive a request. They make use of the forecast-endpoint BOPTEST provides to
retrieve this data. The weather prediction agent uses a time horizon of six hours and an
interval of one hour. Therefore, the agent returns an array with seven data points, the
current outdoor temperature, and the hourly predicted weather for the next six hours.

61

3. Proposed System Design

The occupancy agent only uses a three-hour horizon but a 15-minute interval between
each prediction. For actual buildings, the weather prediction agent most likely queries
a different weather API, which is publicly available. Also, the occupancy agent can no
longer request data from BOPTEST. Instead, it might use learning algorithms to predict
the inhabitants’ behavior.

62

CHAPTER 4
Evaluation Results

The evaluation of the proposed system is presented in this chapter. The MAS operates on
the simulated building described in Section 3.1. First, the performance of the controller
is measured by comparing it to a benchmark controller. The overall discomfort and the
energy consumption are highlighted. Additionally, the modularity of the implemented
system is tested by adding agents during the runtime of the simulation to see how the
controllers will react. Moreover, the scalability with multiple zones will be examined.

4.1 Controller Performance
An evaluation of the performance is necessary as the implemented system should be
comparable to other controllers, even though it is not the primary objective of the
controller to reach the highest possible user comfort with as little energy as possible. The
objective of the implemented system is to be adaptable, which is also discussed in later
sections. Nevertheless, a fair comparison is only possible if the controller’s performance
is evaluated.

The controller is implemented for the BOPTEST test case named multizone residential
hydronic. As noted in the previous chapter, the building consists of five conditioned
zones: a living room, a bathroom, and three bedrooms. One additional zone, the hallway,
is equipped with a radiator that cannot be controlled. The simulated period has been set
to seven days, and the time step at which new inputs are applied is set to one minute.
In Figure 4.1, the resulting indoor temperature of the living room (Liv) and the first
bedroom (Ro1) is depicted. Other rooms (Bth, Ro2, and Ro3) are not shown, as the
results are quite similar. In the first and second subplots of Figure 4.1, the blue line
indicates the temperature inside each zone, while the two grey lines in each plot mark the
preferred setpoint range. Additionally, the outdoor temperature and the solar irradiance
are depicted in the last subplot. These factors have noticeable influences on the indoor
temperature, which is why they are also depicted. Hence, the indoor temperature does

63

4. Evaluation Results

not need to follow one setpoint but instead must be within the range given by the heating
and cooling setpoint. The heating setpoint is the lower bound at which an inhabitant
feels comfortable, while the cooling setpoint defines the upper bound. This range varies
due to different reasons. If the zone is unoccupied, the heating and cooling setpoint is
reduced and increased, respectively. More explanations about the setpoint ranges will
be discussed shortly. The simulation takes place in France during a winter week and is
executed for one week. As can be seen from the figure, the controller tries to minimize
energy consumption by closely following the heating setpoint.

Figure 4.1: The indoor temperature after simulating with all agents.

The setpoint range has great variations, which require additional explanation. Figure
4.2 depicts one day of simulation and highlights the different setpoint ranges. Also, note
that the ranges are quite similar for each zone. The different ranges can be classified by
three different rules:

64

4.1. Controller Performance

1. By definition of the BOPTEST test case, the building is unoccupied on five out
of seven days. During this time, the benchmark controller will drastically reduce
energy consumption by lowering the heating setpoint. Therefore, the implemented
MAS also adheres to this schedule to allow a fair comparison. The whole building is
considered unoccupied between 9 a.m. and 5 p.m. on five weekdays. The setpoint
range for each zone is adjusted to 16°C and 26°C. This period is highlighted in blue
in Figure 4.2.

2. If inhabitants are considered to be inside the building but are not present in the
respective zone, the power consumption is slightly reduced. In Figure 4.2, the
residents are at home between 00:00 and 06:00 and between 22:30 and 23:59 but
are not present in the displayed zone, i.e., the living room. The respective period is
marked in yellow. To reduce energy consumption, the heating setpoint is reduced
by one Kelvin, while the cooling setpoint is increased by one.

3. If someone is detected to be inside a zone, the controller uses the preferred setpoint
range, which is from 21°C to 24°C. The respective periods are colored in red in
Figure 4.2.

Figure 4.2: The different setpoint ranges during the simulation.

Going back to the performance of the MAS, Figure 4.1 does not point out any apparent
violation of the preferred setpoint range. Therefore, the actual deviation from the setpoint
range is computed. BOPTEST also has the capability to provide key performance
indicators. Nevertheless, these are not utilized here as they only provide a collective value
for the whole building and not the individual zones. To calculate the total discomfort,
the same formula used by BOPTEST has been applied to each zonal air temperature

65

4. Evaluation Results

trajectory. To compute the discomfort for a given zone z in the time interval [t0, tend],
Equation 4.1 was used.

discz(t0, tend) =
∫︂ tend

t0
|ez(t)|dt (4.1)

This equation computes the deviation from the setpoint range, denoted by ez(t). The
resulting value has the unit K · h (Kelvin-hours). This value is calculated for each zone
and the whole simulated period. The results are summarized in the second column of
Table 4.1. The presented values are the accumulated setpoint deviations during the
whole week in comparison to the benchmark controller. For more expressive values, the
discomfort per hour can be calculated by dividing the given discomfort by the total
number of hours (168 hours). For example, the living room has only an average deviation
of about 0.03 Kelvin. The benchmark controller will be discussed in the following section.

Room MAS
Discomfort (Kh)

Benchmark
Discomfort (Kh)

Liv 4.35 211.00
Bth 1.46 29.73
Ro1 1.78 38.10
Ro2 1.69 44.07
Ro3 2.70 69.50
Whole building 11.98 392.41

Table 4.1: The discomfort for each zone incurred by the MAS and the benchmark
controller.

To compare the results to the benchmark controller of BOPTEST, the same duration,
date, and time step have been set to match the MAS. For better comparison, the same
setpoint ranges have been applied during the execution. The results can be seen in
Figure 4.3. The benchmark implementation controls the setpoint of each zone with a
Proportional-Integral (PI) controller. An additional hysteresis function based on the
temperature inside the living room controls whether the boiler is on or off. When the
boiler is turned on, a PI controller is used to determine the partial load ratio.

There are many differences when comparing the two results. While the MAS imple-
mentation follows the lower setpoint quite well, the benchmark controller has trouble
accurately controlling the indoor temperature. The most affected room is the living
area. The controller does not maintain the provided lower setpoint and fails to meet
the user’s requirements. A reason for this huge deviation might be an erroneous design
of the controller. Also, other rooms have some deviations, especially on the 4th day of
February. The reason for this deviation is that the boiler is turned off for some time.
One explanation for this is that the living room exceeds the incorrectly set desired indoor
temperature due to higher outdoor temperatures and solar gains. When the living room

66

4.1. Controller Performance

Figure 4.3: The indoor temperature achieved by the benchmark controller.

reaches its desired temperature, the boiler might shut off, as this room’s air temperature
is used to determine the boiler load.

The computed thermal discomfort that is given on the left side in Table 4.1 also represents
these findings. Even if the living room is excluded from the comparison, the benchmark
controller reaches a significantly higher discomfort. This is because the benchmark
controller is very slow, and the indoor temperature increases only gradually after an
unoccupied period. This effect can be observed in Figure 4.3 on the 5th day of February
in the zone Ro1.

In addition to comparing the indoor temperature, assessing controller performance also
requires considering power consumption. As the building heats the water for the emission
system with a gas boiler, gas is also the primary consumed resource during this scenario.
After finishing the simulation, the energy consumption of each room can be retrieved
from BOPTEST directly. The results from the MAS and the benchmark can be seen in

67

4. Evaluation Results

Table 4.2.

Room MAS Gas
Consumption (kWh)

Benchmark Gas
Consumption (kWh)

Liv 321.50 229.07
Bth 15.20 40.89
Ro1 78.07 109.60
Ro2 83.56 103.43
Ro3 115.68 132.26
Whole building 614.01 615.25

Table 4.2: The gas consumption of the MAS and the benchmark controller.

The benchmark consumes only slightly more energy in total. As the living room is heated
to a lower temperature, a closer inspection of the consumed energy is necessary. As
expected, the living area requires a lot less heat to maintain the faulty heating setpoint.
Other rooms do not consume less heat, which might also be the case for the living room
if the temperature had been controlled correctly. When only comparing the other zones,
the MAS consumed 93.67 kWh less than the benchmark.

4.2 Extendability of the Multi-Agent System
Another aspect that has to be considered is whether the extensibility of the developed
framework is given and how much interaction from a system engineer is required to
fully include new agents into the system. Therefore, different scenarios that might occur
during the lifetime of a building are considered next. The scenarios are the following:

• Scenario 1: The building is fitted with an additional solar thermal system to reduce
gas consumption by utilizing solar energy.

• Scenario 2: The structure of the building changes, i.e., an additional zone is created.

• Scenario 3: Adding a new agent to the system that provides additional data for
better control, e.g., including an agent that is able to predict energy prices. Adding
an agent has a similar effort as exchanging one of them, like replacing the rule-based
controllers with multiple MPC agents.

Note that the first two scenarios inflict a change in the context of the building, which
necessitates a modification of the KNX model. Agents inside the system can only detect a
context change if the KNX 3rd Party API includes these updates as well. The last scenario
describes the incorporation of a new skill. In the following sections, these scenarios are
further evaluated.

68

4.2. Extendability of the Multi-Agent System

4.2.1 Scenario 1: Integration of new equipment

Suppose the building is retrofitted with additional equipment. In that case, the existing
agents themselves will not be able to detect these changes, as the building interface
gathers its data from the KNX 3rd Party server, which does not include such changes until
the new devices have been added to the ETS project. Until then, any newly introduced
devices and their corresponding agents cannot be used. This is not the case if the newly
introduced device is controllable via the Thing itself, i.e., it is controllable via another
interface. Once the new device has been added, the corresponding agent can also be
instantiated with a port number and the URL of the TDD. Then, the new agent can
start interacting with other agents and begin its computation.

As BOPTEST cannot be extended without great effort, another approach has been
chosen to show how the system would behave if new equipment is installed: The system is
simulated during a summer week, once without cooling the rooms and once with applying
inputs to the AC. The steps required to include the new device, namely the AC, are
presented in the following.

First, the equipment has to be modeled in the ETS. A corresponding device has to be
added, and a function dedicated to cooling is created for each zone. The communication
objects are linked with these devices, and the model can be exported. The next step is
to shut down the KNX 3rd Party API and include the new export. Once the gateway is
up and running, the temperature-controlling agents can apply their computed controls
by sending them to the building interface. In this case, the agents are already capable of
computing control values for an air conditioning unit. Therefore, no further changes to
the system are necessary. When installing the new equipment, the discomfort inside of
the living room is reduced from 215.95 Kh to 1.06 Kh by only utilizing 36.36 kWh of
electrical energy.

In Figure 4.4, the effects of including the AC are depicted in a different way. Here,
the simulation is only run for three days without cooling, and then the agents start
controlling the AC for the rest of the week. The dotted line on June 29th indicates the
start. It is visible that the setpoint does not exceed the upper bound after this day.

4.2.2 Scenario 2: Scaling the number of zones

The second scenario considers structural changes in the building, e.g., a change in the
number of zones. Again, the agents themselves will not be able to detect these changes
because the KNX 3rd Party API will not update unless these changes are present in the
ETS project. Once these updates are visible in the gateway, a new agent can be created
for the corresponding zone. This requires creating a new Node.js server that consumes
the TD typically used by temperature-controlling agents. Apart from assigning a new
port to this agent, no further changes are necessary.

69

4. Evaluation Results

Figure 4.4: The indoor temperature in the living room when AC is included.

4.2.3 Scenario 3: Including additional agents

Finally, the case is considered where a new skill is being added to the system, such
as exchanging the current rule-based agents with MPC agents. Of course, this would
require a more complex control mechanism implemented in each agent, as well as the
inclusion of other agents that provide potentially missing data. Inputs to a MPC agent
include additional data, such as parameters of the building, like the thermal model of
a zone. Therefore, an additional agent might also be introduced if the information is
not hard-coded within the MPC agent. To discover an agent providing this information,
the MPC agent looks for an agent with the context-capability pair BuildingParameter -
Predict to request information about the RC components relevant to the zone. Weather
data, occupancy, preferences, and current building conditions are already present in the
current implementation and can, therefore, also be utilized for computation.

Similarly, when other agents are included in the system that would make it possible to
improve the performance of a controller, there has to be an agent that can include the
data of the newly introduced agent in its computations. Assume the implemented system
was extended by an agent that is able to predict the energy price. This agent would not

70

4.2. Extendability of the Multi-Agent System

change the behavior of the MAS as no agent, especially the thermal comfort agent, is
capable of including the energy price in its computation.

Nevertheless, an attempt has been made to show how the system would behave if an
additional agent were added, allowing other agents to use the information it provides.
In Figure 4.5, the MAS was run without the occupancy agent for 3.5 days. Then, the
occupancy agent was added to the system so that the temperature agent was able to save
energy during longer periods of absence for the rest of the simulation. The figure only
depicts the temperature in the living room but clearly shows how the setpoint range is
adjusted after the 3rd of February due to an occupied period without any presence in the
living room; hence, the new agent was included seamlessly.

Figure 4.5: The setpoint ranges if the occupancy agent has been added during the
simulation.

To evaluate the effects of including a new agent, the energy consumption of the same
period without the occupancy agent is compared to the performance of the complete
MAS, presented in Section 4.1. The original controller tries to reduce power consumption
by lowering the setpoint during unoccupied periods. This is the main difference between
the two simulations. The required heating power is summarized in Table 4.3.

The controller only consumed 29.03 kWh more during this experiment, compared to the
simulation that includes the occupancy agent right from the start. Apart from lowered
energy consumption, the main reason for this experiment was to show the automatic
integration of new agents, which has been successful. As the agents continuously poll
data from the TDD, they can include the data upon the point in time where the agent
publishes its TD.

71

4. Evaluation Results

Room Power Consumption kWh
Liv 333.25
Bth 26.44
Ro1 80.17
Ro2 85.94
Ro3 117.24
Whole building 643.04

Table 4.3: The consumed energy when running the simulation without occupancy
predictions.

72

CHAPTER 5
Discussion

In this chapter, the results that were achieved are discussed. First, it is analyzed if the
implemented system is comparable to other controllers, such as the benchmark, and what
additional considerations must be made. Next, the effectiveness of the KNX IoT 3rd

Party API as an interface to the building will be discussed. Finally, it is evaluated if the
MAS fulfills the purpose of creating an extendable energy management solution.

5.1 Analysis of the Proof of Concept Implementation
As previously presented in Section 4.1, the controller achieves relatively low occupancy
discomfort and decreased power consumption in comparison to the benchmark controller.
The discomfort has been dramatically reduced, which is also caused by fine-tuning the
controller for this building. Obviously, it will behave very differently in other buildings.
For example, the heating setpoint is adjusted to be 0.5 Kelvin above the actual preferred
value to reduce accumulated discomfort due to slight variations. The benchmark controller
does not use this knowledge. Therefore, even slight deviations from the setpoint might
inflict discomfort. Another crucial parameter that was estimated is To, which is used to
adjust the output of the sigmoid function that controls the valve position. These values
have been determined manually. An agent could have done this work during a dedicated
phase where the parameters of the controllers are estimated. Nevertheless, this parameter
is used to ensure that the valve position corresponds to the actual heat requirement of
this room. Different radiators will also require different offsets. Parameters that are way
more important for the system’s overall functionality are the PID terms, which also have
to be computed before the MAS can properly compute control values.

Furthermore, it is worth noting that the BOPTEST forecasts are always correct. It is
not possible for residents to show up in a zone earlier than predicted. This scenario is
unrealistic because residents might change rooms as they prefer, which may not align

73

5. Discussion

with their typical behavior. If these predictions were not perfect, the results, especially
the occupant discomfort, could differ.
Even though some effects do not occur in an actual building, the implemented controller
shows good performance. The discomfort is drastically reduced by also utilizing slightly
less energy. Some parameters, especially the PID terms, have to be estimated to allow a
successful operation of the system. Other controllers, such as the benchmark controller
or MPC controllers, also require this step. Nevertheless, the goal of the system is not to
define a mechanism that allows skipping the process of tuning the controller. However,
such behavior could be implemented with an additional agent. The following sections
analyze the extendability of the MAS.

5.2 Discussion of Research Question 1
This section analyzes whether the first research question has been answered. The question
states the following:

Research question 1:
What information has to be additionally provided along the KNX-IoT infor-
mation model in order to be capable of controlling and optimizing the thermal
comfort of a building with a multi-agent system?

The main interface for any control system, not only the one introduced here, will
interact with the newly developed interface from KNX to read and write data. As already
mentioned in Section 2.7, the modeling options in ETS are very limited, making it difficult
for any sophisticated controller to operate. A thermal model, which is required for many
controllers, cannot be queried from the KNX interface. Therefore, this information has
to be provided somewhere else. Such information can be provided somewhere else inside
of the system, but a matching between the zones extracted from the KNX 3rd Party API
and the other source is necessary. The ETS designer and the person creating the thermal
model have to agree on a common vocabulary to automatically interlink the models later.
Furthermore, the modeling options inside of the ETS have to be standardized to infer
information automatically. A device can be assigned to a room, but it is unclear whether
this refers to the device’s physical location or the room where it operates. Consequently,
it is impossible to fully automatically infer which heating system is used or even which
rooms are heated and air-conditioned. It might be the case that such information is only
currently not possible to be modeled as the KNX 3rd Party API is still under development.
Therefore, it is recommended that upon release of the API, the designer is also able to
make use of the subclasses from the KNX Information Model. Moreover, allowing the
designer to define custom functional blocks or application functions would also reduce
manual intervention after modeling the building.
Although there exist some challenges when modeling the building inside of the ETS, it
is possible to create basic rule-based controllers assuming that the full potential of the

74

5.3. Discussion of Research Question 2

KNX ontology is used and it can be determined which rooms are heated and cooled by
querying the ontology.

With this information, the first research question can be answered: The ETS developer
has to use the optional modeling methods and create functions for heating and cooling
a zone. These functions must be of a respective function block class in order to query
the ontology later. Also, the corresponding devices must be added to these functions to
apply control values subsequently. With the semantic export of the ETS project, it is
then possible to use basic controllers. For more sophisticated ones, there must be more
modeling options, or there has to be a way to match other building models to the KNX
model. The presented parameters in Table 2.1 present typical values that are used in
such control systems, and control engineers would greatly benefit if these were also added
to the system. Nevertheless, KNX is not likely to add these additional modeling options
because the primary goal of using the ETS is not to create a BIM but to program devices
inside of a building using a standardized communication specified by them. Therefore,
developing a way to combine the information given in a BIM and the model exported
from the ETS is part of future work.

5.3 Discussion of Research Question 2
Before analyzing the findings, the second research question is restated:

Research question 2:
What is an appropriate architectural design within a multi-agent building
energy management system to facilitate a semi-automatic integration by using
existing information from the KNX IoT interface to provide a scalable and
extendable energy optimization solution?

The plausible scenarios that cause a change in the MAS are described in the previous
section 4.2. The three different scenarios are now analyzed, and it is determined whether
the second research question has been answered using this approach.

Scenario 1: The integration of new equipment.

The first scenario describes the integration of new devices into the system. As the device
must be added to the ETS, a new semantic export has to be created, and the KNX
IoT 3rd Party API has to be restarted. Fully automatic integration is not possible.
Nevertheless, once the new device is visible inside the KNX gateway, everything else
will work automatically. Note that integrating a new device requires a corresponding
agent that can control it. Furthermore, other agents must be capable of including data
of added agents. If not, these agents must also be updated as well. For instance, in the
implemented system, it would not be possible to include a solar thermal system, as the
agent controlling the boiler does not support the functionality of considering other heating
methods since BOPTEST does not include this option either. Nevertheless, a more

75

5. Discussion

sophisticated implementation could delegate the control of the boiler to another agent
that also communicates with other devices with context-capability pairs of relevance,
e.g., SolarThermalCollector - ExternalSystemControl. Including new devices might also
inflict an overhead on the rest of the system. Existing agents might require vast changes
if no control logic is implemented to include the new device. Moreover, the new agents
might also have to be fine-tuned by an engineer as, e.g., PID terms vary from building to
building. Nevertheless, there could be agents instantiated inside of the system that help
determine such parameters, which reduces the effort of integrating new agents. Another
advantage of the proposed system is that downtimes are minimized. As the system is
very modular, only specific agents can be exchanged or tuned while the rest of the system
stays operational.

Scenario 2: Scaling the number of zones.

Adding new zones will require similar steps as for including new equipment. Once the
changes are visible in the KNX IoT 3rd Party API, an agent is instantiated and starts
controlling the corresponding zone. Checking the building interface for new zones and
creating new agents could be done automatically. Nevertheless, scaling the number of
zones will also affect the number of servers, as each agent is a Node.js server. For larger
buildings with many zones, there are many ports to manage, as well as the infrastructure
on which each agent runs. Despite the fact that such WoT servers are capable of running
on devices with restricted computational power, the overhead each server causes is higher
compared to simpler implementations that might not be decentralized. The advantage
of this decentralized system is that the integration of new zones is in a semi-automatic
fashion.

Scenario 3: Including additional agents.

As described in the previous chapter, introducing a new agent might also require additional
information-providing agents. This can be done efficiently, as only an agent has to be
created. It is also possible to extend the existing system by adding an agent. This agent
will provide information that can be used by existing agents. This has been demonstrated
in Section 4.2.3. For the implemented MAS, a replaced agent must have the same outputs
as the previous one, as the building interface only accepts a restricted set of control
values, e.g., a valve position. If the building interface agent provides additional methods
that allow setting different control values, the same outputs are not required. This allows
the owner of the building to choose between different controllers without changing other
agents. This increases the flexibility of the system. Moreover, the system can be easily
extended by additional agents.

One goal was to find an appropriate architectural design of a MAS to allow semi-automatic
integration and scalability. The developed system shows how the developed ontology
can be used to create such an energy management system. The agents-skills-ontology
can be used to describe which information an agent requires and which data it can
provide to other agents. By considering multiple aspects of BMS as well as different

76

5.3. Discussion of Research Question 2

control strategies, an ontology has been created that allows modeling complex MASs.
By describing the skills of the agents, the resulting system is extendable as well as
scalable. Depending on which changes are made to the system, more or less interaction
by a system designer is required. Therefore, the proposed system also meets the desired
semi-automatic integration. Furthermore, utilizing WoT devices to create an extendable
system has also proven effective, as these provided the means of including semantics,
reducing ambiguity, and increasing interoperability. Therefore, the provided proof of
concept implementations shows a possible solution as answer to the second research
question.

77

CHAPTER 6
Conclusion and Future Work

In this thesis, a MAS has been proposed that provides a remedy for the centralized
control strategies with its complex optimization used in many building controllers. With
an ontology describing each agent’s skills, the system can be extended and scaled easily.
Furthermore, the system builds upon the existing standard KNX IoT 3rd Party API and
utilizes the concept of WoT to reduce ambiguity during communication.

The research has demonstrated that the use of the skills-ontology allows the system
designer to model a great variety of different systems. It can include different heating and
cooling systems, light control, access control, heating distribution, weather and energy
price predictions, user preferences, and many other important skills. By including these
skills in an agent’s TD and publishing it, agents can automatically find each other and
start communicating. With the use of other ontologies in the description of Thing’s
methods, the agents can also determine which inputs are expected and what data is
returned.

Nevertheless, despite the promising outcomes, a fully automatic integration of new
components is not possible. Changes can only be detected once these have been modeled
inside of the ETS. Also, the tedious process of tuning a controller is not done automatically,
even though this would significantly reduce the integration effort.

The KNX IoT 3rd Party API has the potential of supporting the use of a basic MAS
if the full modeling options are available in the ETS. However, despite the promising
capabilities of the KNX Information Model, it is not possible to utilize these in the
current state of the KNX IoT 3rd Party API. Furthermore, some modeling options, like
parameters of the building envelope, will most likely never be modeled inside of the ETS.

Based on the findings in this thesis, there are some directions for future research. As
already noted previously, a way of combining the exported ontology from the ETS and
a BIM would help to infer more information automatically. Further investigations are
also necessary to see how the implemented system behaves on other buildings, with a

79

6. Conclusion and Future Work

greater number of controllable assets, like photovoltaics or other RES. Integrating more
advanced control strategies would also achieve better results, especially if predictions are
no longer always true. Finally, in-depth research can be carried out on how the system
can also include other standards like BACnet or Modbus, as these technologies are also
commonly used in building automation.

Overall, this thesis has provided the fundamentals for a skill-based MAS in the BMS
domain that provides a decentralized and extendable energy management solution and
opens up multiple directions for future research topics.

80

Overview of Tools Used

DeepL to improve complex sentences in order to achieve better readability.

Grammarly to correct errors while writing the thesis.

81

List of Figures

2.1 The structure of an agent in energy management systems [WXHG07]. . . 14
2.2 The fundamental process of Gaia[WJK00]. 16
2.3 The phases of MaSE [DWS01]. 17

3.1 The multizone residential hydronic building from BOPTEST1. 32
3.2 The proposed system design. 33
3.3 The goal hierarchy of the proposed MAS. 35
3.4 The sequence diagram depicts how the zone preferences are determined. . 36
3.5 The sequence through which the role that determines the control values has

to go through. 37
3.6 The role model of the MAS. 38
3.7 The task executed by the zone preferences role. 39
3.8 The MaSE role model. 40
3.9 Components of a Building Automation Management System. 43
3.10 The ontology used to describe an agent’s skills in the MAS. 44
3.11 The MaSE role model of the implemented system. 49
3.12 The sigmoid function used to control the valve position. 59

4.1 The indoor temperature after simulating with all agents. 64
4.2 The different setpoint ranges during the simulation. 65
4.3 The indoor temperature achieved by the benchmark controller. 67
4.4 The indoor temperature in the living room when AC is included. 70
4.5 The setpoint ranges if the occupancy agent has been added during the simula-

tion. 71

83

List of Tables

2.1 List of all relevant parameters. 27
2.2 List of parameters that should be provided by the KNX Ontology. 30

4.1 The discomfort for each zone incurred by the MAS and the benchmark
controller. 66

4.2 The gas consumption of the MAS and the benchmark controller. 68
4.3 The consumed energy when running the simulation without occupancy pre-

dictions. 72

85

List of source codes

1 Example of a Thing Description. 20
2 The exported description of the living room. 46
3 The exported application function responsible for the heating inside of the

living room. 47
4 The context field of the temperature agent TD. 50
5 Excerpt of a TD to show how an agent advertises skills. 50
6 The returned type when querying the thermal capacitance. 52
7 The extension of the REC ontology. 52
8 The method used to update the valve position of a given zone. 53
9 The method used to update the valve position for a given zone. 56
10 The output of the getSetpoint-method the building interface agent provides. 56
11 The action handler of the zone preferences agent, that computes the

setpoint range. 57
12 The output property of the getZonePreferences-method 58
13 The exported description of the living room. 61

87

Acronyms

AC Air Conditioning. 24, 59, 69, 70, 83

ACL Agent Communication Language. 13, 14

API Application Programming Interfaces. 3, 9, 15, 24, 27–32, 46–48, 68, 69, 73–76, 79

BIM Building Information Model. 30, 75, 79

BMS Building Management Systems. 2, 3, 7, 34, 76, 80

ETS Engineering Tool Software. ix, 3, 4, 28, 29, 31, 45–48, 69, 74, 75, 79

HTTP Hypertext Transfer Protocol. 15, 20, 21, 28, 40, 54

HVAC Heating, Ventilation and Air Conditioning. 24, 26, 34, 42

IoT Internet of Things. 1, 19

JSON JavaScript Object Notation. 19

JSON-LD JSON for Linked Data. 19, 20, 48

MAS Multi-Agent System. ix, 2–5, 7, 11–16, 18, 19, 21, 28, 29, 31–33, 35, 38, 42, 45,
48, 54, 55, 57, 63, 65–68, 71, 73–77, 79, 80, 83, 85

MaSE Multiagent Systems Engineering. 4, 16–19, 31, 33, 34, 36–38, 40, 42, 49, 83

MPC Model Predictive Control. 3, 11, 21, 22, 24, 26, 27, 51, 52, 68, 70, 74

MSS Microservice System. 14, 15

OOP Object-Oriented Programming. 7, 8

OWL Web Ontology Language. 8

PASSI Process for Agent Societies Specification and Implementation. 18, 19, 33

89

PI Proportional-Integral. 66

PID Proportional-Integral-Derivative. 45, 53, 54, 59, 60, 73, 74, 76

RC Resistor–Capacitor. 21–24

RDF Resource Description Framework. 8, 19, 21, 46

REC Real Estate Core. 9, 52, 87

RES Renewable Energy Sources. 1, 11, 34, 80

SPARQL SPARQL Protocol and RDF Query Language. 21

SRF Solar Response Factor. 23

TD Thing Description. ix, 19–21, 31, 32, 34, 48–51, 54–56, 58, 60, 61, 69, 71, 79, 87

TDD Thing Description Directory. 19–21, 31, 34, 48, 55, 60, 69, 71

UML Unified Modeling Language. 18

URI Unique Resource Identification. 8, 19

URL Uniform Resource Locator. 19, 54, 55, 69

WoT Web of Things. vii, ix, 2, 3, 7, 19–21, 40, 48, 55, 60, 76, 77, 79

90

Bibliography

[AAC+15] Fatima Amara, Kodjo Agbossou, Alben Cárdenas, Yves Dubé, and Sousso
Kelouwani. Comparison and simulation of building thermal models for
effective energy management. Smart Grid and Renewable Energy, 06:95–
112, 2015.

[AH11] Dean Allemang and James A Hendler. Semantic web for the working
ontologist : effective modeling in RDFS and OWL. Morgan Kaufmann,
Waltham, MA, 2. ed. edition, 2011.

[BB14] Jonathan Brooks and Prabir Barooah. Energy-efficient control of under-
actuated hvac zones in buildings. In 2014 American Control Conference,
pages 424–429, 2014.

[BBF+16] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao,
Joshua Gluck, Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs,
Yuvraj Agarwal, Mario Berges, David Culler, Rajesh Gupta, Mikkel Baun
Kjærgaard, Mani Srivastava, and Kamin Whitehouse. Brick: Towards a
unified metadata schema for buildings. In Proceedings of the 3rd ACM
International Conference on Systems for Energy-Efficient Built Environ-
ments, BuildSys ’16, page 41–50, New York, NY, USA, 2016. Association
for Computing Machinery.

[BULA+19] Hector Bastida, Carlos E. Ugalde-Loo, Muditha Abeysekera, Meysam
Qadrdan, and Jianzhong Wu. Thermal dynamic modelling and temperature
controller design for a house. Energy Procedia, 158:2800–2805, 2019.
Innovative Solutions for Energy Transitions.

[CFM+19] Borui Cui, Cheng Fan, Jeffrey Munk, Ning Mao, Fu Xiao, Jin Dong,
and Teja Kuruganti. A hybrid building thermal modeling approach for
predicting temperatures in typical, detached, two-story houses. Applied
Energy, 236:101–116, 2019.

[Con] World Wide Web Consortium. Home - web of things (wot) - w3.org.
https://www.w3.org/WoT/. [Accessed 09-07-2024].

91

https://www.w3.org/WoT/

[CS14] Massimo Cossentino and Valeria Seidita. PASSI: Process for Agent So-
cieties Specification and Implementation, pages 287–329. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

[CWL14] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 con-
cepts and abstract syntax. W3C recommendation, W3C, February 2014.
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

[DAC+20] Ján Drgoňa, Javier Arroyo, Iago Cupeiro Figueroa, David Blum, Krzysztof
Arendt, Donghun Kim, Enric Perarnau Ollé, Juraj Oravec, Michael Wetter,
Draguna L. Vrabie, and Lieve Helsen. All you need to know about model
predictive control for buildings. Annual Reviews in Control, 50:190–232,
2020.

[DB00] P. Davidsson and M. Boman. A multi-agent system for controlling in-
telligent buildings. In Proceedings Fourth International Conference on
MultiAgent Systems, pages 377–378, 2000.

[DJS+21] Blum David, Arroyo Javier, Huang Sen, Drgoňa Ján, Jorissen Filip,
Taxt Walnum Harald, Chen Yan, Benne Kyle, Vrabie Draguna, Wet-
ter Michael, and Helsen Lieve. Building optimization testing framework
(boptest) for simulation-based benchmarking of control strategies in build-
ings. Journal of Building Performance Simulation, 14(5):586–610, 2021.

[DKJ18] Ali Dorri, Salil S. Kanhere, and Raja Jurdak. Multi-agent systems: A
survey. IEEE Access, 6:28573–28593, 2018.

[Dor20] Kirill Dorofeev. Skill-based engineering in industrial automation domain:
Skills modeling and orchestration. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pages 158–161, 2020.

[DWS01] Scott Deloach, Mark Wood, and Clint Sparkman. Multiagent systems
engineering. International Journal of Software Engineering and Knowledge
Engineering, 11:231–258, 06 2001.

[EM15] G. Evola and L. Marletta. The solar response factor to calculate the
cooling load induced by solar gains. Applied Energy, 160:431–441, 2015.

[FAI15] FAIRsharing Team. Fairsharing record for: Quantities, units, dimensions
and types, 2015.

[FIP] FIPA. FIPA Communicative Act Library Specification. http://
www.fipa.org/specs/fipa00037/SC00037J.html. [Accessed 17-
03-2025].

92

http://www.fipa.org/specs/fipa00037/SC00037J.html
http://www.fipa.org/specs/fipa00037/SC00037J.html

[FLZ+22] Moritz Frahm, Felix Langner, Philipp Zwickel, Jörg Matthes, Ralf Mikut,
and Veit Hagenmeyer. How to derive and implement a minimalistic RC
model from thermodynamics for the control of thermal parameters for
assuring thermal comfort in buildings. In 2022 Open Source Modelling
and Simulation of Energy Systems (OSMSES), pages 1–6, 2022.

[Frü21] Thomas Frühwirth. Dependability in multi-agent systems for smart grid
applications. Wien, 2021.

[GCLPVD23] Raúl García-Castro, Maxime Lefrançois, María Poveda-Villalón, and Laura
Daniele. The etsi saref ontology for smart applications: a long path
of development and evolution. Energy Smart Appliances: Applications,
Methodologies, and Challenges, pages 183–215, 2023.

[GLW23] Christoph Gehbauer, Eleanor S. Lee, and Taoning Wang. An evaluation
of the demand response potential of integrated dynamic window and hvac
systems. Energy and Buildings, 298:113481, 2023.

[GTPLC+22] M. González-Torres, L. Pérez-Lombard, Juan F. Coronel, Ismael R.
Maestre, and Da Yan. A review on buildings energy information: Trends,
end-uses, fuels and drivers. Energy Reports, 8:626–637, 2022.

[HWKH19] Karl Hammar, Erik Oskar Wallin, Per Karlberg, and David Hälleberg.
The realestatecore ontology. In The Semantic Web – ISWC 2019: 18th
International Semantic Web Conference, Auckland, New Zealand, October
26–30, 2019, Proceedings, Part II, page 130–145, Berlin, Heidelberg, 2019.
Springer-Verlag.

[IEA23] IEA. Global CO2 emissions from the operation of buildings in the net
zero scenario, 2010-2030, 2023. Licence: CC BY 4.0.

[INC08] Victoria Iordan, Antoanela Naaji, and Alexandru Cicortas. Deriving
ontologies using multi-agent systems. W. Trans. on Comp., 7(6):814–826,
June 2008.

[JWC96] S.E.G. Jayamaha, N.E. Wijeysundera, and S.K. Chou. Measurement of the
heat transfer coefficient for walls. Building and Environment, 31(5):399–
407, 1996.

[KKM23] Sebastian Käbisch, Ege Korkan, and Michael McCool. Web of things
(wot) thing description 1.1. W3C recommendation, W3C, 12 2023.
https://www.w3.org/TR/2023/REC-wot-thing-description11-20231205/.

[KNX23] KNX. KNX Information Model. https://schema.knx.org/, 2023.
[Accessed 23-10-2024].

93

https://schema.knx.org/

[LBW+22] Manuel Lämmle, Constanze Bongs, Jeannette Wapler, Danny Günther,
Stefan Hess, Michael Kropp, and Sebastian Herkel. Performance of air
and ground source heat pumps retrofitted to radiator heating systems
and measures to reduce space heating temperatures in existing buildings.
Energy, 242:122952, 2022.

[MBW+18] Somayeh Malakuti, Jürgen Bock, Michael Weser, Pierre Venet, Patrick
Zimmermann, Mathias Wiegand, Julian Grothoff, Constantin Wagner,
and Andreas Bayha. Challenges in skill-based engineering of industrial
automation systems. In 2018 IEEE 23rd International Conference on
Emerging Technologies and Factory Automation (ETFA), volume 1, pages
67–74, 2018.

[MKA+23] Miriam Zawadi Muchika, Oudom Kem, Sarra Ben Abbes, Lynda Temal,
and Rim Hantach. Achieving interoperability in energy systems through
multi-agent systems and semantic web. In 2023 IEEE/WIC International
Conference on Web Intelligence and Intelligent Agent Technology (WI-
IAT), pages 441–448, 2023.

[MMK24] Panagiotis Michailidis, Iakovos Michailidis, and Elias Kosmatopoulos.
Review and evaluation of multi-agent control applications for energy
management in buildings. Energies, 17(19), 2024.

[MSC+19] Zheng Ma, Mette Jessen Schultz, Kristoffer Christensen, Magnus Værbak,
Yves Demazeau, and Bo Nørregaard Jørgensen. The application of on-
tologies in multi-agent systems in the energy sector: A scoping review.
Energies, 12(16), 2019.

[MTCT23] Michael McCool, Kunihiko Toumura, Andrea Cimmino, and Farshid
Tavakolizadeh. Web of things (wot) discovery. W3C recommendation,
W3C, December 2023. https://www.w3.org/TR/2023/REC-wot-discovery-
20231205/.

[PDKH17] Damien Picard, Ján Drgoňa, Michal Kvasnica, and Lieve Helsen. Impact of
the controller model complexity on model predictive control performance
for buildings. Energy and Buildings, 152:739–751, 2017.

[PEFST13] Katia Potiron, Amal El Fallah Seghrouchni, and Patrick Taillibert. Multi-
Agent System Properties, pages 5–10. Springer London, London, 2013.

[RCR17] Alberto Rivas, Pablo Chamoso, and Sara Rodríguez. An agent-based inter-
net of things platform for distributed real time machine control. In 2017
IEEE 17th International Conference on Ubiquitous Wireless Broadband
(ICUWB), pages 1–5, 2017.

[RWG+24] Lasse M. Reinpold, Lukas P. Wagner, Felix Gehlhoff, Malte Ramonat,
Maximilian Kilthau, Milapji S. Gill, Jonathan T. Reif, Vincent Henkel,

94

Lena Scholz, and Alexander Fay. Systematic comparison of software agents
and digital twins: differences, similarities, and synergies in industrial
production. Journal of Intelligent Manufacturing, Jan 2024.

[SH13] Andy Seaborne and Steven Harris. SPARQL 1.1 query language. W3C
recommendation, W3C, March 2013. https://www.w3.org/TR/2013/REC-
sparql11-query-20130321/.

[SMK24] Christina Sander, Dominik Meyer, and Bernd Klauer. A scalable agent
architecture. In 2024 4th International Conference on Electrical, Computer,
Communications and Mechatronics Engineering (ICECCME), pages 1–6,
2024.

[TBB+21] Christian Ankerstjerne Thilker, Peder Bacher, Hjörleifur G. Bergsteinsson,
Rune Grønborg Junker, Davide Cali, and Henrik Madsen. Non-linear
grey-box modelling for heat dynamics of buildings. Energy and Buildings,
252:111457, 2021.

[vHM04] Frank van Harmelen and Deborah McGuinness. OWL web ontol-
ogy language overview. W3C recommendation, W3C, February 2004.
https://www.w3.org/TR/2004/REC-owl-features-20040210/.

[WCOLO19] Rem W. Collier, Eoin O’Neill, David Lillis, and Gregory O’Hare. Mams:
Multi-agent microservices. In Companion Proceedings of The 2019 World
Wide Web Conference, WWW ’19, page 655–662, New York, NY, USA,
2019. Association for Computing Machinery.

[WJK00] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The gaia
methodology for agent-oriented analysis and design. Autonomous Agents
and Multi-Agent Systems, 3(3):285–312, Sep 2000.

[WXHG07] Song Wei, Wang Xiangnan, Cao Houji, and Pan Guowei. Multi-agent
architecture of energy management system based on iec 61970 cim. In
2007 International Power Engineering Conference (IPEC 2007), pages
1366–1370, 2007.

[YSX+21] Liang Yu, Yi Sun, Zhanbo Xu, Chao Shen, Dong Yue, Tao Jiang, and
Xiaohong Guan. Multi-agent deep reinforcement learning for hvac control
in commercial buildings. IEEE Transactions on Smart Grid, 12(1):407–419,
2021.

95

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem description
	Research Questions
	Methodology

	State of the Art
	Basic Concepts of Ontologies
	Building Control with Multi-Agent Systems
	Multi-Agent System Development Methodologies
	Web of Things
	Relevant Parameters for Thermal Control Strategies
	BOPTEST
	KNX

	Proposed System Design
	Use Case Description
	Multi-Agent System Design
	Skills Ontology Modeling
	KNX Semantic Modeling
	Extension of the Thing Description
	Proof of Concept - Multi-Agent System Implementation

	Evaluation Results
	Controller Performance
	Extendability of the Multi-Agent System

	Discussion
	Analysis of the Proof of Concept Implementation
	Discussion of Research Question 1
	Discussion of Research Question 2

	Conclusion and Future Work
	Overview of Tools Used
	List of Figures
	List of Tables
	Acronyms
	Bibliography

