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 A B S T R A C T

In recent years, three-dimensional point clouds are used increasingly to document natural environments. Each 
dataset contains a diverse set of objects, at varying shapes and sizes, distributed throughout the data and 
intricately intertwined with the topography. Therefore, regions of interest are difficult to find and consequent 
analyses become a challenge. Inspired from visual perception principles, we propose to differentiate objects 
of interest from the cluttered environment by evaluating how much they stand out from their surroundings, 
i.e., their geometric salience. Previous saliency detection approaches suggested mostly handcrafted attributes 
for the task. However, such methods fail when the data are too noisy or have high levels of texture. Here we 
propose a learning-based mechanism that accommodates noise and textured surfaces. We assume that within 
the natural environment any change from the prevalent surface would suggest a salient object. Thus, we 
first learn the underlying surface and then search for anomalies within it. Initially, a deep neural network is 
trained to reconstruct the surface. Regions where the reconstructed part deviates significantly from the original 
point cloud yield a substantial reconstruction error, signifying an anomaly, i.e., saliency. We demonstrate the 
effectiveness of the proposed approach by searching for salient features in various natural scenarios, which 
were acquired by different acquisition platforms. We show the strong correlation between the reconstruction 
error and salient objects. To promote benchmarking and reproducibility, the code used in this work can be 
found on https://github.com/rarav/salient_anomaly/releases/tag/v1.0.0 while the datasets are published on 
doi:10.48436/mps0m-c9n43 and 10.48436/fh0am-at738.
1. Introduction

Three-dimensional point clouds have become an essential tool for 
geoscientific studies. Everything within the natural environment is 
being documented and monitored: from millimetre-wide cracks, to 
centimetre-long blocks and metre-wide rivers (Telling et al., 2017; 
Tarolli and Mudd, 2020; Kyriou et al., 2021). The acquired point 
clouds provide a high resolution description of the landscape, en-
abling analyses that would otherwise be impossible. These datasets 
are characterized by a massive amount of unorganized points, which 
span over wide areas at different point spacing. The collected data 
comprise a diverse array of objects of interest with varying shapes 
and sizes, distributed throughout the dataset and embedded within the 
topography. Due to acquisition conditions, the data hold a significant 
amount of noise and uninteresting regions make up a larger portion of 
the point cloud (Arav et al., 2022a).
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Studies have shown that focusing on important regions within the 
point cloud improves scene understanding (Alexiou et al., 2019; Liang 
et al., 2023). This can be accomplished through visual saliency, which is 
defined as the subjective quality that makes certain objects or regions 
stand out in their environment, capturing the observer’s attention (Ak-
man and Jonker, 2010). In 3D, saliency is defined as objects (or regions) 
that stand out from their surroundings, also geometrically. Common 
saliency approaches in 3D point clouds focus on small object models 
(e.g., Guo et al., 2018; Alexiou et al., 2019; Ding et al., 2019; Leal et al., 
2019), where the point cloud is confined, resolution is approximately 
constant, and noise levels are often low. Studies that wish to extend the 
detection to larger scenes usually focus on urban environments. There, 
salient objects hold distinct features, so that first-order features, such 
as normal, height, or orientation are sufficient for saliency detection 
(Hao et al., 2019; Yun and Sim, 2016; Fan et al., 2022). However, 
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these approaches fail in natural environments, where entities transform 
smoothly into the background.

In this paper we introduce a new approach to estimate saliency 
in 3D point clouds of natural environments. To do so, we estimate 
anomaly probability within a surface. Based on the fact that landscapes 
are generally continuous and smooth, salient features will present an 
unexpected change in the surface. We propose to use a deep neural 
network to predict small parts of the landscape providing only a re-
duced amount of information. Then, we interpret the deviation between 
the actual and the predicted surface as a measure of saliency for that 
area. Specifically, we train a network by inputting the outer cells (a 
shell) of a voxelized region (voxel grid) and generating a predicted 
voxel grid as output. It is assumed that the shell contains all the 
required information to predict the surface described by the voxel grid, 
as long as the inner part is regular. However, whenever the inner 
part is irregular, the reconstruction error will be large, and thus will 
signify high saliency. We demonstrate the proposed approach in three 
real-world settings, that substantially differ one from the other. We 
show, both visually and quantitatively, the strong link between the 
reconstruction error and salient objects. Doing so, we propose a new 
approach for evaluating saliency in 3D point clouds, which, unlike 
current deep learning approaches, does not consider saliency detection 
as a classification problem. Therefore, it does not require pre-trained 
classifiers. By predicting the surface from the obtained point cloud, 
the proposed approach can detect saliency in open terrain datasets and 
is not limited to small objects. Furthermore, is can handle substantial 
data volumes, high noise levels, and irregular point distribution, all of 
which are inherent characteristic to 3D point clouds acquired by laser 
scanning platforms. To promote further study of saliency estimation 
algorithms, we release our source code (Arav and Wittich, 2023).

2. Related work

Saliency detection in 3D point clouds has been gaining popularity 
for several years as a preliminary process for various complex pro-
cessing tasks. For example, Qin et al. (2023) use saliency to register 
multiple point clouds of an indoor scene, Laazoufi and Hassouni (2022) 
use salient points to evaluate point cloud quality, Liang et al. (2023) en-
hance point cloud models by reducing excessive non-salient points that 
obscure the overall shape of the model, and Hong et al. (2023) employ 
salient regions in data augmentation learning models for segmentation.

Saliency detection approaches in full 3D point cloud are quite rare. 
Nonetheless, there are many works that deal with saliency detection 
in RGB-D (colour and depth) images. There, saliency is found mostly 
based on RGB information, while the depth map is used to improve 
results. In recent years, most methods adopt deep learning models 
for the task. Chen et al. (2021b) and Zhou et al. (2021) differentiate 
between early, late, and middle aggregation approaches. In early ag-
gregation models, both RGB and depth images are fused in the input 
level, and then a CNN-based network is used to extract the features for 
saliency detection (e.g., Zhang et al., 2020, 2021a). In late aggregation 
approaches, saliency cues are learned separately from the depth and 
colour channels before being fused to obtain the saliency map (e.g., 
Li et al., 2022; Sun et al., 2022; Chen et al., 2021a). For example, 
Chen et al. (2021a) learn the relevant cues for saliency detection from 
each channel, and then select cues that exist only in one channel. The 
saliency inference is carried out by fusing low- and high-level cues 
from both channels. Middle aggregation models try to combine both 
early and late aggregation approaches, so that learning is carried out 
in two phases. In the first phase, saliency features are obtained for 
each modality. In the second phase, they are fused to generate the final 
saliency map (Chen et al., 2021b; Zhou et al., 2021; Han et al., 2018; 
Zhang et al., 2021b). For instance, Zhou et al. (2021) first feed the 
depth and colour images into two learning networks to obtain corre-
sponding multi-level feature representations. These representations are 
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fused using an integration module, where a shared learning network 
enhances the features for saliency detection.

However, the works above capitalize on existing saliency
approaches in colour images, while assuming a corresponding depth 
map. Yet, colour information in 3D point clouds is not always available, 
necessitating a greater emphasis on geometric features. Moreover, 
the data is unstructured, with varying point spacing, and in three 
dimensions, making such raster-based approaches inapplicable.

Doraiswamy et al. (2013) proposed to combine topological infor-
mation with spatial one in order to define saliency. The topological 
persistence of a set of initial features was weighted in reference to 
their neighbourhood. In this framework, the saliency of a feature is 
a combination of the feature’s topological persistence with that of 
its neighbourhood. Peng et al. (2021) also suggested to use feature 
topology as an indication for saliency. The data were first segmented 
and the topological relations between the segments (i.e., nested or 
parallel structures) were the indicator to its saliency. This was based 
on the observation that topologically complex regions are more salient 
than others. Both of these methods require an initial segmentation or 
feature selection to analyse the topology. It might be that due to that 
fact, none of these methods was tested on 3D point clouds. Works that 
define saliency particularly in point clouds are rare. Still, we divide 
them here to handcrafted and deep learning based approaches.

2.1. Handcrafted saliency approaches in 3D point clouds

Shtrom et al. (2013) were first authors to introduce saliency in 
point clouds which completely relies on geometric characteristics. The 
authors computed a fast point feature histogram descriptor (FPFH, 
Rusu et al. (2009)) and then evaluated its distinction from the local 
neighbourhood. A global rarity was then estimated by measuring the 
dissimilarity between every two points in the cloud. This approach was 
applied successfully to both small object models and urban environ-
ments in other works (e.g., Kobyshev et al., 2016; Hao et al., 2019). 
Tasse et al. (2015), Yun and Sim (2016) and also Ding et al. (2019) 
improved its computational efficiency by using cluster-wise comparison 
rather than a point-wise one. Other approaches for saliency detection 
proposed to use different metrics of local distinctness. Nonetheless, 
these were also based on normal computation and the distinction 
of the point’s normal from its immediate surrounding. Wang et al. 
(2015) measured the difference of a point’s normal from the dominant 
normal in the scene. Applied to roads scanned by mobile scanners, this 
approach is aimed specifically to highlight off-road objects. Guo et al. 
(2018) defined a point descriptor based on principal component anal-
ysis (PCA). The descriptor was composed of sigma-sets extracted from 
the covariance matrix of each point’s normal and curvature. Arvanitis 
et al. (2022) defined salient points as those belong to non-flat surfaces. 
The flatness is determined by the covariance matrix eigenvalues of 
a local neighbourhood. Non-flat areas produce low eigenvalues that 
correspond to high saliency values. In such normal-based approaches, 
the assumption is that a salient feature is defined by an abrupt change 
in orientation. However, in natural environments this might not be 
the case. There, entities such as gullies, landslides, rockfalls, sinkholes, 
or cracks, are parts of the underlying surfaces. Such objects have 
intermediate borders, which gradually and continuously change from 
background to entity (Molenaar and Cheng, 2000; Liu et al., 2019). 
Therefore, though they differ from their surroundings, their borders are 
mostly vague and are hard to define (Molenaar and Cheng, 2000). To 
overcome this problem, Arav and Filin (2020) proposed a method that 
is attuned to detect vague objects as salient features. Instead of looking 
for an immediate change in the local surrounding, the authors suggest 
to look at a farther neighbourhood. Furthermore, to allow for more 
subtle objects, the authors do not only take the normal change into 
account, but also the change rate, i.e., the curvature. The advantage of 
this approach was shown in later works (Arav and Filin, 2022; Arav 
et al., 2022b) detecting salient objects in different types of natural 
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scenes, including a complete 3D scenario (i.e., a cave). Nonetheless, 
this approach would fail in cases of rough surfaces (e.g., riverbeds, 
alluvial fans). There, the difference between a point and its wider 
surrounding is high, leading to an increased sensitivity in detection. 
Moreover, outliers (i.e., measurement noise) will also be highlighted, as 
their normals and curvatures completely differ from their surroundings.

The review has shown that handcrafted approaches for saliency 
estimation evaluate how much a point differs from its surrounding 
(aka. centre-surround principle Itti et al., 1998), mostly focusing on 
the difference in normal direction. In such schemes, a larger context of 
salient features is missing, leading to high sensitivity to local variations.

2.2. Deep learning-based saliency approaches in 3D point clouds

To the best of our knowledge, only a few approaches were proposed 
for saliency evaluation in point clouds using deep learning. These tend 
to use pre-trained models and are mostly in the context of shape 
recognition and classification. Zheng et al. (2019) assert that salient 
points explicitly explain which points are key for model recognition. 
The authors assume that points that lie on the object’s borders con-
tribute more to shape recognition than those that lie on its inner 
surface. Therefore, they suggest that elimination of unimportant points 
or their movement towards the object’s inner surface are equivalent. 
Under this assumption, salient points are marked by the change in 
prediction loss using a pre-trained classifier for shape recognition. The 
change in prediction loss is approximated by the gradient of the loss 
when shifting points to the centre of the object’s point cloud. These 
gradients were interpreted as saliency scores. Another semi-supervised 
approach was proposed by Jiang et al. (2023). The authors use objects 
that were previously classified in order to learn the saliency. This is 
carried out in two main branches: a classification branch, which uses 
category labels for feature extraction, and a saliency branch that uses 
a multi-scale point cluster matrix to provide coherent saliency regions. 
Both approaches target point clouds of objects whose category labels 
are known. Within the natural environment, where objects may be 
restricted only to one region or may appear only a few times, training 
data for classification may be difficult to acquire. Moreover, manual 
labelling which marks salient and non salient features in scenes as large 
as point clouds of natural environment are, is not only time-consuming, 
but also prone to perception bias and degrades the detection accuracy 
(Hillier et al., 2014; Scheiber et al., 2015; Vinci et al., 2016). Therefore, 
the aforementioned methods cannot be applied to point clouds of 
natural environment. To overcome this problem, we propose a new 
approach to highlight salient regions that is independent of previous 
classification. The detection is driven by the notion that in natural 
environments salient object are in a way an anomaly in the general 
surface.

3. Methodology

We seek to highlight salient features in point clouds, focusing on 
datasets that document natural environments (i.e., non-urban scenes). 
Following the notion that salient features are a sudden change in 
the surface, we assume that they will present an irregularity at that 
location. Therefore, we consider the task of highlighting saliency as 
marking anomalies in the scene. To do so, we first train a deep neural 
network to reconstruct the surface from a reduced subset of the data. 
Then, we reconstruct the surface and evaluate the reconstruction error. 
This error is interpreted as the saliency score, since the reconstruction 
error will be larger in irregular regions. In this way, we highlight salient 
features in 3D point clouds where external information is used only to 
find the best hyper-parameters of the method (i.e., hyper-parameters 
tuning).

We begin with the details of our proposed method to mark salient 
regions (Section 3.1). This section also includes a formal definition of 
the problem and the notations used in this work. Then, we outline the 
network architecture (Section 3.2), followed by details concerning the 
loss function and training procedures (Section 3.3). Lastly, we describe 
how saliency scores are estimated (Section 3.4).
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3.1. Saliency estimation in 3D point clouds by anomaly detection

Let 𝑃  be a point cloud, defined as a set of 𝑁 3D points. These 
compile the main input to the method. Additionally, as an input, we 
introduce two subsets of 𝑃 : 𝐻 , which is composed of points that are 
expected to have high saliency scores; and 𝐿, composed of points that 
are expected to have lower saliency scores. These subsets are required 
to tune the hyper-parameters of the method. Note that 𝐻∪𝐿 ≠ 𝑃 . They 
are only samples of each group 𝐻 and 𝐿. The output of the method is 
a saliency map, where each point 𝑝𝑖 ∈ 𝑃  has a saliency score 𝜉𝑖.

The saliency score is in fact an interpretation of the reconstruc-
tion error. It is obtained by a reconstruction network 𝑅 for a point’s 
surrounding region. This network is pretrained on random regions 
extracted from 𝑃  to enable a reconstruction of the surface recorded by 
the point cloud. This is based on the assumption that salient regions are 
rare, and therefore, the network will not learn them, but it will rather 
learn regular surfaces. This approach has a major advantage, as we do 
not require any manually generated reference to train 𝑅. Instead, we 
use arbitrary sub-regions of 𝑃  for the task.

To evaluate the reconstruction error as a saliency score, one has to 
formulate the reconstruction task in a way that 𝑅 could reconstruct the 
surroundings of a point, as long as these surroundings are regular. Yet, 
if the surroundings are irregular, the reconstruction should be incorrect, 
yielding a high reconstruction error, i.e., a high saliency score. To do 
so, we use a voxel-based representation of the point cloud. Then, we 
formulate the reconstruction task to predict the inner part of a voxel 
grid based on its outer voxels (the grid’s shell).

Let 𝑉𝑖 be the representation of a region in 𝑃  in terms of a voxel grid 
of size 𝑛×𝑛×𝑛 that contains the surrounding region of 𝑝𝑖, such that 𝑉𝑖 is 
centred at 𝑝𝑖. The side-length of each voxel cell in 𝑉𝑖 is parameterized 
by 𝑤, resulting in a volume of 𝑤×𝑤×𝑤 for each voxel cell and a total 
volume of (𝑤 ⋅ 𝑛) × (𝑤 ⋅ 𝑛) × (𝑤 ⋅ 𝑛) for 𝑉𝑖. The value of a voxel 𝑉𝑖,(𝑥̂,𝑦̂,𝑧̂) at 
voxel coordinates (𝑥̂, 𝑦̂, 𝑧̂) in 𝑉𝑖 corresponds to the number of 3D points 
in that cell.

Next, we introduce 𝑆𝑖. This is a modified version of 𝑉𝑖, where the 
values in the inner cells are set to zero. Consequently, 𝑆𝑖 contains only 
the information from the shell of 𝑉𝑖. In particular, the value of the voxel 
cell 𝑆𝑖,(𝑥̂,𝑦̂,𝑧̂) is 𝑉𝑖,(𝑥̂,𝑦̂,𝑧̂) if min(𝑥̂, 𝑦̂, 𝑧̂) ≤ 𝑚 or max(𝑥̂, 𝑦̂, 𝑧̂) ≥ 𝑛 − 𝑚 − 1, and 
zero otherwise. Here, 𝑚 denotes the thickness of the shell, i.e., how 
many voxels compile the shell. Using this notation, the reconstruction 
task is carried out by 𝑅. The network predicts the values of a voxel 
grid 𝑉𝑖 based on the shell 𝑆𝑖, such that 𝑉𝑖 is similar to 𝑉𝑖. To measure 
the similarity between 𝑉𝑖 and 𝑉𝑖, we introduce a function (𝑉𝑖, 𝑉𝑖) that 
measures the reconstruction error. The selection of the reconstruction 
error function  is be discussed in Section 3.3.

The overall training scheme of our proposed method is shown in 
Fig.  1. To train the reconstruction network 𝑅, we randomly select 
points from the cloud 𝑃 , then voxelize their surrounding, resulting 
in voxel grids 𝑉𝑖. Based on these grids we generate corresponding 
shells 𝑆𝑖. Then, the parameters of 𝑅 are obtained by minimizing the 
reconstruction error (𝑉𝑖, 𝑉𝑖). Eventually, the saliency score 𝜉𝑖 for a 
point 𝑝𝑖 is estimated by the reconstruction error (𝑉𝑖, 𝑉𝑖) for each point 
in 𝑃  using the trained network. It should be mentioned that as the 
network is trained to reconstruct ‘regular’ surfaces, and in each scene 
this ‘regularity’ is defined differently, training has to be conducted for 
each new scene.

3.2. Architecture

To perform the reconstruction task, we use a 3D convolutional neu-
ral network (CNN) as the reconstruction network 𝑅. The architecture 
is shown in Fig.  2. 𝑅 takes a shell 𝑆𝑖 as an input and outputs the values 
of a reconstructed voxel grid 𝑉𝑖. All tensors 𝑆𝑖, 𝑉𝑖 and 𝑉𝑖 have the same 
shape, which is 𝑛 × 𝑛 × 𝑛, where 𝑛 is the side-length of the voxel grid.

The architecture of 𝑅 follows the encoder–decoder scheme with 
skip connections, similar to the U-Net architecture (Ronneberger et al., 
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Fig. 1. Overview of the training scheme. We generate random voxel grids from a set of given point-clouds. Next, the shells are generated by setting the inner voxels to zero. The 
task of the CNN is then to reconstruct the original input. Note that the extracted voxel grid is coloured by the number of points in each cell. This information is used to calculate 
a weighted reconstruction loss.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
2015). In this layout the spatial size of the feature maps is halved in 
each stage on the decoder and doubled in the decoder (cf. Fig.  2). An 
illustration of the architecture is shown in Fig.  2 with the corresponding 
layers described in Table  1.

The capacity of the network is parameterized by the parameter 𝑓 , 
which describes the number of feature maps in base resolution. In each 
new stage, the number of feature maps is doubled. For example, with 
𝑓 = 24 the network has about 354K learnable parameters. Independent 
from 𝑓 , the network has a theoretical perceptive field of 49 × 49 × 49 
voxels, which was found to be suitable in preliminary experiments.

All convolutional layers use 3 × 3 × 3 kernels and a leaky rectified 
linear unit (Xu et al., 2020) as the activation function, except for the 
very last layer, where the sigmoid function is applied instead. Applying 
the sigmoid function to the output of the last convolution yields values 
in a range of (0, 1), which are interpreted as the probability of the 
respective voxel to be occupied by the surface. The downsampling and 
upsampling operations are performed by nearest neighbour interpola-
tion along all three spatial dimensions with scaling factors of 0.5 and 
2.0, respectively.

3.3. Loss function and training

The loss function used in this work is a variant of the dice-loss, 
which is applied in classification problems (Sudre et al., 2017). This 
loss is well suited for our problem because it insusceptible to data 
imbalance. In our case, such imbalance occurs since there is much more 
empty space than occupied voxels in the reconstruction task.

Let 𝑉 𝛽
𝑖  be a binary version of a voxel grid 𝑉𝑖, where

𝑉 𝛽
𝑖,(𝑥̂,𝑦̂,𝑧̂) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑉𝑖,(𝑥̂,𝑦̂,𝑧̂) ≤ 𝑡𝑏,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Here, 𝑡𝑏 is a threshold value for the minimum number of 3D points 
in each voxel cell so it will be considered occupied. In our experiments, 
we set 𝑡𝑏 = 2. We assume that voxels which contain only a single 3D 
point are more likely to represent noise. Therefore, this is a measure 
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Table 1
Layers of the architecture of . 3D-Conv: 3D Convolutional layer. LRL: Leaky ReLU. 
BN: 2D batch normalization; Cat(𝐿𝑋 ): Depth-wise concatenation of the output of layer
𝐿𝑋 and the current layer. side-length: Output dimensions. 𝑤 is the side-length of the 
input shell 𝑆𝑖.
 Layer name Type Side-length Num. chn. 
 

Encoder

Input layer 𝑛 1  
 Conv-(1,2) 3D-Conv, LRL 𝑛 𝑓  
 Dw-1 Downsample 𝑛∕2 𝑓  
 Conv-(3,4) 3D-Conv, LRL 𝑛∕2 2𝑓  
 Dw-2 Downsample 𝑛∕4 2𝑓  
 Conv-(5,6) 3D-Conv, LRL 𝑛∕4 4𝑓  
 Conv-7 3D-Conv, LRL 𝑛∕4 2𝑓  
 

Decoder

Up-1 Upsample, Cat(6) 𝑛∕2 (2 + 2)𝑓  
 Conv-8 3D-Conv, LRL 𝑛∕2 2𝑓  
 Conv-9 3D-Conv, LRL 𝑛∕2 𝑓  
 Up-2 Upsample, Cat(3) 𝑛 (1 + 1)𝑓  
 Conv-10 3D-Conv, LRL 𝑛 𝑓  
 Conv-11 3D-Conv, Sigmoid 𝑛 1  

aimed to deal with noise, so that only voxels with more than two points 
are regarded.

Another way to accommodate for noise in the data is by introducing 
a modified version of the dice-loss. This version uses weights at voxel 
level. As voxels that hold only one point may distract the regression 
model, they should be ignored. To this end, a weight tensor 𝑊𝑖 is 
computed for each voxel grid 𝑉𝑖, where 𝑊𝑖,(𝑥,𝑦,𝑧) = 0 if 𝑉𝑖,(𝑥,𝑦,𝑧) = 1 and 
𝑊𝑖,(𝑥,𝑦,𝑧) = 1, otherwise.

The basic reconstruction error is 

(𝑉𝑖, 𝑉
𝛽
𝑖 ) = 1 −

(𝑉𝑖, 𝑉
𝛽
𝑖 )

 (𝑉𝑖, 𝑉
𝛽
𝑖 )

, (1)

with the intersection term, , 

(𝑉𝑖, 𝑉
𝛽
𝑖 ) =

𝑛−1
∑

𝑛−1
∑

𝑛−1
∑

𝑉𝑖,(𝑥̂,𝑦̂,𝑧̂) ⋅ 𝑉
𝛽
𝑖,(𝑥̂,𝑦̂,𝑧̂), (2)
𝑥̂=0 𝑦̂=0 𝑧̂=0
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Fig. 2. Illustration of the variational auto-encoder used to reconstruct the surface based on the information in the shell of the voxel grid representation. Blue: Output of 
downsampling. Red: Output of upsampling. Yellow: Concatenated feature tensors.  (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)
and the weighted union term,  , 

 (𝑉𝑖, 𝑉
𝛽
𝑖 ) =

𝑛−1
∑

𝑥̂=0

𝑛−1
∑

𝑦̂=0

𝑛−1
∑

𝑧̂=0
max(𝑉𝑖,(𝑥̂,𝑦̂,𝑧̂), 𝑉

𝛽
𝑖,(𝑥̂,𝑦̂,𝑧̂)) ⋅𝑊𝑖,(𝑥̂,𝑦̂,𝑧̂). (3)

Using this formulation of the reconstruction error, the overall train-
ing loss  is 

 = 1
𝐵

𝐵
∑

𝑏=0
(𝑉𝑏, 𝑉

𝛽
𝑏 ), (4)

where 𝐵 is the batch size and 𝑏 is the index of a sample in the batch. 
Note that in preliminary experiments, we found this loss to outperform 
other loss definitions. Particularly, we compared to minimizing the 
mean squared error and a variant of the dice-loss without weighting.

To train the network, its parameters are randomly initialized and 
then iteratively updated using ADAM optimizer with a learning rate 
of 𝜆 = 0.0001 and hyper-parameters 𝛽1 = 0.0 and 𝛽2 = 0.999. During 
training, we sample a batch of 𝐵 voxel grids (𝑉𝑖) from the point cloud. 
Data augmentation is performed by randomly rotating the point cloud 
along the height axis before extracting each voxel grid. This is done af-
ter selecting a random point to be the centre of the voxel grid. The grid 
position is then frozen and the point cloud is randomly translated along 
the height axis before the voxelization step. In preliminary experiments 
we found that this step improves the trained models substantially, 
with respect to the reconstruction capability. Models that were trained 
without this augmentation step tended to be biased towards predicting 
occupied voxels in the centre of the voxel grid. Following the data 
augmentation step, the voxel grids in the batch are binarized.

Next, the shells (𝑆𝑖) are created as described in Section 3.1. These 
are presented to the network resulting in a predicted voxel grid (𝑉𝑖) 
for each shell in the batch. Using Eq. (1) the reconstruction error 
for each sample is calculated. The average reconstruction error over 
all samples in a batch corresponds to the reconstruction loss of the 
batch. The parameters of the network are then iteratively updated 
using ADAM optimizer to minimize the reconstruction loss. Training is 
stopped when the performance on a validation subset does not increase 
for 𝑛𝑆𝑇  iterations. The parameter set resulting in the highest validation 
performance is used for the inference. The performance measures are 
described in Section 4.4.

3.4. Inference

After training, 𝑅 is used to predict the voxel grid 𝑉𝑖 for the extracted 
shell 𝑆  of each point 𝑝 ∈ 𝑃 . The reconstruction error (𝑉 , 𝑉 ) is then 
𝑖 𝑖 𝑖 𝑖
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interpreted as a measure of saliency for 𝑝𝑖. Eventually, a saliency map 
is received, where each point has a saliency score of 

𝜉𝑖 = (𝑉𝑖, 𝑉𝑖). (5)

4. Test setup

4.1. Experiment setup

Experiments were carried out using an AMD Ryzen Theadripper 
1900X 8-core processor machine with a CPU memory of 32 GB and 
an NVIDIA GeForce RTX 2080 Ti GPU.

Network parameters were optimized according to Section 3.3. In all 
datasets, the batch size 𝐵 was set to 16 voxel grids per batch. The classi-
fier was evaluated on the validation sets every 1000 training iterations. 
The hyper-parameter 𝑛𝑆𝑇 , which is the training stop parameter, was set 
to 10,000 iterations. The shell size 𝑚 was set to 3 for all datasets.

4.2. Datasets

To demonstrate the proposed method we used three datasets that 
differ by scene, acquisition platform, extent, number of points, point 
spacing, etc. In the following, we characterize each dataset. Table  2 
provides a summary of the key characteristics.

Dataset #I. An airborne laser scan of an alluvial fan along the Dead 
Sea coast, Israel (open to the public Geological Survey of Israel 
and Arav, 2013). It holds above 1.5 million points, at 0.5 m 
point spacing. The scanned surface is relatively flat, punctured 
by sinkholes and dissected by gullies (Fig.  3a). Being an airborne 
laser scan, some overlapping scanlines exist, which leads to a 
change in point density in some regions.

Dataset #II. An airborne topo-bathymetric laser scan of a 750 m long 
section of a meandering river (Pielach River, Austria; Fig.  3b). 
This scanner is characterized by its elliptic scanning pattern, 
which affects the average point density throughout the scan 
(Arav et al., 2024). This dataset holds over 50 million points. Fo-
cusing on the river, vegetation was removed using the hierarchic 
robust interpolation method (Pfeifer and Mandlburger, 2018) as 
implemented in OPALS (Pfeifer et al., 2014).
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Fig. 3. Datasets analysed in the study. (a) Airborne dataset (Dead Sea Coast); (b) UAV-borne dataset (Pielach River); (c) Terrestrial dataset (Traisenbacher cave) The entrance to 
the cave is 4.7 m long and 2.6 m high. Colours refer to elevation.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)
Table 2
Acquisition characteristics of the analysed datasets.
 Dataset # Scanning platform Scanner type PRRa [kHz] Mean point spacing [m] No. of points 
 I Airborne Optech ALTM 2050 100 0.5 1,632,928  
 II Airborne Riegl VQ880-GH 200 0.075 50,813,569  
 III Terrestrial Riegl VZ2000 550 0.01 786,267  
a Pulse repetition rate.
Dataset #III. A terrestrial laser scan of a small cave, the Untere 
Traisenbacher Höhle, Austria (Fig.  3c; open to the public Wim-
mer and Oberender, 2022). Representing a cave, this dataset 
is fully three-dimensional, which makes it a challenging scene 
to analyse (Arav et al., 2022b). A single scanning position was 
used here. Therefore, on the one hand there are no overlapping 
scanlines. On the other hand, the scan features occlusions, as 
there were no additional positions to mitigate them. These 
occlusions are characteristic to terrestrial laser scans in general, 
and in cave measurements in particular. Hence, this scene is a 
good example for 3D terrestrial scan.

4.3. Validation and test subsets

In each dataset, we specify two types of subsets: a validation subset 
(𝐷) – for stopping the training process and for tuning the hyper-
parameters; a test subset (𝑇 ) – for testing and comparison purposes. 
Each subset is divided into ‘salient’ (𝐻) and ‘non-salient’ (𝐿) regions. 
These correspond to the expected regions that should have higher and 
lower saliency scores, respectively.

From each dataset a different number of subsets was extracted, 
depending on the scene. Non-salient areas were selected after visual 
inspection, to minimize the existence of salient regions within them. 
However, as delineation was done manually, the subsets still included 
some small parts of the other class (i.e., ‘salient’ in ‘non-salient’ regions, 
and vice versa). Nonetheless, the analysis only compares mean values 
of the same regions, so that inaccuracies in sampling are insignificant.
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Since saliency estimation is a subjective measure (Akman and 
Jonker, 2010), we describe below which objects/areas we expect to 
have higher saliency scores in each dataset. Accordingly, we define the 
minimal object size. The voxel size is then set to be half of the minimal 
object size. Table  3 summarizes these features.

Dataset #I. Salient areas are defined either as sinkholes or as parts 
of gullies (e.g., Fig.  4a–b). The sinkholes typically have 4–20 m 
diameter, while gullies are 2–9 m wide. Therefore, the minimal 
size is 2 m and the consequent voxel size is set to 1 m (Table  3). 
As for the non-salient, these reflect the fan surface (Fig.  4c). A 
total of nine regions were extracted as salient areas and nine as 
non-salient ones.

Dataset #II. Salient features are defined as the riverbanks as well as 
objects on the riverbed that are larger than 0.3 m (e.g., drift-
wood, stone blocks). Accordingly, the voxel size is set to 0.15 m 
(Table  3). Three areas with stone blocks, which were extracted 
in previous works (Mandlburger et al., 2015), were used as 
‘salient’ subsets (Fig.  5). Of these, two were chosen for testing 
and one for validation. The low number of extracted regions 
is a result of the complexity of the terrain. Non-salient regions 
were chosen along the river and reflect the riverbed which has 
varying surface roughness (Fig.  6).

Dataset #III. Salient features refer to niches and pockets in the cave’s 
walls and ceiling, as well as to some ledges and objects on the 
floor, with a minimal size of 0.1 m. Consequently, the voxel 
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Fig. 4. Examples of subsets chosen for validation in the dataset #I. (a) and (b) — salient regions; (c) non-salient. To improve visualization, the datasets presented here are 
hillshade reliefs of the point clouds. Note the different scales.
Fig. 5. Dataset #II. Examples of high salient score subsets (𝐻).
Fig. 6. Dataset #II. Examples of non salient subsets (𝜈). Note that the surface is not smooth but has some roughness (small stones). To improve visualization, the datasets presented 
here are hillshade reliefs of the point clouds.
size was set to 0.05 m (Table  3). To provide well-distributed 
subsets, both salient and non-salient subsets were chosen from 
the walls, the ceiling, and the floor. While salient subsets were 
chosen to include niches and blocks (Fig.  7a), non-salient subsets 
were focusing on the walls and ceiling that did not include any 
apparent niches (Fig.  7b).

4.4. Evaluation metrics

Measuring the performance of saliency scores is difficult. This is 
because the success rate cannot be easily quantified and may depend 
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on user’s understanding of the data (Hillier et al., 2014; Scheiber et al., 
2015; Vinci et al., 2016). Moreover, since we use saliency as a relative 
measure within the dataset, it is impossible to compare values of one 
method to another. In most reviewed literature, saliency was used as 
a preliminary step for other analyses (e.g., Laazoufi and Hassouni, 
2022; Liang et al., 2023). Then, the quantitative quality was measured 
according to the success rate of the procedures that follow. For exam-
ple, Tinchev et al. (2021) assessed the registration quality, which was 
carried out based on keypoint detection using estimated saliency. Other 
works were comparing the results to existing benchmarks (e.g., Fan 
et al., 2022). Such a benchmark does not exist in our case. Therefore, 
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Fig. 7. Dataset #III. Examples of (a) salient (𝐻) and (b) non-salient (𝜈) subsets. Note the roughness of the cave’s surface (b).
Table 3
Defined salient features in each dataset, minimal object and voxel sizes, as well as number of test and validation subsets.
 Dataset # Predefined salient features Min. object size 

[m]
Voxel size 
[m]

No. of test sets No. of validation sets

 𝐻 𝐿 𝐻 𝐿  
 I Gullies, sinkholes 2 1 6 6 3 3  
 II Riverbanks, stone blocks 0.3 0.2 2 3 1 3  
 III Boulders, niches, pockets 0.1 0.05 4 4 3 3  
 

 

 
 
 

 
 
 
 
 
 

 
 

 

 
 

 

 

we propose a saliency ratio for quantitative evaluation in addition to
the visual inspection of the results.

Using the subsets 𝐷 and 𝑇  defined in Section 4.3, we define the
saliency ratio 𝑟̂. In particular, we define the ratio 

𝑟̂𝐷 =
𝜉𝐷,𝐻

𝜉𝐷,𝐿
, (6)

with 𝜉𝐷,𝐻  the mean saliency score for points with a high expected
saliency scores and 𝜉𝐷,𝐿 the mean saliency score for those with a low
expected saliency, both in the validation subsets. Similarly, for the final
testing of the method, we define 

𝑟̂𝑇 =
𝜉𝑇 ,𝐻
𝜉𝑇 ,𝐿

, (7)

using the test subsets (𝑇 ) instead of the validation (𝐷).
Ratios that are larger than 1 suggest that the mean estimated

saliency scores in 𝐻 is higher than those in 𝐿, which is the expected
result. As these ratios approach 1, the difference in estimated scores
between salient and non-salient regions decreases. That is to say, the
distinction between the two regions decreases. When the ratio is smaller
than 1, the saliency was not estimated correctly, as regions that are
expected to be with lower values yielded higher ones, and vice versa.

The metric 𝑟̂𝐷 is used to tune the hyper-parameters of the method.
The metric 𝑟̂𝑇 , which assesses the performance on the test subsets, is
used to compare the method to existing approaches.

4.5. Baseline approaches

To compare our method to state-of-the-art, we used the following
two baseline methods:

4.5.1. Plane-based approach
Given that our methodology hinges on reconstructing topography

surfaces that may exhibit local planarity, a planar reconstruction is
worth examining. Therefore, to highlight the merits of our learning ap-
proach, we advocate for its comparison against a plane-based anomaly
search. With this in mind, we propose an alternative strategy to recon-
struct the core of a voxel grid 𝑉𝑖 by leveraging its shell 𝑆𝑖. At the heart
of this method is the concept of fitting a plane to the voxels within
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the shell and subsequently projecting this plane onto the voxel grid, 
resulting in the reconstructed grid 𝑉𝑖.

To find the best-fit plane for the shell voxels, we commence by 
computing the coordinates covariance matrix of each of the voxels 
that lie on the shell. The eigenvector corresponding to the smallest 
eigenvalue of this matrix provides us with the normal vector 𝐧 of the 
optimal plane. Combined with the distance 𝑑 from the origin, this 
establishes the plane equation in 3D space.

For any voxel (𝑥̂, 𝑦̂, 𝑧̂) within this space, its perpendicular distance 
𝑑𝑝𝑥̂,𝑦̂,𝑧̂ from the plane is derived from the plane’s equation as: 𝑑𝑝𝑥̂,𝑦̂,𝑧̂ =
|𝐧 ⋅ (𝑥̂, 𝑦̂, 𝑧̂) − 𝑑|. Here, 𝐧⋅(𝑥̂, 𝑦̂, 𝑧̂) represents the dot product between the 
normal vector and the voxel.

To represent the plane in the voxel grid, any voxels where |𝑑𝑝𝑥̂,𝑦̂,𝑧̂ | <
𝑡𝑑 , with 𝑡𝑑 = 0.5 ⋅ 𝑤 (with 𝑤 the voxel side length) are assigned a 
value of one. By processing each voxel in this manner, the resultant 
grid is the reconstructed voxel grid 𝑉𝑖. Then, the loss is computed by 
Eq.  (1) and the saliency is estimated by Eq.  (5). This way, the plane-
based reconstruction is in fact a simplified comparative to our primary 
approach.

The voxel grid sizes to which the plane was fitted were chosen 
according to the those used in the proposed method, i.e., 𝑛 = 16, 24
and 32.

4.5.2. Handcrafted saliency estimation
We use the handcrafted saliency proposed in Arav and Filin (2022) 

as another baseline method. This is because, to the best of our knowl-
edge, it is the only point cloud based saliency estimation method that is 
attuned for natural environments. It is based upon the assumption that 
when dealing with topography distinctness would not be apparent in 
the immediate surroundings of a point. Therefore, it uses a weighting 
function that gives lower weights to nearby points and higher weights 
to more distant ones. To do so, the size of the surroundings and the 
minimal object size are set. Here, we set these according to Table  3, 
where the voxel size corresponds to the size of the surroundings. The 
saliency is then evaluated according to the deviation in surface normals 
and curvature within the defined surrounding. It is calculated as 
𝜉𝑖 = 2 −

[

exp
(

−𝑑𝐧(𝑝𝑖)
)

+ exp
(

−𝑑𝜅(𝑝𝑖)
)]

, (8)

with 𝑑𝐧 and 𝑑𝜅 are the sum of deviations in normal and curvature 
within the defined surroundings.
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Table 4
Dataset #I. Saliency ratio (average and standard deviation over 5 runs) for the 
validation subsets (𝑟̂𝐷). It can be seen that for all combinations, saliency scores are 
higher at salient regions than non-salient ones. This implies that the proposed method 
highlighted salient regions correctly. 𝑓 is the number of features in base layer and 𝑛
is the voxel grid size length, represented by the number of voxels.
 𝑛 𝑓

 8 16 32  
 16 2.51 ± 0.08 2.31 ± 0.04 2.33 ± 0.03 
 24 2.35 ± 0.04 2.29 ± 0.03 2.30 ± 0.01 
 32 2.20 ± 0.03 2.21 ± 0.01 2.24 ± 0.03 

Table 5
Dataset #II. Saliency ratio (average and standard deviation over 5 runs) for the 
validation subsets (𝑟̂𝐷). It can be seen that for all combinations, saliency scores are 
higher at salient regions than non-salient ones. This implies that the proposed method 
highlighted salient regions correctly. 𝑓 is the number of features in base layer and 𝑛
is the voxel grid size length, represented by the number of voxels.
 𝑛 𝑓

 8 16 32  
 16 2.42 ± 0.03 2.40 ± 0.01 2.41 ± 0.03 
 24 2.48 ± 0.02 2.49 ± 0.02 𝟐.𝟓𝟐 ± 𝟎.𝟎𝟖 
 32 2.36 ± 0.01 2.39 ± 0.02 2.47 ± 0.05 

4.6. Experiments description

For each dataset, we first performed a tuning for two hyper-
parameters: the number of features in base resolution, 𝑓 , and the voxel 
grid side length, 𝑛. We focused on these two parameters as they are 
considered the most important parameters of the method. We test their 
effect and discuss the saliency evaluation results achieved when using 
different combinations of the two. In all experiments, we used magni-
tudes of 8, 16, and 32 for 𝑓 , and 16, 24, and 32 for 𝑛. The network 
was trained five times in each combination. After training, saliency 
scores were evaluated for the validation subsets. The saliency ratio 𝑟̂𝑉
(Section 4.4) was then computed. Eventually, the mean saliency ratio 
and its standard deviation over the five runs were evaluated. Then, 
based on the best achieved results, we evaluated saliency scores for the 
entire dataset.

For each dataset, saliency scores were also evaluated using the base-
line methods (Section 4.5). The comparison is carried out by evaluating 
the saliency ratio for the test subsets 𝑇  for all applied methods. These, 
together with the visual impression of the saliency maps of the entire 
scene, enabled an evaluation of the saliency results.

5. Results and discussion

5.1. Hyper-parameters tuning

Tables  4–6 present the average saliency ratio results over five tests 
at each combination and for datasets #I, II, and III, respectively. It 
can be seen that in each dataset, the saliency ratios using the different 
hyper-parameters are similar. These range between 2.2–2.5 in dataset 
#I; 2.36–2.52 in dataset #II; and 1.12–1.19 in dataset #III (Tables  4, 
5, and 6, respectively). Additionally, it can be seen that in all three 
datasets and for all combinations of 𝑓 and 𝑛 the saliency ratio is 
larger than 1. This indicates that regions which are defined as salient 
have higher saliency scores than the non-salient ones, as expected. 
However, a homoscedastic t-test did not show statistical distinction 
between ‘salient’ and ‘non-salient’ at 85% probability for the validation 
subsets.

To better understand the effect of each hyper-parameter on the 
saliency map, we visually examine the results achieved when one 
parameter is fixed and the other changes. We begin by testing the effect 
of the number of feature maps in base resolution (𝑓 ). To do so, we fixed 
the size of the voxel grid 𝑛 at the size which yielded the highest 𝑟̂ . Fig. 
𝐷

243 
Table 6
Dataset #III. Saliency ratio (average and standard deviation over 5 runs) for the 
validation subsets (𝑟̂𝐷). For all combinations the ratio values are close to 1, implying 
that the difference between estimated salient and non-salient values is small. Despite 
that, the estimated ratios are still larger than 1, meaning that the method evaluated 
salient regions correctly. 𝑓 is the number of features in base layer and 𝑛 is the voxel 
grid size length, represented by the number of voxels.
 𝑛 𝑓

 8 16 32  
 16 1.12 ± 0.04 1.18 ± 0.02 𝟏.𝟏𝟗 ± 𝟎.𝟎𝟏  
 24 1.15 ± 0.02 1.16 ± 0.03 1.18 ± 0.02 
 32 1.14 ± 0.04 1.16 ± 0.01 𝟏.𝟏𝟗 ± 𝟎.𝟎𝟐 

Table 7
Training time (in minutes) for dataset #II. 𝑓 is the number of features in base layer 
and 𝑛 is the voxel grid size length, represented by the number of voxels.
 𝑛 𝑓

 8 16 32 
 16 8 5 8  
 24 22 17 40 
 32 20 26 70 

8 shows the results for 𝑛 = 16 using the validation subsets for dataset 
#I. The effect of 𝑓 is mostly seen in the non-salient regions. There, the 
least regions are being marked with high saliency scores when 𝑓 = 16. 
This is because the number of features dictates the capacity of the 
network to reconstruct the surface. Too few features in base resolution 
will lead to a larger discrepancy from the original point cloud, and 
thus to higher saliency scores in non-salient regions (e.g., 𝑓 = 8). On 
the other hand, too many features will lead to overfitting. Then, the 
reconstructed surface will deviate from the original cloud and result in 
incorrectly estimated high saliency scores (𝑓 = 32 in both Fig.  8). The 
number of features, however, may differ from one dataset to another, 
depending on the scene’s surface. Therefore, it has to be tested for each 
dataset individually.

Similarly, we examined the effect of the voxel grid size, 𝑛, by fixing 
𝑓 with the number that achieved the highest ratio. Fig.  9 presents 
an example of parts from the validation subset in dataset #III, where 
𝑓 = 32 and 𝑛 = 16, 24, and 32. It shows that it mainly affects the extent 
of the regions that receive higher saliency scores. The larger 𝑛 is, the 
larger the inferred area, and thus the discrepancy from the original 
point cloud is larger, leading to less localized marking. Therefore, as 
the grid size increases the highlighted area increases as well.

It should be noted, however, that as the saliency ratio suggests, 
there are hardly any visual differences between the saliency maps 
generated by different hyper-parameters.

Between datasets, it can be seen that while dataset #I yielded the 
largest 𝑟̂𝐷, dataset #III yielded the lowest. This fact can be attributed 
to the complexity of the analysed surfaces. In dataset #I the terrain 
is quite smooth and almost planar; dataset #II features a rougher 
but still mostly planar terrain; and dataset #III is composed of non-
planar and mostly uneven and rough surfaces. This means that as the 
surface becomes less smooth (i.e., with higher surface variability), the 
network’s ability to reconstruct the surface decreases, and thus the 
difference between 𝜉𝐻  and 𝜉𝐿 decreases.

Table  7 details the training time (in minutes) for dataset #II, which 
held the largest number of points. It can be seen that as the number 
of feature maps and/or grid size increases, so does the training time. 
This is an expected result, as one needs more computational power for 
larger grid sizes and more feature maps. However, note that in most 
cases the training time using 𝑓 = 16 was the lowest. This is probably 
because the stopping criteria was fulfilled faster in this case.

5.2. Saliency estimation

The hyper-parameters used for the saliency evaluation for the en-
tire datasets were those that produced the highest saliency ratio in 
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Fig. 8. Dataset #I. Saliency scores estimated for the validation subsets with 𝑛 = 16 and different numbers of feature maps in base resolution.
Fig. 9. Dataset #III. Saliency scores for 𝑓 = 32 at different sizes of the voxel grid. It can be seen that as the grid size grows, more regions are marked as salient.
Table 8
Mean saliency ratio values on test subsets using the hyper-parameters that yielded the 
largest saliency ratio values in the tuning phase.
 𝑓 𝑛 Ours Plane-based Handcrafted 
 Dataset #I 8 16 2.44 1.43 2.85  
 Dataset #II 32 24 2.49 1.9 1.07  
 Dataset #III 32 16 1.23 1.06 10.9  

the tuning phase (Section 5.1). This is based on the assumption that 
these hyper-parameters will provide the most pronounced distinction 
between ‘salient’ and ‘non-salient’ regions. After the inference phase, 
saliency ratios were evaluated for the test subsets (i.e., 𝑟̂𝑇 ). These 
produced similar magnitudes as those estimated for the validation 
subsets (Table  8). In the following, we present the saliency map of each 
dataset and discuss the results separately, as we compare them to the 
results of the baseline methods.

5.2.1. Dataset #I
Fig.  10a shows the saliency map generated by the proposed ap-

proach for the dataset #I using 𝑓 = 8 and 𝑛 = 16. It can be seen that the 
expected gullies and sinkholes were highlighted. Higher saliency scores 
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were given for the gullies’ thalweg, the bottom of the sinkholes, and to 
smaller channels.

Fig.  10b and (c) show the saliency maps generated by the baseline 
methods. We use 𝑛 = 16 for the plane-based method and a mini-
mal object size of 2 m for the handcrafted one. It can be seen that 
the plane-based method (b) yielded poor saliency map. Though the 
gullies did receive higher scores, these are lower than other regions 
that locally deviate from planarity. Furthermore, points that belong to 
sinkholes were not marked relative to their surroundings. Instead, they 
were grouped together with other highlighted regions. The handcrafted 
method provided a better picture (Fig.  10c). There, most gullies and 
sinkholes were highlighted as well as small micro-channels. Still, the 
map seems noisy and regions with overlapping scanlines are marked 
as more salient (light green bounded by light blue). When comparing 
to the proposed method, the impression of the saliency map is of more 
consistent salient regions and less noise.

Table  8 shows the saliency ratio evaluation of the test subsets for 
each method. The plane-based approach shows the smallest difference, 
with a ratio of 1.43. The handcrafted approach yielded the highest 
ratio of 𝑟̂𝑇 = 2.85. This is in the same scale of the proposed method 
(𝑟̂𝑇 = 2.44). It is important to mention that no statistical significance 
was found between 𝐻 and 𝐿 testing subsets using a homoscedastic 
t-test for all saliency methods (at 85% probability).
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Fig. 10. Dataset #I. Saliency results using (a) proposed method with 𝑓 = 8 and 𝑛 = 16; (b) Plane-based highlighting with 𝑛 = 16; (c) Handcrafted approach (Arav and Filin, 2022) 
using 𝜌 = 2.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
These results are substantiated by the visual map of the detected 
saliency (Fig.  10b).

5.2.2. Dataset #II
Fig.  11a shows the saliency scores using 𝑓 = 32 and 𝑛 = 24. It can 

be seen that higher saliency scores refer to the river banks. However, 
a closer inspection discovers other expected features on the riverbed, 
such as boulders and hanging vegetation (Fig.  11b). Notably, other 
entities were found, e.g., submerged driftwood and a small incised gully 
(Fig.  11c–d). This result emphasizes the advantages of the proposed 
method: the searched features are not defined in advance, only the 
minimal size of interesting features needs to be specified.

We use 𝑓 = 32 for the plane-based baseline method, and a minimal 
object size of 0.25 m for the handcrafted baseline method. Fig.  12 
presents the saliency results of the three methods in salient and non-
salient test regions. Of the three methods, the best visual results were 
achieved for the proposed approach (a). There, boulders are highlighted 
in the salient subset, whereas in the non-salient region, only the frame 
of the subset was marked as salient. This is an expected result, as it 
is more difficult to predict the surface at the edges, due to the lack 
of information and training data in these regions. The plane-based 
method highlighted most of the surface, irrespective to the data (b); 
the handcrafted method successfully highlighted some of the boulders 
(c, left), but arbitrary patterns are marked in the non-salient subset (c, 
right). This maybe as a result of either the scanning pattern, which 
yields overlapping scanlines, or due to the high surface roughness 
in this dataset. The visual results are generally corroborated by the 
saliency ratios (Table  8).
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5.2.3. Dataset #III
Fig.  13a shows the saliency map using the proposed method both 

inside the cave (left) and on the ceiling (right). It can be seen that the 
points which received higher saliency scores mostly belong to niches 
and pockets in the walls. Additionally, points that lie on some larger 
rocks also have higher saliency scores, as well as a tripod that stands 
close to the entrance. Points belonging to blocks on the floor near the 
entrance were estimated with lower saliency scores. This is probably 
due to the fact that they cover a large part of the cave floor. Therefore, 
they are considered as roughness that can be predicted by the proposed 
model.

We used 𝑛 = 16 for the plane-based method and a minimal object 
size of 0.1 m for the handcrafted approach. It can be seen that for 
the plane-based method, regions that deviate from planarity, which 
compose the majority of the dataset, were given higher scores (Fig.  13, 
b). The handcrafted method (Fig.  13c) provided less noisy saliency map. 
Most of the rocks on the ground have lower saliency scores, similar to 
the proposed method. However, much less points that belong to niches 
in the ceiling were estimated with high saliency scores compared to the 
proposed method. This leads to much more focused areas of interest.

Looking at the saliency ratio in the test data (Table  8), it can 
be seen that the handcrafted method achieved the highest values by 
far, whereas the plane-based method yielded the lowest. This is in 
accordance with the visual impression.

6. Conclusions

In this paper we proposed an unsupervised method that highlights 
saliency in non-urban, natural environments. Driven by the notion 
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Fig. 11. Top: (a) saliency in dataset #II using 0.2 m voxel size, 𝑛 = 24 and 𝑓 = 8. (b–d) Hillshaded representation of regions on the riverbed that were detected as salient — (b) 
submerged boulders and vegetation; (c) submerged driftwood and boulders; and (c) banks of a small gully that was incised within the riverbed.
that salient regions stand out in their environment and knowing that 
topography is generally smooth, we search for anomalies within a 
scanned surface. The proposed approach is trained to reconstruct the 
surface based on voxel grids extracted from the data. Based on training, 
it reconstructs the local surface and evaluates the difference between 
the inferred surface and the original point cloud. Saliency scores are 
defined based on the difference from the expected surface. Therefore, 
the network should be trained for every dataset. However, the model re-
quires some examples for salient and non-salient areas in order to tune 
the hyper-parameters. Nevertheless, these samples are not required for 
the learning process per se.

The proposed method was demonstrated on three datasets acquired 
by various scanning platforms in different types of scenes and presented 
three levels of surface complexity (from smooth, almost planar surface, 
to rough riverbed and to a complex 3D cave). We have shown that it 
was able to discern between ‘salient’ and ‘non-salient’ regions, yielding 
high saliency ratio.

For evaluation, we proposed a saliency ratio metric, which measures 
the ratio between regions previously known to have higher and lower 
salient scores. In addition, we visually inspected the results, while 
comparing them to other baseline approaches of saliency detection. We 
have shown that in most cases, the propose metric corresponds to the 
visual results.

Further examination into the more important hyper-parameters, 𝑓
and 𝑛, revealed that the size of the voxel grid dictates the size of the 
detected region. As 𝑛 increases, a larger region is reconstructed, and 
evidently, larger parts will deviate from the original cloud. This will 
result in generally higher saliency scores. Though the number of feature 
maps in base resolution is important to reconstruct the surface, its effect 
is limited. Nonetheless, a sufficient number of feature maps in base 
resolution is required for the reconstruction. Too many, or too less 
maps, will lead to higher saliency scores, also in non-salient regions. 
That said, we have shown that the effect of these parameters on the 
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final results (both visually and quantitatively) is limited, especially 
when the surface is more complex (the cave, as an example).

When compared to baseline methods, the handcrafted approach 
showed some advantage over the proposed method, as it delivered 
more focused results. However, we have shown that its results highly 
depend on the scanning pattern. When point density was changing dras-
tically (dataset #II, for example), the handcrafted method estimated 
high saliency scores in non-salient regions. In contrast, the proposed 
method was unaffected, and showed similar results independently.
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Fig. 12. Dataset #II. Saliency scores using the three methods on test regions: (a) proposed method using 𝑛 = 24 and 𝑓 = 8; (b) plane-based reconstruction using 𝑓 = 32; (c) 
handcrafted method using 𝜌 = 0.25 m.
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Fig. 13. Saliency scores using the three methods on the terrestrial dataset. Horizontal look into the cave (left) and at the walls and ceiling (right). Note that the ceiling point 
cloud was acquired from within the cave. (a) proposed method using 𝑛 = 16 and 𝑓 = 64; (b) plane-based reconstruction using 𝑓 = 24 (c) handcrafted method using 𝜌 = 0.3 m.
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