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Abstract

This thesis investigates the discrete Hodge Laplace equation with Nitsche-type Dirichlet boundary condi-

tions. Within the Finite Element Exterior Calculus framework we establish well-posedness, consistency,

convergence, and a sub-optimal a-priori error estimate. For 1-forms in 2D we sharpen this to an optimal

estimate, confirmed by numerical tests.

Further experiments in 3D for both 1- and 2-forms show the same convergence trend, still half an order below

the theoretical bound. All results can be reproduced by cloning this repository.

We also demonstrate robustness on non-convex domains and study the effect of different perturbation factors,

hinting at applications to compressible Stokes flow.

Zusammenfassung

Diese Arbeit untersucht die diskrete Hodge Laplace Gleichung mit Dirichlet-Randbedingungen vom Nitsche-

Typ. Im Rahmen des Finite Element Exterior Calculus zeigen wir Wohlgestelltheit, Konsistenz, Konvergenz

sowie eine suboptimale a-priori-Fehlerschranke.

Für 1-Formen in 2D verschärfen wir diese Schranke zu einer optimalen a-priori-Schranke, was durch nu-

merische Tests bestätigt wird.

Weitere 3D-Experimente für 1- und 2-Formen weisen den gleichen Konvergenztrend auf, bleiben jedoch um

eine halbe Ordnung unter der theoretischen Schranke. Alle Ergebnisse lassen sich reproduzieren, indem

man dieses Repository klont.

Wir demonstrieren zudem die Robustheit auf nicht-konvexen Mannigfaltigkeiten und untersuchen den Ein-

fluss verschiedener Störparameter, was auf Anwendungen in der kompressiblen Stokes-Strömung hindeutet.

i

https://github.com/tellocam/nitscheDirichletHodgeLaplace
https://github.com/tellocam/nitscheDirichletHodgeLaplace


“Man muss noch Chaos in sich

haben, um einen tanzenden Stern

gebären zu können.”

Friedrich Nietzsche
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Chapter 1
Introduction

We want to find a differential k-form ω ∈ Λk(Ω) in a bounded smooth Lipschitz domain Ω ⊂ Rd with

boundary Γ such that the Hodge Laplace Equation (1.0.1) with boundary conditions (1.0.2) and (1.0.3) is

satisfied. We introduce the exterior calculus notation in the beginning of the theory chapter.

(dδ + δd)ω = f, in Ω, (1.0.1)

tr ω = 0, on Γ, (1.0.2)

tr ⋆ ω = 0, on Γ. (1.0.3)

A variational formulation for (1.0.1) that satisfies (1.0.2) and (1.0.3) needs to be well chosen to yield a well

posed system. by applying the Nitsche method [Ern21b, Ch.37] to boundary condition (1.0.2), we can devise

a well-posed discrete variational formulation that naturally satisfies (1.0.3) and penalizes deviations from

(1.0.2), while preserving discrete De Rham exactness.

The main goal of this thesis is to rigorously establish well-posedness (existence and uniqueness), consistency,

convergence, and a priori error estimates for this method. All of these properties are proven using the Finite

Element Exterior Calculus (FEEC) framework, demonstrating that the approach is robust for a family of

vector proxy space methods, both in 2- and 3D.

1.1 Prior Work

Arnold et. al [Arnold12] have proven well-posedness and derived error bounds for the 2D vector Laplacian

(the Hodge-Laplacian can be identified with the vector Laplacian through vector proxies) in a 2D mixed

method in H1(Ω)×H0(div,Ω) where the tangential part of the boundary condition arises naturally and the

normal one essentially in H0(div,Ω).

Boon et. al [Boon24] have investigated the Vorticity-Velocity-Pressure Stokes formulation in 2D, which can

be posed in the discrete subspaces of H(curl,Ω)×H1(Ω), satisfying the 2D De Rham complex (most of their

results are applicable in 3D as well). Their approaches differ not only in the boundary conditions but also

in the formulation of the auxiliary equation. In our work, we introduce an auxiliary variable to derive the

mixed method, whereas they employ the zero divergence equation from Stokes.

A recent publication by Wang et. al [Wang25] has also delivered well-posedness and optimal a-priori error

estimates for a mixed method for the 2D vector Laplacian with Dirichlet boundary conditions. However, in

that work the authors additionally solve for the divergence and the rotation ofu thereby increasing complexity
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and seeking (u, γ, δ) ∈ [H1(Ω)]2 × [H1(Ω)]2 × H(div,Ω). The advantage of this approach is that the well-

posedness proof can be done in the continuous setting, whereas our method can only be shown to be well-

posed in the discrete setting.

1.2 Foundational work

In the 1980s, Bossavit pioneered using differential forms for discretizing electromagnetic fields, emphasizing

geometric accuracy [Bossavit88]. Raviart and Thomas introduced the now-classic Raviart-Thomas elements

for enforcing flux continuity in elliptic problems [Raviart77], while Nédélec devised the edge elements tai-

lored toH(curl,Ω) type constraints in electromagnetics [Nédélec80]. Brezzi and Fortin formalized mixed and

hybrid finite elements, showing how ”exact” sequences and stability principles aid robust numerical methods

[Brezzi91].

Building on these foundations, Hiptmair worked on the theory of discrete Hodge operators, making it possi-

ble to rigorously connect the continuous de Rham complex with its finite element counterparts [Hiptmair01].

Arnold, Falk, and Winther synthesized these developments into Finite Element Exterior Calculus (FEEC):

a unifying framework that explains why classic elements (Lagrange, Nédélec, Raviart-Thomas etc.) fit to-

gether so naturally, and shows how preserving exactness in discrete differential forms leads to stable and

accurate solutions of variational problems [Arnold18]. In this work, they already showed well-posedness for

the continuous variational form of the Hodge Laplacian, but with tr ⋆ dω = 0 and tr ⋆ ω = 0 as boundary

conditions.
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Chapter 2
Theory and preliminaries

In the next two sections, we give a brief overview of the relevant definitions, lemmas & theorems, covered

in [Arnold06, Chap. 2]. Afterwards we will cover a brief introduction to Finite Element Exterior Calculus

and some relevant inequalities that will be used throughout the thesis. The last section in this chapter is

dedicated to the derivation of the variational formulations, both for differential k-forms in Rn, as well as the

vector proxy space of 1-forms and 2-forms in R3.

2.1 Exterior algebra

Definition 2.1.1 (Alternating algebraic forms on a vector space). Let V be a real vector space. For each

integer k ≥ 0, define

AltkV :=
�
ω : V k → R | ω is k-linear and ω changes sign upon swapping any two arguments

�
.

Equivalently,

ω(v1, . . . , vi, . . . , vj , . . . , vk) = −ω(v1, . . . , vj , . . . , vi, . . . , vk),

and ω is linear in each argument. By convention,

Alt0V = R, and Alt1V = V ∗.

With V ∗ denoting the dual of V .

Definition 2.1.2 (Exterior product). Given ω ∈ Altj V and η ∈ Altk V the exterior product, or wedge product

ω ∧ η ∈ Altj+k V is given by

(ω ∧ η)(v1, . . . , vj+k) =
�
σ

(sign σ)ω(vσ(1), . . . , vσ(j)) η(vσ(j + 1), . . . , vσ(j + k)), vi ∈ V (2.1.1)

where the sum is over all permutations σ of {1, . . . , j+k}, for which σ(1) < σ(2) < · · · < σ(j) and σ(j+1) <

σ(j+2) < · · · < σ(j+k). The exterior product is bilinear and associative, and satisfies the anti-commutativity

condition

η ∧ ω = (−1)jkω ∧ η, ω ∈ Altj V, η ∈ Altk V (2.1.2)
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Definition 2.1.3 (Inner product on algebraic forms). ⟨·, ·⟩ : Altk V × Altk V −→ R

⟨ω, η⟩ =
�
σ

ω(vσ(1), . . . , vσ(k)) η(vσ(1), . . . , vσ(k)), ω, η ∈ Altk V. (2.1.3)

where the sum runs over all increasing sequences σ : {1, . . . , k} → {1, . . . , n}, and v1, . . . , vn is any or-

thonormal basis. The right-hand side is independent of the choice of basis.

For n = dim V , the space Altn(V ) is one-dimensional. Any element ω ∈ Altn(V ) is uniquely determined by

its value on a single ordered basis, and its value on any list of n vectors (w1, . . . , wn) is given by:

ω(w1, . . . , wn) = ω(v1, . . . , vn) · det(A), (2.1.4)

where A is the matrix expressing w1, . . . , wn in terms of the basis v1, . . . , vn. In particular, an algebraic n

form is uniquely determined (up to sign) by requiring that it takes the value 1 on some orthonormal basis.

Consequently, it will take values ±1 on all orthonormal bases.

Definition 2.1.4 (Hodge star Operator). Let V be an n-dimensional real vector space equipped with a positive-

definite inner product ⟨ · , · ⟩ and an orientation, giving rise to a volume form vol ∈ Λn(V ∗). For each

0 ≤ k ≤ n, the Hodge star is the linear map

⋆ : Λk(V ∗) −→ Λn−k(V ∗),

characterized uniquely by the property

ω ∧ (⋆η) = ⟨ω, η⟩ vol for all ω, η ∈ Λk(V ∗).

That is, ⋆η is the unique (n − k)-form whose wedge product with ω reproduces the inner product ⟨ω, η⟩ up

to the volume form vol. Furthermore we have

Isometry: ∥ ⋆ η∥ = ∥η∥, Involution: ⋆
�
⋆η


= (−1)k(n−k) η. (2.1.5)

The definition of ⋆ depends on the chosen orientation (through vol) and the positive-definite structure on V .

In the context of an oriented Riemannian manifolds one applies this construction pointwise to each tangent

space, obtaining the Hodge star operator on differential forms.
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2.2 Exterior calculus on manifolds

Definition 2.2.1 (Manifolds and tangent spaces). A smooth manifold Ω of dimension n is a topological space

in which every point x ∈ Ω has a neighborhood homeomorphic to an open subset of Rn. At each x ∈ Ω, the

tangent space TxΩ is an n-dimensional real vector space, and the disjoint union of all tangent spaces forms

the tangent bundle TΩ =
�

x∈Ω{(x, v) | v ∈ TxΩ}.

A vector field on Ω is a smooth map x −→ v(x) with v(x) ∈ TxΩ for each x ∈ Ω. Thus, each vector field picks

out one tangent vector in TxΩ at every point x.

If φ : Ω → Ω′ is a smooth map between manifolds, the differential (or tangent map) of φ at x, denoted Dφx,

is a linear map

Dφx : TxΩ −→ Tφ(x)Ω
′.

In particular, for a real-valued function φ : Ω → R, this differential at x evaluates directional derivatives of φ

in any tangent direction v ∈ TxΩ.

Definition 2.2.2 (Differential forms on manifolds). Let Ω be a smooth manifold. A differential k-form on

Ω is a smooth section of the bundle Λk(T ∗Ω). Concretely, for each point x ∈ Ω, it assigns an alternating

k-linear map

ωx : TxΩ× · · · × TxΩ −→ R,

and this assignment varies smoothly in x. The space of all such k-forms on Ω is denoted by Λk(Ω).

Definition 2.2.3 (traces of k-forms). For a differential k-form ω in Rn we define

ωtan = tr ω, (2.2.1)

ωnor = ⋆̂−1tr ⋆ ω. (2.2.2)

Where ⋆−1 is the inverse operation of ⋆, and ⋆̂ is the Hodge star operator at the boundary Γ.

Formally, if we have ω, a 1-form in R3, then tr ω gives the behavior of ω on Γ in direction tangential to Γ. This

quantity can still be interpreted as ”tangential to Γ” in R2, altough it is represented as scalar.

A 2-form in R3 is something that assigns an oriented area to pairs of tangent vectors. The trace of such a

2-form, yields a 2-form on a 2-dimensional surface, which is a top form on Γ and directly represents an area

element on the boundary and can be interpreted as the flux density across Γ.

Intuitively, the term ⋆̂−1tr ⋆ ω for 2-forms in 3D, applying ⋆ on ω yields a 1-form, if one thinks of ω as a flux

(which is a 2-form in 3D), then ⋆ω is the vector representation of that flux, the trace of this gives the flux

tangential to Γ. ⋆̂−1 then ”rotates back” the restricted 1-form into another 1-form on Γ, that now represents

the flux normal to Γ.
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Definition 2.2.4 (Exterior Derivative d). Let Ω ⊂ Rn be a smooth manifold, and let ω ∈ Λk(Ω) be a smooth

k-form. The exterior derivative is the linear map

d : Λk(Ω) → Λk+1(Ω)

defined by

dωx(ν1, . . . , νk+1) =

k+1�
i=1

(−1) i+1 ∂νi
ωx

�
ν1, . . . , �νi, . . . , νk+1


,

where {ν1, . . . , νk+1} are vectors and the hat �νi indicates omission of νi from the list of arguments.

d satisfies the Leibniz rule with respect to the wedge product

d(α ∧ β) = (dα) ∧ β + (−1)k α ∧ (dβ),

for α ∈ Λk(Ω) and β ∈ Λℓ(Ω). Note that we have formally introduced the exterior product of differential

forms, which is just the pointwise applied exterior product of algebraic forms.

Remark 2.2.5 (Integration of differential forms). Let Ω be a k-dimensional Manifold. If ω is a differential

k-form, then the integral
�
Ω
ω is well defined. Formally, 0-forms are evaluated at points, 1-forms integrated

over curves, 2-forms integrated over oriented surfaces and 3-forms integrated over oriented volumes.

Theorem 2.2.6 (Stokes’ Theorem and Integration by Parts). LetΩ be an orientedn-dimensionalmanifold with

boundary Γ, and let ω ∈ Λn−1(Ω). Then Stokes’ Theorem states

�
Ω

dω =

�
Γ

tr ω.

Using the Leibniz rule for the exterior derivative, we obtain the integration by parts formula for ω ∈ Λk(Ω) and

η ∈ Λn−k−1(Ω) �
Ω

dω ∧ η = (−1)k
�
Ω

ω ∧ dη +

�
Γ

tr(ω) ∧ tr(η).

Definition 2.2.7 (Inner Product on k-forms). Let Ω be an oriented manifold in Rn, for ω, η ∈ Λk(Ω), define

their L2-inner product by the integral of their local inner product

⟨ω, η⟩L2 =

�
Ω

⟨ωx, ηx⟩x vol =
�
Ω

ω ∧ ⋆η.

Definition 2.2.8 (Sobolev Spaces of Differential Forms). Let Ω be an oriented Riemannian manifold. For

an integer s ≥ 0, we define the Sobolev space Hs(Ω) (resp. W p,s(Ω)) of real-valued functions whose weak

derivatives up to order s lie in L2(Ω) (resp. Lp(Ω)). Extending this to k-forms, we write HsΛk(Ω) for the

space of k-forms whose components (in local coordinates) have all weak derivatives up to order s in L2(Ω).

Define the weaker space where H does not have a superscript

HΛk(Ω) =
�
ω ∈ L2Λk(Ω) | dω ∈ L2Λk+1(Ω)

�
,
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equipped with the norm

∥ω∥2HΛk(Ω) = ∥ω∥2L2Λk(Ω) + ∥dω∥2L2Λk+1(Ω).

So we require only the exterior derivative to be in L2(Ω) instead of every partial derivative of each component

of the k-form.

Definition 2.2.9 (Closed Hilbert Complex). A Hilbert complex (W k, dk) is closed if for every k, the image

im(dk) is a closed subspace of W k+1. Equivalently this means, d ◦ d = 0.

Definition 2.2.10 (Sobolev de Rham Complex). Let Ω be an oriented Riemannian manifold. For 0 ≤ k ≤ n,

consider the Sobolev space HΛk(Ω) and the exterior derivative. Since d ◦ d = 0, we have

Im
�
d : HΛk−1(Ω) → HΛk(Ω)

 ⊂ Ker
�
d : HΛk(Ω) → HΛk+1(Ω)


.

This yields the Sobolev de Rham complex

0 −→ HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ · · · d−→ HΛn(Ω) −→ 0.

Definition 2.2.11 (Coderivative δ). In an L2 setting, the coderivative δ : HΛk(Ω) → HΛk−1(Ω) is defined

as the formal L2-adjoint of d. Concretely, if ω ∈ HΛk(Ω) and η ∈ HΛk−1(Ω) are compactly supported, then

⟨dω, η⟩L2(Ω) = ⟨ω, δ η⟩L2(Ω),

When Ω is oriented of dimension n, one can also write

δ = (−1)n(k+1)+1 ⋆ d ⋆,

In particular, δ lowers the form degree by one, while d raises it by one, and δ ◦ δ = 0 as well.

Definition 2.2.12 (Dual Sobolev Complex). Define the space

H∗Λk(Ω) :=
�
ω ∈ L2Λk(Ω) | δ ω ∈ L2Λk−1(Ω)

�
,

We have H∗Λk(Ω) = ⋆
�
HΛn−k(Ω)


by the definition of δ and the properties of the Hodge star ⋆. Conse-

quently, we have the dual de Rham complex

0 ←− H∗Λ0(Ω)
δ←− H∗Λ1(Ω)

δ←− · · · δ←− H∗Λn(Ω) ←− 0

which contains the same information as the de Rham complex.
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Theorem 2.2.13 (Hodge Decomposition without Harmonic Forms). LetW be a closed Hilbert complex. In a

topologically trivial setting where the harmonic spaces vanish, we have the following orthogonal decompositions:

W = b ⊕ c.

With b = Im(d) and c = Im(δ). The Hodge decomposition can be interpreted as a generalized Helmholtz

decomposition. For ω ∈ HΛk(Ω) we have

ω = dα+ δβ, α ∈ HΛk−1(Ω), β ∈ HΛk+1(Ω), ⟨dα,dβ⟩L2(Ω) = 0.

[Arnold18, Thm. 4.5].

Theorem 2.2.14 (Poincaré inequality). For any closed Hilbert Complex ∃CPα
, CPβ

> 0 such that

α ⊥ Ker(d), β ⊥ Ker(δ), ∥α∥L2(Ω) ≤ CPα
∥dα∥L2(Ω), ∥β∥L2(Ω) ≤ CPβ

∥δβ∥L2(Ω), (2.2.3)

Where dα, δβ are the components of the Hodge decomposition [Arnold18, Thm. 4.6].

We will regularly use the discrete counterpart of Theorem 2.2.13 and 2.2.14 in the analysis part.

2.3 Finite Element Exterior Calculus

The De Rham and proxy space picture in 3D

HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ HΛ2(Ω)
d−→ HΛ3(Ω)

↕∼= ↕∼= ↕∼= ↕∼=
H1(Ω)

∇−−→ H(curl; Ω) ∇×−−→ H(div; Ω) ∇·−→ L2(Ω)

↓ Π0
h ↓ Π1

h ↓ Π2
h ↓ Π3

h

V CG
h

∇−→ V ND1
h

∇×−−→ V RT
h

∇·−→ V DG
h

Figure 2.1: 3D De Rham complex for differential forms & vector proxies.

Shown figure in 2.1, the Sobolev spaces of differential forms, the isomorphisms to their according proxy

Sobolev spaces and the commuting projectors to their discrete finite element spaces, which guarantee the

discrete spaces inherit the ”exactness” of the continuous spaces.
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Whitney elements are the lowest order elements that can represent differential forms of degree k in the De

Rham complex. In the literature, there is also often made the distinction between ”trimmed” and ”non-

trimmed” Whitney forms. E.g. the first kind Nédélec elements [Nédélec80] would be trimmed, while the sec-

ond kind would be non-trimmed for k = 1 and the Raviart-Thomas elements [Raviart77] would be trimmed

while the BDM elements [Brezzi85] would be non-trimmed for k = 2. Standard Lagrange elements [Ciar-

let72] of first order represent the Whitney forms trimmed space for 0-forms.

Figure 2.2: DOF’s for the Whitney forms in 3D for k = {0, 1, 2, 3}. From left to right, Lagrange, Nédélec,
Raviart-Thomas and discontinuous Galerkin elements [Arnold18].

In this thesis, we will work with the trimmed spaces only and denote them as follows

• V CG
h : Continuous Galerkin or Lagrange (CG) elements for 0-forms,

• V ND1
h : Nédélec (ND) elements of the first kind for 1-forms,

• V RT
h : Raviart-Thomas (RT) elements for 2-forms,

• V DG
h : Discontinuous Galerkin (DG) elements for 3-forms.

These spaces are available in NGSolve . We will present numerical results in the according chapter.

2.4 Some preliminaries for discrete analysis

Since our method works only in the discrete setting, naturally, we define the generalized setting and present

theoretical results that are valid in this setting.

Definition 2.4.1 (Mesh and mesh uniformity). Let Ω be a bounded domain. A mesh (or triangulation) of Ω

is a collection of elements and faces denoted by

Th = {K}, FK = {F ∈ ∂K}

where K is an open subset of Ω (e.g. tetrahedra in 3D or triangles in 2D). The elements K cover the domain

without overlapping. A face FK of an element K is a d− 1 dimensional entity (e.g. edge in 2D or face in 3D)
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which forms part of the boundary of that element. If Th is uniform, there exist positive h, c1, c2 such that

c1h ≤ hK ≤ c2h, ∀K ∈ Th.

This uniformity has as a consequence that the faces F are also uniform (they have sizes comparable to the

other faces of their according element).

Definition 2.4.2 (Family of uniform meshes).

H = {Th}h>0, h → 0.

Definition 2.4.3 (Boundary adjacent elements). The set of boundary adjacent elements TΓ can be defined as

TΓ = {K ∈ Th|∂K ∩ Γ ̸= ∅}. (2.4.1)

Theorem 2.4.4 (Inverse trace inequality). [Ern21a, Lemma 12.8] In a uniform family of meshes there holds

∃C > 0 : ∥v∥Lp(FK ,Rq) ≤ Ch
− 1

p+d
�

1
p− 1

r


K ∥v∥Lr(K,Rq), ∀p, r < ∞, ∀K ∈ Th, ∀F ∈ FK , ∀h ∈ H, ∀v ∈ PK .

For p = r = 2 we have

∥v∥L2(FK) ≤ Ch
− 1

2

K ∥v∥L2(K).

Theorem 2.4.5 (Inverse inequality for Sobolev seminorm). [Ern21a, Lemma 12.3] Let l ∈ N such that P̂ ⊂
W l,∞(K̂,Rq), where the P̂ and K̂ denote the finite dimensional space P on the physical elementK in the refer-

ence configuration. Then there exists C > 0 for every integerm ∈ 0 : l and the following holds true

|v|W l,p(K;Rq) ≤ Ch
m−l+d

�
1
p− 1

r


K |v|Wm,r(K;Rq), ∀p, r < ∞, ∀K ∈ Th, ∀v ∈ PK , ∀h ∈ H.

For l = 1,m = 0 and p = 2 we therefore have

∥∇v∥L2(K) ≤ Ch−1
K ∥v∥L2(K).

Most importantly, one can show for k = {0, 1, 2}, n = 2 and k = {0, 1, 2, 3}, n = 3 that there exist C > 0 such

that

∥dωh∥L2(K) ≤ Ch−1
K ∥ωh∥L2(K), ∀ωh ∈ Vh ⊂ HΛk(K), K ⊂ Rn.
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Only considering trimmed spaces, we use a reduced form of a result by Arnold et al.

Theorem 2.4.6. Let Ω be a smooth Lipschitz domain, and let r ≥ 1. Suppose V k
h ⊂ L2Λk(Ω) is the finite

element space built from the trimmed polynomial forms of degree r on a uniform mesh of size h. Then there

exists positive constants C and a linear projection operator

πk
h : L2Λk(Ω) −→ V k

h , (2.4.2)

such that for all differential k-forms ω there holds

∥ω − πk
hω∥L2Λk(Ω) ≤ Chs|ω|HsΛk(Ω), (2.4.3)

∥d(ω − πk
hω)∥L2Λk(Ω) ≤ Chs|dω|HsΛk+1(Ω), 0 ≤ s ≤ r, (2.4.4)

dπk
h = πk+1

h d, (2.4.5)

provided ω ∈ HsΛk(Ω) and dω ∈ HsΛk+1(Ω).

Proof. The proof can be found in [Arnold06, Thm. 5.8]. We can verify the Theorem in a handwavy manner

by taking the Lagrange, the Nédélec as well as the Raviart-Thomas elements and note that they themselves

have hr approximation property, while the gradient, the curl and the divergence applied to them respectively

still yield hr approximation property.

2.5 Trace operators

For Ω, a smooth Lipschitz domain, we have the following two trace operators

Definition 2.5.1 (Trace operator γ∥(v)). Let L2
∥(Γ) := {ζ ∈ L2(Γ)|ζ · n = 0}, then we have the following

trace operator

γ∥ : C∞(Ω) −→ L2
∥(Γ), γ∥(v) := n× (v|Γ × n) ∀v ∈ C∞(Ω). (2.5.1)

Definition 2.5.2 (Trace operator γn(v)). Under the same assumptions as 2.5.1 we have the trace operator

γn : C∞(Ω) −→ L2
∥(Γ), γn(v) := n× (∇× v)|Γ, ∀v ∈ C∞(Ω). (2.5.2)

With t the tangent vector on Γ, in Ω ⊂ R2 the operator becomes

γn : C∞(Ω) −→ L2
∥(Γ), γn(v) := −rot(v)|Γ · t, ∀v ∈ C∞(Ω). (2.5.3)
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Remark 2.5.3. There is academic literature on the analysis of trace maps, for example Buffa et al. [Buffa02],

have shown

γ∥(v) := n× (v|Γ × n), γ∥ : H(curl,Ω) −→ H− 1
2 (curlΓ,Γ), (2.5.4)

γn(v) := n× (∇× v)|Γ, γn : H(curl,Ω) −→ H− 1
2 (Γ). (2.5.5)

Additionally, there exists formal trace theory from Arnold et al. [Arnold18, Thm. 6.3]

(·)tan : HΛk(Ω) −→ H− 1
2Λk(Γ), (·)nor : HΛk(Ω) −→ H− 1

2Λk−1(Γ). (2.5.6)

However, our analysis is done in the discrete setting where the L2 inner products on the boundary are well-

defined. For the parts of the analysis where we use continuous arguments, namely continuity proofs and

error analysis, we require them to have sufficient regularity, such that the L2 inner products involving our

trace operators are well defined.

2.6 Deriving the variational formulation

Recall the Hodge Laplace equation (1.0.1) and its associated boundary conditions that we combine to ω =

g on Γ, to cover non-zero Dirichlet cases g ̸= 0 as well. We now aim to derive a variational formulation and

start with the introduction of an auxiliary variable, a (k-1)-form σ = δω.

Find (ω, σ) ∈ HΛk(Ω)× HΛk−1(Ω) such that

δdω + dσ = f, in Ω, (2.6.1)

δω − σ = 0, in Ω, (2.6.2)

ω = g, on Γ. (2.6.3)

The analogue of multiplying by a function in exterior calculus is wedging by a differential form of the same

degree. In order for the wedge product to be integrable over a manifold of dimension n, the resulting wedge

product must be a n-form, this can be achieved with the Hodge Star operator. Let (η, τ) ∈ HΛk(Ω)×HΛk−1(Ω)

δdω ∧ ⋆η + dσ ∧ ⋆η = f ∧ ⋆η, in Ω, (2.6.4)

δω ∧ ⋆τ − σ ∧ ⋆τ = 0, in Ω. (2.6.5)

We rewrite them as inner products according to definition 2.2.7 and integrate them over Ω. Then we have

�
Ω

⟨δdω, η⟩+
�
Ω

⟨dσ, η⟩ =
�
Ω

⟨f, η⟩, (2.6.6)�
Ω

⟨δω, τ⟩ −
�
Ω

⟨σ, τ⟩ = 0. (2.6.7)
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Applying integration by parts from Theorem 2.2.6 to the first term in (2.6.6) we obtain

�
Ω

⟨δdω, η⟩ =
�
Ω

⟨dω,dη⟩+
�
Γ

⟨(dω)nor, ηtan⟩. (2.6.8)

We apply integration by parts to the first term in (2.6.7) to get

�
Ω

⟨δω, τ⟩ =
�
Ω

⟨ω,dτ⟩+
�
Γ

⟨ωnor, τ tan⟩. (2.6.9)

From this previous step, we can bring the boundary term to the right hand side and incorporate part of the

Dirichlet data, then the problem reads

Find (ω, σ) ∈ HΛk(Ω)× HΛk−1(Ω) such that

�
Ω

⟨dω,dη⟩+
�
Γ

⟨(dω)nor, ηtan⟩+
�
Ω

⟨dσ, η⟩ =
�
Ω

⟨f, η⟩ ∀η ∈ HΛk(Ω),�
Ω

⟨ω,dτ⟩ −
�
Ω

⟨σ, τ⟩ = −
�
Γ

⟨gnor, τ tan⟩, ∀τ ∈ HΛk−1(Ω).

We have decomposed g|Γ = gnor + gtan. From our previous step we see, that we have incorporated half of the

Dirichlet data. For the other half, we use the Nitsche method. We add a term that symmetrizes the system,

while mantaining consistency. We also add the Nitsche term that penalizes deviations from our desired gtan at

the boundary. At this point, we switch to the discrete setting, since the Nitsche method can only be employed

discretely. Our discrete variational formulation for the Hodge-Laplacian with Dirichlet boundary condition

then reads

Mixed method for Nitsche Hodge Laplace k-forms for Ω ⊂ Rn, n ≤ k.

Find (ωh, ηh) ∈
�
Vh ⊂ HΛk(Ω)

× �
Qh ⊂ HΛk−1(Ω)


such that

�
Ω

⟨dωh,dηh⟩ −
�
Γ

⟨(dωh)
nor, ηtan

h ⟩+
�
Ω

⟨dσh, ηh⟩

−
�
Γ

⟨(dηh)nor, ωtan
h ⟩+ Cw

h

�
Γ

⟨ηtan
h , ωtan

h ⟩ =
�
Ω

⟨f, ηh⟩ −
�
Γ

⟨(dηh)nor, gtan⟩

+
Cw

h

�
Γ

⟨ηtan
h , gtan⟩, (2.6.10)�

Ω

⟨ωh,dτh⟩ −
�
Ω

⟨σh, τh⟩ = −
�
Γ

⟨gnor, τ tan
h ⟩, (2.6.11)

∀(ηh, τh) ∈ Vh ×Qh.
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Either we evaluate the exterior calculus definitions to derive the proxy methods from the final variational

formulation, or we start with the strong form definition (1.0.1). We illustrate this with 1-forms as an example

and then present the final variational formulation for 2-forms.

2.6.1 Discrete Hodge Laplace Nitsche method for 1-forms in Ω ⊂ R3

For 1- and 2-forms in R3, the Hodge Laplace equation translates to the vector Laplacian. In the 2D method,

curl curl changes to curl rot in the strong form.

∇×∇× u−∇(∇ · u) = f, in Ω, (2.6.12)

u = g on Γ. (2.6.13)

For 2-forms, we would introduce the vectorial auxiliary variable p = ∇ × u, but for 1-forms, we have the

scalar p = −∇ · u. We multiply by testfunctions and integrate to obtain

�
Ω

(∇×∇× u) · v dx +

�
Ω

∇p · v dx =

�
Ω

f · v dx, (2.6.14)�
Ω

(∇ · u)q dx +

�
Ω

pq dx = 0. (2.6.15)

If we perform integration by parts on the curl-curl term in (2.6.14) and on the divergence term in (2.6.15) we

get

�
Ω

(∇× uh) · (∇× vh) dx +

�
Γ

γn(uh) · γ∥(vh) ds +
�
Ω

∇ph · vh dx =

�
Ω

f · vh dx, (2.6.16)�
Ω

uh · ∇qh dx −
�
Ω

ph qh dx =

�
Γ

(g · n) qh ds. (2.6.17)

We choose the spaces based on the discrete De Rham complex, add the symmetrization term and the Nitsche

term.

Mixed method for Nitsche Hodge Laplace 1-forms
Let Vh ⊂ H(curl,Ω) and Qh ⊂ H1(Ω). Find (uh, ph) ∈ Vh ×Qh such that

�
Ω

(∇× uh) · (∇× vh) dx +

�
Γ

γn(uh) · γ∥(vh) ds+
�
Ω

∇ph · vh dx

+

�
Γ

γn(vh) · γ∥(uh) ds + Cω

h

�
Γ

γ∥(uh) · γ∥(vh) ds =

�
Ω

f · vh dx +
Cω

h

�
Γ

γ∥(g) · γ∥(vh) ds

+

�
Γ

γn(vh) · γ∥(g) ds, (2.6.18)

�
Ω

uh · ∇qh dx −
�
Ω

ph qh dx =

�
Γ

(g · n) qh ds, (2.6.19)

∀(vh, qh) ∈ Vh ×Qh.
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2.6.2 Discrete Hodge Laplace Nitsche method for 2-forms in Ω ⊂ R3

In the same way as for the 1-forms, we start with the vector Laplacian. But now, we introduce ph ∈ Qh ⊂
H(curl,Ω)) such that ph = ∇ × uh. Multiplying by test functions, integrating by parts the grad div term in

the first equation, adding the symmetrization and Nitsche terms and integrating by parts the curl term in the

second equation to finally obtain

Mixed method for Nitsche Hodge Laplace 2-forms
Let Vh ⊂ H(div,Ω) and ⊂ H(curl,Ω). Find (uh,ph) ∈ Vh× such that

�
Ω

(∇ · uh) · (∇ · vh) dx −
�
Γ

(∇ · uh) · (vh · n) ds+
�
Ω

(∇× ph) · vh dx

−
�
Γ

(∇ · vh) · (uh · n) ds + Cω

h

�
Γ

(uh · n) · (vh · n) ds =

�
Ω

f · vh dx +
Cω

h

�
Γ

(g · n) · (vh · n) ds

−
�
Γ

(∇ · vh) · (g · n) ds, (2.6.20)

�
Ω

(∇× qh) · uh dx −
�
Ω

p · q dx =

�
Γ

(n× qh) · g ds, (2.6.21)

∀(vh, qh) ∈ Vh×.

Since we have that both the 1-forms and the 2-forms case originally are derived from the vector Laplacian, we

observe that in the 2-forms mixed method, the tangential part of g is incorporated naturally and the normal

part via the Nitsche penalization while in the 1-forms method, it is the other way around.
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Chapter 3
Analysis

This chapter contains a formal analysis. First we present a section of preliminary results and definitions that

are used throughout the analysis. Readers who consider themselves numerical analysis experts may skip this

section and immediately go to section 3.2 and refer to it during the reading process if necessary.

3.1 Preliminary results & definitions

Lemma 3.1.1 (Upper bound on norms of boundary adjacent elements). Fix a finite dimensional Hilbert space
Vh ⊂ V , V = {H1(Ω), H(curl,Ω), H(div,Ω)} . If we have a uniform mesh we can bound the norms on the

boundary adjacent elements by

�
K∈TΓ

1

hK
∥vh∥2L2(K) ≤

�
K∈T

1

hK
∥vh∥2L2(K) ≤

C

h
∥vh∥2L2(Ω), ∀vh ∈ Vh. (3.1.1)

Proof.
1

h
∥vh∥2L2(Ω) =

1

h

�
Ω

|vh|2dx =
1

h

�
K∈T

�
K

|vh|2dx =
1

h

�
K∈T

∥vh∥2L2(K). (3.1.2)

We make use of the mesh uniformity 2.4.1 which implies

1

h
≥ C

hk
, ∀K ∈ T . (3.1.3)

1

h
∥vh∥2L2(Ω) ≥

�
K∈T

C

hK
∥vh∥2L2(K) ≥ C

�
K∈TΓ

1

hK
∥vh∥2L2(K). (3.1.4)

The same can also be done for ∇× vh and ∇ · vh analogously.

Lemma 3.1.2 (Upper bound on norm of γn(vh)). In a uniform mesh there holds

∥γn(vh)∥2L2(Γ) ≤
C2

tr
h

∥∇ × vh∥2L2(Ω), ∀vh ∈ Vh ⊂ H(curl,Ω). (3.1.5)

Additionally, there holds as well

∥(dωh)
nor∥2L2(Γ) ≤

C2
tr
h

∥dωh∥2L2(Ω), ∀ωh ∈ Vh ⊂ HΛk(Ω). (3.1.6)
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Proof. On the boundary Γ there holds pointwise |n × vh| ≤ |vh| which implies |n × (∇× vh)| ≤ |∇ × vh|.
Let vh ∈ Vh ⊂ H(curl,Ω). We use inverse inequality 2.4.4 and Lemma 3.1.1 to derive the following bound

∥γn(vh)∥2L2(Γ) ≤ ∥∇×vh∥2L2(Γ) ≤
�

K∈TΓ

C2
tr

hK
∥∇×vh∥2L2(K) ≤

�
K∈T

C2
tr

hK
∥∇×vh∥2L2(K) ≤

C2
tr
h

∥∇×vh∥2L2(Ω).

(3.1.7)

We omit the analogous proof for differential forms.

Again on the boundary Γ, a trivial but relevant inequality used in the thesis is

|n× (vh × n)| ≤ |vh|, ∀vh on Γ. (3.1.8)

The inequality can be shown by decomposing |n× (vh × n)| into normal and tangential part with respect to

Γ. The left-hand side is exactly the tangential part of the decomposition. This yields the following

Lemma 3.1.3 (Upper bound on norm of γ∥(vh) bound). In a uniform mesh there holds

∥γ∥(vh)∥2L2(Γ) ≤
C2

tr
h

∥vh∥2L2(Ω), ∀vh ∈ H(curl,Ω). (3.1.9)

Proof. Using 3.1.8, inverse inequality 2.4.4 and Lemma 3.1.1

∥γ∥(vh)∥2L2(Γ) ≤ ∥vh∥2L2(Γ) ≤
�

K∈TΓ

C2
tr
h

∥vh∥2L2(K) ≤
C2

tr
h

∥vh∥2L2(Ω), ∀vh ∈ H(curl,Ω). (3.1.10)

Lemma 3.1.4 (γ∥(vh) - term equality). The following equality holds true

⟨γn(uh), vh⟩L2(Γ) = ⟨γn(uh), γ∥(vh)⟩L2(Γ), ∀uh, vh ∈ H(curl,Ω). (3.1.11)

Proof. We can decompose any vector

u = ut + un = ut + n(u · n). (3.1.12)

⟨γn(u), v⟩L2(Γ) =

�
Γ

n× (∇× u) · v ds

=

�
Γ

n× (∇× u) · (vt + n(v · n)) ds

=

�
Γ

n× (∇× u) · vt ds +
�
Γ

n× (∇× u) · n(v · n) ds

=

�
Γ

n× (∇× u) · vt ds (3.1.13)

γ∥(v) = n× (v× n) = (n · n)v− (n · v)n = vt. (3.1.14)
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Definition 3.1.5 (Standard norms). If nothing else is mentioned, and we evaluate norms of functions from

Qh or Vh e.g. ∥uh∥V or ∥ph∥Q, we use the Sobolev norms that the continuous spaces are equiped with. E.g.

vh ∈ Vh ⊂ H(curl,Ω) =⇒ ∥vh∥H(curl,Ω), (3.1.15)

vh ∈ Vh ⊂ H(div,Ω) =⇒ ∥vh∥H(div,Ω), (3.1.16)

qh ∈ Qh ⊂ H1(Ω) =⇒ ∥qh∥H1(Ω). (3.1.17)

(3.1.18)

Definition 3.1.6 (The #-norm). We endow the space Vh ⊂ H(curl,Ω) with

∥uh∥2# = ∥uh∥2H(curl,Ω) +
1

h
∥γ∥(uh)∥2L2(Γ) + h∥γn(uh)∥2L2(Γ), ∀uh ∈ Vh. (3.1.19)

The above norm can be extended to general k-forms and reads as

∥ωh∥2# = ∥ωh∥2L2(Ω) + ∥dωh∥2L2(Ω) +
1

h
∥ωtan

h ∥2L2(Γ) + h∥ωnor
h ∥2L2(Γ), ∀ωh ∈ Vh. (3.1.20)

Definition 3.1.7 (The X-norm). The space Xh = Vh × Qh ⊂ H(curl,Ω) × H1(Ω) is endowed with the

following norm

∥(uh, qh)∥2X = ∥uh∥2# + ∥qh∥2L2(Ω) + h2∥∇qh∥2L2(Ω), ∀(vh, qh) ∈ Xh. (3.1.21)

Analogous, the X-norm extended to pairs of k and (k − 1) forms. We have the space

Vh ×Qh ⊂ HΛk(Ω)× HΛk−1(Ω) with the norm

∥(ωh, σh)∥2X = ∥ωh∥2# + ∥σh∥2L2(Ω) + h2∥dσh∥2L2(Ω), ∀(ωh, σh) ∈ Xh. (3.1.22)

3.2 Saddle-point problem well-posedness

In this section, we will show well-posedness for 1-forms in 3D and 2D. We begin by outlining the relevant

definitions and theorems.

Definition 3.2.1 (Abstract discrete Perturbed saddle point problem). Find (uh, qh) ∈ Vh ⊂ V × Qh ⊂ Q

such that

a(uh, vh) + b(vh, ph) = ⟨f, vh⟩V×V ′ ∀vh ∈ Vh (3.2.1)

b(uh, qh)− λ2c(ph, qh) = ⟨g, qh⟩Q×Q′ ∀qh ∈ Qh (3.2.2)

Here λ2c(ph, qh) is considered the perturbation.
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Theorem 3.2.2 (Well-posedness of perturbed saddle point problems). Assume that a(·, ·) and c(·, ·) are sym-
metric on Vh andQh respectively and λ2 > 0. Let α1, α2, β1, β2, γ1, γ2 be positive constants such that

SPD & Coercivity:

0 ≤ ah(uh, uh), ∀uh ∈ Vh, (3.2.3)

0 ≤ c(ph, ph), ∀ph ∈ Qh, (3.2.4)

α1∥vh∥2V ≤ ah(vh, vh), ∀vh ∈ Kh, (3.2.5)

β1∥qh∥2Q ≤ c(qh, qh), ∀qh ∈ Hh. (3.2.6)

Continuity:

ah(uh, vh) ≤ α2∥uh∥V ∥vh∥V , ∀uh, vh ∈ Vh,

(3.2.7)

c(ph, qh) ≤ β2∥ph∥V ∥qh∥V , ∀ph, qh ∈ Qh,

(3.2.8)

b(vh, qh) ≤ γ2∥vh∥V ∥qh∥Q, ∀qh ∈ Hh, ∀vh ∈ Kh.

(3.2.9)

Stability:
inf

qh∈H⊥
h

sup
vh∈Vh

b(vh, qh)

∥qh∥Q∥vh∥V = inf
vh∈K⊥

h

sup
qh∈Qh

b(vh, qh)

∥qh∥Q∥vh∥V = γ1 > 0. (3.2.10)

Where we have

Kh = KerB = {vh ∈ Vh | b(vh, qh) = 0, ∀qh ∈ Qh}, K⊥
h = {vh ∈ vh | (wh, vh)L2(Ω) = 0, ∀wh ∈ Kh},

(3.2.11)

Hh = KerBt = {qh ∈ Qh | b(vh, qh) = 0, ∀vh ∈ Vh}, H⊥
h = {qh ∈ Qh | (rh, qh)L2(Ω) = 0, ∀rh ∈ Hh}.

(3.2.12)

Then, for every f ∈ V ′ and g ∈ Q′, the discretized problem has a unique solution.

Proof. A detailed proof can be found in [Boffi13, Thm. 5.5.1].

Defining the following bilinear forms to go towards the structure of theorem 3.2.2.

Definition 3.2.3. We use the following bilinear forms in our mixed method (2.6.18).

ah(uh, vh) =
�
Ω

(∇× uh) · (∇× vh) dx +

�
Γ

γn(uh) · γ∥(vh) ds +
�
Γ

γn(vh) · γ∥(uh) ds

+
Cω

h

�
Γ

γ∥(uh) · γ∥(vh) ds, (3.2.13)

b(uh, ph) =

�
Ω

∇ph · vh dx, (3.2.14)

c(p, q) =

�
Ω

phqh dx. (3.2.15)

With the introduced bilinear forms we rewrite the mixed method equivalently as a perturbed saddle point

problem with the perturbation factor λ2 = 1.
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ah(uh, vh) + b(vh, ph) =
�
Ω

f · vh dx +
Cω

h

�
Γ

γ∥(g) · γ∥(vh) ds +
�
Γ

γn(vh) · γ∥(g) ds, (3.2.16)

b(uh, qh)− c(ph, qh) =

�
Γ

(g · n) qh ds, (3.2.17)

∀(vh, qh) ∈ Vh ×Qh.

Definition 3.2.4 (H̄1(Ω)).
H̄1(Ω) = {vh ∈ H1(Ω) | ⟨vh, 1⟩L2(Ω) = 0}

We start by having a closer look at the space H⊥
h .

Lemma 3.2.5 (H⊥
h coincides with H̄1(Ω)). Let Vh ⊂ H(curl,Ω) andQh ⊂ H1(Ω), then we have

H⊥
h = {qh ∈ Qh | ⟨rh, qh⟩L2(Ω) = 0, ∀rh ∈ Hh} =⇒ H⊥

h ⊂ H̄1(Ω), (3.2.18)

with H̄1(Ω) = {qh ∈ H1(Ω) | ⟨qh, 1⟩L2(Ω) = 0}. (3.2.19)

Proof. The space Hh is the space of constants. The only nonzero qh such that ⟨qh, rh⟩L2(Ω) = 0 with rh ∈ R

is qh ∈ H̄1(Ω).

Lemma 3.2.6 (Poincaré holds on Kh for topologically trivial domains). Let Ω be a domain with Lipschitz

boundary Γ and non-zero measure boundary part ΓD and let uh|ΓD
× n be presrcibed. Then there exists CP

such that

∥uh∥L2(Ω) ≤ CP ∥∇ × uh∥L2(Ω), ∀uh ∈ Kh. (3.2.20)

Sometimes also referred to as the Maxwell-Poincaré inequality.

Proof. Discrete Poincaré [Arnold18, Thm. 5.3] and discrete Poincaré-Steklov [Ern21b, Thm. 44.6].

3.2.1 Semi positive-definiteness of ah(vh, vh)

Lemma 3.2.7. ah(·, ·) is SPD on Vh, for sufficiently large Cw

0 ≤ ah(vh, vh) ∀vh ∈ Vh. (3.2.21)

The proof of Lemma 3.2.7 and also its extension to coercivity, coincides with a proof yet to be published by

the supervisors of this thesis Prof. Hiptmair, Dr. Zampa, Mr. Tonnon and Dr. Boon [Boon25] who have been

working on a similar method. Their support and guidance in arriving at the same result has been crucial.
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Proof. The bilinear form ah(vh, vh) can be bounded in the following way

ah(vh, vh) =
�
Ω

(∇× vh) · (∇× vh) dx + 2

�
Γ

γn(vh) · γ∥(vh) ds + Cw

h

�
Γ

γ∥(vh)γ∥(vh) ds (3.2.22)

= ∥∇ × vh∥2L2(Ω) + 2

�
Γ

γn(vh) · γ∥(vh) ds + Cw

h
∥γ∥(vh)∥2L2(Γ). (3.2.23)

We apply the Cauchy-Schwarz inequality to the remaining mixed boundary integral and apply Young’s in-

equality to the result. In the γn(vh) norm we use the Lemma 3.1.1.

�
Γ

γn(vh) · γ∥(vh) ds ≥ −∥γn(vh)∥L2(Γ)∥γ∥(vh)∥L2(Γ) (3.2.24)

≥ − 1

2ϵ1
∥γn(vh)∥2L2(Γ) −

ϵ1
2
∥γ∥(vh)∥2L2(Γ) (3.2.25)

≥ − C2
tr

2ϵ1h
∥∇ × vh∥2L2(Ω) −

ϵ1
2
∥γ∥(vh)∥2L2(Γ). (3.2.26)

Using estimate (3.2.26) in (3.2.23).

ah(vh, vh) ≥ (1− C2
tr

ϵ1h
)∥∇ × vh∥2L2(Ω) + (

Cw

h
− ϵ1)∥γ∥(vh)∥2L2(Γ), (3.2.27)

Set ϵ1 =
2C2

tr
h

, Choose Cw = 2ϵ1h = 4C2
tr,

ah(vh, vh) ≥ 1

2
∥∇ × vh∥2L2(Ω) +

2C2
tr

h
∥γ∥(vh)∥2L2(Γ) (3.2.28)

≥ 0. (3.2.29)

3.2.2 Continuity of ah(u, vh)

Remark 3.2.8. The following definition will allow us to perform error analysis. If we chose our continuous

solution to be in [H2(Ω)]d, all the boundary terms arising in the subsequent proof are well-defined when

evaluated with said chosen function.

Definition 3.2.9 (V# space). Let u ∈ [H2(Ω)]d and Vh ⊂ H(curl,Ω) then we have the space

V# = Vh + [H2(Ω)]d. (3.2.30)

Definition 3.2.10 (Q# space). Let p ∈ H1(Ω) and Qh ⊂ H1(Ω) then we have the space

V# = Qh +H1(Ω). (3.2.31)

Lemma 3.2.11. There exists α2 > 0 independent of h such that

ah(u, vh) ≤ α2∥uh∥#∥vh∥#, ∀u ∈ V#, ∀vh ∈ Vh. (3.2.32)
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Proof.

ah(u, vh) =
�
Ω

(∇× u) · (∇× vh) dx +

�
Γ

γn(u) · γ∥(vh) ds

+

�
Γ

γn(vh) · γ∥(u) ds + Cw

h

�
Γ

γ∥(vh)γ∥(u) ds (3.2.33)

≤ ∥∇× u∥L2(Ω)∥∇ × vh∥L2(Ω) + ∥γn(u)∥L2(Γ)∥γ∥(vh)∥L2(Γ)

+ ∥γn(vh)∥L2(Γ)∥γ∥(uh)∥L2(Γ) +
Cw

h
∥γ∥(vh)∥L2(Γ)∥γ∥(uh)∥L2(Γ) (3.2.34)

≤ ∥u∥H(curl,Ω)∥vh∥H(curl,Ω) + ∥γn(u)∥L2(Γ)∥γ∥(vh)∥L2(Γ)

+ ∥γn(vh)∥L2(Γ)∥γ∥(u)∥L2(Γ) +
Cw

h
∥γ∥(vh)∥L2(Γ)∥γ∥(u)∥L2(Γ) (3.2.35)

≤ ∥u∥H(curl,Ω)∥vh∥H(curl,Ω) + h
1
2 ∥γn(u)∥L2(Γ)h

− 1
2 ∥γ∥(vh)∥L2(Γ)

+ h
1
2 ∥γn(vh)∥L2(Γ)h

− 1
2 ∥γ∥(u)∥L2(Γ) +

Cw

h
∥γ∥(vh)∥L2(Γ)∥γ∥(u)∥L2(Γ) (3.2.36)

≤ C#∥u∥#∥vh∥#, ∀u ∈ V#, ∀vh ∈ Vh. =⇒ α2 = C#. (3.2.37)

3.2.3 Coercivity of ah(vh, vh)

Lemma 3.2.12. There exsists α1 > 0 independent of h such that

α1∥vh∥2# ≤ ah(vh, vh) ∀ vh ∈ Kh. (3.2.38)

The proof of Lemma 3.2.12 can be continued from the SPD result in line (3.2.29). We proceed in a manner

that is equivalent to Boon et. al, although here we use a different justification. In their method, the full space

Vh is divergence-free, which per definition of the method allows the use of

{vh ∈ Vh | b(vh, qh) = 0 ∀ qh ∈ Qh} (3.2.39)

In our setting, we can achieve the same property by exploiting the definition of the kernel space KerB =

Kh from the perturbed saddle point problem well-posedness theorem (3.2.11) which is precisely defined as

(3.2.39).
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Proof. Continuing from the final step of the SPD proof in (3.2.29)

ah(vh, vh) ≥ 1

2
∥∇ × vh∥2L2(Ω) +

2C2
tr1
h

∥γ∥(vh)∥2L2(Γ), ∀vh ∈ Kh. (3.2.40)

Lemma 3.1.2 applied to the curl term to borrow norm of γn(vh).

h

C2
tr2

∥γn(vh)∥2L2(Γ) ≤ ∥∇× vH∥2L2(Ω). (3.2.41)

ah(vh, vh) ≥ 1

4
∥∇ × vh∥2L2(Ω) +

1

4C2
tr2

h∥γn(vh)∥2L2(Γ) +
2C2

tr1
h

∥γ∥(vh)∥2L2(Γ). (3.2.42)

To obtain the ∥uh∥L2(Ω) part of the H(curl,Ω) norm we use Lemma 3.2.6

ah(vh, vh) ≥ 1

8
∥∇ × vh∥2L2(Ω) +

1

8C2
P

∥vh∥L2(Ω) +
1

4C2
tr2

h∥γn(vh)∥2L2(Γ) +
2C2

tr1
h

∥γ∥(vh)∥2L2(Γ). (3.2.43)

α1 = min
�
1

8
,

1

8C2
P

,
1

4C2
tr2

, 2C2
tr1

�
, ∥vh∥H(curl,Ω) = ∥∇ × vh∥2L2(Ω) + ∥vh∥L2(Ω).

ah(vh, vh) ≥ α1

�
∥vh∥2H(curl,Ω) +

�
∀F∈Γ

1

h
∥γ∥(vh)∥2L2(F )

�
∀F∈Γ

+h∥γn(vh)∥2L2(F )

�
(3.2.44)

≥ α1∥vh∥2#, ∀vh ∈ Kh. (3.2.45)

3.2.4 Continuity & coercivity of c(·, ·)

Lemma 3.2.13 (Continuity of c(·, ·)). There exists β2 > 0 independent of h such that

c(p, qh) ≤ β2 ∥p∥Q ∥qh∥Q, ∀ p ∈ Q#, ∀qh ∈ Qh. (3.2.46)

Proof.

c(p, qh) =

�
Ω

pqh dx ≤ ∥p∥L2(Ω)∥qh∥L2(Ω) (3.2.47)

≤ ∥p∥H1(Ω)∥qh∥H1(Ω), ∀ p ∈ Q#, ∀qh ∈ Qh, =⇒ β2 = 1. (3.2.48)

Lemma 3.2.14. Coercivity. There exists β1 > 0 independent of h such that

c(qh, qh) ≥ β1∥qh∥2V , ∀ qh ∈ Hh. (3.2.49)
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Proof. Since Hh is the space of constants, we can add the L2 norm of the gradients without affecting equality.

c(qh, qh) = ∥qh∥2L2(Ω) = ∥qh∥2L2(Ω) + ∥∇qh∥2L2(Ω) = ∥qh∥2H1(Ω), ∀ qh ∈ Hh. =⇒ β1 = 1. (3.2.50)

3.2.5 Continuity and inf-sup stability of b(vh, qh)

Lemma 3.2.15 (Continuity of b(vh, qh).). There exists γ2 > 0 independent of h such that

b(v, q) ≤ γ2∥v∥#∥q∥H1(Ω), ∀(v, q) ∈ V# ×Q#. (3.2.51)

Proof. We use ∥q∥L2(Ω) ≤ ∥q∥H1(Ω) and ∥v∥L2(Ω) ≤ ∥v∥#

b(v, q) =
�
Ω

v · ∇q dx ≤ ∥v∥L2(Ω)∥∇q∥L2(Ω) (3.2.52)

≤ ∥v∥L2(Ω)∥q∥H1(Ω) ≤ ∥v∥#∥q∥H1(Ω), ∀(v, q) ∈ V# ×Q#, =⇒ γ2 = 1. (3.2.53)

Lemma 3.2.16. There exists γ1 > 0 (dependent on h) with vh ̸= 0 and qh ̸= 0 such that

inf
qh∈H⊥

h

sup
vh∈Vh

b(vh, qh)
∥qh∥H̄1(Ω)∥vh∥#

= γ1 > 0. (3.2.54)

Proof. The #-norm part in the denominator we bound from above using 3.1.3

∥vh∥2# = ∥vh∥2H(curl,Ω) +
�

∀F∈Γh

1

hF
∥γ∥(vh)∥L2(F ) +

�
∀F∈Γh

hF ∥γn(vh)∥L2(F ) (3.2.55)

≤ ∥vh∥2H(curl,Ω) +
C2

tr
h2
K

∥vh∥2L2(Ω) +
�

∀F∈Γh

hF ∥γn(vh)∥L2(F ). (3.2.56)

For non-negative scalars A, B, C there holds the inequality

�
A2 +B2 + C2 ≤ A+B + C. (3.2.57)

Therefore

∥vh∥# =

����∥vh∥2H(curl,Ω) +
C2

tr
h2
K

∥vh∥2L2(Ω) +
�

∀F∈Γh

hF ∥γn(vh)∥L2(F ) (3.2.58)

≤ ∥vh∥H(curl,Ω) +
Ctr
h

∥vh∥L2(Ω) +
�

∀F∈Γh

�
hF ∥γn(vh)∥L2(F ). (3.2.59)
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We introduce the choice vh(qh) = ∇qh which yields a lower bound for the supremum over vh ∈ Vh. This

choice, will make the last term in the bounded norm (3.2.59) vanish as well as the curl part of the H(curl,Ω)

norm.

∥∇qh∥# ≤ ∥∇qh∥H(curl,Ω) +
Ctr
h

∥∇qh∥L2(Ω) +
�

∀F∈Γh

�
hF ∥γn(∇qh)∥L2(F ) (3.2.60)

≤ ∥∇qh∥L2(Ω) +
Ctr
h

∥∇qh∥L2(Ω). (3.2.61)

We use the established bounds in the norm in the denominator and use Lemma 3.2.5 to apply Poincaré-

Friedrichs inequality

γ1 ≥ inf
qh∈H⊥

h

b(∇qh, qh)�
1 + Ctr

h

 ∥∇qh∥L2(Ω)∥qh∥H1(Ω)

(3.2.62)

≥ inf
qh∈H⊥

h

∥∇qh∥2L2(Ω)�
1 + Ctr

h

 ∥∇qh∥L2(Ω)∥qh∥H1(Ω)

(3.2.63)

≥ inf
qh∈H⊥

h

∥∇qh∥2L2(Ω)�
1 + Ctr

h

 ∥∇qh∥L2(Ω)

�
1
2 + CP

2

 ∥∇qh∥L2(Ω)

(3.2.64)

≥ 1

(1 + Ctr
h )

�
1
2 + CP

2

 > 0, =⇒ γ1 ∝ h. (3.2.65)

Which concludes well-posedness for the 1-form proxy method. A drawback from this approach is that some

of the obtained bounds are only valid in the kernel spaces, which render them suboptimal for a-priori error

estimates. That is why during the process of the thesis, we have decided to take an additional well-posedness

approach.

3.3 Babuška-Nečas-Brezzi Well-posedness

We recall the following standard result; see [Nečas62, Thm. 3.1], [Babuška62, Thm. 2.1] for reference. Let

Vh ⊂ V and Qh ⊂ Q be finite-dimensional subspaces and define

Xh = Vh ×Qh. (3.3.1)

Suppose B(·, ·) : Xh ×Xh → R is a bilinear form and F : Xh → R is a bounded linear functional. We wish

to find

B(xh, yh) = F(yh), ∀yh ∈ Xh (3.3.2)
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Theorem 3.3.1 (BNB Well-posedness). Suppose the following assumptions are fulfilled

(Continuity) ∃β > 0 : |B(xh, yh)| ≤ β∥xh∥X∥yh∥X , ∀xh, yh ∈ Xh, (3.3.3)

(Stability) ∃γ > 0 : sup
yh ̸=0

B(xh, yh)

∥yh∥X ≥ γ∥xh∥X , ∀xh ∈ Xh. (3.3.4)

Then for every F ∈ X∗
h there holds

∃!xh ∈ Xh : B(xh, yh) = F(yh), ∀yh ∈ Xh, (3.3.5)

∥xh∥X ≤ β−1∥F∥X∗ . (3.3.6)

Proof. A complete proof can be found in [Nečas62, Chapter 3].

3.3.1 1-form vector proxy BNB well-posedness

The bilinear form B(·, ·) and right hand side F(·) for our mixed method (2.6.18) then reads

B
�
(uh, ph); (vh, qh)


= ah(uh, vh) + b(vh, ph)− b(uh, qh) + c(ph, qh), (3.3.7)

F�
(vh, qh)


=

�
Ω

f · vh dx +
Cω

h

�
Γ

γ∥(g) · γ∥(vh) ds

+

�
Γ

γn(vh) · γ∥(g) ds −
�
Γ

(g · n) qh ds. (3.3.8)

Definition 3.3.2 (X# space). Recall the definitions 3.2.9 and 3.2.10. In anticipation of the error analysis, we

define the following space for the 1-form proxy method.

X# = V# ×Q#. (3.3.9)

For the proofwork in the FEEC framework, we define

(ω, σ) ∈ H2Λk(Ω)×H1Λk−1(Ω), (ωh, σh) ∈ Vh ⊂ HΛk(Ω)×Qh ⊂ HΛk−1(Ω). (3.3.10)

And finally

V# = Vh +H2Λk(Ω), Q# = Qh +H1Λk−1(Ω), X# = V# ×Q#. (3.3.11)

Theorem3.3.3 (BNB continuity 1-forms). For the 1-formsNitscheHodge Laplacemethod (3.3.7) there exists

βh > 0 such that

∃βh > 0 : |B�
(u, p); (vh, qh)

| ≤ βh∥(u, p)∥X∥(vh, qh)∥X , ∀(u, p) ∈ X#, ∀(vh, qh) ∈ Xh. (3.3.12)

We denote the constant as βh to emphasize its dependecy on h. B is continuous with βh = O(h−1)
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Proof. We use Lemma 3.2.11 to bound ah(·, ·), Cauchy Schwarz, a scaling argument and the X-norm defini-

tion.

|B�
(u, p); (vh, qh)

| = |ah(u, vh) + b(vh, p) + b(u, qh)− c(p, qh)| (3.3.13)

≤ |ah(u, vh)|+ |b(vh, p)|+ |b(u, qh)|+ |c(p, qh) (3.3.14)

Using 3.2.11 ≤ C1∥u∥#∥vh∥# + |b(vh, p)|+ |b(u, qh)|+ |c(p, qh)| (3.3.15)

≤ C1∥u∥#∥vh∥# + C2∥vh∥L2(Ω)∥∇p∥L2(Ω)

+ C3∥u∥L2(Ω)∥∇qh∥L2(Ω) + C4∥p∥L2(Ω)∥qh∥L2(Ω) (3.3.16)

≤ C ′
1∥(u, p)∥X∥(vh, qh)∥X + C ′

2 h
−1∥(u, p)∥X∥(vh, qh)∥X

C3 h
−1∥(u, p)∥X∥(vh, qh)∥X + C ′

4∥(u, p)∥X∥(vh, qh)∥X . (3.3.17)

0 < h ≤ 1 =⇒ 1 +
1

h
≤ 2

h
. (3.3.18)

C ′
1 + C ′

4 + (C ′
2 + C ′

3)
1

h
≤ max (C ′

1 + C ′
4, C

′
2 + C ′

3)

�
1 +

1

h

�
≤ 2 max (C ′

1 + C ′
4, C

′
2 + C ′

3)
1

h
. (3.3.19)

β = 2 max (C ′
1 + C ′

4, C
′
2 + C ′

3) , βh =
β

h
. (3.3.20)

Which allows us to conclude the continuity proof

|B ((u, p); (vh, qh)) | ≤ βh∥(u, p)∥X∥(vh, qh)∥X , ∀(u, p) ∈ X#, ∀(vh, qh) ∈ Xh. (3.3.21)

Theorem 3.3.4 (BNB Stability 1-forms). For the 1-forms Nitsche Hodge Laplace method (3.3.7), there exists

γ > 0 independent of h such that

sup
(vh,qh) ̸=0

B
�
(uh, ph); (vh, qh)


∥(vh, qh)∥X ≥ γ∥(uh, ph)∥X , ∀(uh, ph) ∈ Xh. (3.3.22)

Proof. In order to show the theorem, we pick T, a linear operator (vh, qh) = T
�
(uh, ph)


such that

∥T �(uh, ph)
∥X ≤ CT ∥(uh, ph)∥X , (3.3.23)

B
�
(uh, ph);T

�
(uh, ph)

 ≥ γ∥(uh, ph)∥2X , ∀(uh, ph) ∈ Xh. (3.3.24)

which implies Lemma 3.3.4 by T-coercivity as in [Bonnet10, Thm. 2.1]. We chose

T
�
(uh, ph)


=

�
uh, ph − 1

2C2
p

ϕ

�
. (3.3.25)

Unsurprisingly, this choice coincides with D. Arnolds choice in the proof of the method without the Nitsche
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terms and different boundary conditions [Arnold18, Thm. 4.9].

sup
(vh,qh) ̸=0

B
�
(uh, ph); (vh, qh)

 ≥ B
�
(uh, ph);T

�
(uh, ph)


= B

�
(uh, ph) ;

�
uh, ph − 1

2C2
p

ϕ

��
. (3.3.26)

Applying linearity of B to decompose it to

B

�
(uh, ph) ;

�
uh, ph − 1

2C2
p

ϕ

��
= B

�
(uh, ph); (uh, ph)


+

1

2C2
P

B
�
(uh, ph); (0,−ϕ)


. (3.3.27)

We bound the first term as follows

B
�
(uh, ph); (uh, ph)


= ah(uh,uh) + b(uh, ph)− b(uh, ph) + c(ph, ph) (3.3.28)

= ah(uh,uh) + ∥ph∥2L2(Ω) (3.3.29)

≥ ah(uh,uh) +
1

2
∥ph∥2L2(Ω) + Cinv

h

2
∥∇ph∥2L2(Ω) (3.3.30)

= ∥∇ × uh∥2L2(Ω) + 2

�
Γ

γn(uh) · γ∥(uh) ds + Cw

h
∥γ∥(uh)∥2L2(Γ)

+
1

2
∥ph∥2L2(Ω) + Cinv

h

2
∥∇ph∥2L2(Ω). (3.3.31)

Bounding the mixed boundary term, by Cauchy-Schwartz, Young’s inequality and Lemma 3.1.2

�
Γ

γn(uh) · γ∥(uh) ds ≥ − 1

2ϵ2
∥γn(uh)∥2L2(Γ) −

ϵ2
2
∥γ∥(uh)∥2L2(Γ), (3.3.32)

≥ − C2
tr1

2hϵ2
∥∇ × uh∥2L2(Ω) −

ϵ2
2
∥γ∥(uh)∥2L2(Γ). (3.3.33)

Picking Young’s constant ϵ2 =
2C2

tr1
h

,

2

�
Γ

γn(uh) · γ∥(uh) ds ≥ −1

2
∥∇ × uh∥2L2(Ω) −

2C2
tr

h
∥γ∥(uh)∥2L2(Γ). (3.3.34)

If we pick Cw = 4C2
tr1 we get

B
�
(uh, ph); (uh, ph)

 ≥ 1

2
∥∇ × uh∥2L2(Ω) +

2C2
tr1
h

∥γ∥(uh)∥2L2(Γ) (3.3.35)

+
1

2
∥ph∥2L2(Ω) + Cinv

h

2
∥∇ph∥2L2(Ω). (3.3.36)

Using Lemma 3.1.2 to bound the curl term from below

B
�
(uh, ph); (uh, ph)

 ≥ 1

4
∥∇ × uh∥L2(Ω) +

h

4C2
tr2

∥γn(uh)∥+
2C2

tr1
h

∥γ∥(uh)∥L2(Γ) (3.3.37)

+
1

2
∥ph∥2L2(Ω) + Cinv

h

2
∥∇ph∥2L2(Ω). (3.3.38)

Due to the Hodge decomposition 2.2.13 and the Poincaré inequality 2.2.14 we have

∥uh∥2L2(Ω) = ∥u⊥
h ∥2L2(Ω) + ∥∇ϕ∥2L2(Ω) ≤ C2

P1
∥∇ × u⊥

h ∥2L2(Ω) + ∥∇ϕ∥2L2(Ω), (3.3.39)

=⇒ ∥u⊥
h ∥2L2(Ω) ≤ C2

P1
∥∇ × u⊥

h ∥2L2(Ω). (3.3.40)
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Using the obtained bound on what’s left of the curl term a third time

B
�
(uh, ph); (uh, ph)

 ≥ 1

8
∥∇ × uh∥L2(Ω) +

1

8C2
P1

∥u⊥
h ∥2L2(Ω +

h

4C2
tr2

∥γn(uh)∥ (3.3.41)

+
2C2

tr1
h

∥γ∥(uh)∥L2(Γ) +
1

2
∥ph∥2L2(Ω) + Cinv

h

2
∥∇ph∥2L2(Ω). (3.3.42)

Bounding the second term in equation (3.3.27)

B
�
(uh, ph)(0,−ϕ)


= b(uh, ϕh)− c(ph, ϕh) (3.3.43)

≥ ∥∇ϕh∥2L2(Ω) −
�
Ω

phϕh dx (3.3.44)

≥ ∥∇ϕh∥2L2(Ω) −
1

2ϵ3
∥ph∥2L2(Ω) −

ϵ3
2
∥ϕh∥2L2(Ω), (3.3.45)

Picking Young’s constant ϵ3 =
1

C2
P2

≥ ∥∇ϕh∥2L2(Ω) −
C2

P2

2
∥ph∥2L2(Ω) −

1

2C2
P2

∥ϕh∥2L2(Ω), (3.3.46)

Due to the Hodge decomposition 2.2.13 and the Poincaré inequality 2.2.14 we have

− 1

2C2
P2

∥ϕh∥2L2(Ω) ≥ −1

2
∥∇ϕh∥2L2(Ω). (3.3.47)

Which yields the following lower bound

B
�
(uh, ph)(0,−ϕh)

 ≥ 1

2
∥∇ϕh∥2L2(Ω) −

C2
P2

2
∥ph∥2L2(Ω). (3.3.48)

Now we successfully obtained both parts of the Hodge decomposition and we can combine them to get the

missing norm on uh.

B

�
(uh, ph) ;

�
uh, ph − 1

2C2
P2

ϕ

��
≥ 1

8
∥∇ × uh∥2L2(Ω) +

1

8C2
P1

∥u⊥
h ∥2L2(Ω) +

h

4C2
tr2

∥γn(uh)∥2L2(Γ)

+
2C2

tr1
h

∥γ∥(uh)∥2L2(Γ) +
1

2
∥ph∥2L2(Ω) + Cinv

h

2
∥∇ph∥2L2(Ω)

+
1

2C2
P2

�
1

2
∥∇ϕh∥2L2(Ω) −

C2
P2

2
∥ph∥2L2(Ω)

�
(3.3.49)

≥ 1

8
∥∇ × uh∥2L2(Ω) +

1

8C2
P1

∥u⊥
h ∥2L2(Ω) +

h

4C2
tr2

∥γn(uh)∥2L2(Γ)

+
2C2

tr1
h

∥γ∥(uh)∥L2(Γ) +
1

4
∥ph∥2L2(Ω) + Cinv

h

2
∥∇ph∥2L2(Ω)

+
1

4C2
P2

∥∇ϕh∥2L2(Ω). (3.3.50)

γ = min
�
1

8
,

1

8C2
P1

,
1

4C2
tr2

, 2C2
tr1 ,

Cinv
2

,
1

4C2
P2

�
. (3.3.51)
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And we conclude the proof

B

�
(uh, ph) ;

�
uh, ph − 1

2C2
P2

ϕ

��
≥ γ

�∥∇ × uh∥L2(Ω) + ∥u⊥
h ∥2L2(Ω) + ∥∇ϕh∥2L2(Ω)

+ h∥γn(uh)∥L2(Γ) +
1

h
∥γ∥(uh)∥L2(Γ)

+ ∥ph∥2L2(Ω) + h∥∇ph∥2L2(Ω)


(3.3.52)

= γ
�∥uh∥2# + ∥ph∥2L2(Ω) + h∥∇ph∥2L2(Ω)


(3.3.53)

= γ∥(uh, ph)∥2X . (3.3.54)

3.3.2 Well-posedness in the context of FEEC

In this section, we prove well-posedness within the framework of Finite Element Exterior Calculus, which

will allow us to conclude well-posedness for all the vector proxy choices that can be correctly employed. We

have the norms from definition 3.1.6 and 3.1.7. Let Xh = Vh ×Qh and Vh ⊂ HΛk(Ω), Qh ⊂ HΛk−1(Ω) and

the following bilinear forms defined as

ah(·, ·) : Vh × Vh −→ R, b(·, ·) : Qh × Vh −→ R, c(·, ·) : Qh ×Qh −→ R. (3.3.55)

ah(ωh, ηh) = ⟨dωh,dηh⟩L2(Ω) − ⟨(dωh)
nor, ηtan

h ⟩L2(Γ)

− ⟨(dηh)nor, ωtan
h ⟩L2(Γ) +

Cw

h
⟨ωtan

h , ηtan
h ⟩L2(Γ), (3.3.56)

b(σh, ηh) = ⟨dσh, ηh⟩L2(Ω), (3.3.57)

c(σh, τh) = ⟨σh, τh⟩L2(Ω). (3.3.58)

The (bi)linear forms are defined as follows

B
�·, · : Xh ×Xh −→ R, F�·) : Xh −→ R. (3.3.59)

B
�
(ωh, σh), (ηh, τh)


= ah(ωh, ηh) + b(σh, ηh)− b(τh, ωh) + c(σh, τh), (3.3.60)

F�
(ηh, τh)


= ⟨f, ηh⟩L2(Ω) − ⟨(dηh)nor, gtan⟩L2(Γ) +

Cw

h
⟨gtan, ηtan

h ⟩L2(Γ) (3.3.61)

+ ⟨ωnor, τ tan⟩L2(Γ). (3.3.62)

We want to find (ωh, σh) ∈ Xh such that

B
�
(ωh, σh), (ηh, τh)


= F�

(ηh, τh)

, ∀(ηh, τh) ∈ Xh. (3.3.63)
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We also want to subject problem (3.3.63) to BNB well-posedness analysis.

Lemma 3.3.5 (Continuity of ah(·, ·) FEEC). There exists C > 0 such that

ah(ωh, ηh) ≤ C∥ωh∥#∥ηh∥#, ∀ωh ∈ V#, ∀ηh ∈ Vh.

Proof. This proof is similar to the proof of Lemma 3.2.11. Cauchy-Schwarz, norm definitions and scaling

arguments.

Theorem 3.3.6 (BNB Continuity FEEC). For the FEECNitsche Hodge Laplace method (3.3.56), there exists

βh > 0 such that

|B(x, yh)| ≤ βh∥x∥X∥yh∥X , ∀x ∈ X#, ∀yh ∈ Xh. (3.3.64)

Proof. The procedure of the proof is analogous to the vector proxy continuity proof, which is why it also yields

an h dependent constant βh.

|B�
(ω, σ); (ηh, τh)

| = |ah(ω, ηh) + b(ηh, σ) + b(ω, τh)− c(σ, τh)| (3.3.65)

≤ |ah(ω, ηh)|+ |b(ηh, σ)|+ |b(ω, τh)|+ |c(σ, τh)| (3.3.66)

Using 3.3.5 ≤ C1∥ω∥#∥ηh∥# + |b(ηh, σ)|+ |b(ω, τh)|+ |c(σ, τh)| (3.3.67)

≤ C1∥ω∥#∥ηh∥# + C2∥ηh∥L2(Ω)∥dσ∥L2(Ω)

+ C3∥ω∥L2(Ω)∥dτh∥L2(Ω) + C4∥σ∥L2(Ω)∥τh∥L2(Ω) (3.3.68)

≤ C ′
1∥(ω, σ)∥X∥(ηh, τh)∥X + C ′

2 h
−1∥(ω, σ)∥X∥(ηh, τh)∥X

C3 h
−1∥(ω, σ)∥X∥(ηh, τh)∥X + C ′

4∥(ω, σ)∥X∥(ηh, τh)∥X . (3.3.69)

0 < h ≤ 1 =⇒ 1 +
1

h
≤ 2

h
. (3.3.70)

C ′
1 + C ′

4 +
�
C ′

2 + C ′
3

 1
h
≤ max

�
C ′

1 + C ′
4, C

′
2 + C ′

3

�
1 +

1

h

�
≤ 2 max

�
C ′

1 + C ′
4, C

′
2 + C ′

3

 1
h
. (3.3.71)

β = 2 max
�
C ′

1 + C ′
4, C

′
2 + C ′

3


, βh =

β

h
. (3.3.72)

Which allows us to conclude the continuity proof.

|B�
(ω, σ); (ηh, τh)

| ≤ βh∥(ω, σ)∥X∥(ηh, τh)∥X , ∀x ∈ X#, ∀yh ∈ Xh. (3.3.73)

Theorem 3.3.7 (BNB stability FEEC). For the FEEC Nitsche Hodge Laplace method (3.3.56), there exists

γ > 0 independent of h such that

∃γ > 0 : sup
yh ̸=0

B(xh, yh)

∥yh∥X ≥ γ∥xh∥X , ∀xh ∈ Xh. (3.3.74)
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Proof. By [Bonnet10, Thm. 2.1], we choose the following linear operator T to show T-coercivity, as we did in

the vector proxy case.

sup
(ηh,τh) ̸=0

B
�
(ωh, σh); (ηh, τh)

 ≥ B
�
(ωh, σh);T

�
(ωh, σh)


= B

�
(ωh, σh) ;

�
ωh, σh − 1

2C2
P2

ϕ

��
.

(3.3.75)

We apply linearity of the bilinear form B and decompose it to the differential form analogon of 3.3.27

B

�
(ωh, σh) ;

�
ωh, σh − 1

2C2
P2

ϕ

��
= B

�
(ωh, σh); (ωh, σh)


+

1

2C2
P2

B
�
(ωh, σh); (0,−ϕ)


. (3.3.76)

Bounding the first term in (3.3.76)

B
�
(ωh, σh), (ωh, σh)


= ah(ωh, ωh) + ∥σh∥2L2(Ω) (3.3.77)

= ∥dωh∥2L2(Ω) − 2⟨(dωh)
nor, ωtan

h ⟩L2(Γ) +
Cw

h
∥ωtan

h ∥2L2(Γ) + ∥σh∥2L2(Ω). (3.3.78)

We bound the mixed boundary term by Cauchy-Schwartz, Young’s inequality and Lemma 3.1.2

−⟨(dωh)
nor, ωtan

h ⟩L2(Γ) ≥ − 1

2ϵ
∥(dωh)

nor∥2L2(Γ) −
ϵ

2
∥ωtan

h ∥2L2(Γ) (3.3.79)

≥ −C2
tr1

2hϵ
∥dωh∥2L2(Ω) −

ϵ

2
∥ωtan

h ∥2L2(Γ), (3.3.80)

Pick ϵ =
2C2

tr1

h
,

≥ −1

4
∥dωh∥2L2(Ω) −

C2
tr1

h
∥ωtan

h ∥2L2(Γ). (3.3.81)

Using the obtained estimate

B
�
(ωh, σh), (ωh, σh)

 ≥ 1

2
∥dωh∥2L2(Ω) +

�
Cw

h
− 2C2

tr1
h

�
∥ωtan

h ∥2L2(Γ) + ∥σh∥2, (3.3.82)

Pick Cw = 4C2
tr1 ,

≥ 1

2
∥dωh∥2L2(Ω) +

2C2
tr1
h

∥ωtan
h ∥2L2(Γ) + ∥σh∥2, (SPD ). (3.3.83)

We make use of inverse inequality 2.4.4 to obtain the following bound

∥(dωh)
nor∥2L2(Γ) ≤

C2
tr2
h

∥dωh∥2L2(Ω). (3.3.84)

We can further bound the bilinear form with this estimate and with theorem 2.4.5

B
�
(ωh, σh), (ωh, σh)

 ≥ 1

4
∥dωh∥2L2(Ω) +

h

4C2
tr2

∥(dωh)
nor∥2L2(Γ) +

2C2
tr1
h

∥ωtan
h ∥2L2(Γ) + ∥σh∥2L2(Ω) (3.3.85)

≥ 1

4
∥dωh∥2L2(Ω) +

h

4C2
tr2

∥(dωh)
nor∥2L2(Γ) +

2C2
tr1
h

∥ωtan
h ∥2L2(Γ)

+
1

2
∥σh∥2L2(Ω) +

C2
invh

2
∥dσh∥2L2(Ω). (3.3.86)
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Due to the Hodge decomposition 2.2.13 and the Poincaré inequality 2.2.14 we have the following bounds

∥dωh∥2L2(Ω) = ∥dω⊥
h ∥2L2(Ω) + ∥ddϕh∥2L2(Ω) = ∥dω⊥

h ∥2L2(Ω), (3.3.87)

∥ω⊥
h ∥2L2(Ω) ≤ C2

P1
∥dω⊥

h ∥2L2(Ω). (3.3.88)

which yields

B
�
(ωh, σh), (ωh, σh)

 ≥ 1

8
∥dωh∥2L2(Ω) +

1

8C2
P1

∥ω⊥
h ∥2L2(Ω) +

h

4C2
tr2

∥(dωh)
nor∥2L2(Γ)

+
2C2

tr1
h

∥ωtan
h ∥2L2(Γ) +

1

2
∥σh∥2L2(Ω) +

C2
invh

2
∥dσh∥2L2(Ω). (3.3.89)

Bounding the second term of 2.4.3

B
�
(ωh, σh), (0,−ϕh)


= b(ϕh, ωh)− c(σh, ϕh) (3.3.90)

= ⟨ωh,dϕh⟩L2(Ω) − ⟨σh, ϕh⟩L2(Ω) (3.3.91)

= ⟨ω⊥
h ,dϕh⟩L2(Ω) + ⟨dϕh,dϕh⟩L2(Ω) − ⟨σh, ϕh⟩L2(Ω) (3.3.92)

= ∥dϕh∥2L2(Ω) − ⟨σh, ϕh⟩L2(Ω) (3.3.93)

≥ ∥dϕh∥2L2(Ω) −
1

2ϵ
∥σh∥2L2(Ω) −

ϵ

2
∥ϕh∥2L2(Ω), (3.3.94)

Pick ϵ =
1

C2
P2

,

B
�
(ωh, σh), (0,−ϕh)

 ≥ ∥dϕh∥2L2(Ω) −
C2

P2

2
∥σh∥2L2(Ω) −

1

2C2
P2

∥ϕh∥2L2(Ω). (3.3.95)

Due to the Hodge decomposition 2.2.13 we have

− ∥ϕh∥2L2(Ω) ≥ −C2
P2
∥dϕh∥2L2(Ω). (3.3.96)

Which allows us to give the following bound

B
�
(ωh, σh), (0,−ϕh)

 ≥ 1

2
∥dϕh∥2L2(Ω) −

C2
P2

2
∥σh∥2L2(Ω). (3.3.97)

Gathering all bounds

B

�
(ωh, σh) ;

�
ωh, σh − 1

2C2
P2

ϕh

��
= B

�
(ωh, σh), (ωh, σh)


+

1

2C2
P2

B
�
(ωh, σh), (0,−ϕh)


(3.3.98)

≥ 1

8
∥dωh∥2L2(Ω) +

1

8C2
P1

∥ω⊥
h ∥2L2(Ω) +

h

4C2
tr2

∥(dωh)
nor∥2L2(Γ)

+
2C2

tr1
h

∥ωtan
h ∥2L2(Γ) +

1

2
∥σh∥2L2(Ω) +

C2
invh

2
∥dσh∥2L2(Ω)

+
1

2C2
P2

�
1

2
∥dϕh∥2L2(Ω) −

C2
P2

2
∥σh∥2L2(Ω)

�
. (3.3.99)
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B

�
(ωh, σh) ;

�
ωh, σh − 1

2C2
P2

ϕh

��
≥ 1

8
∥dωh∥2L2(Ω) +

1

8C2
P1

∥ωh∥2L2(Ω) +
1

4C2
P2

∥dϕh∥2L2(Ω)

+
h

4C2
tr2

∥(dωh)
nor∥2L2(Γ) +

2C2
tr1
h

∥ωtan
h ∥2L2(Γ)

+
1

4
∥σh∥2L2(Ω) +

C2
invh

2
∥dσh∥2L2(Ω). (3.3.100)

γ = min
�
1

8
,

1

8C2
P1

,
1

4C2
tr2

, 2C2
tr1 ,

Cinv
2

,
1

4C2
P2

�
. (3.3.101)

Which lets us conclude the proof

B

�
(ωh, σh) ;

�
ωh, σh − 1

2C2
P2

ϕh

��
≥ γ

�∥dωh∥2L2(Ω) + ∥ωh∥2L2(Ω) + h∥(dωh)
nor∥2L2(Γ)

+
1

h
∥ωtan

h ∥2L2(Γ) + ∥σh∥2L2(Ω) + h∥dσh∥2L2(Ω)


(3.3.102)

= γ∥(ωh, σh)∥2X (3.3.103)
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3.4 Consistency

3.4.1 1-form vector proxy consistency

As before, we present the vector proxy consistency result first. If one considers the vector Laplacian −∇2u =

f, then applies the Hodge decomposition to it and introduces auxiliary variable p = −divu, then one arives

at the formulation below, which inherits the vector Laplacian’s regularity properties.

Theorem 3.4.1 (1-form vector proxy consistency). Let (u, p) ∈ [H2(Ω)]3 ×H1(Ω) solve

∇× (∇× u) +∇p = f, in Ω, (3.4.1)

∇ · u+ p = 0, in Ω, (3.4.2)

u = g, on Γ. (3.4.3)

Then (u, p) satisfies the weak mixed method for 1-form vector proxies

B
�
(u, p), (vh, qh)


= F�

(vh, qh)

, ∀(vh, qh) ∈ Xh. (3.4.4)

With

F�
(vh, qh)


= ⟨f, vh⟩L2(Ω) + ⟨γn(vh), γ∥(g)⟩L2(Γ) +

Cw

h
⟨γ∥(g), γ∥(vh)⟩L2(Γ)

+ ⟨g · n, qh⟩L2(Γ). (3.4.5)

Proof. If we plug in the left hand side of (3.4.1) into the first term of (3.4.5), we obtain

F�
(vh, qh)


= ⟨f, vh⟩L2(Ω) + . . . (3.4.6)

= ⟨∇ × (∇× u) +∇p, vh⟩L2(Ω) + . . . (3.4.7)

= ⟨∇ × (∇× u), vh⟩L2(Ω) + ⟨∇p, vh⟩L2(Ω) + . . . . (3.4.8)

On the frist term in (3.4.8) we do integration by parts and use Lemma 3.1.4 on the resulting boundary term

F�
(vh, qh)


= ⟨∇ × u,∇× vh⟩L2(Ω) + ⟨γn(u), vh⟩L2(Γ) + ⟨∇p, vh⟩L2(Ω) + . . . (3.4.9)

= ⟨∇ × u,∇× vh⟩L2(Ω) + ⟨γn(u), γ∥(vh)⟩L2(Γ) + ⟨∇p, vh⟩L2(Ω) + . . . . (3.4.10)

We can use (3.4.3) in the terms of (3.4.5) where g occurs to obtain

F�
(vh, qh)


= ah(u, vh) + b(vh, p) + ⟨u · n, qh⟩L2(Γ). (3.4.11)
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Undoing integration by parts on the div(u) term which can be done due to the regularity ofu and use equation

3.4.2

⟨u · n, qh⟩L2(Γ) = ⟨div(u), qh⟩L2(Ω) + ⟨u,∇qh⟩L2(Ω) (3.4.12)

= ⟨u,∇qh⟩L2(Ω) − ⟨p, qh⟩L2(Ω). (3.4.13)

Which concludes the proof

F�
(vh, qh)


= ah(u, vh) + b(vh, p) + b(u, qh)− c(p, qh) (3.4.14)

= B
�
(u, p), (vh, qh)


, ∀(vh, qh) ∈ Xh. (3.4.15)

3.4.2 FEEC consistency

Theorem 3.4.2 (FEEC consistency). Let Vh ⊂ HΛk(Ω) andQh ⊂ HΛk−1(Ω).

Let also (ω, σ) ∈ H2Λk(Ω)×H1Λk−1(Ω) solve

δdω + dσ = f, in Ω, (3.4.16)

δω − σ = 0, in Ω, (3.4.17)

ω = g, on Γ. (3.4.18)

Then (ω, σ) solve the FEEC Nitsche Hodge Laplace mixed method

Bh

�
(ω, σ), (ηh, τh)


= F�

(ηh, τh)

, ∀(ηh, τh) ∈ Vh ×Qh. (3.4.19)

With

F�
(ηh, τh)


= ⟨f, ηh⟩L2(Ω) − ⟨(dηh)nor, gtan⟩L2(Γ) +

Cw

h
⟨gtan, ηtan

h ⟩L2(Γ) + ⟨gnor, τ tan
h ⟩L2(Γ). (3.4.20)

Proof. We use the lefthand side of (3.4.16) and integration by parts to obtain

F�
(ηh, τh)


= ⟨f, ηh⟩L2(Ω) − ⟨(dηh)nor, gtan⟩L2(Γ) +

Cw

h
⟨gtan, ηtan

h ⟩L2(Γ) + ⟨gnor, τ tan
h ⟩L2(Γ) (3.4.21)

= ⟨δdω + dσ, ηh⟩L2(Ω) + . . . (3.4.22)

= ⟨δdω, ηh⟩L2(Ω) + ⟨dσ, ηh⟩L2(Ω) + . . . (3.4.23)

= ⟨dω,dηh⟩L2(Ω) + ⟨(dω)nor, (ηh)
tan⟩L2(Γ) + ⟨dσ, ηh⟩L2(Ω) + . . . . (3.4.24)
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Now we use (3.4.18) to replace the g’s and we get

F�
(ηh, τh)


= ah(ω, ηh) + b(σ, ηh) + ⟨ωnor, τ tan

h ⟩L2(Γ). (3.4.25)

To get the last term that is the inner product on the boundary, we use the integration by parts formula

⟨ωnor, τ tan
h ⟩L2(Γ) = ⟨ω,dτh⟩L2(Ω) − ⟨δω, τh⟩L2(Ω). (3.4.26)

We can now use (3.4.17) to replace δω with σ

F�
(ηh, τh)


= ah(ω, ηh) + b(σ, ηh) + b(ω, τh)− c(σ, τh) (3.4.27)

= Bh

�
(ω, σ), (ηh, τh)


, ∀(ηh, τh) ∈ Vh ×Qh. (3.4.28)

Which concludes the FEEC consistency proof.

3.5 A priori error analysis

We start by presenting the a-priori error analysis in the exterior calculus framework. So far we have proven

boundedness 3.3.6, stability 3.3.7 and consistency 3.4.2, which are all the components needed to derive the

error bounds.

Definition 3.5.1 (Smoothness of solutions). In the following sections we always assume (ω, σ) ∈ HrΛk(Ω)×
H lΛk−1(Ω) to be the exact solutions, where l, r are the degrees of the finite element polynomial spaces, such

that we can make us of theorem 2.4.6. Note that they are always chosen such that l = r, they are distinguished

merely to track where the rates are coming from.

Find xh ∈ Xh ⊂ X = HΛk(Ω)×HΛk−1(Ω) such that

B(xh, yh) = F(yh), ∀yh ∈ Xh. (3.5.1)

Due to the consistency result 3.4.2, we can derive the Galerkin orthogonality for our method immediately.

Lemma 3.5.2 (Galerkin orthogonality). Let x ∈ X solve (3.4.16) and also have regulartiy as in definition 3.3.2.

B(x− xh, yh) = B(x, yh)−B(xh, yh) = F(yh)−F(yh) = 0, ∀yh ∈ Xh. (3.5.2)
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3.5.1 A suboptimal error bound

For problem (3.5.1) we present the following Theorem

Theorem 3.5.3 (Convergence). Let x and xh be the continuous and discrete solution to (3.3.56) respectively

and let zh be arbitrary, then there exists C > 0 independent of h such that

∥x− xh∥X ≤ Ch−1 inf
zh∈Xh

∥x− zh∥X ≤ Chr− 3
2 + Chl−1. (3.5.3)

Proof. Let zh ∈ Xh be arbitrary. Then we can use Galerkin orthogonality 3.5.2 and continuity 3.3.6 to show

B(zh − xh, yh) = B(zh − xh + x− x, yh) = B(zh − x, yh) +B(x− xh, yh) = B(zh − x, yh)

≤ βh∥zh − x∥X∥yh∥X , ∀yh ∈ Xh. (3.5.4)

We use stability 3.3.7 and 3.5.4

∥zh − xh∥X ≤ γ−1 sup
0 ̸=yh∈Xh

|B(zh − xh, yh)|
∥yh∥X = γ−1 sup

0 ̸=yh∈Xh

|B(zh − x,yh)|
∥yh∥X . (3.5.5)

We introduce the error e = x− xh, add and substract our arbitrary zh and apply the triangle inequality

∥e∥X = ∥x− xh∥X = ∥x− xh + zh − zh∥X ≤ ∥x− zh∥X + ∥zh − xh∥X . (3.5.6)

We bound the last term with (3.5.5) and apply continuity 3.3.6 to its numerator to obtain

∥e∥X ≤ ∥x− zh∥X + γ−1 sup
0 ̸=yh∈Xh

|B(zh − x,yh)|
∥yh∥X

≤
�
1 +

βh

γ

�
∥x− zh∥X (3.5.7)

≤ Ch−1 inf
zh∈Xh

∥x− zh∥X , (3.5.8)

= Ch−1 inf
(ηh,τh)∈Xh

∥ω − ηh∥# + ∥σ − τh∥L2(Ω) + h∥d(σ − τh)∥L2(Ω). (3.5.9)

Exploring the infimum in the hashtag norm

inf
ηh∈Vh

∥ω − ηh∥# = inf
ηh∈Vh

+∥d(ω − ηh)∥L2(Ω) + ∥ω − ηh∥L2(Ω)

+ h− 1
2 ∥(ω − ηh)

tan∥L2(Γ) + h
1
2 ∥(dω − dηh)nor∥L2(Γ), (3.5.10)

using theorem 2.4.6 ≤ Chr|dω|HrΛk+1(Ω) + Chr|ω|HrΛk(Ω)

+ Chr− 1
2 |ωtan|HrΛk(Γ) + Chr+ 1

2 |(dω)nor|HrΛk+1(Γ), (3.5.11)

≤ Chr− 1
2 . (3.5.12)
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We collect the terms again

∥e∥X ≤ Chr− 3
2 + Ch−1 inf

τh∈Qh

�∥σ − τh∥L2(Ω) + h∥d(σ − τh)∥L2(Ω)


(3.5.13)

using theorem 2.4.6 ≤ Chr− 3
2 + Ch−1

�
Chl|σ|HlΛk−1(Ω) + Chl+1|dσ|HlΛk(Ω)


(3.5.14)

= Chr− 3
2 + Chl−1. (3.5.15)

3.5.2 A sharp error bound for the 1-form 2Dmethod

In the proof for the BNB continuity 3.3.6, we obtained an h dependent constant which is not desirable since it

decreases the error bound an entire order before the exploration of the aproximation properties. We make use

of an auxiliary result needed to get rid of the h−1 factor. This auxiliary result is only valid for u ∈ H0(curl,Ω),

which is why we first need to define the vector Laplacian in the context of a boundary lifting. The vector

Laplacian can be written as

−Δu = f, in Ω, u|Γ = g.

Let w ∈ [Hr(Ω)]2 such that w|Γ = g and −Δw = 0 then we have

u0 = u−w =⇒ u0|Γ = u|Γ −w|Γ = g− g = 0.

Then we can rewrite our problem in the following way

−Δu0 = f, in Ω, u0|Γ = 0, ∀u0 ∈ [Hr
0 (Ω)]

2. (3.5.16)

We require r to be at least as high such that u0 ∈ H0(curl,Ω) ⊂ [Hr
0 (Ω)]

2.

Theorem 3.5.4. Following D. Arnold et. al [Arnold12], there exists a projection operator πV 0
h
such that

v0h = πV 0
h
v, πV 0

h
: H0(curl,Ω) −→ V 0

h ⊂ V ND1
h . (3.5.17)

Then, for Ω ⊂ R2 we have the following bound

⟨u− v0h,∇qh⟩L2(Ω) ≤ Ch− 1
2− 1

t ∥u− v0h∥Lt(Ω)∥qh∥L2(Ω), (3.5.18)

∀u ∈ H0(curl,Ω) ∩ Lt(Ω).

And there holds

inf
v0h∈V 0

h

Ch− 1
2− 1

t ∥u− v0h∥Lt(Ω)∥qH∥L2(Ω) ≤ Chr− 1
2− 1

t ∥u∥Lt(Ω)∥qh∥L2(Ω). (3.5.19)
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Proof. Similar to proof of [Arnold12, Thm. 3.5].

Theorem 3.5.5 (1-form 2D optimal a-priori error bound). Let u0 ∈ [Hr
0 (Ω)]

2, obtained from the lifting

as shown in (3.5.16) be the exact solution to the lifted 2D vector Laplacian and let (uh, ph) be the discrete

solution to the corresponding method. Then there exists C > 0 such that

∥(u0 − uh, p− ph)∥X = Chr− 1
2 + Chl. (3.5.20)

Proof.

∥e∥X ≤ ∥x− zh∥X + γ−1 sup
0 ̸=yh∈Xh

|B(zh − x,yh)|
∥yh∥X . (3.5.21)

Now instead of applying continuity, we write the entire bilinear form B, and bound it.

∥(u0−uh, p−ph)∥X ≤ ∥(u0−vh, p−qh)∥X +γ−1 sup
0 ̸=(wh,sh)∈Xh

|B�
(vh − u0, qh − p), (wh, sh)

|
∥(wh, sh)∥X . (3.5.22)

|B�
(vh − u0, qh − p), (wh, sh)

| = |ah(vh − u0,wh) + b(wh, qh − p)− b(vh − u0, sh) + c(qh − p, sh)|
≤ |ah(u0 − vh,wh)|+ |b(wh, p− qh)|+ |b(u0 − vh, sh)|+ |c(p− qh, sh)|
≤ ∥(u0 − vh, p− qh)∥X∥(wh, sh)∥X + ∥(wh, sh)∥X∥∇(p− qh)∥L2(Ω)

+ |b(u0 − vh, sh)|+ ∥(u0 − vh, p− qh)∥X∥(wh, sh)∥X . (3.5.23)

We identify the bilinear form b with second argument sh as the troublemaker. Since the gradient of sh in the

X-norm has an h factor, we cannot bound it from above by the X-norm. Using theorem 3.5.4, let t = | log(h)|,
then we have

⟨u0 − πV 0
h
u0,∇qh⟩L2(Ω) ≤ ⟨u0 − v0h,∇qh⟩L2(Ω) ≤ Ch− 1

2− 1
| log(h)| ∥u0 − v0h∥L| log(h)|(Ω)∥qh∥L2(Ω). (3.5.24)

In the next steps we assume that with h → 0, the fraction 1
| log(h)| becomes more and more neglibible while

| log(h)| → ∞. This result allows us to bound our bilinear form b from (3.5.23).

b(u0 − v0h, sh) = ⟨u0 − πV 0
h
u0,∇sh⟩L2(Ω) ≤ Ch− 1

2 ∥u0 − v0h∥L∞(Ω)∥sh∥L2(Ω) (3.5.25)

≤ Ch− 1
2 ∥u0 − v0h∥L∞(Ω)∥(wh, sh)∥X . (3.5.26)

Now our bound on the bilinear form B becomes

|B�
(vh − u0, qh − p), (wh, sh)

| ≤ ∥(wh, sh)∥X
�
2∥(u0 − vh, p− qh)∥X (3.5.27)

+ ∥∇(p− qh)∥L2(Ω) + Ch− 1
2 ∥u0 − v0h∥L∞(Ω)


(3.5.28)
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The obtained result plugged into (3.5.22) yields

∥(u0 − uh, p− ph)∥X ≤ ∥(u0 − vh, p− qh)∥X + γ−12∥(u0 − vh, p− qh)∥X
+ γ−1∥∇(p− qh)∥L2(Ω) + Cγ−1h− 1

2 ∥u0 − v0h∥L∞(Ω) (3.5.29)

∥(u0 − uh, p− ph)∥X ≤ + inf
0̸=(vh,qh)

�
(1 + 2γ−1)∥(u0 − vh, p− qh)∥X + γ−1∥∇(p− qh)∥L2(Ω)


(3.5.30)

+ Chr− 1
2 ∥u0∥L∞(Ω) (3.5.31)

From (3.5.14) and (3.5.12) we already know the approximation properties under the X norm to be ≤ Chr− 1
2 +

Chl. The last term in (3.5.30) is also ≤ Chl, therefore we conclude

∥(u0 − uh, p− ph)∥X ≤ Chr− 1
2 + Chl. (3.5.32)
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Chapter 4
Numerical Experiments

In this chapter we present our numerical results, starting with the 2D 1-forms, followed by the 3D 1-forms

and 2-forms. All the numerical experiments were implemented in NGSolve , which is a high performance

finite element method library with a frontend in Python and a backend in C++. It is developed and main-

tained by Prof. Dr. J. Schöberl and his Team at the institute of Analysis and Scientific Computing (ASC) at

the Technical University of Vienna since already more than two decades. All the results can be recreated

locally by cloning https://github.com/tellocam/nitscheDirichletHodgeLaplace. There are detailed

instructions on how to run the experiments either with Docker or with a script run.sh that creates a virtual

environment with conda. The repository runs all methods and shows convergence plots in the X-norm with

coarse meshes and low orders. For all the experiments we set r = l, in the plots the rates are distinguished

except in the X norm, there we just use r.

4.1 Discrete Hodge Laplace for Λ1(Ω) in R2

for the 2D method, the convergence analysis was done on the unit square with structured meshes.

Listing 4.1: Structured unit square mesh creation
1 from n g s o l v e import *
2 from n g s o l v e . m e s h e s import M a k e S t r u c t u r e d 2 D M e s h
3 n = I n t ( 1 / h )
4 mesh = M a k e S t r u c t u r e d 2 D M e s h ( q u a d s=F a l s e , nx=n , ny=n )

Listing 4.2: Structured unit square mesh creation
1 H _ c u r l = HCurl ( mesh , o r d e r=r , t y p e 1=T r u e ) # For 1 - forms , H( c u r l ) space
2 H_1 = H1( mesh , o r d e r= l ) # For 0 - forms , H1 space
3 f e s = H_1 * H _ c u r l # F i n i t e e l emen t space
4 ( p , u ) , ( q , v ) = f e s .TnT ( ) # TnT -> Te s t and T r i a l

Note that the finite element space is a product space. If the HCurl function is not given the argument

type1=True, it will automatically use type 2 Nédélec elements, which is generally preferred but we actu-

ally want the trimmed spaces.

https://github.com/tellocam/nitscheDirichletHodgeLaplace
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For the boundary integrals the normal vector, the tangent vector and the local meshsize are required.

Listing 4.3: Structured unit square mesh creation
1 n = spe c i a l c f . n o r m a l ( mesh . dim ) # Normal v e c t o r
2 t = spe c i a l c f . t a n g e n t i a l ( mesh . dim ) # Tangent v e c t o r
3 h = spe c i a l c f . m e s h _ s i z e # Loca l meshs i z e
4 dS = ds ( s k e l e t o n =T r u e , d e f i n e d o n=mesh . B o u n d a r i e s ( " . * " ) ) # BND d i f f
5 f = CF( G C ur l ( G C ur l ( g ) ) - GGrad ( GDiv ( g ) ) ) # HL o f g

The dS is the boundary differential NGSolve requires to assemble the boundary integrals correctly. the argu-

ment definedon=mesh.Boundaries(".*") does this for all the strings that mesh.GetBoundaries() would

return. The argument skeleton=True allows the integrator to obtain information of the adjacent volume el-

ement, otherwise this integral would be zero since the trace of an HCurl function is only tangential, which is

orthogonal to the normal. The last line computes the left hand side of (3.4.1) which we use as a manufactured

solution f to do the convergence experiments. The functions GCurl, GGrad and GDiv are shown in appendix

C, they make use of NGSolve’s automatic differentiation capabilities of coefficient functions, since we

cannot use differential operators that are applied to test and trial functions. The following g ∈ C∞(Ω) is used

in the 2D experiments

g =

 sin(x) cos( 14y)

− sin(3y) cos( 32x)

 . (4.1.1)

We can proceed with the instatiation of the forms (3.3.63) on the product space in listing 4.2 to let NGSolve

create the sparsity pattern to reserve the required memory.

Listing 4.4: Instatiation of bilinear form B and adding of volume integrals
1 B = BilinearForm ( f e s )
2
3 B += grad ( p ) * v * dx # Volume i n t e g r a l s o f B
4 B += curl ( u ) * curl ( v ) * dx # r o t u * r o t v
5 B += u * grad ( q ) * dx
6 B += - p * q * dx

Adding integrals to the bilinear form according to (2.6.18).

Listing 4.5: Boundary term in bilinear form B

1 gamma_n_u = - curl ( u ) * t # Gamma_n and Gamma_parallel
2 gamma_n_v = - curl ( v ) * t # terms appear ing in
3 gamma_p_v = v - n * ( v * n ) # the boundary i n t e g r a l s
4 gamma_p_u = u - n * ( u * n )
5
6 B += gamma_n_v * gamma_p_u * dS # Bnd . i n t e g r a l s o f B
7 B += gamma_p_v * gamma_n_u * dS
8 B += ( C_w / h ) * gamma_p_v * gamma_p_u * dS
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Just as defined in 2.5.2, we have the 2D-version of γn. In 2D, the NGSolve curl operator returns the scalar

rotation rot if given a vector field and a vectorfield if given a scalarfield.

Adding integrals to F . Note that we do not require the differential dS for the boundary integral in line 5 of

listing 4.6, since q is from the Lagrange space and therefore the integral non-zero.

Listing 4.6: Instatiation of Linear form F and adding of right hand side terms
1 F = LinearForm ( f e s )
2
3 gamma_p_g = g - n * ( g * n ) # Tangen t i a l comp . o f g
4
5 F += f * v * dx # f i s HL o f g
6 F += ( C_w / h ) * gamma_p_g * gamma_p_v * dS
7 F += gamma_n_v * gamma_p_g * dS
8 F += ( g * n ) * q * ds

For large systems, the parallel assembly is useful, although in this convergence analysis, there were only 16k

DOF’s for the 5th order and the finest mesh.

Listing 4.7: Assembly of B and F , solving of the linear system
1 w i t h T a s k M a n a g e r ( ) : # Assemble and s o l v e
2 # in p a r a l l e l
3 B . Assemble ( )
4 F . Assemble ( )
5 s o l = GridFunction ( f e s ) # I n s t a t i a t i o n o f
6 # s o l u t i o n v e c t o r
7 r e s = F . v e c - B . mat * s o l . v e c # Re s i dua l
8 i n v = B . mat . I n v e r s e ( f r e e d o f s = f e s . F r e e D o f s ( ) , # D i r e c t s o l v i n g
9 i n v e r s e = " p a r d i s o " ) # wi th PARDISO

10 s o l . v e c . d a t a += i n v * r e s # s o l u t i o n s h i f t
11 # by r e s i d u a l
12 g f _ p , g f _ u = s o l . c o m p o n e n t s # So l u t i o n s u_h , p_h

With gf_u and gf_p, one can now compute errors and visualize the solutions

Listing 4.8: Error computation and preliminary visualization
1 L 2 _ e r r o r _ u = sqr t ( Integrate ( ( g - g f _ u ) * * 2 * dx , mesh ) ) # Vol L2 e r r
2 L 2 _ e r r o r _ u _ n = sqr t ( Integrate ( ( g * n - g f _ u * n ) * * 2 * dS ) mesh ) # Bnd L2 e r r
3 # normal e r r
4 Draw ( g f _ u ) # V i s u a l i z e

Note that the visualizations that are shown with the Draw() command are mostly used for preliminary visu-

alizations. All the visualizations in this thesis have been done with PARAVIEW and the .vtk file generation

capabilities of NGSolve.
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4.1.1 First order solution visualizations

Figure 4.1: The two figures on top are the analytical solutions u and p (g and −div g). Below them we show
the approximation uh and ph respectively with increasing meshsize h = {0.0625, 0.125, 0.25}. The solutions
p have the meshlines as an opaque overlay.

In figure 4.1 one can observe the convergence towards the analytical solution in Ω as well as on Γ. We support

this argument with convergence rate plots but first we investigate the behavior of the penalty parameter Cw

on the errors in Ω as well as on Γ.
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4.1.2 Nitsche penalty parameter Cw impact on errors
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Figure 4.2: L2 errors over Nitsche penalty parameter Cw for constant order and meshwidth h per plot for the
2D 1-form vector proxy method. From figures left to right, we have increasing order. From top to bottom, we
have decreasing meshsize.
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Figure 4.3: Nitsche penalty parameter Cw impact on the relevant errors on the boundary Γ. 1-form 2D proxy
method, Same plotting arrangement as in figure 4.2.
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We observe the experimental manifestation of the statement ”for sufficiently large Cw” in figure 4.2. In fact,

for this method if we chose Cw = 12 we observe optimal convergence rates under the X norm for all orders

and meshsizes.

4.1.3 h-convergence rates in the L2 norms

Note that for all the error rates, also for all other methods, we automatically identify the Cw value that mini-

mizes the L2 error of uh per order to do the h convergence plots.
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Figure 4.4: Relevant L2 errors for the 1-form 2D proxy method. Up to order 5 and every order with interpo-
lated rate in dash-dotted gray.

Observed L2 convergence rates for 2D 1-forms. Except for first order we observe

∥uh − u∥L2(Ω) ≤ Chr, ∥∇ × (uh − u)∥L2(Ω) ≤ Chr− 1
2 ,

∥ph − p∥L2(Ω) ≤ Chl− 1
2 , ∥∇(ph − p)∥L2(Ω) ≤ Chl− 3

2 .
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4.1.4 h-convergence in the #-norm and its components
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Figure 4.5: The # error and its components for the 1-form 2D proxy method. Up to order 5 and every order
with interpolated rate in dash-dotted gray.

Observed convergence rate in the #-norm and its components for 2D 1-forms. Except for first order

we observe

∥uh − u∥# ≤ Chr− 1
2 , ∥uh − u∥H(curl,Ω) ≤ Chr− 1

2 ,

h− 1
2 ∥γ∥(uh − u)∥L2(Γ) ≤ Chr− 1

2 , h
1
2 ∥γn(uh − u)∥L2(Γ) ≤ Chr− 1

2 .
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4.1.5 h-convergence in theX-norm and its components

Below we present the most relevant experimental convergence result for the 2D 1-form method.
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Figure 4.6: The X error and its components for the 1-form 2D proxy method. Up to order 5 and every order
with interpolated rate in dash-dotted gray.

Observed convergence rate in theX norm and its components for 2D 1-forms. We observe

∥(uh − u, p− ph)∥X ≤ Chr− 1
2 , ∥uh − u∥# ≤ Chr− 1

2 ,

∥ph − p∥L2(Ω) ≤ Chl− 1
2 , h∥∇(ph − p)∥L2(Ω) ≤ Chl− 1

2 .

The X-error converges as the a-priori error erstimate in Theorem 3.5.5 predicted, rendering the theoretical

result optimal for the 2D 1-forms case.



50 Numerical Experiments

4.2 Discrete Hodge Laplace for Λ1(Ω) in R3

For the 1-forms in 3D, we use the following manufactured solution

g =





7 sin(x) cos(y) sin(2z)

− cos(x) sin( 13x) cos(z)

4 cos( 18x) cos(y) sin(z)

��� , p = ∇ · g. (4.2.1)

Figure 4.7: The top row shows the manufactured solutions (g, p); its rightmost image displays the plane
where the unit brick is cut to show the solutions in the 2 middle columns. The left column shows the vector
field u, while the right column displays the mesh colored by the magnitude of p.
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In the listing below, we show the components of the code that differ from the 2D case.

Listing 4.9: Parts of 3D 1-forms code that differ from 2D
1 B += - curl ( u ) * Cross ( n , v ) * dS # = gamma_n_u*gamma_p_v
2 B += - Cross ( n , u ) * curl ( v ) * dS # = gamma_p_u*gamma_n_v
3 B += ( C_w / h ) * Cross ( n , u ) * Cross ( n , v ) * dS
4
5 F += ( C_w / h ) * Cross ( n , g ) * Cross ( n , v ) * dS
6 F += - Cross ( n , g ) * curl ( v ) * dS
7 F += g * n * q * ds

we opted to use the GMRes solver, and use the diagonal elements of the blockmatrices as preconditioner.

This decision was made since the problems became quite large, for order 3 and h = 0.055 we already have

600k DOF’s. At this size, one also benefits from the parallel assembly. The 3D experiments for 1-forms and

for 2-forms were run a cluster with specifications documented in appendix B.

Listing 4.10: Assembly and solving of 3D 1-forms method
1 from n g s o l v e . s o l v e r s import GMRes
2 w i t h T a s k M a n a g e r ( ) :
3 B . Assemble ( )
4 F . Assemble ( )
5 s o l = GridFunction ( f e s )
6 b l o c k s = f e s . C r e a t e S m o o t h i n g B l o c k s ( )
7 p r e b j = B . mat . C r e a t e B l o c k S m o o t h e r ( b l o c k s ) # block - J a c ob i precond
8 GMRes ( A=B . mat ,
9 x= s o l . v e c ,

10 b=F . v e c , p r e = p r e b j ,
11 p r i n t r a t e s = " \ r " ,
12 m a x s t e p s = 1 0 0 0 0 , # 10k i t e r s . b e cause
13 # low t o l e r a n c e
14 t o l =1e - 8 ) # t o l = s q r t (1 e - 1 6 )
15 g f _ p , g f _ u = s o l . c o m p o n e n t s
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4.2.1 Nitsche penalty parameter Cw impact on errors

100 101 102
100
101
102

β2 Erro
r

Order 1, ℎ = 0.433‖ℎ − ‖β2(Ω)‖∇ × (ℎ − )‖β2(Ω)‖Вℎ − В‖β2(Ω)‖∇(Вℎ − В)‖β2(Ω)

100 101 102
10−1
100
101

Order 2, ℎ = 0.433‖ℎ − ‖β2(Ω)‖∇ × (ℎ − )‖β2(Ω)‖Вℎ − В‖β2(Ω)‖∇(Вℎ − В)‖β2(Ω)

100 101 102ΗЭ10−1
100
101
102

β2 Erro
r

Order 1, ℎ = 0.289‖ℎ − ‖β2(Ω)‖∇ × (ℎ − )‖β2(Ω)‖Вℎ − В‖β2(Ω)‖∇(Вℎ − В)‖β2(Ω)

100 101 102ΗЭ
10−1
100
101
102

β2 Erro
r

Order 2, ℎ = 0.289‖ℎ − ‖β2(Ω)‖∇ × (ℎ − )‖β2(Ω)‖Вℎ − В‖β2(Ω)‖∇(Вℎ − В)‖β2(Ω)

Figure 4.8: L2 error over Nitsche penalty parameter Cw for constant order and meshwidth h for the 3D 1-
form vector proxy method. From figures left to right, we have increasing order. From top to bottom, we have
decreasing meshsize.
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Figure 4.9: Nitsche penalty parameter Cw impact on the relevant errors on the boundary Γ. 1-form 3D proxy
method, Same plotting arrangement as in figure 4.8.
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4.2.2 h-convergence in the L2 norms
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Figure 4.10: Relevant L2 errors for the 1-form 3D proxy method. Up to order 3 and every order with interpo-
lated rate in dash-dotted gray.

Observed L2 convergence rates for 3D 1-forms. Except for first order, we observe

∥uh − u∥L2(Ω) ≤ Chr, ∥∇ × (uh − u)∥L2(Ω) ≤ Chr− 1
2 ,

∥ph − p∥L2(Ω) ≤ Chl− 1
2 , ∥∇(ph − p)∥L2(Ω) ≤ Chl− 3

2 .

The observed L2 convergence rates for 3D 1-forms coincide with the observed L2 convergence rates for 2D

1-forms.
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4.2.3 h-convergence in the # norm
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Figure 4.11: The # error and its components for the 1-form 3D proxy method. Up to order 3 and every order
with interpolated rate in dash-dotted gray.

Observed convergence rates in the #-norm for 3D 1-forms. Except for first order, we observe

∥uh − u∥# ≤ Chr− 1
2 , ∥uh − u∥H(curl,Ω) ≤ Chr− 1

2 ,

h− 1
2 ∥γ∥(uh − u)∥L2(Γ) ≤ Chr− 1

2 , h
1
2 ∥γn(uh − u)∥L2(Γ) ≤ Chr− 1

2 .

The observed rates in the #-norm for 3D 1-forms coincide with the observed rates in the #-norm for 2D 1-

forms.
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4.2.4 h-convergence in theX norm
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Figure 4.12: The X error and its components for the 1-form 3D proxy method. Up to order 3 and every order
with interpolated rate in dash-dotted gray.

Observed convergence rates in theX-norm for 3D 1-forms. we observe

∥(uh − u, p− ph)∥X ≤ Chr− 1
2 , ∥uh − u∥# ≤ Chr− 1

2 ,

∥ph − p∥L2(Ω) ≤ Chl− 1
2 , h∥∇(ph − p)∥L2(Ω) ≤ Chl− 1

2 .

The observed rates in the X-norm for 3D 1-forms coincide with the observed rates in the X-norm for 2D

1-forms. However, this rate is half an order off from the a-priori estimate from Theorem 3.5.3, which renders

the theoretical result suboptimal.
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4.3 Discrete Hodge Laplace for Λ2(Ω) in R3

The manufactured solutiong g is the same as in the 1-forms 3D method for comparability reasons.

g =





7 sin(x) cos(y) sin(2z)

− cos(x) sin( 13x) cos(z)

4 cos( 18x) cos(y) sin(z)

��� , p = ∇× g. (4.3.1)

Figure 4.13: The top row shows the manufactured solution (g,p). The left column shows the vector field u
and the right one shows the vectorfield p. The cut sections presented in the 2 middle columns are cut in the
same way as in figure 4.7

.
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Note that for unknown reason’s, the lowest order Raviart-Thomas elements in NGSolve, start their numbering

with 0. Hence the order - 1 argument in the HDiv instatiation. We assemble and solve the arising system

identical to listing 4.10 and run it on the cluster with documented specifications in appendix B.

Listing 4.11: 2-forms 3D method code
1 H _ c u r l = HCurl ( mesh , o r d e r=o r d e r , t y p e 1=T r u e )
2 H _ d i v = HDiv ( mesh , o r d e r=o r d e r - 1 , RT=T r u e )
3 f e s = H _ d i v * H _ c u r l
4 ( u , p ) , ( v , q ) = f e s .TnT ( )
5
6 n = spe c i a l c f . n o r m a l ( mesh . dim )
7 h = spe c i a l c f . m e s h _ s i z e
8 dS = ds ( s k e l e t o n =T r u e , d e f i n e d o n=mesh . B o u n d a r i e s ( " . * " ) )
9 f = CF( G C ur l ( G C ur l ( g ) ) - GGrad ( GDiv ( g ) ) )

10
11 B , F = BilinearForm ( f e s ) , LinearForm ( f e s )
12
13 B += curl ( p ) * v * dx
14 B += div ( u ) * div ( v ) * dx
15 B += curl ( q ) * u * dx
16 B += - p * q * dx
17
18 B += - div ( u ) * ( v * n ) * dS
19 B += - div ( v ) * ( u * n ) * dS
20 B += ( C_w / h ) * ( v * n ) * ( u * n ) * dS
21
22 F += f * v * dx
23 F += - div ( v ) * ( g * n ) * dS
24 F += ( C_w / h ) * ( g * n ) * ( v * n ) * dS
25 F += Cross ( n , q ) * g * dS
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4.3.1 Nitsche penalty parameter Cw impact on errors
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Figure 4.14: L2 error over Nitsche penalty parameter Cw for constant order and meshwidth h for the 3D 2-
form vector proxy method. From figures left to right, we have increasing order. From top to bottom, we have
decreasing meshsize.
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Figure 4.15: Nitsche penalty parameter Cw impact on the relevant errors on the boundary Γ. 2-form 3D proxy
method, Same plotting arrangement as in figure 4.14. We observe reversed behavior as in figure 4.9 and 4.3.
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4.3.2 h-convergence in the L2-norms
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Figure 4.16: Relevant L2 errors for the 2-form 3D proxy method. Up to order 4 and every order with interpo-
lated rate in dash-dotted gray.

Observed L2 convergence rates for 3D 2-forms. Except for the first order we observe

∥uh − u∥L2(Ω) ≤ Chr, ∥∇ · (uh − u)∥L2(Ω) ≤ Chr− 1
2 ,

∥ph − p∥L2(Ω) ≤ Chl− 1
2 , ∥∇ × (ph − p)∥L2(Ω) ≤ Chl− 3

2 .

The L2 rates observed for the 2D 1-forms, coincide with the L2 rates observed for the 2D as well as the 3D

1-forms.
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4.3.3 h-convergence in the #-norm
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Figure 4.17: The # error and its components for the 2-form 3D proxy method. Up to order 4 and every order
with interpolated rate in dash-dotted gray.

Observed convergence rates in the #-norm for 3D 2-forms. Except for the first order we observe

∥uh − u∥# ≤ Chr− 1
2 , ∥uh − u∥H(div,Ω) ≤ Chr− 1

2 ,

h− 1
2 ∥(uh − u) · n∥L2(Γ) ≤ Chr− 1

2 , h
1
2 ∥∇ · (uh − u)∥L2(Γ) ≤ Chr− 1

2 .

The rates observed in the #-norm for the 3D 2-forms, coincide with the rates in the #-norm observed for the

2D as well as the 3D 1-forms.
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4.3.4 h-convergence in theX-norm
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Figure 4.18: The X error and its components for the 2-form 3D proxy method. Up to order 4 and every order
with interpolated rate in dash-dotted gray.

Observed convergence rates in theX-norm for 3D 2-forms. Except for the first order we observe

∥(uh − u,p− ph)∥X ≤ Chr− 1
2 , ∥uh − u∥# ≤ Chr− 1

2 ,

∥ph − p∥L2(Ω) ≤ Chl− 1
2 , h∥∇ × (ph − p)∥L2(Ω) ≤ Chl− 1

2 .

The rates observed in the X-norm for the 3D 2-forms, coincide with the rates in the X-norm observed for the

2D as well as the 3D 1-forms. Like for the 3D 1-forms, this shows as well the proven bound from Theorem

3.5.3 is suboptimal.
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4.4 Experiments with non-convex geometries

In this part we want to showcase the abilty of all the methods to handle non-convex geometries. The standard

example being the reentrant corner or L-shaped domain in 2D and its equivalent in 3D, where one substracts

a smaller cube from a larger cube without the new geometry having any holes or hollow parts. Holes and

hollow parts should also be possible to handle, however the analysis in this thesis only covers trivial domains.

For all the following experiments, we divide the domain boundary Γ as follows

ΓD = ΓD1 ∪ ΓD2, Γ = ΓD ∪ Γ \ ΓD.

4.4.1 Singularities in reentrant corners

We want to point out, that with full Dirichlet boundary conditions, our methods do not create any singular-

ities, however we can omit the Dirichlet terms (for 1-forms that is the natural normal right hand side term

and the Nitsche tangential terms) and omit adding −⟨uh · n, q⟩Γ\ΓD
to the bilinear form B, just for the sake

of witnessing the singularities. Figure 4.19 was obtained by setting

Cw = 10, uh|ΓD1
= − 1

10
n, uh|ΓD2

=
1

10
n, f = (5,−3).

Figure 4.19: In the top left L-shaped domain the Dirichlet boundaries ΓD1 and ΓD2 are indicated. From left
to right for both rows, the unstructured mesh goes from coarse to fine. In the top row we used first order
elements for both spaces, and second order in the second row. One can clearly identify the singularities at
the reentrant corner in all configurations.
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4.4.2 Reentrant corner 1-forms in 2D

In this experiment we have the same configuration with one addition, that is the zero Dirichlet enforcement

on Γ \ ΓD. The boundary conditions are the same as in a 2D pipe flow example with ΓD1 as an inlet, ΓD2 as

an outlet with prescribed velocity and ”no-slip” boundary conditions at Γ \ ΓD.

Cw = 100, uh|ΓD1
= − 1

10
n, uh|ΓD2

=
1

10
n, uh|Γ\ΓD

= 0, f = (3,−3).

Figure 4.20: In the top left L-shaped domain the Dirichlet boundaries ΓD1 and ΓD2 are indicated again. From
left to right for both rows, the unstructured mesh goes from coarse to fine. In the top row we used first order
elements for both spaces, and second order in the second row. One cannot observe any singularity in the
reentrant corner.
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4.4.3 3D Reentrant corner geometry experiments

Figure 4.21: 3D reentrant corner geomtetry
with illustrated boundaries. The origin is in
the inner vertex of the reentrant corner. The
normal vector on ΓD1 points in −x direction,
on ΓD2 in −y and on ΓD3 in −z direction.

In figures 4.7 and 4.13, we have observed that we

solve the vector laplacian with two different mixed

methods. In this section we show not only that

there do not occur singularities in the reentrant cor-

ner for both 3D methods, but that we also obtain the

same result when applying the same boundary con-

ditions. We set up the problem as follows:

ΓD = ΓD1 ∪ ΓD2 ∪ ΓD3, Γ = ΓD ∪ Γ \ ΓD,

Cw = 100, f = (3,−3,−3),

u|ΓD1
= − 1

10
n, u|ΓD2

=
1

10
n,

u|ΓD3
=

1

10
n, u|Γ\ΓD

= 0.

Figure 4.22: 1-forms 3D method (2.6.18). u magnitude colored mesh, cut section that shows a similar result
as in 4.20, vectorfield u. No singularity occuring at the reentrant corner.

Figure 4.23: 2-forms 3D method (2.6.20). u magnitude colored mesh, cut section that shows a similar result
as in 4.20, vectorfield u. No singularity occuring at the reentrant corner.
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4.5 Perturbation factor experiments

By establishing Theorem 3.2.2 for the 1-form discretisation, we obtain a theoretical guarantee that the method

is stable for every perturbation parameter λ2 > 0 in (3.2.2). The result can be interpreted as follows:

• λ2 = 1: The scheme reduces to the Hodge Laplace formulation for 1-forms.

• λ2 → 0+: the formulation converges to the velocity-vorticity-pressure formulation of the incompress-

ible Stokes equations.

• Intermediate λ2: offer a possible pathway to modelling compressible flow and linear elasticity.

In figure 4.24 we present numerical results for several choices of λ2. The experimental setup mirrors the

previous study, except that the forcing term is set to zero so that all three formulations can be compared

directly and the isolated influence of λ2 can be observed. The geometries and boundary-condition labels are

identical to those used earlier.

2D 1-forms experiment setup

order = 2, Cw = 100, f = 0

uh|ΓD1
= − 1

10
n, uh|ΓD2

=
1

10
n,

uh|Γ\ΓD
= 0.

3D 1-forms and 2-forms experiment setup

order = 2, Cw = 100, f = 0

uh|ΓD1
= − 1

10
n, uh|ΓD2

=
1

10
n,

uh|ΓD3
=

1

10
n, uh|Γ\ΓD

= 0.

Note that the stability proof for λ2 > 0 is only valid for 1-forms in 2D and 3D. However, we suspect that this

stability proof with Theorem 3.2.2 can also be done for the Nitsche Hodge Laplace method for 2-forms 2.6.20.
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Figure 4.24: Perturbation factor experiments for all methods, with boundary conditions and general setup
as in the previous experiment, see boxes on the following page. For both 1-forms methods, we clearly see
developing ”flow”, with decreasing λ2. For the 2-forms method, additional experiments need to be done.
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Chapter 5
Conclusion & Outlook

The main theoretical results of this thesis are Theorem 3.3.6 (FEEC continuity), Theorem 3.3.7 (FEEC stabil-

ity), Theorem 3.4.2 (FEEC consistency), Theorem 3.5.3 (sub-optimal FEEC convergence) and Theorem 3.5.5

(optimal 2D 1-form convergence). Our theoretical results are supported by numerical experiments we have

conducted. In all experiments, we observe the rate O�
hr− 1

2


+ O�

hl


in the X norm. For the 2D 1-forms

case, this coincides with the theoretical result we have obtained. For the other experiments, there is a gap of

half an order to the a-priori bound.

We assume, that there exists a more elegant way than Theorem 3.5.4, to achieve an optimal a-priori error

bound for the 2D 1-forms case, most likely an approach in the FEEC framework that allows us to prove an

a-priori error result valid for all correctly employable proxy spaces. We will try to close this gap in upcoming

work.

Moreover, Theorem 3.2.2 indicates that the 1-form formulation remains stable for positive values of the per-

turbation parameter λ2, which in turn opens the possibility of employing this approach to simulate com-

pressible flows as well as linear-elasticity problems. Preliminary numerical experiments in which λ2 is varied

support the conjecture that this also holds for 2-forms, although more work is required, particularly to deter-

mine how the framework must be adapted to treat incompressible flow and linear elasticity in a consistent

manner.

We would like to extend the current theoretical results to non-trivial domains (e.g., domains with holes and

voids), without this generalisation, the elasticity application remains of limited practical value. Accordingly,

a first direction for future work is to carry out this extension.

With regards to the already conducted experiments, it has become clear that more experiments need to be

done with exotic boundary conditions as well as experiments that elucidate the meaning of the perturbation

factor λ2 in the context of an application for the 2-forms method (2.6.20). These experiments and the ex-

ploration of relevant applications, could potentially also render adaptivity as an interesting extension of the

research.

In addition, the linear systems that arise become increasingly ill-conditioned as the mesh is refined, an ob-

servation made at the outset of this thesis. Developing effective preconditioners for the proposed methods

therefore is another promising direction for further study.
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Appendix A

In-silico environment 1

The experiments were done on a WSL system running Ubuntu 20.04.2 LTS with NGSolve v6.2.2402.

Table A.1: Hardware Specifications

Specification Detail
Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit
Address sizes 46 bits physical, 48 bits virtual
Byte Order Little Endian
CPU(s) 20
On-line CPU(s) list 0–19
Vendor ID GenuineIntel
Model name 12th Gen Intel(R) Core(TM) i9-12900H
CPU family 6
Model 154
Thread(s) per core 2
Core(s) per socket 10
Socket(s) 1
Caches (sum of all):
L1d 480 KiB (10 instances)
L1i 320 KiB (10 instances)
L2 12.5 MiB (10 instances)
L3 24 MiB (1 instance)
RAM 64 GB DDR5, 4800MHz
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Appendix B

In-silico environment 2

The experiments were done on a WSL system running Ubuntu 22.04.05 LTS with NGSolve v6.2.2402.

Table B.1: Hardware Specifications

Specification Detail
Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit
Address sizes 46 bits physical, 48 bits virtual
Byte Order Little Endian
CPU(s) 52
On-line CPU(s) list 0–51
Vendor ID GenuineIntel
Model name Intel(R) Xeon(R) Platinum 8270 CPU @ 2.70GHz
CPU family 6
Model 85
Thread(s) per core 1
Core(s) per socket 26
Socket(s) 2
Caches (sum of all):
L1d 1.6 MiB (52 instances)
L1i 1.6 MiB (52 instances)
L2 52 MiB (52 instances)
L3 71.5 MiB (2 instances)
NUMA node(s): 2
Numa node0 CPU(s): 0–25
Numa node1 CPU(s): 26–51
RAM 384 GB DDR4, 2933MHz (12 x 32GB)
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Appendix C

Differential operators on g

Listing C.1: 1-form 3D proxy method Python code in NGSolve
1 def J a c o b i a n O f C F ( c f ) :
2 #Func t ion t o compute th e J a c ob i Matr ix o f v e c t o r c f
3 J a c _ u _ 3 D = CF ( (
4 c f [ 0 ] . D i f f ( x ) , c f [ 0 ] . D i f f ( y ) , c f [ 0 ] . D i f f ( z ) ,
5 c f [ 1 ] . D i f f ( x ) , c f [ 1 ] . D i f f ( y ) , c f [ 1 ] . D i f f ( z ) ,
6 c f [ 2 ] . D i f f ( x ) , c f [ 2 ] . D i f f ( y ) , c f [ 2 ] . D i f f ( z )
7 ) , d i m s = ( 3 , 3 ) )
8 return J a c _ u _ 3 D
9

10 def GGrad ( c f ) :
11 # Func t ion t o compute th e g r ad i e n t o f a s c a l a r C o e f f i c i e n t Func t ion
12 g g = [ c f . D i f f ( c o o r d s [ i ] ) for i in range ( mesh . dim ) ]
13 return CF( tuple ( g g ) )
14
15 def GC u r l ( c f ) :
16 #Func t ion t o compute th e c u r l or r o t o f c f u s ing Jacob ian
17 i f c f . dim == 1 :
18 c u r l _ r o t _ u = CF ( ( c f . D i f f ( y ) , - c f . D i f f ( x ) ) )
19 return c u r l _ r o t _ u
20 e l i f mesh . dim == 2 :
21 r o t _ u = CF( c f [ 1 ] . D i f f ( x ) - c f [ 0 ] . D i f f ( y ) )
22 return r o t _ u
23 e l i f mesh . dim == 3 :
24 J a c _ u = J a c o b i a n O f C F ( c f )
25 c u r l _ u = CF ( ( J a c _ u [ 2 , 1 ] - J a c _ u [ 1 , 2 ] ,
26 J a c _ u [ 0 , 2 ] - J a c _ u [ 2 , 0 ] ,
27 J a c _ u [ 1 , 0 ] - J a c _ u [ 0 , 1 ] ) )
28 return c u r l _ u
29
30 def GDiv ( c f ) :
31 # Func t ion t o compute th e d i v e r g e n c e o f a v e c t o r c o e f f i c i e n t f un c t i o n
32 gd = [ c f [ i ] . D i f f ( c o o r d s [ i ] ) for i in range ( c f . dim ) ]
33 return CF(sum( gd ) )
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