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Abstract

Weak values are defined for a procedure with a pre-selected and a post-selected state.
Weak values in its standard form are the result of weak measurements, where a weak
interaction is applied in between pre- and post-selection. The interaction entangles
a system observable with a meter. Measurement of the meter gives information
about the system. Weak values are an extension of expectation values. While the
expectation value is the arithmetic mean of the possible results to a measurement,
the meaning of the weak value is debated. In this thesis, two experiments in neutron
interferometry are presented which use weak values to describe the measurement re-
sults. The meaning of weak values in context of the experiments is discussed. The
theory of weak values and weak measurements is recapitulated. The neutron optical
devices used are explained.

The first experiment presented realises a three-path quantum Cheshire Cat where
three properties, i.e. particle, spin, and energy of the neutron, seem to be spatially
separated in three paths of the interferometer. In contrast, the properties of a
physical entity as the neutron are considered to be integral parts and therefore
inseparable. For the experiment, different weak interactions are implemented one
at a time in a path in the intermediate region between pre- and post-selection to
locate the properties of the pre- and postselected quantum state. The interactions
are absorption, a spin manipulation, and a coupled spin-energy manipulation. Each
weak interaction is supposed to be sensitive to a single property of the neutron. The
response in the detected signal after the post-selection is a qualitative measure of
the location of the property. For the chosen pre- and post-selection, a specific weak
interaction causes a significant response only when applied in a specific path. This
behaviour is quantified by weak values such that no response is equivalent to a weak
value of zero and the maximally expected response to an absolute value of the weak
value of 1.

While the results allow for the interpretation of separated properties, a more con-
ventional explanation is developed. The significance of the cross-term between dif-
ferent paths in the interference effect is pointed out such that the quantum Cheshire
Cat can be described without spatial separation of the properties.

In the second experiment, simultaneous path weak-measurements are performed.
The weak values of two path operators are measured at the same time with the same
ensemble. Former experiments quantified the weak value of each path operators with
a separate ensemble. To retrieve multiple weak values, as many ensembles had to
be used.

Through interaction with oscillating magnetic fields of different frequencies,
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the resulting weak energy manipulations uniquely mark each path with a time-
dependent phase. The phase difference is observed at the output of the interferom-
eter as a beating in the time-resolved intensity. Weak values are extracted from the
fit parameters of a double-sine fit. Because there is no limitation on the frequencies
of the magnetic fields, the procedure is expandable to the weak values’ simultaneous
measurement of an arbitrary number of path observables.

Both presented experiments involve which-way measurements. The applied pro-
cedures do not strictly follow the original weak measurement scheme in a strict
sense. However, the procedures can be regarded as generalised weak measurements.
The retrieved weak values quantify the behaviour of the system with regards to
different paths of the interferometer. The changes in intensity can be backtracked
to manipulations in specific paths. Because weak values are only retractable with
an ensemble, no individual neutron is regarded as localised in a specific path. The
interference effect is preserved while characterising different interferometer paths.

The presented experiments can potentially be expanded or adapted to meet the
original criteria of weak measurements. Beyond the quantification of the results
through weak values, the meaning of weak values is still an issue of interpretation.
Further studies are necessary to solve the quantum measurement problem.
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Kurzfassung

Schwache Werte sind für Prozeduren mit Prä- und Postselektion definiert. Schwache
Werte in ihrer Ursprungsform sind das Ergebnis von schwachen Messungen, in
denen eine schwache Wechselwirkung zwischen Prä- und Postselektion angewandt
wird. Die Wechselwirkung verschränkt eine Systemobservable mit einem Messgerät.
Auswertung des Messgerätes gibt Information über das Ursprungssystem. Schwache
Werte sind eine Erweiterung von Erwartungswerten. Während Erwartungswerte
das arithmetische Mittel der möglichen Messwerte bilden, steht die Bedeutung
von schwachen Werten zur Debatte. In dieser Arbeit werden zwei Experimente in
der Neutroneninterferometrie vorgestellt, deren Ergebnisse mit schwachen Werten
beschrieben sind. Die Bedeutung von schwachen Werten wird anhand der Experi-
mente besprochen. Die Theory von schwachen Werten und schwachen Messungen
wird wiederholt. Die verwendeten neutronenoptischen Geräte werden erklärt.

Das erste vorgestellt Experiment verwirklicht eine drei-Pfad Quantengrinsekatze,
in der drei Eigenschaften — hier Teilchen, Spin und Energy des Neutrons — räum-
lich in die drei Pfade des Interferometers getrennt erscheinen. Im Gegensatz dazu
werden die Eigenschaften eines physikalischen Gebildes als unveräußerlich und damit
untrennbar erachtet. Für das Experiment werden verschiedene schwache Wechsel-
wirkungen angewendet, eine nach der anderen in einem Pfad des Raums zwischen
Prä- und Postselektion, um die Eigenschaften des prä- und postselektierten Quan-
tenzustands zu verorten. Die Wechselwirkungen sind Absorption, Spinmanipulation
und gekoppelte Spin-Energiemanipulation. Jede schwache Wechselwirkung wird als
auf eine einzige Neutroneneigenschaft empfindlich angenommen. Die Auswirkung
auf das detektierte Signal nach der Postselektion ist ein qualitatives Maß für den
Ort der Eigenschaft. Für die gewählte Prä- und Postselektion verursacht jede
schwache Wechselwirkung nur eine auffällige Auswirkung bei Anwendung in einem
bestimmten Pfad. Dieses Verhalten ist durch schwache Werte quantifiziert, sodass
keine Auswirkung durch einen schwachen Wert von null und die größtmöglich er-
wartete Auswirkung durch einen Absolutwert des schwachen Werts von eins aus-
gedrückt ist.

Während die Ergebnisse die Interpretation von getrennten Eigenschaften er-
lauben, wird eine herkömmlichere Erklärung entwickelt. Die Bedeutung der Kreuz-
terme zwischen verschiedenen Pfaden im Interferenzeffekt wird betont, sodass die
Quantengrinsekatze ohne räumliche Trennung der Eigenschaften erklärt ist.

Im zweiten Experiment werden gleichzeitige Messungen von schwachen Werten
des Pfads durchgeführt. Die schwachen Werte von zwei Pfadoperatoren werden gle-
ichzeitig gemessen mit dem gleichen Ensemble. Frühere Experimente quantifizierten
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schwache Werte von Pfadoperatoren mit eigenen Ensemblen. Um mehrere schwache
Werte auszulesen, wurden gleichviele Ensembles benötigt.

Durch Wechselwirkung mit schwingenden Magnetfeldern mit unterschiedlicher
Frequenz markieren die ergebenen schwachen Energiemanipulationen jeden Pfad
eindeutig mit einer zeitabhängigen Phase. Die Phasendifferenz wird am Ausgang des
Interferometers als Schwebung der zeitaufgelösten Intensitätbeobachtet. Schwache
Werte werden von den Fitparamteren eines Doppelsinusfits ausgelesen. Weil keine
Einschränkung der verwendeten Frequenzen gibt, kann die Prozedur auf beliebig
viele gleichzeitige Messungen von schwachen Werten ausgeweitet werden.

Beide vorgestellten Experimente beinhalten Welcher-Weg-Messungen. Die ange-
wandten Prozeduren folgen nicht strikt dem ursprünglichen Schema von schwachen
Messungen. Nichtsdestotrot können die Prozeduren als verallgemeinerte schwache
Messungen betrachtet werden. Die erhaltenen schwachen Werte quantifizieren das
Verhalten des System in Beziehung zu verschiedenen Pfaden des Interferometers.
Die Änderungen der Intensität können zu Manipulationen in bestimmten Pfaden
zurückgeführt werden. Weil schwache Werte nur für ein Ensemble erhalten wer-
den können, wird kein einziges Neutron als in einem bestimmten Pfad lokalisiert
angesehen. Der Interferenzeffekt bleibt erhalten, während verschiedene Interferom-
eterpfade charakterisiert werden.

Die vorgestellten Experimente können potenziell erweitert werden oder angepasst,
um die ursprünglichen Kriterien von schwachen Messungen zu erfüllen. Über die
Quanfizierung der Resultate bleibt die Bedeutung von schwachen Werten weiter
eine Frage der Interpretation. Weitere Studien sind nötig, um das Problem von
quantenmechanischen Messungen zu lösen.
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Chapter 1

Introduction

The duality between wave and particle properties of physical systems goes back to
the times of Isaac Newton when the question of the nature of light in form of waves or
particles was highly contested. While Newton favoured the particle picture, Young’s
double-slit experiment with light [1] and the works on electrodynamics cumulating
in the Maxwell equations gave strong evidence for the wave properties of light in
classical physics.

Quantum theory was introduced with the explanations of the quantised transi-
tion of energy in black-body radiation [2] and of the photo-electric effect [3] which
both indicate a particle behaviour of light. On the flip side, massive particles were
postulated by de Broglie [4] to exhibit wave properties by de Broglie which was
confirmed beginning with electron diffraction [5, 6]. In the context of nuclear re-
actors, neutron diffraction [7, 8] and Mach-Zehnder neutron interferometers with
silicon single-crystals [9] and spin-echo instruments [10] were implemented. Devices
for ever larger and more complicated systems were developed such that interference
has been established for atoms [11, 12], ions [13], molecules [14], and positrons [15].

The mathematical description of massive quantum system in the non-relativistic
case is given by the Schrödinger equation which acts as the equation of motion [16].
The Schrödinger equation is a wave equation for quantum mechanical systems and
its solutions are wave functions. While the time evolution is based on wave mechan-
ics, the detection of the quantum system happens not in continuous but discrete
numbers, which is strongly associated with the particle aspect. Many peculiarities
appear from the fact that the evolution of a wave function follows the Schrödinger
equation. However, in the Copenhagen interpretation of quantum mechanics, mea-
surement results are considered to involve the collapse of the wave function. The
quantum state after collapse is predicted probabilistically. One counter-intuitive
effect involved in this thesis is the complementarity of wave and particle in an in-
terferometer.

Quantum mechanics has revealed an abundance of effects which defy our classi-
cal understanding of nature. Examples are entanglement as studied in the Einstein-
Podolsky-Rosen [17] paradox and subject to Bell tests [18], the superposition prin-
ciple as illustrated by the Schrödinger Cat [19], uncertainty relations as introduced
by Heisenberg [20], the quantum Zeno effect [21], and the quantum Cheshire Cat
[22, 23]. Investigating and understanding these effects is detrimental for fields from
philosophy to industrial application.

In an interferometer, a wave is split into sub-beams, propagates, and is recom-
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1 Introduction

bined according to the phase relation between the sub-beams. The detection events
after the interferometer are discrete, while the distribution of events follows the wave
description. For definitive statements about the traversed path of a physical system
through an interferometer, projective measurements have to be used. Projective
measurements entail a large disturbance on the system such that the interference
effect is lost.

To investigate the undisturbed quantum state inside an interferometer, weak
measurements [24] can be used. They are realised as the measurement of an ob-
servable in combination with a pre- and post-selected state. Between pre- and
post-selection, a weak interaction is applied. Weak values quantify the change of
the output intensity in the limit of applying the quantum operator with vanishing
interaction strength. Weak measurements are a means to investigate a quantum
state with minimal disturbance to the wavefunction.

Weak values are an extension of expectation values and in general complex. In
the vicinity of orthogonality between the two states, the weak value can exhibit
anomalous properties, i.e. exceed the eigenvalue range of the respective operator.
The first realisation of a weak measurement was implemented with photons [25].
With neutrons, the path DOF was used as a pointer system to retrieve spin weak
values [26] and, vice versa, the spin degree of freedom to retrieve path weak values
[27, 28]. For atoms, the weak measurements of the polarisation and spin were
reported [29, 30].

The meaning of weak values is not conclusively resolved. The weak value’s real
part is considered to characterise the respective operator in the limit of minimal
disturbance [31]. The imaginary part is considered to quantify the disturbance on
the quantum system [32]. Weak values can be related to many fundamental phe-
nomena such as uncertainty relations [33, 34], quantum paradoxes [35, 36], and
negative quasi-probability distributions [37, 38]. Among the wide spectrum of ap-
plications, weak measurements were exploited, e.g. for signal amplification [39, 40],
wave-function tomography [41], and proposals for quantum smoothing [42, 43].

In this thesis, two experiments in neutron interferometry are presented which
use weak values to describe the measurement results. Their analysis provides some
insight about the meaning of weak values in the context of wave-particle duality.
[24]

Single-crystal neutron interferometry is a powerful tool to investigate funda-
mental effects of quantum theory. The technique exploits the phase dependence of
the intensity at the output of the interferometer. The count rate is such that the
observed phenomena can be strictly related to self-interference. Although the mat-
ter waves in neutron optics have microscopic wavelengths, many devices used have
macroscopic dimensions. The beam separation in a neutron interferometer of sev-
eral centimetres was exceeded by atom interferometers a decade ago [44]. Neutron
interferometry can be conducted at atmospheric pressure and at room temperature.
Neutrons are subject to all four known forces of nature. For certain experiments,
the low electrical polarisability is advantageous.

Early achievements in neutron interferometry were to establish the neutron as a
wave [9], demonstrating the 4π symmetry of fermions [45], and the observation of
gravitationally induced phase shifts on a quantum system [46]. In addition to the
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path degree of freedom, the neutron’s spin with spin quantum number S = 1/2 was
manipulated to demonstrate spinor superposition [47]. The developed techniques
of manipulation were used more recently to demonstrate the coupling between the
neutron’s degrees of freedom, i.e. intra-particle entanglement. Their study revealed
the violation of a Bell-like inequality with the degrees of freedom of path and spin for
single neutrons [48]. With further energy manipulations, studies with entanglement
between three degrees of freedom followed [49]. Counter-intuitive and fundamental
aspects of quantum mechanics have been investigated.

The quantum Cheshire Cat [22] is a quantum paradox where distinct properties
of a physical system in an interferometer appear to be separated in different paths.
The phenomenon necessitates a pre- and post-selection procedure as in weak mea-
surements. A experimental realisation [23] was implemented with neutrons. The
quantum Cheshire Cat is a controversial topic. Its realisations are often found to
be non-genuine realisations of an ideal Gedankenexperiment. The imperfections
regard the interaction strength, lacking distinct meter systems. Even if all formal
requirements were fulfilled, some interpret the effect as sheer interference effect.
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Chapter 2

Theory

2.1 Weak Values and Weak Measurements

2.1.1 Weak Values

An observable Ô can be written in spectral representation as

Ô =
(
a

a |a⟩ ⟨a| . (2.1)

For the Hermitian observables considered henceforth, the eigenvectors |a⟩ are pair-
wise orthonormal and the eigenvalues a are real. In quantum mechanics, the eigen-
values are identified with measurement outcomes for the respective eigenvector. For
a given state vector |ψ⟩, the probabilities p(a) for measuring the outcome a are
calculated as

p(a) =
|⟨a|ψ⟩|2
⟨ψ|ψ⟩ . (2.2)

The expectation value ⟨Ô⟩ is defined for a quantum state |ψ⟩ as

⟨Ô⟩ = ⟨ψ|Ô|ψ⟩
⟨ψ|ψ⟩ =

(
a

⟨ψ| a |a⟩ ⟨a|ψ⟩
⟨ψ|ψ⟩ =

(
a

a
| ⟨ψ|a⟩ |2
⟨ψ|ψ⟩ =

(
a

a p(a) ∈ R. (2.3)

The expectation value is equal to the weighted arithmetic mean of the eigenvalues
and is therefore within the eigenvalue range, i.e. min(a) ≤ ⟨Ô⟩ ≤ max(a).

The weak value ⟨Ô⟩w is defined as

⟨Ô⟩w =
⟨f|Ô|i⟩
⟨f|i⟩ ∈ C, (2.4)

with a pre-selected state |i⟩ and a post-selected state |f⟩. The concept of weak val-
ues and weak measurements is based on a time-symmetric formulation of quantum
mechanics [50–52]. In this framework, it is argued that a complete description of an
ensemble necessitates both an initial (i) and final (f) state.

The probability of post-selection given the pre-selection is written as

p(f|i) = |⟨f|i⟩|2 . (2.5)
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2 Theory

For ⟨f|i⟩ = 0, the weak value is in general undefined. However, in the specific case
that in addition either the pre- or post-selected state is an eigenvector of the operator
Ô with eigenvalue a, the weak value is defined. The weak value then calculates as

⟨Ô⟩w =
⟨f|Ô|i⟩
⟨f|i⟩ =

⟨f|a|i⟩
⟨f|i⟩ = a ∈ R. (2.6)

In contrast to the expectation value, the weak value can diverge in the proximity
of orthogonal pre- and post-selected states if the denominator ⟨f|i⟩ approaches zero
faster than the numerator ⟨f|Ô|i⟩ or if the numerator is finite, e.g. in case Ô |i⟩ = |f⟩.
Close to the orthogonality, the weak value can exceed the eigenvalue range, in which
case one speaks of anomalous weak values [53–58]. This behaviour begs the question:
what is the meaning of anomalous and weak values in general?

If we consider a normalised initial state |i⟩, we can write the expectation value
in terms of weak values as [24]

⟨Ô⟩ = ⟨i|Ô|i⟩ = ⟨i|1Ô|i⟩

=
(
f

⟨i|f⟩ ⟨f|Ô|i⟩ =
(
f

| ⟨i|f⟩ |2 ⟨f|Ô|i⟩
⟨f|i⟩

=
(
f

⟨Ô⟩w,f | ⟨i|f⟩ |2 =
(
f

⟨Ô⟩w,f p(f|i) ∈ R,

(2.7)

where we used the completeness and identity relation 1 =
)

f |f⟩ ⟨f|. The weak value

⟨Ô⟩w,f is relative to the post-selected state |f⟩. In the comparison of the calculations
of the expectation value in Eqs. (2.3) and (2.7), the eigenvalues and the probability
of its measurement are replaced, respectively, by the weak values and the probability
of post-selection of a pre-selected state. It can be seen in Eq. (2.7), that the real
expectation value is the weighted arithmetic mean of the weak values which are
complex scalars. Therfore, the weighted imaginary parts, Im {·}, sum up to zero,

Im

�(
f

⟨Ô⟩w,f p(f|i)



=
(
f

Im
�
⟨Ô⟩w,f

	
p(f|i) = 0, (2.8)

the weighted real parts, Re {·}, sum up to the expectation value,

Re

�(
f

⟨Ô⟩w,f p(f|i)



=
(
f

Re
�
⟨Ô⟩w,f

	
p(f|i) = ⟨Ô⟩ . (2.9)

The representation of the expectation value via weak values begs the question
which properties weak values share with eigenvalues. Are both representations of
physical reality? Lev Vaidman argues in this sense that the outcome of weak mea-
surements should be considered valid [59] in the same sense that eigenvalues are
valid quantitative characterisations of physical systems. Everyone agrees that weak
values only characterise a pre- and post-selected ensemble. Both pre- and post-
selection filter certain properties. The anomalous properties of weak values become
only apparent when the filtering separates the vast majority of elements of the initial
ensemble.
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2.1 Weak Values and Weak Measurements

Weak values were introduced in 1988 [24] with the finding that it is possible to
measure values outside the eigenvalue range of an operator. In the earliest publica-
tions, the weak value is treated as a synonym for the results of weak measurements.
with their small interaction strength. The measurement results are compared be-
tween the results with and without the weak interaction applied. In those kind of
weak measurements, the weak values are extracted by normalising the differences
with the interaction strength.

However, weak values are not constrained to the description of weak measure-
ments. As a matter of fact, any measurement can be described through weak values.

2.1.2 Weak Measurements

Weak measurements are introduced in [24]. Recapitulations of the theory [60, 61] are
used as a source for this section. The basis for weak measurements are von Neumann
measurements [62]. A von Neumann measurement assumes an observable Ô of a
quantum system with state |ψs⟩. The quantum system is coupled to a continuous
meter with canonical variables q̂, p̂ of the state

|φm⟩ =
�

dqφm(q) |q⟩ =
�

dpφ̃m(p) |p⟩ . (2.10)

The coupling is described by the interaction Hamiltonian

Ĥint = −g(t)p̂⊗ Ô, (2.11)

where g(t) describes the coupling rate over the time t and the coupling strength is

G =

� tf

ti

g(t)dt. (2.12)

Time evolution is given via the operator

Û = exp

�
− i

ℏ

� tf

ti

Ĥintdt

 
. (2.13)

The composite state is written as |Ψ⟩ = |ψs⟩ ⊗ |φm⟩. Due to the interaction, the
meter evolves as

|Ψ′⟩ = Û |Ψ⟩ = exp

�
− i

ℏ

� tf

ti

Ĥintdt

 
|Ψ⟩ . (2.14)

The measurement of the meter is written as (1 ⊗ ⟨q|) |Ψ⟩ = 1 |ψ⟩ ⊗ ⟨q|φ⟩ (fur-
ther tensor product signs will be omitted). Performing this measurement after the
interaction is written as

⟨q|Ψ′⟩ = ⟨q| exp
�
− i

ℏ

� tf

ti

Ĥintdt

 
|Ψ⟩

= ⟨q| exp
�
i

ℏ

� tf

ti

g(t)p̂Ôdt

 
|ψs⟩ |φm⟩

= ⟨q| exp
�
iGp̂Ô/ℏ

�
|ψs⟩ |φm⟩ .

(2.15)
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We now assume the coupling strength to satisfy G = 1 such that

⟨q|Ψ′⟩ = ⟨q| eip̂Ô/ℏ 1 |ψs⟩ |φm⟩
= ⟨q|

(
a

eip̂Ô/ℏ |a⟩ ⟨a|ψs⟩ |φm⟩

= ⟨q|
(
a

eip̂a/ℏ |φm⟩ |a⟩ ⟨a|ψs⟩

=
(
a

φm(q − a) |a⟩ ⟨a|ψs⟩ .

(2.16)

In the latter equation, we used the property of the displacement operator

eip̂a/ℏφ(q) = φ(q − a). (2.17)

So far, the distribution φm(q) is unspecified. For eigenvalues a and a distribution
φm(q) such that the shifts φ(q − a

ℏ) do not overlap for any pair of eigenvalues, the
obtained meter value unambiguously implies the measurement of a specific observ-
able. This is considered as the regime of a strong measurement. This can also hold
for a more realistic situation, when assuming a Gaussian distribution of the classical
meter system, written as a function of either canonical observable as

φm(q) = ⟨q|φm⟩ = exp

�
− q2

4Δ2
q

 
φ̃m(p) = ⟨p|φm⟩ = exp

�
− p2

4Δ2
p

 
= exp

�−Δ2
qp

2
�
.

(2.18)

with the spreads in the distribution Δq and Δp, respectively. If the system is in the
state |a⟩, the distribution of the meter system is shifted by the respective eigenvalue
a. If the spread in the initial distribution Δq is small compared to the eigenvalues,
the shift and the corresponding eigenstate can be retrieved with confidence from a
single measurement.

However, the coupling strength can also satisfiy G ≪ 1. Instead of Eq. (2.16),
the result of the measurement gives

⟨q|Ψ′⟩ = ⟨q| eiGp̂Ô/ℏ 1 |ψs⟩ |φm⟩
=

(
a

φm(q −Ga) |a⟩ ⟨a|ψs⟩ , (2.19)

where the the separation between the distributions is small compared to the spreads.
The sum of the distributions is a broadened Gaussian. With a single measurement,
one cannot distinguish between the eigenstates any more. If we add a post-selection
|f⟩ to Eq. (2.19) and write the initial state of the system |ψs⟩ = |i⟩, the result is
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adjusted to

⟨f| ⟨q|Ψ′⟩ = ⟨f| ⟨q| exp
�
− i

ℏ

� tf

ti

Ĥintdt

 
|Ψ⟩

= ⟨q| ⟨f| eiGp̂Ô/ℏ |i⟩ |φm⟩
≈ ⟨q| ⟨f| (1 + iGp̂Ô/ℏ) |i⟩ |φm⟩
= ⟨q|


⟨f|i⟩+ iGp̂/ℏ ⟨f|Ô|i⟩

�
|φm⟩

= ⟨q|
�
⟨f|i⟩+ iGp̂/ℏ

⟨f|i⟩
⟨f|i⟩ ⟨f|Ô|i⟩

�
|φm⟩

= ⟨q|

⟨f|i⟩

�
1 + iGp̂/ℏ ⟨Ô⟩w

��
|φm⟩

≈ ⟨q|

⟨f|i⟩ eiGp̂⟨Ô⟩w/ℏ

�
|φm⟩

= ⟨f|i⟩φm

�
q −G ⟨Ô⟩w

�
.

(2.20)

The latter procedure with a small coupling strength to a meter and a post-
selection of the system is regarded as a standard weak measurement. The shift in
the meter distribution is proportional to the weak value ⟨Ô⟩w ∈ C. The displacement
operator can be split up as

exp
�
iGp̂ ⟨Ô⟩w /ℏ

�
= exp

�
iGp̂Re{⟨Ô⟩w}/ℏ

�
exp

�
−Gp̂ Im{⟨Ô⟩w}/ℏ

�
(2.21)

such that the imaginary part causes a non-unitary operation. The meter q is shifted
proportionally to Re{⟨Ô⟩w} and the canonical conjugate variable p is shifted pro-

portionally to Im{⟨Ô⟩w}Δp [24, 63, 64]. Although the coupling strength is assumed
as small, the real part can be extracted to arbitrary precision by repeating the
procedure for an ensemble of systems. In case of almost orthogonal pre- and post-
selection, ⟨f|i⟩ ≪ 1, the weak values are in general anomalous (see Sec. 2.1.1) and
the shift in the meter is amplified.

Weak values appear also in measurements which are not regarded as standard
weak measurements. As an example, we consider the time evolution

ˆ̃U = exp
�
−iGÔ/ℏ

�
(2.22)

without coupling to a separate meter system and G ≪ 1. The intensity after post-
selection calculates as

| ⟨f| ˆ̃U |i⟩|2 = |⟨f|exp
�
−iGÔ/ℏ

�
|i⟩|2

= |⟨f|(1 + iGÔ +O(G2))|i⟩|2
= |⟨f|i⟩ |2 + 2G Im{⟨i|f⟩ ⟨f|Ô|i⟩}+O(G2)

= |⟨f|i⟩ |2 + 2G Im{⟨i|f⟩ ⟨f|i⟩⟨f|i⟩ ⟨f|Ô|i⟩|2 +O(G2)

= |⟨f|i⟩ |2
�
1 + 2G Im{⟨Ô⟩w}

�
+O(G2),

(2.23)

where the intensity is described through the weak value. In analogy to the repre-
sentation of the expectation value through weak values in Eq. (2.7), weak values can
describe measurements outside the context of standard weak measurements.

21



2 Theory

2.2 Properties of the Neutron

The neutron was discovered as nuclear radiation in 1934 by Chadwick [65]. It was
named after its electrical neutrality and has a mass mn = 1.67× 10−34 kg. Through
high-energy experiments at particle accelerators, the composition of the neutron
is described by quarks. One up quark with electrical charge qu = +(2/3)e and
two down quarks with electrical charge qu = −(1/3)e compose the neutron, where
e = 1.602 × 10−19C is the charge of the positron. Besides the quarks’ rest masses,
the majority of the neutron’s mass is due to the interactions between the quarks,
described in quantum chromodynamics primarily through the mediating gluons.

2.2.1 Spin of the Neutron

The total angular momentum is written as J⃗ = L⃗+ S⃗. It is divided in contributions
from the orbital angular momentum L⃗ of the motion around an external centre of
rotation and the intrinsic angular momentum, or spin, S⃗. Each kind of particle or
quasi-particle has a certain spin value. All angular momenta are quantised in units
of ℏ = h/(2π), with the Planck constant h = 6.626×10−34 J/K. All particles studied
so far can be classified either as Bosons or Fermions, i.e. particles of integer or half-
integer spin, respectively. The wave function of multiple bosons is symmetrical
under particle exchange whereas the wave function is anti-symmetric for fermions.
This property describes the Fermi exclusion principle which states that a number
of fermions can exist only if each one is characterised by a unique set of quantum
numbers which differs from every other set. We will consider the neutron as an
idealised Dirac fermion without internal structure with a spin quantum number
Sn = 1/2 and a magnetic spin quantum number mS ∈ {−S,−S + 1, ..., S} =
{−1/2,+1/2}. The neutron’s spin system constitutes a two-level system and the
neutron is a fermion. Therefore, if all other quantum numbers are the same, two
neutrons can coexist with different values of mS, i.e. their spin orientations are in
opposite directions.

The spin of the neutron is written as

S⃗ =
ℏ
2
σ⃗ =

ℏ
2

 σ̂x

σ̂y

σ̂z

 (2.24)

with the Pauli matrices

σ̂x =

�
0 1
1 0

 
, σ̂y =

�
0 −i
i 0

 
, σ̂z =

�
1 0
0 −1

 
(2.25)

in the z-spin eigenbasis.
The polarisation vector is the expectation value of the spin operators, written

as
P⃗ = ⟨ψ|⃗̂σ|ψ⟩ . (2.26)

The polarisation vector can be represented on the Bloch sphere which has similarities
with the Poincaré sphere representing light polarisation. Both spheres describe two
level systems with opposing poles representing the states composing a complete
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2.2 Properties of the Neutron

Figure 2.1: Representation of the polarisation vector on the Bloch sphere with the
angles ϑ and ϕ as in Equation 2.27.

orthonormal basis in spin space. The two eigenstates of the Pauli spin matrix σz,
called up- and down-state, are written as |↑⟩ and |↓⟩. When a different basis is
used in this thesis, the according spatial coordinate is added as an index to the spin
states. Possible bases for the Poincaré sphere for photons are horizontal and vertical
polarisations or left and right-handed circular polarisation. A sphere is most easily
described in polar coordinates. The points on a unit sphere are parametrised with
two angles of polar coordinates. Any polarised spin state |η⟩ of the neutron can be
written in the form

|η⟩ =
�
cos

θ

2
|↑⟩+ eiφ sin

θ

2
|↓⟩

 
, (2.27)

with the polar angle θ, the azimuthal angle φ. The sinusoidal terms dependent on
the angle θ in Eq. (2.27) give the components relative to the basis vectors, while the
angle φ gives the relative phase between the basis states. If the degree of polarisation
is reduced from its maximum possible value of 1, the length of the polarisation vector
is reduced accordingly. A possible cause for this is partial incoherence between the
components of the spin state. A single wave function can then not describe all
physical properties of a system. In the limit of a totally mixed state, no prediction
about the orientation of the neutron spin is possible. This lack of information is
represented as a zero vector with P = 0. The experiments presented provide initial
degrees of polarisation P > 0.99, such that all descriptions will assume a maximal
degree of polarisation P = 1.

Given the spin state of Eq. (2.27), the probabilities of measuring the z-spin com-
ponents are written as

p↑ = | ⟨↑ |η⟩ |2 = cos2(ϑ/2), (2.28)

p↓ = | ⟨↓ |η⟩ |2 = sin2(ϑ/2), (2.29)

p↑ + p↓ = 1. (2.30)

The azimutal angle ϕ affects measurements of spin components in other directions
p±x, p±y.
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2 Theory

The spin S⃗ and the magnetic moment µ⃗ of a particle are closely related proper-
ties. Their proportional magnitudes are connected via the relation

µ⃗ = µσ⃗ =
2µ

ℏ
S⃗ = γS⃗ = g

µp

ℏ
S⃗ = g

e

2mp

S⃗, (2.31)

with the neutron’s magnetic moment µ = −9.6623653(23) J/T, the gyromagnetic
ratio γ, the proton’s magnetic moment µp, and the g-factor for the neutron g ≈
−3.826085.

In a classical attempt to describe the emergence of a magnetic moment, one can
assume the quarks with their charges to rotate around some axis, giving a current
around an area. Although only a handwaving argument, this illustrates the relation
between rotation and magnetism for the neutron spin. The equation of motion of
the polarisation vector on the Bloch sphere is now derived:

dP⃗

dt
=

d

dt
(⟨η(t)| σ⃗ |η(t)⟩)

=

�
d

dt
⟨η(t)|

 
σ⃗ |η(t)⟩+ ⟨η(t)|

�
dσ⃗

dt

 
|η(t)⟩+ ⟨η(t)| σ⃗

�
d

dt
|η(t)⟩

 
+ ⟨η(t)| [ d

dt
, σ⃗] |η(t)⟩

= ⟨dσ⃗
dt

⟩ − i

ℏ
⟨[σ⃗, Ĥ]⟩.

(2.32)

In Schrödinger notation, the operators are constant and the first term vanishes. For
a system in a magnetic field B⃗, where Ĥ = −µ⃗ · B⃗, it follows that

dP⃗

dt
=

iµ

ℏ
[σ⃗, σ⃗ · B⃗] (2.33)

The commutation relations for angular momenta

[σ̂i, σ̂j] = 2iϵijkσ̂k (2.34)

lead to
dP⃗

dt
=

d

dt
γB⃗ × P⃗ . (2.35)

The equation of motion describes Larmor precession of the neutron spin around an
external magnetic field. The magnitude of the effect is proportional to the magnetic
moment µ = ℏγ/2.

The Pauli-Schrödinger equation for a neutron in an external magnetic field is
written as

Ĥ |ψ⟩ = Ê |ψ⟩ (2.36)

with the Hamiltonian Ĥ = −ℏ2∇⃗2/(2m)−µ⃗·B⃗. This eigenvalue problem is discussed
further for the example of a specific time-dependent magnetic field in Sec. 3.3.6. The
Pauli-Schrödinger equation does not only describe the orientation of the polarisa-
tion vector as Eq. (2.32) but also phase information which becomes relevant in an
interferometer.
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2.2 Properties of the Neutron

2.2.2 Neutron scattering

Free neutrons are scattered by nuclei. In a simplified model, each nucleus is regarded
as a solid sphere with a radius characteristic for the specific isotope. If and only
if the neutron’s centre of mass touches the sphere, scattering takes place through
elastic collisions. When using this model, the radii are referred to as scattering
lengths b.

There are the coherent and the spin-dependent incoherent contribution to the
scattering length b such that [66]

b = bcoh +
2binc&
I(I + 1)

S⃗ · I⃗ , (2.37)

with the neutron spin S⃗ and the nuclear spin I⃗. For a macroscopic body, the nuclear
spins are in general randomly oriented such that the average of the incoherent
contribution becomes zero. Each incoherent scattering event occurs anyway and
causes an isotropic background in scattering experiments, which is the reason for
its name [67]. Only in ferromagnets, a long-range magnetic parallel alignment of
the nuclear spins emerges, such that the average of the scattering length has an
incoherent contribution. If we consider the total angular momentum J = I ± S =
I ± 1/2, and substitute the relation [68]

S⃗ · I⃗ =
1

2

&
J(J + 1)− I(I + 1)− S(S + 1), (2.38)

two results emerge:

b+ = bcoh + binc

'
I

I + 1
(2.39)

b− = bcoh − binc

'
I + 1

I
. (2.40)

Therefore, the magnitude of the incoherent contribution also depends on the relative
orientation between the neutron and the nuclear spin.

The scattering and absorption cross-sections, σ and σabs, listed in Tab. 2.1 are
given by

σ = σcoh + σinc, σabs =
4π

k
⟨Im{b}⟩, (2.41)

with
σcoh = 4π⟨|bcoh|2⟩ σinc = 4π⟨|binc|2⟩, (2.42)

where ⟨·⟩ is the average over all orientations of neutron and the nuclei.
High absorption cross-sections indicate materials which are suited as absorbers

but are unsuited for other purposes; carbohydrates with their 1H are to be avoided
in a neutron beam especially in a neutron interferometer because of its high incoher-
ent scattering length which causes spin-dependent phase shifts, see Sec. 3.3.4. Air
on the other hand with its compounds O2, N2, and Ar only weakly attenuate the
neutron beam. Because all beam paths in a perfect crystal neutron interferometer
(see Se. 3.3.3) are equally long, the intensity ratios between the paths are unaffected.
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Table 2.1: Coherent and incoherent scattering lengths bcoh and binc, coherent, in-
coherent, and overall scattering cross sections σcoh, σinc, and σ, respectively, and
absorption cross sections σabs for thermal neutrons of elements and isotopes rele-
vant in neutron optics, excerpt from [66]. Lengths are given in femtometre (fm),
cross-sections in barn, 1 barn = 100 fm2. If not specified, the values are valid for the
natural isotope ratio. The incoherent measures refer to the spin-dependent contri-
butions. Imaginary parts describe absorption of the neutronic wave in the material.
The relations between the measures are given in Eqs. (2.37), (2.41), and (2.42).
The scattering lengths and cross-section are roughly constant for thermal neutrons
(see Tab. 3.1). The absorption cross-sections follow a 1/v law with the velovity v
and are listed by convention for neutrons with a wavelength λ = 1.798 Å.

element/isotope bcoh binc σcoh σinc σ σabs

1H 3.7406 25.274 1.7583 80.27 82.03 0.3326
2H 6.671 4.04 5.592 2.05 7.64 0.000519

He 3.26 — 1.34 0 1.34 0.00747
3He 5.74–1.483i –2.5+2.568i 4.42 1.6 6 5333

Li –1.90 — 0.454 0.92 1.37 70.5
6Li 2.00–0.261i –1.89+0.26i 0.51 0.46 0.97 940

B 5.30–0.213i — 3.54 1.7 5.24 767
10B –0.1–1.066i –4.7+1.231i 0.144 3.0 3.1 3835

C 6.6460 — 5.551 0.001 5.551 0.0035

N 9.36 — 11.01 0.50 11.51 1.90

O 5.803 — 4.232 O 4.232 0.00019

Al 3.449 0.256 1.495 0.0082 1.503 0.231

Si 4.1491 — 2.163 0.004 2.167 0.171

Ar 1.909(6) — 0.458 0.225 0.683 0.675

Ti –3.438 — 1.485 2.87 4.35 6.09

Fe 9.45 — 11.22 0.4 11.62 2.56

Co 2.49 –6.2 0.779 4.8 5.6 37.18

Ni 10.3 — 13.3 5.2 18.5 4.49

Cu 7.718 — 7.485 0.55 8.03 3.78

Cd 4.87–0.70i — 3.04 3.46 6.5 2520

In 4.065–0.0539i — 2.08 0.54 2.62 193.8

Gd 6.5–13.82i — 29.3 151 180 49700

235U 10.47 (+/–)1.3 13.78 0.2 14 680.9
238U 8.402 0 8.871 0 8.871 2.68
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Chapter 3

Neutron Optics

The descriptions of neutron optical devices in this section broadly follow the author’s
diploma thesis [69], shortened, amended, and extended by additional information.

3.1 Neutron Optical Ansatz

The manipulation of light developed as the field of optics. Despite the fundamental
differences between light and neutrons, optical principles apply to both of them
based on their common wave nature. The duality between wave and particle for
massive systems such as the neutron is described by de Broglie’s relation [4]

λ = h/p, (3.1)

with the wavelength λ characterising the wave, Planck’s constant h = 6.626 ×
10−34 Js/K, and the particle momentum p. With increased energy or momentum,
the wavelength is reduced which pronounces more localised effects such as collisions
or absorptions, typically identified with the particle nature.

On the other hand, for interactions with periodic structures, the wavelength of
the studied neutrons must be of the same magnitude as the characteristic distance
a between the objects comprising the structure, i.e.

λ ∼ a. (3.2)

In the limit of large wavelengths, i.e.

λ ≫ a, (3.3)

the structure becomes quasi-continuous in relation to the extent of the wave. A
basic example with the latter assumptions is refraction of a wave at an interlayer
between two homogeneous media. This condition holds for lenses in light optics.
Although lenses are used in neutron optics [70], they are less effective than for light
because the respective refraction indices of most materials differ only minutely from
1. Therefore, divergences of the neutron sources are often handled with less effective
or more complex [71] means, such as apertures and mirrors. Due to divergences,
higher relative losses in intensity occur in neutron optics compared to light optics.
Consequently, light optics has a significant statistical advantage in experiments.
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For most neutron optical elements presented in this chapter, it holds that

λ ≳ a, (3.4)

such that the wave nature of the neutron is pronounced. The detectors, explained
at the end of this chapter, work on the exhibited particle nature of neutrons.

The order of neutron optical elements for the presented experiments is: source,
aperture, neutron guide, monochromator, spin polariser, interferometer, spin polar-
isation manipulators, spin analyser, and detector. Their functions and names are,
respectively, analogies and copies of their light optical counter-parts such that the
term neutron optics is warranted.

3.2 Neutron Sources

3.2.1 Spallation Sources

Large neutron sources for scientific purposes are working on either nuclear fission or
spallation. For the latter spallation, hydrogen is ionised to produce protons. The
protons are accelerated and targeted on matter which promts spallation of the tar-
get nuclei into several smaller parts, comprising up to dozens of free neutrons per
target nucleus. There are linear accelerators (LinAc) and cyclic accelerators, where
cyclic accelerators can in turn be either cyclotrons with spiraling trajectories or
synchrotrons with trajectories of fixed radii. The proton beam can be pulsed which
makes the following neutron beam pulsed, too. Some experiments have periodic
intervals of the order of milliseconds where no neutrons are counted. These experi-
ments can benefit from a pulsed source in their statistics because these intervals do
not affect the neutron count as for a continuous source.

Spallation sources can be found at, e.g.: ISIS, United Kingdom, with a combi-
nation of a linear accelerator and a synchrotron (LinAc + synchrotron); Spallation
Neutron Source (SNS), USA, (LinAc); Japan Proton Accelerator Research Complex
(J-PARC), Japan, (LinAc + 2 synchrotrons); and the European Spallation Source
(ESS), Sweden, (LinAc), which is presently under construction.

3.2.2 Nuclear Reactors

Basics in Reactor Physics

For a fission reactor, fuel elements are tightly ordered in a core where some lower
initial neutron flux is increased in a chain reaction to a stable higher neutron flux.
The reactor type used as a source for this thesis is based on uranium-235 as fuel.
Natural uranium has relative abundances of uranium-235 (subsequently U-235 or
235U) of 0.72% and of uranium-238 (subsequently U-238 or 238U) of 99.275%. The
abundances of the isotopes 233U, 234U, and 236U are negligable for our purposes.
The natural abundances can be explained roughly by considering the time evolved
from the last supernova in our astronomical region about 4 billion years ago. We
consider this to also be the age of our solar system. We assume that for the nu-
cleosynthesis during the supernova all uranium isotopes have the same abundance,
which is plausible for large nuclei. No uranium is assumed to be formed after the
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3.2 Neutron Sources

Table 3.1: Classification of neutrons according to their energy, excerpt from [72].

energy (eV) velocity (m/s) neutrons’ name

<2 · 10−5 <40 ultra cold

10−5 – 5 · 10−3 40 – 103 cold

5 · 10−3 – 5 · 10−1 103 – 104 thermal

5 · 10−1 – 103 104 – 4 · 105 epithermal

103 – 105 4 · 105 – 4 · 106 intermediate

105 – 2 · 107 4 · 106 – 4 · 107 fast

> 2 · 107 > 4 · 107 relativistic

supernova. Only the two mentioned isotopes have a half-life τ comparable to the
age of our solar system, i.e. τU−235 = 0.7 × 109 a and τU−238 = 4.5 × 109 a. Until
now, 238U underwent less than one half-life while 235U underwent about 6 half-lives.
Therefore, 235U underwent 5 more half-lives which reduces its absolute abundance
to 1/25 = 1/32 ≈ 3% of its initial absolute abundance. This reasoning yields an
expected relative abundance of 235U of ≈ 6% of the total number of uranium nuclei.
This model correctly estimates the observed relative abundance of 0.72% today at
least within one order of magnitude.

Chemically, 235U and 238U are indistinguishable. To enrich 235U for the presented
reactor type, centrifuges are filled with gaseous natural uranium. After fast rotation
of the centrifuges, the heavier 238U is concentrated via the centrifugal force at the
outsides and depleted at the axes of the centrifuges. At the same time, the lighter
235U is depleted outside but enriched at the axes. This process can be repeated
with more enriched 235U and larger centrifugal forces to reach enrichments > 90%
to fuel high-flux neutron sources such as research reactors and nuclear weapons.
Some 238U will always remain in the compounds enriched with 235U. When speaking
about enriched and depleted uranium without further context, it is meant with
regards to 235U.

Neutrons are referred to according to their kinetic energy and velocity as listed
in Tab. 3.1. The isotope 235U is fissioned by thermal neutrons with a mean ki-
netic energy Ēkin of about Ēkin, th = 3

2
kBTroom ≈ 25meV, with the index “th” for

thermalised, the Boltzmann constant kB ≈ 8.62 × 10−5 eV/K and standard room
temperature Troom = 295K. The fission produces two daughter nuclei of roughly the
same size, with a preferred slight asymmetry of the nuclei mass [73]. A mean of >2
free neutrons are produced in each fission. They have a kinetic energy Ekin of the
order of MeV and need to be slowed down to induce further fissions at other 235U
nuclei. The slowing down procedure is called moderation. Moderation is achieved by
scattering at other nuclei. Classically, the maximum momentum transfer happens
during a frontal or collinear collision which reduces the problem to one dimension.
While a residual thermal kinetic energy must remain to induce fission at a 235U
nucleus, the reduction of kinetic energy over 8 orders of magnitude from MeV to
10meV is close to the case of transferring the entire kinetic energy. The energy
transfer ΔEkin during an ideal elastic collision in one dimension, normalised over
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Figure 3.1: Double logarithmic plot of the relative energy transfer in a collinear,
ideal elastic collision between two bodies with masses m1 and m2, as given by
Eq. (3.5). For equal masses m1 = m2 the total kinetic energy is transferred whereas
less energy is transferred the more the masses differ.

the initial kinetic energy Ekin, is written as [74]

ΔEkin

Ekin

=
4m1m2

(m1 +m2)2
, (3.5)

with the masses m1 and m2 of the two particles scattered at each other. A graph
of Eq. (3.5) dependent on the ratio between the masses m1 and m2 is plotted in
Fig. 3.1. The maximum energy is transferred by scattering at a particle with the
same mass. Due to the low density of free neutrons in a reactor, amassing 1H
nuclei with a relative difference in mass of < 10−3 to neutrons is a possible way to
facilitate moderation of fast neutrons. Common moderator materials are hydrogen
as in water (H2O) and zirconium hydride (ZrHn) [75], Deuterium as in heavy water
(2H2O) and carbon, the latter typically in the form of graphite. Water can at the
same time serve both as moderator and as cooling agent. (For power reactors, the
cooling is the first step to transfer the energy freed through the fissions to a turbine
to convert the thermal into electric energy.) With the assumption of same masses,
1H can inherit the entire kinetic energy of a neutron. In three spatial dimensions,
frontal collisions are rare. The neutrons will still thermalise after enough scattering
processes, meaning the mean kinetic energy of the Maxwell-Boltzmann distribution
will be at Ēkin,th ≈ 25meV. Subsequent fission processes can then be induced which
produce the next generation of free neutrons. Some unmoderated, fast neutrons will
fission 238U nuclei remaining in the enriched uranium of the reactor fuel. If each
generation i of thermal neutrons takes a time interval tgen to multiply its number
by κ̃ for the next generation, it is equivalent to producing a multiple κ = κ̃/tgen
per time unit. A chain reaction is started, whose dynamics are described by the
differential relation

dN(t) = (κ− 1)N(t) dt, (3.6)

with the number of free neutrons N . The parameter κ is characterised into three
regimes:

κ > 1, super− critical;

κ = 1, critical;

κ < 1, sub− critical.

(3.7)

30



3.2 Neutron Sources

Figure 3.2: Count rate at (a) start-up and (b) shut-down over time. Before the
start-up, the mean count rate is close to zero. Electronic noise of the detection
system is the dominant reason for the few detection events. During the start-up,
an exponential growth of the count rate is observed. This is characterised with a
parameter κ > 1. When the count rate is stabilised, κ = 1. The sudden increase by
about 10% in the stable neutron count rate at 450 s in sub-figure (a) is explained
by the activated guide field (see Sec. 3.3.6). During the shut down, the count rate
reduces exponentially with κ < 1. Error bars indicate one standard deviation.

The neutron balance for following generations of neutrons is a crucial parameter for
fission processes. After integration of Eq. (3.6), the total number of free neutrons
follows as the exponential relation

N(t) = N(0) e(κ−1) t. (3.8)

In a super-critical process, the number of fission processes is increased with each
generation which holds during the build-up of a nuclear explosion and while starting
up a reactor; in a critical process, the number of fission processes is constant over
time, which characterises stable reactor operation. This equilibrium state is called
criticality. The time of constant free neutron flux during a reactor shut-down is not
critical because the neutron density is dominated by spontaneous neutron emissions
outside of chain reactions; in a sub-critical process, the number of fission processes
is reduced with each generation. The latter holds during the shut-down of a reactor
and after the peak energy discharge in a fission explosion. Examples for the three
regimes are depicted in Fig. 3.2 via the neutron count rate at a reactor outlet.

During stable reactor operation, the rate of newly produced neutrons balances
all the losses. The balance is regulated by moderators, absorbers and reflectors.
Absorbers capture free neutrons without subsequently emitting any neutrons. The
latter reflectors are placed around the reactor core composed of materials which are
good scatterers and can potentially change the direction of the free neutrons back to
the reactor core. The scattering is in principle the same as necessary for moderation
because a change in direction is related to a momentum or, indirectly, to an energy
transfer. Affordable graphite is widely used for reflectors. Reflectors and moderators
are passive elements in a reactor, whereas absorber rods are actively regulated in
their position in the reactor. For a start-up, absorbers are withdrawn from the
reactor core to allow super-criticality. For the criticality necessary for stable reactor
operation, an absorber rod is moved partly into the reactor again. During operation,
small fluctuations of the neutron flux are smoothed out by moving an absorber rod
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in and out by a few millimeters or centimeters.
At the start-up of a nuclear reactor, a stable neutron flux at a low level is

elevated to a stable higher level. In case of a first start-up of a reactor or after
a long shut-down, the initial flux of the fuel rods is too low for secure operation
of the reactor, due to the large half-lives of both considered uranium isotopes. A
sufficient neutron flux is then provided by a secondary neutron source, such as a
Sb-Be (antimony-beryllium) photoneutron source. Therein, the unstable isotope
124Sb emits photons with an energy of 1.69MeV. The photons can exite 9Be with
its close enough transition energy of 1.67MeV. Subsequently, a decay with emission
of a free neutron with 14 keV kinetic energy occurs. For activated fuel rods and
shut-down periods below 1 year, the activity of the fuel elements suffices for a high
enough neutron flux to securely monitor the start-up procedure which is imperative
for civil use of the reactor technology.

Specific Reactor Properties

Both nuclear reactors used by the author for experiments use 235U as a fuel and
are of the swimming pool type. The latter means that one can see the reactor core
from the top through water. The high-flux reactor at the Institute Laue-Langevin
in Grenoble, France, was used as a neutron source for the presented experiments
[76]. The reactor has a thermal power of ≈ 60MW and a maximum neutron flux of
1.5 × 1015 cm−2 s−1 during each operation cycle of several weeks. For each cycle, a
new highly enriched fuel element is burnt until the density of 235U nuclei is too low
to maintain criticality. The fuel elements can be recycled in a reprocessing plant
such as in La Hague.

The Vienna University of Technology (TU Wien) possesses the TRIGA (Train-
ing, Research, Isotopes production, General Atomics) Mark II reactor at the Atom-
institut [77]. This reactor has a thermal power of 250 kW and maximum neutron
flux of 1013 cm−2 s−1. Two specific security features of the TRIGA reactor type are
worth mentioning. Firstly, the water between the fuel elements does not provide
enough moderation for criticality. The second moderator is hydrogen chemically
bound in zirconium hydrite mixed to the uranium in the fuel elements. The mod-
eration rate provided by the zirconium compound raises the sub-criticality of the
chain reaction to a critical or super-critical level during the start-up of the reactor.
Furthermore, the hydrogen atoms in the zirconium compound have a temperature
dependent probability of scattering the fast neutrons produced by the uranium
fissions. For higher temperatures, the moderation is reduced as described by a neg-
ative temperature coefficient of the moderation rate. In effect, if the reactor power
is increasing beyond the stipulated power, the heat is not diverted, and the reactor
temperature increases such that moderation decreases. Hence, the chain reaction
breaks down. This is called an intrinsic reactor security feature because it works on
physical principles and without human intervention.

Secondly, the time dynamics of the chain reaction can be roughly split into two
contributions. One is based on prompt neutrons which are moderated right after
the fission process. The other is due to delayed neutrons. It was stated earlier
that the fission produces two daughter nuclei. These are most oftenly unstable
themselves and decay in some cases through neutron emission. However, the half-
lives can be much larger than the mean moderation time and therefore delay the

32



3.2 Neutron Sources

next step in the chain reaction. The vast majority of the neutrons in a TRIGA
Mark II are prompt neutrons which are moderated by the zirconium compound
in the fuel rods. But the prompt neutrons are not enough to elevate the neutron
balance per generation above the critical level. Only with the contribution of the
delayed neutrons, super-criticality is reached inside the reactor. This lengthens the
reactor period during which the reactor power doubles (or rises by a factor of e with
a different definition). The lengthening serves as security feature in that there is a
time buffer from a sensor signal which indicates a necessary change in the regulation
of the reactor to the result of an adjustment in the position of the absorber rods in
the reactor.

The combination of negative temperature coefficient of the moderation and dom-
ination of the chain reaction by prompt neutrons can be actively used for reactor
pulses as explained in the following. By quickly pushing the absorber rods out of
the reactor with pressured air, the neutron balance per generation is suddenly and
drastically increased. Because in this case the process is super-critical even without
delayed neutrons, each neutron generation can be characterised with a time interval
of the order of 1µs. An exponential rise in reactor power up to several MW during a
time interval of about 10ms is then observed until the rising moderator temperature
as suddenly reduces the moderation rate and the chain reaction collapses. Because
the drastic temperature changes procedure mechanical stress on the fuel elements,
such reactor pulses necessitate a cool-down time after each pulse. The resting times
after each pulse are such that the use of successive reactor pulses do not increase
the mean reactor power compared to a stable operation at 250 kW.

The difference of the two described reactors in power between 60MW for Greno-
ble and 250 kW for Vienna is the reason why the presented experiments in polarised
neutron interferometry are realised in Grenoble. The power is roughly proportional
to the neutron flux at the experiment and therefore the counting statistics. Each
experiment necessitates some magnitude in the number of neutrons to achieve a
reliable level in the counting statistics. This number of neutrons must undergo the
experiment under stable conditions. There are several steps of filtering in the exper-
iment as described in Sec. 3.3. For the neutron interferometer station at the reactor
in Grenoble, this time ranges over weeks with single interferograms recorded over
single hours. As will be explained in a later section, the temperature stability of
the interferometer is aimed to be in the range of ΔT ≈ 0.01K. In Vienna, the time
frame for the same counting statistics would be in the range of weeks. Constructing
a control system stabilising the temperature over these time frames at a smaller
reactor is complex and laborious. This was not done so far.

A peripheral but aestetically pleasant feature of swimming pool reactors is the
Cherenkov radiation. Parts of it are perceived by humans as blue light from the
reactor core, see Fig. 3.3. The blue light is produced in the interaction of fast
electrically charged particles in the electromagnetic fields of water molecules. Small
mass particles are easier accelerated. In the case of Cherenkov radiation in a reactor,
the charged particles are typically electrons and positrons from β decays of unstable
daughter nuclei of the fissioned 235U nuclei. Kinetic energy of the charged particles is
dissipated in the form of light, one photon after another. The light waves irradiate
concentrically around their creation points which are around the approximately
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Figure 3.3: The view from top into the TRIGA nuclear reactor of swimming pool
type at Atominstitut with the reactor core on the bottom. The fission process pro-
duces fast charged particles. In their interaction with water molecules, Cherenkov
radiation is emitted. The blue light is the visible part of the spectrum. The direc-
tions with highest intensity are those volumes flooded with water in combination
with the highest flux of charged particles, which is practically equivalent here to a
high neutron flux. The centre of the core is not equipped with a fuel element and
has the highest neutrons flux of ≈ 1013 cm−2 s−1. Water serves as shielding against
the higher energy light. The height of the water column of the swimming pool is
calculated such that exposure at the site of the photo conforms with the allowed
legal threshold for the dose of ionising radiation.

linear trajectories of the charged particles. If a particle is faster than the speed of
light in the medium c̃, the excited waves superpose to a conical wavefront with its
tip at the present location of the particle as depicted in Fig. 3.4. This is similar to
a sonic boom with a Mach cone for supersonic acoustical sources. The angle β of
the cone is given by the velocity of a particle v via sin β = v/c̃ with c̃ < v.

Societal Aspects

Construction of the TRIGA reactor at Atominstitut was supported by the United
States of America (USA). Its then president Dwight D. Eisenhower started the
“Atoms for Peace” initiative. The initiative also stimulated the “Treaty on the Non-
Proliferation of Nuclear Weapons” to control the proliferation of fissionable material
with the long term goal of the disarmament of all nuclear weapons [78]. Besides
dozens of lowly enriched fuel elements, a few with high enrichments > 90% were
delivered by the USA. According to contract, the USA took the fuel elements back
when they were burnt out, i.e. the density of 235U became too low. The subsequently
delivered fuel elements were enriched to 19.8%. This level is just below the defined
threshold to highly enriched uranium of 20%. This is caused by changes in US
policy which now prohibit the delivery of highly enriched uranium. The present fuel
elements will burn out faster due to the lower enrichment.
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β

Figure 3.4: Geometrical construction of the Mach cone emerging from a fast charged
particle emitting light in a medium such as water. The equidistant point sources can
be assumed to excite light at equal intervals if the photon energy is much smaller
than the kinetic energy of the charged particle, hf ≪ Ekin. The wavefronts overlap
to a cone with angle β, with tan β = c/v and c < v.

The supervision of nuclear waste produced in nuclear technology is problematic.
The half-lives of uranium and many isotopes produced by nuclear reactors exceed
the human lifetime by orders of magnitude. During these time frames, the health
of humankind and environmental hazards have to be limited. It can be argued that
the effort of supervision outweighs the benefits, that our society will forget about
the danger of nuclear waste repositories over time or that our present society could
collapse such that accurate handling of nuclear waste is not possible. One approach
to circumvent the reliance on permanent human oversight is to use deep geological
repositories. However, all candidates for storage deemed safe in the past, such as
salt mines and granite formations, have in the meantime revealed other and bigger
problems than assumed a couple of decades ago.

For Austria and the TRIGA reactor of TU Wien, the suppliers of the fuel rods
are the USA. Austrian law demands that no fuel rods are disposed in the country
[79]. Therefore, the USA did and will take back the burnt out fuel elements such
that no final nuclear waste management for these excessively demanding fuel rods is
necessary in Austria. However, the surroundings of the Austrian reactors and other
medical and industrial sources produce nuclear waste. Up until now, more than
350 000 t of nuclear waste are stored in Austria’s temporary repository in Seibersdorf,
Niederösterreich [80]. While some of the nuclear waste quickly decreases its activity
below the stipulated threshold and can be treated as toxic waste, Austria will also
have to find a way to handle nuclear waste within its borders longterm.

Reactor technology as a whole is closely intertwined with military purposes.
A main motive for political support of the pressurised light water reactor was its
military use to propel nuclear submarines with their tight volume restrictions during
the cold war [81]. This support disadvantaged alternative reactor types such as those
with thorium based fuel. This reactor type is claimed to produce nuclear waste with
shorter half-lives while also being able to use waste from uranium based reactors
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Figure 3.5: Geometric construction of the Bragg condition for reflection of a
monochromatic incident wave at a crystal lattice. If all partial waves reflected are
displaced by a multiple of the wavelength nλ, they interfere constructively. Con-
structive interference is conditioned on Bragg’s law of Eq. (3.9) which relates the
incidence angle θ, the wavelength λ, and the lattice distance d.

as fuel. However, thorium based reactors come with their own waste problems
such that a sustainable handling of nuclear technology seems out of reach at the
moment [82]. The spallation sources mentioned in Sec. 3.2.1 also produce nuclear
waste, albeit lower amounts with lower half-lives. It is therefore questionable if
state-of-the-art nuclear technology producing such waste should be applied at all.

On the other hand, one can argue like the physicist David Deutsch [83]: as long as
we breed a society in which solving problems is encouraged, humankind will increase
its means more than the problems from previous levels of development can require
to solve. This resembles the generation contract used figuratively in social security
systems such as the pension system. It is debatable, whether the economic and
scientific progress through nuclear technology warrants the undetermined burden of
nuclear waste over an unknown number of generations. As scientists, we can only
hope that the waste produced in our investigations is justified in light of human
curiosity.

3.3 Manipulation of and Interaction with Neu-

trons

Each source has some basic characteristics concerning the properties of the emitted
neutrons. Dependent on its geometry, every reactor is to some degree isotropic.
For the presented reactor type, a thermalised spectrum of the neutron’s wavelength
distribution is achieved through moderation as described in Sec. 3.2.2. Any further
selection and manipulation of properties conducted in the presented experiments is
described in the following.

3.3.1 Monochromator

In analogy to light optics, the term monochromatising refers to selecting a wave-
length out of a spectrum with a continuous wavelength distribution. Sapphire and
bismuth crystals can filter fast neutrons out of the spectrum [84]. Crystals can be
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used as monochromators. Their function is based on the regularity of the crystal
structure such that an atomic core is assumed to oscillate around each lattice site.
The lattice sites can be grouped in sets of parallel and equidistant lattice planes,
as indicated in Fig. 3.5. (In the depicted case, the lattice planes are in parallel
to the surface of the crystal such that Bragg diffraction occurs. The case of Laue
diffraction is regarded in Sec. 3.3.3.) The atomic cores act as scattering centres,
which can be treated as a Fermi pseudo-potential as written in Eq. (3.22) in con-
text of the polarising supermirror in Sec. 3.3.2. The difference in optical density
Δn between the crystal and the outside medium of air or vacuum is assumed to be
small, Δn ≪ 1, as is common for neutrons. (This is connected to the magnitude
of the scattering lengths as described below.) At incidence of a wave, each scat-
tering centre produces a partial wave of spherical shape. In the reflected direction,
the partial wave scattered at the first lattice plane has a longitudinal displacement
compared to the partial wave scattered by the second lattice plane. For the third
lattice plane, the displacement is doubled and so on. The displacement depends on
the incidence angle θ, the wavelength λ, and the layer distance dhkl with the re-
spective Miller indices h, k, and l specifying the orientation of the considered lattice
plains. If all scattered partial waves are longitudinally displaced by a multiple of
the wavelength, constructive interference between the partial waves occurs; a wave
front in the reflected direction emerges. This case is conditioned by Bragg’s law,

nλ = 2dhkl sin θ, (3.9)

with n ∈ N. A geometric construction for this condition is depicted in Fig. 3.5.
In directions of the so-called grazing angle θ satisfying the condition, an intense

reflection occurs in the direction of the output angle being the same as the incidence
angle. The displacement in length of nλ is equivalent to a phase shift by 2πn.
The Bragg condition is always satisfied by a set of harmonics, given by varying n.
Therefore, a strict separation of a single wavelength is only possible if the initial
spectrum from the source emits only one harmonic in the set. This is not the case
for the continuous neutron spectrum from a reactor which is a thermal Maxwell-
Boltzmann distribution. The first harmonic has the largest wavelength and the
higher harmonics have fractions 1/n of this wavelength. The higher harmonics have
the same spatial displacements in the reflected direction but multiples of the phase
shifts.

In other directions than the grazing angle, the scattered partial wave from a
specific scattering centre always has a π-shifted counter-part in the form of another
partial wave scattered at some other scattering centre in the crystal. An according
second scattering centre is expected if the crystal is large in size such that the
number of scattering centres is high. The superposition of both partial waves yields
to destructive interference. Therefore, a finite intensity is only observable at exiting
angles being the same as the incident angle and if the Bragg condition is fulfilled.
The quantisation of the elements in the crystal structure leads to discrete solutions
to the Bragg condition.

For the perfect crystal silicon monochromator at the instrument S18, the lattice
is cubic face-centred as in diamonds. The lattice parameter is a = 5.43 Å. The
layer distance is calculated as d(hkl) = a/

√
h2 + k2 + l2. With the (220) plain used

for monochromatising the neutron beam, this results in a layer distance d(220) ≈
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M

Figure 3.6: Photo of the monochromator used at instrument S18 of the Institut
Laue-Langevin in Grenoble, France. A single crystal silicon ingot is cut, etched, and
oriented such that incoming neutrons with a wavelength of 1.92 Å are reflected at
the (220) lattice planes. Neutrons with the selected wavelength traverse a three-fold
reflection; one of the three mirrors is indicated as M. The lattice planes are parallel to
the surface of the crystal such that Bragg reflection occurs. Each reflection further
sharpens the monochromatised spectrum. The unreflected part of the spectrum
propagates to the subsequent instruments D23 and IN22 at the same neutron guide.
Those instruments utilise different wavelengths of the remaining neutron spectrum
for condensed matter neutron scattering experiments in high magnetic fields with
two and three axes, respectively.

1.92 Å, as experimentally confirmed in [85, 86]. The incidence angle is chosen as
θ = 30◦. The first harmonic is thus calculated as λ ≈ 2 · 1.92 Å· sin 30◦ = 1.92 Å.
This is reasonably close to the maximum of the thermal wavelength distribution
such that the reflected beam has a high flux. The higher harmonics have a lower
probability density in the initial Maxwell-Boltzmann distribution and can often
be neglected. Because of the high neutron flux at the ILL, a monochromator with
three-fold reflection as depicted in Fig. 3.6 is utilised. For a specific orientation of the
crystal to the neutron beam from the reactor, the wave with λ = 1.92 Å is reflected
at three different plates before traversing towards the neutron interferometer. At
each reflection, the spectrum is multiplied with the reflectivity R(θ, λ) which has
pronounced Gaussian maxima when the Bragg condition is fulfilled. The three
reflections further sharpen the maxima in the reflected wavelength distribution.
The beam transmitted through the first plate of the monochromator propagates
to the subsequent instruments D23 and IN22 which are located downstream at
the same neutron guide. Those instruments utilise different wavelengths in the
remaining neutron spectrum for condensed matter neutron scattering experiments
in high magnetic fields with two and three axes, respectively.

Mosaic monochromators consist of many small grains—each one a perfect crystal
with a small variance in orientation between them. Due to the variance, an incident
wave not fulfilling the Bragg condition at one crystal grain propagates to the next
grain with a different orientation. This implies an additional chance of reflection
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towards the experiment dependent on the spread in orientations, called mosaicity
[87]. The probability of reflection for the neutrons in the incident divergent beam
is increased compared to a single perfect crystal. Because a reflected neutron wave
may traverse a high number of grains before reflection towards the experiment,
further reflections away from the experiment may occur. Only an odd number of
reflections increases the intensity at the experiment. The higher acceptance range
in the incident angle for Bragg reflection towards an experiment trades a higher
neutron flux off for a broader peak in the neutron spectrum. A trade-off for a higher
intensity is often preferred at smaller reactors with their lower neutron fluxes. At
the TRIGA reactor of Atominstitut, graphite mosaic crystals [88] monochromatise
the neutron beams.

3.3.2 Spin Polarisers

An unpolarised neutron beam is described as a mixed state with the density operator

ρ̂ =
(
i

pi |ψi⟩ ⟨ψi| = 1

2

� |↑⟩ ⟨↑|+ |↓⟩ ⟨↓| �, (3.10)

with the probabilities pi. Two devices used are presented which select a specific
spin state.

Magnetic Prism

For light, a dispersive prism is composed of a material with a wavelength-dependent
index of refraction. Different colours of an incident beam are separated or dispersed.
Analogously, a magnetic field introduces a neutron to a spin-dependent potential
which can act as a dispersive prism by separating the two spin components. The
potential of the medium will be treated in two ways: through forces applied to the
particles in gradient fields and through the refraction of the waves at the interlayers
between the media. The magnetic field is assumed to be static and oriented in
+z-direction, perpendicular to the incident direction.

One way of describing the effect is to consider the forces on the single particles
produced at the transitions of the potential caused by the magnetic field. The
potential of a magnetic moment in a magnetic field is written as V (r⃗) = −µ⃗(r⃗)·B⃗(r⃗).
The relation between magnetic moment and spin is described in Sec. 2.2.1. We will
assume a constant orientation of the magnetic moment. The latter holds because
the magnetic field in z-direction defines the quantisation axis, such that each spin
component is either parallel or anti-parallel to the magnetic field; the magnetic
moments are separated without Larmor precession of the spin as introduced in
Sec. 2.2.1. Due to the stated assumptions, the force on the particle follows as

F⃗ (r⃗) = −∇⃗V (r⃗) = ∇⃗
�
µ⃗(r⃗) · B⃗(r⃗)

�
= ∇⃗µz(r⃗)Bz(r⃗) = µz∇⃗Bz(r⃗). (3.11)

The field direction determines which spin components are separated. The direction
of the gradient determines in which direction the spin components are separated.
If we further assume constant magnetic fields in and outside the magnetic prism,
the gradient of the potential is only non-zero at the transitions. If the transitions
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are abrupt, the gradients can be considered to be Dirac delta functions. It follows
that the trajectories are linear in the constant fields but bent or diverted when
entering and exiting the magnetic prism. The force is oriented in opposite directions
dependent on the magnetic spin quantum number mS which implies the sign of
µz. The directions of the linear trajectories are spin dependent and a divergence
between the spin components is produced. We define the momentary direction of
propagation as the y-direction. The remaining x-direction is perpendicular to both
y- and z-direction, composing a right-handed trihedron.

The tangential force F⃗∥, changing the velocity, is expressed through the gradient
in y-direction as

F⃗∥ = µz
∂Bz

∂y
. (3.12)

Spatial integration of the latter force through the transition will always give the
same change in momentum, independent of both the incident direction and the
suddenness of the transition.

We can attribute the force F⃗⊥, perpendicular to the trajectory, to the field
gradient in x-direction,

F⃗⊥ = µz
∂Bz

∂x
. (3.13)

If we assume the potential to be small compared to the initial energy E0, i.e.
E0 ≫ | µ⃗ · B⃗ |, the particle will not be reflected but always refracted by the magnetic
field. The gradient in Eq. (3.13) is zero for incidence perpendicular to the boundary
of the magnetic region. The flatter the incidence is on the boundary, the longer
the force is present and the stronger the force is, producing a larger diversion after
the interlayer. This is the case for entering as well as exiting the prism. A smaller
incidence angle does not necessarily result in a larger divergence angle when leaving
the prism, because refraction also occurs when exiting the prism.

A magnetic field can also be regarded as a medium with spin-dependent index of
refraction n↑↓. We derive n↑↓ from the kinetic energy of the neutron in the medium,
written as E ′

kin,↑↓ = E0 ∓ µB. The negative sign describes the kinetic energy of
the up spin component, the positive sign of the down spin component. The wave
number k↑↓ is related to the particle momentum p by

p⃗↑↓ = ℏk⃗↑↓ ⇒ k↑↓ = |⃗k↑↓| = |p⃗↑↓/ℏ|. (3.14)

(Alternatively, the Schrödinger equation, as applied on the supermirror in the next
section, gives the wave number.) With Ekin,↑↓ = p2↑↓/(2m), Eq. (3.14) results in the
index of refraction (the inverse for light)

n↑↓ =
k↑↓
k0

=

√
2m(E0∓µB)

ℏ√
2mE0

ℏ

=

'
1∓ µB

E0

, (3.15)

where the field as a medium is denser for the down spin state.

A geometric construction of the polarised beam paths valid for both particle and
the following wave picture is depicted in Fig. 3.7. The generated angle of divergence
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Figure 3.7: Construction of the beam paths of the two spin components of a neutron
through a magnetic prism. A magnetic field is present in a volume with a trian-
gular base. The magnetic field causes a spin-dependent potential. The two spin
components of the neutrons traversing the field are refracted differently, resulting in
a divergence between the polarised sub-beams. The incidence direction is marked
by the dashed line. The divergence angle δ between two polarised sub-beams is
dependent on the apex angle φ and the asymmetric angle ϵ related to the incidence
angle α as expressed in Eqs. (3.17) and (3.16).

δ was presented in [89] as

δ =
2µB

E0

sinφ

cosφ+ cos 2ϵ
, (3.16)

with the apex angle φ, the asymmetric angle ϵ, the magnetic field strength B and
the initial kinetic energy of the neutron E0. With the angle α := π − (φ/2 + ϵ)
between incident direction and interlayer, Eq. (3.16) is rewritten as

δ =
2µB

E0

sinφ

cosφ− cos(φ+ 2α)
. (3.17)

The divergence angle δ dependent on the angles φ and α is plotted in radians
in Fig. 3.8(a). The divergence for the apex angle φ = 118◦ =̂ 2.025 rad is plotted in
Fig. 3.8(b). The plotted region is divided by a pole line at φ+α = π where δ → ±∞.
The assumption of the model assumes refraction at the two interlayers defining the
angle φ. However, at the pole line, at least one of the polarised sub-beams traverses
through the prism without intersecting the second interlayer. The region in Fig. 3.8
given by φ+ α ≥ π represents an unphysical solution to Eq. (3.17).

The magnetic prisms installed at instrument S18 are magnetic yokes as depicted
in Fig. 3.9. A slit of about 1 cm allows the transmission of the neutron beam through
a volume with a strong magnetic field of about 1T. Significantly higher magnetic
fields can only be achieved through superconductors. With the apex angle φ = 116◦

(assumed for Fig. 3.8(b)), an asymmetric angle ϵ = 25◦, a magnetic field strength
B = 0.88T and a neutron wavelength of 1.895 Å determining the energy, the max-
imum divergence for two prisms is calculated to 2.4 × 10−3 ◦=̂ 4mrad. This is the
doubled divergence as for one prism and assumes a large distance between the prisms
such that the stray fields do not overlap.
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(a) (b)

Figure 3.8: The divergence angle δ between the polarised sub-beams exiting the
magnetic prism (a) dependent on the apex angle φ of the prism and the angle α
between incident beam and the first interlayer. The plot is split in two regions by
a pole line at φ + α = π. For higher angles φ and α, at least one of the sub-beams
does not intersect the second interlayer; the assumptions of the model brake down,
such that Eq. (3.17) does not apply. For the region φ+ α ≤ π, the divergence angle
δ goes −∞ in the limits of α → 0+ and α → φ−. The indices ± indicate if the
limit is approached from higher (+) or lower (−) values. The first case represents
almost parallel incidence relative to the first interlayer of the prism, the second
case relative to the second interlayer. For better readability, the depicted range
of divergence angles is smaller than the experimental value of 4mrad. (b) The
divergence angle δ dependent on α for φ = 116◦ =̂ 2.02 rad.

In an experimental adjustment, there are in principle two optimal angles for a
high divergence angle δ: α → 0+ and α → φ−. In practice, the prior is found easier.
A recording with two successive prisms of an experimentally large divergence of
1.2× 10−3 degree is depicted in Fig. 3.10. Although the angle δ diverges in the limit
α → 0+, the experimental maximum is much smaller. This can be attributed to a
finite beam cross-section which can only fully traverse the prism with a minimum
incident angle αmin. Another reason is the initial divergence which entails a range
of incident angles α.

It is noteworthy that these rather small divergence angles caused by a magnetic
prism of the order of mrad are suitable for subsequent perfect crystal neutron in-
terferometer experiments, because the perfect crystal allows the discrimination of
such angles due to the even smaller acceptance angle of the Si perfect crystal. This
is explained in Sec. 3.3.3.

Polarising Supermirror

A basic experimental parameter is the neutron flux at a setup. The further an
instrument is from the source, the lower the neutron flux will generally be due to
the spatial dilution of free neutrons. A neutron guide [90] can channel the neu-
trons from an outlet to an experiment and maintain the flux. We will follow the
historical development from neutron guides to multilayers [91], supermirrors and
finally polarising supermirrors [92]. All those devices are based on the processes at
incidence of the neutronic wave on an interlayer between two media. The relevant
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Figure 3.9: Photo of the two magnetic prisms installed at the neutron interferometer
station S18 at the Institut Laue-Langevin in Grenoble, France. The adjustment by
hand gives an impression of the sizes. The prisms are magnetic yokes with slits at
the height of the neutron beam. The magnetic field inside these slits has a field
strength of about 1T. The two spin components of the neutrons traversing the slits
are refracted differently, resulting in a divergence between the polarised sub-beams
as depicted in Fig. 3.7.

time-independent Schrödinger equation is written as

Ĥψ(r⃗) = Eψ(r⃗)�
− ℏ2

2m
∇⃗2 + V (r⃗)

 
ψ(r⃗) = Eψ(r⃗)

⇒ 0 =

�
∇⃗2 +

2m

ℏ2
�
E − V (r⃗)

� 
ψ(r⃗)

0 =
�
∇⃗2 + k2(r⃗)

�
ψ(r⃗).

(3.18)

First, we constrain ourselves to the transition from vacuum to some homogeneous
medium. The interlayer is assumed to be at z = 0 such that V (z ≥ 0) = 0 and
V (z < 0) = V . Because of this geometry, the wavefunction is separable into the
parallel and orthogonal components, ψ(r⃗) = ψ∥(x, y)ψ⊥(z). The free wave solution
to ψ∥(x, y) is ∼ e−i(kxx+kyy). The remaining function ψ⊥(z) takes the potential into
account and is the solution to the one-dimensional Schrödinger equation

0 =

�
∂2

∂z2
+ k2

⊥(z)
 
ψ⊥(z). (3.19)

The initial wave numbers in vacuum and in the medium with indices 0 and V,
respectively, are written as

k0,⊥ =

√
2mE⊥
ℏ

, kV,⊥ =

&
2m(E⊥ − V )

ℏ
. (3.20)
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Figure 3.10: Recording of the intensity after the interferometer dependent on the
orientation of the interferometer with two properly adjusted polarising magnetic
prisms upstream. Because of the small acceptance angle of the interferometer, the
divergence between the polarised sub-beams is resolved. The divergence observed as
the separation between the two Gaussian peaks in the red fit is 2.4×10−3 degree. The
green data and fit are recorded for a spin analysis downstream of the interferometer
with a polarising supermirror as described at the end of Sec. 3.3.2.

From the case of perpendicular incidence, we calculate the index of refraction n of
the medium as

n =
kV,⊥
k0,⊥

=
&

1− V/E⊥, (3.21)

which implies a dispersion due to the dependence on the initial kinetic energy of the
neutron. Let us model V as the nuclear Fermi pseudo-potential [93]

Vnuc =
(
i

2πℏ2

m
b δ(r⃗ − r⃗i), (3.22)

with the index i over all nuclei, their position vectors r⃗i, the Dirac delta function
δ, and the scattering length b as introduced in Sec. 2.2.2. Scattering lengths of
materials frequently used in neutron optics are listed in Tab. 2.1. We integrate and
average Eq. (3.22) over the three spatial coordinates to derive the mean nuclear
potential

V nuc =
2πℏ2N

m
b, (3.23)

with the density of nuclei N . By substituting Eq. (3.23) and the relations E0,⊥ =
ℏ2k2

0,⊥/(2m) and k0,⊥ = 2π/λ into Eq. (3.21), the Taylor expansion of the refraction
index follows as [94]

n = 1− λ2Nb

2π
+O(λ4). (3.24)

Coming back to the index of refraction in Eq. (3.21), let us assume binc = 0 and
bcoh ∈ R ⇒ V ∈ R for now. The case of V/E⊥ > 1 signifies a strong repelling
potential in the medium, higher than the kinetic energy. The refraction index
becomes imaginary which describes the attenuation in the medium equivalent to
a penetration depth. The wave can only pass through the medium by tunnelling.
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For V/E⊥ < 0, the attractive potential accelerates a neutron in relation to its
propagation in vacuum. The index of refraction follows as n > 1. This describes
an optically denser medium than vacuum. An attractive potential is equivalent to
negative coherent scattering lengths such as of lithium and titanium, cf. Tab. 2.1.
Snell’s law for refraction is written as

n′ sin β = n sin β′, (3.25)

with dashed measures for the second medium and the incident angles β, β′ relative to
lead. We assume n′ = 1 as in vacuum. For a given n, the directions of propagation
β of the wave in the medium is related to the incident angle β′.

Finally, 0 ≤ V/E⊥ < 1 refers to materials slowing a neutron down. It follows
1 ≥ n > 0 which is equivalent to an optically thinner medium than vacuum. At
the transition from vacuum to a thinner medium, Snell’s law cannot be fulfilled for
incident angles β close to 90◦. In this case, total reflection occurs. A material with
a respective index of refraction can be used to focus a diverging neutron beam or
to divert a collimated neutron beam which increases the neutron flux at subsequent
experiments. A pipe around a neutron beam composed of an optically thin medium
with this purpose is called a neutron guide. Higher divergences than the angle of
total reflection still decrease the neutron flux. As a standard, the angle of total
reflection for thermal neutrons of nickel, θcrit,Ni = 0.1 deg Å−1, is used. This angle
is enclosed by incident direction and interlayer like the angle α in Sec. 3.3.2. Nickel
has a comparatively large coherent scattering length as listed in Tab. 2.1 and conse-
quently an incidence on nickel exhibits a relatively large critical angle θcrit,Ni. Any
material then possesses a characteristic critical angle θcrit,mat = mθcrit,Ni, with the
proportionality factor m for that material. A plot of the reflectivity dependent on
the incidence angle is depicted in Fig. 3.11.

When considering a coherent scattering length with both real and imaginary
components, the index of refraction has in general both components, too. This
means that refraction at the interlayer and absorption in the medium are expected.

The following are developments based on the neutron guide with its regime of
total reflection. To prevent losses due to divergences higher than the critical angle,
another angle with high reflectivity can be added by building a multilayer structure
[95] as depicted in Fig. 3.12. Alternating layers of two materials with different in-
dices of refraction are deposited on a substrate. The layer structure causes another
incidence angle with high reflectivity due to partial reflections at the interlayers
satisfying the Bragg condition of Eq. (3.9). The thickness of each layer is in the
range between 1Å and hundreds of Å [95]. Between the added angle of reflection
and the regime of total reflection, an interval of incidence angles with low reflectivity
remains, cf. Fig. 3.11. Further considerations concern the shape of the peak and
its resonances, whether the regime of total reflection is upheld, the coating tech-
nique, choice of the layer materials, layer depths, layer number, surface roughness,
mechanical stress [95] and diffusion [96].

To close the gap in the reflectivity and implement a whole bandwidth of angles
with high reflectivity, one can construct a supermirror structure [92]. In a super-
mirror, the thickness of the layers is steadily increasing with the depth from the
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neutron guide
supermirror

multilayer

Figure 3.11: Reflectivity of different layer structures dependent on the incident angle
[97]. For the neutron guide, the critical angle ends the regime of high reflectivity [97].
For a multilayer, an additional Bragg peak is created. The supermirror practically
implements several overlapping Bragg peaks. For the polarising supermirror, the
Bragg peaks are only existent for a specific spin component. The increased regime
of reflectivity for a given supermirror is quantified through its value m, such that
the reflectivity drastically decreases at an angle θcrit, supermirror = mθcrit,Ni.

surface. Each thickness adds another angle with high reflectivity. Depending on the
highest layer thickness, the reflectivity of a supermirror is high up to a cut-off angle
θcrit, supermirror = mθcrit,Ni with m characterising a given supermirror.

The last step to achieve a polarising supermirror is to chose one of the two
materials as ferromagnetic [92]. The scattering length b is then spin-dependent as
described by Eq. (2.37). We will take the example of CoTi polarising supermirrors
used for this thesis to understand the mechanisms involved in the polarisation of
the neutron beam. The relevant scattering lengths, listed in Tab. 2.1, are bcoh,Co =
2.49 fm, binc,Co = −6.2 fm, bcoh,Ti = −3.438 fm, and binc,Ti = 0 fm. With magnetised
Co at the surface, the sign of the scattering length b is spin-dependent. For the
component of the neutron spin parallel to the magnetisation vector of cobalt, the
material possesses a negative scattering length bCo,par = −3.7 fm. The Co layer is
therefore optically denser and total reflection cannot occur. The parallel component
is refracted and enters the supermirror. The behaviour of the anti-parallel spin-
component is described by bCo,antipar = 8.7 fm ⇒ 0 < nCo,antipar < 1. Total reflection
occurs for small incident angles.

Above the angle of total reflection, both sub-beams enter the supermirror at
different angles of refraction. For the parallel component, the difference in scatter-
ing lengths between Co and Ti is rather small, i.e. bCo,par = −4.5 ≈ bTi = −3.438.
This has to be compared to the scattering length for the antiparallel component
bCo,antipar ≈ 8.7. It follows that the reflections of the parallel component at the in-
terlayers in the supermirror are of low intensity and the reflectivity is low also above
the critical angle. The substrate absorbs the transmitted parallel spin-component.
The principle of the supermirror applies however for the anti-parallel component
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Figure 3.12: Schematic of a general multilayer structure deposited on a substrate
[72]. Each layer i has an index of refraction ni and thickness di. For the neutron
guide, only one thick layer is considered. For a multilayer, two alternating materials,
i.e. ni = ni+2, with alternating thicknesses di = di+2 are arranged. The supermirror
has decreasing layer thicknesses, i.e. di < di+1. Finally, a polarising supermirror is
constructed by making one index of refraction spin-dependent, i.e. n2i+1 = n↑↓.

such that the reflectivity is high for a large range of incident angles. The polar-
ising supermirror separates the spin components of the neutron according to the
orientation of the polarisation vector in the cobalt layers.

The degree of polarisation of a supermirror depends on its quality. This includes
the purity of the chemical elements, the degree of magnetisation of the ferromagnetic
material and the precision and accuracy of the layer thicknesses. The layers are
usually deposited through a sputtering technique. The relative fluctuations of the
layer height then decreases with absolute layer height due to the statistics of vapour
deposition. In general, there is a vanishing correlation between the deposited atoms
such that Poisson statistics apply: with a mean layer thickness of N atoms, the
standard deviation is

√
N . For a supermirror, the changing layer thickness affects

the longitudinal displacements at recombination between the reflected partial beams.
The case of purely constructive interference between all partial beams is not fulfilled
any more. In effect, the supermirror gives a high reflectivity over a broader interval
of angles than a neutron guide. However, for a specific combination of incident
angle and neutron wavelength, the reflectivity is higher for a properly constructed
multilayer, see Fig. 3.11.

For an ideal spin polariser or analyser, the transmitted intensity of an unpolarised
neutron beam drops to 1/2; all neutrons with one spin state are transmitted and all
neutrons of the orthogonal spin state are absorbed or traversing in a discriminable
direction. For the CoTi supermirror with its imperfections used, further losses due
to absorption occur. The absorption can be either in the CoTi layer structure or in
the boron substrate. The magnitude of the absorption effect from low to high orders
the three elements as Ti, Co and B, cf. σabs in Tab. 2.1. For this thesis, a bender
array is used, i.e. multiple bent supermirror structures are arranged with a small
displacement perpendicular to the incident beam direction. No neutron can pass the
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bender without interacting either with the supermirror or the substrate. Because
of the large incident area onto the strongly absorbing substrate, the intensity after
the supermirror drops by about one order of magnitude.

3.3.3 Single Crystal Neutron Interferometer

The absolute phase of a quantum state is indeterminable and can therefore be
considered not to exist. Relative phases, however, are determinable interferometri-
cally. An interferometer separates either the wavefront emitted from a source or the
amplitudes of a specific part of said wavefront. There are different neutron inter-
ferometers such as gratings [98] (wavefront separation) and spin echo instruments
[10, 99] (amplitude separation).

We will describe the central element of the presented experiments: the single
crystal silicon neutron interferometer (amplitude separation) [100]. This type of
interferometer is built-up by a face-centred cubic crystal structure. The structure
and its orientation are the same throughout the length of the interferometer of
≈ 10 cm. Similarly as for the neutron monochromator, the wavelength of thermal
neutrons λ ≈ 2 Å is comparable with the lattice constant d(220) = 1.92 Å of the
(220) crystal planes. The basic Mach-Zehnder single crystal neutron interferometer
contains three plates which each serve as a beam splitter. The incident neutron wave
is split at the first interferometer plate into two parts: a transmitted and a reflected
part. The respective path states are denoted as |I⟩ and |II⟩. The second plate
in both sub-beams produces a total of four sub-beams: two sub-beams traversing
outward of the experiment and two converging sub-beams. The third plate produces
superpositions of the converging sub-beams. The O-beam in incident direction and
the diffracted H-beam exit the interferometer. In both O and H-beam, both path
states are superposed and interference between the paths is observed. A rendering
of a two-path neutron interferometer is depicted in Fig. 4.2.

A single beam splitting in the neutron interferometer is described through the
ansatz [101] �

a′1
a′2

 
=

�
t1 r2
r1 t2

 �
a1
a2

 
, (3.26)

with the incident amplitudes a1, a2 of a beam splitter and the output amplitudes
a′1, a

′
2. The matrix elements ri and ti, i ∈ 1, 2 represent reflection and transmission

by the beam splitter, respectively.
A rigorous description of the beam splitter is given by the dynamical theory

of diffraction. It considers that in Laue configuration of neutron beam and crystal,
each part of the neutron wave traverses a large number of crystal plains. A myriad of
consecutive reflections and transmissions occurs inside each crystal plate, including
the case of back and forth scattering between two adjacent crystal planes. We
introduce the parameters

F =
k

2 cos γ

|V (G⃗)|
E

D, y =
1

2

E

|V (G⃗)|α (3.27)

with the angle γ between incident direction and lead, the potential V for the lattice
vector G⃗, the initial kinetic energy E of the neutron, the thickness D of the crystal
plate, the deviation α of the incident direction from the ideal Bragg angle θ. The
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Transmitted beam 

Reflected beam 

Figure 3.13: Intensities of the transmitted and reflected beam after a single beam
splitter of a perfect crystal neutron interferometer according to Eq. (3.30). The
parameter F is chosen as 7/2π, is linear in the beam splitter thickness D, and
describes the properties of the incident neutrons as well as the geometry. The
intensities sum up to 1 and rapidly oscillate dependent on y. The period is called
“Pendellösungslänge” which is given in Eq. (3.29).

intensities I of the transmitted (t) and reflected (r) output beams, normalised with
the incident (inc) intensity are given by [102]

It(D)

Iinc
=

sin2(F
&
1 + y2)

1 + y2
,

Ir(D)

Iinc
= 1− sin2(F

&
1 + y2)

1 + y2
.

(3.28)

The parameters F and y both take the neutron properties and geometry into account
and are linearly dependent on D. A plot of Eq. (3.28) is given in Fig. 3.13. The
“Pendellösungslänge” (German for length of the pendulum solution)

δ0 =
πD

E
(3.29)

is the period of the intensity oscillations in Eq. (3.28). The intensity rapidly oscillates
back and forth between the outputs of a beam splitter dependent on its thickness
and the incident direction of the neutrons. If there is some divergence in the neutron
beam, the intensity after the beam splitter is the average over the rapid oscillations.

With three consecutive beam splitters for each sub-beam, a loop is formed. The
intensities of the output beams O and H according to the ansatz made in Eq. (3.26)
are derived nicely in [101]. This reference considers a single input amplitude, e.g.
a1 ̸= 0 and a0 = 0. The solution for the intensities is written as

IO = A(1 + cosχ),

IH = B + A cosχ,
(3.30)

with the mean intensity A in the O-beam, the mean intensity B ≥ A in the H-beam,
and the relative phase shift χ between the separated sub-beams. If we consider a

49



3 Neutron Optics

light interferometer with 50:50 beam splitters, it is known that A = B. However, the
beam splitters in a single crystal neutron interferometer are generally not 50:50 beam
splitters. That B > A is plausible because reflection and transmission are different
operations such that an asymmetry between the output ports is introduced by the
interferometer. Only the amplitude reaching the O-beam is split in halves by the
first beam splitter. Therefore, the contrast

C =
Imax − Imin

Imax + Imin

, (3.31)

with the maximum and minimum intensities Imax, Imin is larger in the O-beam.
Because IO exhibits more pronounced characteristics of quantum interference, pri-
marily the O-beam is used for measurements.

The single crystal neutron interferometer produces a beam separation of several
centimetres. That allows to use macroscopic devices to manipulate a quantum state.
In addition to the two-path neutron interferometer, there is a three-path variation.
The use of this kind of interferometer allows the interference of three sub-beams.
This may be used for extensions of experiments or as a phase reference.

3.3.4 Phase Shifter

A phase shifter spatially moves the wave fronts of a plain wave. As in light op-
tics, this is realised primarily by introducing a parallel surfaced slab of material
in the beam path with a different optical density than the surrounding medium.
Suitable materials in neutron interferometry ideally have a high difference in the
optical density compared to air, such that one can easily induce a phase shift with
minimal means of material and space. To reduce the losses, a low absorption cross-
section is favourable. A high homogeneity and low roughness of the surfaces allow a
homogeneously induced phase shift over the entire cross-section of a neutron beam.

The phase shift to a single neutron beam is written as [100]

Δχ = (n− 1)kD0 ≈ −λ2Nb

2π

2π

λ
D0 = −NbcohλD0, (3.32)

with the nuclei density N , the coherent scattering length bcoh, the neutron’s wave-
length λ, the thickness of the phase shifter slab D0, the optical density of the
material n, and the neutron wave number k. In Eq. (3.32), we consider only the real
part of the coherent scattering length. Incoherent scattering induces dephasing for
an unpolarised neutron beam, while producing a distinct phase shift for a polarised
neutron beam. The imaginary parts describe absorption. The phase shift is higher
for longer wavelengths due to the dependence on the index of refraction n ∼ λ2.
The dependence on k ∼ 1/λ implies that the same spatial translation of a wave
results in a higher phase shift for shorter wavelengths. The effects combined give a
dependence of the relative phase shift linear to the wavelength.

In a perfect crystal neutron interferometer, the established method to induce
phase shifts is to use a slab of material which extends into two beams. Both partial
waves are therefore phase shifted. Because global phases are not possible to measure,
only the relative phase shift is of importance. Therefore, the slab is rotated by an
angle ζ such the one beam traverses a longer distance inside the material while
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Figure 3.14: Relative difference in traversed distance inside a phase shifter slab
with thickness D0 between the two sub-beams in a two path neutron interferometer
dependent on the rotation angle ζ of the phase shifter slab. The zero position refers
to the symmetrical orientation. The relative length difference is proportional to the
relative phase shift. Blue line is the exact result when applying Eq. (3.33). The
linear approximation for small rotations of the phase shifter slab is drawn in yellow.
Dependent on the experimental requirements, the approximation is suitable for an
interval of a few degrees.

the other traverses a shorter distance. Adjustment of the phase shifter orientation
necessitates a motor for rotation with accordingly high precision and accuracy. The
path difference ΔD through the material between two paths dependent on the angle
ζ is given as

ΔD(ζ) =

�
1

cos(θB + ζ)
− 1

cos(θB − ζ)

 
·D0, (3.33)

with the opening angle between the interferometer paths 2θB
In the limit of small rotations of the phase shifter slab, i.e. ζ ≪ 1, this approx-

imates to a linear relation. Therefore, one can record an interferogram by rotating
the phase shifter in (equidistant) steps of the angle ζ. The difference between linear
approximation and the exact calculation can be seen in Fig. 3.14.

For the presented experiments, aluminium and sapphire (AlO3) phase shifters
were used. As indicated below Eq. (3.32), the incoherent scattering length can
influence the properties of a neutron beam. The incoherent scattering length of
aluminium is larger than that of oxygen. In the experiment of Sec. 5 with two phase
shifters, the aluminium phase shifter is positioned upstream and the sapphire phase
shifter downstream. This order increases the phase homogeneity and in turn the
contrast of interferograms.

3.3.5 Absorbers

Absorbers have different purposes in neutron optical experiments. Absorption is
necessary for radio protection but also to realise experimental concepts. The ele-
ments and isotopes 3He, B, Cd, In, 235U, and specifically Gd are notable for high
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absorption cross-section σabs, as listed in Tab. 2.1. Apart from Gd, all these elements
were purposefully used as absorbers for the present thesis:

• 235U in the reactor source, cf. Sec. 3.2.2,

• 3He as the filling gas in the detecting counting tubes, cf. Sec. 3.3.7,

• B as shielding of the detectors against background and as beam blockers,

• Cd as shielding of the detectors against background, as beam blockers, and as
aperture material, and

• In for slight adjustments in the intensity ratios between the sub-beams of the
interferometer.

The intensity of a neutron beam transmitted through an absorber dependent on
the absorber’s thickness d is written as

I(d) = I0 e
−κd, (3.34)

with the incident intensity I0 and the attenuation factor κ. For the experiment
presented in Sec. 4, an attenuation of about 10% in intensity is required. For most
elements, κ is either too low or too high for such a fine tuning with slabs of thickness
in the range of 0.1mm–1mm. Indium is suited for this purpose due to its absorption
coefficient κIn ≈ 0.84/mm. For beam shaping of the thermal neutron beam, a strong
neutron absorption is accomplished by properly positioning cadmium foils. To in-
duce an interaction of weak absorption, indium foils with a thickness of 0.125mm
and an absorption coefficient A ≈ 0.1 are used.

3.3.6 Spin Manipulations via Magnetic Fields

As discussed in context of Larmor precession (Sec. 2.2.1) and spin polarisers (Sec. 3.3.2),
the neutron spin and magnetic fields interact. In contrast to spin polarisers, mag-
netic coils are not used to separate neutrons with different spin states but to induce
specific trajectories of he orientation of the polarisation vector of Eq. (2.26) on the
Bloch sphere. Electromagnetic coils produce magnetic fields in a confined interval
of the neutron beam. The Hamiltonian of the system is written as

Ĥ = −µ⃗ · B⃗. (3.35)

This describes Larmor precession of the neutron spin around the magnetic field.

Guide field

Apart from the intended spin manipulations, earth’s magnetic field or uncontrolled
and unknown stray fields from electrical devices and adjacent experiments perturb
the spin state. This can be prevented by mitigating the stray fields through shielding
with Mu-metal. Another option is creating a much stronger field than the stray fields
which is called a guide field. Its interaction is controlled and predictable as Larmor
precession. Typically, the guide field is induced by a Helmholtz coil surrounding the
sections where unintended spin manipulations perturb the measurement results.
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Larmor Accelerator

The guide field is typically induced in a large volume, covering entire sections of the
experiment with multiple devices. In general, such a “global” implementation does
induce global phases. The intensities are unaffected and global phases are in turn
unattainable. However, when applying a static field to a parallel polarisation vector
in a constrained volume of the experiment, a relative phase shift compared to other
beam paths is induced. This can change intensities and is measurable.

Radio-Frequency Spin Manipulators

Spin manipulations with rotating field (RF) coils are discussed for various specific
field configurations in , e.g. [69, 103–105]. We will focus only on the main ansatzs
which are necessary to understand the function of the RF flippers in Sec. 5. Let us
assume a time-dependent magnetic field which is written for t ≤ 0 as B⃗(t) = 0 and
for t > 0 as

B⃗(t) =

 B1 cos(ωt+ φ)
B1 sin(ωt+ φ)

B0

 . (3.36)

with the angular velocity ω, the phase offset φ, and the magnetic field strengths
B0 and B1, respectively, of the static and rotating field. We will now solve the
Pauli-Schrödinger equation for this specific situation, written as

Ĥψ(r⃗, t) = Eψ(r⃗, t)�
− ℏ2

2m
∇2 − µ⃗(t) · B⃗(t)

 
ψ(r⃗, t) = iℏ

∂

∂t
ψ(r⃗, t)�

− ℏ2

2m
∇2 − µσ⃗(t) · B⃗(t)

 
ψ(r⃗, t) = iℏ

∂

∂t
ψ(r⃗, t).

(3.37)

At incidence in x-direction and assuming a linear trajectory without refraction at
the interlayer, above equation reduces to one spatial dimension, written as�

− ℏ2

2m

∂2

∂x2
− µ⃗(t) · B⃗(t)

 
ψ(x, t) = iℏ

∂

∂t
ψ(x, t) (3.38)

The separation ansatz

ψ(x, t) = Φ(x)χ(t) (3.39)

into a purely spatially dependent function Φ(x) and a purely time-dependent func-
tion χ(t) is made. Substituting Eq. (3.39) and reordering of terms in Eq. (3.38) leads
to

− ℏ2

2m

(∂2
xΦ(x))

Φ(x)
= iℏ

(∂tχ(t))

χ(t)
+ µσ⃗(x) · B⃗(x) = κ, (3.40)

Because spatial and time-dependent terms are separated, the parameter κ is con-
stant. On the left side, the operator for the kinetic energy appears such that κ equals
the kinetic energy Ekin = ℏ2k2

2m
with the wave number k. This offers the ansatz for

the spatial function

Φ(x) = Ae−ikx + Ceikx, (3.41)
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with the amplitudes A and C which solves the spatial part of Eq. (3.40). The term
proportional to A is evolving forward in x-direction, the term proportional to C
backwards. We constrain ourselves to the case of small magnetic field strengths
compared to the initial kinetic energy, |µB1|, |µB0| ≪ κ. Reflections when pene-
trating the field can then be neglected and assuming C = 0 is rectified. For the
function χ(t), we make the transformation

χ(t) = e−i ℏk
2

2m ξ. (3.42)

Substituting the latter into the time-dependent relation of Eq. (3.40) leads to

[iℏ∂t + µ(σ̂xB1 cosΩt+ σ̂yB1 sinΩt+ σ̂zB0 sinΩt)] ξ(t) = 0. (3.43)

The transformation into the system rotating with the orientation of the field is
written as

Û(t) = e−iωtσz/2, (3.44)

such that ξ(t) = Û(t)ξrot(t). We introduce the rotation vector

α⃗(t) =

 ω1t
0

(ω0 − ω)t

 . (3.45)

with the abbreviations ω0 = γB0, ω1 = γB1, and γ = 2µ/ℏ = −2|µ|/ℏ as in
Eq. (2.31). The absolute of the rotation vector is written as α = t

&
ω2
1 + (ω0 − ω)2 =

γtBeff with the effective magnetic field Beff in the rotating system.
The solution for an initial spin state ξ(0) = (1, 0)T is given in [105] as

ψ(x, t) =
1√
2π

ei(kx−
Etot
ℏ t) ×

�
e−iωt/2

�
cos(α(t)

2
) + iB0+ω/γ

Beff
sin(α(t)

2
)
�

i eiωt/2 B1

Beff
sin(α(t)

2
)

�
. (3.46)

In the case of resonance, the resonance frequency ωres is written as

ωres = ω = ω0 = −γB0, (3.47)

and Eq. (3.46) simplifies to

ψ(x, t) =
1√
2π

ei(kx−
Etot
ℏ t) ×

�
e−iωt/2 cos(α(t)

2
)

i eiωt/2 sin(α(t)
2
)

�
. (3.48)

This spin state is spiralling on the Bloch sphere in time back and forth from up
to down spin state. Analogous results emerge for an initial down-spin state ξ(0) =
(0, 1)T. When factoring out e−iωt/2 and excluding the plane wave solution, the
transformation on a general spin state can be written as

ÛRF(t, α, ω, δ) =

�
cos(α

2
) i sin(α

2
)e+i(ωt+δ)

i sin(α
2
)e−i(ωt+δ) cos(α

2
)

 
. (3.49)

The time-dependent phase term exp(iωt) describes the relative phase compared to
the initial wave function. The relative phase originates in the shift in total energy
due to the time-dependent Hamiltonian.
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Experimentally, an oscillating field in a guide field

B⃗(t) =

 B1 cos(ωt+ φ)
0
B0

 (3.50)

is more feasible to realise than a rotating field. The latter equation can be re-written
in terms of two rotating fields with opposite directions of rotation in a static field
as

B⃗(t) =

 B1/2 cos(ωt+ φ)
B1/2 sin(ωt+ φ)

0

+

 B1/2 cos(ωt+ φ)
−B1/2 sin(ωt+ φ)

0

+

 0
0
B0

 . (3.51)

One of the magnetic fields rotates in the same direction as the polarisation vector.
The second is rotating in the opposite direction. The counter-rotating field induces
the Bloch-Siegert shift [106] which modifies the resonance frequency of Eq. (3.47) to

ωres = −γB0

�
1 +

B2
1

16B2
0

 
. (3.52)

In case of B0 ≫ B1, the Bloch-Siegert shift is neglected which is called the rotating
wave approximation.

Direct Current Spin Manipulator

The special case of the RF flipper is the direct-current (DC) spin manipulator for
ω = 0. Equation (3.49) further reduces to

ÛDC(t, α) =

�
cos(α

2
) ie+iδ sin(α

2
)

ie−iδ sin(α
2
) cos(α

2
)

 
, (3.53)

where the phase δ is equivalent to the static orientation of the field. If the magnetic
field is static, the neutron spin follows a circle on the Bloch sphere. In Eq. (3.53),
there is no time-dependent phase term as in Eq. (3.49). The static Hamiltonian
describing DC spin manipulations conserve the total energy such that no relative
phase is induced compared to the initial wave function.

Temperature Control System

As described in Sec. 3.3.3, a neutron interferometer functions on the basis of the reg-
ularity of its crystal structure. When operating magnetic coils in an electrical circuit,
they possess an electrical resistance. Heat is dissipated through radiation, conduc-
tion and convection. When the heat reaches the interferometer crystal, the crystal
expands and the lattice parameter is increased. If this happens homogeneously over
the entire crystal, a slightly increased neutron wavelength may be necessary as an
input. The neutron interferometer is more sensitive to local deviations of the lat-
tice parameter, which is equivalent to mechanical stress. This is induced by local
temperature fluctuations and mechanical vibrations. If these influences become too
strong, the interference effect is not observable.
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A mechanical dampening system attenuates external vibrations, specifically in
the interval between 1Hz-10Hz. The thermal control system entails multiple layers
of thermal insulation and temperature control. The outermost layers are the guide
hall and the structure in it constructed for instrument S18. The structure has an
outer and an inner room which are both air conditioned. In the inner room, the
interferometer crystal is encased by acrylic glass. Outside the case, the guide field
coils operate. Inside the case, magnetic coils operate close to the crystal. The heat of
both guide field and local coils is diverted through a separate water cooling system.
Each coil is submerged in water which is constantly pumped to an active cooler in
the outer room. Several temperature probes in meaningful positions regulate the
air conditioning and water cooling. A schematic of the temperature control system
is depicted in Fig. 3.15.

Figure 3.15: Schematic of the temperature control system at instrument S18. Mul-
tiple layers of thermal insulation and control regulate the interferometer to a stable
and homogeneous temperature. Multiple temperature sensors at key positions reg-
ulate the air conditioning and water cooling systems. The interferometer crystal is
regulated in its temperature and temperature gradient such that the regularity of
the crystal allows to coherently split and recombine the neutron beams.

3.3.7 Detectors

Neutrons are chargeless [107, 108] and have a small magnetic moment. Their detec-
tion therefore relies on absorption via the strong nuclear force. Solid state detectors
[109, 110] and gaseous counting tubes [68] are common where the latter are used in
this study. The elements helium and boron have high absorption cross-sections (see
Tab. 2.1), such that the nuclear reactions
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3He + n 3H+ p

10B + n 7Li + α

7Li∗ + α

6%

94%

γ

Q=0.764MeV

Q=2.792MeV

Q=2.310MeV

with the freed energy Q, can each be used as an initial process for detection.
Before and after above helium reaction, one nucleon is free. A proton in the

helium core is replaced by a neutron. Because the nucleons are bound through
the strong force and repelled by the electromagnetic force, a rigorous description
of the nuclei necessitates an ansatz through quantum chromo and electro dynam-
ics. However, the classical estimate through the Coulomb potential of two protons
constrained to 1 fm in a helium nucleus leads to a repulsive potential of

VCoulomb =
1

4πϵ0

q1q2
r

=
1

4πϵ0

e2

1 fm
≈ 1.45MeV, (3.54)

with the charges q1, q2 and the dielectric constant ϵ0. This correctly describes at
least the order of magnitude in freed binding energy of the helium reactions. The
freed binding energy in the helium reaction can be attributed to the decreased
electromagnetic potential when separating two protons. The reverse reaction of
fusion between two protons to a diproton is the dominant process in stable stars
[111] as is currently our sun. Despite being essential to sustaining life on earth, basic
parameters of the process are unknown. Specifically, the life-time of a diproton is
constrained only roughly to be ≪ 10−9 s.

In the boron reaction, the free neutron is absorbed, resulting in an exited boron
nucleus. This induces fission into lithium and an α particle. Fission of nuclei lighter
than iron is in general only possible through excitation. Because all nucleons are
bound after the reaction, net binding energy is freed. Some of the binding energy of
the initially free neutron is compensated by weaker nuclear bonds in the produced
lithium core.

The boron reaction sets free significantly more binding energy (>2MeV) than
the helium reaction (0.7MeV). The difference in binding energy and the masses
before and after each reaction define the momenta and kinetic energies of the reac-
tion products through conservation of energy and momentum. The smaller reaction
products receive the majority of the kinetic energy. The smaller and faster reaction
products comprise less protons and charge such that they escape most of the initial
electron cloud; positive ions emerge. The slower, larger and stronger charged reac-
tion products, together with the remainder of the electronic cloud, compose negative
ions. In context of the counting tube, both reaction products are called primary ions.

While 3He is gaseous, 10B can be bound in the gas boron trifluoride BF3. Each
gas is separately used to fill gas counting tubes. In counting tubes, the filling gas is
stored under high pressure to increase the probability for a reaction. When reacting
in a counting tube, the fast reaction products collide with atoms or molecules of the
filling gas in their path. The atoms or molecules are ionised by exciting electrons.
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Each ionisation reduces the kinetic energy of the primary ions by the ionisation
energy. After a certain number of ionisations, the remaining kinetic energy of the
primary ions is insufficient to ionise further. In the trajectory of the primary ions,
a trail of secondary ions and electrons is produced.

A counting tube is constructed as a cylinder with a wire in the central axis.
An electrical voltage is applied between the grounded exterior and the inner wire.
The secondary ions are accelerated outwards, the secondary electrons inwards. The
charges are accelerated on the characteristic mean free path, which depends on the
pressure, until a collision. If the gain in kinetic energy is high enough, further
ionisations are induced. Due to the cylindrical geometry, the field is stronger in
proximity to the central wire. Most ionisations are induced close to the wire where
a charge multiplication takes place through a cascade of ionisations. For a cylindrical
geometry, a voltage in the range of kV is sufficient for a proper charge multiplication.
In contrast, a parallel plate geometry necessitates tens of kV.

The above assumes multiple ionisations through each free electrons at the wire.
With opposite polarisation of the electric circuit, the more massive ions are accel-
erated towards the wire. A few problems arise form this. e.g. due to the smaller
velocities of ions, they have a lower mean free path between collisions. With the
same voltage, the volume of charge multiplication is smaller and the signal is lower.
Because a strong signal is a priority, the polarisation is chosen the other way round,
as described in the previous paragraph.

With decreased diameter of the counting tube, boundary effects become impor-
tant. A trail of primary ions will tend to reach out of the detector. Some amount of
primary ions will not be inside the applied potential to cause a cascade. The output
voltage is decreased. It is rare, however, that a nuclear reaction takes place close to
the outer wall of the detector and that both trails of ions face tangentially to the
wall. Only in this case, a nuclear reaction produces a negligible output signal.

By choosing the proportional regime of the applied voltage, the amount of
charges reaching the inner wire is proportional to the kinetic energy of the initial
neutron. For higher voltages applied, the avalanche of charges becomes oversatu-
rated as in a Geiger-Müller device; all initial ions have the same large output signal.
For lower voltages, the gained energy between two collisions is insufficient to induce
ionisations; all initial ions produce a small output signal.

The signal in terms of charge is transformed into a voltage. A pre-amplifier
increases the signal. When feeding this voltage signal to a multi-channel analyser,
the voltage spectrum depicted in Fig. 3.16 is obtained. The distributions of voltages
quantifies the probability of γ signals at low voltages. The peak at high voltages is
due to neutrons depositing all their energy within the counting tube. The neutron
peak extends into a plateau at lower voltages which are caused by neutrons whose
trail of secondary ions extends outside the counting tube. The amplification or gain
of the voltage in the pre-amplifier is chosen such that the high neutron peak in the
spectrum is located close to the maximal voltage of 5V but also not cut off. For
experiments, the voltage output is not fed to an MCA but a discriminator before
the signal is passed on to a user interface. The threshold voltage is chosen at the
minimum between γ signals and neutron signals. The discriminator transforms the
analogue into a digital signal where each pulse is considered to indicate a detection
of a neutron in the counting tube. Electronic noise accounts typically to a count

58



3.3 Manipulation of and Interaction with Neutrons

rate of 0.01 counts/s. The background as given in proximity of a nuclear reactor is
reduced through shielding for the presented experiments to < 0.01 counts/s.

Because the single detection events cannot be correlated in time, the count
distribution is described by Poisson statistics. Therefore, for a neutron count of
N neutrons, the standard deviation is

√
N .
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649
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Figure 3.16: Spectrum of output voltages from the detector, recorded with a multi-
channel analyser (MCA). In the proportional regime of the input voltage applied
to the counting tube, the output voltage is proportional to the initial energy of the
neutron. Gamma rays produce the peak at low output voltages. Counts at output
voltages higher than the first minimum indicate neutron detection. The rightmost
peak indicates neutrons which reacted such that all secondary ions are produced
within the counting tube. Lower output voltages are attributed to boundary effects
such that the trail of secondary ions reaches out of the counting tube. Output signals
between 0 V and 5V are resolved into voltage bins numbered from 0 to ≈ 500. The
gain factor of amplification is chosen such that the spectrum ends before the cut-off
at 5V. The threshold for the discriminator is chosen in the minimum between γ and
neutron signals.
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Chapter 4

Three-Path Quantum Cheshire
Cat

This chapter is based on publication [112] which is reproduced with permission from
Springer Nature.

Although our every-day experience rejects it, the quantum Cheshire Cat suggests
a potential spatial separation between different properties of a single particle in
an interferometer. The first published experiment with neutrons confirmed the
quantum Cheshire Cat effect by using the path and spin degrees of freedom. The
locations of each property are determined qualitatively through reactions to locally
applied perturbations. Yet, no consensus on the interpretation has been reached. To
clarify the origin of the effect, in the present experiment the energy degree of freedom
is used as the third property; three properties of neutrons appear to be separated in
different paths in the interferometer. The analysis of the experiment suggests the
strong involvement of the selection of the final state. The selection is accomplished
through projection between the state vectors, one evolved from the initial state
through the perturbation and the other being the final state. The projection results
in amplitudes from two sub-beams which contribute to the intensity. The cross-term
between amplitudes gives rise to the quantum Cheshire Cat.

4.1 Introduction

Since the introduction of quantum mechanics, its theoretical framework has sug-
gested counter-intuitive and paradoxical phenomena: entanglement [17, 18], Schrö-
dinger’s cat [113, 114], and wave-particle duality [4] are only three of the most
popular ones. Their study provides us with a deeper understanding of nature and
opportunities for new technology [115–118]. All the mentioned effects contradict our
every-day ideas of physical reality. Although the different interpretations of quan-
tum mechanics are equivalent in predicting measurement outcomes, their conflicting
assumptions of the fundamental mechanisms vary greatly.

Another such effect concerns the location of a particle and its properties in an
interferometer. Usually, a particle and its properties are considered as inseparable.
In contrast, Aharonov et al. [22] described intriguing interferometer experiments in
which different properties of a physical entity appear to be spatially separated –
localised in different paths/sub-beams of an interferometer. Aharonov et al. coined
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the term quantum Cheshire Cat (qCC) in tribute to similar behaviour of the so-
called Cheshire Cat in Lewis Carroll’s “Alice’s Adventures in Wonderland” [119].
In the novel, different parts of the Cheshire Cat can appear independently of each
other.

Reference [22] suggests applying an interaction in a particular sub-beam of an
interferometer. If this generates conspicuous reactions of the detected intensity, the
authors propose that the property associated with the interaction is localised in the
manipulated sub-beam. The apparent separation of properties emerges in a pre-
and post-selection procedure. In the interpretation of Reference [22], by applying
an interaction in a path, a statement about the location of a property is deduced.
To combine all deduced statements, the disturbance of the interactions needs to
be small. This is achieved by choosing small interaction strengths such that the
interactions are weak, only minimally disturbing the quantum state. Due to the
small disturbances, the locations of the properties cannot be determined for a sin-
gle neutron but only with the statistics of an ensemble. From the appearance of
conspicuous reactions to each weak interaction when applied in a different path, the
separation of properties is concluded.

The first experimental realisation of a qCC was reported by Denkmayr et al. [23]
in a two-path neutron interferometer with the properties of particle and spin. While
a particle is affected by an absorber, a neutron-spin interacts with magnetic fields.
Implementing the absorption in one path affected the detected mean intensity and
implementing a magnetic field in the other path affected the interference contrast,
giving rise to the perception of a spatial separation between particle and spin.

A selection of other implementations of the Cheshire Cat effect and some dis-
cussions can be found in [120–129]. Possible experimental improvements were sug-
gested, such as the simultaneous realisation of all weak measurements [22], further
consideration of not only the first-order but the second-order reactions to the mid-
way interaction [123], and the implementation of additional degrees of freedom as
pointer systems [124]. Critique was expressed, for instance, questioning whether
the observed effect is purely quantum mechanical [120] and concerning the midway
interaction strength [127].

A generalised form of the qCC with arbitrarily many degrees of freedom and
properties was proposed by Pan [130]. This chapter presents a three-path quantum
Cheshire Cat in a neutron interferometric experiment [100, 131, 132] by additionally
using the energy as third property. The schematic of the three-path qCC is illus-
trated in Fig. 4.1. Each part of the cat corresponds to a property of the neutron.
When directly attributing the location of properties to reactions to local manipula-
tions, the associations are as follows: a direct-current (DC) spin rotation affects the
spin, a radio-frequency (RF) rotation the energy, and absorption the particle. The
reactions to the weak interactions are observed and weak values are determined to
quantify the reactions. By means of this extended version it is demonstrated how
the qCC emerges through the projection of the involved state vectors and the cross-
term of amplitudes from different interferometer paths. This will make the essence
of the qCC evident.
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Figure 4.1: Schematic of the paradoxical effect of the three-path quantum
Cheshire Cat. The cat is separated into three different parts inside the interfer-
ometer. This is analogous to how the neutrons and their properties behave in the
present experiment. The parts of the cat correspond to the neutron properties of
spin (grin), particle (body) and energy (eyes). The reactions to the weak interac-
tions applied during the experiment may lead to the perception that the properties
of the neutron are separated.

4.2 Schematic and Theory

The experiment was carried out on the neutron interferometry station S18 at the
high-flux reactor of the Institut Laue-Langevin (ILL) in Grenoble, France. All
neutron optical elements used are described in Sec. 3. The neutrons are monochro-
matised with a silicon perfect-crystal to a wavelength λ = 1.9 Å and then polarised
by magnetic prisms [133] to the upward +z-direction which defines the quantisation
axis. We will use the symbols ↑ and ↓ to refer to up and down spin states, respec-
tively, which correspond to the ±z-directions. The setup downstream of monochro-
mator and polarisers is depicted in Fig. 4.2. The beam is split by the first two of four
plates of a silicon perfect-crystal interferometer into the three separated sub-beams
indexed by j ∈ {I, II, III}. Through recombination of all sub-beams, the O-beam
in forward direction and the H-beam in diffracted direction are produced. The H-
beam is only used for monitoring. A spin analysis is implemented in the O-beam
by a polarising CoTi multilayer array, referred to as a supermirror. The intensities
of O- and H-beam are recorded by 3He counting tubes. Inside the interferometer,
two phase shifters (PS1 and PS2) control the phase relations between the three
paths. Furthermore, if necessary, a weak spin or energy manipulation or a weak
beam attenuation is applied in the interferometer.

The experimental procedure is divided into the three stages of pre-selection,
weak interaction and post-selection. The pre-selection is realised by monochroma-
tor, polarising magnetic prisms, the beam splitters of the interferometer and two
spin flippers in paths I and III. The spin flipper in path I induces a static DC spin
flip and the one in path III an RF spin flip, where the frequency f of the oscillating
field is 60 kHz (see Sec. 4.3 for details of adjustment). The RF spin flip also changes
the energy by ΔE = hf ≈ 0.25 neV, shifting the initial kinetic energy E0 ≈ 25meV
of the thermal neutrons to the new energy E ′ = E0−ΔE, with ΔE/E0 ≈ 10−8. The
combined effect of the aforementioned neutron optical components makes the sepa-
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Figure 4.2: Setup of the neutron interferometer experiment downstream of
monochromator and polariser. An incoming neutron beam which is polarised
in +z-direction (red arrows) is split into three paths inside a perfect-crystal inter-
ferometer. All sub-beams are recombined and the neutrons in the outgoing O-beam
are detected. The H-beam is only used for monitoring. The experiment consists of
three stages: first, the pre-selection or preparation stage (turquoise) where direct-
current (DC) and radio-frequency (RF) spin manipulators flip the local spin vectors
to the downward orientation (blue arrows) and produce three pairwise orthogonal
sub-beams, cf. text and Eq. (4.1). Second, the weak interaction stage (green) where
one of three interactions, i.e. beam attenuation/absorption (abs) as well as DC and
RF spin rotations, can be applied weakly in one of the three paths. Finally, the
analysis or post-selection (orange) where the phase shifters (PS) 1 and 2 determine
the phases χ1, χ2, cf. Eq. (4.2). At the recombination of the sub-beams and at
the supermirror, respectively, the post-selection projects the incoming state onto a
specific phase relation between the sub-beams in the O-beam and onto the up spin
state. Since for the given pre- and post-selection of Eqs. (4.1) and (4.2) only the
amplitude through path II is accepted by the post-selection, path II is referred to
as the reference beam.
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rated sub-beams pairwise orthogonal when recombined: while the spin orientation
is up in path II and down in paths I and III, the latter two are in different energy
states. The two energy states exhibit time-dependent interference on the microsec-
ond scale [134]. However, the detected counts are time-integrated and the given
intensities are regarded as time averaged intensities such that the time-dependent
interference is not observable. Our model only needs to describe the observable
effects and we assume the two energy states to be orthogonal to each other. There-
fore, the two occupied energy levels and their respective two-level system behave
like a pseudeospin system as applied earlier [49, 135–137]. We will use the braket
notation as an abbreviation to refer to the energy vectors as well as the path and
spin vectors. The according triply entangled pre-selected initial state |i⟩ is then
written as

|i⟩ = 1√
3

�
|I, ↓,E0⟩+ |II, ↑,E0⟩+ |III, ↓,E′⟩

 
. (4.1)

Therein, all states from different Hilbert spaces associated with a sub-beam are
written together in a single ket for each path. The post-selection consists of PS1 and
PS2 with their induced relative phases χ1 and χ2, the analysing crystal plates and
the supermirror in the O-beam. The post-selection is represented by the projector
onto the state |f⟩ given by

|f⟩ = |f(χ1, χ2)⟩ = 1√
3
|↑⟩ �ei(χ2−χ1) |I⟩+ ei(χ1+χ2) |II⟩+ ei(χ1−χ2) |III⟩� , (4.2)

which does not contain any energy terms, meaning no energy selection is employed
in the post-selection. Therefore, all neutrons with up-spins and specific phase re-
lations between the paths and arbitrary energy are selected to propagate towards
the detector. We choose to attribute both phase shifts to the post-selection rather
than the preparation; both approaches are equivalent. The post-selected intensity
|⟨f|i⟩|2 only has a single non-zero contribution, coming from path II, while the com-
ponents from the other paths in the initial state |i⟩ are orthogonal to |f⟩ such that
their contributions to the post-selected intensity are zero. Consequently, given the
pre-selection, only the component of the sub-beam through path II is post-selected.
We will therefore refer to path II as the reference beam in our experiment. The
other paths I and III can contribute to the post-selected intensity, however, when
additional weak interactions are applied as described in the next paragraph. In
contrast to the generalised proposal by Pan [130] (see Sec. 4.4), our post-selection
is not energy selective. Nonetheless, our setup exhibits the same effects in the limit
of small interaction strengths as clarified in Sec. 4.4.

In the weak interaction stage between pre- and post-selection, we apply a weak
DC or RF spin rotation, or a beam attenuation. (For the reference measurements,
all weak interactions are turned off.) The interaction strengths are tuned by the
DC/RF spin rotation angles αrot = π/9 =̂ 20 ◦, and the absorption coefficient A =
0.1 as realised by an indium foil of 0.125mm thickness. The absorption differs
from the cases of DC/RF spin manipulations as it is not a unitary operation; the
conceptual implications will be explained throughout this chapter. We apply only
one interaction in one beam at a time. Any of the three interactions can be applied to
any of the three paths, obtaining nine different situations. All interactions are weak
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and create only small disturbances on the initial state. By combining the results of
each single situation, we infer the locations of each property of the detected neutrons
between pre- and post-selection.

The relevant matrices for the spin and energy flips in the DC and RF cases are
given by

σ̂DC
x = |↑⟩ ⟨↓|+ |↓⟩ ⟨↑| =

�
0 1
1 0

 
spin

(4.3)

and

σ̂RF
x = σ̂DC

x ⊗
�
|E ′⟩ ⟨E0|+ |E0⟩ ⟨E ′|

 
=

�
0 1
1 0

 
spin

⊗
�
0 1
1 0

 
energy

, (4.4)

respectively. The path projectors Π̂j = |j⟩ ⟨j| indicate in which path an operation
or manipulation is conducted. Then the unitary operators for spin and energy
rotations ÛDC

j and ÛRF
j , with the rotation angle αrot around the x-axis in path j,

while leaving the states in the other paths unchanged, can be expressed as (detailed
calculation in Sec. A.1)

ÛDC
j (αrot) = exp

�
−i

αrot

2
σ̂DC
x Π̂j

�
= 1−

�
1− cos

�αrot

2

��
Π̂j − i sin

�αrot

2

�
σ̂DC
x Π̂j and

ÛRF
j (αrot) = exp

�
−i

αrot

2
σ̂RF
x Π̂j

�
= 1−

�
1− cos

�αrot

2

��
Π̂j − i sin

�αrot

2

�
σ̂RF
x Π̂j.

(4.5)

The x-direction is always defined by the beam direction in the respective section
of the setup (see Sec. 4.3 for further explanation). Equation (4.5) indicates that
the DC (RF) spin rotation reduces the amplitude of the original spin component
(spin/energy component) in the corresponding path j from 1 to cos(αrot/2) and
creates a spin-flipped (spin/energy-flipped) component of amplitude −i sin(αrot/2).
In the limit of small αrot, sin(αrot/2) is linear in αrot/2, while the change of the
original component, 1− cos(αrot/2), is smaller, proportional to α2

rot/8.
The operator ÂAbs

j (A) for a weak absorption is written as

ÂAbs
j (A) = 1− (1−√

1−A)Π̂j. (4.6)

It simply describes an attenuation in path j while all other paths are undisturbed.
To define post-selected states which are discriminated in their energy degrees of

freedom, we introduce two ancillary states

|f0⟩ = |f⟩ |E0⟩ and |f ′⟩ = |f⟩ |E′⟩ (4.7)

and define the weak value [24, 51, 52, 138, 139] for the hypothetical energy selection
of |E0⟩ as

⟨Ô⟩E0

w =
⟨f0| Ô |i⟩
⟨f0|i⟩ . (4.8)

As we will see shortly, the weak values of the operators σ̂DC
x Π̂j, Π̂j and σ̂RF

x Π̂j,

where j denotes the path, describe our results. The operator σ̂DC
x Π̂j represents the
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x-component of the spin in path j, while the operator σ̂RF
x Π̂j is the x-component

of the energy observable in path j which is associated with flipping in the energy
system. The calculation of their weak values is straightforward for the initial and
final states given in Eqs. (4.1) and (4.2) and yields

⟨σ̂DC
x Π̂j⟩E0

w = δj,Ie
2iχ1 ,

⟨Π̂j⟩E0

w = δj,II, and

⟨σ̂RF
x Π̂j⟩E0

w = δj,IIIe
2iχ2 .

(4.9)

The Kronecker delta δi,j yields the modulus of the respective weak value. Quanti-
fying the location of properties through the weak values, a modulus of an operator’s
weak value of 1, which is one of the operator’s eigenvalues, is attributed to finding
the corresponding property in the considered path. A modulus of the weak value of
zero excludes finding the property in that path.

With these expressions, the time-averaged intensity I in the post-selected output
port of the interferometer, with a weak DC spin rotation applied (DC case) in path
j, is written as (details in Sec. A.1)

I DC
j (χ1) =

***⟨f|ÛDC
j (αrot)|i⟩

***2
= |⟨f|i⟩|2

�
1 + αrotIm

�
⟨σ̂DC

x Π̂j⟩E0

w

	
+

α2
rot

4

�
***⟨f0| σ̂DC

x Π̂j |i⟩
***2

|⟨f|i⟩|2 +

***⟨f ′| σ̂DC
x Π̂j |i⟩

***2
|⟨f|i⟩|2

"
− α2

rot

4
Re

�
⟨Π̂j⟩E0

w

	
+O(α3

rot)

�
=
1

9

�
1 + αrotδj,I sin(2χ1) +

α2
rot

4
(δj,I − δj,II + δj,III)

�
+O(α3

rot).

(4.10)

The second and third lines describe the intensity in terms of weak values and terms
closely resembling them. The last line gives the expected intensity in terms of
phase shifter orientation and chosen path number. An intensity oscillation with
an amplitude of order αrot emerges under the condition of the Kronecker delta δj,I,
which still gives the modulus of the respective weak value. This condition is met
when the weak DC spin rotation is applied in path I. Then, part of the prepared
down spin state, which is orthogonal to the reference state, is inverted to the up
spin state, which is parallel to the reference state. The down-component is filtered
out by the supermirror of the post-selection and the up-component is transmitted to
the detector. Simultaneous to the emergence of the intensity oscillation, the mean
intensity is increased by the additional parallel component with order α2

rot as also
pointed out in [123]. The same mean intensity increase is expected from a weak
DC spin rotation in the RF-flipped path III because the same up spin component
is created which is transmitted through the supermirror. No intensity oscillation
due to the differing energies is observable, though, in our time-integrating detection
mode. In contrast, by applying the weak DC spin rotation in path II, the portion
of the reference beam accepted by the supermirror is decreased with order α2

rot. For
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small αrot, the first order term is dominant and the reactions to a weak DC spin
rotation on the intensity in path I are conspicuous.

A similar result can be derived assuming a weak RF spin rotation (RF case)
applied in path j:

I RF
j (χ2) =

***⟨f|ÛRF
j (αrot)|i⟩

***2
= |⟨f|i⟩|2

�
1 + αrotIm

�
⟨σ̂RF

x Π̂j⟩E0

w

	
+

α2
rot

4

�
***⟨f0| σ̂RF

x Π̂j |i⟩
***2

|⟨f|i⟩|2 +

***⟨f ′| σ̂RF
x Π̂j |i⟩

***2
|⟨f|i⟩|2

"
− α2

rot

4
Re

�
⟨Π̂j⟩E0

w

	
+O(α3

rot)

�
=
1

9

�
1 + αrotδj,III sin(2χ2) +

α2
rot

4
(δj,I − δj,II + δj,III)

�
+O(α3

rot).

(4.11)

The results in the DC and RF cases are similar up to the exchange of δj,I, δj,III, and
χ1 in the DC case, respectively, for δj,III, δj,I, and χ2 in the RF case.

In the third case of an added weak absorber (absorber case), the intensity I is
described as (details in Sec. A.1)

IAbs
j =

***⟨f|ÂAbs
j (A)|i⟩

***2
= |⟨f|i⟩|2


1−A⟨Π̂j⟩E0

w

�
=
1

9
[1−A δj,II] .

(4.12)

As a result, only an attenuation of the sub-beam in path II with its prepared up
spin state will be registered after the post-selection at the detector in the O-beam.

4.3 Experimental Data

4.3.1 Orienting the interferometer

The interferometer crystal depicted in Fig. 4.3 is oriented relative to the incident
beam coming from the monochromator such that a maximum number of neutrons
traverse the interferometer on the theoretically predicted paths. The orientation of
the interferometer is defined through two angles which are both changed through
rotation stages controlled through linear stages. The axes in the linear stages are
adjusted roughly with stepper motors and fine tuned with Piezo crystals. The az-
imuthal angle θ is changed in a so-called rocking scan. The polar angle ρ is changed
through the so-called ρ axis. The adjustment of these angles is relative to the
incident direction of the neutrons and therefore relative to the upstream monochro-
mator. The orientation of the interferometer crystal determines which wavelength
satisfies the Bragg condition of Eq. (3.9). If the lattice orientations differ between
monochromator and interferometer, the neutrons selected by the monochromator do
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Figure 4.3: Photograph of the four-plate single crystal neutron interferometer used
for the experiment presented in this section. The length is about 10 cm. At each
interferometer plate, a beam splitting is produced in Laue configuration. This leads
to three separated beam paths interfering at the last interferometer plate as depicted
schematically in Fig. 4.2.

not precisely fulfil the Bragg condition at the interferometer crystal and the diffrac-
tion peak of the interferometer is broadened; the maximum intensity is reduced at
the output ports. The broadening is equivalent to an increased divergence. With
proper adjustment of the ρ axis, the neutrons impinge in a plane perpendicular to
the crystal planes of the interferometer. This is supposed to be true when the basis
for the interferometer is horizontal. However, there are deviations in the orienta-
tion of the monochromator crystal and manufacturing process of the interferometer.
Consequently, the best alignment of the crystal basis is in general not horizontal.

When correctly orienting the crystal, the intensity in the O-beam is maximal.
Dynamical theory of diffraction as introduced in Sec. 3.3.3 causes the diffracted H-
beam of the interferometer to have a higher peak in intensity than the O-beam.
Maximum intensity in O- and H-beam are coupled to each other.

Adjustment of the orientation starts by choosing which paths in the interferom-
eter to keep open. The intensity in specific output beams changes with the phase
relation between the paths. In the case of the present four-plate interferometer ex-
periment, all paths are opened and the sum of all three output intensities is used
in this section. (A different method is described for the second experiment pre-
sented in Sec. 5.4.2.) The outputs are O- and H-beam as well as the output from
the first interferometer loop, as seen in Fig. 4.2. Using the sum renders the phase
relation between the paths inconsequential for the total intensity. However, the in-
tensity distribution over the three output ports is phase dependent. Each beam is
characterised as a series of reflections and transmissions which determine properties
such as the sharpness of the beam. In consequence, the sum of intensities may be
distributed more sharply or broader dependent on the phase relations. The phase
relation is assumed as constant for adjustment of the ρ axis.

A value for the ρ axis is chosen and a rocking scan is started. The resulting
intensity is characterised by a Gaussian peak. By repeating the rocking scan for
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different ρ axis values, , the rocking scans depicted in Fig. 4.4 were recorded. The
sharpest rocking scan with highest intensity determines the value of the ρ axis for
the remainder of the experiment.

To extract the broadness and height of the peaks, the intensities are fit. The fit
function for the Gaussian peaks is chosen as

I(θ) = I0 exp

�
−(θ − θ0)

2

2σ2

 
, (4.13)

with the maximum intensity I0, the position of the maximum at θ0 and the standard
deviation σ. The intensity of each of the three output ports is close to a Gaussian
distribution, centred at about the same position of the rocking angle with different
standard deviations. Their sum is not a Gaussian function. Fitting the sum with a
single Gaussian, either well characterises the peak or its tails. Since the purpose of
this adjustment is to maximise the peak height, only the data between and close to
the inclination points is used, as can be seen in Fig. 4.4. Even with cutting off the
tails, the maxima of the fit are systematically lower than the data points, while the
tails of the fit are systematically higher than the data points. This demonstrates
that a Gaussian is suited but not the ideal to model the sum of different output
intensities in a rocking curve. (A farther reaching argument is given by means of
the rocking scans during the other presented experiment in Sec. 5.4.1.)

The resulting FWHMs from the fits are depicted in Fig. 4.5. The results of
the re-evaluation, using all depicted data points in Fig. 4.4, are plotted in Fig. 4.5
in yellow. The blue data and fit refer to the ad hoc analysis. A function of the
software used ad hoc during data acquisition is to drop data points below a certain
threshold relative to the maximum intensity recorded. The threshold is typically at
70%. With this value, the tails of the peak are cut off even closer to the maximum
than the inclination points are. This reduces effects from, e.g. background. The ad
hoc results for the FWHMs are lower than their counter-parts in the re-evaluation,
since the ad hoc analysis elevates the influence of the sharpest output peak. Due to
statistical effects, the difference between the data sets is not amended by a single
factor. Both analyses agree closely, however, on the value for ρ where the sharpest
maximum emerges.

4.3.2 Interferograms with Empty Interferometer

Temperature stability in the environment of the interferometer is crucial to observe
the interference effect. As stated in Secs. 3.3.3 and 4.3.1, an adjustment between the
monochromator and interferometer crystal is necessary. In addition, when the spin-
rotators are inserted in the interferometer, temperature adjustment of these devices
is also essential to get high contrast of the interference fringes. A temperature scan
of the water cooling circuit for the RF coils is depicted in Fig. 4.6 as yellow curve.
As can be seen, the temperature was changed in steps of 0.2 °C. (Some systematic
effects are explained in the caption of Fig. 4.6.) During the time for a step, three
interferograms were recorded which resulted in interferometric contrasts depicted
in Fig. 4.7. The contrast rises and falls again with changing temperature. When
reducing the temperature, the first interferogram in each step exhibits a slightly
lower contrast than the consecutive two interferograms. This can be attributed
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Figure 4.4: Counts of rocking curves for different ρ axis positions as indicated to
the right. Error bars indicate one standard deviation. Fits of the form of Eq. (4.13)
are plotted as solid curves. The counts of each rocking scan is the sum of the
three output ports. Each output is modelled as a Gaussian function with different
standard deviations. Therefore, the sum is not fitted well for both the peak and its
tails. For the presented fits, only the data between the inclination points is used to
fit the peak well.

to the high instability in temperature directly after each step. Nevertheless, it
is curious why this effect is not as pronounced when increasing the temperature.
The temperature interval, in which interference fringes are observed, stretches over
≈ 1°C. This concerns the mean temperature. Recurring disturbances in temperature
of this order of magnitude have to be avoided to observe interference fringes at all.
The necessary temperature stability to reach a saturation in contrast is estimated
to be of the order 0.1°C-0.01°C.

The contrasts are plotted in Fig. 4.8 dependent on the water temperature for the
RF coils. A fit indicates the temperature for the highest contrast. The fit gave a
temperature different from the temperature measured at the monochromator. We
questioned this discrepancy at first. However, there is a systematic difference of
about 0.2 °C in the temperature sent to the water cooling control system on the one
hand and the temperature measured at the housing of the coils in the interferometer
on the other hand. Therefore, the ideal water temperature for the water cooler is
effectively the same as the temperature at the monochromator.

Each pair of sub-beams constitutes an interference loop. They are referred to
as front, rear and outer loop which are composed, respectively, of beams I and
II, beams II and III, and beams I and III. To confirm the initial coherence of the
sub-beams in the interferometer, interferograms (IFGs) of the interferometer empty
of any local fields or absorbers were recorded which are depicted in Fig. 4.9. In
the left case of Fig. 4.9, only phase shifter 1 (PS1) was rotated and phase shifter
2 (PS2) was oriented such that the rear loop passes on a maximum intensity in
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Figure 4.5: Full widths at half maxima (FWHM) plotted over ρ axis position.
Blue data refers to the ad hoc analysis. Yellow data is the re-evaluation after the
measurement campaign. Error bars indicate one standard deviation. Polynomial
fits to the second order in ρ are plotted as solid curves.

O-direction (see Fig. 4.2). Likewise, in the right case only PS2 was rotated and PS1
was oriented such that the front loop passes on a maximum intensity towards the
last interferometer plate. In the middle case, both PS1 and PS2 are initially oriented
such that a maximum intensity is acquired in O-direction. The IFG is then recorded
by simultaneously rotating both PS1 and PS2 to induce a relative phase between
the reference beam II and the other two sub-beams. Contrasts ≥ 50% were reached
which indicate the moderate level of coherence achievable with our interferometer
in the respective loops. The specific values, given in the caption of Fig. 4.9, are used
in the data analysis of Sec. 4.3.6 to compare the observed contrasts when applying
weak interactions.
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Figure 4.6: Temperatures at different sensor positions of the setup plotted dependent
on the local time. The temperature of the two guide field coils are plotted in
red and gray. The water in the same cooling circuit flows through the upper coil
first. The lower coil is therefore warmer. The unstepped yellow temperature is
recorded at a sensor on the floor. It has a sharp peak with a width of several
minutes at the beginning of the graph at about 8 p.m. This can be attributed
to opening the doors to the instrument a last time to check on the setup before
the end of the shift. The top blue and red temperatures (sensors 2 and 4) at
higher positions are more inert to this disturbance and stabilise only after multiple
hours. The blue curve indicates the temperature recorded by a sensor below the
interferometer. This temperature can be compared to the temperature of the water
which cools the coils inside the interferometer, plotted in yellow with multiple steps.
This yellow temperature is regulated by a water cooling system in the outer room
of the instrument S18, cf. Sec. 3.3.6. The yellow water temperature is changed
in steps of 0.2°C. The temperature is indicated with two values. The nominal
temperature which is sent to the water cooling system is written on top. The
temperature measured with a sensor positioned on the housing of the cooled coils
is written below. During each step, interferograms are recorded. The contrasts of
these interferograms is depicted in Fig. 4.7.
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Figure 4.7: Contrasts of interferograms plotted dependent on the local time. The
temperature in the water cooling circuits of the coils in the interferometer was
scanned as depicted in Fig. 4.6. At each step of the temperature, three interferogram
were recorded by inducing a relative phase shift in each of the three interference
loops. The contrasts are extracted from sinusoidal fits. The contrast increases to a
maximum before falling again. These contrast values are plotted dependent on the
regulated water temperature in Fig. 4.8.
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Figure 4.8: Contrasts of interferograms plotted dependent on the water temperature
for the coiling circuit running through the magnetic coils in the interferometer. Error
bars indicate one standard deviation. The temperature scan and the contrasts
of interferograms recorded during this time are depicted in Figs. 4.6 and 4.7. A
parabolic fit function is chosen to determine the termperature at which the highest
interferometric contrast is achieved.
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Figure 4.9: Interferograms and their fits for the empty interferometer.
Intensity detected in the O-beam normalised by mean intensity plotted against
phase shift induced in the path specified at the bottom. The integration time per
point is 30 s with a mean count rate of about 50/s. The statistical error bars indicate
one standard deviation. Contrasts are extracted from the respective sinusoidal fits
plotted as solid lines. The contrasts from left to right of 57(1)%, 53(3)%, and
50(2)% indicate the achievable level of coherence.
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4.3.3 Coil Adjustment

We define the z-axis vertically and the x-axis by the local beam direction in each
section of the interferometer. Alternatively, one could differentiate between the
orientations of the coils by explicitly defining global x- and y-axes. This would add
a phase shift to certain spin components. Since the analysis of the data will not
require a detailed justification of the phase shift between different IFGs, a local
definition suffices.

For both DC and RF coils, the currents for a spin flip have to be adjusted. These
currents regulate the magnetic fields in x- and z-direction of each coil. The frequency
for the RF coils is chosen as 60 kHz. This corresponds to a resonant field of about
20G=2mT local guide field strength. A global guide field of about 10G is applied to
allow for both RF and DC spin rotations: while this field is compensated to a net zero
z-field in coils when applying DC rotations, it is approximately doubled to meet the
flip condition for RF rotations. This combination minimises inhomogeneities in the
fields of the miniature spin rotators [140, 141]. To roughly adjust and determine the
flip currents in both the DC as well as RF coils, only the respective sub-beam is used,
while all others are blocked by beam stoppers. This composes a polarimetric setup
and the intensity is measured with varied z-field and rotation currents. Estimates
for guide field compensation (DC case) and amplification (RF case) are determined
as well as for the currents/amplitudes Iflip for the x-fields of DC and RF flips.
After that an interferometric method is used to ensure low initial contrasts: as
spin flips produce an orthogonal state compared to the reference beam of path
II, interferograms have minimal contrast at the flip conditions. When recording
several interferograms with slightly varied currents I applied as described in the
polarimetric case above, the resulting contrasts should have a sharper minimum
due to the behaviour proportional to | sin(I − Iflip)| which is locally proportional
to I − Iflip. This has to be compared to the direct polarimetric approach with its
cosine behaviour of the intensity which is locally proportional to (I − Iflip)

2 at its
differentiable minimum.

A typical adjustment scan is depicted in Fig. 4.10 where the contrast is found
the lowest at 1.5A. To both sides of that value, the contrast is increasing at lowest
order linearly. A residual contrast of about 3% remains which is dominant in a small
current interval at the minimum and which quantifies the overall spin manipulation
efficiency of the setup.

A principal source for reduced spin manipulation efficiencies ϵI, ϵIII in paths I
and III are the field inhomogeneities over the beam cross-section. The systematic
errors of the preparational contrast are estimated in Tab. 4.5. The efficiencies can
be estimated by assuming a pure state but with components unaffected by the
preparing DC and RF flippers. The component ϵI is spin flipped by the DC flipper
in path I, while the remaining component stays in the reference state. Similarly,
the component ϵIII is spin-energy flipped by the RF flipper in path III while the
remaining component stays in the reference state. The unaffected components are
still coherent and interfere at recombination with the reference state from path
II; a residual final contrast is observed. This reasoning can be extended to the
weak measurement IFGs where the weak interactions modify the spin manipulation
efficiencies to the values ϵ′I, ϵ

′
I and according contrast values for the off-diagonal

elements of Fig. 4.12.
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Figure 4.10: Coil adjustment through contrast measurements. The blue dots
indicate the contrasts recorded with a radio-frequency (RF) spin flipper in operation
and the current I for its local guide field amplification varied. The blue statistical
error bars indicate one standard deviation, solid blue curve is the fit. Around the
minimum at Iflip, the contrast has a local behaviour proportional to |I − Iflip| and
therefore a sharper minimum than with a polarimetric approach via the intensity.

4.3.4 Interferograms with Applied Preparation

The preparation of the initial state, given in Eq. (4.1), is implemented by a DC
flip in path I and an RF flip in path III. Let us call the measured IFGs, depicted
in Fig. 4.11, preparational IFGs. Phase shifts are implemented in all three paths,
resulting in the three columns of Fig. 4.11. The fit function for the time-averaged
intensity of all IFGs is of the form

I(χ) = I0 +B sin(ωχ+ ϕ), (4.14)

with the mean intensity offset I0 and an intensity oscillation with amplitude B,
angular velocity ω, the phase shifter orientation χ, and the phase offset ϕ. Contrasts
extracted from the fits are given in Tab. 4.1. The preparational IFGs characterise
the orthogonality of the initial sub-states and are a reference for the quantitative
data analysis. The obtained contrast values quantify the quality of the preparation.
We will refer to the following 3×3 arrays of IFGs or numbers as matrices and to their
diagonal, off-diagonal, and anti-diagonal elements as in a normal square matrix.

As stated in Sec. Coil Adjustment, to meet the resonance condition for spin ro-
tations, the external guide field is locally suppressed by a compensation field for
the weak DC rotations, while it is locally increased for the weak RF rotations. All
local fields create stray fields and switching them on and off induces field offsets and
inhomogeneities in the adjacent coils which lower the efficiency of their spin manip-
ulations. The offsets can be compensated with our devices but the inhomogeneities
cannot.

When the preparation is applied in anticipation of the weak RF measurements,
we chose to leave the local guide field amplification permanently turned on and
compensate the field offset in the adjacent coils. Then only the RF-field is turned
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on and off rather than both the RF and z-fields. This technique lowers the effi-
ciency of the manipulations through the inhomogeneities in the preparational cases
but increases the overall efficiency when the weak interactions are applied later on.
The technique cannot be applied in the DC case because it would create a zero-field
region which induces depolarisation. When the prepartion is applied anticipating
measurements with weak absorptions, the global guide field is remained as in the DC
case. The experimental parameters slightly shifted in time, however, between ab-
sorption and DC case. Consequently, there are different preparational adjustments
applied which ought to produce the same pre-selected state. This is the reason why
there are multiple rows of preparational IFGs and their contrasts in Fig. 4.11 and
Tab. 4.1.
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Figure 4.11: Interferograms and their fits with preparation applied. The
blue data points indicate the intensities detected in the O-beam normalised by mean
intensities plotted against phase shifts induced in the path specified at the bottom.
The integration time per point is 90 s with a mean count rate of about 15/s. The
blue statistical error bars indicate one standard deviation. The three rows of inter-
ferograms in the figure are obtained with different configurations for the preparation
(prep) for the direct-current (DC), absorber (abs), and radio-frequency (RF) case
as written to the left, which are used for different further reference measurements
(see Sec. 4.3 for further explanation). Contrasts are extracted from sinusoidal fits
plotted as solid blue lines. The low contrasts ≤ 4%, given in Tab. 4.1, imply a good
preparational quality, i.e. a high degree of orthogonality between the sub-beams.

4.3.5 Interferograms with Applied Preparation and Weak
Interaction

The preparation is assumed to be applied from now on. Finally, when separately
applying one of the three weak interactions in one of the three sub-beams, the nine
IFGs presented in Fig. 4.12 were recorded, which will be called weak-interaction

78



4.3 Experimental Data

Contrasts with preparation

preparation for
weak interaction

phase shift in path

I II III

DC 1.7%±0.9% stat
±4% sys 2.8%±0.9% stat

±4% sys 1.3%±1.1% stat
±4% sys

Abs 0.8%±0.7% stat
±4% sys 2.7%±0.9% stat

±4% sys 0.3%±0.6% stat
±4% sys

RF 3.8%±1.1% stat
±4% sys 2.3%±0.6% stat

±4% sys 4.0%±0.6% stat
±4% sys

Table 4.1: Contrasts of fitted interferograms in Fig. 4.11 with preparations applied
for the three different weak interactions but without the weak interactions them-
selves. The statistical errors (stat) given indicate one standard deviation. The
systematic errors (sys) are estimated in the Tab. 4.5. The three rows are obtained
with different configurations for the preparation as written to the left which are used
for different further reference measurements (see Sec. 4.3.3). The values in contrast
quantify the quality of the preparation.

IFGs. When comparing the weak-interaction IFGs of Fig. 4.12 with the prepa-
rational IFGs of Fig. 4.11, conspicuous reactions appear in the coloured diagonal
elements of Fig. 4.12 where either significant intensity oscillations or a significant
drop in count rate is produced.

The weak interaction IFGs were recorded in combination with the preparational
IFGs in an alternating “on”/“off” scheme, i.e. by turning the weak interaction on
and off, before moving the phase shifter to the next orientation. This measurement
protocol ensures the comparability of phase and contrast of the “on” and “off” IFGs
which is needed in the data analysis. The IFGs with absorbers were not recorded in
an ‘on”/“off” scheme but right after each other while ensuring stable phase relations
via the thermal control system.

4.3.6 Extraction of Weak Values

Weak values are extracted for all nine situations, where the term situation now
refers to a combination of a specific weak interaction applied in a specific path.
Weak values are given by comparing the measured IFGs of Figs. 4.11 and 4.12 with
the predictions from Eqs. (4.10), (4.11), and (4.12) in the limit of small interaction
strengths. One may be inclined to directly extract the weak values as ratio of
contrast divided by the maximum contrast for the absolute values of the spin weak
values and the energy weak values; and as the reduction in mean count divided by the
mean counts in the preparation interferograms for the path weak values (as will be
given in Eq. (4.26)). This procedure results in the raw weak values given in Tab. 4.2.
One can differentiate between two deviations from the expectation of an identity
matrix: the deviations of the single weak values and the deviations of the sum of all
weak values over all paths for a specific interaction (as indicated to the right) or over
all interactions for a specific path. The single weak values are all consistent with a
unity matrix when considering the statistical errors and the efficiencies in our setup.
Yet, the weak values summed over all paths or interactions differ substantially from
the prediction of 1. This implies a systematic over-estimation of the weak values.
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Figure 4.12: Interferograms and their fits with preparation and weak in-
teractions applied. In each row, a different weak interactions is applied, i.e. the
direct-current (DC), absorber, and radio-frequency (RF) cases as labelled to the left.
The blue data points indicate the intensities recorded in the O-beam, normalised by
mean intensities of corresponding preparational interferograms of Fig. 4.11, plotted
against phase shifts induced in the path specified at the bottom. The blue statisti-
cal error bars indicate one standard deviation, solid blue curves are fits. The most
noticeable reactions compared to the preparational interferograms of Fig. 4.11 are
found in the coloured diagonal elements, coloured in light red. The off-diagonal
elements (shown with white background) exhibit only inconspicuous reactions. The
symbols in the upper right corners indicate different kinds of situations described
in the Sec. 4.4.3.

The above “naive” method to extract the weak values ignores, however, the
phase shifts between the preparational IFGs and the weak measurement IFGs. The
detailed data correction is given in the following. Parameters in this section with
indices “empty”, “prep” and “weak” correspond to the three types of interferograms
recorded, respectively, with either no elements in the interferometer, with the prepa-
rational DC and RF flip applied, and an additional weak interaction applied. To
read out the signal generated by the weak interaction, we assume that, in the case of
the weak interaction IFGs, the time-independent intensity oscillation of Eq. (4.14)
is the sum of two independent oscillations:

Iweak(χ) =I0,weak +Bweak cos(ωemptyχ+ ϕweak)

=I0,weak +Bprep cos(ωemptyχ+ ϕprep) + Bsignal cos(ωemptyχ+ ϕsignal).

(4.15)

Therein, the “signal” refers to the changes in the IFGs from the preparational case to
the weak interaction case. The amplitude and phase of the signal can be retrieved
by comparing interferograms of the sets consisting of an interferogram with only
the preparation applied and an interferogram with an additional weak interaction
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Raw weak values

path

weak value I II III
)

I,II,III***⟨σ̂DC
x Π̂j⟩E0

w

*** 0.96±0.09 0.19±0.04 0.08±0.04 1.23±0.11

⟨Π̂j⟩E0

w 0.07±0.08 0.85±0.12 0.09±0.07 1.01±0.16***⟨σ̂RF
x Π̂j⟩E0

w

*** 0.19±0.04 0.12±0.04 0.82±0.07 1.13±0.11

)
DC,Abs,RF 1.22±0.13 1.16±0.13 0.99±0.11 -

Table 4.2: Numerical presentation of the raw weak values of the x spin component,
path operator, and energy transition operator of each path without data correction.
The statistical errors given indicate one standard deviation. While the modulus of
the weak values is extracted for the spin and energy observables, the path weak
values are extracted directly. The sums of the weak values in each row and column
are given at the bottom and right, respectively. An additional data correction leads
to the

applied. The signal amplitude Bsignal and its statistical error ΔBsignal follow from
Eq. (4.15) as

Bsignal =
$
B2

weak +B2
prep − 2BweakBprep cos(ϕweak − ϕprep) (4.16)

and

ΔBsignal =
1

Bsignal

�
[(Bweak − Bprep cos(ϕweak − ϕprep))ΔBweak]

2

+ [(Bprep − Bweak cos(ϕweak − ϕprep))ΔBprep]
2

+(BweakBprep sin(ϕweak − ϕprep))
2 (Δϕ2

weak +Δϕ2
prep)

�1/2
.

(4.17)

We compare the experimental data with the theoretical prediction. By substituting
the second last equality in Eq. (A.3) into Eq. (4.15) and neglecting terms of order
higher than αrot we obtain

|⟨f|i⟩|2
�
1 + CemptyαrotIm

�
⟨σ̂DC

x Π̂⟩E0

w

	�
= I0,weak +Bprep cos(ωemptyχ+ ϕprep)

+Bsignal cos(ωemptyχ+ ϕsignal).

(4.18)

This includes the correction considering the maximum experimental contrast Cempty

of the empty interferometer given through the fits in Fig. 4.9. The index j of the
path where the rotation is implemented is omitted here. We can drop the oscil-
lation proportional to Bprep already present in the preparational IFGs as it is an
experimental imperfection and does not represent the behaviour described by weak
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values. It is however included through the error propagation of Eq. (4.17). Further-
more, we can insert |⟨f|i⟩|2 = I0,prep ≈ I0,weak. In this context, it is important to
discern between the phase χ′ of the wave function and the phase shifter position χ
that are related via χ′ = ωemptyχ+ const. such that ωemptyχ+ ϕsignal = χ′ + ϕ′

signal.
It follows that

I0,prep

�
1 + CemptyαrotIm

�
⟨σ̂DC

x Π̂⟩E0

w

	�
= I0,weak +Bsignal cos(χ

′ + ϕ′
signal),

1 + CemptyαrotIm
�
⟨σ̂DC

x Π̂⟩E0

w

	
=

I0,weak
I0,prep

+
Bsignal

I0,prep
cos(χ′ + ϕ′

signal),

CemptyαrotIm
�
⟨σ̂DC

x Π̂⟩E0

w

	
≈ Bsignal

I0,prep
cos(χ′ + ϕ′

signal),

Im
�
⟨σ̂DC

x Π̂⟩E0

w

	
cos(χ′ + ϕ′

signal)
≈

Bsignal

I0,prep

Cemptyαrot

, ∀ χ′ ∈ R.

(4.19)

Since this relation must hold for all χ′, the imaginary part of the weak value must
be sinusoidal as obtained in Eq. (4.9). Furthermore, the cosine function and the
imaginary part of the weak value must have the same frequency and be in phase.
The weak values of Eq. (4.9) all have constant moduli and we also assume this to
hold for all extracted weak values. Thus we finally obtain in first order of αrot the
measured modulus of the weak value

***⟨σ̂DC
x Π̂⟩E0

w

*** = Bsignal

I0,prep

Cemptyαrot

, (4.20)

and its statistical error

Δ
***⟨σ̂DC

x Π̂⟩E0

w

*** = Bsignal

I0,prepCemptyαrot

×

×
%�

ΔBsignal

Bsignal

 2

+

�
ΔI0,prep
I0,prep

 2

+

�
ΔCempty

Cempty

 2

+

�
Δαrot

αrot

 2

.

(4.21)

The same steps lead to a similar result for the RF case. For the case of weak
absorption, we measured the absorption coefficient of the indium foil with a single
interferometer path as

A = 1− 0.90(1) = 0.10(1). (4.22)

We substitute the second last line in Eq. (A.4) into Eq. (4.15) such that

|⟨f|i⟩|2

1− ⟨Π̂⟩E0

w A
�
= I0,weak + Aprep cos(ωemptyχ+ ϕprep)

+ Asignal cos(ωemptyχ+ ϕsignal).
(4.23)

The index j of the path where the absorption is implemented is omitted again.
Both oscillations can be neglected as they neither describe a reaction to the weak
absorption nor change the mean intensity. With similar steps as for the DC case we
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calculate

|⟨f|i⟩|2

1− ⟨Π̂⟩E0

w A
�
= I0,weak

I0,prep


1− ⟨Π̂⟩E0

w A
�
= I0,weak

1− ⟨Π̂⟩E0

w A =
I0,weak
I0,prep

⟨Π̂⟩E0

w A = 1− I0,weak
I0,prep

⟨Π̂⟩E0

w =
Aw

A ,

(4.24)

with the effective absorption coefficient Aw in the path of the interferometer written
as

Aw = 1− I0,weak
I0,prep

. (4.25)

The propagated statistical error of the path weak value is given by

Δ ⟨Π̂⟩E0

w =
1

A

%��
1− I0,weak

I0,prep

 
ΔA
A

�2
+

�
I0,weak

ΔI0,prep
I20,prep

 2

+

�
ΔI0,weak
I0,prep

 2

.

(4.26)
The respective final results for the corrected weak values are presented in Fig. 4.13
and Tab. 4.3 and approximate the ideal identity matrix given by Eq. (4.9). The raw
path weak values are not corrected and the raw values from Tab. 4.2 are displayed
again. In contrast to the raw results, the corrected weak values summed up over
all paths or over all interactions are more consistent with the expected value of 1.
The data correction considering the phase shifts between preparational and weak
measurement interferograms can be considered to eliminate the systematic over-
estimation of the weak values.
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Figure 4.13: Weak values presented graphically. Graphical presentation of the
weak values of the x spin component, path operator, and energy transition operator
of each path as presented numerically in Tab. 4.3. The light red bars give the moduli
of the relevant weak values extracted from interferograms in Figs. 4.11 and 4.12 for
each path j. The black statistical error bars indicate one standard deviation. The
green systematic error bars are estimated in Tab. 4.5. For the path weak values

⟨Π̂j⟩E0

w of the absorber measurements, not the modulus but the weak value itself
is given. Blue crosses indicate the ideal theoretical moduli of weak values which
compose an identity matrix.

Weak values

path

weak value I II III
)

I,II,III***⟨σ̂DC
x Π̂j⟩E0

w

*** 0.90±0.10 stat
±0.04 sys 0.17±0.07 stat

±0.04 sys 0.00±0.08 stat
±0.04 sys 1.07±0.15 stat

±0.07 sys

⟨Π̂j⟩E0

w 0.07±0.08 stat
±0.04 sys 0.85±0.12 stat

±0.04 sys 0.09±0.07 stat
±0.04 sys 1.01±0.16 stat

±0.07 sys***⟨σ̂RF
x Π̂j⟩E0

w

*** 0.09±0.07 stat
±0.04 sys 0.03±0.05 stat

±0.04 sys 0.75±0.07 stat
±0.20 sys 0.87±0.11 stat

±0.20 sys

)
DC,Abs,RF 1.06±0.15 stat

±0.04 sys 1.05±0.15 stat
±0.07 sys 0.84±0.13 stat

±0.20 sys -

Table 4.3: Numerical presentation of the weak values of the x spin component, path
operator, and energy transition operator of each path as presented graphically in
Fig. 4.13. The statistical errors (stat) given indicate one standard deviation. The
systematic errors (sys) are estimated in Tab. 4.5. While the modulus of the weak
values is extracted for the spin and energy observables, the path weak values are
extracted directly. The sums of the weak values in each row and column are given
at the bottom and right, respectively.

84



4.3 Experimental Data

4.3.7 Second Order Behaviour

When applying the weak interactions in our experiment, changes in the mean intensi-
ties compared to the preparational IFGs are expected in seven of the nine situations.
For the weak beam attenuations, the intensity changes directly give the path weak
values of Eqs. (4.9) and (4.12), Fig. 4.13, and Tab. 4.3. For the unitary spin/energy
manipulations, the mean intensity changes correspond to the terms proportional to
±α2

rot in Eqs. (4.10) and (4.11). (In the exact calculation of Eq. (4.32), the mean
intensity changes are represented by the terms proportional to ± sin2(α/2).) In our
experiment, the intensities are expected to increase by α2

rot/4 ≈ 3% when induc-
ing weak unitary rotations in paths I or III, while a decrease of the same amount
is expected for weak unitary rotations induced in path II. The measured intensity
changes between the IFGs of Figs. 4.11 and 4.12 are given in Fig. 4.14 and Tab. 4.4.
The theoretical prediction and the experimental results show reasonable agreement.
Their comparison suffices to establish higher order reactions which demonstrate
that the intensity changes in all three paths through the unitary weak interactions
as described in [23, 123]. But a higher statistical precision will be necessary to
quantitatively confirm the theoretically predicted intensity changes.
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Figure 4.14: Changes of the mean intensities presented graphically. Graphi-
cal presentation of relative changes between mean intensities Iweak of weak measure-
ment IFGs in Fig. 4.12 normalised with mean intensities Iprep of preparational IFGs
in Fig. 4.11 for each combination of weak interaction and path. Gray bars refer to
an increase in intensity, pink ones to a decrease. The statistical error bars indicate
one standard deviation. Blue crosses indicate the values expected from theory. The
normalised intensities are directly given in Tab. 4.4. In the absorber cases described
by Eq. (4.12), an intensity drop proportional to A of 10% is expected in path II. In
the DC and RF cases described by Eqs. (4.10) and (4.11), intensity changes propor-
tional to α2

rot of approximately ±3% are expected.
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Relative intensities

weak
interaction

path

I II III

DC 1.02(1) 0.99(1) 1.01(1)

Abs 0.99(1) 0.92(1) 0.99(1)

RF 1.02(1) 0.99(1) 1.05(1)

Table 4.4: Numerical mean intensities of weak measurement IFGs in Figs. 4.12 nor-
malised with mean intensities of preparational IFGs in Fig. 4.11 for each combina-
tion of weak interaction and path as presented graphically through relative intensity
changes in Fig. 4.14. The statistical errors given indicate one standard deviation. In
the case of a weak absorber, solely a 10% decrease is expected in path II, while the
other paths are expected to be unaffected. In the DC and RF cases, reactions pro-
portional to α2

rot are expected to change the mean intensities according to Eqs. (4.10)
and (4.11) by approximately ±3%.

4.4 Discussion

4.4.1 Experimental Resources

For the given pre- and post-selection of Eqs. (4.1) and (4.2), the contrast of IFGs
is ideally zero. As can be seen from Fig. 4.11 and Tab. 4.1, lower contrasts were
achieved in the DC and absorber cases compared to the RF case. This is expected
when implementing the technique for locally modifying the guide field for the coil
adjustments described in Sec. 4.3. On the other hand, the technique should increase
the quality of the weak RF spin rotations. However, the weak value deviating the
most from the theory is in the case of a weak RF interaction in path III where
it is obtained as 0.7 compared to the prediction of 1, cf. Fig. 4.13, Tab. 4.3, and
Eq. (4.9). As the coil for the preparational RF spin flip in path III is close to the coil
inducing the weak RF rotation (see Fig. 4.2), their interaction in terms of electrical
oscillating circuits could have induced unintended additional spin manipulations.
An estimation of the upper boundaries of systematic errors is given in Tab. 4.5.

Again, the weak value for the RF case in path III deviates from the theory. The
deviations of all the other weak values from their expectations are of the magnitude
of their statistical errors. The errors are of the same magnitude for all elements as
the decreased error of the amplitude for IFGs with low contrast is partly compen-
sated by the increased error of the phase, see Eq. (4.17) in the data analysis below.
Furthermore, we extract only the modulus of the weak values for spin and energy
observables. Thus, these off-diagonal weak values cannot be distributed symetrically
around zero.

The energy changes produced with the RF coils are coupled with spin flips in
our experiment. This is in principle avoidable when using a combination of an RF
and a DC spin flipper instead. The first one flips the energy and spin vector, while
the second one flips the spin vector back to the initial orientation. This effectively
produces an energy change without spin manipulation.
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Since both spin and energy in our experiment are treated as two-level systems,
four possible combinations exist which are orthogonal to each other. The keen reader
might have noticed that one of them, the state |↑,E′⟩, was not mentioned, yet. This
fourth state could only be produced by a combination of both a DC spin flip and
an RF spin flip as described in the previous paragraph. This state has a particular
character as it is expected to exhibit no conspicuous reaction to any single weak
interaction – neither of DC nor RF spin rotations.

Estimation of systematic errors

origin of
systematic

expressed as systematic error on

measure quantity
prep.
contrast

weak value

thermal stability
contrast ΔC ≤ ±0.02 < 0.01 < 0.01
phase stability Δϕ ≤ ±1◦/hour – < 0.01

current adjustment spin rotation angle Δα ≤ ±0.5◦ < 0.01 ≤ 0.025

eddy currents in
Indium foil (weak
Abs)

spin rotation angle Δα ≤ ±0.5◦ – ≤ 0.025

mutual current
induction between
coils (weak RF
path III)

spin rotation angle Δα ≤ ±4◦ – ≤ 0.20

monochromaticity wavelength
distribution

δλ/λ0 ≤ 0.02 ≤ 0.02 < 0.01 (corrected for)
⇕
ϵ ≥ 0.98

field inhomogeneity spin manipulation
efficiency

ϵ ≥ 0.9 ≤ 0.03 < 0.01 (corrected for)

spin polarisation degree of
polarisation

P > 99% < 0.01 < 0.01 (corrected for)

total systematic error ≤ 0.04
≤ 0.20 (weak RF path III)
≤ 0.04 (other cases)

Table 4.5: Origins of systematic errors and their estimated consequences on the
preparational contrast of Fig. 3/Tab. I and weak values of Fig. 5 and Tab. II. The
highest systematic error is expected when applying a weak RF spin rotation in path
III where an RF spin flip is conducted for preparation. The interaction between
these coils produces unintended consequences as described in Sec. 4.3.7.
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4.4.2 Comparison with Standard Weak Measurements

The standard weak measurements introduced in Sec. 2.1.2 use a meter system to
measure the observable. For the experiment in the present chapter, this condition
is eased. While an entanglement between different observables is introduced as in
Eq. (2.20), the entanglement is already there in the initial state of Eq. (4.1). The
weak interactions to infer the locations of spin and energy DOF further manipulate
the combined Hilbert space of path, spin, and energy. Concerning the aspect that
the weak interaction is not the cause of entanglement, the interaction performed is
described by a single operator without separation between observable and meter.
Therefore, the procedure rather resembles the case of Eq. (2.22) of a unitary rotation
by means of the observable. Furthermore, not two but three DOF are necessary to
perform the presented experiment. The weak exponential beam attenuation with
indium foils fulfils the criteria of a standard weak measurement to a reduced extent.
However, a main motivation for weak measurements is their minimal disturbance
on the intermediate state between pre- and post-selection which simplifies charac-
terising the respective quantum state. This criterion is fulfilled for the presented
procedure. Therefore, the presented experiment shares some but not all features
of standard weak measurements such that one can regard it as a generalised weak
measurement.

4.4.3 Comparison with Proposal by Pan

To analyse the emergence of the qCC mathematically, we compare our experiment
with the generalized N-path qCC described by Pan [130]. The generalised case
considers N paths (indexed as j) and N− 1 properties of two level systems (indexed
as p). The two basis vectors in each Hilbert space of a property will be denoted
as 1 and 0. The state vector entering the interferometer is assumed as |1, 1, 1, ...⟩.
The sub-states in each path are prepared to be mutually orthogonal by flipping the
respective state vector of property p in path j = p+1. (Roman numerals indicating
paths will henceforth appear in equations together with Arabic numerals indicating
properties.) The according pre-selection |iN⟩ is denoted as

|iN⟩ = 1√
N

�
|I⟩ |1, 1, 1, ...⟩+ |II⟩ |0, 1, 1, ...⟩+ ...+ |N⟩ |1, ...1, 0⟩

�
. (4.27)

The according post-selected state |fN⟩ which is dependent on the phases χj of
the phase shifters in path j is chosen as

|fN⟩ = 1√
N

�
eiχ1 |I⟩+ eiχ2 |II⟩+ ...+ eiχN |N⟩� |1, 1, 1, ...⟩ . (4.28)

Please note that there is an analysis in the post-selection for each property p realised
with a respective projection on the post-selected state |fN⟩. Similarly to the previ-
ous three-path consideration, the post-selected intensity |⟨fN|iN⟩|2 between pre- and
post-selection has only a single non-zero contribution, coming from the component
of path I, while the components from the other paths in the initial state |iN⟩ are
orthogonal to |fN⟩ such that their contributions to the post-selected intensity are
zero. This means that, given the pre-selection, only the component of the sub-beam
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through path I is post-selected. We will therefore refer to path I as the reference
beam and all others as non-reference beams in the generalised case. The operator
for a manipulation of property p in path j, while leaving the states in all other
sub-beams unchanged, is given by

Ôp
j (α) = exp

�
−i

α

2
σ̂p
xΠ̂j

�
= 1− (1− cos

α

2
)Π̂j − i sin

�α
2

�
σ̂p
xΠ̂j.

(4.29)

The weak values of the operators σ̂p
xΠ̂j are written as

⟨σ̂p
xΠ̂j⟩w = δj,p+1e

i(χ1−χj), (4.30)

and the path weak values are written as

⟨Π̂j⟩w = δj,1. (4.31)

In addition to the N−1 properties indexed as p, the “zeroth” property of the gener-
alised case would be the particle behaviour in path I such that a beam attenuation
only causes a linear reaction of the mean intensity in path I. This is analogous to
Eq. (4.12) of the three-path consideration.

It follows in an exact calculation (details in Sec. A.1), without regarding the limit
of small α, that the time-independent intensity behaves as

Ipj (α)

=
***⟨fN| Ôp

j (α)|iN⟩
***2

= |⟨fN|iN⟩|2
�
1 + 2 sin

�α
2

�
Im

�
⟨σ̂p

xΠ̂j⟩w
	
+ sin2

�α
2

� ***⟨σ̂p
xΠ̂j⟩w

***2 − sin2
�α
2

�
⟨Π̂j⟩w

�

=

*******
1

N

phase of path I,����
e−iχ1� �� �

term 1

−
�
1− cos

α

2

� 1

N

path I,����
e−iχ1 δj,1� �� �

term 2

− i sin
�α
2

� 1

N

path j����
e−iχj δj,p+1� �� �

term 3

*******
2

=
1

N2

�
1 + 2δj,p+1 sin

�α
2

�
sin(χ1 − χj) + δj,p+1 sin

2
�α
2

�
− δj,1 sin

2
�α
2

��
.

(4.32)

This expresses the intensity through the related measures of weak values, ampli-
tudes, and experimental parameters. The first line states that the intensity is deter-
mined by the projection between the post-selected state |fN⟩ and the state unitarily
rotated by Ôp

j (α) from the initial state |iN⟩. The second line gives the intensity in
terms of weak values for given interaction strength α. The weak values are multi-
plied with sine functions which depend on α. It follows by expanding the intensity
for small α that the weak values appear in every order of α. Even though weak
values were introduced as low order approximations [24], they are the expansion
coefficients in the Taylor series [142, 143] and describe the intensity for arbitrary
interaction strengths α. In the third line, the intensity is expressed as the absolute
squared of amplitudes from different paths; term 1 is the amplitude from the refer-
ence state in path I which is reduced by term 2 if the condition δj,1 = 1, or j = 1,
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is met. This means any weak interaction implemented in the reference beam will
reduce its post-selected component through the projection in the first line. Term 3
is the amplitude of a non-reference beam in path j which is produced if δj,p+1 = 1,
or j = p+1. The last line gives the intensity dependent on the experimental param-
eters of the interaction strength α and the phases χ1, χj. The intensity oscillation
proportional to sin(χ1−χj) is the cross-term between the amplitudes of terms 1 and
3 in the third line. The third and fourth terms in the last line are mean intensity
changes which are conditioned through the Kronecker deltas δj,p+1 and δj,1. The
data is analysed for second-order intensity changes in Sec. 4.3.7.

We will go into detail now regarding the first line of Eq. (4.32) where the intensity
is obtained by considering a rotation of the initial state |iN⟩ and a projection on the
final state |fN⟩. Therefore, the projection in Hilbert space between the vectors of
the post-selected state and the intermediate state before post-selection is essential.
Any changes in the intensity compared to the preparational IFGs are a reaction to a
weak interaction. As the weak interactions are unitary and the calculated intensity
involves the projection to |fN⟩, the reactions are expressed by sinusoidal functions
in the last line of Eq. (4.32). By regarding the parallel and orthogonal components
to the post-selected state, we can identify three different kinds of situations:

The first kind of situation arises when a weak interaction is applied to a non-
reference beam. Let us consider a perturbation rotating the sub-state of a non-
reference beam and thereby generating a state component that is parallel to the
post-selected state. This is equivalent to inverting a fraction of the sub-state from
the orthogonal to the parallel component. Due to the behaviour given in Eqs. (4.5)
and (4.29), in the limits of αrot and α becoming zero, the magnitude of the following
reaction of the intensity is linear in the interaction strength α. The large reaction
is identified with the behaviour proportional to 2 sin(α/2) given in Eq. (4.32) for
the exact calculation and, in the limit of αrot becoming zero, with the term propor-
tional to αrot in Eqs. (4.10) and (4.11). In these situations, the detected intensity
is sensitive to the weak interaction applied. At the same time, the parallel com-
ponent causes an increased intensity proportional to + sin2(α/2) in Eq. (4.32) and
proportional to +α2

rot in Eqs. (4.10) and (4.11).

The second kind of situation arises if any rotation is applied to the reference
beam. Then the amplitude of the post-selected component is reduced. However, in
comparison to the first kind of situation, it is only a small reaction proportional to
− sin2(α/2) in Eq. (4.32) and proportional to −α2

rot in Eqs. (4.10) and (4.11). The
intensity in these situations is robust with respect to the weak interaction.

The third kind of situation concerns the states of the non-reference beams again,
now in combination with unitary rotations which do not produce a post-selected
component. Any reaction of the intensity is excluded by the Kronecker deltas and
we conclude that in these situations the intensity is indifferent to the respective
unitary rotations.

To first order, the intensity dependencies on the weak interaction strengths are
the same in the generalised and our experimental case. The large first order reac-
tions are seen in the diagonal elements in the weak-interaction IFGs of Fig. 4.12,
which are marked with asterisks (*) in the upper right corners of the graphs. In
the same figure, second order reductions in the mean intensities compared to the
preparational IFGs are expected to appear in the upper and lower IFGs of the mid-
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dle column. The small reactions are due to the robustness of the reference beam
with respect to rotations which is indicated with crosses (×). The differences be-
tween the general and our three-path case can be seen in the corner elements of
the anti-diagonal in Fig. 4.12: in the generalised case, these elements should behave
indifferently. However, without energy projection in our post-selection, we expect
an increase in intensity proportional to +α2

rot. This is caused by the up spin com-
ponents created by the weak interactions that produce additional counts without
time-independent interference (explained in second paragraph of Sec. 4.2). Addi-
tionally, the left and right IFGs in the absorber case in Fig. 4.12 are indifferent in
accordance with Eq. (4.12), as indicated with dashes (–). These situations do not
involve rotations, however, and concern the location of the particle which is not
explicitly regarded as a property by Pan.

Finally, we consider the weak values again. According to the considerations on
the projection between the state vectors, if the modulus of a weak value is zero, the
intensity does not have a linear dependence on the interaction strength α. Then,
the intensity is either robust or indifferent to the weak interaction in the considered
path. If the modulus of a weak value is 1, it identifies a combination of path and
weak interaction in which the intensity is sensitive to the weak interaction.

The sensitive behaviour is an interference effect emerging through the cross-
term of amplitudes between the sub-beams I and j proportional to sin(χ1 − χj),
cf. Eqs. (4.32) and (A.6). The magnitude of the cross-term is linear in α for small
interaction strengths. Therefore, the cross-term describes the conspicuous reactions
of the intensity. Because the cross-term involves two paths, it offers an interpretation
of delocalisation of properties in the interferometer [144].

4.4.4 Comparison with Realistic Interpretation

An alternative interpretation proposed by Aharonov et al. [22] is inspired by realism
and quantifies the location of a property in a path through the weak values. A weak
value of 1 is attributed to finding the property in that path; a value of zero excludes
finding the property in that path. We identify these values with the modulus of
the weak values in the present experiment which is equivalent for phase shifter
positions χ1 = χ2 = 0. According to the latter interpretation, with the present
results of Fig. 4.13 and Tab. 4.3, the neutron’s x spin component is in path I, the
particle in path II, and its x component of the energy q-bit in path III; a spatial
separation of the neutron’s properties inside the interferometer is observed.

But how is the interpretation of separated properties compatible with the pre-
selected state |i⟩ of Eq. (4.1) where a specific value for spin and energy is attributed
to each sub-state? Initially, the state of the neutron is distributed equally over all
three paths, indicated by the expectation value ⟨i|Π̂j|i⟩ = 1/3 for all paths. While
we have so far considered only one particular final state, one could in principle
also monitor all possible final states denoted by |fm⟩, where m is an index over
all combinations of exit beam, spin state and energy state. This set of states is
orthonormal and complete and we can express any expectation value as a weighted
average over the weak values [145, 146]. The expectation value of the path projector
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then reads

⟨i|Π̂j|i⟩ =
(
m

⟨i|fm⟩ ⟨fm|Π̂j|i⟩

=
(
m

pm ⟨fm|Π̂j|i⟩ / ⟨fm|i⟩

=
(
m

pm ⟨Π̂j⟩w,m

(4.33)

where pm denotes the probability for a given |i⟩ of reaching the final state |fm⟩.
Therefore, if we do not observe any intensity change when applying a weak beam
attenuation in path I, it doesn’t exclude a non-zero component to the state vector
in that path. But it means that the component only contributes to intensities in
other exit channels. However, for all neutrons that did reach our final state we can
retrospectively say that these neutrons never were in path I.

As for the spin degree of freedom (likewise for the energy), the expectation value
of the joint operator σ̂DC

x Π̂j yields the x-component of the spin in path j. For our

initial state, this value becomes zero in all paths, ⟨i|σ̂DC
x Π̂j|i⟩ = 0, because the spin

in each path is prepared in the ±z directions and therefore has equal probabilities
±x directions [123]. Nevertheless, the weak value associated with our post-selected
final state ⟨σ̂DC

x Π̂I⟩w = e2iχ1 does not become zero, cf. Eq. (4.9). The expectation
value of zero results from the compensation by a similar weak value with opposite
sign in another output port of the interferometer, which is in our setup the down
spin component of the side exit of the front loop. The opposite sign results from
the phase shift of π which always appears between the two output ports of an
interferometer loop.

Only for weak beam attenuations, both considered interpretations agree that the
weak values give the locations in the interferometer of the neutrons found in our
output port |f⟩. For the weak interactions with spin and energy, the interference
effect allows for the conservative interpretation of a delocalisation of properties.

All weak interactions applied in our experiment cause similar reactions locally
– in the respective path. But it is the inner product of the weakly manipulated
state with the post-selected state which can generate a post-selected amplitude. In
turn, this amplitude constitutes a cross-term in the intensity linear to the interac-
tion strength. Only for distinct pairs of paths and weak interactions, the reactions
are conspicious for a particular final state. We suggest to regard the conspicious
reactions to give the effective locations. In context of the qCC, where each prop-
erty is effectively located in a different path we suggest the term effective separa-
tion of properties. The further reaching interpretation of a physical separation of
properties is not required to describe all observed phenomena. While we cannot
decide between effective and physical separation with the present experiment, the
realistically inspired interpretation of physically separated properties would need
extraordinary evidence as verification. Therefore, at the present moment, physical
reality of separated properties is unproven, both for an ensemble of and for single
neutrons themselves.

92



4.4 Discussion

4.4.5 Subjective Remarks

The presented experiment is a follow-up to the first experiment on the Cheshire Cat
of Denkmayr et al. [23] with two paths and a single phase shifter inducing the phase
shift χ. In response to that first experiment, Stuckey et al. [123] pointed out that
the extraction of spin weak value by Denkmayr et al. was dependent on the path
weak values. This is caused by the extraction of the weak values at a phase shifter
position χ = 0 which causes the weak values to be real. As can also be seen in the
three-path equivalent of Eq. (4.9) by means of Eq. (4.10), the linear contribution to
the intensity in α vanishes at χ1 = 0. Only the quadratic dependencies in α remain
which couple different weak values.

The critics’ conclusion is that the separation of properties should not be claimed.
Stuckey et al. [123] postulated the criterion that the weak values should be extracted
from the linear dependencies such that the weak values are independent from each
other. While the initial experiment certainly is mind-boggling and worthy on its
own, the criticism is valid. The experimental data of Denkmayr et al. even could
have been evaluated in the demanded manner if the spin weak values were extracted
through the amplitude of the sinusoidal intensity oscillation. Notwithstanding the
final extraction of weak values in the previous experiment at χ = 0, the extrac-
tion was performed after a fit over a full oscillation period of the interferograms.
Therefore, the value of the fitted neutron counts at χ = 0 was already equally in-
fluenced by the counts at all recorded phase shifter positions. This circumstance
might incline one to say that the criticism is superficial and petty. Or it stimulates
an advancement.

In the presented three-path version, we amended the extraction procedure such
that the weak values are extracted from the linear dependence in α and the postu-
lated criterion by Stuckey is fulfilled. The disadvantage of the extraction through
the amplitude of the intensity oscillations is that only the absolute value of the weak
values is extractable. I consider stating the absolute values as more transparent.
In this way, the further development of the data analysis led to results with less
information due to the missing phase information.

However, we encountered similar, further developed criticism concerning the
separation of properties in the three-path version, too. The argument is that there
are no three independent degrees of freedom, since spin and energy are coupled for
the supposed third property. This does not concern the mathematical extraction
as above but the physical properties themselves. This weak point should be taken
serious and is disclosed in this thesis and the related publication [112]. At the same
time, it is even more intriguing how the weak interactions induce three independent
reactions in this particular setup. (As discussed, the answer lies in the missing time-
resolution.) Both positive and negative criticism are essential for any progress. If the
work is appreciated, criticism challenges further advancements. It is my hope that
with improved techniques in neutron optics an amended version of the three-path
quantum Cheshire Cat will be realised.

Determining the locations of properties is performed in several consecutive steps.
The initial proposal [22] suggests to induce spatial deviations through the weak in-
teractions, such that two independent translations can be performed simultaneously.
A step in the direction of simultaneous measurements was done by W. Kersten in
his diploma thesis [60]. He performed all measurements at the same time. However,
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he turned off the weak interactions one at a time with the outcome of as many
measurements to extract the weak values. Instead of using a data set with no weak
interaction applied, Kersten uses a data set with all weak interactions applied; in-
stead of a data set each for every weak interaction turned on, Kersten uses a data
set each for every weak interaction turned on. I consider this interesting concept to
be a symmetric case to the sequence in previous works and this thesis.

The three-path quantum Cheshire Cat reminds me of the quark model. The
results of scattering experiments demanded the quark model and I know of no
alternative. It is accepted theory that any quark can only be observed in a pair
of quarks. However, the characteristics of the pairs led to the description based on
individual quarks. Therefore, the separation of properties for the quantum Cheshire
Cat should not be rejected out of hand.

In contrast to the quark model for scattering experiments, there are alternative
explanations for the quantum Cheshire Cat and quantum physics in general. My
perception of the quantum Cheshire Cat is based on the Copenhagen interpretation,
i.e. there is no paradox since the counting events are statistically distributed based
on the interference between partial waves. I was faced with the realistic interpreta-
tion distribution of many times. To merge these perspectives into an agnostic view
seems now beneficial to me. This allows on an individual level what I suppose that
the community should do: understand all perspectives and being open to research
in all directions.

Weak values extend the concept of expectation values beyond the eigenvalue
range. The expectation values can be regarded to be equivalent with the concept of
balance points for scales. Any attempt of their generalisation is welcome in a field
with prevalent disputes. Because we know of the quantum measurement problem,
any new reasonable approach could be the basis for surprising developments and
insights. The change between expectation and weak values, and between weak
values for different post-selections (and pre-selections) resembles the change between
coordinate systems. Different observers might measure different results, but these
results follow the same laws of physics and all observers can agree to disagree. No
one doubts that the procedure of a (generalised) weak measurement results in weak
values. The question is simply of how much meaning one can or should give them.
It is often in the extreme cases that one can learn the most about the core structure.
Besides the counter-intuitive, the extreme includes anomalous weak values.

In several demanding discussions with my colleagues, I learned to acknowledge
the different possible perspectives deviating from my point of view, specifically rel-
ative to the quantum Cheshire Cat. In turn, it is remarkable how some members
of the community with much more experience are captivated to an extent by their
viewpoint that they claim it to be the only true one. Also extensions to their
own extensions are not accepted. The Copenhagen interpretation of its underlying
mechanism is probably most common in the community. The rather fantastic view
inspired by realism of the quantum Cheshire Cat proposing separation of properties
is as valid in the sense that it cannot be refuted. The fantastic view raises the
question whether an observation of a response is equivalent to the manifestation of
the object which we seek after with the interaction. Do weak values give an equiv-
alent or even more fundamental insight into quantum systems? Or are they a sheer
projection disguising the more fundamental expectation value? The answer to these
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ontological and epistemological questions eludes the findings of this thesis. Even if
weak values turn out to be a mere projection, they are often times an intriguing
means to expand our understanding of quantum mechanics. Bearing in mind Plato’s
cave allegory, the shadows on the cave’s wall are our sole stimulus to free ourselves
from long lasting misconceptions.

The concept of weak values and weak measurements is based on a time-symmetric
formulation of quantum mechanics [50–52]. It is surprising that in some specific as-
pects, crucial differences in assumptions lead to identical experimental predictions.
I was exposed a few times to categorisations of quantum theories, their overlap in
one or the other aspect. These categorisations could contribute to the field as a
periodic tables did in the past or as the standard model of particle physics does
now.

That being said, let me state my disagreement with the realistic interpretation
of the quantum Cheshire Cat; that different properties are separated from each
other in these kind of experiments. I base my criticism on the term of interference.
While semantically any two entities can interfere on some level with each other,
to my knowledge in physics the term was always referring to an effect considering
two entities which are similar or identical. To me it is an unjustifiably large step
to invoke both the terms interference for the intensity oscillations and separation
of properties for the quantum Cheshire Cat at the same time. One would expect
interference also in any pair of coherent systems where a phase information can
be inferred due a strong coupling between them beforehand. E.g. an atom and a
photon emitted by it or an electron-positron pair emerging from a photon field.

While it is possible that a spatial separation of some kind occurs, an interpreta-
tion of that kind could hint at a different underlying level of physical entities such as
quarks were at the time of their discovery. With these assumptions, the properties
of the neutron distinguished in our experiments could be composite systems them-
selves. Different compositions would be located in some form in specific paths of an
interferometer while the more fundamental entities interfere after recombination.
An insight like this would be astounding. At the same time, the paradox would
vanish again with the same argument as brought forward in the present thesis con-
cerning the cross-term between probability amplitudes from different interferometer
paths—only one or two levels deeper.

4.5 Conclusion

A three-path quantum Cheshire Cat is demonstrated in neutron interferometry; the
neutron, its spin and its energy appear to be in different paths of the interferometer.
In the experiment, a state preparation (pre-selection) as well as a state filtration
(post-selection) are implemented. Even though the post-selection is without energy
discrimination, the quantum Cheshire Cat in the three-path interferometer emerges
as predicted by the theory. The conspicuous reactions to the local weak interactions
are used to infer the locations of the properties of the neutron. Intensity oscillations
emerge when a weak spin or energy manipulation is applied, while the intensity is
reduced for the weak beam attenuation applied. These reactions are observed only
for a particular interaction for each path. Taking a realistic viewpoint, one may
conclude that the neutrons propagate through the interferometer, with the particle,
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energy, and the spin’s x-component taking different paths.
However, the intensity is calculated through the inner product of the weakly ma-

nipulated state with the post-selected state and its absolute value squared. Only for
distinct pairs of weak interactions and paths they are applied in, a certain compo-
nent parallel to the reference state, i.e. the component originally remaining through
the post-selection, is generated. The respective generated amplitude constitutes a
cross-term between the amplitude of the weakly evolved sub-beam and the refer-
ence state. The cross-term gives rise to a conspicuous interference effect which in
turn suggests the delocalisation of properties. This suggests the possible explana-
tion of the effect not as physical but as effective separation of properties in the
interferometer.
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Chapter 5

Simultaneous Path
Weak-Measurements

This chapter is based on publication [147] which is reproduced with permission from
Springer Nature.

The statistical properties of the detection events constituting the interference
fringes at the output of an interferometer are well-known. Nevertheless, there is still
no unified view of what is happening to a quantum system inside an interferometer.
Strong measurements of path operators destroy the interference effect. In weak
measurements, an observable is weakly coupled to a pointer system and the resulting
weak values quantify the observable by minimally disturbing the system. Previous
which-way experiments with weak measurements could extract either the real or
imaginary part of a single weak value with each ensemble. Here, a simultaneous
full complex quantification of two path weak values with a single ensemble in a
Mach-Zehnder neutron interferometer is presented. Magnetic fields, oscillating with
different frequencies, change the energy state in each interferometer path. The
time-dependent phase between the energy states distinctly marks each path. The
resulting beating intensity modulation at the interferometer output gives both path
weak values. For the present experiment, the weak values’ absolute value and phase
directly describe the observed amplitude and phase of the intensity modulation.

5.1 Introduction

The double-slit experiment and interferometry as a whole are corner-stones of quan-
tum physics. Any coherent system, e.g. light, electrons or the neutrons regarded in
this letter, may exhibit interference fringes at the detector behind an interferometer.
This is accurately described as a wave phenomenon [4]. While the first interference
experiments with light [1] and electrons [5] worked with high-flux sources, the same
effects also emerge with single photons [148], electrons [149], and neutrons [9]. The
latter self-interference defies any classical analysis.

Notwithstanding the accurate description through delocalised waves [144], one
may attempt to find out which path the system went. One may, e.g. block a par-
ticular path of the interferometer—only to see the interference fringes disappear
completely. Such a strong measurement with a beam blocker destroys the inves-
tigated interference phenomenon. The behaviour of the interference fringes was
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investigated with deterministic and probabilistic absorbers for neutrons [150]. This
characterised the coherence of the quantum state dependent on the kind of absorp-
tion and different interaction strengths.

A tool to quantify the system inside an interferometer while preserving interfer-
ence are weak measurements [24] where the interaction between the quantum system
to be measured and the measurement instrument is so weak that the back-action of
the measurement is practically negligible. Weak measurements are defined for a pre-
and post-selection procedure as introduced in Sec. 2.1. A specific state is prepared
(pre-selected) and another state is accepted (post-selected) towards the detector.
A degree of freedom (DOF) of the system is investigated. A pointer system, i.e.
auxiliary DOF, is manipulated through a weak interaction implemented midway
between pre- and post-selection. Through entanglement between the two DOF, the
interaction marks the investigated DOF. Comparing the detected intensities with
and without applying the weak interaction quantifies the investigated DOF through
weak values. Usually, the real and imaginary parts of a weak value are measured
separately. In the interpretation of their physical significance, this separation is
maintained: the real part gives the best estimate of an observable [33, 38] and the
imaginary part is a measure of the intrinsic measurement disturbance on the system
[32, 38].

A realisation of a weak measurement with photons [25] was implemented early
after the theoretical introduction. With neutrons, the path DOF was used as a
pointer system to retrieve spin weak values [26] and, vice versa, the spin degree
of freedom to retrieve path weak values [27, 28]. A photonic proposal [151] sug-
gested multiple simultaneous path markings through the energy DOF via mirrors
with different vibration frequencies. The proposal was realised with photons [152]
and in an adopted version with neutrons [153]. The experimental intensity at the
output of the interferometer was time-resolved and exhibited oscillations in time
with the applied frequencies. A path marking through the energy DOF as a pointer
was demonstrated. However, weak values were not retrieved. In photonic setups,
successive measurements of weak values were reported [154–157]. For atoms, the
weak measurements of the polarisation and spin were reported [29, 30].

In this chapter, we want to find out which path the neutrons went in a two-path
neutron interferometer [131, 132, 158, 159]. Therefore, the path DOF is investigated
with the goal of retrieving both path weak values simultaneously. Each previously
determined real and imaginary part of a path weak value was extracted separately
with a different ensemble. In the case of weak measurements, it was regularly
stressed that the weakness of the interaction minimises the disturbance on the sys-
tem [160, 161]. Thus, each weak value describes the intermediate quantum system
between pre- and postselection as best as possible. But it is not clear if multiple
weak values extracted with different ensembles are valid for each ensemble.

In the present experiment, we exploit the minimal disturbance of the measure-
ment to accomplish a simultaneous weak measurement of two path observables. The
energy DOF, i.e. the system of different energy levels, is used as pointer system for
the path DOF. In each path, the energy is manipulated differently to trace each
path individually with a characteristic time-dependent phase. Detecting the result-
ing time-dependent intensity makes both path weak values accessible simultaneously.
The validity of the retrieved weak values for the whole ensemble is hence assured.
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The measurements are carried out in parallel in the interferometer in contrast to
the reported successive measurements.

5.2 Theory and Schematic

The pre-selected (initial) state |i⟩ of a neutron in the interferometer is written as

|i⟩ = 1√
2

� |I⟩+ e−iχ |II⟩ � |↑z⟩ , (5.1)

where χ is the relative phase between paths I and II. The spin state is written with
up and down arrows with the index of the basis used (x, y, z). The post-selected
(final) state |f⟩ is written as

|f⟩ = 1√
2

� |I⟩+ |II⟩ � |↑x⟩ . (5.2)

The path weak values [24] ⟨Π̂j⟩w = ⟨f|Π̂j|i⟩ / ⟨f|i⟩ of the path operators Π̂j = |j⟩ ⟨j|,
j ∈ {I, II}, are calculated as

⟨Π̂I⟩w =
1

1 + e−iχ
, ⟨Π̂II⟩w =

1

1 + eiχ
. (5.3)

Note that these weak values are the same as for the initial and final states |i′⟩ =� |I⟩ + exp(−iχ) |II⟩ �/√2 and |f ′⟩ = � |I⟩ + |II⟩ �/√2, without the spin component,
since |i⟩ and |f⟩ are spin-path separable. Thus, the results are valid for the weak-
value extraction of both sets of initial and final states. In the polar representation

⟨Π̂j⟩w = Aje
iϕj , (5.4)

the absolute value Aj and the phase ϕj are calculated as

Aj =
1

2 cos(χ/2)
, ϕj = ±χ

2
, (5.5)

where the plus sign refers to j = I and the minus sign to j = II. The absolute
value diverges at phase shifter positions χ = ±π due to the orthogonality between
pre- and post-selection for this case. The phase ϕ of the weak value is linear to the
phase χ induced by the phase shifter. Real and imaginary part of the weak values
are calculated as

Re
�
⟨Π̂j⟩w

	
=

1

2
, Im

�
⟨Π̂j⟩w

	
= ±1

2
tan(

χ

2
), (5.6)

with the same convention for the ± sign as above.
Consider the time-dependent oscillating external magnetic field of a radio-frequency

(RF) spin-rotator coil (see also Sec. 3.3.6)

B⃗(t) =
�
B1 cos(2πft+ δ), 0, B0

�T
, (5.7)

with time t, the frequency f in resonance to the field strength B0 [105] and the phase
offset δ of the magnetic field in the coil at t = 0. A neutron’s spin is manipulated by
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this external magnetic field which is described in the rotating wave approximation
[162] by the operator [105]

ÛRF(t, α, f, δ) =

�
cos α

2
iei(2πft+δ) sin α

2

ie−i(2πft+δ) sin α
2

cos α
2

 
=

�
1 iei(2πft+δ) α

2

ie−i(2πft+δ) α
2

1

 
+O(α2),

(5.8)

in the z spin basis with the spin rotation angle α. Each spin-flipped component is
phase shifted by the phase δ of the magnetic field. The last step assumes the limit
of weak interaction strengths, i.e. small rotation angles α ≪ 1.

The spin flip in an RF coil is coupled to an energy shift ΔE = hf , with the
Planck constant h, which manifests itself in a time-dependent relative phase ±2πft
compared to the initial spin state. The interaction between the neutron and the
magnetic field can be regarded in second quantisation of the magnetic field as a
photon exchange [47, 163] with conserved energy and angular momentum. A neutron
has a spin quantum number S = 1/2. The spin flip of a neutron, described by a
change±ℏ = ±h/(2π) in spin angular momentum, is compensated by the absorption
or emission of a photon with the same angular momentum.

From now on, one RF spin-rotator is considered in each path j ∈ {I, II} of the
interferometer. We will distinguish the different frequencies of the coils fj and their
different phase offsets δj. We will use spin rotation angles αI = αII = α. The path

operators Π̂j will indicate in which path an operation is conducted. In the ideal case,
the intensity I after post-selection results as (detailed calculation in Sec.A.2.1)

Iideal(t) =
***⟨f|�ÛRF(t, α, fI, δI)Π̂I + ÛRF(t, α, fII, δII)Π̂II

�
|i⟩
***2

= |⟨f|i⟩|2
�
1− αIm

�
⟨Π̂I⟩w e−i(2πfIt+δI) + ⟨Π̂II⟩w e−i(2πfIIt+δII)

	
+O(α2)

�
= |⟨f|i⟩|2

�
1− α

�
AI sin(ϕI − 2πfIt− δI) + AII sin(ϕII − 2πfIIt− δII)

�
+O(α2)

 
,

(5.9)

where Eq. (5.4) is inserted for the last step. In the linear approximation for α ≪ 1
and with (fI−fII)/(fI+fII) ≪ 1, this constitutes a temporal beating of the intensity.
With a double-sine fit function for the time-resolved measurements, the absolute
values Aj will be directly extracted from the amplitudes of the intensity oscillations
and the phases ϕj of the weak values from the phases of the intensity oscillations
(see Sec. 5.4.4). Real and imaginary components of the weak value are equivalent
but secondary measures.

5.3 Setup

The experiment was conducted at the neutron interferometer station S18 at the
Institut Laue-Langevin (ILL). All neutron optical elements used are described in
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Sec. 3. The setup is depicted in Fig. 5.1. A neutron beam is monochromatised to a
wavelength λ = 1.92 Å, δλ/λ ≈ 0.02, and polarised with a total degree of polarisa-
tion P > 0.99 in the vertical +z-direction, which defines the quantisation axis. The
beam is split by the first plate of the single-crystal silicon neutron interferometer
into two paths, denoted as j ∈ {I, II}. In both paths of the interferometer, a phase
shifter is placed which is rotated to align the relative phase χ between the paths.
After recombination of the two paths at the third plate of the interferometer crys-
tal, two exiting beams emerge: the H-beam detected in diffracted direction and the
O-beam detected in incident direction. In the present experiment, the O-beam ex-
hibits a maximum count rate Nmax of the order of 10 counts/s and an experimental
contrast Cexp = 0.64 ± 0.03. The intensity I = N/Nmax in the O-beam with the
neutron optical elements described so far is given as [158]

IO =
1

2
(1 + Cexp cosχ). (5.10)

In the interferometer, an RF spin manipulating coil is operated in each path
which realises the weak interactions of two path weak measurements simultane-
ously. The axes of the coils coincide with the local beam directions. Alternat-
ing currents are applied with radio-frequencies fI = 62.5 kHz in path I and fII =
55.5 kHz in path II. The amplitudes are adjusted to realise spin rotation angles
α = π/9± π/720=̂(20± 0.5) degree [112] with a spin manipulation efficiency ϵexp =
0.92±0.02. The vertical fields B0,j in the RF coils are generated by a large Helmholtz
coil, which surrounds the interferometer and the O-beam, and a small Helmholtz
coil at each RF coil for fine tuning of the resonance [164]. In the O-beam, a direct-
current (DC) coil is positioned which applies a π/2 rotation of the polarisation vector
around the local x-direction. Further downstream, a polarising CoTi multilayer ar-
ray (see Sec. 3.3.2), referred to as supermirror, transmits the spin-up component.
The sequence of DC coil and supermirror allows the +x spin analysis assumed in
Eq. (5.2). With the +x spin analysis, the initial spin up component and spin down
component produced by the weak interaction interfere [165, 166]. The RF signals
are reset every 304µs by the trigger of a function generator. In the O-beam, a mean
count rate of up to 2 neutron counts per interval is expected. The detector in the
O-beam registers the arrival time of the neutrons with a time-resolution of 1µs.
Each binning time corresponds to a neutron which interacted with a magnetic field
induced by the RF coils of a specific phase. To improve the counting statistics, the
time-dependent measurements are repeated for 1 hour. Due to the low intensity
given by Eq. (5.10) in the vicinity of χ = ±π, the measurements are extended to
2 hours at the closest points of χ = ±35/36 π. The sum of all time-dependent
measurements at the same phase shifter position χ is called a time spectrum.

The choice of the RF-frequencies and the time intervals before resetting the
RF-signals is influenced by multiple circumstances. First, the resonant frequency
of the electrical circuits inducing the magnetic fields need to be reasonably close
to the frequency induced by the signal generator. Secondly, the frequencies were
often chosen in the 10 s of kHz to reduce the influence of the Bloch-Siegert shift
as introduced in Sec. 3.3.6. In a previous reactor cycle, Richard Wagner used the
frequencies 55.5 kHz and 60 kHz [61] which were chosen in the early calibrations for
the presented results. Furthermore, the acquisition interval needs to be in some
relation to the frequencies. The time interval should be at least cover one envelope
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Figure 5.1: Setup of the neutron interferometer experiment. A monochromatised
neutron beam is polarised in +z-direction by a magnetic prism. The interferometer
crystal (IFM) splits the beam into the paths I and II. The sub-beams are recombined
and the neutrons in the outgoing O-beam are detected with time resolution of 1µs.
A guide field (GF) coil surrounds the experiment between prism and the polariser
in the O-beam. The experiment consists of three stages: first, the pre-selection or
preparation stage (light yellow) where the phase shifter determines the phase χ, cf.
Eq. (5.1). Second, the weak interaction stage (light red) where the spin is rotated by
a rotation angle α = π/9 in both radio-frequency (RF) spin manipulation coils RF1
and RF2. The coils are operated at frequencies fI = 62.5 kHz and fII = 55.5 kHz.
Finally, the analysis or post-selection (light blue), cf. Eq. (5.2). At the recombination
of the sub-beams, the incoming state is projected onto a specific phase relation
between the sub-beams in the O-beam. There, the direct-current (DC) coil rotates

the polarisation vector P⃗ = ⟨⃗̂σ⟩ by π/2 around the x-direction. The polariser
projects onto the +z spin state. The combination of DC coil and polariser acts as
a spin analysis in +x-direction.
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of the intensity oscillation. In our case, the goal was to record a full period of the
envelope of the intensity beating, i.e. two times the distance between two knots
of the oscillation. The envelope has a frequency fenv = |f1 − f2|/2. The time
interval, before the signal exhibits deviations in its phase, is about 300µs. The
signal has to be reset after such a time interval. The period of the envelop for the
frequencies 55.5 kHz and 60 kHz was too long, i.e. 444µs, to fulfil this condition.
By increasing the frequency f1 to 62.5 kHz, the frequency for the envelope of the
beating is 3.5 kHz which corresponds to a period of about 286µs. Furthermore, one
period equals 1/62500 s=16µs and 19 periods equal 304µs which was finally chosen
as the time interval before resetting the signal. It follows that the time spectra are
also 304µs long with a time bin for each µs. In a Fourier transform of the time-
resolved signal, the calculated frequency resolution Δf ≈ 3.29 kHz for this case can
separate the two peaks expected at the chosen RF frequencies.

Thermal disturbances to the interferometer limit its contrast and phase sensi-
tivity. To improve the quality of the results, a thermal control system stabilises the
temperature through insulation and air conditioning. The coils close to the interfer-
ometer crystal are water cooled to stabilise their temperature [164, 167]. In effect,
the phase drift of interferograms is restricted to 1 degree/hour. Additionally, the
distance between the RF coils is maximised by installing them in different sections
of the interferometer as depicted in Fig. 5.1 to reduce the mutual influences between
the weak interactions.

5.4 Experimental Data

5.4.1 Orienting the Interferometer

The ρ axis, rocking scans, ad hoc analysis, and re-evaluation procedure were intro-
duced for the first presented experiment in Sec. 4.3.1. For the present experiment,
the interferometer crystal depicted in Fig. 5.2 is oriented. Rocking scans of the H-
beam, depicted in Fig. 5.3, were recorded for different positions of the ρ axis. These
were recorded with only one of the two paths in the interferometer opened, which
reduces the total intensity. On the other hand, the output intensities are therefore
independent from any phase relation between the paths. The order of rocking scans
was from ρ = 4.06° to ρ = 4.00° and only then a rocking for ρ = 4.03° was recorded.
However, the positions of the peaks are not monotonous according to the value for
ρ. The rocking curve for ρ = 4.03° is the lefternmost. This indicates some hysteresis
in the regulation of the piezo crystal.

The rocking scans recorded with multiple open paths in Sec. 4.3.1 were the sum
of multiple output ports. In contrast, the counts in Fig. 5.3 are detected only in
the H-beam. A single Gaussian function is expected to fit both peak and tails of
these rocking curves. Ad hoc analysis of the rocking scans gave the full widths at
half maximum (FWHM) plotted in Fig. 5.4 as blue points. The results indicate a
minimum in FWHM at ρ ≈ 4.02°. The experiment was advanced with this value
for ρ.

However, re-evaluation after the measurement campaign reveals some peculiar-
ities in the data. Contrary to the fits in Fig. 4.4, the maxima in Fig. 5.3 are sys-
tematically underestimated, the most pronounced for ρ = 4.00°. The resulting fit
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Figure 5.2: Photograph of the three-plate single crystal neutron interferometer used
for the experiment presented in this section. The length is about 10 cm. At each
interferometer plate, a beam splitting is produced in Laue configuration. This leads
to two separated beam paths interfering at the last interferometer plate as depicted
schematically in Fig. 5.1.

parameters with a Gaussian fit function are plotted in Fig. 5.4 as yellow data. These
results indicate a strict monotonous change in FWHM in the scanned interval of ρ
and a minimum outside the scanned interval at ρ ≈ 3.98°. The ad hoc analysis relies
on the data points close to the maximum and led to systematically higher values
for the FWHMs. This suggests a deviation in the characteristics of the intensity
from the Gaussian behaviour also for a single recorded output port. With these ob-
servations, to focus the the ad hoc analysis on the highest data points to maximise
the intensity is validated. Despite these peculiarities, it can be concluded that the
experiment was proceeded at position ρ = 4.03 with sufficient intensity.
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Figure 5.3: Counts of rocking curves in the H-beam for different ρ axis angles as
indicated to the right. Error bars indicate one standard deviation. Fits of the form
of Eq. (4.13) are plotted as solid curves.
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Figure 5.4: Full widths at half maxima (FWHM) plotted over ρ axis angle. Blue data
refers to the ad hoc analysis. Yellow data is the re-evaluation after the measurement
campaign. Error bars indicate one standard deviation. Polynomial fits to the second
order in ρ are plotted as solid curves. The two evaluations indicate different values
for the minimal FWHM and, therefore, the sharpest peaks.
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5.4.2 Time-Resolved Measurements

Pre-Measurements

Before the case of two simultaneous weak spin rotations was performed, the in-
tensities with only one RF coil operating were recorded. Also, strong interaction
strengths in the form of large spin rotation angles α = π/2 were applied. Exemplary
time spectra for single RF coil operation with large spin rotation angles are depicted
in Fig. 5.5 for RF1 and Fig. 5.6 for RF2.

An exemplary time spectrum with both RF coils operating and large rotation
angles is depicted in Fig. 5.7. In the latter figure, the intensity oscillation does not fit
to a beating with a sinusoidal envelop. This indicates that the second order terms
in α are non-negligible as is confirmed by a discrete Fourier transform depicted
in Fig. 5.8. In the depiction of the Fourier transform the offset is equivalent to
the high peak at frequency 0 kHz. The oscillation with a frequency of 7 kHz is
dominant over the frequencies of the RF coils. The Fourier transformation resolves
the two peaks at the coil frequencies separately. If the frequencies were chosen
closer together, as initially done, a merged broader single peak is expected. The
difference between the RF coil frequencies is 7 kHz which appears in second order
terms in α. Although not written explicitly, this behaviour can easily be derived
from Eq.A.9. Because Fig. 5.7 is only a pre-measurement with high values for α, the
stated characteristics in intensity and the Fourier transform are expected. However,
some mismatch between the amplitudes of the RF frequencies is noticeable in the
Fourier transform. The depicted time-resolved measurement was followed by a re-
adjustment of the coil RF1 with its frequency of 62.5 kHz to match the amplitude
of the oscillation with frequency 55.5 kHz.

Final Results

The time-resolved count rates in the O-beam were recorded for several phase shifter
settings χ. The example with the most pronounced oscillations of such a recording
is depicted in Fig. 5.9. All other time spectra contributing to the final results are
depicted in Fig. 5.10. A beating modulation of the count rate is observed as predicted
per Eq. (5.9). The mean counts and the amplitude of the oscillations are highest for
χ = 0 and decrease towards χ = ±π.

The count rates are normalised into intensities and fitted with a corresponding
double-sine fit function,

Ifit(t) = I0,fit +DI sin(2πfIt+ φI) +DII sin(2πfIIt+ φII) (5.11)

with the mean intensity I0,fit and oscillations with amplitudes Dj and phases φj,
j ∈ {I, II}. The raw resulting fit parameters are depicted in Fig. 5.11 in terms
of amplitudes of the two oscillations over the mean intensity, Dj/I0,fit, and the
phase φj of the oscillations. The offset of the phase φj is chosen such that the
mean over each set φj is zero. The argument for this offset is found in Sec. 5.4.4
where it is motivated in context of Eq. (5.13). The theoretical prediction for the
ratio of amplitude over mean counts is symmetric in the interferometric phase χ
with two maxima. The extracted amplitudes are also roughly symmetric but lower
than expected and exhibit two maxima. The phase of the intensity oscillations is
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Figure 5.5: Time spectrum at phase shifter position χ = 0 while coil RF1 is op-
erating with a large spin rotation angle α = π/2. The coil RF2 is turned off for
this measurement. Error bars indicate one standard deviation. The sinusoidal fit is
plotted as solid red curve.
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Figure 5.6: Time spectrum at phase shifter position χ = 0 while coil RF2 is op-
erating with a large spin rotation angle α = π/2. The coil RF1 is turned off for
this measurement. Error bars indicate one standard deviation. The sinusoidal fit is
plotted as solid red curve.
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Figure 5.7: Exemplary time spectrum with high spin rotation angles α ≈ π/2 at χ =
8π/9 with scales of counts and time bin to the left and bottom, respectively. Error
bars indicate one standard deviation. The intensity modulation is not a beating
which indicates that the spin rotation angles are too high to neglect second-order
terms in α. To include the second-order terms, a triple-sine fit with the frequencies
7 kHz, 55.5 kHz, and 62.5 kHz is plotted as solid red curve. Furthermore, the results
form a discrete Fourier analysis depicted in Fig. 5.8 indicates a misalignment between
the two spin rotation angles. Re-adjustment of the amplitudes of the magnetic fields
is necessary.
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Figure 5.8: Fourier transform of the time-resolved measurement depicted in Fig. 5.5
with both coils RF1 and RF2 operated with a spin rotation angle α = π/2. The
large, cut-off peak at 0 kHz represents the main neutron count. Three additional
peaks are present: at 7 kHz, 55.5 kHz, and 62.5 kHz, the latter two being chosen for
the RF coils. The difference in frequencies of 7 kHz were chosen such that one can
distinguish between the two RF frequencies with the frequency resolution of about
3.5 kHz. The goal is a neutron count with only the two higher frequencies. The
oscillation with 7 kHz is dominant as also conspicuous in the time-resolved mea-
surement. However, for the large spin rotation angle, contributions to the intensity
of the second order in α become dominant. Therefore, the large peak at 7 kHz,
the difference between the two RF frequencies, is to be expected. The peaks at
the RF frequencies are of different height which makes a re-adjustment of coil RF1
necessary.
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Figure 5.9: Example of a time spectrum of the count rate at relative phase χ = 0.
Data points in blue. Error bars indicate one statistical standard deviation. The time
axis is with regards to the trigger for the reset of the signals to both radio-frequency
coils every 304µs (see Sec. 5.3). Time-resolved measurements are repeated over 1
hour and summed up to the depicted time spectrum. The count rate is beating in
time following the theoretical prediction of Eq. (5.9). Solid red line is a fit according
to Eq. (5.11).

predicted as anti-symmetric towards themselves and symmetric with each other as
they are mirrored counterparts. The phases mostly follow the prediction within the
measurement error. Some phase deviations are observed for frequency fII = 55.5 kHz
when approaching the phase shifter position χ = ±π.

5.4.3 Data Correction

Some deviations of the measured results from the theoretical predictions originate
in the experimental contrast Cexp = 0.64 ± 0.02 of the interferometer and the spin
manipulation efficiency ϵ = 0.92 ± 0.02 of the magnetic coils. The data correction
considering these parameters is described in Sec.A.2.2. Applying the correction re-
sults in the data depicted in Fig. 5.12. For the phase of the intensity oscillations,
the ambiguity of the arctangent in the correction procedure is used to move the
outermost phases by ±π/2. In this way, the agreement between data and prediction
is conspicuous. The maxima in the ratios of amplitude over mean move outward
compared to Fig. 5.11. The gradient dependent on χ in all predictions of Fig. 5.11
is the highest close to χ = ±π. Therefore, the correction procedure most strongly
influences the position of the respective data points. This entails drastically in-
creased error bars when approaching χ = ±π. The high relative errors are to be
expected with the low count rates there. In contrast to the phase at χ = 0, the
data correction becomes crucial when considering the phases close to χ = ±π. All
three phases φj at χ ∈ −π, 0,+π are predicted to be zero. The data correction
enlarges absolute value of the phases but preserves the sign of the initial phases.
Therefore, the agreement between data and prediction after correction depends on
the accuracy in the raw data.
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Figure 5.10: Time spectra in addition to Fig. 5.9 with scales of counts and time bin
to the left and bottom, respectively. Phase shifter position χ and integration time
T indicated in each panel. See caption of Fig. 5.9 for further information.
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Figure 5.11: Characteristics of the raw time spectra of Figs. 5.9 and 5.10 plotted
over the phase shifter position χ as indicated on the bottom. The relation of the
amplitude of the oscillation with frequency fj over the mean intensity is depicted on
top, the phase of the respective oscillation below. Error bars indicate one standard
deviation. The solid curves are the theoretical prediction according to Eq. (5.9).

5.4.4 Conversion to Weak Values

The amplitudes Dj and phases φj of the oscillations naturally offer the direct ex-

traction of the complex weak values ⟨Π̂j⟩w = Aje
iϕ in polar coordinates. To extract

the weak values from the measured intensities, we equate the linear approximation
in α of Eq. (5.9) for the ideal case from theory with the fit function of Eq. (5.11).
Quantities with index “exp” refer to the experimentally retrieved values in contrast
to the theoretical prediction, “corr” to the corrected values. Due to spatial reasons,
the correction is implied for the measures Dj, φj, and I0.

Iideal(t) = Ifit,corr(t)

⇒ |⟨f|i⟩|2
�
1− α

�
AI,exp sin(ϕI,exp − 2πfIt− δI,exp) + AII,exp sin(ϕII,exp − 2πfIIt− δII,exp)

� 
= I0 +DI sin(2πfIt+ φI) +DII sin(2πfIIt+ φII).

(5.12)

By comparing the coefficients to the left and right, we obtain

|⟨f|i⟩|2 =I0,

|⟨f|i⟩|2 αAI,exp sin(2πfIt+ δI,exp − ϕI,exp) =DI sin(2πfIt+ φI),

|⟨f|i⟩|2 αAII,exp sin(2πfIIt+ δII,exp − ϕII,exp) =DII sin(2πfIIt+ φII),

⇒ AI,exp =
DI

αI0
, AII,exp =

DII

αI0
,

ϕI,exp = δI,exp − φI, ϕII,exp = δII,exp − φII.

(5.13)
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Figure 5.12: The corrected fit parameters of the time spectra of Figs. 5.9 and 5.10
plotted over the phase shifter position χ. The corrected amplitudes of the oscillation
with frequency fj over the corrected mean intensities is depicted on top, the cor-
rected phase of the respective oscillation below. Error bars indicate one standard
deviation. The solid curves are the theoretical prediction according to Eq. (5.9)
The correction procedure described in Sec.A.2.2 considers the experimental con-
trast of the interferometer Cexp = 0.64 ± 0.02 and the spin manipulation efficiency
ϵ = 0.92± 0.02 of the magnetic coils.

The absolute phase between the paths of the interferometer is unknown and only the
relative phase χ is controlled. Therefore, the phase offsets δj are also undetermined
albeit predictable. However, according to Eq. (5.5), the phases ϕj of the weak value
are anti-symmetric in χ and their mean is zero. So we chose the phase offsets δj,exp
such that both means of the phases ϕj of the time-dependent oscillation are zero,
ϕ̄j = 0.

The quantities at the end of Eq. (5.13) are closely related to the quantities de-
picted in Figs. 5.11 and 5.12. For the absolute value of the weak values, the corrected
data from Sec. 5.4.3 is normalised with the spin rotation angle α = π/9. This only
concerns the amplitudes over phases, while the corrected phases are identical with
the phases of the weak values. The absolute values and phases of the path weak val-
ues are plotted in Fig. 5.13 dependent on the interferometer phase χ between the two
paths. The absolute value diverges at interferometer phases χ = ±π as predicted
by Eq. (5.5). The phases of the weak values are linear in χ as predicted by Eq. (5.5).
This directly represents the phase of the intensity modulation in time. By changing
the basis to real and imaginary coordinates, the data in Fig. 5.14 arise. Theory pre-
dicts that the real part is constant for all χ. The imaginary parts are anti-symmetric
functions which also diverge for χ = ±π. Note that the polar coordinates are ex-
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tracted directly from fitting a double-sine curve as in Eqs. (5.9) and (5.11), while the
real and imaginary components are equivalent but secondary measures. It is clearly
seen that the extracted data agree with the theoretical predictions. Simultaneous
weak-measurements are accomplished.
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Figure 5.13: The complex weak values in polar coordinates ⟨Π̂j⟩w = Aj e
iϕj . They

are given through (a) the absolute value Aj and (b) the phase ϕj dependent on the
interferometric phase shift χ with theoretical predictions. In (a) and (b), the dashed
frame is magnified on the bottom. Error bars indicate one standard deviation and
include the systematic errors. Solid curves are the theoretical predictions in the limit
of the spin rotation angle α ≪ 1. Dashed curves indicate the expected behaviour
of the linear data analysis used with the applied finite spin rotation angle α = π/9.
Where the solid and dashed lines separate, the linear approximation in α of Eq. (5.9)
does not hold any more.
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Figure 5.14: The complex weak values ⟨Π̂j⟩w given through (a) the real and (b)
the imaginary part dependent on the interferometric phase shift χ with theoretical
predictions. In (a) and (b), the dashed frame is magnified on the bottom. Error
bars indicate one standard deviation and include the systematic errors. Solid curves
are the theoretical prediction in the limit of the spin rotation angle α ≪ 1. Dashed
curves indicate the expected behaviour of the linear data analysis used with the ap-
plied finite spin rotation angle α = π/9. Where the solid and dashed lines separate,
the linear approximation in α of Eq. (5.9) does not hold any more.

The results are also plotted in the complex plane as depicted in Fig. 5.15. Most
corrected data points agree with the theoretical prediction in red. In the complex
representation, all information on the weak values but for the interferometer phase
χ is displayed at once. However, the data is also more difficult to understand.
Note a detail in the data: the imaginary part is predicted to monotonously increase
(decrease) with χ for ⟨Π̂I⟩w (⟨Π̂II⟩w). As can be seen in Fig. 5.14(b), the outermost
points at χ = ±35/36π change the sign of their imaginary parts in both data sets.
Therefore the position in the complex plane is inverted or mirrored around the real
axis. This is in contrast to the theory prediction in the limit of α → 0. However,
this inversion is predicted for the case α = ±35π/36.

5.5 Discussion

5.5.1 Comparison with Standard Weak Measurements

The standard weak measurements introduced in Sec. 2.1.2 use a meter system to
gain information about the observable. For simultaneous measurements, it would
be most convenient to use a different meter system for each observable as in the
Arthus-Kelly protocol [161, 168, 169]. Articles [161, 168] assume non-commuting
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Figure 5.15: The corrected complex weak values ⟨Π̂j⟩w given in the complex plane.

The left graph (a) depicts the weak values ⟨Π̂I⟩w = AI exp(iϕI) = Re{⟨Π̂I⟩w} +

i Im{⟨Π̂I⟩w} and the right graph (b) the weak values ⟨Π̂II⟩w = AII exp(iϕII) =

Re{⟨Π̂II⟩w} + i Im{⟨Π̂II⟩w}. Blue data sets are the Cartesian coordinates, green
sets the polar coordinates. While the positions of the data points match, the differ-
ence between the coordinate systems becomes apparent with the error bars which
indicate one standard deviation, including the systematic errors. The theoretical
predictions are on the red lines defined through Re{⟨Π̂j⟩w} = 1/2.

observables, while the observables in the presented experiment are commuting path
operators. For a standard weak measurement, the meter is the expectation value
of the operator entangled with the observable, e.g. the meter gives a value of mo-
mentum. For the simultaneous measurements of this chapter, the energy system is
used as a meter system. Not the energy itself gives the path information but the
occupation of each energy level. A situation described by Eq. (2.20) is the case. For
each energy shift, a different operator is coupled with the path observable. This is
why the energy system can in principle be used as the sole meter for an arbitrary
number of simultaneous weak path measurements. In contrast, if any combination
of the three weak interactions for the three-path quantum Cheshire Cat were ap-
plied simultaneously, the resulting intensity were difficult to interpret. As stated
in Sec. 4.4, a main motivation for weak measurements is their minimal disturbance
on the intermediate state between pre- and post-selection which simplifies charac-
terising the respective quantum state. This criterion is fulfilled for the presented
simultaneous weak path measurements. Therefore, the experiment shares some but
not all features with standard weak measurements such that one can regard it as a
generalised weak measurement.
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5.5.2 Emergence and Properties of the Results

A simultaneous one-shot measurement of two weak values is conducted by imple-
menting sinusoidal oscillations of the magnetic fields with different frequencies in
each path. Time-resolved measurements of the intensity are used to directly extract
the weak values in polar coordinates from the fitting parameters of a double-sine
fit. The absolute values and phases of the weak values are furthermore converted
to the real and imaginary components. For the present experiment, this indicates
that the absolute value and phase are the measures with direct physical significance
rather than the secondary real and imaginary components.

While it is not any more necessary in the presented procedure to turn the devices
for the weak interactions on and off, a time-dependent measurement is necessary to
retrieve multiple weak values. This can be regarded as trading in one experimental
requirement with another. However, the presented results are extracted with a
single ensemble at each phase shifter setting χ. The simultaneous validity of the
two weak values is therefore guaranteed while preserving the studied interference
effect. We should emphasise that the simultaneously extracted weak values agree
with the predictions for single weak values.

We will now discuss the connection between the neutron optical elements and
the measured intensity. The mean intensity ĪO in the O-beam of Fig. 5.9 for α ≪ 1 is
given by IO of Eq. (5.10), multiplied by another factor of 1/2 due to the spin analysis
in +x-direction of the initial +z spin state. The time-dependence of the weak
interaction makes the intensity time-dependent. The beating intensity modulation
of Fig. 5.9 originates in the sinusoidal RF signal. Let us first consider only a single
applied RF signal. The time of entry into the RF field determines the relative phase
at the end of the coil between the flipped spin down component and the initial spin
up component. The relative phase between spin up and down component regulates
the +x-component of the spin state and in effect the transmission probability at
the spin analysis. This relative phase is time-dependent after exiting the coil, due
to the energy shift. Therefore, the polarisation vector P⃗ = ⟨⃗̂σ⟩, with the Pauli
matrices σ̂i, rotates [105]. With the spin analysis in +x-direction, an oscillating
intensity is observed with one coil. With two coils operated at different frequencies,
two such oscillations can be directly added in the limit α ≪ 1 such that a beating
emerges if (fI − fII)/(fI + fII) ≪ 1. The weak values are directly given by the
amplitude and phase of the oscillations via Eq. (5.9). For a fixed α, the amplitude
is connected to the probability amplitude in the respective path and in turn to the
path operator. The phase of the magnetic field determines the phase of the detected
intensity modulation. Therefore, the magnetic fields of the RF coils encode the
weak values into the intensity. (The spin rotation angle α scales the amplitude of
the time-dependent signal with the absolute value of the weak value.)

The extracted weak values of Figs. 5.13 and 5.14 conform mostly with the the-
oretical prediction. When the interferometer phase χ approaches ±π, the absolute
value and the imaginary part of the weak values diverge according to Eqs. (5.5)
and (5.6). Consequently, the error bars drastically increase at these phase shifter
positions in both the polar and Cartesian representation.

The absolute values of Fig. 5.13 are systematically too small. This is caused
in the time-resolved measurements (cf. Fig. 5.9) by amplitudes of the oscillations
which are lower than predicted. We attribute this to a systematically too small
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spin rotation angle α which we estimate to be too low by a factor of ≈ 0.8. For
α = π/9 =̂ 20 degree, this is an order of magnitude more than the uncertainty of
±0.5 degree as estimated in Sec. 5.3. The phase ϕII also exhibits a systematic devia-
tion from theory. The slope of the data points for ϕII is steeper than expected. We
attribute this to the reset of the field every 304µs: while this is a multiple of the
oscillation period for fI, the oscillation with fII is cut off at the reset. The magnetic
field inside the coil and its driving stimulus are then off-phase which can explain
some phase deviations.

The data extraction uses the double-sine fit which assumes small rotation angles
α ≪ 1. However, we apply a finite rotation angle α = π/9. For finite rotation
angles, deviations from the linear approximation in α of the extracted values due
to higher order terms are expected. These deviations are depicted in the graphs as
dashed lines. (They assume single weak value extraction and omit the cross-term
between the spin down components of both paths. Equation (A.11) in Sec.A.2.2
explicitly states this cross-term ∼ sin2 (α/2) just before the approximation.) The
extracted data comply with both the first order approximation and the expected
deviations due to the size of the error bars. Therefore, the chosen spin rotation
angle is suitable for the chosen combination of setup and measurement time and the
linear approximation in α is reasonable.

The systematic effects described for the polar coordinates are also visible in
Fig. 5.14 in the equivalent terms of real and imaginary part of the weak values. For
large interferometer phases χ, the errors are increased. The systematically reduced
absolute values compared to prediction translate in the systematically reduced real
and imaginary parts. The real part is usually interpreted as the best estimate for
the path operators [33, 38]. One can interpret the estimates in terms of detection
probabilities. For our symmetric beam splitter, a real part of 1/2 is predicted. In
the comparison of the two sets of real parts, the deviations between both sets are
comparable with the error bars. This is consistent with both paths being equally
probable and visibility of the interference fringes is maintained. The second and
second-last real parts of the yellow data set Re{Π̂II} are incompatible with the
prediction. This is linked to the similarly incompatible phases ϕII of the weak value
in Fig. 5.13.

The absolute values of the imaginary part are also systematically too small. The
phase inaccuracy is visible here, too. The imaginary parts are often interpreted as
intrinsic measurement disturbance [32, 38]. The divergences of the imaginary parts
at χ = ±π are connected to the vanishing intensity at the detector such that no
information can be gained. The change in sign for the left and right-most points
is consistent with the theory prediction for the finite angle of α. The sum of the
imaginary parts is expected to be zero because the sum of the path weak values is
supposed to be 1∈ R.

Although the presented weak values are valid for the same ensemble, they do
not necessarily characterise individual neutrons. Yet, a recent experimental report
[170] characterises individual neutrons with weak values. This assumes the theoret-
ically vanishing Ozawa-uncertainty [171] for a specific phase shifter position χ. The
authors argue that without a variance in the weak values, they must be valid for
every neutron. With their asymmetric beam splitter, real weak values are extracted
which are interpreted as fractions of single neutrons in each path. With the pre-
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sented data, a Leggett-Garg relation can be investigated [172] testing the combined
presence in nature of both macro-realism and non-invasive measurements.

The extraction method through time-resolved measurements can be extended to
an arbitrary number of paths with as many different frequencies, since the number
of energy levels used is, in principle, not limited. In case of neutron interferometer
experiments, three simultaneous weak path measurements can be the next target.
In comparison, implementing spatial shifts as a path marking with a detector with
a 2-dimensional spatial resolution is limited to the extraction of two weak values.
Further experiments will involve simultaneous measurements of weak values in the
case of a magnetic field along a single axis [173] and asymmetric beam splitters.

5.5.3 Complementarity Principle

Wave and particle are complementary properties [174]. The visibility of interfer-
ence fringes and distinguishability between paths are related through a trade-off
[175–177]. A spin flip of probability 1 in one path of an interferometer makes the
paths distinguishable through a spin analysis while the visibility vanishes due to the
orthogonality between the spin states. A so-called quantum eraser makes the paths
indistinguishable again which can be implemented by projecting the orthogonal
states onto a different basis. This was done in neutron interferometer experiments
[47] and in versions with entangled photons [178–180].

In the present experiment, the spin analysis in +x-direction resembles the quan-
tum eraser. Some minimal path marking is memorised in the spin system given
through the spin rotation angle α. As the same rotation angle α from the initial
+z spin state is applied in both paths, the paths cannot be distinguished by pro-
jecting on a z spin state. However, the two polarisation vectors are rotating with
different frequencies in an x-y plane of the Bloch sphere. The x-y spin components
are periodically in parallel and anti-parallel. For the anti-parallel orientation, the
corresponding spin states are orthogonal. If all parameters of the experiment were
determined, the detection of a neutron at specific moments would infer different
probabilities for either path taken. In contrast to a quantum eraser, some minimal
path distinguishability could be inferred with the combination of +x spin analysis
and time-resolved detection. Since both flipped components are involved for this
argument, the reduced visibility emerges in the intensity with the second order in
α. Due to the small size of α, the present experiment is adequately described by
the linear dependence on α. The minimal distinguishability between the paths does
not lower the visibility noticeably.

5.5.4 Subjective Remarks

The meaning of weak values is not entirely clear to me. One interpretation of the
imaginary part is that it quantifies disturbance on the system. In the experiment
of this chapter, the imaginary part diverges in the vicinity of phase shifter position
χ = ±π. At this point, pre- and post-selection are orthogonal to each other. If
one interprets disturbance as loss of information, disturbance is maximal at this
point, since all information is lost when only regarding the intensity at the O-beam.
Also the interpretation of weak values as best estimate of the respective operator is
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reasonable. The real part agrees with the theoretically predicted absolute value of
the probability amplitudes in the two paths.

Another argument concerns the number of systems (or neutrons here) which
weak values characterise. It is evident that weak measurements can only be per-
formed for ensembles of systems. However, this does in general not distinguish weak
measurements from ordinary projective measurements. For the latter, even one-shot
measurements entail a rigid preparation. The preparation can be considered as an
initial measurement such that one cannot reduce the entire procedure to a single
measurement.

The difference between weak and strong (projective) measurements is not equiv-
alent to the interaction strength, as a weak measurement involves two projections.
A weak measurement involves, however, first of all a third interaction in between
those two. Only then regarding the strength of interaction itself becomes relevant.
It is then a dynamical feature of the specific pre- and post-selection that the re-
sponse of the system to an interaction is strong, i.e. with a linear dependence. The
weak values are easier to extract from a mathematical viewpoint if the interaction
is weak because only one contribution is relevant. From this viewpoint, it is far
fetched to me to read a fundamental meaning into weak values. It is therefore a
weak but still notable argument for me to criticise an interaction strength as too
high. Should the threshold for a small enough interaction strength be dependent
on current technology? One should always choose an interaction strength as low as
possible. For the presented experiments, the interaction strength might be able to
be reduced a notch as has already been realised in follow-up experiments. To argue
about factors < 2 in the interaction strength for realisations of concepts previously
assumed to be Gedankenexperiments might overdo it.

In extension to the interaction strength, a similar thing happens from my per-
spective when devaluing a study because it does not involve “genuine” weak mea-
surements since the procedure does not follow the initially introduced formalism
to the letter. If the meaning of weak values stays to debate in the community af-
ter some time and effort, it is necessary to reframe weak measurements by either
generalising or specifying them.

5.6 Conclusion

Simultaneous measurements of two path weak values in neutron interferometry are
presented. The path degree of freedom of the neutron is coupled to the energy
degree of freedom through weak interactions with oscillating magnetic fields. By
use of two different frequencies, two different energy eigenstates are occupied which
act as two probe states. Since the choice of the frequencies has no limitation, the
potential number of probe states and extracted path weak values in the experiment
is unlimited. By recording the time-dependent intensity, two path weak values are
simultaneously extracted as full complex numbers at each phase shifter position.
This simplified measurement protocol guarantees the validity of multiple weak values
for the same ensemble.

In contrast to strong measurements, e.g. with beam blockers or π spin rotations in
the interferometer arms, weak measurements preserve the investigated interference
effect. In the present experiment, the principal physical significance of the weak
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values lies in their polar coordinates of absolute value and phase which directly
characterise the amplitude and phase of the observed intensity modulation. Further
experiments will involve the extension to simultaneous measurements of three or
more weak values and the use of asymmetric beam splitters.
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Chapter 6

Conclusion and outlook

Two neutron interferometer experiments are performed in generalised weak mea-
surements with pre- and post-selection. The first experiment concerns a quantum
Cheshire Cat and the second one the simultaneous measurements of two path weak
values. Weak values describe the changes in intensity recorded at the output of the
interferometer when weak interactions are applied. The meaning of weak values
beyond the mathematical description stays to debate.

For the quantum Cheshire Cat, weak values describe the conspicuous responses
to weak interactions. A realistic interpretation of weak values as quantification
of the location of properties is possible but not necessary. The emergence of the
quantum Cheshire Cat can be regarded in a more conventional way as an interference
phenomenon.

In the Cheshire Cat experiment, an energy manipulation is always coupled to a
spin manipulation. At the moment, Ismaele Masiello is implementing RF magnetic
fields parallel to the polarisation vector in generalised weak measurements. This
prevents the entanglement between spin and energy. While energy manipulations are
frequently described as two-level systems with its own Hilbert space, an equivalent
description is given through time-dependent phases between quantum states. The
recently investigated orbital angular momentum of neutrons could be used instead
of energy as the third degree of freedom. The rigid restrictions for devices in a
perfect crystal neutron interferometer have to be overcome. A stricter realisation of
the proposal by Pan could be achieved. Also the measurements could be performed
simultaneously such that all measurements to infer the locations of properties are
performed at the same time.

In the simultaneous weak-path measurements, a coupling between the path state
in the interferometer and the energy level is performed. Besides its presented re-
sults, the data can be evaluated to test a Leggett-Garg inequality which constrain
the presence of macro-realism and non-invasive measurements in nature. The tech-
nique can also contribute to improvements of experiments such as above quantum
Cheshire Cat.

Neutron interferometry developed a reputation since its introduction in 1974.
Experiments are performed to this day. Neutron interferometry faces potent com-
petition, specifically by atom interferometry. Reactor technology is criticised due to
security reasons related to possible incidents and nuclear waste. Spallation sources
as the International Spallation Source (ISIS) in England and the newly founded Eu-
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ropean Spallation Source (ESS) in Sweden will become more important for neutron
optics.

The neutron interferometry station S18 at ILL in Grenoble, France, undergoes
continuous improvements carried out primarily by its instrument responsible Hart-
mut Lemmel. A split crystal interferometer is introduced recently which allows for
loop areas increased by an order of magnitude. The increased phase sensitivity can
be used to probe for smaller effects depending on the area such as the Sagnac effect.
Additionally, the whole instrument S18 is currently rebuilt. The prospected end
state will result in better spin polarisation and reduced alignment times. The latter
is because entire tables filled with devices such as coils and the interferometer will
be placed on stages moveable with air pressure. The many degrees of freedom in
aligning the devices will be reduced significantly for each new experiment. In this
way, the rationed beam time will be used more efficiently. Another ongoing devel-
opment are polarising supermirrors which do not absorb one spin-component but
allow the detection of both spin-components individually and simultaneously.
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Appendix A

Detailed Calculations

A.1 Three-Path Quantum Cheshire Cat

The Euler representation of the unitary operators in Eq. (4.29) is derived in the
following.
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Equation (4.5) is reached by substituting σ̂p
x with σ̂DC

x and σ̂p
x with σ̂RF

x , respectively.
When a weak DC spin rotation is applied in path j, the measured intensity is given
by Eq. (4.10). Here we present the detailed derivation. We use the completeness
relation

1 = |E0⟩ ⟨E0|+ |E ′⟩ ⟨E ′| , (A.2)
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such that the time-averaged intensity I is written as
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with the Kronecker delta δi,j. Similar steps lead to Eq. (4.11).
The step-by-step calculation of the intensity in the absorber case of Eq. (4.12) is
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(A.4)

where, according to Eq. (4.9),

⟨Π̂j⟩E0

w = δj,II = Re
�
⟨Π̂j⟩E0

w

	
=

***⟨Π̂j⟩E0

w

***2 . (A.5)

The detailed calculation of the exact result with N paths and N − 1 properties
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of Eq. (4.32) is given here:

Ipj (α) =
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(A.6)

where the last two summands are zero because at least one of the two brakets in
each term is zero. This is in close relation to the calculation of the weak values in
Eq. (4.9) but not exemplified here. Continuing the derivation,
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(A.7)

where we also use Eq. (A.5). This concludes the derivation of the second line in
Eq. (4.32). The derivation of lines three and four of Eq. (4.32) takes a different way.
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By explicitly writing the brakets, given by Eqs. (4.27) and (4.28), in the third line
of Eq. (A.6), we obtain
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(A.8)

which concludes the derivation of Eq. (4.32).

A.2 Simultaneous Weak-Path Measurements

A.2.1 Calculation of Intensity

Equation (5.9) is derived as
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Iideal(t) =
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(A.9)
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A.2.2 Data Correction

In the ideal case, the weak values are extracted in polar coordinates through Eq. (5.13).
The dominant experimental imperfections are given by the interferometer con-
trast C and the coil efficiency ϵ. The experimentally retrieved parameters are
Cexp = 0.64 ± 0.03 and ϵexp = 0.92 ± 0.02. The predicted experimental intensity
Ipred dependent on the adjustable parameters αj and χ is derived as
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(A.10)

Here, we insert the experimental parameters of interferometer contrast C and
the spin manipulation efficiency ϵ of the coils. The contrast is added in summands
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with factors attributed to both paths, which is equivalent to the dependence on both
αI and αII. From here on, we set αI = αII = α. The spin manipulation efficiency is
added in summands with factors attributed to different spin components. The latter
is equivalent to adding the factor ϵ in summands with factors sin(α/2) cos(α/2),
where the cosine quantifies the component remaining in the initial +z spin state
and the sine quantifies the component flipped into the -z spin state.
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(A.11)
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with I0 = [1 + C cos (χ)] /4. There is a sine and a cosine summand for each applied
frequency. We combine each pair by defining new amplitudes Rj and phases βj.
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(A.12)

By comparing the coefficients of Eqs. (A.11) and (A.12), we obtain
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(A.13)

by substituting Eq. (5.5). The data is corrected accordingly by scaling the extracted
values as

Aj,corr =

Rj(C=1,ϵ=1)

I0(C=1)

Rj(C=Cexp,ϵ=ϵexp)

I0(C=Cexp)

Aj,exp (A.14)

ϕj,corr =
βj(C = 1, ϵ = 1)

βj(C = Cexp, ϵ = ϵexp)
ϕj,exp. (A.15)
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characterization of microgravity-grown tetragonal lysozyme single crystals,”
Acta Crystallogr. D 55, 644 (1999).

[88] J. G. Barker, C. J. Glinka, J. J. Moyer, M. H. Kim, A. R. Drews, and
M. Agamalian, “Design and performance of a thermal-neutron double-crystal
diffractometer for USANS at NIST,” J. Appl. Crystallogr. 38, 1004 (2005).

140

http://dx.doi.org/10.1002/er.6371
http://dx.doi.org/10.1002/er.6371
https://www.ill.eu/reactor-and-safety/high-flux-reactor/technical-characteristics
https://www.tuwien.at/forschung/facilities/trigacenter/triga-reaktor/technische-daten
https://treaties.unoda.org/t/npt
https://world-nuclear.org/information-library/current-and-future-generation/outline-history-of-nuclear-energy#the-nuclear-power-brown-out-and-revival
http://dx.doi.org/10.34726/HSS.2018.29166
http://dx.doi.org/10.1103/physrevlett.31.972
http://dx.doi.org/10.1103/physrevlett.31.972
http://dx.doi.org/10.1103/physrevlett.46.1540
http://dx.doi.org/10.1103/physrevlett.46.1540
http://dx.doi.org/10.1107/s0907444998014462
http://dx.doi.org/10.1107/s0021889805032103


[89] G. Badurek, R. Buchelt, G. Kroupa, M. Baron, and M. Villa, “Permanent
magnetic field-prism polarizer for perfect crystal neutron interferometers,”
Physica B 283, 389 (2000).

[90] H. Maier-Leibnitz and T. Springer, “The use of neutron optical devices on
beam-hole experiments on beam-hole experiments,” Ann. Nucl. Energy A/B
17, 217 (1963).

[91] B. P. Schoenborn, D. L. D. Caspar, and O. F. Kammerer, “A novel neutron
monochromator,” J. Appl. Crystallogr. 7, 508 (1974).

[92] F. Mezei, “Novel polarized neutron devices: supermirror and spin component
amplifier,” Communications on Physics 1 (1976).

[93] R. Golub, Ultra cold neutrons, edited by D. J. Richardson and S. K. Lamoreaux
(Adam Hilger, Bristol [u.a.], 1991) Literaturverz. S. 277 - 286.

[94] R. Cubitt and G. Fragneto, “Neutron Reflection: Principles and Examples of
Applications,” in Scattering (Elsevier, 2002) pp. 1198–1208.

[95] I. S. Anderson, O. Schärpf, P. Høghøj, and P. Ageron, “Multilayers for neutron
optics,” J. Neutron Res. 5, 51 (1996).
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