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Abstract All-wheel drive electric vehicles, equipped
with independent motors at the front axle and the
rear axle, allow for adaptive drive torque distribution
between the axles to influence handling and stability
characteristics. To analyse manoeuvres at combined
longitudinal and lateral accelerations, a quasi-steady-
state assumption is used to apply bifurcation and con-
tinuation techniques. Different types of loss of stability
are found and analysed. The Takens–Bogdanov bifur-
cation is studied in more detail, and it is shown that
the respective branch represents the boundary between
final understeer and final oversteer, and defines the
stable envelope in the GG diagram. The drive torque
distribution at the Takens–Bogdanov branch is there-
fore considered a good design criterion for a safe and
performant powertrain control. Besides the Takens–
Bogdanov branch, related Hopf and Fold branches are
identified that define limits for practically reasonable
drive torque distributions.

Keywords Vehicle handling · Vehicle dynamics ·
All-wheel drive · Stability ·Bifurcation analysis ·Drive
torque distribution · Takens–Bogdanov bifurcation

M. Eberhart (B) · M. Plöchl · J. Edelmann
Institute of Mechanics and Mechatronics, TU Wien, Getreide-
markt 9, 1060 Vienna, Austria
e-mail: manuel.eberhart@tuwien.ac.at

1 Introduction

Powertrains of electric vehicles are often equipped
with more than one electric motor. Since the individual
motors are not mechanically coupled and very respon-
sive, they offer newpossibilities for vehicle control sys-
tems. Considering the mutual influence of longitudinal
and lateral tyre forces, the drive torques may improve
the responsiveness and stability properties of the vehi-
cle. However, for this purpose, a profound understand-
ing of the impact of the drive torque distribution on
the stability and handling properties of the vehicle is
required to ensure effective and safe operation. The
focus of this paper is to gain a better understanding of
the influence of the front-to-rear drive torque distribu-
tion of an all-wheel drive (AWD)vehiclewith two inde-
pendent motors, one at the front axle and one at the rear
axle, on its stability properties and quasi-steady-state
handling performance. Therefore, the handling regime
at combined longitudinal and lateral acceleration of the
vehicle is considered, where the impact of longitudinal
tyre forces on lateral tyre forces and consequently the
front-to-rear drive torque distribution maymodify han-
dling and stability characteristics considerably.

The (quasi-)steady-state handling characteristics of
vehicles are fundamentally important to assess its (open
loop) stability properties and to judge the vehicle’s
response to driver steering commands, [1–3]. Depend-
ing on the longitudinal acceleration, both in driving
and braking conditions, and the powertrain and control
architecture, the handling characteristics and stability
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properties of the vehicle can significantly change, [4–
6].

In [4], Klomp et al. analyse the impact of all-wheel
drive (AWD), front-wheel drive (FWD) and rear-wheel
drive (RWD) powertrain architectures on the handling
characteristics and lateral acceleration potential of a
vehicle. For this purpose, a method is proposed to
determine an ‘optimal’ drive torque distribution using
a quasi-steady-state description of the vehicle model.

Bucchi et al. [7] and Lenzo et al. [8] compare FWD
and RWD vehicles with a focus on handling and yaw
torque analysis. It is shown that an FWD powertrain is
less prone to understeer in steady-state cornering due
to the additional yaw torque of the longitudinal forces
at the front axle.

Using a basic two degrees of freedom (DOF) vehicle
model and a simplified Pacejka ‘Magic Formula’ tyre
model,Onoet al. [9] show that vehicle loss of stability is
caused by a saddle-node bifurcation (also denoted Fold
bifurcation), which depends considerably on the rear
lateral tyre force saturation. A steering control strategy
is proposed to stabilise the motion of the vehicle.

A study on vehicle dynamics and stability, taking
into account different friction potentials of the tyres at
the front axle and the rear axle, is presented by Shen et
al. in [10]. The joint point locus approach is applied to
identify system equilibrium points and to assess their
stability characteristics.

A fundamental study on a twoDOF vehicle model is
done by Della Rossa et al. in [11]. Various types of loss
of stability for different combinations of effective tyre
force characteristics at the front axle and the rear axle
of the vehicle model are studied and discussed with
the help of bifurcation analysis and the phase-plane
diagram.

The impact of the effective tyre force characteris-
tics on the stability behaviour of a vehicle are studied
by Pauwelussen in [12], focusing on the appearance of
limit cycles, whereas Farroni et al. investigate its influ-
ence on the handling diagram and on the phase-plane
diagram in [13].

Horiuchi et al. [5] use a quasi-steady-state descrip-
tion to model a vehicle in combined lateral and longitu-
dinal acceleration conditions. Using the steering angle
as the bifurcation parameter, a Fold bifurcation is found
for a vehicle under negative longitudinal acceleration
and a fixed brake torque distribution.

Wang et al. analyse the stability properties of a vehi-
cle at combined braking and steering in [14]. The sta-

bility of the vehicle is analysed for different speeds,
steering angles and brake torqueswith the help of bifur-
cation analysis, equivalent equilibrium description and
phase-plane analysis for an ideal constant brake distri-
bution between the front axle and the rear axle.

In contrast to conventional brake systems, regenera-
tive braking using electric motors allows for a variable
brake force distribution between the front axle and the
rear axle and may allow to extend the combined stable
longitudinal and lateral acceleration envelope in theGG
diagram.

Besides improving the stable handling envelope, in
certain conventional and critical driving conditions, the
control of the drive torque distribution may be benefi-
cial to enhance the responsiveness of the vehicle. A
‘responsiveness and stability metric’ is used by Zang
et al. [15] to control the front-to-rear drive torque distri-
bution for improved responsiveness and stability prop-
erties of the vehicle.

To study the properties of the lateral motion of
the vehicle during longitudinal acceleration, the quasi-
steady-state assumption (equivalent equilibrium) is
applied to convert the transient condition into amechan-
ical equivalent steady-state. This transformation allows
for the use of mathematical methods used for linear
systems. Horiuchi et al. consider the front-to-rear load
transfer and longitudinal tyre forces in [5] by adding
a virtual external force to the equation of motion of
the vehicle in the longitudinal direction. Abe applies a
quasi-steady-state assumption in [6], disregarding the
change of the longitudinal velocity of the vehicle for a
short period of time. Also, the vehicle roll, pitch and
yawmotion are assumed tomaintain their steady states.
Klomp et al. use a similar approach in [4]. Tremlett et
al. in [16] andNovellis et al. in [17] additionally require
that the derivative of the longitudinal slip of each wheel
is zero, whereas the lateral and yaw motion fulfil the
steady-state condition.

In the literature, vehicle stability properties are
analysed using basic vehicle models, either assum-
ing steady-state conditions or combined longitudinal
and lateral acceleration, where stability properties are
examined for specific, fixed drive or brake torque dis-
tributions.

The novelty of this paper is the incorporation of a
variable drive torque distribution, an inherent feature of
AWD electric vehicle powertrain architectures, to anal-
yse its impact on the stability properties of the vehicle at
combined longitudinal and lateral acceleration. There-
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fore, a detailed vehiclemodel is applied to take relevant
effects like the dynamics of the individual wheels, the
wheel load transfer, and the mutual influence of longi-
tudinal and lateral tyre forces into account.

The paper is structured as follows: In the subsequent
Sect. 2, the vehicle and tyre model are introduced. In
Sect. 3, the used methods are briefly described. In the
followingSect. 4 the handling characteristics are shown
and different types of loss of stability are identified.
The Takens–Bogdanov bifurcation is shown in the GG
envelope and different causes of its appearance and its
connection to the occurrence of a Fold bifurcation are
presented. In Sect. 5, main findings are summarised
and conclusions are drawn.

2 Vehicle and tyre model

To study vehicle stability properties up to high levels
of both lateral and longitudinal acceleration, a nonlin-
ear 10 degrees of freedom vehicle model is employed,
Fig. 1, incorporating a nonlinear tyremodel, wheel load
transfer, and nonlinear steering kinematics. The road
surface is represented by a horizontal plane.

The vehicle body is modelled as a rigid body with 6
degrees of freedom, with massm and moments of iner-
tia Ix , Iy and Iz . The products of inertia are neglected.
The vehicle body is connected to the massless axles
with spring stiffnesses ck and damping dk , k ∈ {F, R},
at the front axle and rear axle, respectively. The anti-
roll bars are considered by additional stiffnesses crk .
The four individual wheels with effective moment of
inertia IWk are modelled with one rotational degree
of freedom each. The vehicle parameters are listed in
Table 1. These refer to an SUV vehicle and are adjusted
tomeasurements carried out with the reference vehicle.

The tyre force characteristics are described by Pace-
jka’s Magic Formula model [18], where tyre parame-
ters are derived from trailer measurements and the slip
stiffnesses and maximum friction values of the tyres
are adjusted to fit the handling characteristics of the
reference vehicle.

To reduce the complexity in the derivation of the
governing equations of motion of the vehicle body,
two different coordinate systems are used: the equa-
tions ofmotion for the rotational degrees of freedomare
described in the body-fixed coordinate system (xB-yB-
zB), whereas the equations of the translational degrees
of freedom are described in a coordinate systemmoved

Fig. 1 Schematic illustration of the vehicle model

in the ground plane (x-y-z). The body-fixed coordi-
nate system (xB-yB-zB) is rotated relative to the ground
plane with pitch angle θ and roll angle ϕ w.r.t. the yB-
axis and the xB-axis, respectively. The equations of
motions are derived assuming small angles ϕ and θ ,
and respective derivatives,

m (v̇x − vy ψ̇ + h θ̈

+ 2 h ϕ̇ ψ̇ − h θ ψ̇2 + h ϕ ψ̈) = �Fx (1a)

m (v̇y + vx ψ̇ − h ϕ̈

+ 2 h θ̇ ψ̇ + h ϕ ψ̇2 + h θ ψ̈) = �Fy (1b)

m v̇z = �Fz (1c)

Ix ϕ̈ − (Iy − Iz) θ̇ ψ̇ = �Mx − θ �Mz (1d)

Iy θ̈ − (Iz − Ix ) ψ̇ ϕ̇ = �My + ϕ �Mz (1e)

Iz ψ̈ − (Ix − Iy) ϕ̇ θ̇ = �Mz + θ �Mx

− ϕ �My (1f)

with the longitudinal velocity vx , lateral velocity vy ,
yaw rate ψ̇ , and the sum of forces �Fj , j ∈ {x, y, z},
and of moments �Mj :
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�Fx = Fx1 cos δ1 − Fy1 sin δ1

+ Fx2 cos δ2 − Fy2 sin δ2 + Fx3 + Fx4 (2a)

�Fy = Fy1 cos δ1 + Fx1 sin δ1

+ Fy2 cos δ2 + Fx2 sin δ2 + Fy3 + Fy4 (2b)

�Fz = Fz1 + Fz2 + Fz3 + Fz4 − m g (2c)

�Mx = Fz1 (sF + h ϕ) − Fz2 (sF − h ϕ)

+ Fz3 (sR + h ϕ) − Fz4 (sR − h ϕ)

+ �Fy (h + z0 + z) (2d)

�My = −(Fz1 + Fz2) (lF − h θ)

+ (Fz3 + Fz4) (lR + h θ)

− �Fx (h + z0 + z) (2e)

�Mz = �Mz,tyre + (Fy1 cos δ1 + Fx1 sin δ1

+ Fy2 cos δ2 + Fx2 sin δ2) (lF − h θ)

− (Fy3 + Fy4) (lR + h θ)

− (Fx1 cos δ1 − Fy1 sin δ1) (sF + h ϕ)

+ (Fx2 cos δ2 − Fy2 sin δ2) (sF − h ϕ)

− Fx3 (sR + h ϕ) + Fx4 (sR − h ϕ). (2f)

Fxi , i ∈ {1, 2, 3, 4}, represent the longitudinal tyre
forces of the individual wheels, and Fyi represent the
lateral tyre forces, which depend on the longitudinal
tyre slips sxi , sideslip angles αi , and the vertical tyre
forces Fzi . �Mz,tyre represents the sum of the self-
aligning torques Mzi of the tyres. The vertical tyre
forces are calculated with

Fz1 = Fz1,0 − cF z1 − dF ż1 − crF (z1 − z2) (3a)

Fz2 = Fz2,0 − cF z2 − dF ż2 + crF (z1 − z2) (3b)

Fz3 = Fz3,0 − cR z3 − dR ż3 − crR (z3 − z4) (3c)

Fz4 = Fz4,0 − cR z4 − dR ż4 + crR (z3 − z4) (3d)

where Fzi,0 represents the nominal vertical tyre forces.
The wheel travels zi are derived from the vertical dis-
placement z of the vehicle body, the pitch angle θ and
the roll angle ϕ,

z1 = z + ϕ sF − θ lF (4a)

z2 = z − ϕ sF − θ lF (4b)

z3 = z + ϕ sR + θ lR (4c)

z4 = z − ϕ sR + θ lR (4d)

From geometric and kinematic considerations, the
tyre sideslip angles αi are derived,

tan (δ1 − α1) = vy + lF ψ̇

vx − sF ψ̇
(5a)

tan (δ2 − α2) = vy + lF ψ̇

vx + sF ψ̇
(5b)

tan α3 = − vy − lR ψ̇

vx − sR ψ̇
(5c)

tan α4 = − vy − lR ψ̇

vx + sR ψ̇
(5d)

Ackermann steering behaviour is assumed,

lF + lR
tan δ1

+ sF = lF + lR
tan δ

(6a)

lF + lR
tan δ2

− sF = lF + lR
tan δ

(6b)

with the steering angle δ and the steering angles δ1,2 of
the front wheels.

The longitudinal tyre slips sxi are defined by

sx1 = r ω1

vW1
− 1 (7a)

sx2 = r ω2

vW2
− 1 (7b)

sx3 = r ω3

(vx − sR ψ̇)
− 1 (7c)

sx4 = r ω4

(vx + sR ψ̇)
− 1 (7d)

vWi represent the velocities of the centre of the front
wheels in the direction of the respective wheel plane,

vW1 = (vx − sF ψ̇) cos δ1 + (vy + lF ψ̇) sin δ1 (8a)

vW2 = (vx + sF ψ̇) cos δ2 + (vy + lF ψ̇) sin δ2 (8b)

with the angular velocities of the wheels ωi and tyre
radius r .

The equation of motion of the wheels read

IWk ω̇i = Ti − Fxi r, (9)

with the effective moment of inertia IWk , k ∈
{F, R}, which represents half of the reduced moment
of inertia of the respective axle. Assuming open differ-
ential gears at both the front axle and the rear axle, the
drive (or brake) torque Ti of the individual wheels is
given by T1,2 = TF/2 and T3,4 = TR/2, respectively.
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The drive torque at the front axle and the rear axle, TF
and TR, respectively, depends on the total drive torque
Ttot requested by the driver (through throttle and brake
pedal inputs) and the drive torque distribution γ . The
drive torque distribution γ represents the ratio of the
total drive torque Ttot that is applied to the rear axle,

γ = TR/Ttot. (10)

Consequently, the torque at the front axle and the rear
axle are given by

TF = (1 − γ ) Ttot and TR = γ Ttot. (11)

In the figures presented in Sect. 4, instead of the lon-
gitudinal velocity vx and the lateral velocity vy of the
origin of the x-y-z coordinate system, the velocity v

and the sideslip angle β of the vehicle are depicted,
were

vx = v cosβ, vy = v sin β. (12)

This representation is more intuitive, offering a clearer
understanding of the vehicle state being illustrated.

The longitudinal and lateral tyre forces, Fxi and Fyi ,
respectively, of the applied Magic Formula tyre model
depend, as mentioned above, on the vertical tyre force
Fzi , the tyre sideslip angle αi , and the longitudinal slip
sxi . The influence of the camber angle is neglected.

In Fig. 2 the normalized lateral tyre forces Fyi/Fzi,0
are shown over the normalized longitudinal tyre forces
Fxi/Fzi,0 for constant sideslip angles α. The charac-
teristics of a front tyre are shown in solid lines and the
characteristics of a rear tyre are shown in dash-dotted
lines.

Examining the pure lateral tyre characteristics (i.e.
the points where Fxi/Fzi,0 = 0 for different values
of α in Fig. 2) shows that the cornering stiffness of the
front tyres is lower than the cornering stiffness of the
rear tyres, due to different tyre dimensions considered.
Both the maximum lateral and the longitudinal friction
potentials are higher at the rear tyres compared to the
front tyres.

With increasing longitudinal slip, the (local) corner-
ing stiffness of the tyres decreases, significantly affect-
ing the vehicle’s handling and stability properties under
combined lateral and longitudinal tyre slip conditions.

Fig. 2 Combined normalized tyre forces for constant sideslip
anglesα and varied longitudinal slip sx for a front tyre, i ∈ {1, 2}
(solid lines), and a rear tyre, i ∈ {3, 4} (dashed lines)

3 Methods

To analyse the impact of the drive torque distribution γ

on the stability properties of the vehicle duringmanoeu-
vres with combined lateral and longitudinal accelera-
tion, the transient state (an �= 0, at �= 0) is transformed
to a quasi-steady-state that approximates the transient
condition well, [4,5,16,17].

3.1 Quasi-steady-state description

Here, a similar approach to Horiuchi et al. [5] is used,
where an equivalent longitudinal force is applied in
the vehicle’s longitudinal axis at the centre of grav-
ity to transform the transient state during acceleration
and braking into an equivalent equilibrium state. The
derivative of the velocity of the vehicle, v̇, is set to the
desired tangential acceleration at . This adjustment is
equivalent to applying an inertial force acting at the
centre of gravity of the vehicle in the opposite direc-
tion of the velocity v. As a result, both the wheel load
transfer and the longitudinal tyre forces required to
achieve the desired tangential acceleration at are taken
into account, allowing the vehicle to be considered in
a steady-state condition.

The yaw acceleration ψ̈ , the derivative of the vehicle
sideslip angle β̇, and the derivatives of the other states
are set to zero to satisfy the steady-state condition. In
contrast to [16] and [17], not the derivative of longitu-
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Table 1 Parameters of the vehicle model

Parameter Value Unit Description

m 2550 kg Total mass of the vehicle

Ix 950 kgm2 Moment of inertia about the x-axis

Iy 3400 kgm2 Moment of inertia about the y-axis

Iz 3600 kgm2 Moment of inertia about the z-axis

IWF 3.3 kgm2 Effective moment of inertia of one front wheel

IWR 8 kgm2 Effective moment of inertia of one rear wheel

lF 1.5 m Length from the centre of gravity to the front axle

lR 1.4 m Length from the centre of gravity to the rear axle

sF 0.84 m Half of the track width at the front axle

sR 0.83 m Half of the track width at the rear axle

z0 0.13 m Height z0
h 0.42 m Height h

r 0.367 m Radius of the tyre

cF 2.5 × 104 N/m Spring stiffness at the front axle

cR 2.6 × 104 N/m Spring stiffness at the rear axle

dF 5 × 103 N/(m s) Damping constant at the front axle

dR 5 × 103 N/(m s) Damping constant at the rear axle

crF 3.5 × 104 N/m Roll stiffness at the front axle

crR 3.2 × 104 N/m Roll stiffness at the rear axle

dinal tyre slips ṡxi but the angular acceleration of the
wheels ω̇i are set to zero.

3.2 Stability of first order

Once a solution of the nonlinear quasi-steady-state sys-
tem is found, the nonlinear equations of motion are lin-
earised w.r.t. this steady state, �ẋ = A�x + B�u,
with state vector�x and (fixed) control parameter vec-
tor �u, and system matrix A and input matrix B. Lya-
punov’s first method implies that a steady state is stable
if all eigenvalues of A have negative real parts, [19]. If
one or more eigenvalues have a positive real part, the
steady state is unstable. If one ormore eigenvalues have
a zero real part while all the other eigenvalues have a
negative real part, the steady state is at the stability
limit. The configuration and number of the eigenvalues
with zero real part determine the type of bifurcation
emerging from this steady state.

3.3 Bifurcation analysis and continuation algorithm

Bifurcation analysis refers to the study of changes in
the structure or stability of the solutions of a system
as parameters are varied, [19–22]. With the help of a
path continuation algorithm, solution paths are found
by varying a distinguished parameter. To conduct a
bifurcation analysis, the system to be investigated is
described by the dynamics equation

ẋ(t) = f(x, p) (13)

where x represents the state vector of the vehicle model
and p is the vector of parameters. In this study the
parameter vector consists of p = [δ, Ttot, γ, at ]T.
The parameter vector is split into a distinguished
parameter λ, e.g. the drive torque distribution γ , and
free and fixed parameters pfree and pfixed, respectively.

It is intended to investigate different (quasi-steady-
state) driving conditions for the same vehicle velocity
for a varied distinguished parameter. Hence, the vehicle
velocity is fixed, here to a selected value of v = v0 =
20m/s. Therefore constraint equations are required,
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and the augmented set of equations reads as follows:

ẋ(t) = f(x, p), g(x, p) = 0. (14)

where

g(x, p) =
[

v − v0
pl − pfixed

]
(15)

with the indices l of the fixed parameters. If, in addi-
tion to the velocity v, further states shall be fixed, a
respective number of fixed parameters from pfixed must
instead be incorporated into pfree.

For path continuation, the algorithm tracks the solu-
tion path by ‘tangential continuation’, utilizing the cur-
rent and prior found solution to make an initial guess
for the next solution step, [20]. To track solution paths
of bifurcation points, additional constraint equations
related to the respective type of bifurcation (e.g. Hopf,
Fold andTakens–Bogdanovbifurcation), [19–22], have
to be considered,where, depending on the codimension
of the corresponding bifurcation, [19], the respective
number of fixed parameters have to be set free.

4 Results

4.1 Steady-state handling characteristics

Vehicle and tyre parameters have been selected to map
a vehicle with understeering characteristics, [18], at
zero tangential acceleration v̇ = at = 0m/s2, see
also Sect. 2. The handling diagram for γ = 0 (FWD
configuration) and γ = 1 (RWD configuration) is
depicted in the top graph of Fig. 3, where the steering
angle δ is plotted over the steady-state normal accel-
eration an = v ψ̇ at a constant vehicle velocity of
v = 20m/s. Moreover, at high normal acceleration,
both configurations show final understeer characteris-
tics, [23]. Consequently, various AWD configurations
(i.e. 0 < γ < 1) will show similar (final) understeer
characteristics. Due to zero tangential acceleration at
and small vehicle sideslip angles β, the longitudinal
load transfer is almost zero.

Since the traction forces at the front wheels generate
additional yaw torque in the FWD configuration due to
the steered front wheels, a slightly higher maximum
normal acceleration may be observed compared to
RWD configuration, see also [8]. This effect decreases

Fig. 3 Handling diagram of the front and rear-drive vehicle at
zero tangential acceleration at = 0m/s2 and constant velocity
v = 20m/s, compared to neutral steering behaviour

with increasing vehicle velocities since the steering
angle at the maximal normal acceleration decreases.

In the middle graph of Fig. 3, the evolution of the
vehicle sideslip angle β is depicted. It may be noticed
that at the FWD configuration, the absolute value of
the vehicle sideslip angleβ decreases after reaching the
maximumnormal acceleration. In contrast, at the RWD
configuration, the sideslip anglesβ remain similar. This
effect can also be attributed to the longitudinal forces
at the front axle. The steady-state total drive torque
Ttot is plotted over the steering angle δ at the bottom
graph in Fig. 3. After reaching the maximum normal
acceleration an at δ ≈ 10 deg, slightly higher total drive
torques Ttot result at the RWD configuration compared
to the FWD configuration.
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Fig. 4 Steering angle δ and vehicle sideslip angle β for different
drive torque distributions γ plotted over the normal acceleration
an . Quasi-steady-state solutions for tangential acceleration at =
4m/s2 and constant velocity v = 20m/s

4.2 Handling behaviour under longitudinal
acceleration

Increasing the vehicle tangential acceleration at results
in a qualitative change in the handling characteristics
of the vehicle with the RWD configuration, γ = 1,
compared to the zero tangential acceleration case. The
handling diagram in Fig. 4 is derived for a constant tan-
gential acceleration at = 4m/s2, which corresponds to
amedium tangential acceleration on a high friction road
surface. The handling characteristics change to final
oversteer behaviour at a certain normal acceleration,
Fig. 4, blue line. In contrast, for an AWD configuration
with a considerable portion of the total drive torque
Ttot at the front axle, e.g. γ = 0.7, the final understeer
characteristics are maintained, green line.

At evaluating the eigenvalues of the γ = 1 branch
at at = 4m/s2, a Hopf-type loss of stability is identi-
fied close to the maximum normal acceleration an ≈
7m/s2, marked with a black square in Fig. 4. Simi-
lar findings are presented in [24–26] for vehicles with
oversteering characteristics in steady-state conditions.
The Hopf bifurcation indicates an oscillatory loss of
stability, in this case with very low frequency up to
approximately 0.05Hz. The critical mode shape of the
Hopf bifurcation is described in [24] for a three degrees
of freedom two-wheel vehiclemodel. It was shown that

the velocity v and yaw rate ψ̇ represent the dominant
entries of the eigenvector. With the extended vehicle
model applied in this study, additionally, the angular
speed of the rear inner wheel ω3 significantly con-
tributes to the eigenvector of the critical mode.

To derive the Hopf branch in the handling diagram
depicted in Fig. 4, the drive torque distribution γ is
selected to be the distinguished parameter. The solution
of the Hopf branch is calculated for constant tangen-
tial acceleration at = 4m/s2. With decreasing drive
torque distribution γ , the Hopf point, starting at the
black square in Fig. 4 with γ = 1, moves to higher
normal accelerations an , black line, until the imagi-
nary part of the Hopf eigenvalue λi approaches zero,
indicated by the red ×. The period of the limit cycle
related to the Hopf bifurcation increases towards infin-
ity, and the loss of stability transitions from oscil-
latory to non-oscillatory. For the considered vehicle
model and parameters, and for a tangential acceler-
ation of at = 4m/s2, this condition is reached at
γ = γTB = 0.86.

For λi = 0 a new type of bifurcation occurs, char-
acterised by a double zero eigenvalue, known as the
Takens–Bogdanov bifurcation. This type of bifurca-
tion was reported in [11] for a pure lateral two degrees
of freedom two-wheel vehicle model, and it is char-
acterised by reaching the maximum lateral axle force
of the front axle and the rear axle simultaneously. As a
result, a small change in the vehicle state will not result
in a change in the lateral axle forces both at the front
axle and the rear axle. In the detailed vehicle model
used in this study, the Takens-Bogdanov point has the
property that either the lateral force or the longitudinal
force of the front axle and the rear axle reach their max-
imum simultaneously. This will be discussed in more
detail in Sect. 4.4.

A further decrease of the drive torque distribution γ

(< γTB) results in a final understeer handling character-
istics of the vehicle. Therefore the Takens–Bogdanov
point defines the change from final oversteer to final
understeer behaviour.

For a given tangential acceleration, e.g. at = 4m/s2

in Fig. 4, there exists only one quasi-steady-state solu-
tion with a double zero eigenvalue, i.e. the Takens–
Bogdanov point.
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4.3 GG envelope

From the handling diagram Fig. 4, it becomes obvi-
ous that the Takens–Bogdanov point, red ×, repre-
sents a quasi-steady-state driving condition very close
to the maximum attainable normal acceleration an of
the vehicle for a given tangential acceleration at . More-
over, it defines the maximum normal acceleration an
of stable steady-state driving conditions in the vehicle
handling characteristics for the drive torque distribu-
tion γTB, due to the double zero eigenvalue, purple line
in Fig. 4.

Hence, by varying the tangential acceleration at , the
corresponding normal acceleration an at the Takens–
Bogdanov points defines a GG envelope of the vehicle
close to the maximum attainable GG envelope found
with optimisation technique [27]. However, the GG
envelope defined by the Takens–Bogdanov branch rep-
resents the maximum GG envelope of stable steady-
state driving conditions.

In Fig. 5, the GG envelope is plotted w.r.t. the lon-
gitudinal and lateral acceleration of the vehicle, ax and
ay , respectively, as is typical for a GG diagram, [28].
Since this diagram is symmetrical w.r.t. the abscissa,
it is plotted and discussed for ay ≥ 0m/s2 only
in the following. At longitudinal accelerations ax ≈
3m/s2 to 12m/s2 and decelerations ax ≈ −2m/s2

to −12m/s2, Takens–Bogdanov branches exist and
are plotted in red colour. Between ax ≈ −2m/s2

and ax ≈ 3m/s2, the vehicle exhibits final under-
steer behaviour for several drive torque distributions
γ , where themaximum attainable normal accelerations
ay for γ = 1 is depicted in Fig. 5, blue colour. Obvi-
ously, the maximum attainable lateral accelerations ay
increase with decreasing ax between the onsets of the
Takens–Bogdanov branches. This property of the GG
envelope may be attributed to the longitudinal load
transfer between the axles, which increases the vertical
load at the front (‘weaker’) axle for decreasing ax , and
consequently enhances transferable tyre forces.

At ax ≈ 3m/s2, besides the Takens–Bogdanov
branch, also a Hopf bifurcation emerges, both for a
drive torque distribution of γ = 1, see p1 indicated
by the blue × in Fig. 5, and similar at ax ≈ −2m/s2.
Beyond longitudinal accelerations ax ≈ 3m/s2, the
Hopf branch for γ = 1 (grey solid line in Fig. 5)
limits the ‘stable’ area of combined accelerations for
the RWD configuration, similarly for negative ax . The
Hopf bifurcation exists for final oversteer vehicle con-

Fig. 5 Takens–Bogdanov and Hopf branches in the GG diagram

figurations, which is equivalent to a drive torque distri-
bution between γ = 1 and the drive torque distribution
γTB of the Takens–Bogdanov point, for a given longi-
tudinal acceleration ax .

The black line in Fig. 5 shows the maximum attain-
able combined lateral and longitudinal accelerations
for drive and brake forces applied at the front axle only
(γ = 0). It can be observed that in the acceleration
case, ax > 0, the configuration with γ = 1 is supe-
rior compared to γ = 0 considering the GG envelope,
with the opposite in the deceleration case. However, the
(stable) GG envelope for both γ = 1 and γ = 0 is con-
siderably smaller compared to the Takens–Bogdanov
configuration γ = γTB.

Thedrive torquedistributionγTB alongbothTakens–
Bogdanov branches is plotted in Fig. 6 over the lon-
gitudinal acceleration ax . For longitudinal accelera-
tions ax > 0, starting at ax ≈ 3m/s2 and γTB = 1,
the drive torque distribution γTB decreases initially
rather strongly. For higher levels of longitudinal accel-
eration (ax � 6m/s2), the drive torque distribution
γTB remains almost constant. This qualitative change
arises from the fact that the appearance of the Takens-
Bogdanov bifurcation may have various causes that
will be investigated in Sect. 4.4 by inspecting the corre-
sponding tyre forces. In the deceleration case (ax < 0),
the evolution of the drive torque distribution γTB over
ax exhibits qualitatively similar behaviour. However,
at high levels of deceleration, the value of γTB is con-
siderably lower, at ≈ 0.3. This value is typical for the
brake force distribution that ensures optimal braking
performance, see [29].
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Fig. 6 Drive torque distribution γTB of the Takens–Bogdanov
branch plotted over longitudinal acceleration ax

Fig. 7 Hopf and Fold bifurcation in the γ -ax -plane for a normal
acceleration of an = 4m/s2 corresponding to the dash-dotted
line in Fig. 5

For drive torque distributions γ < γTB, e.g. FWD
vehicles, and a certain level of longitudinal accelera-
tion |ax |, another type of loss of stability is found: a
Fold bifurcation. The Fold bifurcation is, similar to the
Hopf bifurcation, a codimension one bifurcation. It is
characterised by a single zero eigenvalue.

To illustrate how the stability boundaries, defined
by the Hopf, Takens–Bogdanov, and Fold bifurcations,
evolve depending on the drive torque distribution γ

for a specific level of normal acceleration an (≈ ay),
a corresponding contour plot is indicated as a black
dash-dotted line in the GG diagram Fig. 5 and plotted
in Fig. 7.

For the γ = 0 configuration and an = 4m/s2 =
const, at ax ≈ 3m/s2 and ax ≈ −5m/s2, Fold bifur-
cations occur, characterised by a non-oscillatory loss of
stability. The corresponding critical eigenvector indi-
cates a spin-up of the front inner wheel, where the
global motion of the vehicle in the road plane is only
marginally affected. By increasing the drive torque dis-
tribution γ , the Fold bifurcation branches reach the
Takens–Bogdanov points, red × in Fig. 7. A second

eigenvalue (besides the zero eigenvalue of the Fold
bifurcation) converges to zero approaching the Takens–
Bogdanov points. Increasing the drive torque distribu-
tionγ further (γ > γTB), theHopf bifurcation branches
define the stability boundary, where the double zero
eigenvalues change to conjugate complex eigenvalue
pairs, and the configuration results in a final oversteer
vehicle behaviour.

Obviously, for a desired constant lateral acceleration
ay , the drive torque distribution γTB allows for maxi-
mum longitudinal acceleration ax within the stable GG
envelope.

The most relevant parameter defining the GG enve-
lope is the friction potential since the stability bound-
aries strongly depend on the saturation of the tyre
forces. A different friction potential basically scales
the GG diagram. At low friction surfaces, due to lower
levels of acceleration and consequently vertical load
transfer, lower drive torque distributions result for
the Takens-Bogdanov branch for positive longitudinal
acceleration. The branch is shifted, but the qualitative
behaviour does not change.

Besides the Takens–Bogdanov bifurcation, charac-
teristic properties of the Fold bifurcation are investi-
gated in more detail in the next sections, focusing on
practical implications.

4.4 Interpretation from a vehicle dynamics
perspective

To allow for an interpretation of the Takens–Bogdanov
branch from a vehicle dynamics perspective, the oper-
ating conditions of the tyres are inspected at two rep-
resentative vehicle states in the following.

In Figs. 8 and 9, the longitudinal and lateral
tyre forces are shown for two characteristic Takens–
Bogdanov points, p1 and p2 (see Figs. 5 and 6). In
the left graphs, the normalized longitudinal tyre forces
Fxi/Fzi,0, i ∈ {1, 2, 3, 4} are plotted against the lon-
gitudinal slips sxi for the constant sideslip angles αi

corresponding to p1 and p2, respectively. In the right
graphs, the normalized lateral tyre forces Fyi/Fzi,0
plotted against the sideslip angles αi are depicted for
respective longitudinal slips sxi . The tyre forces at the
investigated Takens–Bogdanov points are indicated by
◦.

Since γ = γTB = 1 at p1, the normalized longitu-
dinal tyre forces Fxi/Fzi,0 at the front axle are zero in
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Fig. 8 Tyre characteristics corresponding to p1 (γ = 1, at ≈
2.8m/s2)

Fig. 8 (left graph). The double zero eigenvalue at this
Takens–Bogdanov point can be attributed to the van-
ishing effective (local) cornering stiffness of the front
axle, caused by the saturation of the effective lateral
axle force, i ∈ {1, 2} (right graph) and the saturation
of the longitudinal force of the inner wheel at the rear
axle i = 3 (left graph), similar to findings presented
in [11]. Consequently, due to the differential gear at
the rear axle, a small variation of the slips of the tyres
i ∈ {1, 2, 3} does not result in a change of the respec-
tive axle forces. The post-critical behaviour of the vehi-
cle after loss of stability is characterised by a wheel
spin-up of the inner wheel at the rear axle (i = 3).

A different observation can be made by inspecting
the tyre forces at the Takens–Bogdanov point p2, where
rather small gradients of γ w.r.t. the longitudinal accel-
eration ax may be noted in Fig. 6. Compared to p1,
due to the increased portion of the total drive torque
Ttot at the front axle (i.e. γ < 1), the inspection of
the tyre forces shows that both the inner wheel at the
front axle i = 1 and the inner wheel at the rear axle
i = 3 reach their longitudinal force saturation simulta-
neously, Fig. 9 (left graph). Similar to the above, a small
variation of the longitudinal slips of the tyres i ∈ {1, 3}
does not result in a change of the respective axle forces,
due to the differential gears, resulting in a double zero
eigenvalue. In the case of loss of stability, the inner
wheels at both the front and rear axle may spin up.

An increase of the drive torque distribution γ >

γ (p2) leads to a final oversteer behaviour of the vehi-
cle and a Hopf bifurcation, see Fig. 7, since the tyre
forces at the rear axle, i ∈ {3, 4}, are saturated first.
Contrary, a reduction of the drive torque distribution
γ < γ (p2)will result in a saturation of the longitudinal
tyre force of the front inner wheel, i = 1, which is char-

Fig. 9 Tyre characteristics corresponding to p2 (γ = 0.79, at =
7m/s2)

Fig. 10 Handling characteristics for different constant tan-
gential accelerations at and drive torque distributions γ , with
Takens–Bogdanov branch and Fold points

acterised by a single zero eigenvalue, the Fold bifurca-
tion. This behaviour seems reasonable when inspect-
ing the tyre forces at the Takens–Bogdanov point p2.
A corresponding handling diagram for the latter case
is exemplarily shown in Fig. 10 for at = 7m/s2 and
γ = 0.75 < γ (p2) (blue line), where a Fold bifurca-
tion occurs directly after reaching themaximumnormal
acceleration. The location of the corresponding Fold
point is denoted p


2 and marked by a black dot. Loss
of stability is characterised by the spin-up of the front
inner wheel, i = 1.
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In contrast, at the Takens–Bogdanov point p1, longi-
tudinal forces at the front axle, i ∈ {1, 2}, are zero, see
Fig. 8, since γ = 1. Consequently, the loss of stability
at the corresponding Fold bifurcation for γ < γ (p1)
and at = at (p1) = 2.8m/s2 will not be characterised
by a spin-up of the front inner wheel i = 1. The han-
dling diagram for at = at (p1) and γ = 0.95 < γ (p1)
shows ‘final understeer’ characteristics, Fig. 10 (green
line). At the maximum steering angle δ ≈ 21 deg, a
Fold bifurcation occurs, where the loss of stability is
characterised by the spin-up of the inner wheel at the
rear axle i = 3, similar to p1. The corresponding Fold
point is denoted p


1 and marked by a black ×. The fol-
lowing (unstable) quasi-steady vehicle states showfinal
oversteer characteristics. This behaviour is caused from
the increased curvature resistance due to the increasing
steering angle δ and consequent increase of the neces-
sary total drive torque Ttot, causing the saturation of the
longitudinal force at the rear axle. A further reduction
of the drive torque distribution, e.g. to γ = 0.9, shifts
the corresponding Fold bifurcation to even higher steer-
ing angles δ > 35 deg, where the qualitative handling
characteristics remain similar to the γ = 0.95 configu-
ration (green line in Fig. 10). However, due to the large
steering angles δ, this case is of less relevance from a
practical perspective.

The steering angles δ and vehicle sideslip angles
β corresponding to the Takens–Bogdanov branch are
depicted in Fig. 10 in red colour.

Consequently, compared to thepost-critical behaviour
of the vehicle after the loss of stability caused by the
Hopf bifurcation, see [25], the loss of stability caused
by the Takens–Bogdanov and Fold bifurcation, were
γ ≤ γTB, is less severe from a vehicle dynamics per-
spective.

4.5 Fold bifurcation in the GG–γ diagram

To interpret the above Fold points p

1 and p


2 in the con-
text of the GG diagram Fig. 5, the occurrence of Fold
bifurcations is illustrated in a three-dimensional fig-
ure for positive longitudinal accelerations ax , the GG–
γ diagram, Fig. 11. In addition, the contour plot at
an = 4m/s2, Fig. 7, is represented by the light grey
shaded plane. For completeness, the Takens–Bogdanov
branch and points p1 and p2 (blue× and dot), the Hopf
branch for γ = 1 (grey line), and the maximum attain-

Fig. 11 Fold bifurcations in the GG–γ diagram (ax > 0m/s2)

able normal acceleration for γ = 1 and γ = 0 (blue
and black line), corresponding to Fig. 5, are depicted.

As described above, for a constant tangential accel-
eration at , at reducing the drive torque distribution
γ < γTB and starting from the corresponding Takens–
Bogdanov point, a Fold point is found, i.e. p1 → p


1
and p2 → p


2. Since in Sect. 4.4 two qualitatively dif-
ferent types of Fold points are identified from a vehicle
dynamics perspective, p


1 and p

2, an illustration of the

areas, where these two different types of Fold points
appear in the GG–γ -diagram, is attempted.

To represent theFold surface related to theFoldpoint
p

2 (black dot), where the loss of stability is charac-

terised by the spin-up of the front inner wheel i = 1,
four bounds are considered.Onebound is definedby the
Takens–Bogdanov branch (red line). The second bound
is defined by the Fold branch for an = 0m/s2 (light
blue line) that consequently is located at the γ − ax -
plane of Fig. 11. The third bound is represented by
the Fold branch found for γ = 0 (orange line), i.e. a
FWD vehicle, that is located at the ax − ay-plane. As
this branch is continued toward higher lateral accel-
erations, Fold points are found that are characterised
by extremely high longitudinal slips (sx1 	 1) at the
front inner tyre, i = 1, while the lateral acceleration ay
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ceases to increase further. To determine the Fold sur-
face for practical useful states, the fourth Fold branch
is calculated for a constant wheel speed of the front
inner wheel of ω1 = 80 rad/s (purple line), where the
longitudinal slip sx1 is limited to ≈ 0.25. Several Fold
points located at this surface show similar behaviour
w.r.t. the loss of stability.

The second Fold surface depicted in Fig. 5 is related
to theFoldpoint p


1 (black×),where the loss of stability
is characterised by the spin-up of the rear inner wheel
i = 3 (at rather large steering angles δ). Besides the
Takens–Bogdanov branch (red line), this surface again
is bounded by the Fold branch calculated for a constant
wheel speed of the front inner wheel of ω1 = 80 rad/s
(purple line). Starting again at the Takens–Bogdanov
branch, following the third Fold branch for γ = 1
(orange line), i.e. aRWDvehicle, leads to an increase of
the steering angle δ beyond practical meaningful steer-
ing angles δ > 35 deg, with a handling characteristics
similar as depicted in Fig. 10 for the Fold point p


1.
Consequently, the fourth Fold branch is found consid-
ering a constant steering angle δ = 35 deg (green line),
taking kinematic limitations of the steering system into
account.

Finally, the practical relevance of the two character-
istic Fold surfaces related to p


1 and p

2 is investigated

from a vehicle dynamics perspective. Considering the
Fold surface related to p


2, themaximumattainable nor-
mal acceleration an for γ = 0 in Fig. 11 (black line
in the ax − ay-plane) is compared to the Fold branch
for γ = 0, i.e. an FWD vehicle (orange line). The
Fold branch is located close to the line characterising
the maximum attainable normal acceleration. This is
also obvious from inspecting the Fold point p


2 (black
dot) for γ = 0.75 in the handling diagram Fig. 10,
where the maximum attainable normal acceleration an
at a given tangential acceleration at is located next to
p

2. Consequently, conditions, where the loss of stabil-

ity is characterised by the wheel spin-up of the front
inner wheel i = 1, are very likely to appear in practi-
cal driving scenarios, considering parameter and state
disturbances. In contrast, regarding the Fold surface
related to p


1, several respective handling diagrams are
qualitatively similar to the diagram depicted in Fig. 10,
at = at (p1) = 2.8m/s2, γ = 0.95 (green line). Obvi-
ously, the Fold point (black ×) emerges at a consid-
erably larger steering angle δ and lower level of nor-
mal acceleration an compared to the maximum attain-
able normal acceleration in the vicinity of the Takens–

Bogdanov branch (red line). Consequently, the second
Fold surface is considered to be of less practical rele-
vance.

5 Conclusions

In this paper, the impact of the drive torque distribution
between the front axle and rear axle of an AWD vehi-
cle on its combined lateral and longitudinal handling
envelope and on respective stability properties has been
investigated. For that purpose, bifurcation and continu-
ation methods have been applied to a four-wheel vehi-
cle model. Some of the main conclusions of the present
research are:

• Regarding the criticalmode shapes, a rather detailed
vehicle and tyre model has to be considered in a
simulation study on the stability properties of a
vehicle at the limits of handling in regular driv-
ing to map both the ‘global’ vehicle motion and the
dynamics of the individual wheels.

• Takens–Bogdanov bifurcations appear at the limits
of handling and characterise the change from final
oversteer to final understeer.

• Besides the Takens–Bogdanov bifurcations, corre-
spondingHopf bifurcations, [25], and Fold bifurca-
tions are found. The drive torque distributions at the
Takens–Bogdanov branch determine the transition
from Hopf to Fold bifurcations.

• The Takens–Bogdanov branch also defines the
drive torque distribution for reaching themaximum
possible combined longitudinal and lateral acceler-
ation envelopewithin the (open loop) stable steady-
state handling regime, which is quite similar to the
optimal, partially unstable envelope shown in [27].

• Two distinct Fold surfaces are identified that are
related to the tyre operating conditions at the cor-
responding Takens-Bogdanov bifurcations. These
Fold surfaces exhibit different, characteristic types
of loss of stability, where one of these surfaces is
considered to be of practical relevance.

• The drive torque distributions at the Takens–
Bogdanov branch provide a good indication for
a design criterium for safe and performant drive
torque distribution controllers of AWD vehicles.

The approach presented in this paper to investigate
the stability andhandlingproperties ofAWDvehicles at
combined longitudinal and lateral accelerations will be
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applied to different drive architectures (e.g. including
a torque vectoring system, limited-slip and locked dif-
ferential gears) in future research. Moreover, an appro-
priate drive torque control strategy shall be developed
and tested on an experimental vehicle.
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