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Kurzfassung

Graphikpipelines basierend auf Rasterisierung stellen weiterhin die Basis für das Rendering
in modernen Echtzeitgraphikapplikationen dar. Mit alternativen Renderverfahren, wie
hardwarebeschleunigtem Raytracing, bleibt es schwierig, 60 oder mehr Bilder pro Sekunde
zu berechnen bzw. 90 oder mehr Bilder pro Sekunde, um ruckelfreie Wahrnehmung in
einigen Virtual Reality (VR) Applikationen zu gewährleisten.

In den vergangenen Jahren kamen einige Trends auf, die zu hoher Geometrielast in
rasterisierungsbasierten Graphikpipelines führen. Einer dieser Trends ist VR-Rendering,
welches manchmal nicht nur das möglichst schnelle Rendern aus zwei Kameraperspektiven
erfordert, sondern für manche Applikationen oder Konfigurationen auch das schnelle
Rendern aus zusätzlichen Kameraperspektiven – alles zur Erzeugung eines einzigen
Bildes. Ein weiterer Trend wurde primär von Epic Games mit der Veröffentlichung ihrer
Nanite-Technologie initiiert. Sie ermöglicht es, statische 3D-Modelle zu rendern, deren
geometrische Details feiner sind als die Größe eines einzelnen Pixels im final erzeugten
Bild. Eine naheliegende Konsequenz daraus ist, dass Anwender auch animierte 3D-Modelle
und andere Szenenobjekte in ähnlich hohem Detailgrad erwarten werden.

Diese Dissertation beschreibt neue fundamentale Methoden und Evaluierungen zum
Themengebiet der hohen Geometrielast im rasterisierungsbasierten Echtzeitrendering.
Sie leistet folgende Beiträge, um Qualitäts- und Performanzanforderungen moderner
Echtzeitapplikationen und Spielen zu erreichen:

Wir präsentieren detaillierte Analysen zum Stand der Technik hinsichtlich “Multi-View
Rendering” – dem gleichzeitigen Erzeugen von Bildern aus mehreren Blickwinkeln. Wir
beschreiben unter anderem eine Pipelinekonfiguration basierend auf Compute-Shadern,
die gute Kompatibilität und Performanz in einigen anspruchsvollen Konfigurationen zeigt.

Weiters beschreiben wir einen fundamentalen Algorithmus zum artefaktfreien “Culling”
– dem Verwerfen von Teilen der Szene, die außerhalb des Sichtbereiches der aktuellen
Kameraperspektive sind oder deren Vorderseite nicht sichtbar ist – beim Rendering von
animierten 3D-Modellen, die in kleine Gruppen von Dreiecken (“Cluster”) aufgeteilt
wurden. Damit ermöglicht unsere Technik ähnlich präzises Culling für animierte Modelle,
wie es Nanite für statische Modelle ermöglicht. Das Berechnen der einzelnen Cluster-
Aumaße von animierten Modellen ist dabei im Gegensatz zu statischen 3D-Modellen
nicht trivial.
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Weiters beschreiben wir eine generelle Methode zum Rendern von Szenenobjekten, die
parametrisch beschrieben werden können und in weiterer Folge mit ähnlich hohem
geometrischen Detailgrad gerendert werden:

Nachdem ein Compute-Shader-basierter Schritt den nötigen Detailgrad bestimmt, erfolgt
das Rendering entweder punktbasiert oder die Geometrie wird direkt auf der GPU mittels
des Hardwaretessellators erzeugt.

In unserer Forschung berücksichtigen wir technologische Entwicklungen wie hardwarebe-
schleunigtes Multi-View Rendering, die neuen Task- und Mesh-Shader in Graphikpipelines,
effiziente Nutzung von klassischen Shadern (wie z.B. Tessellation-Shader) und generell
die effiziente Nutzung von Hardwarekonfigurationen unter Berücksichtigung der Cha-
rakteristiken von modernen Graphikprozessoren – mit dem Ziel, rasterisierungsbasiertes
Echtzeitrendering in Szenarien mit hoher Geometrielast und für hochdetailierte Geometrie
zu beschleunigen.



Abstract

Rasterization-based graphics pipelines are still essential for rendering today’s real-time
rendering applications and games. We generally see high demand for efficient rasterization-
based rendering techniques. With alternative approaches, such as hardware-accelerated
ray tracing, it remains challenging to render more than 60 frames per second (FPS) for
many real-time applications across different GPU models, or more than 90 FPS in stereo
as often demanded for a smooth experience in Virtual Reality (VR) applications.

In recent years, some trends emerged which put pressure on rasterization-based graphics
pipelines with high geometry loads. One of these trends is VR rendering, which sometimes
not only requires rendering a given scene faster and two times in every frame but some
applications or settings require even more than two views to be rendered for the creation of
one single frame. Another trend was mainly initiated by Epic Games’ Nanite technology,
which enables the rendering of static meshes with sub-pixel geometric detail in real time.
As a consequence, skinned models and other scene objects might well be expected to be
rendered in similar geometric detail, increasing the geometry load even further.

With this dissertation, we contribute fundamental methods and evaluations to high
geometry-load scenarios in the context of real-time rendering using rasterization-based
graphics pipelines to help reach the performance or quality requirements of modern
real-time rendering applications and games:

We contribute an in-depth analysis of the state of the art in multi-view rendering and
introduce geometry shader-based pipeline variants that can help to improve compatibility
and performance in challenging multi-view rendering scenarios. We describe a fundamental
approach for artifact-free culling when rendering animated 3D models divided into clusters
for ultra-detailed geometry scenarios. With our approach, also parts of skinned models
can be culled in a fine-grained manner to match Nanite’s fine-grained culling of static
clusters. In contrast to static meshes, finding conservative bounds for clusters of animated
meshes is non-trivial, but is achieved with our approach. Finally, in order to render
other scene objects—such as, e.g., items or generally shapes which can be described with
a parametric function—in similar geometric detail, we describe a method to generate
ultra-detailed geometry on the fly: After compute shader-based level of detail (LOD)
determination, the resulting parametrically defined shapes are either rendered point-wise
or geometry is generated on-chip using the hardware tessellator.
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In our research, we regard new technological developments such as hardware-accelerated
multi-view rendering, new task and mesh shader stages, efficient usage of classical shader
stages (such as tessellation shaders), and generally efficient usage of the vast set of
features, stages, and peculiarities of modern GPUs, with the goal to accelerate real-time
rendering of ultra-detailed geometry.
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CHAPTER 1
Introduction

Real-time rendering has a wide range of application areas. While video games are its
archetypal area of use, it is generally relevant whenever 3D models or scenes shall be
explored in real time, which traditionally means that one frame must be rendered so fast
that 60 or more frames per second (FPS) can be calculated. While graphics processing
units (GPUs) are getting faster with each new generation, new challenges have emerged
in recent years which can make it hard to render scenes fast. One such challenge is
rendering for virtual reality (VR), for which 60 FPS are typically not enough. 90 FPS
are seen as a requirement for a user experience that provides good quality and minimizes
unwanted side-effects [Vla15], while two views of the scene must be calculated within one
frame—one for each eye. Another challenge is more detailed input geometry. It can arise
from more detailed modeling to satisfy raised user expectations, or from scanned models
(turned into triangle meshes), stored in high geometric detail.

Fast rendering of highly detailed models with rasterization-based graphics pipelines—
which are still the standard tool of GPUs to render triangle models—often requires
optimized techniques or rendering configurations to achieve the desired performance.
This dissertation describes techniques that can be used in conjunction with rasterization-
based graphics pipelines to improve rendering speed in such situations.

1.1 Motivation
In recent years, the trend of using ultra-detailed geometry emerged in the field of real-time
rendering as most prominently heralded by Epic Games’ Nanite technology [KSW21].
While previously, artists were required to produce 3D models suitable for the particular
requirements of real-time rendering—which typically meant limiting the polygon count—
Nanite enables the usage of models with such high geometric detail that would have
been considered to be infeasible to be rendered at real-time frame rates before. In
a sense, these kinds of 3D models—like large scanned landscapes, detailed scans of

1



1. Introduction

Figure 1.1: Ultra-detailed landscape model “Valley of the Ancient” [Epi24b], rendered
with Unreal Engine 5 using Nanite [Epi24a]. Nanite cleverly selects geometry LODs so
that close to pixel-perfect geometric precision is rendered, if the original model provides
enough geometric detail. This can be observed well with the smaller stones in the image.

sculptures or buildings, or such that were modeled with ultra-high geometric detail—
would still be infeasible to be rendered in real time if it were not for clever level-of-detail
(LOD) approaches and efficient implementations tailored to modern GPUs, and efficiently
utilizing their features.

We use the term ultra-detailed geometry to describe situations and setups that either take
large amounts of input geometry or produce detailed geometry on the fly so that rendering
produces—typically after LOD selection—geometry with approximately pixel-level detail
in the rendered output. The amount of output geometry in such cases always depends
on the rendering and scene setup, such as camera position, camera parameters, and
screen resolution. Examples for ultra-detailed geometry are shown in Figure 1.1, which
shows the case of large amounts of input geometry, and Figure 1.2 showing the case of
generating geometry on the fly.

While modern GPUs are very powerful, and their computational capacities have been
increasing strongly with each new GPU generation as shown in Figure 1.3, the fundamental
approach of enabling the rendering of ultra-detailed geometry still is to render geometric
detail only in that LOD which is for sufficient for achieving desired quality criteria in the
rendered output. This typically means to cull as much of the geometry as possible with
respect to the viewing frustum and camera position, and selecting a suitable geometry

2



1.1. Motivation

(a) A curtain model showing ultra-detailed ge-
ometric detail.

(b) The same curtain model viewed from a
closer camera position.

Figure 1.2: Ultra-detailed geometry that has been produced on the fly with one of our
techniques [Unt+24] within a rasterization-based rendering pipeline. The curtain model
shown in Figure 1.2b is comprised of many small parts—namely fiber curves shown in
Figure 1.2b—producing even sub-pixel level detail in the rendering output.

LOD for ultra-detailed geometry. The performance trends shown in Figure 1.3 suggest
that trading increased computational load with decreased memory transfer load can be
helpful to achieve these goals.

The focus of our research is to contribute algorithms, techniques, results, and deduced
guidelines for efficient rendering in the broader field of handling high geometry loads on
modern GPUs, rendered with rasterization-based graphics pipelines. To this end, we
have identified three focus areas of research and present solutions for each one to help
improve rendering performance in such scenarios:

1. We have conducted in-depth analyses of rendering pipeline configurations for multi-
view scenarios since they often add additional high demands by rendering two or
more views within one frame—and maybe even the 90 FPS requirement if this is
required in a VR setup.

2. We extend fine-grained geometry culling to animated meshes—which are currently
not supported by Nanite [Epi24a]—enabling partial culling of highly detailed
skinned 3D models.

3. Finally, we have investigated the generation of ultra-detailed geometry on the fly
through parametric functions and developed a method to render them fast, carrying
forward the strategy of trading increased computational load (parametric function
evaluation for roughly every pixel) with reduced memory load (the entire geometry
description is given through code).

3
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(b) Comparing nine generations of AMD GPUs
paints a similar picture than Figure 1.3a: While
compute performance of the RX 7900 XTX rose
to 5439% of the HD 8970, memory transfer
speed increased to only 569% in comparison.

Figure 1.3: Figures 1.3a and 1.3b show the memory transfer speeds in gigabytes per
second (GB/s) and the maximum compute performance in billion floating point operations
per second (TFLOPS) for different GPU generations. Both axes are scaled so that they
reflect the same amount of performance increase.

1.2 Problem Statement
Rendering a sufficiently high amount of FPS in ultra-detailed geometry scenarios can be
very challenging. A lot of factors need to be considered for managing to render at least 60
FPS for a typical real-time application, or at least 90 FPS for a typical VR application,
requiring at least two views to be produced—one for each eye—while some effects require
even more views to be produced. Furthermore, rasterization-based graphics pipelines
offer a vast number of configuration options in current graphics application programming
interfaces (APIs), which have been strongly extended in recent years, so that it has
become a challenge by itself just maintaining an overview of all the options and features.

Challenges for creating an efficient and fast rendering setup include:

• How to configure rasterization-based graphics pipelines API-wise to achieve good
rendering performance?

• How to make use of culling—which is discarding unnecessary rendering work—
within rasterization-based graphics pipelines or as separate, preceding steps in
frame generation?

• How can input geometry be used efficiently with rasterization-based graphics
pipelines?

– E.g., can data be shared when rendering multiple views simultaneously?
– E.g., can we discard unnecessary rendering work upfront?

• Can geometry be generated on the fly, relieving pressure on early rendering stages
within rasterization-based graphics pipelines?

4



1.3. Background

High geometry loads often lead to bottlenecks when its data passes through graphics
pipeline stages during rendering. For this reason, discarding work—typically called
culling—as early as possible in the process of rendering one frame can be essential
for reaching performance requirements. While applying culling to static geometry is
oftentimes straightforward, and auxiliary culling information can be pre-computed—like
bounding boxes for parts of the geometry—animated models add further challenges to
culling decisions. With geometry possibly changing every frame, useful culling decisions—
like bounding boxes—must be adapted or re-evaluated every frame, requiring solutions
tailored to given rendering scenarios.

To this end, this dissertation contributes insights of fundamental research in this context,
re-evaluating traditional graphics pipeline configuration options, taking new options into
account—like hardware extensions or new shader stages—and describing approaches and
algorithms to achieve fast rendering performance for challenging scenarios like rendering
of ultra-detailed geometry.

1.3 Background
GPUs have come a long way and have undergone major changes with respect to their
features over time. Some 20 years ago, the trend to deviate from fixed but fully hardware-
accelerated functionality towards general programmability started with consumer-grade
GPUs and consequently in the field of real-time rendering. By introducing programmable
shader stages into the previously fixed-function rasterization-based graphics pipelines,
countless possibilities were enabled.

Instructions are sent to GPUs through a so-called graphics API, one example of which is
OpenGL [Khr22gl]. Its version 1.0 was released in 1992. Since then it has been subject to
major restructurings and has seen a huge amount of new features being added. Some of
the most notable feature additions are the support for hardware tessellation with OpenGL
4.0 in 2010, and the addition of compute shaders with OpenGL 4.3 in 2012 [Khr22h].
The former is an example of the addition of a modern fixed-function element—the latter
is a prime example of general programmability.

A schematic view of a classical rasterization-based graphics pipeline is shown in Figure 1.4a.
It shows several stages: some are mandatory, some are optional, some are programmable,
and some are fixed-function. Input geometry potentially passes through all active stages
and is processed in them either according to (programmed) shader code or in a fixed-
function manner. From Figure 1.4a it can be seen that graphics pipelines have many
stages and a well-defined, but also rigid structure. The other extreme in terms of stages
are compute pipelines: They only have one single, but very flexible stage, which can
perform freely defined computations without any fixed functionality. This contrast can
be seen in Figure 1.4c. However, using them for the same workloads as graphics pipelines
typically constitutes a performance degradation, or it requires huge efforts to achieve
similar performance as classic rasterization-based graphics pipelines as shown by Kenzel

5
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(a) Stages of a classical graphics pipeline
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(b) Stages of a graphics mesh pipeline
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(c) Single stage of a compute pipeline

Figure 1.4: Rasterization-based graphics pipelines, as shown in Figures 1.4a and 1.4b,
consist of several stages, some of which are fixed-function (colored blue with dashed border)
and others are programmable through shader programs (colored magenta with solid border).
Compute pipelines feature only one single stage, as shown in Figure 1.4c, and are clear of
any fixed-function stages. Task and mesh shader stages, as shown in Figure 1.4b, are two
compute shader-style stages within a graphics pipeline. A task shader can spawn multiple
mesh shader invocations with fast data passing between those two stages. Mesh shaders
can output data directly to the fixed-function hardware rasterizer.

et al. [Ken+18]. The implementation of fixed functionality in hardware can be expected
to be highly optimized, both algorithmically and also implementation-wise.

With NVIDIA’s Turing microarchitecture, rasterization-based graphics pipelines were
made more flexible by the introduction of so-called task and mesh shaders [NVI18a]. They
completely replace all the geometry processing stages of rasterization-based graphics
pipelines (vertex shaders, tessellation shaders, and geometry shaders) with two pro-
grammable stages, which are very similar to compute shaders and allow for efficient data
sharing from task to mesh shader stages, as shown in Figure 1.4b. Only the stages from
the rasterizer onwards remain fixed-function within such graphics mesh pipelines. In
this case, we can observe a trend towards introducing more flexibility to replace fixed
functionality.

A different trend that can be observed in modern GPUs is that highly optimized func-
tionality is made accessible by means of extensions. Such functionality may or may not
rely on the presence of additional hardware units and oftentimes has a well-defined but
strict interface. From this perspective, it can be argued that this constitutes a trend op-
posite to introducing more flexibility, by re-introducing small pieces of fixed functionality.
Hardware tessellation is a prime example of this. It requires the GPU to have a hardware
unit that amplifies input geometry within rasterization-based graphics pipelines in an
efficient manner: Geometry being tessellated typically stays in fast level 1 (L1) and level
2 (L2) caches and doesn’t need to be transferred to global memory. Tessellation can
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create large amounts of geometry “in the middle” of graphics pipeline execution, taking
memory pressure off of early pipeline stages. Another example of the re-introduction
of fixed functionality is the OVR_multiview extension [Cas18], which is supported by
some GPUs of NVIDIA, ARM, Qualcomm, and Imagination Technologies [Wil24]. Its
purpose is to accelerate the rendering of multiple views of a scene, where its concrete
implementation is vendor-specific. One more example of fixed functionality, which has
become very popular in recent years, is hardware-accelerated real-time ray tracing. It
was introduced with NVIDIA’s Turing microarchitecture in 2018 [NVI18a]. While some
of its stages are programmable, a large part of its functionality is fixed-function and
severely hardware-accelerated on some modern GPUs, enabling real-time frame rates for
ray-traced games and applications.

Using the appropriate hardware features can help solve a given problem or reach perfor-
mance goals. Using the appropriate algorithms or techniques can help just as much if
not more. There are some actions that are beneficial in almost every case. One example
is visibility culling, which means discarding parts of the geometry that will not be visible
in the final rendering of a frame. Overviews of early and foundational visibility culling
algorithms are given by Bittner and Wonka [BW03], and Cohen-Or et al. [Coh+03] The
latter states the three different types of visibility culling:

• View frustum culling (VFC): Primitives which are outside of the viewing frustum—
which is defined by a camera’s projection matrix, and positioned by a camera’s
view matrix—can be discarded.

• Back-face culling (BFC): Primitives that face away from the camera—so that only
their back sides are seen by a camera—can be discarded.

• Occlusion culling: Primitives fully occluded by other geometry can be discarded.

VFC and BFC are automatically performed by GPUs in the context of rasterization-based
graphics pipelines on a per-triangle basis. However, it can be beneficial to compute VFC
and BFC culling decisions manually for clusters of primitives, or VFC for entire 3D
models. A simple, yet effective approach to computing the VFC culling decision is to test
a bounding sphere or a bounding box against all frustum planes defined and positioned
by a camera’s projection and view matrices: If the bounding volume is entirely outside
of one frustum plane, the cluster or 3d model can safely be culled. For BFC, all faces
within a cluster must be facing away from the camera, so that the entire cluster can be
safely culled. It is typically desirable for each culling approach to have little performance
overhead and to be conservative—meaning that false negatives shall be avoided in terms
of their culling decision.

With graphics mesh pipelines, it is common practice to divide geometry into small clusters,
which are often called meshlets. Optimal division of geometry into meshlets is a research
strain on its own: Meshoptimizer [Kap21] implements different strategies for meshlet
building, like a vertex-cache optimized approach, or optimizing for triangle and vertex
locality. Kim and Ha Lee [KL22] describe a clustering method based on normal locality,
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so that deviations between normals assigned to the same meshlet are minimized. Jensen
et al. [JFB23] assign triangles to a growing bounding sphere that starts at a certain
vertex while striving for a minimal bounding sphere radius. They compare different
meshlet generation strategies.

Another fundamental and widely used technique is using different levels of detail (LOD),
which is typically complementary to other techniques, like culling, to help improve
rendering speed. Which LOD of, e.g., a 3D model shall be used during rendering is
typically dependent on parameters such as distance to the camera, or resulting polygon
size projected to screen space. Once determined, the selected LOD is then rendered
for the current frame. There are different LOD frameworks and switching strategies:
LOD frameworks can be discrete, continuous, or view-dependent [Lue+02]. Switching
between different levels can be done instantaneously (hard switching) or gradually (e.g.,
through blending) [GW07; SW08]. Also for LOD selection, different approaches have
been described: A LOD can be selected statically (based on distance or on the projected
area), reactively with information from the previous frame [FS93], or predictively [FS93].
Cignoni et al. [Cig+05] describe an approach for enabling gradual transitions based on a
directed acyclic graph (DAG) which encodes the dependencies between surface patches
of different levels of detail of the mesh. Operating on patches of triangles—instead
of individual triangles—for view-dependent LOD decisions is key to achieving good
performance with their GPU algorithm. This is confirmed by Ponchio [Pon09], who
compared different patch-based multi-resolution frameworks for terrains, static meshes,
and animated models.

One very prominent technique that combines all the above-mentioned considerations to
enable ultra-detailed rendering of meshes with a huge amount of geometry in real time
is Epic Games’ Nanite technology [Epi24a]. It supports virtually arbitrarily high input
geometry levels and achieves fast rendering speeds for so-called micro-poly geometry. It
has become famous since it was integrated into Unreal Engine 5 and heralded a new
era for artists when it was presented in 2021: They no longer need to stick to polygon
budgets when creating assets for applications rendered in real time. Instead, the rendering
engine takes care of handling arbitrary geometric detail in input meshes and enables
rendering them with up to pixel-perfect geometric precision after level of detail (LOD)
selection at cluster-granularity, and data streaming on demand. Yoon et al. [Yoo+05]
have described a similar approach previously. Nanite processes detailed input models
into clusters of 128 triangles each. At runtime, LOD switching in the way described
by Cignoni et al. [Cig+05] enables seamless transitions between different LODs on a
per-cluster basis and ensures that relevant clusters are streamed to GPU memory on
demand. Clusters are selected so that rendering their triangles for a given camera position
produces approximately pixel-sized triangles if the input mesh provides enough explicit
detail.

Nanite employs both hardware and software rasterization. They report that the latter is up
to three times faster for rendering small triangles. Only if a rendered triangle’s projected
edge length spans at least 32 pixels, is it rendered with the hardware rasterizer [KSW21].
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Software rasterization techniques have been subject to extensive research. Frolov et
al. [FGB20] compare CPU-based rasterizers. Laine and Karras [LK11] describe a software
rasterization implementation that guarantees hole-free results and supports multisample
anti-aliasing (MSAA). Kenzel et al. [Ken+18] show that an optimized, fully concurrent,
multi-stage, load-balancing implementation of a software rasterizer can reach performance
that is within one order of magnitude of the hardware graphics pipeline. In contrast
to Nanite, their evaluations focus on typical game scenes, which would not qualify as
micro-poly scenes. Schütz et al. [SKW22] achieve over 80 percent memory utilization
with a point rendering technique that is able to render more than 2 billion points with
over 60 FPS on previous-generation high-end GPU (NVIDIA RTX 3090).

To combine software rasterization and hardware rasterization into the same render target,
Nanite uses a single-channel 64bit integer texture, where each entry stores depth (first
30bit), cluster index (next 27bit), and triangle index (last 7 bits). Since fragment shaders
also write their results via atomic operations, their associated graphics pipeline’s color
output, depth test, and depth writes are disabled [KSW21]. Storing depth in the most
significant bits of the written 64-bit integer values is crucial: this way, it serves as an
equivalent to the depth test. While Nanite can render impressively detailed 3D meshes,
even in mid-2024 the documentation of Unreal Engine 5.5 states that it is still limited to
static geometry [Epi24a].

Nanite has given rise to various lines of follow-up work. Benthin and Peters have
cultivated Nanite’s fundamental approach of supporting micro-poly geometry for ray
tracing pipelines [BP23].

An alternative to streaming geometry from memory is to generate it on the GPU—most
notably by means of the hardware tessellator, which can potentially reduce memory
bandwidth usage significantly. The tessellator is a specialized hardware unit that produces
geometry on-chip within the context of a draw call, based on input patches [Khr23tesb].
The hardware tessellator can be used in many ways as reported by Nießner [Nie+16]. It
is often used to subdivide Catmull-Clark subdivision surfaces until a certain error metric
is satisfied or an ultra-detailed geometry scenario has been established [NL13; Bra+16].
Not always is this approached by using the tessellation units of a GPU. Some solutions
are compute-based [SS09; PEO09] or use task and mesh shaders [Kut+23].

In the context of VR rendering, it is always required to produce at least two views.
Some setups or use cases may even require the generation of more than two views,
such as renderings for ultra-wide field of view (FOV) displays [NVI18b], piecewise
projections for cylindrical projection volumes [LD09] or ultra-wide monitors [Rum23], or
the generation of multiple shadow maps. Failure to maintain high frame rates and low
latency in VR systems can not only impair visual quality but lead to motion sickness and
discomfort [RK15]. For such applications, it is crucial to render as efficiently as possible
and to distribute workload and utilize GPU caches optimally.
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1.4 Contributions to the State of the Art
For rendering ultra-detailed geometry, it is unclear which functionality of graphics APIs
and GPUs to use in which scenario—whether going for a more flexible approach or a
fixed-function feature is the right choice to solve performance requirements. Furthermore,
those decisions might have to be made and evaluated depending on the concrete usage
scenario. In this dissertation, we provide solutions for some relevant, selected use
cases and evaluate them thoroughly: Fast multi-view rendering can help to achieve
sufficiently high frame rates in VR scenarios, or generally for applications that require the
simultaneous rendering of multiple views of the same scene. Graphics mesh pipelines can
help to enable the rendering of ultra-detailed animated 3D models, utilizing the flexible
compute shader-style task and mesh stages for fine-grained culling, while still exploiting
hardware-accelerated rasterization. A similar combination of flexible compute shaders and
hardware-accelerated fixed functionality—but using multiple layers of compute pipeline
invocations, storing and then using the results in graphics pipelines—can be beneficial
for more complex application setups, such as the evaluation, on-the-fly generation, and
rendering of parametric functions in real time, for which use case the two-stage nature of
task and mesh shaders before the rasterizer turned out to be too inflexible.

The following sections provide more details on these selected topics and point to our
respective published research.

1.4.1 Optimal Pipeline Configurations for Different Geometry Loads
in Multi-View Scenarios

The impact of high geometry loads on render times when producing multiple views can
be linear with the number of simultaneously rendered views in the worst case. This
is an undesirable effect and can be avoided in many cases where parts of the different
views’ frusta overlap to some degree. The caching behavior of GPUs cannot be directly
configured, but different pipeline configurations lead to different caching behavior. In
our research, we have analyzed over 50 different pipeline configurations and describe
their performance characteristics for many different scenarios: different numbers of
simultaneously rendered views, different scenes with different geometry loads, different
resolutions, and different shader loads for various use cases. Besides the meanwhile well-
supported OVR_multiview [Cas18] extension, we were able to identify some geometry
shader-based pipeline configurations that outperform OVR_multiview on some GPUs,
tend to show favorable performance characteristics with higher geometry loads and still
offer support for the tessellation stages, which OVR_multiview does not offer. Details,
results, and findings of our research are presented in Chapter 2.

Publication: Johannes Unterguggenberger, Bernhard Kerbl, Markus Steinberger,
Dieter Schmalstieg, and Michael Wimmer. “Fast Multi-View Rendering for Real-
Time Applications”. In: Eurographics Symposium on Parallel Graphics and Visu-
alization. Ed. by Steffen Frey, Jian Huang, and Filip Sadlo. Eurographics. on-
line, May 2020, pp. 13–23. isbn: 978-3-03868-107-6. [Unt+20] The paper is avail-
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able for download from: https://www.cg.tuwien.ac.at/research/publications/2020/

unterguggenberger-2020-fmvr, DOI: 10.2312/pgv.20201071, and source code is provided
on GitHub: https://github.com/cg-tuwien/FastMVR.

Individual contributions: The first author, Johannes Unterguggenberger, implemented
and analyzed the different pipeline variants, and discovered the positive effects on
performance by certain geometry shader-based variants, most notably those producing four
views at a time. Bernhard Kerbl provided the research idea, initiated our research, and
provided thorough supervision during implementation and analyses. Markus Steinberger
contributed in-depth analyses of the observed performance characteristics across different
GPUs. Dieter Schmalstieg and Michael Wimmer provided general guidance and feedback.
Johannes Unterguggenberger, Bernhard Kerbl, and Markus Steinberger were involved in
writing the paper.

1.4.2 Using a Modern, Low-Level Graphics API for Research and
Teaching

While working on our paper about fast multi-view rendering [Unt+20] (see also Sec-
tion 1.4.1) we used OpenGL, since it appeared to be more relevant at the time of our
research and evaluations, and it provided better tooling. However, we also felt its age at
some points during implementation. We were also puzzled by the absence of support for
some new features that were supported in Khronos’ newer graphics API Vulkan—perhaps
most prominently the absence of a real-time ray tracing API in OpenGL, which is still
missing today. For our papers on fine-grained culling for clustered 3D models [Unt+21]
and for our work on fast rendering of parametric objects, we, therefore, decided to use
the Vulkan API. We also transitioned teaching in introductory and advanced graphics
courses at the Institute of Visual Computing and Human-Centered Technology at TU
Wien. Our reasons for the transition from OpenGL to Vulkan, students’ perceptions,
and further details are described in the following two papers:

Publication: Johannes Unterguggenberger, Bernhard Kerbl, and Michael Wimmer.
“The Road to Vulkan: Teaching Modern Low-Level APIs in Introductory Graphics
Courses”. In: Eurographics 2022 - Education Papers. Reims: The Eurographics As-
sociation, Apr. 2022 [UKW22]. The paper is available at: https://www.cg.tuwien.

ac.at/research/publications/2022/unterguggenberger-2022-vulkan/, DOI: 10.2312/
eged.20221043, and the first assignment for introductory graphics courses is available at the
ACM SIGGRAPH Education Committee’s cgSource: https://education.siggraph.org/

cgsource/content/road-vulkan-teaching-vulkan-introductory-graphics-courses.

Publication: Johannes Unterguggenberger, Bernhard Kerbl, and Michael Wimmer.
“Vulkan all the way: Transitioning to a modern low-level graphics API in academia”.
In: Computers and Graphics 111 (Apr. 2023), pp. 155–165. [UKW23]. The paper
is available for download from: https://www.cg.tuwien.ac.at/research/publications/

2023/unterguggenberger-2023-vaw/, DOI: 10.1016/j.cag.2023.02.001.
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Individual contributions: The first author, Johannes Unterguggenberger, implemented
the Vulkan frameworks, conducted the user study, and was the main author of the paper.
Bernhard Kerbl and Michael Wimmer provided supervision and helped in writing.

1.4.3 Fine-Grained Conservative Culling for Ultra-Detailed Animated
Meshes

While Nanite describes a sophisticated approach for rendering ultra-detailed static
geometry [KSW21], it does not support animated meshes [Epi24a]. The problem with
animated meshes is that their geometry—which is divided into small clusters with a
Nanite-like approach—changes under animation. One key element of achieving good
rendering performance for ultra-detailed geometry is fine-grained culling on a per-cluster
basis. The main challenge in this context is to compute bounds for a given cluster that
are reasonably tight but still conservative. Failing to compute conservative bounds leads
to visual artifacts of prematurely culled clusters, which are typically very noticeable
to a viewer. In our method, we analyze how clusters transform under animation and
compute both spatial bounds for a cluster to enable view-frustum culling and bounds for
the resulting normal directions, enabling backface culling. This enables fine-grained and
conservative culling for clusters along the frustum planes, and also conservative backface
culling for cases where all the triangles assigned to a certain cluster are known to be
facing away from the camera. Details, results, and findings of our research are presented
in Chapter 4.

Publication: Johannes Unterguggenberger, Bernhard Kerbl, Jakob Pernsteiner, and
Michael Wimmer. “Conservative Meshlet Bounds for Robust Culling of Skinned Meshes”.
In: Computer Graphics Forum 40.7 (Oct. 2021), pp. 57–69. issn: 1467-8659. [Unt+21]
The paper is available for download from: https://www.cg.tuwien.ac.at/research/

publications/2021/unterguggenberger-2021-msh/, DOI: 10.1111/cgf.14401.

Individual contributions: The first author, Johannes Unterguggenberger, and Bern-
hard Kerbl devised the main algorithm. Johannes Unterguggenberger implemented the
method in Vukan and performed performance evaluations under constant supervision by
Bernhard Kerbl, who also provided the research idea. Jakob Pernsteiner implemented
additional rendering effects. Michael Wimmer provided general guidance and feedback.

1.4.4 Creating Ultra-Detailed Geometry On-the-Fly for Parametric
Objects

The absence of a general method to render parametrically defined objects combined with
the observation of the general performance trends outlined in Figure 1.3 gave rise to
our research about rendering parametric objects in ultra-high geometric detail. Such
highly detailed rendering of parametric objects generally fits well with other ultra-high
geometric detail approaches such as Nanite [KSW21] or our own work on fine-grained
culling for ultra-detailed animated meshes [Unt+21]. A parametric object’s surface is
described only with a parametric function, which is a very compact description that
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requires virtually no memory initially and is at a later point in the rendering process
turned into a high geometry load on-the-fly, just before being rendered. Since we describe
a general method, it is able to handle a variety of different types of parametric functions,
such as ones describing seashell surfaces, plain-knit yarn curves, or spherical harmonics
(SH) glyphs. While for many of these parametric objects, no published method exists
that could render them at high frame rates, our method outperforms a state-of-the-art
SH glyph method substantially, producing better quality and more FPS for higher-order
SH glyphs. Details, results, and findings of our research are presented in Chapter 5.

Publication: Johannes Unterguggenberger, Lukas Lipp, Michael Wimmer, Bernhard
Kerbl, and Markus Schütz. “Fast Rendering of Parametric Objects on Modern GPUs”.
In: Eurographics Symposium on Parallel Graphics and Visualization. Ed. by Guido
Reina and Silvio Rizzi. The Eurographics Association, 2024 [Unt+24]. The paper is avail-
able for download from: https://www.cg.tuwien.ac.at/research/publications/2024/

unterguggenberger-2024-fropo/, DOI: 10.2312/pgv.20241129, the source code is avail-
able on GitHub: https://github.com/cg-tuwien/FastRenderingOfParametricObjects.

Individual contributions: The first author, Johannes Unterguggenberger, and Markus
Schütz devised the main algorithm. Johannes Unterguggenberger created the Vulkan
implementation and performed the performance evaluations. Markus Schütz provided
the research idea and constant supervision. Lukas Lipp assisted with the implementation
of SH visualization. All authors were involved in writing the paper.
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CHAPTER 2
Fast Multi-View Rendering for

Real-Time Applications

The contents of this chapter are largely based on our paper “Fast Multi-View Rendering
for Real-Time Applications”, presented at the Eurographics Symposium on Parallel
Graphics and Visualization 2020 [Unt+20].

2.1 Motivation

In real-time rendering, some effects require the rendering of multiple views of the same
scene. For example, for VR applications and games, at least two views are required: one
for each eye. Some setups require even more views to be rendered, also some algorithms—
like shadow mapping for many light sources—might require multiple views of the same
scene to be rendered efficiently in order to satisfy the performance goals of 90 FPS.

Modern GPUs offer a wide range of configuration options for graphics pipelines, and they
have many stages as illustrated in Figure 1.4a. In some programmable stages, culling
mechanisms—such as VFC and BFC as described in Section 1.3—can be implemented
to preempt hardware culling. Previous work uses some of these approaches to describe
and propose certain configurations, but an in-depth analysis and evaluation of the
most relevant options was still lacking. In this chapter, we perform these analyses and
evaluations and come up with guidelines for implementers. This is valuable in ultra-high
geometry scenarios, where it is typically even more challenging to reach high numbers of
FPS, especially in a multi-view rendering scenario.
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2.2 Introduction

Consumer-grade head-mounted displays (HMDs) have become popular for VR in recent
years, and new VR games are being released regularly. In 2020, Valve’s Steam Store
already listed more than 4000 games tagged as "VR Only" [Val03]. Inherent to VR
games are increased requirements on the rendering performance of a PC or gaming
console because every frame has to be rendered at least twice—i.e., at least once for each
eye—with view positions slightly offset. However, two views might not be sufficient for
an HMD with a wide field of view and non-coplanar displays[BS18]. Four or more views
can be required for such setups.

Efficient rendering of multiple views does not only have its applications in VR rendering
or in rendering for multi-monitor/multi-projector setups. Multiple ID buffers containing
primitive IDs can be evaluated in order to determine which primitives are visible from a
range of viewpoints, i.e., a potentially visible set (PVS). Such a PVS can be used to e.g.
shade all triangles which may become visible under head movement [Mue+18]. Another
application scenario is shadow mapping for multiple light sources. Each light source
represents the origin of at least one view frustum that corresponds to the region that is
illuminated by that light. For omnidirectional lights and algorithms like cascaded shadow
mapping [Dim07], multiple views must be rendered per light source.

Producing multiple views per frame while maintaining frame rates of at least 60Hz can
be challenging. Rendering effort depends heavily on the scene representation and the
GPU that renders the scene. For real-time VR applications, usually, the requirements are
even higher. Vlachos [Vla16] recommends staying below 10ms time per frame to achieve
stable frame rates at 90Hz. In general, it can be stated that there is a need for multi-view
rendering (MVR) techniques that enable efficient processing of several viewpoints and
are versatile enough to be used for arbitrary scene setups and across different GPUs.

Hardware manufacturers such as Oculus [Eve16] and NVIDIA [NVI18b] have shown
increased interest in the efficient rendering of multiple views. Hardware-accelerated
MVR is commonly exposed as an extension for existing graphics APIs. For OpenGL and
OpenGL ES, the extension is called OVR_multiview [Cas18] and has been implemented
by NVIDIA, ARM, Qualcomm, and Imagination Technologies. Hardware-accelerated
MVR is likely to outperform any other approach for MVR, including software techniques
that make intelligent use of shader programs to minimize the number of draw calls and
memory transfer [Wil15; DNS10].

However, to the best of our knowledge, there is little information available that lets one
quantify the actual benefits of using one MVR method over another on recent GPU models.
An additional caveat for desktop systems is that hardware-accelerated MVR on consumer-
grade NVIDIA GPUs is limited in its applicability to real-time graphics, due to its lack of
geometry shader and tessellation shader support as can be seen though the low number
of devices supporting GL_EXT_multiview_tessellation_geometry_shader [Wil24]. A
detailed analysis of available MVR methods with modern graphics APIs would enable
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developers to make informed choices in their design without resorting to a trial-and-error
process.

To gain clarity about the performance of hardware-accelerated MVR and software-
based methods for GPUs, we provide an exhaustive evaluation of various techniques
for rendering with multiple viewpoints in different scenes on a range of recent GPU
models, for three distinct MVR applications. Specifically, we evaluate relevant MVR
methods in the context of ID buffer generation for PVS, light-field G-buffer rendering,
and shadow mapping. For our performance tests, we implement and test more than
50 different rasterization pipeline configurations, including the techniques of Sorbier et
al. [DNS10], Wilson [Wil15], Vlachos [Vla15], different variants of hardware-accelerated
MVR pipelines, and entirely new variants. To facilitate the identification and imparting of
individual methods, we introduce a formalized syntax to describe custom MVR pipelines.
In summary, our contributions include the following:

• We introduce a symbol-based description language to declare specific pipeline
configurations for MVR in a concise manner.

• We examine the emergent performance characteristics of available hardware-accelerated
MVR and compare them to other pipeline variants, including previously published
techniques.

• We analyze and interpret performance trends for the most relevant MVR pipeline
variants across different GPUs and scenes. In comparison to previous work, we also
consider much larger configurations with up to 32 simultaneously rendered views.

• We describe two optimized, geometry shader-based MVR variants and identify
applications where they can be used as viable alternatives to hardware-accelerated
MVR. In contrast to the latter, these general variants preserve full support for
custom tessellation and geometry shader routines on consumer-grade devices.

In the following, we summarize related work and previous efforts to achieve efficient MVR
in hardware and software (Section 2.3). In Section 2.4, we introduce our symbol-based
parameter syntax for describing different pipeline variants that are suitable for MVR.
Our setup and full evaluation, along with obtained results, are described in Section 2.5.
We analyze emergent performance trends and give interpretations, as well as additional
important insights in Section 2.6. Summary and outlook are provided in Section 2.7.

2.3 Related Work
A considerable body of previous work has addressed the problem of multi-view rendering
in computer graphics. As long as view positions only change in terms of rotation,
textured impostor rectangles can be used as stand-ins for actually transformed scene
geometry[SS96]. Halle et al. present an alternative scene representation and rendering
algorithm that enables significant speedup of view-dependent computations by enforcing
restrictions w.r.t. the discrepancies between views[Hal98]. Specifically, all camera positions
must lie on a single translational axis along which views can be sampled. Sitthi-Armon
et al.[Sit+08] describe how to make use of reprojection to avoid shading computations
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for slightly differing views by using cached results from previous frames. A particular
application of decoupled sampling is the smooth generation of visibility for multiple new
views, yielding superior results to caching approaches[Rag+11].
Beyond straightforward implementations, there are several aspects of image synthesis
with MVR that bear potential for optimization. Adelson et al.[Ade+91] provide a detailed
analysis of this topic in the context of stereoscopic projections. The authors propose
several methods to avoid duplicate attribute computations, efficiently cull geometry that
is invisible to both eyes, and resolve visibility by combining Z-buffers with BSP trees
for depth testing. Based on these ideas, several methods and mechanisms for modern
graphics APIs have been proposed to improve the performance of MVR over simple
multi-pass rendering. Marbach [Mar09], as well as Beck et al.[BSF10], provide basic
evaluations on the benefits of geometry shaders and layered rendering for MVR, with
mixed results. The techniques of Marbach [Mar09] and Sorbier et al. [DNS10] have
in common that they aim to reduce driver overhead and increase GPU utilization by
supplying all active views with a single draw call: rendered geometry is amplified in a
geometry shader loop. Each view’s pixel values are written to a separate layer of an array
texture [Mar09] or to an exclusive region in a single texture, where the single texture
contains all views to be rendered [DNS10]. An aspect of the technique by Sorbier et al.
is that culling and clipping cannot be performed implicitly by the rasterizer, which the
authors address by discarding all "out of bounds" writes in the fragment shader.
A more recent approach by Wilson [Wil15] also relies on the single-texture approach,
but uses instanced rendering to achieve geometry amplification. Furthermore, they
define custom clip planes in the vertex shader to avoid out-of-bounds writes, thus saving
on potentially expensive fragment discards. To achieve efficient MVR with point type
primitives, Marrs et al. [MWH18] avoid the rendering pipeline altogether and use compute
shaders instead. Unfortunately, previous work on software GPU rasterizers has shown
that similar performance gains cannot be expected for triangle meshes [Ken+18].
Hasselgren et al.[HA06] have conceived and simulated their prototype of a complete
VR-oriented architecture that aims to maximize exploitation of coherence between views.
Starting with the Pascal microarchitecture, NVIDIA has added built-in hardware support
for MVR that is exposed in VRWorks [NVI18b] and OpenGL by the Oculus Virtual Reality
(OVR) multi-view extension [Cas18]. Driven by the need for fast stereoscopic projection in
VR, the Single Pass Stereo functionality optimizes rendering to two separate viewpoints.
With the Turing microarchitecture, NVIDIA has further expanded on this feature set by
adding support for accelerated rendering of up to four separate viewpoints[NVI18a].
Recently, streaming rendering techniques for VR have been proposed [Mue+18; HSS19a].
Inspired by early work on optimizing VR applications pioneered by Regan et al.[RP94],
these approaches require the computation of a potentially visible set (PVS) of geometry
to be shaded on a server and then streamed for framerate upsampling to a client,
e.g., a head-mounted display. For PVS computations, these approaches render four to
eight frames along the predicted head movement, leading to a typical MVR problem:
generating multiple primitive ID buffers quickly. As an alternative to sampled visibility,

18



2.4. Classification

Hladky et.al [HSS19b] proposed a conservative single-pass PVS computation. While this
avoids MVR, it requires up to a hundred ms for typical scenes, raising the question of
whether efficient MVR rendering may not be a better solution to the problem.

2.4 Classification
In order to exhaustively analyze the properties of different MVR techniques and discuss
their mechanics, we first establish a method classification catalog that enables us to
capture all relevant properties with a compact, intuitive representation. To this end, we
introduce a formal notation to represent an arbitrary MVR technique that processes N
different views as a pipeline function P(. . .) whose parameters define its implementation
specifics. We propose a parameter set that is based on the variety of pipelines presented
in previous work, as well as additional attributes that we found to facilitate their
classification in practice during our experiments. In our current model, we consider four
essential properties:

• Pipeline invocation count: The number of times the pipeline must be run from
start to finish in order to process all N views.

• Geometry amplification: The mechanism used for producing sufficient copies of
the input geometry to provide each view.

• Custom culling: Required or supplemental steps included in the pipeline to
perform culling and/or clipping of triangle primitives.

• Framebuffer layout: The layout and configuration for the framebuffer object
that the fragment shader writes its output to.

In the following, we elaborate on the significance of each individual parameter and its
effects on technique configuration. In addition, we provide illustrations of selected pipeline
examples. The list of symbols used to describe the properties of specific configurations
are listed in Table 2.1.

2.4.1 Pipeline Invocation Count
When executing an MVR pipeline, it may be desired or necessary to run the entire
pipeline multiple times. Let us consider the most straightforward method to achieve
MVR, which is to invoke multiple draw calls that write the result for each of the N
different views to a separate target texture. In this case, the graphics pipeline must run
from start to end N times per scene entity to produce N views. Figure 2.1a illustrates
this basic pipeline setup and the necessary steps for each invocation.

Running the full pipeline multiple times may also be required to circumvent hardware
restrictions for specific techniques. For instance, the OVR extension enables efficient
hardware acceleration on NVIDIA Turing models only when using four target views or
fewer [NVI18a]. One way to evaluate hardware-accelerated MVR for a larger number
of views is thus to split the N views into groups of four and invoke the entire pipeline
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Table 2.1: List of symbols used for describing the different configuration variants of
graphics pipelines.

List of Symbols
Geometry Amplification

Direct forwarding
Amplification by instanced rendering
Amplification by geometry shader loop
Amplification by geometry shader instancing
(Accelerated) OVR geometry amplification

Framebuffer Layout
... Separate framebuffer objects

... Single large, partitioned framebuffer
... Layered framebuffer
... Multiple partitioned framebuffers
... Multiple layered framebuffers

Culling & Clipping
CLIPVP Clipping with reduced viewport
CLIP|| Clipping with clip planes
CLIPFS Clipping in fragment shader
VFCGS Frustum culling in geometry shader
BFCGS Backface culling in geometry shader

multiple times. We indicate such an approach by setting the first parameter of a pipeline
function to

⌈︁
N
4

⌉︁
. On the NVIDIA Pascal microarchitecture, only two views can be

hardware-accelerated [NVI16], therefore, e.g., a test with
⌈︁

N
2

⌉︁
invocations would be of

particular interest in such a scenario.

2.4.2 Geometry Amplification
The key requirement for achieving MVR is the amplification of the input geometry, cuing
the rasterizer to render multiple instances of each primitive—once for each view. Modern
graphics APIs offer various ways to achieve this amplification at different access points
in the pipeline. The choice of access point affects the quantity and nature of work that
the GPU must handle. The earlier amplification occurs, the more stages must process an
amplified amount of data.

At its earliest, geometry amplification can be done at the very beginning of a rasterization
pipeline, which effectively means invoking the pipeline multiple times, each time with
a different viewpoint location. In this case, all geometry that enters the pipeline is
simply forwarded. We indicate this behavior by the symbol in the pipeline’s geometry
amplification parameter field. The simple pipelines in Figure 2.1 both use this setting.
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CPU GPU

activate F B[j]

set view-matrix j

issue draw-call k
vert frag

loop k = [1..D]loop k = [1..D]

loop j = [1..N ]loop j = [1..N ]

F B[1] ... F B[N ]

render
into
F B[j]

(a) Sequence diagram showing the processing of
multiple multi-view draw calls with the pipeline
configuration P(N, , ... )

CPU GPU

activate framebuffer
... [N ]

...

... ...

[1] ...

set viewport j

set view-matrix j

issue draw-call k
vert frag

loop k = [1..D]loop k = [1..D]

loop j = [1..N ]loop j = [1..N ]

render into
viewport j

(b) Sequence diagram showing the processing of
multiple multi-view draw calls with the pipeline
configuration P(N, , ... , CLIPVP)

Figure 2.1: Examples of MVR configurations corresponding to our definition syntax.
(a) A straightforward MVR pipeline uses N invocations to write each view into a dif-
ferent framebuffer FB[1] . . . FB[N ]. (b) A multi-pass variant with a single, partitioned
framebuffer and varying viewports for clipping.

In order to reduce the number of draw calls without losing any flexibility, API calls that
perform instanced rendering (signified by ) can be used instead.

For MVR, only view-dependent computations need to be duplicated. By moving the
amplification to the end of the geometry stage, we can thus avoid redundant invocations
of vertex shaders that, e.g., compute skeletal animation, which is uniform across all views
in a given frame. In the geometry shader, output primitives can either be emitted in a
loop ( ) or, if the number of duplicates is fixed, via geometry shader instancing ( ).

Finally, specific extensions for MVR have been added to rendering APIs. A powerful
example is the OVR extension: on modern NVIDIA GPUs, it enables hardware-accelerated
geometry amplification, which exploits re-usability of shading results across multiple
views. On architectures that have no built-in support, the OVR functionality will usually
fall back to a looping behavior. We indicate this type of geometry amplification with the

symbol. The declared target application for this functionality is stereoscopic rendering
for VR, where the majority of geometry computations and visibility tests are valid for
both eyes [NVI18b]. Unfortunately, using the OVR extension also prohibits the use of
any custom tessellation or geometry shaders on all consumer-grade GPUs [Wil24].

Note that for all amplification methods, the number of copies generated is implicitly given
by the number of times a pipeline is run. If it is called only once, geometry amplification
must generate N copies. For

⌈︁
N
4

⌉︁
, each run must amplify the input geometry by a factor

of up to ×4. A pipeline that does not generate sufficient geometry for all N desired views
is not valid in our definition.
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2.4.3 Custom Culling and Clipping
Some MVR techniques require additional steps after geometry amplification and before
storing each view’s result into its target framebuffer. When using a partitioned framebuffer,
i.e., a framebuffer that contains multiple views, we must ensure that triangles are
adequately clipped against the current target region and do not protrude into regions
that correspond to a different view. This can be achieved in several ways: For one,
graphics APIs provide methods for reconfiguring the viewport against which culling
and clipping are performed between draw calls. We indicate that this feature is being
used by CLIPVP. Alternatively, we can avoid this additional API command and implied
synchronization dependencies by defining custom clip planes (CLIP||) in the vertex shader
instead [Wil15]. A third method exploits the discard instruction in the fragment shader
(CLIPFS) to achieve correct clipping[DNS10]. In addition to purely functional clipping, we
also consider the impacts of performing fine-grained view frustum culling and backface
culling in the geometry shader to reduce its output, which we denote with the symbols
VFCGS and BFCGS, respectively. If multiple methods are used in the same pipeline, they
are concatenated by the | symbol.

2.4.4 Framebuffer Layout
There are several possible choices w.r.t. the layout for storing the collective results
generated for all N processed views. In our cases, we consider all framebuffer objects to
contain at least one depth buffer and an arbitrary number of color targets. In the simplest
case, N separate framebuffer objects and associated textures are allocated and each one
is bound directly before rendering a particular view. We indicate this layout with the

... symbol, which is also used to describe the simple pipeline setup in Figure 2.1a. Note
that this layout is extremely restrictive, as it implies that no API- or hardware-backed
geometry amplification can be used since framebuffer bindings cannot be changed while
a graphics pipeline runs. Consequently, a common suggestion in previous work is to
use a single large framebuffer object instead of multiple smaller ones, and specify the
target write window for each individual view [DNS10; Wil15]. We use the ... symbol
to represent such a pipeline configuration. Since ... pipeline configurations eventually
contain multiple view-results in one single framebuffer, one of the clipping methods
described in Section 2.4.3 is indispensable for producing correct results. A third option
for the framebuffer layout is to exploit layered rendering capabilities to write each view’s
content to a separate layer of an array texture [Mar09]. When an array texture is part of
the framebuffer object, the rasterizer is executed in a special mode that allows setting
the built-in layer ID that each primitive is assigned to. A layered framebuffer is indicated
by the ... symbol.

As already noted in Section 2.4.1, there are cases where we would like to partition the
rendering of N views into chunks of, e.g., four views each and, as a consequence, issue⌈︁

N
4

⌉︁
draw calls per scene entity to produce the entirety of N view results. For such

variants, we are using either multiple separate framebuffer objects of the principal ...

type or multiple separate framebuffer objects of the principal ... type. To indicate a
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(a) Rendering four ID buffer / G-buffer views (b) Rendering four shadow map views

Figure 2.2: Different configurations for a single four-view setup in our applications. (a)
To generate ID buffers for a PVS, we sample a rectangle to obtain visibility information
under small camera motion as done, e.g., by [Mue+18]. The same samples can be used for
generating a G-buffer for a small lightfield. (b) For shadow maps, samples are arbitrarily
distributed, since light source positions are generally independent.

set of conjugate ... framebuffer objects, we use the ... symbol. To indicate a set of
conjugate ... framebuffer objects, we use the ... symbol.

2.5 Evaluation
In order to thoroughly evaluate and identify the conditions that influence an MVR
technique’s performance, we have collected timing results for several scenes, GPU models,
and setup configurations in three different applications. We have evaluated more than
50 MVR variants in the context of ID buffer rendering for PVS computation, G-buffer
generation for lightfields, and shadow mapping (see Figure 2.2). For rendering a single
ID buffer, we use multiple viewpoints on the surface of a rectangle to sample the scene
visibility. For the lightfield G-buffer, we use the same sample positions as for ID buffer
rendering but set multiple color targets to store all fragment shader outputs. With
shadow mapping, the discrepancy between viewpoints in MVR is random, since the
positions of light sources in a scene are mostly independent. We evaluate our MVR
applications at up to 100 PVS/light source origins and orientations which are uniformly
distributed in each scene. Each application’s run time is recorded for a varying number
of target views in 6 scenes listed in Table 2.2. In contrast to most previous work, our
evaluation also considers large MVR setups and ranges from 2 to 32 simultaneous target
views. We consider two common framebuffer resolutions for LQ/HQ purposes: 800 × 600
and 1080p.

For our evaluation, we have implemented a testbed that enables users to quickly define
and run a wide range of MVR techniques. In our implementation, a particular MVR
variant is configured in the source code. Different variants can be easily composed of
predefined components. For example, vertex and fragment shaders in the same category
have the same inputs and outputs. A geometry shader can be added in-between since
they are implemented so that their inputs and outputs are compatible with the outputs
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Table 2.2: Scenes used to generate test results, along with geometry properties and the
usual range of draw calls needed to produce one view of each scene. Due to frustum culling,
the number of draw calls varies depending on the active view and pipeline configuration.

#vertices #triangles avg. #drawcalls
Bistro 2.52M 2.83M 43–71
Gallery 0.65M 1.00M 29–48
Robot Lab 0.38M 0.47M 46–111
San Miguel 9.02M 9.98M 866–1446
Sponza 0.29M 0.44M 84–137
Viking Village 2.87M 4.26M 195–384

of vertex shaders and the inputs of fragment shaders. Based on the other configuration
parameters of a certain variant, our implementation automatically binds the appropriate
buffers and render targets, and issues the proper number of draw calls. ... variants, for
example, get a new frame buffer bound before each draw call, while for ... or ... variants,
only one framebuffer might have to be bound before issuing all draw calls.

When we conducted our research, we decided to use OpenGL 4.6 over Vulkan as the
target rendering API, for two reasons: First, Vulkan had not yet fully penetrated the
industry. Therefore, results obtained with OpenGL better reflected the expected impact
in graphics applications at that time. Second, several helpful tools that allow for in-depth
analysis (such as the Nsight Graphics range profiler) were incompatible with the Vulkan
API [NVI20]. Furthermore, given that our test applications do not show high CPU
workload or rely on complex input resource management, we expect deviations to be
minor. We have recorded our results for the following GPUs: NVIDIA’s GTX 980,
GTX 1060, GTX 1650 SUPER, RTX 2080, RTX 2800 Ti, and AMD’s RX 580. Scenes
undergo CPU-side frustum culling and have backface culling enabled in the rendering
API. While we performed the measurements on different machines, our timings record
only the portion of the GPU-side frame time required for rendering all N views. Before
timing, we ran a warmup phase of 15 frames. For a single measurement, we uploaded
the required resources to the GPU, waited for the completion of previous commands,
and recorded the multi-view rendering time using GPU timer queries. For evaluation,
we consider the average frame times across all measurements per configuration. Due to
the vast size of the parameter space for this problem, we must restrict our evaluation to
cases that are of particular interest. In the following, we first identify a subset of the
most robust techniques out of the possible combinations that result from the parameters
in Section 2.4. We consider ID buffer rendering as our base use case since it requires
minimal effort w.r.t. to vertex and fragment shading (i.e., it generates a single integer
output) and should enable hardware-accelerated techniques to achieve peak performance
due to the strong correlation of visible geometry between views [BS18]. This subset of
techniques is then further refined to yield the most promising ones, for which we analyze
trends and explore the impact of changing load parameters by applying them to G-buffer
rendering (three vector-valued outputs) and shadow mapping (depth-only).
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2.5.1 Identifying Robust MVR Techniques
For the sake of brevity, we do not include results for all techniques that were part of our
initial experiments. Instead, we provide a comparison of techniques that are based on
previous work, as well as hardware-accelerated variants and promising combinations of
API features that have not been proposed before. In order to identify the top-performing
pipeline variants per category (where the categories are described in Sections 2.5.1 to
2.5.1), we compare them to the simplest possible MVR baseline: P(N, , ... ), which
describes a pipeline that requires N pipeline invocations, performs simple geometry
forwarding, and renders the results into separate framebuffer objects. A technique is
considered robust on a given GPU if it performs faster than our baseline in at least
50% of all ID buffer rendering setups, which include different scenes, view counts, and
framebuffer resolutions. Note that we skip this comparison for the AMD RX580 entirely;
no MVR technique performed significantly better than P(N, , ... ) on that particular
GPU model.

Instanced Rendering

Based on the method proposed by Wilson [Wil15], P(1, , ... , CLIP||) describes an MVR
pipeline that uses a single pass and instanced rendering for geometry amplification,
forwarding the output to a large, partitioned framebuffer. To avoid writing outside
each view’s bounds, custom vertex clip planes are used, which allows skipping the
geometry shader stage altogether. While testing this approach in our setup, we found
that its overall performance can be improved by using a layered framebuffer instead of a
partitioned one. Note that in this case, we must set the layer ID for each primitive, which
theoretically requires the presence of a geometry shader. However, for such constant-time
efforts, modern NVIDIA GPUs support pass-through geometry shaders, which almost
completely avoid the overhead caused by this stage. The P(1, , ...) variant employs
this particular setup and consistently outperforms the original version on all tested
NVIDIA GPUs—in most cases even by a large margin. We further found that the
performance of this approach can be improved by restricting the number of views that
are rendered at the same time. Our empirical tests have shown that limiting the number
of simultaneously processed views to 4 works best, which will be a recurring theme in the
following sections. An interpretation of this trend is provided in Section 2.6. The resulting
instanced rendering-based pipeline variant is described with the symbol P(

⌈︁
N
4

⌉︁
, , ... )

and shows the most favorable ratio across the pipeline variants considered in this section
when compared to our baseline (see Figure 2.3a). Since none of these variants performed
better than our baseline on weaker GPU models for 4 or more views, they are excluded
from our detailed analysis in this chapter. Corresponding results can be found in our
supplemental material.

Geometry Shader-Based Techniques

Like Wilson’s approach, the approach by Sorbier et al.[DNS10] targets a single, partitioned
framebuffer and uses a single invocation to produce N views. However, their geometry
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(a) Bars represent the percentage of configu-
rations where a particular instanced render-
ing variant showed better performance than
P(N, , ... ) for the same scene configuration.
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(b) Bars represent the percentage of tests
where a particular geometry shader-based vari-
ant showed better performance than our baseline
P(N, , ... ) for the same scene configuration.

Figure 2.3: These bar charts show performance comparisons between instancing-based
variants and our baseline in Figure 2.3a, and between variants using a loop in geometry
shaders in Figure 2.3b.

amplification occurs in a geometry shader loop. The geometry shader further applies
frustum culling to reduce the input to the rasterizer and performs clipping in the fragment
shader to restrict rendering to each view’s framebuffer region. Their pipeline variant
can thus be denoted by P(1, , ... , VFCGS|CLIPFS). Once again, restricting the number
of simultaneous views provides a significant performance boost. We further saw that
switching the large framebuffers for layered ones yields overall better performance. This
is partly due to the fact that the fragment shader stage must no longer perform discard
operations to achieve clipping and can take advantage of early depth testing. However, we
also found that keeping the frustum culling routine in the geometry shader is beneficial;
since the geometry shader is executed in a loop, testing each triangle against a frustum
incurs only a small overhead which can be amortized by the reduced output of the
geometry shader. We denote this pipeline as P(

⌈︁
N
4

⌉︁
, , ... , VFCGS). To further relieve

the rasterization stage, we have added backface culling to the geometry shader routine,
which led to a relative speedup in more than 60% of all cases. Figure 2.3b shows
that overall, geometry shader loop-based variants that render into layered framebuffers
outperform our baseline.

Instead of a simple geometry shader loop, we also consider methods based on fixed
geometry shader instancing. This type of geometry amplification can be achieved by
defining a fixed number of geometry shader invocations, which is part of OpenGL’s
core functionality since version 4.0. While previous literature does not mention any
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(a) Percentage of cases where a geometry
shader instancing-based variant showed better
average performance than P(N, , ... ) for the
same scene configuration.
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(b) Bars represent the percentage of configu-
rations where an OVR variant showed better
performance than P(N, , ... ) for the same
scene configuration.

Figure 2.4: These bar charts show performance comparisons between geometry shader
instancing-based variants and our baseline in Figure 2.4a, and between variants using
OVR hardware acceleration over our baseline in Figure 2.4b.

comparable variants, we found this amplification method to work particularly well on
NVIDIA GPUs in our use case. Similar to the loop-based pipelines, we have tested
combinations with custom frustum and backface culling routines in the geometry shader.
On average, we found that the most effective techniques include both of these traits
and target layered framebuffers. Based on previous impressions, we also constrained
the number of views rendered per invocation down to 4, resulting in an appreciable
performance increase. The percentages of cases where these variants outperform our
multi-pass baseline are plotted in Figure 2.4a. Of all MVR variants that do not rely on
hardware acceleration, P(

⌈︁
N
4

⌉︁
, , ... , VFCGS|BFCGS) performed best across all tested

NVIDIA GPU models.

OVR and Hardware-Acceleration

The OVR extension allows defining multiple target views for which vertex shader outputs
can be written. On NVIDIA Pascal and Turing architectures, choosing 2 or 4 target views
respectively allows the extension to exploit the underlying MVR hardware features for
maximal efficiency. If more views are defined than the hardware supports, a slower fallback
mechanism will be triggered instead. Hence, restricting the number of simultaneous
views may again be beneficial to performance in this particular geometry amplification
mode. For instance, P(

⌈︁
N
4

⌉︁
, , ... ) describes a variant of MVR that partitions the

N views into chunks of four views each and is thus accelerated on Turing. OVR may

27



2. Fast Multi-View Rendering for Real-Time Applications

Table 2.3: Results of ID buffer generation for different resolutions, scenes, and view
counts per GPU. Each table cell represents averaged frame times from 102 measurements
per configuration in milliseconds. For brevity, we use the following shorthand to reference
our MVR techniques: M.Pass = P(N, , ... ), GSL4 = P(

⌈︁
N
4

⌉︁
, , ... , VFCGS|BFCGS),

GSI4 = P(
⌈︁

N
4

⌉︁
, , ... , VFCGS|BFCGS) and OVRX = P(

⌈︁
N
X

⌉︁
, , ... ).

AMD RX580 GTX 980 GTX 1060 RTX 2080
Scene #Views M.Pass GSL4 GSI4 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR4

19
20

×
10

80

Bistro
2 × 2 2.24 4.48 3.65 2.56 1.95 1.74 2.50 2.46 2.50 2.44 2.69 1.11 0.96 0.89 0.88
4 × 4 8.97 17.88 14.58 10.26 7.81 7.03 9.96 8.96 7.85 7.20 8.90 4.22 3.67 3.46 3.32
8 × 4 17.84 35.66 29.01 20.34 15.60 14.03 19.77 17.89 15.51 14.28 17.65 8.31 7.16 6.65 6.62

San
Miguel

2 × 2 5.34 9.74 6.95 6.21 3.87 3.21 5.27 5.40 3.75 3.30 4.83 3.21 2.07 1.87 1.68
4 × 4 21.66 38.58 27.25 27.90 15.61 13.15 22.03 26.12 15.20 13.64 20.14 16.36 7.03 6.25 6.09
8 × 4 43.17 76.76 54.03 57.80 31.33 26.37 44.20 54.09 30.50 27.04 40.81 34.39 14.59 13.13 12.6

Sponza
2 × 2 0.72 1.89 1.79 0.78 0.65 0.63 0.61 0.87 1.16 1.01 0.95 0.48 0.35 0.37 0.34
4 × 4 2.99 7.64 7.21 3.21 2.68 2.58 2.54 3.03 3.03 2.97 3.08 1.83 1.41 1.37 1.32
8 × 4 6.02 15.28 14.40 6.57 5.38 5.17 5.03 5.97 5.15 5.01 4.91 3.45 2.89 2.91 2.77

Viking
Village

2 × 2 2.62 4.17 3.40 2.94 2.04 1.78 2.82 2.57 2.11 2.13 2.68 1.75 1.06 0.88 0.96
4 × 4 10.41 16.77 13.54 12.47 8.07 7.14 11.57 11.04 7.78 7.24 10.38 5.97 3.82 3.48 3.55
8 × 4 20.65 33.34 27.17 25.24 16.16 14.33 22.99 22.75 15.77 14.63 20.89 12.06 7.69 7.17 7.32

only be used with array textures and may not be combined with tessellation or geometry
shading, which fairly limits the amount of OVR-based MVR pipeline variants. The
relative speedup of OVR-based methods over our multi-pass baseline is significant on
all NVIDIA GPUs. On older microarchitectures, P(

⌈︁
N
2

⌉︁
, , ... ) performs better in at

least 50% of our tests. Turing GPUs can exploit acceleration for P(
⌈︁

N
4

⌉︁
, , ... ), which

has a significant impact on the results since most of our configurations render >4 views.
On recent models, both hardware-accelerated variants clearly outperform our baseline in
>90% of all test cases. This is also shown in Figure 2.4b.

2.5.2 Exploring MVR Setup Parameters and Analysis
We provide a detailed analysis of how setup parameters affect performance of the most
promising MVR methods, based on our initial ID buffer evaluation: The geometry shader
loop-based configuration P(

⌈︁
N
4

⌉︁
, , ... , VFCGS|BFCGS), the geometry shader instancing-

based configuration P(
⌈︁

N
4

⌉︁
, , ... , VFCGS|BFCGS) and OVR-based methods. Tables 2.3

to 2.5 list the run time results for selected, representative setups. For the full list of
timings, please refer to the supplemental material or our original paper [Unt+20].

Impact of Scene Size

In the results from the NVIDIA models, we could observe that some pipelines are better
suited to particular scenes than to others. For the larger scenes ("Bistro", "San Miguel",
and "Viking Village"), geometry shader-based pipelines outperform other pipeline variants
on Maxwell and Pascal in all test cases and stay within a 20% performance margin to OVR-
based techniques on Turing in most cases. P(

⌈︁
N
4

⌉︁
, , ... , VFCGS|BFCGS) turns out to be

one of the top-performing techniques in all configurations for the ID buffer tests. Only on
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high-end Turing GPUs, P(
⌈︁

N
4

⌉︁
, , ... ) is often showing significantly better performance.

(compare with Table 2.3). For the remaining, smaller scenes, performance generally varies
less across different pipelines. The overall picture shows relative performance gains in
favor of OVR-based techniques and our baseline P(N, , ... ), compared to geometry
shader-based techniques. OVR-based techniques exhibit good performance across all
test scenes, but geometry shader-based techniques stay within a performance margin of
20% even on the 2080 Ti in the majority of test cases. While P(N, , ... ) falls behind
OVR-based techniques in most cases on NVIDIA GPUs, it is the fastest technique on
the AMD RX 580 in 100% of tests for small and large scenes alike.

Differences Across GPU Architecture

Geometry shader-based pipelines show consistent performance characteristics across
different NVIDIA GPU microarchitectures. A GPU’s performance tier has more impact
on the render times than the microarchitecture. This effect is less pronounced with
techniques that partition rendering into sets of 4 views (

⌈︁
N
4

⌉︁
) and becomes obvious for

geometry shader-based "all-in-one" techniques of the type P(1, ...). On low-tier models (i.e.
GTX 1060, and GTX 1650 SUPER), they performed worse than P(N, , ... ) in 73% of
all tests. The optimized pipeline variants of type P(

⌈︁
N
4

⌉︁
, ...) show better performance

across all NVIDIA GPUs, surpassing P(N, , ... ) in virtually all test cases, as can be
seen in Table 2.3.

Since NVIDIA supports the hardware-accelerated creation of up to four views on Turing,
we expected performance gains to reflect the doubled number of simultaneous views
compared to the Pascal microarchitecture. Indeed, the number of test cases where an OVR
variant outperforms other techniques increases on Turing. However, the effect is most
noticeable on high-tier NVIDIA GPUs. On the GTX 1650 SUPER, we cannot report an
overall preference for OVR-based techniques, since P(

⌈︁
N
4

⌉︁
, , ... , VFCGS|BFCGS) shows

better performance in 43% of test cases and roughly equal performance in the others.
These relations change drastically with the high-tier models: P(

⌈︁
N
4

⌉︁
, , ... ) performs

better in one third of all test cases by a large margin (>20%). Comparing P(
⌈︁

N
4

⌉︁
, , ... )

to P(
⌈︁

N
2

⌉︁
, , ... ), the former showed advantages on the RTX 2080 and RTX 2080 Ti

in 49% and 63% of all tests, respectively. On all other GPUs, the differences between
those two OVR-based variants are marginal. Aside from the advantageous performance
of P(

⌈︁
N
4

⌉︁
, , ... ) on high-tier Turing GPUs, P(

⌈︁
N
4

⌉︁
, , ... , VFCGS|BFCGS) seems to

be the best choice for other NVIDIA GPUs across a multitude of different configurations.

Varying Number of Views

A very consistent observation across our test results is the dominance of OVR-based
techniques for stereo rendering on the Turing microarchitecture. This comes as no surprise
since stereo rendering is the declared purpose of NVIDIAs hardware MVR support. No
other pipeline variant was able to outperform P(

⌈︁
N
4

⌉︁
, , ... ) on the RTX 2080 and

the RTX 2080 Ti in any of our test cases. On the GTX 1650 SUPER and on the
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Table 2.4: Results of G-buffer generation for different resolutions, scenes, and view
counts per GPU. Each table cell represents averaged frame times from 60 measurements
per configuration in milliseconds. For brevity, we use the following shorthand to reference
our MVR techniques: M.Pass = P(N, , ... ), GSL4 = P(

⌈︁
N
4

⌉︁
, , ... , VFCGS|BFCGS),

GSI4 = P(
⌈︁

N
4

⌉︁
, , ... , VFCGS|BFCGS) and OVRX = P(

⌈︁
N
X

⌉︁
, , ... ).

AMD RX580 GTX 980 GTX 1060 RTX 2080
Scene #Views M.Pass GSL4 GSI4 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR4

19
20

×
10

80

Bistro
2 × 2 2.76 5.07 4.35 2.40 2.22 2.15 2.27 2.54 3.07 2.88 2.65 1.57 1.39 1.42 1.33
4 × 4 11.07 20.31 17.40 9.46 8.99 8.61 9.04 8.33 8.96 8.90 8.22 5.74 4.95 4.93 4.76
8 × 4 22.06 40.44 34.73 18.92 17.90 17.20 18.00 17.03 17.98 17.94 16.60 10.80 9.76 9.59 9.49

San
Miguel

2 × 2 6.64 23.03 15.39 7.43 7.02 5.82 6.67 6.59 7.15 6.70 6.08 3.97 3.97 3.72 3.19
4 × 4 26.28 91.60 61.07 31.06 28.08 23.23 26.73 28.50 28.41 26.49 24.15 17.67 12.39 11.29 9.47
8 × 4 52.78 182.8 121.68 62.36 55.83 46.11 53.33 57.48 56.14 52.22 48.26 35.97 24.56 22.46 18.84

Sponza
2 × 2 1.89 3.32 3.09 1.55 1.50 1.40 1.35 1.73 1.86 2.49 2.17 1.09 1.03 1.08 1.03
4 × 4 7.61 13.38 12.44 6.35 5.78 5.70 5.54 5.76 5.51 5.48 5.11 4.20 3.70 3.71 3.72
8 × 4 15.22 26.63 24.77 12.91 11.60 11.27 10.98 12.07 11.18 11.11 10.49 8.93 7.38 7.42 7.22

Viking
Village

2 × 2 3.82 10.95 7.84 4.22 3.90 3.40 3.94 3.62 4.06 3.91 3.73 1.97 1.97 2.01 1.96
4 × 4 15.08 43.37 31.40 17.25 15.54 13.71 15.61 15.00 16.20 15.72 14.11 9.01 7.32 6.95 6.11
8 × 4 29.98 86.69 62.71 34.65 31.23 27.40 31.13 30.79 32.21 31.35 28.30 17.22 14.62 13.63 12.25

GTX 1060, OVR-based techniques still performed very well in all test cases with two
views. For four or more views, geometry shader-based pipeline variants start to show
competitive performance characteristics. For 16 and 32 views, they stay within a 10%
performance margin to OVR-based techniques in most test cases and often outperform
them on pre-Turing microarchitectures. Due to the consistent performance characteristics
for P(

⌈︁
N
4

⌉︁
, ...) MVR techniques with four or more views, we argue that they scale

comparably well with the number of simultaneously rendered viewpoints. On the AMD
RX580, P(N, , ... ) again yields the best performance for all view counts (see Table
2.3).

Added Vertex & Fragment Load

To establish performance trends of applications with higher vertex load—e.g., vertex
skinning—we have simulated highly expensive vertex stages by adding a loop that performs
15k fused multiply-add instructions to the shader. Techniques that amplify geometry
before the geometry shader stages are impacted more severely by increased vertex load.
Amplifying geometry in the geometry shader potentially saves up to N −1 expensive vertex
shader invocations. The reduced number of vertex shader-invocations of P(1, ...)-types
compared to P(

⌈︁
N
4

⌉︁
, ...)-types are reflected in our measurements: While P(

⌈︁
N
4

⌉︁
, ...)-types

outperform P(1, ...)-types in 100% of test cases with light vertex load by a huge margin,
the latter perform better than the former for many tests with high vertex load across
NVIDIA GPUs. OVR-based techniques cope well with high vertex load on Turing: On the
GTX 1650 SUPER, they outperform all other techniques in 100% On the RTX 2080 Ti,
OVR-based techniques perform worse than P(1, , ... , VFCGS) in 50% of test cases, the
same percentage where P(1, , ... , VFCGS) outperforms P(

⌈︁
N
4

⌉︁
, , ... , VFCGS|BFCGS).

On Maxwell and Pascal, the top-performing techniques are P(1, , ... , VFCGS) and
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Table 2.5: Results of LQ shadow mapping for different resolutions, scenes, and view
counts per GPU. Each table cell represents averaged frame times from 30 measurements
per configuration in milliseconds. For brevity, we use the following shorthand to reference
our MVR techniques: M.Pass = P(N, , ... ), GSL4 = P(

⌈︁
N
4

⌉︁
, , ... , VFCGS|BFCGS),

GSI4 = P(
⌈︁

N
4

⌉︁
, , ... , VFCGS|BFCGS) and OVRX = P(

⌈︁
N
X

⌉︁
, , ... ).

AMD RX580 GTX 980 GTX 1060 RTX 2080
Scene #Views M.Pass GSL4 GSI4 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR2 M.Pass GSL4 GSI4 OVR4

80
0

×
60

0

Bistro
4 1.18 2.15 3.98 1.37 2.54 2.44 2.45 1.35 3.01 3.02 2.34 0.50 0.98 1.11 1.27
16 6.00 11.95 22.47 6.30 11.36 11.44 11.60 5.31 11.77 11.73 8.96 2.42 4.45 5.60 5.32
32 12.18 23.96 43.17 12.65 21.54 21.54 21.65 9.84 22.05 22.37 16.68 4.61 8.42 8.08 10.61

San
Miguel

4 3.23 7.83 13.64 3.39 5.97 5.85 6.41 2.93 5.98 6.08 4.75 4.05 3.12 3.47 4.60
16 13.39 34.23 61.54 14.95 26.62 26.88 26.58 13.19 27.19 27.54 21.73 11.49 9.66 11.49 12.29
32 25.78 66.07 118.65 30.41 51.61 51.90 51.97 27.77 52.95 53.92 40.45 11.49 9.66 11.49 12.29

Sponza
4 0.46 0.76 1.12 0.35 0.56 0.57 0.62 0.35 0.64 0.66 0.52 0.17 0.22 0.24 0.24
16 1.58 3.19 4.64 1.33 2.23 2.28 2.17 1.45 2.75 2.86 2.05 0.73 0.95 1.03 1.03
32 2.59 5.70 8.22 2.62 4.28 4.43 4.05 2.63 5.03 5.12 3.66 1.43 2.02 2.32 1.86

Viking
Village

4 3.44 7.38 13.00 3.80 5.86 5.82 6.22 3.36 5.80 5.86 4.92 1.97 2.25 2.44 2.81
16 7.53 14.04 25.30 7.88 13.42 13.35 14.25 6.38 13.91 14.13 10.99 3.08 4.67 5.09 5.92
32 16.08 30.91 54.57 16.82 28.58 28.35 29.87 13.16 29.15 29.17 22.73 6.40 10.64 10.44 12.07

P(1, , ... , VFCGS). For increased fragment load, we use the results obtained from our
G-buffer rendering application (see Table 2.4). Here, geometry shader-based techniques
lose performance compared to OVR-based techniques and—especially on low-tier GPUs—
also to P(N, , ... ). While OVR-based techniques also showed good performance
characteristics with light fragment load, they show a clear lead with increased fragment
load by means of G-buffer rendering: Their performance is better than the otherwise
well-performing geometry shader-based techniques in 40% of test cases on Maxwell and
in up to 90% of test cases on Pascal and Turing. However, the advantage is substantial
(>20%) only on high-end Turing GPUs.

Influence of Viewpoint Discrepancy

The fundamental difference between our ID buffer/G-buffer tests and our shadow mapping
is the scene setup w.r.t. the view frusta. While for ID buffer tests, view frusta have
strong coherence, for shadow mapping, the view frusta might not overlap at all (see
Figure 2.2). The resulting performance measurements for shadow mapping (a selection
of which is provided in Table 2.5) draw a highly interesting—and consistent—picture:
P(N, , ... ) outperforms OVR-based techniques in the majority of test cases on all
NVIDIA GPUs. For all non-high-tier Turing GPUs, we can even observe more than 40%
faster frame times in at least half of all test cases (varying per GPU). On high-tier Turing,
the performance differences are a bit less pronounced but still substantial (>20% faster
in half of all test cases on the RTX 2080 Ti) Geometry shader-based techniques are not
faring better with shadow mapping either. We observed similar relations to P(N, , ... )
as with OVR-based techniques. While OVR-based techniques generally show slightly
better performance than geometry shader-based techniques, they stay within a 20%
margin on most GPUs except for the GTX 1060.
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These performance relations are in stark contrast to the results from ID buffer generation,
where P(N, , ... ) shows worse performance than both, OVR-based techniques and
geometry shader-based techniques across all NVIDIA GPUs—especially on high-tier
models. It appears that NVIDIA GPUs can take advantage of cases where geometry
is visible in multiple views that are rendered with the same draw call. With views
that do not share geometry, this advantage vanishes, leading to worse performance than
P(N, , ... ). A tentative explanation for this phenomenon is given in Section 2.6.

2.6 Discussion
While some of the results in Section 2.5 turned out as expected—e.g., OVR’s stereo
rendering performance—other results were more surprising: Geometry shader-based
pipeline variants of the P(

⌈︁
N
4

⌉︁
, ...)-type showed very competitive performance for many

test cases on NVIDIA GPUs. P(N, , ... ) remains the overall strongest technique for
shadow mapping with incoherent view frusta on NVIDIA models. To provide a deeper
understanding of the performance characteristics that we observed for the different MVR
approaches, we used the NVIDIA Nsight Graphics profiler on an RTX 2080 and analyzed
frame captures for test cases that generate the maximal number of target views in our
three applications.

Due to the relatively low load on vertex and fragment shading throughout all tested
applications, streaming multi-processor (SM) utilization is never a limiting factor. The
P(N, , ... ) approach is limited by viewport culling (VPC) in all three applications,
with raster operations (ROPs) and memory access (VRAM) being high or close to the
physical limit. While G-buffer rendering shows the highest ROP utilization, no memory
operation reached the hardware limits. The SM utilization caps at 15%, with most load
stemming from vertex shading. Geometry shader-based P(1, ...)-type pipelines increase
SM utilization: it reaches 30% with P(1, , ... , VFCGS) and 85% with P(1, , ... , VFCGS).
All other GPU units show low utilization. Most interestingly, VPC is reduced to 15%–
30%, which is owed to culling in the geometry shader. In some instances, we found a
sudden VRAM overload, although the technique should in theory reduce VRAM access
the most. We attribute this effect to temporary scheduling/memory management issues
after geometry shading, which may lead to L2 cache thrashing or to overflow of internal
work queues. We only observed this issue in some test cases, and only with 32 views
being generated. As this issue rarely arises, the generally low performance of geometry
shader-based P(1, ...)-types cannot be attributed to this effect. We believe the main
issue is a typical geometry shader problem: if many outputs may be generated, memory
management and scheduling become challenging, leaving all profiled units underutilized.

Geometry shader-based P(
⌈︁

N
4

⌉︁
, ...)-type methods show an overall better balance. Custom

culling in the geometry shader reduces VPC pressure significantly compared to our
baseline P(N, , ... ). Also, VRAM is in general significantly lower than with our
baseline, while it is slightly higher than with P(1, ...)-type methods (when it does not
spike VRAM). Geometry shader-based P(

⌈︁
N
4

⌉︁
, ...)-type pipeline variants do not show any
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sudden VRAM spikes and SM utilization is overall low with 10%–12%. Thus, there is
overall no clear bottleneck and it seems that geometry shader output scheduling or simply
missing workload may again be the limiting factor for these approaches. In contrast to
shadow mapping, the geometry shader output is more coherent in ID buffer and G-buffer
test cases, as most often triangles are either culled for all four views or emitted four times.
VPC load caps at about 40% to 50%. Shadow mapping on the other hand typically
emits one or two triangles, which makes scheduling a lot harder and thus leads to lower
performance in this application. Also, VPC pressure remains higher for shadow mapping
(up to 75%). However, when able to exploit geometry reuse, P(

⌈︁
N
4

⌉︁
, ...)-type methods

find a sweet spot as they reduce the load on the P(N, , ... ) bottleneck and do not lead
to too complicated scheduling/memory management issues for the hardware scheduler.

P(
⌈︁

N
4

⌉︁
, , ... ) shows the highest load on VPC of all tested methods in all test cases

(90–100%) All other components see little load, recording the lowest load on everything
but SM at 14%–17%. In the ID buffer and G-buffer applications, P(

⌈︁
N
4

⌉︁
, , ... ) yields

very competitive performance, which we attribute to scheduling also being efficient, as
again culling is very consistent and rasterizer queue fill rates are similar. For shadow
mapping, the performance is less competitive although the profiling characteristics do
not show a vastly different behavior. Our assumption is that scheduling may be an issue,
again, as culling clogs the pipeline and triangles trickle into the rasterizer queues of the
different views. P(N, , ... ) is also limited by VPC, but generates all the load for each
disjoint view at a time and thus achieves better scheduling and overall utilization.

Our evaluation results indicate that OVR-based techniques show clear advantages with
stereo rendering, increased vertex and/or fragment load, and in general on high-tier
Turing GPUs. For low vertex and fragment loads, higher numbers of views, and especially
on previous NVIDIA microarchitectures, we often found P(

⌈︁
N
4

⌉︁
, , ... , VFCGS|BFCGS)

to show slightly superior and consistent performance. It also exhibits relatively good
performance with the bigger scenes tested. We recommend this particular pipeline
variant in general for use cases that require geometry or tessellation shaders, which
are not supported by OVR-based techniques. For non-overlapping view frusta and in
general, for AMD GPUs P(N, , ... ) shows the best performance across all tests. We
found that overall rendering performance for producing multiple views can drastically
be improved by splitting the workload into packages of four views at a time, which
is utilized by P(

⌈︁
N
4

⌉︁
, ...)-type variants. Although requiring

⌈︁
N
4

⌉︁
times the number of

draw calls compared to P(1, ...)-type variants, they enable better load distribution and
balance as detailed above. Only in combination with very high vertex load or excessive
numbers of draw calls, performance shifts in favor of P(1, ...)-type pipeline variants. For
non-hardware-accelerated MVR techniques, we can state as a general rule of thumb that
performing geometry amplification as late as possible is advantageous, and that custom
frustum and backface culling in geometry shaders further increases performance. Using
layered framebuffers comes with the advantages that clipping can be performed by the
rasterizer and early depth tests can be utilized.
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2.7 Conclusion and Future Work
In this chapter, we have examined a wide range of different techniques that are available
today on modern GPU hardware to achieve multi-view rendering. In order to facilitate
the concise description of relevant properties, we have introduced a general and extensible
pipeline catalog. Our evaluation spans multiple GPU generations and use cases, and
provides a basis for making informed decisions w.r.t. the applicability of different pipelines,
as well as the main factors that impact their performance. In contrast to most available
material on this topic, we go beyond stereoscopic projection and analyze multi-view
setups that target more than two views. We have shown that, with the help of widely
available rendering API features, we can achieve a performance improvement of 5–6×
over earlier methods that were explicitly recommended for such scenarios.

While we found NVIDIA’s hardware support and the general OVR extension for multi-
view rendering to work well across a wide range of setups, we also observed that it can be
outperformed in applications with low shading load, particularly on weaker GPU models.
Furthermore, the lack of support for tessellation and geometry shading in this feature
motivates the question of which alternatives can be used if these pipeline stages are
required. Even in 2024, support for the EXT_multiview_tessellation_geometry_shader
extension is very low across all GPUs, with only 0.88% of devices supporting it [Wil24].
For those cases when using OpenGL, we have identified suitable, optimized methods based
on geometry shader instancing that are usually within 15–20% of the fastest OVR-based
techniques, and are even outperforming them for some scene configurations.

Future work might find it worthwhile to extend our catalog by additional pipeline variants
that are enabled by mesh shaders [KB19; Kub18b]. Based on the improvements obtained
by the application of custom clipping and culling steps in various pipeline variants,
we are confident that the enhanced programmability of the geometry stages through
mesh shaders can facilitate further performance gains while preserving the ability to
perform custom subdivision steps as part of rasterization-based graphics pipelines. All
techniques are available as part of our testbed, which we provide for download and further
experiments on GitHub 1.

With the more modern Vulkan API, support for the combination of hardware-accelerated
MVR and geometry and tessellation shaders is much better. While the early multiview
extension VK_KHR_multiview [Khr24vsp] shows low support across various GPUs for the
additional shader stages, the promotion of the multiview feature into Vulkan’s core features
led to wide support: In 2024, 67.39% of devices support the multiviewGeometryShader
feature, and 73.94% support the multiviewTessellationShader feature (Core 1.1 features)
[Wil24]. Therefore, an application targeting Khronos’ new graphics API seems to not be
severely affected by the absence of the combination of hardware-accelerated MVR and
support for tessellation shaders on most devices. These significantly different numbers in
hardware support can be seen as another justification for preferring the Vulkan API over
OpenGL, as reasoned in our papers about transitioning to Vulkan [UKW22; UKW23],

1https://github.com/cg-tuwien/FastMVR
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and in Chapter 3. Also with the Vulkan API, geometry shader instancing-based graphics
pipeline configurations are likely to lead to different caching behavior and utilization of a
GPU’s modules compared to the hardware-accelerated multiview extension. Therefore,
new applications might benefit from exploring the performance characteristics of
pipeline variants.
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CHAPTER 3
Using a Modern, Low-Level

Graphics API for Teaching and
Research

The contents of this chapter are largely based on our paper “Vulkan all the way: Transi-
tioning to a modern low-level graphics API in academia”, published in Computers and
Graphics, volume 111, pages 155–165, 2023 by Elsevier [UKW23].

3.1 Motivation

The OpenGL API has provided users with the means for implementing versatile, feature-
rich, and portable real-time graphics applications for many years. Consequently, it has
been widely adopted by practitioners, researchers, and educators alike and is deeply
ingrained in many curricula that teach real-time graphics for higher education. Over the
years, the architecture of GPUs incrementally diverged from OpenGL’s conceptual design,
which might be one of the reasons why not all GPU features see such a high adoption rate
in OpenGL as in other graphics APIs. One example is the OVR_multiview extension,
as described in Section 2.7. Another example is the missing support for real-time ray
tracing with OpenGL.

The more recently introduced Vulkan API provides a more modern, fine-grained approach
for interfacing with the GPU, which allows a high level of controllability and, thereby,
deep insights into the inner workings of modern GPUs. This property makes the Vulkan
API especially well-suitable for research—especially in the field of real-time rendering,
where performance is essential—and also teaching in university education.
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3.2 Introduction
For over two decades, OpenGL has remained the default choice for real-time rendering
research at universities, and for teaching undergraduate students the use of graphics
APIs. Its high portability as well as an extensive body of documentation, guides, and
tooling options (e.g., open-source software emulators) made it the logical choice for
university usage. However, there are clear indicators that we are at a juncture where
using OpenGL for research and teaching is no longer adequate: Its API design as a
state machine is often considered bothersome and, in many cases, no longer reflects
the underlying hardware architecture. More severely, several interesting and desirable
features of modern APIs, such as push constants or hardware-accelerated ray tracing, are
simply not supported by OpenGL. The practical reasons for and against using OpenGL
today are succinctly illustrated by our experience using it in research. In our work on
fast multi-view rendering [Unt+20], we already felt the age of OpenGL. Its usage turned
out to be more error-prone due to the lack of proper error messages when compared
to the modern low-level graphics API of our choice: Vulkan [Khr22vk]. For further
research, we decided to switch to Vulkan, since it abstracts the hardware on a lower level
than OpenGL, offering more insights and much more fine-grained control over the actual
work that is carried out by GPUs, leading to better and more productive development
experience once learned. Consequently, our goal was set towards making the transition
from OpenGL to Vulkan also in teaching in academia.

Besides Vulkan, there are two other major, modern, low-level APIs: DirectX 12 [Mic22]
and Metal [Apl22]. While most modern graphics APIs are similarly aligned in terms of
usage principles and their level of hardware abstraction, only Vulkan is usable across
all major desktop operating systems and across device categories (albeit only through
an intermediate layer [Bre22] on Apple platforms). Furthermore, it is an open industry
standard defined by the members of the Khronos group, which includes all major GPU
manufacturers, operating system manufacturers, and other individual, academic, and
industry members [Khr22me]. They all contribute to shaping and maintaining the Vulkan
API, while DirectX and Metal are proprietary standards, defined and controlled by a
single company each. Vulkan appears to be a future-proof API. Thanks to vendor-specific
extensions, new hardware features are accessible in a timely manner. E.g., hardware-
accelerated ray tracing was available through an NVIDIA-specific extension [Khr18ray]
only one month after its availability in DirectX and has later been standardized [Khr20ray].
Given these conditions, Vulkan is the sensible choice in higher education in our opinion.

The challenge of learning Vulkan is revealed when comparing source code and descriptive
text for two of the most famous tutorials for drawing a single triangle to the screen:
The OpenGL tutorial at LearnOpenGL.com requires fewer than 150 lines of code (LOC)
on the host side [Vri22]. In contrast, the de facto entry point for learning Vulkan at
vulkan-tutorial.com ends up with approximately 700 LOC for achieving the same task and
requires a much more extensive description for explaining the necessary setup leading up
to this point [Ove22]. The tutorials illustrate how Vulkan is indeed an API that operates
on a much lower abstraction level than OpenGL. This implies that there are many more
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factors and talking points with Vulkan that must be addressed (at least to some degree)
if taught to students. On the other hand, a potential upside thereof is that students
receive a more fundamental knowledge about the inner workings of a modern GPU—and
conveying fundamental knowledge constitutes a primary goal of higher education.

In this chapter, we give a summary of our experiences of transitioning teaching from
OpenGL to Vulkan. Details and questionnaire evaluations can be found in our published
work [UKW22; UKW23], where we describe the changes that we have made to transition
an introductory graphics course to Vulkan in detail, and how we manage to keep workload
in manageable bounds in an advanced graphics course that exclusively uses Vulkan. We
can conclude that transitioning to Vulkan in university education was much less bumpy for
our students than we initially anticipated. We propose the usage of tailored programming
frameworks to keep the learning effort limited and focused.

Furthermore, we make the point that low-level access to a GPU’s features is beneficial
during real-time rendering research. Since Vulkan is very explicit and verbose, we suggest
the usage of suitable frameworks—two of which we introduce in the following sections: We
use Vulkan Launchpad [Res22] for teaching in introductory courses and Auto-Vk [Res24a]
and Auto-Vk-Toolkit [Res24b] for higher-level courses and research. The latter two proved
useful in our own research since they serve as the technological basis for the techniques
presented in Chapters 4 and 5.

3.3 Related Work
Based on the analysis performed by Balreira et al. [BWF17], it can be concluded that
OpenGL was the most widely used graphics API in university education in 2017, given
the absence of any mention of other graphics APIs. We consider our suggestions and
experiences described in this chapter as being potentially relevant to every department
that is thinking about migrating from teaching OpenGL to teaching Vulkan but also to
those who have already migrated. Experiences with the transition from legacy OpenGL
to modern OpenGL in university education are described by Reina et al. [RME14]. They
point to increased learning efforts in modern OpenGL due to reduced out-of-the-box
convenience compared to legacy OpenGL. A similar point could be made when comparing
Vulkan to modern OpenGL.

While Vulkan may provide a reasonable learning curve for developers who are proficient
with various other APIs, it is notoriously difficult for students without prior experience.
To fully appreciate Vulkan, users require an in-depth understanding of the underlying
GPU hardware. The fine-grained control over work generation and scheduling necessarily
makes Vulkan verbose. Hence, students are confronted with the task of implementing a
significant amount of boilerplate code for leveraging hardware features they may not yet
fully understand. This situation is further aggravated by the absence of in-depth teaching
material for Vulkan: comprehensive, thoroughly researched hands-on guidebooks, such
as OpenGL’s famed “Red Book" [Shr+13] or the “OpenGL Superbible" [SWH15] are not
yet available for Vulkan. Early attempts to provide additional abstraction or simplify

39



3. Using a Modern, Low-Level Graphics API for Teaching and Research

the interface had only limited success [AMD18]. However, Vulkan as an API is still
evolving. Recent additions to the SDK, such as the VK_KHR_dynamic_rendering
and VK_KHR_synchronization2 extensions [Khr24vsp], aim to alleviate neuralgic
pressure points of the API.

3.4 Vulkan in Introductory Graphics Courses
For teaching Vulkan in an introductory graphics course, we resort to using a suitable
programming framework, so that students do not have to write all the boilerplate code
themselves and instead, are able to focus on API usage and graphics development. I.e.,
the main purpose of this programming framework is to help students in learning the
Vulkan API usage efficiently without getting lost. The programming framework that we
have developed for this purpose is called Vulkan Launchpad [Res22].

There are five assignments in our introductory graphics course that serve different didactic
purposes. In the first assignment, we let students create a Vulkan instance, a surface,
select a physical device, create a logical device, queue, and swap chain manually. They
directly interface with the Vulkan API for these tasks, because we consider it valuable to
let students get in touch with each one of these fundamental types. The remainder of
the required initial application setup is abstracted by the framework, namely installing
a debug callback, framebuffer, and render pass creation, as well as the creation of the
synchronization primitives (semaphores and fences) for swap chain handling [Khr22vsa].
If these had to be set up by students, complex concepts like image layout transitions and
synchronization would have to be learned for the first assignment at the beginning of
the course already, which we deemed to constitute a too-steep learning curve. Students
must provide the created handles with additional configuration parameters (e.g., clear
color values) to an initialization function. The resulting render loop implementation after
completing Assignment 1 leads to C/C++ source code as shown in Listing 3.1.

Listing 3.1: Render loop implementation after completing the first assignment. The
parameters to the framework initialization function refer to handles of types VkInstance

, VkSurfaceKHR , VkPhysicalDevice , VkDevice , VkQueue , and a custom configuration
struct containing required swap chain parameters.

1 // Instance, surface, physical device, logical device, queue, and swap chain
2 // configuration must be passed to the framework initialization function:
3 vklInitFramework(inst, srf, phd, dev, q, swpcfg);
4
5 while (!glfwWindowShouldClose(window)) { // Render loop
6 glfwPollEvents(); // <- Handle user input
7 // Wait until the next swapchain image becomes available for usage:
8 vklWaitForNextSwapchainImage();
9 vklStartRecordingCommands(); // <- Begin recording into a command buffer

10 vklDrawTeapot(); // <- Record the draw calls for a teapot
11 vklEndRecordingCommands(); // <- End command buffer recording
12 vklPresentCurrentSwapchainImage(); // <- Present rendered image on screen
13 }
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With this approach, we manage to defer teaching image layout transitions and synchro-
nization to a much later point in the course. Not before Assignment 5, students have
to use these for image loading and mipmap creation. The downside is that students do
not interface with Vulkan directly in terms of swap chain handling and command buffer
recording. Instead, they use framework utility functions (those with “vkl" prefixes). The
code of the abstracted functionality in Listing 3.1 amounts to 300 LOC (not counting the
functionality of graphics pipeline creation). Tasking students with implementing these
functions on their own during Assignment 1 would have required bigger restructurings of
the assignments and most likely would have required the removal of some tasks in later
assignments. While it would not be strictly required to draw something to the screen
for fulfilling the tasks of Assignment 1, letting the framework draw a red teapot to the
current swap chain image provides students with additional feedback on whether their
setup code is in a proper state, in addition to possible framework or Vulkan validation
error messages.

Listing 3.2: Auxiliary configuration struct with required parameters for custom graphics
pipeline creation.

1 struct VklGraphicsPipelineConfig
2 {
3 const char* vertexShaderPath;
4 const char* fragmentShaderPath;
5 std::vector<VkVertexInputBindingDescription> vertexInputBuffers;
6 std::vector<VkVertexInputAttributeDescription> inputAttributeDescriptions;
7 VkPolygonMode polygonDrawMode;
8 VkCullModeFlags triangleCullingMode;
9 std::vector<VkDescriptorSetLayoutBinding> descriptorLayout;

10 };

The creation of custom graphics pipelines is the subject of Assignment 2. The required
Vulkan code constitutes another 80 LOC just for graphics pipeline creation, which is
why we decided to provide a framework function for it with hard-coded configuration
values for many parameters. A few parameters can be configured via a custom struct,
which is shown in Listing 3.2. It only supports vertex and fragment shader stages for
the creation of graphics pipelines. Vertex input attribute descriptions translate directly
to Vulkan’s VkPipelineVertexInputStateCreateInfo [Khr24vsp]. It is supposed to be
set up for streaming vertex positions during Assignments 2 and 3, to be extended by
vertex normals during Assignment 4, and by texture coordinates during Assignment 5.
Further configurable parameters are the polygon drawing mode and the primitive culling
mode, both relevant for Assignment 3. The last member is a set of descriptors stating all
resources that are used in custom vertex or fragment shader programs, which is internally
required for pipeline layout creation. For simplicity, we support only one descriptor set,
but other than that, we do not abstract or simplify descriptor handling. Instead, students
must handle descriptor set layout creation, descriptor set allocation, and descriptor writes
manually in Assignments 2 to 5. Several uniform buffers have to be created for storing
per-frame uniform data, such as colors and transformation matrices for different objects.
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We refrain from introducing SPIR-V [Khr22spv], and from letting students compile
shader modules on their own, but handle these parts internally in the framework using
glslang [Khr22gsl]. This further reduces student workload so that they can focus on shader
development. Compilation errors are displayed conveniently in the console. Further
functionality that is abstracted by the framework is memory handling for buffers and
images. Listing 3.3 shows the declarations of the relevant framework functions, the
implementations of which amount to another 100 LOC. To make students aware of
the fact that memory must actually be handled explicitly in Vulkan, we have chosen
corresponding expressive function names (including the word “memory") and described
them in detail in our documentation.

Listing 3.3: Convenience functions for creating buffers and images, provided by the
framework, which handle their associated device memory internally, opaquely to the user.

1 VkBuffer vklCreateHostCoherentBufferWithBackingMemory(
2 VkDeviceSize, VkBufferUsageFlags);
3
4 void vklCopyDataIntoHostCoherentBuffer(
5 VkBuffer, const void*, size_t);
6
7 void vklDestroyHostCoherentBufferAndItsBackingMemory(
8 VkBuffer);
9

10 VkImage vklCreateImageWithBackingMemory(
11 uint32_t, uint32_t, VkFormat, VkImageUsageFlags);
12
13 void vklDestroyImageAndItsBackingMemory(
14 VkImage);

3.5 Didactic Advantages of Using Vulkan
One side effect of Vulkan’s verbosity is that it necessarily reveals more and more underlying
hardware details as students progress. Investigative minds are not easily satisfied by
following a list of instructions they cannot comprehend. In order for them not to be
deterred, Vulkan forces its users to deal with several important concepts discussed in this
section that OpenGL does not. Consequently, instructors must address the underlying
processes and hardware modules, while in OpenGL, the same use cases may “just work"
because the details are handled by drivers internally. Therefore, OpenGL is less likely to
encourage investigations of what is going on under the hood. Just by using a low-level
graphics API like Vulkan correctly, educators are forced to convey more fundamental
knowledge about modern GPUs and their architecture.

Vulkan implicitly conveys that switching between different shader programs is never free,
as one might come to believe when developing applications based on OpenGL exclusively.
Instead, whenever a different shader program is used, a whole new graphics pipeline
must be created with all its bulk of configuration parameters. The extensive code blocks
required to achieve this in Vulkan reflect that changing shaders is rather invasive to the
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rendering setup and implies potentially heavy-weight changes. Users are encouraged
by the design of the API to prepare all potentially required pipelines upfront, selecting
the appropriate one during render-loop execution. In OpenGL, the driver usually hides
this complexity and instead instantiates pipelines dynamically on-demand, reducing the
amount of control the user has over the application’s runtime performance. E.g., when the
primitive culling mode is changed, that change can occur during render-loop execution,
which might lead to an expensive operation being performed within the render loop.

When a uniform buffer is used to store per-frame data specific to a certain object (e.g.,
transformation matrices), the same buffer cannot be used for storing per-frame data of
another object to be drawn in the same frame in most situations. Recording the drawing
of multiple objects into the same command buffer requires the usage of different uniform
buffers for the objects’ per-frame data since otherwise unwanted effects occur. If, for
example, the same host-visible uniform buffer was used for two objects, only the last
write to this uniform buffer would succeed due to data being written at queue submission
time [Khr24vsp]. These factors force users of the API to think about the reasons why
this occurs. Developing these thoughts further, it becomes clear that modern GPUs work
in a massively parallel way, which can also mean that both objects from our example
are processed in parallel. As such, there must be different uniform buffers—one for
each object—accessible during parallel processing of the objects. In OpenGL, again,
users do not have to think about these aspects. Uniforms can just be set and used, and
rendering “just works", producing the correct result. Users are not forced to think about
the modus operandi of modern GPUs and, in the worst case, might think that draw calls
are processed in a sequential or host-synchronous manner.

Synchronization, in general, is largely hidden from the API user with OpenGL, bearing the
danger of drawing false conclusions about the actual command processing on the hardware.
Vulkan, on the other hand, does not hide the responsibility of properly synchronizing
commands from its API users, putting the massively parallel nature of modern GPUs
into the spotlight. The necessary synchronization must not only be explicitly defined
within shaders or between pipeline stages but also between the individual GPU queues
that may receive and schedule incoming work. For students who desire to understand and
exploit synchronization on a fundamental level, Vulkan provides an additional benefit
over older graphics APIs, namely a clearly-defined memory consistency model, which is
similar to the well-established C++ memory model [Hec18].

Another area where OpenGL hides vital concepts that affect virtually all modern GPUs
is command buffer recording. Commands are simply issued on the fly in OpenGL,
completely concealing the possibility of recording and reusing chains of commands, let
alone the possible performance implications of command recording. In order to remain
efficient, the driver usually caches and organizes these commands, again performing vital
work in the user’s stead. In Vulkan, all of these concepts are revealed to users so that
they are forced to think about the motivation for their presence. From a didactic point
of view, achieving a better insight into the inner workings of modern graphics devices
can never be wrong.
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3.6 Vulkan in Advanced Graphics Courses and Research

Advanced graphics courses and research have in common that the student or researcher,
respectively, shall have a tool that helps completing a certain task or goal, while assuming
that the concepts of the underlying graphics API have already been well understood.
The structure of a programming framework being such a tool is totally different from
a programming framework whose main purpose is helping to learn the API—such as
Vulkan Launchpad, used for introductory graphics courses as described in Section 3.4.
Desirable properties are that the framework for advanced graphics courses and research
shall reduce development times, provide debug mechanisms and convenience features
(such as, e.g., shader hot-reloading).

With our framework Auto-Vk-Toolkit, we have aimed for the perfect balance between
productivity improvements and avoiding unnecessary programming overhead, while still
maintaining full flexibility in terms of graphics API usage. Auto-Vk-Toolkit is rather
tightly coupled to the Vulkan API, providing convenience functions and helpers to access
it, and offers to fall back to direct Vulkan usage in cases where Auto-Vk-Toolkit does not
provide a suitable abstraction. It internally uses another framework, namely Auto-Vk,
which provides a low-level abstraction layer over the Vulkan API (more precisely over
Vulkan-Hpp [VkHpp22]), enabling code that is much more concise and possibly faster to
write.

Auto-Vk-Toolkit adds a multitude of useful functionality to it like asset management and
deployment, window system integration, input handling, render-loop handling, model
and image loading, predefined animation handling code for skinned meshes, code for
dividing given geometry into meshlets, serialization, shader hot-reloading, and it includes
a library for drawing user interfaces. These functionalities help to reduce development
and project setup efforts, letting users focus on rendering algorithm development with
the Vulkan API in a more efficient and time-saving manner than using the Vulkan API
directly.

For example, a graphics pipeline can be created like shown in Listing 3.4 with just a
few LOC, while code that uses the raw Vulkan API for the same task can easily require
80 LOC or more. Listing 3.4 shows that Auto-Vk manages to require fewer LOC by
establishing some default configuration but still enables further configuration options,
which can be added to the function call through C++ variadic templates. Another
example is attachment declaration for renderpass creation as shown in Listing 3.5. It
allows expressively specifying the attachment usage across different subpasses and also
where a resolve operation should happen precisely. The setup code is arguably as concise
as it can be for that purpose while not hiding any conceptual low-level details. A final
example presented in this chapter is the code for establishing a global memory barrier in
a concise manner as shown in Listing 3.6. Also in this case, the corresponding code when
interfacing with the raw Vulkan API would require many more LOC.
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Listing 3.4: C++ source code for creation of a graphics pipeline using Auto-Vk. The
parameters refer to shader files, specify vertex buffer input binding locations matched with
a data format and shader input location, a renderpass, front-facing configuration, and
several descriptor bindings to various resources.

1 using namespace avk; using namespace glm;
2
3 // Create a new graphics pipeline with vertex and fragment shader:
4 auto p = context().create_graphics_pipeline_for(
5 // Specify shaders for this pipeline:
6 vertex_shader("my_shader.vert"),
7 fragment_shader("my_shader.frag"),
8
9 // Specify buffer bindings to target locations:

10 from_buffer_binding(0)->stream_per_vertex<vec3>()->to_location(0),
11 from_buffer_binding(1)->stream_per_vertex<vec2>()->to_location(1),
12
13 // Use a renderpass created previously:
14 renderpass,
15
16 // Further config parameters:
17 cfg::front_face::define_front_faces_to_be_counter_clockwise(),
18
19 // Define resource bindings:
20 descriptor_binding(0, 0, mMaterials),
21 descriptor_binding(1, 0, mUniformsBuffer),
22 descriptor_binding(1, 1, mLightsBuffer)
23 );

Listing 3.5: C++ source code using Auto-Vk for declaring that a framebuffer attachment
in a certain format shall be cleared on load, used as depth/stencil attachment in the first
subpass, used as input attachment bound to location 1 in the second subpass, used as
depth/stencil attachment in the third subpass and resolved to the attachment at index 3
after the third subpass.

1 using namespace avk;
2
3 attachment::declare(vk::Format::eD32Sfloat, on_load::clear,
4 usage::depth_stencil >> usage::input(1)
5 >> usage::depth_stencil+usage::resolve_to(3),
6 on_store::dont_care)

Listing 3.6: C++ source code using Auto-Vk for creating a global memory barrier that
synchronizes a transfer operation (making its write accesses available) with a compute
pipeline (ensuring the memory is visible for read access).

1 using namespace avk;
2
3 auto barrier = sync::global_memory_barrier(
4 stage::transfer >> stage::compute_shader,
5 access::transfer_write >> access::shader_read
6 )
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In research, we have extensively used Auto-Vk-Toolkit’s shader hot-reloading feature
during development, which saved many hours of development time. The ability to have
graphics pipelines created anew while the application is running allows for quick tests and
fixes at run time. This is especially helpful if the application performs a precomputation
step like dividing input geometry into meshlets and computing bounds per meshlet—both
of which are performed in our work on computing conservative bounds for robust culling
of meshlets [Unt+21]. Another framework feature that helped with precomputations is
the serialization feature provided by Auto-Vk-Toolkit: Data is serialized to a file after
precomputation and can be deserialized at the next run. Serialization can even be used
to speed up model loading: Once loaded successfully, a model and all its textures can be
serialized to a binary file. Loading it is much faster than parsing the same model again
and loading all its required textures. Our work on fast rendering of parametrically defined
objects [Unt+24] uses different graphics pipelines and compute pipeline configurations.
The convenience functions for creating them (like shown in Listing 3.4) proved to be
valuable for this purpose. We have also used renderpasses with multiple sub passes,
attachment usage for which we could conveniently describe as shown in Listing 3.5.
Further notable framework features used were GPU timestamp queries and reading
back data from them, updating images and the swapchains after window resizes, and
automatically inferred synchronization stages and memory accesses for pipeline barriers.
The most useful tool during our research was, once again, shader hot-reloading, since it
allowed for quick creation of parametric models on-the-fly during run time.

In our advanced graphics course Algorithms for Real-Time Rendering, which targets
graduate students, we also use Auto-Vk-Toolkit for the assignments. The students
doing this course are already experienced with graphics API usage. Therefore, using a
framework that allows more time-efficient usage of the underlying graphics API allows to
focus more on specific course contents instead of graphics API usage—which was learned
in introductory courses already. Exercise topics in our advanced course include proper
implementation of normal mapping using tangent space, handling a large number of
light sources, hardware tessellation, view-frustum and backface culling in tessellation
control shaders, dynamically adaptive levels of tessellation, deferred shading, deferred
shading in combination with multisample anti-aliasing, manual multisample resolve in
compute shaders, tile-based deferred shading, physically based shading, screen-space
ambient occlusion, tone mapping, temporal anti-aliasing, and real-time ray tracing using
ray query and ray tracing pipelines. While using OpenGL previously for all tasks (except
ray tracing), then starting the transition to Vulkan for some tasks while leaving some
in OpenGL, we switched to Vulkan completely for all tasks in 2022. This allowed us to
address some advanced low-level GPU topics in teaching that were impossible to cover
with the OpenGL API: Real-time ray tracing is not supported at all by the OpenGL API,
but it is with Vulkan. On a more fundamental level, fine-grained synchronization and
its effects can only be analyzed and discussed properly with a low-level API like Vulkan
since all the synchronization primitives that would allow fine-grained synchronization are
missing from OpenGL. Having the possibility to discuss them enables us to teach low-level
concepts which we consider to be very important for acquiring in-depth knowledge about
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GPU programming. A further benefit of using the Vulkan API is the explicit and precise
specification of when multisample resolve operations are performed by the GPU along
with appropriate framebuffer attachment usage and synchronization. While the inclusion
of more low-level concepts like buffer sub-allocation would have been interesting topics
to cover additionally, we were unable to fit more such topics into the scope of this
course—not least because its main focus is on rendering algorithms.

Besides being well suited for teaching purposes, the two frameworks are furthermore
intended to be used for rapid prototyping and general Vulkan development. We have
successfully used them in our published research, like for our work on exploiting conserva-
tive meshlet bounds using graphics mesh pipelines [Unt+21]. Some of their advantageous
properties are reflected in student feedback on our advanced graphics courses.

3.7 Conclusion

We successfully employed Vulkan for teaching the use of a real-time graphics API in an
introductory course and for teaching selected state-of-the-art techniques and low-level
GPU concepts in advanced courses. Abstracting some functionality of early assignments
was key to enabling a manageable and fair workload. Flattening the learning curve of
Vulkan for first-time graphics API users enabled us to provide a similar challenge as
previously established OpenGL assignments. But also in advanced courses, the use of
a framework that abstracts the Vulkan API and reduces implementation effort turned
out to be crucial to stay within sensible boundaries in terms of student workload. The
biggest hurdle for many students in introductory graphics courses was C/C++ usage.
More efficient C/C++ learning resources and lectures should allow students to focus
better on graphics API usage. The biggest hurdles for students with respect to graphics
API usage in our advanced courses seemed to be some of the advanced low-level concepts
like synchronization. Since the vast majority (presumably all) of students in advanced
courses did not learn graphics programming using the Vulkan API, but instead using
a higher-level API like OpenGL, many of them had to learn concepts like fine-grained
synchronization at a later point in time in the context of our courses. We think that
teaching Vulkan from the start will have a positive effect on our students to become
proficient users of modern graphics APIs and, thereby, in more advanced courses when
they encounter Vulkan again. Using a low-level API enables students to learn about
the massively parallel operation mode of modern GPUs early in their visual computing
education. We provide detailed results and evaluations of user studies for both, the
introductory and the advanced graphics course in our published work on transitioning
to a modern low-level graphics API in academia [UKW23]. Our evaluation has shown
that students appreciate the skills and knowledge they picked up through using the
Vulkan API. We believe that teaching Vulkan is both viable and beneficial to students
who aim to become competent practitioners of visual computing. While the transition
may be challenging, it appears to be a worthwhile investment to provide students with
future-proof education.
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Introductory and advanced courses have different requirements in terms of Vulkan API
abstraction level. Therefore, we propose to use Vulkan Launchpad [Res22] for the former
to hide several complex concepts for first-time users of Vulkan. For the latter, we propose
using Auto-Vk [Res24a] and Auto-Vk-Toolkit [Res24b], which do not hide any fundamental
Vulkan concepts but just aim to make development more efficient and code more concise.
These two frameworks also constitute the technological basis for our further contributions
in the context of fast rendering of ultra-detailed geometry in real time, i.e., the techniques
presented in Chapters 4 and 5.
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CHAPTER 4
Conservative Meshlet Bounds for

Robust Culling of Skinned Meshes

The contents of this chapter are largely based on our paper “Conservative Meshlet Bounds
for Robust Culling of Skinned Meshes”, presented at Pacific Graphics 2021, and published
in Computer Graphics Forum 40.7 (Oct. 2021) [Unt+21].

4.1 Motivation
While Chapter 2 is concerned with optimal rendering performance of multiple views,
we shift the focus to achieving optimal rendering performance for one single view for a
previously unsolved problem: Fine-grained culling for animated meshes.

As we describe in Section 1.3, Nanite enables rendering of ultra-detailed static geometry
with fine-grained view frustum and backface culling (VFC and BFC) to reach optimal
rendering performance. However, support for animated meshes is still lacking in 2024 in
the official release of Unreal Engine 5.5 [Epi24a]. The same level of detail is bound to
become relevant for animated models in the near future to match the static environment,
which is the motivation for the research conducted and described in this chapter.

We describe the essential parts to enable fine-grained culling of geometry clusters for
animated models, enabling conservative VFC and BFC on a per-cluster basis. Our
technique avoids false positive culling decisions by calculating conservative spatiotemporal
bounds for positions and normal orientations of primitive clusters—so-called “meshlets”.
The precomputed information can be used for efficient VFC and BFC, for example
during rendering through a compute shader and software rasterization-centric approach
like Nanite [KSW21], but also applies to hardware rasterization on modern GPUs with
support for task and mesh shaders [Kub18b].
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Figure 4.1: Skinned models Gawain1(198k vertices, 261k triangles, 136 bones, 9044
meshlets), Giant Worm (169k vertices, 329k triangles, 80 bones, 10382 meshlets),
Butcher (287k vertices, 477k triangles, 224 bones, 14915 meshlets), and Wyvern
(267k vertices, 512k triangles, 88 bones, 16015 meshlets), divided into color-coded meshlets,
fit for rendering with task and mesh shaders.

4.2 Introduction
Following recent advances in GPU hardware development and newly introduced rendering
pipeline extensions, the segmentation of input geometry into meshlets has emerged
as an important practice for efficient rendering of complex 3D models. Meshlets can
be processed efficiently using mesh shaders [Kub18b] on modern graphics processing
units, in order to achieve streamlined geometry processing in just two tightly coupled
shader stages that allow for dynamic workload manipulation in between. The additional
granularity layer between entire models and individual triangles enables new opportunities
for fine-grained visibility culling methods.

In contrast to static models, VFC and BFC on a per-meshlet basis for skinned, animated
models are difficult to achieve while respecting the conservative spatiotemporal bounds
that are required for robust rendering results. In this chapter, we describe a solution for
computing and exploiting relevant conservative bounds for culling meshlets of models
that are animated using linear blend skinning (LBS). By enabling visibility culling for
animated meshlets, our approach can help to improve rendering performance and alleviate
bottlenecks in the notoriously performance- and memory-intensive skeletal animation
pipelines of modern real-time graphics applications.

Task and mesh shaders (named amplification and mesh shaders in DirectX [Mic21],
respectively) have been introduced as new shader stages with NVIDIA’s Turing microar-
chitecture to replace the multi-layered geometry processing of a conventional graphics

1Provided by Unity Technologies through their “The Heretic: Digital Human” package
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(a) On the borders of the screen, the ef-
fect of premature frustum culling can be
observed during animations (cyan rectan-
gles). Inside Giant Worm’s mouth, some
meshlets are prematurely backface-culled
as a result of disregarding how the normals
of triangles assigned to meshlets change
through animation (marked in magenta).
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(b) The path of a single vertex v, animated via LBS
from one keyframe to the next. The vertex is strongly
weighted toward Bone 3. Sampling intermediate posi-
tions underestimates the spatial bounds (orange box:
start and end, magenta box: two intermediate sam-
ples). As multiple rotations are chained, the path
of v can become arbitrary and coordinate extrema
difficult to predict.

Figure 4.2: Premature culling can result in very noticeable visual artifacts, as shown
in Figure 4.2a. Through animation, the shape of a meshlet can change significantly.
Underestimating the vertex bounds can lead to premature view frustum culling, while not
taking into account the possible changes in surface normals of a meshlet’s triangles can
lead to erroneous backface culling. For both, vertex positions and surface normals, merely
sampling along an animation interval can be insufficient for calculating conservative
bounds, as illustrated in Figure 4.2b.

pipeline with a more streamlined alternative [NVI18a]. The key point of task and mesh
shaders is to allow more fine-grained control over primitive processing and dynamic
workload distribution via two tightly coupled compute shader-style geometry process-
ing stages within rasterization-based graphics pipelines, while still utilizing their later
hardware-accelerated fixed-function stages. The new setup encourages the division of
geometry workload into smaller packages that can be efficiently processed by the GPU.
For Nvidida’s Turing microarchitecture, optimal efficiency can be achieved by dividing
indexed triangle meshes into parts that consist of no more than 64 vertices and 126 trian-
gles [Kub18a]. Each one of these small geometry packets is referred to as a meshlet. Since
the new shader stages and meshlet-based rendering see wide-spread support in recently
released GPUs—including the GPUs utilized in the gaming consoles PlayStation 5, and
Xbox Series S and X, which are based on AMD’s RDNA 2 microarchitecture [Bla20]—we
expect developer adoption and research interest in task and mesh shader-based solutions
to rise considerably. The task shader runs early in the graphics pipeline and can serve as
a work scheduler for the mesh shader, similar to the dynamic work generation performed
by tessellation control shaders in a conventional pipeline. Only meshlets that are not
culled by the task shader are processed in the later shader stages. Precomputation of
positional and normal bounds for static models can be achieved easily [Wih16]. However,
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generation and usage of such information are significantly more difficult to achieve for
animated models, since a meshlet’s shape can change under animation. Dividing modern
skinned 3D models into meshlets can yield results like those shown in Figure 4.1.

Vertex skinning is one of the most popular and widely used animation methods for 3D
models. With vertex skinning, vertices are assigned to one or multiple bones of a skeleton
in a weighted manner. When the skeleton’s bones move into different positions over the
course of an animation, assigned vertices move according to their weighting. With respect
to meshlets—each of which represents a part of the skin—this means that geometry
primitives associated with a meshlet can change their shape since the referenced vertices
will have different bone assignments and weights in general. For example, a meshlet could
be stretched in one or multiple directions, thus increasing its bounds w.r.t. a resting or
configuration pose. Also, since bone assignment and weighting can differ between the
vertices of a triangle, animation can produce face normal directions that were not present
in the initial pose. Figure 4.2 visualizes artifacts of VFC and BFC that can occur if these
bounds are underestimated.

Our proposed method provides a solution for computing conservative spatiotemporal
vertex bounds under animation for arbitrary animation clips. We show how conservative
bounds for a meshlet’s extents and also for its face normals distribution can be computed
from the vertex bounds of its associated vertices in a CPU-based precomputation step.
Evaluating the precomputed data in task shaders allows for robust VFC and BFC on a
per-meshlet basis, extending the advantages of the additional visibility culling granularity
of task shaders in rasterization-based graphics pipelines from static meshes to models
with skeletal animation. Exploiting the computed bounds to perform robust culling can
accelerate rendering and reduce bottlenecks in skeletal animation pipelines on modern
GPU architectures while preserving the fidelity of the rendered scenes. In summary, our
contributions include the following:

• We derive an adaptive procedure to compute spatiotemporal axis-aligned bounding
boxes (AABBs) on a per-meshlet basis for a given interval of an animation clip that
are suitable for LBS. Our approach yields conservative bounds over all continuous
joint orientations within a given animation and can be parameterized to produce
arbitrarily tight bounds.

• We describe a method for efficiently computing the maximum extents described by
a given rotation quaternion, based on a derivative of Rodrigues’ rotation formula.

• Given spatial bounds for individual mesh vertices, we show that we can obtain a
conservative estimate on the maximum deviation of a triangle’s surface normal
from an initial state during a given animation interval. We apply this concept to
entire meshlets to obtain normal cones for robust backface culling with LBS.

• We evaluate our spatiotemporal meshlet bounds for animated models in task and
mesh shader-based rasterization, enabling VFC and BFC on a per-meshlet basis.
Our methods incur negligible memory overhead and improve run-time performance.
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This chapter is structured as follows: in Section 4.3, we discuss relevant background
and related work our approach builds on. In Section 4.4, we derive our solution for the
adaptive computation of arbitrarily tight vertex bounds. In Section 4.5, we show how
this information can be exploited to compute conservative surface normals distributions
for animation intervals. Implementation details are described in Section 4.7. Sections 4.6
and 4.8 assess the usage of the computed bounds for visibility culling and resulting
performance impact. We discuss possible extensions of the presented approach as well as
open problems in Section 4.9.

4.3 Related Work
Vertex skinning plays an integral role in the animation of characters in visual applications.
The fundamental concept of connecting vertices with manually or automatically defined
weights to an underlying skeleton can be implemented in a variety of ways [MLT89; BP07].
Arguably, one of the most widespread methods to this day is LBS, in which the final
animated position of each vertex is the result of a linear combination of independently
computed results. Obvious shortcomings and frequent artifacts (e.g., the "candy-wrapper"
effect) gave rise to alternative approaches, such as spherical blend skinning [KŽ05b] and
log-matrix skinning [CM04], which manage to eliminate some of these artifacts, but
introduce others and exhibit a higher performance penalty. In contrast, dual-quaternion
skinning is comparable to LBS in terms of performance, while resolving most of its
issues [Kav+07]. Instead of opting for mathematically involved solutions at runtime, the
selection of optimized centers of rotation as an isolated preparatory step for animation
has been suggested by Le and Hodgins [LH16]. While pursuing either of these methods
would be worthwhile, we will only consider the fastest of these methods, LBS, for the
derivation of our conservative bounds.
The task of computing conservative spatiotemporal bounds for meshes—or more generally
the vertices and faces of its meshlets—undergoing skeletal animation is more challenging
than it may seem at first glance. A key requirement for conservative bounds which are
suitable for visibility culling is that they encompass all possible positions that vertices
can occupy, as well as all possible face normal orientations that can emerge during an
animation clip or subintervals thereof. Clearly, these challenges are related to the field of
collision detection. A wide range of efficient solutions exists for this topic, which requires
computing positional bounds for particular instants or ranges. Reduced deformation
solutions effectively decouple bound computations from the geometry and perform them on
influencing factors only (e.g., bones) before applying them to entire clusters of primitives.
Several such approaches present solutions that target individual animation frames [KŽ05a;
SBT06; SOG08], but not the interval in-between. Furthermore, their application usually
entails a non-negligible run-time cost for computing and updating bound information,
which impedes complex animated scenes with many differently animated (e.g., temporally
offset) models. The same is true for established reduced deformation approaches for
bounding normals, such as normal trees [SGO09]. Temporally continuous collision
detection (e.g., swept volume approaches) have been applied to rigid objects [AA00;
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Kim+03; RLM04], but remain a challenging problem for deformable meshes, which
we target in our work. Specialized methods for reduced deformable models, such as
BD-Trees [JP04] provide excellent opportunities to accelerate bound queries for entire
primitive groups. However, they require precomputed displacement fields and imply the
creation and maintenance of hierarchical data structures, which we strive to avoid in order
to minimize run-time overhead in complex animated scenes. Although spatial bounds
may be approximated from analysis of the model data, available proprietary solutions
make no claim about computed bounds being conservative [Uni21], while sampling-based
methods can easily miss extreme positions and orientations and provide no guarantee for
robustness [Gün+06], so that they can still lead to undesirable artifacts such as those
described in Figure 4.2a.

Task and mesh shaders were first introduced with the NVIDIA Turing architecture
[NVI18a]. The new shader stages can be used as alternative geometry processing stages
within rasterization-based graphics pipelines. Consequently, the usage of task and mesh
shaders, and the usage of classical geometry processing shaders (vertex, tessellation, and
geometry shaders) are mutually exclusive. The data structures of uniforms and buffers
to be used with task and mesh shaders can be freely defined. It is common practice
to prepare auxiliary information about a meshlet’s bounds and normals distribution
and evaluate that information in task shaders for visibility culling. The standard usage
conventions and restrictions regarding possible input geometry clusters (meshlets) are
defined by the corresponding Khronos conventions [Kub18b; KB19]. Similar mechanisms
and rule sets are set to become adapted by competing hardware vendors in the near
future.

With Turing, NVIDIA also introduced GPU acceleration structures and real-time ray
tracing pipelines (meanwhile standardized and defined by the Khronos conventions
[Koc20a]). While task and mesh shaders are strictly limited to rasterization-based
graphics pipelines and hence not usable with ray tracing pipelines, the usage of acceleration
structures (enabled for usage in any shader stage through Khronos convention [Koc20b])
might appear as a possible option. Current real-time graphics APIs, however, only
support ray-based access to the hardware-accelerated ray tracing data structures [Koc21]
and hence do not suit rasterization.

Although meshlets as input for the hardware rendering pipeline have only been recently
introduced as a topic for computer graphics, similar concepts have been proposed
previously. The idea of clustering geometry is a fundamental theme in high-performance
rendering of complex scenes, along with possible opportunities for optimization of their
visualization at runtime [Ura19; HA15; Sho+08]. Before the introduction of mesh shaders,
Kerbl et al. documented the exact rule sets used by modern GPUs to partition triangle
meshes into batches before processing them in bulk [Ker+18]. In addition to rendering,
the generation of meshlets ahead of time is a relevant topic in itself. Common solutions
include the application of mesh optimizers, which can be easily adapted to produce basic
meshlets instead [LY06; HS17; Hop99; Kap21; Wal21]. While these can account for basic
qualities of meshlets, such as high connectivity and spatial compactness, they cannot
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Figure 4.3: Individual per-vertex AABBs Bv1, Bv2, and Bv3 are combined into a
common bounding box Bm by taking the minimum and maximum coordinates from all
AABBs’ corners. Bm represents the conservative bounds of meshlet m.

ensure specialized target criteria, such as tight bounds under animation, which is one
of the targeted characteristics in this chapter. The idea of using geometry clusters to
perform efficient visibility culling has been previously pursued, though usually with a
clear focus on static geometry and applications in industry [AHA15; HC11]. Position
bounds for view frustum and occlusion culling are trivially derived from the extrema
found in the set of vertices in each meshlet. For backface culling, a normal cone is
required, which can easily be built from the set of surface normals present in the meshlet,
although finding the optimal cone is a more challenging task. Recently, Wihlidal proposed
methods for generating static geometry clusters to maximize their likelihood of getting
culled for visibility [Wih16]. In this chapter, we will expand on this concept to enable
high-performance visibility culling for meshlets of animated models.

4.4 Meshlet Bounds Computation
In this section, we describe an algorithm to analytically compute conservative bounds per
meshlet. At first, vertex bounds are calculated. Subsequently, the bounds of a meshlet
can be easily computed by combining all its associated vertices’ bounds into a common
bounding box, which is exemplarily shown in Figure 4.3.

Vertex skinning transforms a vertex v according to its weighted assignment to the bones
of an underlying skeleton. As multiple bones can have influence on v, we first compute
one AABB Bvbi

per influencing bone bi and combine them in a second step into an
AABB Bv which represents conservative spatiotemporal bounds for v under LBS.
The temporal aspect of Bv refers to the animation time interval that we compute it for.
One natural choice for the animation time interval is the span between two keyframes.
We assume the transformation between two successive keyframes to be specified with a
triple of translation, rotation, and scaling values which are interpolated in between. The
skeleton depicted in Figures 4.4a and 4.4b shall serve as an example for two different
keyframe times. In Figure 4.4b, Bone 4 has rotated 45◦ clockwise (CW) w.r.t. its parent
bone, and Bone 5 has rotated 45◦ counter-clockwise (CCW) w.r.t. Bone 4 compared to
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(a) The vertices of a skinned mesh are as-
signed to one or multiple bones with different
individual weightings each. Vertices v1 . . . v8
are combined to form meshlet m.
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(b) Bones are transformed by an anima-
tion (Bone 4 rotated by 45◦ CW, Bone 5 by
45◦ CCW w.r.t. 4.4a), associated vertices are
transformed according to their weights. As
vertex weights vary, the shape of m changes.
The cyan box encompasses all vertex positions
between the poses in 4.4a and 4.4b.
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(c) Each vertex’ bounding box encompasses
all vertex positions between the two different
poses, relative to the coordinate system defined
by Bone 4. The boxes of vertices v1, v4, v7,
and v8 are infinitely small, which indicates
that their weight w.r.t. Bone 4 is one. Vertices
v5 and v6 are influenced by Bones 4 and 5
(blue bounding boxes). Bone 3 influences the
position of v2 and v3, and Bone 2 has minor
influence on v3 (red and purple boxes).

Bm
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(d) Combining all vertex bounding boxes which
are axis-aligned w.r.t. the coordinate system
of Bone 4 to a common bounding box can be
trivially computed like described in Figure 4.3.
Performing this procedure yields conservative
spatio-temporal bounds Bm of meshlet m for
the animation between the two different skele-
ton poses when animated from 4.4a to 4.4b.

Figure 4.4: In this example, meshlet m represents a part of a skinned mesh’s skin. It
consists of vertices v1 . . . v8 each of which has one or multiple weighted bone assignments.
According to those, vertices are moved when the skeleton’s pose changes between the
state in Figure 4.4a and the state in Figures 4.4b to 4.4d. The final bounding box Bm is
computed relative to the coordinate system of the bone which has the highest combined
influence on the vertices—which is Bone 4 in this case, the principal bone of meshlet m.

the state in Figure 4.4a. All child bones of Bone 5 inherit their parent’s transformation
and therefore change their global position, too. Their local transformations, however,
stay constant between the two keyframes. Furthermore, Figure 4.4 shows meshlet m
which has several vertices assigned to it. Each vertex has weighted assignments to one or
multiple bones. Whenever the skeleton is animated into a certain position, the vertices
get transformed accordingly, leading to different shapes of m in Figures 4.4a and 4.4b.
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Bone 1

Bone 2
Bone 3

Bone 4 Bone 5
Bone 6

v Skeleton traversal:
child → parentSkeleton traversal:

parent → child

Figure 4.5: Assume a vertex v with non-zero weights w.r.t. four bones: Bone 1,
Bone 4, Bone 5, and Bone 6. To compute the combined bounds of v w.r.t. a given target
bone (Bone 4), we compute a bounding box for each bone that influences v during our
algorithm’s first step, accumulating transformations along the bone hierarchy towards the
target bone. To compute bounds w.r.t. a single bone, we start at that bone and traverse
the skeleton until we reach the target. When computing the bounds of B one 1, we must
regard the transformations of Bones 2 and 3 in the given animation interval, even if they
have no direct influence on v. Similarly, when computing the bounds of Bone 6, we must
include the transformations of Bone 5. Even though Bone 5 is contained in the path from
Bone 6 to Bone 4, separate bounding boxes for Bone 5 and Bone 6 must be computed.

We propose to compute and store the bounding box Bm of meshlet m in the space of
the most influential bone. We find this bone on a per-meshlet basis by summing all the
normalized weightings of all vertices that are assigned to m per bone. The bone with the
highest sum of normalized weights is deemed to be the most influential bone and thus
we assign it to m as its principal bone. The reasoning behind this approach is that
Bm can be assumed to be of minimal extent if it is computed in the space that has the
most influence on the assigned vertices. Relative to the principal bone’s space (PBS), the
bounds of the majority of the associated vertices can be assumed to be smaller than in
other spaces. This is illustrated in Figure 4.4 where it can be observed that the bounds
in m’s PBS (depicted in Figure 4.4d) are smaller than the bounds computed relative to
mesh space or world space (depicted in Figure 4.4b).

4.4.1 Vertex Bounds Computation
The most computation-intensive part of our algorithm is conservative vertex bounds
calculation in a given target bone space—referring to the PBS of a meshlet, which is the
most influential bone’s coordinate system as described in Section 4.4. Our algorithm
consists of the following major steps for computing the bounds of a specific vertex v in
the target bone’s coordinate system (referred to by bone bt) between two animation times
t1 and t2. Animation times must not stretch over keyframe time boundaries but must be
limited to keyframe bounds, otherwise sudden changes in transformations—which must
be expected for subsequent keyframed intervals—run the risk of missing extreme positions
and thus, fail to remain conservative. For sub-keyframe intervals, t1 and t2 can be chosen
arbitrarily narrowly. Furthermore, v has a list of associated bones Iv = {b0, . . . , bn},
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where each one of these mappings has a respective weight Wv = {w0, . . . , wn} assigned.
They satisfy the conditions wi ∈ [0, 1] and ∑︁

w∈Wv
w = 1.

1. For each bone bi ∈ Iv, compute v’s conservative spatiotemporal bounding box Bvbi

between t1 and t2 with full weight (i.e., as if wi = 1) in the coordinate system of bt.
In more detail, for each bone bi ̸= bt the procedure is like follows:

a) Transform v into the coordinate system of bi and apply bi’s local scale, rotation,
and translation transformations at animation time t1. Initialize Bvbi

by setting
its minimum and maximum coordinates to the result, yielding an AABB with
zero volume in the local space of bi.

b) Extend Bvbi
by the bi-local scale, rotation, and translation transformation

differences between t1 and t2.
c) Traverse to node bj which is one node closer towards bt from bi. Break if bt

has been reached, otherwise loop as follows:
i. Transform every corner of Bvbi

into the coordinate system of bj , and
construct a new AABB Bvbj

there.
ii. Apply bj ’s local scale, rotation, and translation transformations at ani-

mation time t1 to every corner of Bvbj
. Use the transformed corners to

construct a new AABB Bv
′
bj

.
iii. Extend Bv

′
bj

by the bj-local scale, rotation, and translation transformation
differences between t1 and t2.

iv. Assign bi = bj and Bvbi
= Bv

′
bj

, let bj refer to the next node which is one
step closer towards bt. Break if bt has been reached, otherwise loop.

2. Combine all Bvbi
based on their respective weights wi into the vertex’ conservative

spatiotemporal bounding box Bv that represents all positions that v can occupy
between t1 and t2.

Traversing the bone hierarchy step-wise is a crucial property of our algorithm and a neces-
sity for computing conservative vertex bounds for an animation interval. Decomposition
of a global, affine bone matrix would not be a viable solution since extreme positions
and orientations from intermediate steps could be missed. Care must be taken regarding
the skeleton traversal direction when moving bone-by-bone towards bt as illustrated in
Figure 4.5. If Equation (4.1)

v′ = Pbi
T R S v (4.1)

transforms from a child’s bone space into its parent’s bone space (with T referring to the
translation, R to the rotation, S to the scaling, and Pbi

being a constant matrix that
positions bone bi relative to its parent bone), the transformation in the inverse direction
must be reformulated as stated in Equation (4.2)

v′ = (Pbi
T R S)−1 v = S−1 R−1 T −1 P −1

bi
v (4.2)

to correctly apply the separate transformations step-wise. We chose matrix notation for
the sake of brevity and clarity, but different forms are practicable as well—most notably
using unit quaternions for applying rotations.
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If an AABB Bvbj
is represented by two vectors—one for its minimum coordinates and

the second for its maximum coordinates—it can be transformed conservatively as follows:

• Bvbj
is translated by adding the translation vector to its minimum and maximum

coordinates.
• Bvbj

is rotated by rotating each of its corners and constructing a new AABB Bv
′
bj

from the results.
• Bvbj

is scaled by component-wise multiplication of its minimum and maximum
coordinates with the scaling vector.

• Bvbj
is transformed by a matrix by constructing a new AABB Bv

′
bj

from the
matrix-transformed corners.

Extending the bounds by translation, rotation, and scale values as required in steps 1b
and 1(c)iii of our algorithm can be trivially computed for translation and scaling, but
not for rotations:

• Bvbj
is extended by translation through extending the bounding box by both, the

translated minimum and maximum coordinates.
• Bvbj

is extended by scaling through extending the bounding box by both, the scaled
minimum and maximum coordinates.

• Bvbj
is extended by rotation through the method described in Section 4.4.2.

4.4.2 Computing the Maximum Rotation Extents
For rotations, we need to take situations like those depicted in Figure 4.2b into con-
sideration and prevent missing any possible location that a rotated point could occupy.
Figure 4.6 illustrates this problem with a different example: Rotating Bone 2 about
the axis described by its parent Bone 1 lets a rotated point p1 end up in a certain
end position p2. Spanning a bounding box only over the initial and final positions, p1
and p2, can lead to incorrect boundaries. Figure 4.6c shows the correct bounding box
for the given scenario which can only be computed by regarding all possible locations
along the circular segment described by the rotation, or—in the case of axis-aligned data
structures—by considering those particular rotations that lead to maximum extents in
each of the principal axes’ directions.

To find and efficiently compute the maximum extents of a given rotation, we present a
solution based on Rodrigues’ rotation formula [Rod40], which computes the result v′
of rotating a vector v by a given angle θ about a given (normalized) axis of rotation n.
Rotation transforms within a skeleton are often specified via unit quaternions which can
be converted into angle-axis representation [Sho85]. Thus, Rodrigues’ rotation formula is
applicable. It is stated in Equation (4.3):

v′ = v cos θ + (n × v) sin θ + n(n · v)(1 − cos θ). (4.3)
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(a) When rotating a certain
point from an initial position
p1 to its target position p2,
the rotation can be performed
either in CW direction or in
CCW direction about the axis
along Bone 1.
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y
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(b) To compute a conservative
bounding box that encompasses
all possible positions that the
rotated point can take along
the rotation path, it is insuf-
ficient to consider its initial/-
final positions.
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(c) If an animation is defined
s.t. p1 is rotated to p2 in
CCW rotation direction, its ac-
tual conservative spatiotempo-
ral bounding box is much larger
than the incorrect one depicted
in Figure 4.6b.

Figure 4.6: These illustrations show that it is essential to regard the actual rotation
paths for computing conservative spatiotemporal AABBs. It is insufficient to only consider
initial and final positions since the maximum rotation extents might occur elsewhere.

We use its first-order derivative by θ to find those angles that lead to maximum extents in
each of the principal axes’ directions. Setting that first-order derivative of Equation (4.3)
by θ to zero in order to find the extrema results in Equation (4.4)

xθ = − tan−1 n × v

n(n · v) − v
, (4.4)

which yields a vector of angles xθ in radians that represents the rotation angles that lead
to maximum extents in each principal axis direction. Please note that the operations in
Equation (4.4) mean component-wise application of the division and tan−1.

An AABB Bv can be extended to encompass all the possible positions of v rotated by
angle θ about axis n by calculating nine rotation angles:

• φ1 = clamp(xθx , min(θ, 0), max(0, θ))
• φ2 = clamp(xθx − π, min(θ, 0), max(0, θ))
• φ3 = clamp(xθx + π, min(θ, 0), max(0, θ))
• φ4 = clamp(xθy , min(θ, 0), max(0, θ))
• φ5 = clamp(xθy − π, min(θ, 0), max(0, θ))
• φ6 = clamp(xθy + π, min(θ, 0), max(0, θ))
• φ7 = clamp(xθz , min(θ, 0), max(0, θ))
• φ8 = clamp(xθz − π, min(θ, 0), max(0, θ))
• φ9 = clamp(xθz + π, min(θ, 0), max(0, θ))

and extending Bv by the results of Equation (4.3), calculated with vector v, (normalized)
axis of rotation n, and each of these nine rotation angles. The angles are clamped to the
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transformed into the coor-
dinate system of bone bt.
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resents the combined conser-
vative spatio-temporal bounds
Bv for vertex v under LBS,
all the intermediate bounds’
(Bv

′
b1 , Bv

′
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, and Bv
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b2) resp.

minimum and maximum co-
ordinates are summed up.

Figure 4.7: Three bone-specific spatiotemporal AABBs are shown which were created by
our algorithm to include all possible positions vertex v can occupy between two animation
times. Bone-specific vertex AABBs Bvb1, Bvbt

, and Bvb2 are combined into AABB Bv

by taking the bone weights of vertex v into account and following the steps described in
4.7a, 4.7b, and 4.7c in that order. Bv represents conservative bounds for LBS.

range [θ, 0] or [0, θ], depending on the sign of θ, to keep the resulting bounding box as
tight as possible—yet conservative—around the original position v.

4.4.3 Vertex Bounds Combination for LBS

The steps described in Section 4.4.1 yield a number of conservative spatiotemporal vertex
bounds Bvbi

. . . Bvbn
, each representing all possible positions between two animation

times t1 and t2 as if the respective bone was the single bone of influence (i.e., if it had
a weighting of 1) on v. Each Bvbi

is given in the same space, namely the coordinate
system of a uniformly selected principal bone for all the vertices associated to meshlet m,
which we called PBS.

We propose the approach depicted in Figure 4.7 for computing the combined, weighted
vertex bounds Bv that are suitable for LBS:

1. For each vertex’ AABB Bvbi
, multiply its minimum and maximum coordinates

with its corresponding bone-weighting wi.
2. Add the resulting minimum and maximum coordinates of all Bvbi

. . . Bvbn
as

computed in step 1, which yields Bv.

The final step of our algorithm for computing conservative spatiotemporal meshlet bounds
Bm is the combination of its associated vertices’ AABBs Bv1 . . . Bvn as illustrated in
Figure 4.3.
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4.5 Normals Distribution of Meshlets
In the previous Sections 4.4.1 to 4.4.3, we have addressed the computation of conservative
spatiotemporal meshlet bounds which can be used to enable view frustum culling. In
this section, we describe how these bounds can be utilized to compute a conservative
estimation for a meshlet’s normals distribution to ultimately enable backface culling.
Our algorithm consists of the following steps:

1. Determine an initial normal nm and an initial normals distribution angle α w.r.t.
nm for meshlet m.

2. For each triangle associated to m, consider its vertices’ conservative spatiotemporal
AABBs Bv1 , Bv2 , and Bv3 .

3. Optionally: Test if a plane can be found which divides space s.t. Bvi and the
respective other two AABBs lie on opposite sides of it. If such a plane cannot be
found, abort normals distribution calculation for m, otherwise continue.

4. For each combination of corners cv1 ∈ Bv1 , cv2 ∈ Bv2 , cv3 ∈ Bv3 :
a) Compute ni = (cv2 i − cv1 i) × (cv3 i − cv2 i)
b) Compute the angle between ni and nm, and store the maximum angle αmax

from all combinations of corners.
5. Store αmax and use it for backface culling computations for m.

Initial nm and α values (step 1) are computed from a resting or configuration pose.
By taking the maximum angle during step 4b, a conservative normals distribution is
calculated for a given animation interval. As an optional, potentially performance-
improving step 3, we propose the approach outlined in Figure 4.8: If a set of Bv1 ,
Bv2 , and Bv3 does not fulfill the requirement described in Figure 4.8a, their normals
distribution might encompass the whole sphere of normals. If the requirement is fulfilled,
we can be sure that a useful αmax can be found as illustrated in Figure 4.8d.

4.6 Rendering Strategies Using Meshlet Bounds for
Culling

Computing meshlet bounds as described in the previous sections is a computationally
elaborate task that requires computation times in the order of milliseconds to seconds
per time interval for models of similar detail to our test models. It is parallelizable
and suitable for multithreaded CPU implementations as well as GPU implementations.
Computation times for calculating vertex and normal bounds are given in Table 4.1 for
each model.

Hence, we propose using a precomputation step for computing the meshlet bounds.
However, another essential question is how the precomputed bounds (defined per meshlet,
animation clip, and time interval) shall be used during rendering. One possible application
is storing the AABBs in GPU buffers and computing the correct lookup index in a task
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Figure 4.8: A conservative normals distribution of a meshlet can be found by analyzing
each of its triangles separately. For each triangle, a total number of 83 possible normal
directions are created by computing the face normals of each triangle that can be constructed
from a combination of the bounding box corners from the vertices that describe the triangle,
as illustrated in Figure 4.8d. In this way, extreme normal deviations are computed and put
in relation to a reference normal nm. The triangle-specific order among Bv1, Bv2, and
Bv3 must be maintained for these computations. A conservative test of whether a useful
normals distribution can be calculated is presented in Figure 4.8a. If the vertices’ AABBs
are positioned in an unfavorable manner w.r.t. each other, the normals distribution might
encompass the whole sphere of directions as described in Figures 4.8b and 4.8c.

shader. Taking the current animation time into account, we may then read the AABB
from the buffer and evaluate the bounds against the current view frustum. While this
might appear like a feasible idea at first glance, it is a strategy that we advise against
for several reasons: Animated models can contain a large number of keyframes, easily
ranging in the hundreds or thousands. Since memory consumption would be in linear
relation with the number of keyframes, this would lead to extensive memory usage and
incur additional delays in task shader executions for the memory transfer.

As a better strategy, we propose to use a precomputation step to answer a simple
question for each meshlet, namely: "Across the entirety of an animation clip, what is the
maximum deviation of a meshlet’s bounds w.r.t. certain predefined reference bounds?".
This approach is illustrated in Figure 4.9 for spatial bounds. We choose the bounding
sphere that encompasses all of a meshlet’s vertices in its initial "bind pose" or "T-pose"
as the fixed reference per meshlet. When bone-animated, the sphere’s center and radius
are transformed with the principal bone’s transformation matrix, which in general can
lead to states where the transformed bounding sphere no longer encompasses all its
assigned vertices as illustrated in Figure 4.9b. Based on our conservative spatiotemporal
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Table 4.1: This table shows the average computation times for computing AABBs for
all meshlets for a given time interval per model. The computations were performed with
24 parallel threads on an AMD Zen 2 CPU at 3.8 GHz. Times are reported in seconds
for the creation of vertex and normal bounds.

Model Spatial Extents Orientations Total Time
Gawain 0.25s 0.19s 0.44s
Giant Worm 0.37s 0.28s 0.65s
Butcher 0.19s 0.40s 0.59s
Wyvern 0.56s 0.45s 1.00s

AABB Bm for that specific animation state (computed as described in Figure 4.4), we
can compute a factor by how much the transformed reference bounding sphere’s radius
has to be extended in order to also encompass all positions of Bm. Having computed the
maximum required radius across all time intervals of an animation clip, it suffices to store
a meshlet’s initial bounding sphere’s center point c and the extended radius per meshlet.

During rendering, very little computational overhead is required: c and its extended
radius are transformed by the meshlet’s principal bone matrix for the current animation
state, further transformed into the same space of the view frustum’s planes, and tested
against the frustum planes. We might also use AABBs for spatial bounds during rendering,
but spheres incur significantly less computational overhead when culling against a view
frustum. Using spheres, only six plane-to-point distance computations (one for each of
the six view frustum planes) have to be performed in a task shader, whereas bounding
boxes demand computation of 6 × 8 plane-to-point distances.

The quality of the radius extension factor can be further improved by analyzing ever-
smaller time intervals. The largest possible time interval to evaluate is from one keyframe
time t1 within a certain animation clip to its subsequent keyframe time t2, because we
may not jump over diverging transformations in order to remain conservative. If we
determine that the spatiotemporal bounds between the two keyframes do not satisfy
given quality requirements, we can start to adaptively subdivide the time interval for
bounds computation. In general, we can assume that if a meshlet contains vertices
that are influenced by bones other than the meshlet’s principal bone, subdividing the
time intervals between t1 and t2 leads to smaller vertex bounds and consequently to
tighter meshlet bounds. The maxim of our algorithm is to compute conservative bounds,
which is why we cannot disregard the temporal influence of an animation on the bounds.
The subdivision approach allows to close in on the theoretical minimum bounds, while
remaining conservative. This way, the generation of vertex bounds naturally adapts to
the shape of the position function of seemingly arbitrarily moving vertices, such as the
one illustrated in Figure 4.2b, placing more emphasis on ranges with a strong variation.

For the normals distribution (as described in Section 4.5), a similar strategy can be
employed: The mean normal direction of an initial "bind pose" or "T-pose" serves as
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Figure 4.9: In order to minimize computational overhead during rendering, we propose
to use a meshlet m’s spatio-temporal AABB Bm for computing a scaling factor which
tells how much Bm’s extents w.r.t. an initially created reference bounding sphere has
grown or shrunk. The maximum scaling factor across all possible poses represents the
conservative bounding sphere of meshlet m.

the reference normal nm for meshlet m. In the same vein of finding a maximum radius
extension factor, for the normals distribution a maximum angle-deviation αmax can be
determined by analyzing all keyframe or sub-keyframe intervals. Smaller animation time
intervals generally lead to smaller values for αmax. During rendering, the computation of
whether or not m can be conservatively backface culled can be evaluated using c, the
extended radius, nm, αmax, and the camera’s position.

A variation of the strategy described above is to not store individual values for the
extended radius and αmax per meshlet but to define constant values for them, and
determine in a precomputation step which meshlets satisfy these quality requirements.
I.e., this strategy would answer the questions: "Which meshlets satisfy the requirement
that their bounding sphere’s radius does not have to be extended by more than a constant
scaling factor sr s.t. all of its vertices stay within the extended bounding sphere?", and
regarding the normals distribution: "Which meshlets satisfy the requirement that their
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αmax is smaller than a constant αT ?" This approach has the advantage that constant
values are used for sr and αT and do not have to be read per meshlet, thus helping to
reduce the required memory bandwidth. Low-overhead shaders can be used to render
those meshlets which do not fulfill any of the two criteria. Meshlets that fulfill one
criterion can be rendered with the appropriate culling code. Shaders including both, BFC
and VFC code, can be used for meshlets that fulfill both requirements. The subdivision
approach described above can be used to determine more meshlets as being of sufficient
quality for both or either of the criteria. We employed this approach for the setup of our
benchmarks presented in Section 4.8.

4.7 Implementation Details
We have implemented the algorithms presented in the previous sections using C++
and Vulkan. Computing conservative vertex bounds, combining them into conservative
meshlet bounds, and computing conservative normal bounds per meshlet are implemented
in a CPU-based precomputation step. Our current implementation uses the same amount
of parallel threads for this step as the number of logical processors reported by the
operating system.

During our precomputation step, we evaluate each meshlet mi against predefined max-
imum values sr (referring to a maximum scaling factor w.r.t. mi’s initial radius ri as
described in Figure 4.9) and αT (referring to a maximal threshold for mi’s αmax, which
is computed as described in Section 4.5). Based on this evaluation, we assign mi to one
of the following three categories:

• mi is both, view-frustum cullable and backface cullable, if it satisfies both limits
for all animation intervals of interest.

• mi is view-frustum cullable but not backface cullable, if it satisfies the requirements
w.r.t. sr for all animation intervals of interest, but not the requirements w.r.t. αT .

• mi is neither view-frustum cullable nor backface cullable if it does not fulfill at
least the requirement w.r.t. sr.

Based on these categorizations, we issue a total number of three draw calls using different
pipeline configurations for each of the three categories: Meshlets that are suitable for
culling are rendered with pipelines that include culling code. The meshlets that have been
deemed to not be cullable are rendered with a pipeline that does not include culling code,
thus not suffering from the potential computational overhead caused by the additional
culling instructions. In trying to minimize runtime overhead of our culling code we
chose to go for the approach with constant values for sr and αT instead of storing and
evaluating individual thresholds per meshlet.

Our GPU implementation is based on Vulkan [Kub18b] and GLSL [KB19]. Both types of
culling are performed in task shaders. Task shaders operate in groups of 32 threads per
warp [NVI18a], where each of these threads tests a different meshlet in parallel. We use
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(a) Overview of our bench-
mark scene in view direction

(b) Camera setup/camera
position during benchmarks

(c) Effect of us-
ing VFC

(d) Effect of us-
ing BFC

Figure 4.10: In the test scene that we are using for our benchmarks, we position multiple
instances of our test models, three of which are duplicated along the frustum planes of
our camera, which is positioned as shown in 4.10b. We benchmark different geometry
loads according to the model duplication scheme indicated in 4.10a. Benchmarks with
view frustum culling enabled produce effects as shown in 4.10c along the frustum planes.
4.10d shows the effects of enabled backface culling on a per-meshlet basis (same camera
positioning as in 4.10b).

ballot shader instructions to synchronize the threads before passing on the information of
how many and which meshlets have not been culled and are to be further processed by
later shader stages. In the subsequent mesh shader stage, vertex skinning is performed
for the meshlets that have survived culling. The vertices assigned to such meshlets are
transformed with 32 parallel threads per meshlet. The mesh shader constitutes the final
geometry processing stage, which means that its output is forwarded to the fixed-function
rasterizer stage in graphics pipelines for further processing.

4.8 Results
We have evaluated the performance characteristics of our implementation (as described
in Section 4.7) with different scene compositions consisting of multiple instances of
the models shown in Figure 4.1 and arranged according to the scheme presented in
Figure 4.10a. For all performance benchmarks, we measure the milliseconds of the
relevant draw calls with GPU timer queries for 1000 frames after a warmup phase of
100 frames. The query results of the 1000 measured frames are averaged for the results.
The camera remains stationary during our benchmarks at the position that Figure 4.10b
has been captured from, while the models constantly animate, thus constantly varying
positions and orientations of meshlets.

Figure 4.11 presents the general picture of the performance characteristics from our bench-
marks, comparing culling-enabled pipelines to pipelines without culling code. Including
culling code in task shaders constitutes a certain computational overhead compared to
pipelines that do not include such code. The additional overhead can be more than
made up for across all of our test cases and across different GPUs. Table 4.2 lists the
average performance increases for the different benchmarks and shows the percentages
of meshlets that could be culled. Assuming that the maximum reduction in render
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Figure 4.11: GPU performance measurements (average milliseconds from GPU timer
queries) are shown for two different GPUs and four different scene configurations. The
x axis labels represent triples of number of vertices, number of triangles, and number of
meshlets in that order. Each set of bars compares the results of a pipeline without culling
code to the results of shader pipelines that include code for BFC only, VFC only, or both
in their respective task shaders.

time is bounded by the percentage of culled meshlets, we can state that the pipelines
implementing our technique stay within a margin of only a few percent to the theoretical
optimum in our tests. With BFC and VFC enabled, we measured a culling ratio of
approximately 40% for the scene described in Figure 4.10, achieving reductions of render
times of up to 35.4%. Consistent performance patterns can be observed across both
tested GPUs. To generate the data for the results presented in Figure 4.11, we employed
a precomputation step which we configured with a run-time limit of 15 minutes per
model. It gradually refines the bounds within the given time limit, starting with keyframe
boundaries and subdividing them until the time limit has been reached. The resulting
meshlet classification details per model are shown in Table 4.3. The data that we used
for our benchmarks are stated under the columns to αT = 20◦, listing the amounts of
meshlets which were rendered with the "BFC on, VFC on" pipeline ("both"), with the
"BFC off, VFC on" pipeline (sr), and with a "no culling" pipeline ("none").

Performance analyses of backface culling only are presented in Table 4.4. The performance
increase rises with the number of meshlets that are classified to be backface-cullable.
If only as little as approximately 20% of meshlets are backface cullable, the additional
overhead of the included culling code counteracts its potential benefits. Backface culling
in task shaders has shown to have the potential of an additional reduction of render times
by 11.4% in our test scenes. In Section 4.6 we have described that our precomputation
step can be used for gradual refinement of meshlet classification. By evaluating smaller
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Table 4.2: This table shows the average percentage of culled meshlets (columns headed
"Culled") during the benchmarked scene configurations from Figure 4.11 and the per-
formance increase that resulted from culling them, which means the reduction of render
time in percent (columns headed "Faster"). "400k" refers to the 12M / 6M / 400k config,
and "849k" refers to the 24M / 12M / 849k config (numbers of vertices, triangles, and
meshlets, respectively).

GPU Scene BFC only VFC only BFC+VFC
Culled Faster Culled Faster Culled Faster

RTX
2060

400k 11.4% 8.1% 31.3% 26.3% 39.9% 33.8%
849k 11.5% 8.5% 31.4% 27.1% 39.7% 35.4%

RTX
3070

400k 11.4% 7.8% 31.3% 26.1% 39.9% 34.0%
849k 11.5% 7.9% 31.4% 27.2% 39.7% 35.4%

Table 4.3: Classification percentages from different models using a 15 minute time limit
for each. The percentage values in columns labeled with "both" refer to meshlets that fulfill
the requirements to be both, view-frustum cullable and backface cullable—i.e., stay below
a radius scale factor sr and within a normal deviation threshold of αT . The values in
"sr" columns represent the number of meshlets that only fulfill the requirement of staying
below the radius scale factor. The number of meshlets that do not fulfill the requirements
are listed in column "none". Using higher values for the normal deviation threshold αT

results in more meshlets satisfying "both" requirements at the cost of less optimal backface
culling performance during rendering. sr = 3 was used for generating this classification.

αT = 10◦ αT = 20◦ αT = 30◦

Model both sr both sr both sr none
Gawain 82% 17% 89% 10% 92% 7% 1%
Giant Worm 66% 29% 71% 24% 74% 21% 5%
Butcher 88% 6% 90% 4% 91% 3% 6%
Wyvern 52% 42% 60% 34% 65% 29% 6%

animation subintervals, steadily tighter conservative bounds can be found for meshlets,
eventually leading to a higher number of meshlets being cullable during run time. As
our results in Tables 4.2 and 4.4 attest, performance increases proportionally to the
number of meshlets that could be culled in task shaders. Therefore, increasing the
number of meshlets that can be culled benefits render times accordingly. The trade-offs
between precomputation time and resulting meshlet classification percentages are shown
in Figure 4.12. It can be seen that different outcomes must be expected from different
animated models and their animation clips. While the initial classification values of
the Butcher model show high percentages of cullable meshlets already after relatively
short precomputation times (i.e., small to no subdivisions of keyframe intervals), different
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Table 4.4: Average render times of scenes composed of different ratios of meshlets
which are backface-cullable to meshlets that do not satisfy that requirement. For these
measurements, view frustum culling was disabled. Only backface culling code is active in
task shaders, producing the results listed under the "BFC on" column, while the pipeline
used to create the results found under the "BFC off" column does not include any culling
code. The average percentage of meshlets that were culled by BFC code is listed in the
column "Culled" and the resulting reduction of render time in percent is listed under
"Faster". A scene setup with 731k meshlets was used.

Cullable BFC off BFC on Culled Faster
100% 7.79ms 6.90ms 15.7% 11.4%
80% 7.80ms 7.12ms 12.5% 8.7%
60% 7.80ms 7.35ms 9.2% 5.7%
40% 7.79ms 7.51ms 7.0% 3.6%
20% 7.79ms 7.77ms 3.8% 0.3%
0% 7.80ms 8.07ms 0.0% -3.4%

characteristics can be observed for the Giant Worm model. Increased computational
effort in the precomputation step leads to significantly higher numbers of backface cullable
meshlets for Giant Worm. Tighter target bounds for sr and αT have been chosen to
emphasize the effects of gradual refinement during precomputation.

We further evaluate the effects of added culling for animated meshlets in a scenario that
also includes static models. Figure 4.13 shows a scene configuration where in addition to
400k animated meshlets, 399k static-geometry meshlets are rendered. In these tests, static
meshes are also drawn via task and mesh shaders and always culled with established VFC
and BFC methods. The resulting performance measurements of the combined render
times are shown in Figure 4.13b. The additional static meshlets raise the total render
time on an RTX 3070 from 4.66ms to 7.23ms if animated meshlets are not culled. The
same scene configuration with VFC and BFC enabled for animated meshlets reduces
the total render time to 5.69ms, which constitutes an average reduction of combined
render time by 21.3%. Culling percentages remain the same as stated in Table 4.2 for
400k animated meshlets. While we kept vertex processing effort at the minimum for both
types of geometry, animated models still require significantly more vertex processing
than static models due to skinning code in mesh shaders, highlighting the benefit of our
approach for scenes with moderate to high amounts of animation.

4.9 Discussion and Future Work
We have presented an algorithm to compute conservative spatiotemporal bounds on a
per-meshlet basis. Using the spatiotemporal vertex bounds of its assigned vertices, also
a conservative estimate for a meshlet’s normals distribution can be computed. Bounds
and normals distributions are intended to be computed during a flexible precomputa-
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(a) Effect of gradual bounds refinement
for Giant Worm clips.
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(b) Effect of gradual bounds refinement
for Butcher clips.

Figure 4.12: Effect of different time targets for our precomputation step on the classifica-
tion into meshlets that are both view-frustum cullable and backface cullable, view-frustum
cullable only, or neither. sr = 2 and αT = 10◦ were chosen for these measurements.

tion step which allows to trade tighter bounds or normal deviation angles for reduced
precomputation time. In all cases, our algorithm ensures conservative results.

Adding culling to task shaders incurs some additional computational overhead of a few
percent during rendering. This disadvantage can in general be more than made up for in
our tests. VFC on a per-meshlet basis enables fine-grained culling of meshlets outside
of the view frustum and can lead to significant reductions of render time. The benefit
of including BFC in task shaders depends on the quality of meshlets insofar as many
of them should be backface cullable. If the precomputation step manages to compute
conservative normals distributions for close to 100% of meshlets, render time reductions
of up to 11.4% are possible through BFC in graphics pipelines with very light vertex
processing load and can be expected to be significantly higher with graphics pipelines
that feature complex vertex processing load. The benefit of combined BFC and VFC
was close to the theoretical optimum in our tests when comparing the relative reduction
of render time to the percentage of culled meshlets.

Naturally, model animation is a far-reaching and complex application field. In this work,
we have derived and presented a solution suitable for bounding individual animation clips.
However, we note that our basic approach may easily be extended for use with a variety
of techniques. For example, inverse kinematics (IK) is a common method in modern
real-time animation. For pipelines that involve IK, we can reuse the same techniques
presented in this chapter, but instead of subdividing and bounding vertex motion across
time intervals, we can instead bound a different parameter space, such as the solid angles
representing ranges of possible orientations for a set of joints. Other important techniques,
such as the blending of animation clips, can be addressed by not computing bounds for
individual clips, but instead for the full repertoire of possible animations. If intermediate
vertex states are produced from linearly blending between animations, conservative vertex
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(a) Additional static-geometry meshlets (terrain,
meshlets colored) are rendered for this bench-
mark.
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(b) Render times of 400k animated meshlets
compared to render times of 400k animated +
399k static meshlets.

Figure 4.13: Mixed scenario with static and animated meshlets. 4.13b shows average
render times in milliseconds, comparing the results of the 400k measurement on RTX
3070 from Figure 4.11 with the measurements of the same setup, plus additional 399k
static-geometry meshlets. Again, our technique leads to significant render time reductions.

bounds are then easily obtained from the union of all animations, and the bounding of
the normal cone can be performed as previously described.

With the addition and ongoing development of hardware-accelerated ray-tracing, the use
of already-computed spatial acceleration structures for ray-tracing might be considered
as a viable, hierarchical alternative in the future. In contrast to currently available data
structures, our approach serves to compute conservative bounds over arbitrary time
intervals and does not require random access to meshlet data, as it must be expected
with ray tracing. Instead, meshlet data is accessed in a strictly contiguous manner,
not dissimilar to vertex attribute streaming in conventional rasterization-based graphics
pipelines, hence the available data structures with logarithmic access times are unfavorable
in this case. In a similar vein, hierarchical data structures such as bounding sphere trees
[JP04; KŽ05a; SBT06] could represent a possible avenue for increasing the performance of
our precomputation step by decreasing its computational cost from #vertices × #joints
down to #meshlets × #joints. However, since bounding spheres are a less accurate
representation than bounding boxes, and since the meshlet-focused approach would
overestimate bounds even more, we decided on sticking with the more accurate approach
of computing bounding boxes per vertex.

As far as future work is concerned, investigating options for accelerating the precomputa-
tion step and allowing further tradeoff options could lead to helpful improvements of our
algorithm. Also adding support for further skinning methods—such as dual-quaternion
skinning—besides LBS would be a natural pathway for future research, since applications
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are likely to require other skinning methods as well. However, we note that the depen-
dency on a particular skinning method is comparably small with our presented approach:
the only missing piece for enabling different skinning techniques is the derivation of
conservative positional bounds for a single vertex between two successive keyframes.
Once derived, the corresponding methods can be supplied as a drop-in replacement for
the current solution for LBS. Our approach for robust meshlet bounds can therefore work
with any skinning technique for which such bounds can be found.

Overall, we have presented a fundamental algorithm for computing conservative bounds
of clusters of ultra-detailed input geometry. The higher the geometric detail of a given
input mesh, the more relative performance gain can be expected since generally, both
spatial bounds and normals spread can be expected to shrink if more triangles are used
to represent a given shape, assuming that cluster/meshlet sizes stay the same. Our
evaluations have shown that through fine-grained culling, a lot of rendering time can be
saved—showing almost linear performance improvement w.r.t. the percentage of culled
meshlets. Thus, is can be stated that our method provides optimizations that are crucial
for maintaining real-time frame rates for rendering ultra-detailed animated models.

In the next chapter, we take the fundamental idea of rendering ultra-detailed static or
animated models one step further by generating geometry directly on the GPU by means
of parametric functions. This reduces memory load in early graphics pipeline stages to
almost zero and amplifies geometry in later pipeline stages.
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CHAPTER 5
Fast Rendering of Parametric

Objects in Real Time on Modern
GPUs

The contents of this chapter constitute an extended edition of our paper “Fast Rendering
of Parametric Objects on Modern GPUs”, which was presented at the Eurographics
Symposium on Parallel Graphics and Visualization 2024 [Unt+24].

5.1 Motivation
Parametric functions are an extremely efficient representation for 3D geometry, capable
of compactly modeling highly complex objects, some examples of which are shown in
Figure 5.1. Once specified, parametric 3D objects allow for visualization at arbitrary
levels of detail, at no additional memory cost, limited only by the number of evaluated
samples and by floating point accuracy. This makes them perfectly suitable for being
integrated into ultra-detailed geometry scenarios, offering the same (or even higher)
geometric precision than the input meshes, like the one shown in Figure 1.1.

In this chapter, we describe a technique that renders objects described by parametric
functions. Our technique evaluates the required levels of detail (LOD) in every frame
and culls parts of parametrically-defined objects in a fine-grained manner—not dissimilar
to our technique from Chapter 4, just now on a per-patch level instead of working with
meshlets. A similarity between the two techniques is that only a relatively little amount
of data is loaded for making the VFC decision before handling the associated (possibly
ultra-detailed) geometry: The approach in Chapter 4 loads a meshlet’s metadata in the
task shader and spawns mesh shaders only if the meshlet is not culled. The approach in
this chapter operates on patches and uses a separate compute shader-based LOD stage,
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(a) Single SH
glyph order 12

(b) 19,600
SH glyphs

(c) Parametric
seashell

(d) 358k fiber
curves (curtain)

(e) 358k fiber
curves close-up

Figure 5.1: Our technique is able to render a variety of parametrically defined objects
with diverse properties—all in real time. The frames per second for Figures 5.1a to 5.1e
on a mid-range previous-generation NVIDIA RTX 3070 GPU are 248 FPS, 270 FPS,
349 FPS, 98 FPS, 138 FPS, respectively (Figures 5.1a and 5.1b rendered at 1440×1440
resolution, Figures 5.1c to 5.1e at 1920×1080 with 4×SSAA and 8×MSAA).

in the context of which VFC is performed on a per-patch level. Geometry is subsequently
only generated for those patches that were not culled in that LOD stage.

Our method has the potential to reduce memory load on a GPU since geometry is
generated on-chip through tessellation or is directly point-rendered—only for patches that
were not culled. It achieves high rendering performance for many parametric functions.
It even outperforms a root finding-based technique for spherical harmonics (SH) glyph
rendering by utilizing modern GPUs’ hardware features efficiently.

5.2 Introduction
Procedural content can be created from coarse inputs by computing transient data for
fine-grained details on the fly. At the application level, we can exploit suitable procedural
geometry representations, like parametric functions [PDG21; Cra23; Wil22]. These can
efficiently yield detailed 3D shapes by evaluating surface or volume samples according to
the function’s mathematical definition, as illustrated in Figure 5.2. However, mapping
the sample evaluation to the hardware rendering pipelines of modern graphics processing
units (GPUs) is not trivial. This has given rise to several specialized solutions, each
targeting interactive rendering of a constrained set of parametric functions.

In this chapter, we propose a general method for efficient rendering of parametrically
defined 3D objects. Our solution is carefully designed around modern hardware archi-
tecture. Our method adaptively analyzes, allocates, and evaluates parametric function
samples to produce high-quality renderings. Geometric precision can be modulated from
few pixels down to sub-pixel level, enabling real-time frame rates of several 100 FPS for
various parametric functions. We propose a dedicated LOD stage, which outputs patches
of similar geometric detail to a subsequent rendering stage that uses either a hardware
tessellation-based approach or performs point-based software rasterization. Our method
requires neither preprocessing nor caching, and the proposed LOD mechanism is fast
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parameters

patch
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fp(u, v)

 u
v

sin(u) + sin(2v)

 sin(u) cos(v)
cos(u)

sin(u) sin(v)

 Sphere surface
displaced according

to SH function

Figure 5.2: We consider vector-valued parametric functions fp(u, v) with fp : R2 → R3

mapping independent 2D variables called parameters to 3D positions in Euclidean space.
The arithmetic definition enables a compact representation of geometric shapes with
varying complexity and desirable properties, such as C∞ continuity. We illustrate the
input to such fp(u, v) with parameter patches that range from lower bound parameter
values umin, vmin to upper bound parameter values umax, vmax, where the notations u and
v refer to the whole ranges, i.e., u = [umin, umax] and v = [vmin, vmax].

enough to run each frame. Hence, our approach also lends itself to animated parametric
objects. We demonstrate the benefits of our method over a state-of-the-art spherical
harmonics (SH) glyph rendering method, while showing its flexibility on a range of other
demanding shapes.

At the hardware level, procedural content generation is facilitated by modules like the
tessellation shader [Khr23tesb]. Coarse base geometry is processed in compute units,
where the tessellation engine produces new geometry primitives before passing them to
the rasterizer. Hence, fundamentally tessellation trades increased computational load
for reduced memory transfers, resulting in overall increased rendering speed compared
to not using the tessellator and transferring geometry in high detail [Nie+16]. However,
their historic orientation toward triangle meshes makes it unclear how to exploit these
modules for other representations, including parametric functions.

With our proposed method, we consolidate the use of procedural geometry representations—
specifically, parametric functions—with recent hardware trends to achieve fast, high-
quality rendering of complex mathematical shapes. Our proposed technique takes as
input only a parametric function. Compared with previous work, our solution makes few
assumptions about the sampled functions, supporting a wide range of complex shapes (see
Figure 5.1). It requires neither derivatives nor preprocessing. We propose a multi-step
pipeline: a dedicated LOD analysis stage adaptively determines the sampling density
to be used by a subsequent rendering stage. Depending on the chosen sampling resolu-
tion, our technique can render highly tessellated patches (where each resulting triangle
spawns approximately one or only a few screen pixels) or directly render the parametric
function point-wise, typically sampling the function once or multiple times per screen
pixel. Our point-based method draws inspiration from recent advances in point cloud
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rendering [SKW21]. Common to both rendering approaches is their emphasis on utilizing
the compute capabilities of GPUs and their ease of integration into existing rendering
applications. We also account for the emerging trend in recent years toward ultra-high
geometric detail in real time, as heralded by Epic Games’ Nanite [Epi24a]. Nanite can
render static geometry at such high detail that, after a LOD selection step, rasterization
is usually performed on triangles not much larger than a single pixel[KSW21]. Similarly,
our technique can render almost pixel-perfect geometric detail for parametric functions
that show limited variance at a sub-pixel level when rendering at screen resolution.
With super-sampled (SS) configurations, our tessellation-based or point-based rendering
variants are able to capture and render sub-pixel geometric detail in real time.

In summary, our contributions include the following:

1. We describe a general method to render a wide range of parametric functions
with close to pixel-perfect geometric accuracy, which is fast enough to be used in
conjunction with SS.

2. We describe an efficient compute shader-based LOD selection algorithm that gener-
ates view-dependent parameter patches for generic parametric functions, leading to
approximately uniform geometric detail in the rendered output across the entire
parametric object.

3. We describe different variants to render the patches from Contribution 2, including
point-based rendering, rasterization using the hardware tessellator, and a hybrid
technique to select the optimal rendering variant per patch.

4. We evaluate our method on a range of demanding parametric shapes and compare
it to the state of the art in terms of SH glyph rendering by Peters et al. [Pet+23],
showing that our method surpasses it in terms of rendering speed and rendering
quality for higher SH orders; in large datasets already for SH order 4.

5.3 Related Work
Most previous work on rendering parametric curves or surfaces focuses on specific
parametric shapes, such as the efficient rendering of rational Bèzier patches [EML09;
SS09], Catmull-Clark subdivision surfaces [PEO09; NL13; Kut+23; WA23], or similar
patches such as B-Spline or NURBS curves and surfaces [WA23]. Poirier et al. [PDG21]
focus on rendering Spherical Harmonics (SH) glyphs for visualizing measurements from
diffusion magnetic resonance imaging (dMRI) scans. Some of these techniques utilize
specialized data structures [PEO09; Kut+23]. All of them rely on a triangulated
representation of a given type of parametric function for rendering. Some techniques
create triangle primitives in software to be rendered by the hardware rasterizer or perform
tessellation in software [PEO09; SS09; EML09; WA23], while others make use of hardware
tessellation units [NL13], which are standard features on modern desktop GPUs. The
technique by Kuth et al. [Kut+23] uses mesh shaders, which were first introduced to
desktop GPUs with NVIDIA’s Turing architecture [NVI18a] in 2018.

Especially older techniques do not try to produce ultra-detailed geometry but instead
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(a) Johi’s
Heart

(b) Yarn
Curve

(c) Fiber
Curve

(d) Seashell
variant 1

(e) Seashell
variant 2

(f) Seashell
variant 3

(g) Sphere

Figure 5.3: These images show various parametrically defined objects. Slight variations
in the parametric functions can lead to different shapes, as can be seen in Figures 5.3d
to 5.3f, which all use the same underlying parametric function with slight variations in
auxiliary parameter values. Figure 5.3g shows a possible set of patches produced by our
Patch Subdivision stage for a parametrically defined sphere.

optimize for a visual error metric to be less than a pixel [EML09; PEO09], which is
also the approach taken by the more recent technique by Worchel et al. [WA23]. The
method of Eisenacher et al. [EML09] is conceptually similar to our approach, insofar as it
subdivides patches until a certain metric is satisfied. In contrast to our approach, they use
uniform subdivision of patches, and their technique is tailored to Bèzier patches. Their
method could be incorporated into the structure of our method by using the same error
metric from their “oracle” step in our Patch Subdivision stage instead of our generally
applicable screen distance-based metric. Our tessellation-based rendering variant would
be perfectly suitable for rendering Bèzier patches, possibly requiring a crack avoidance
procedure between neighboring patches.

The work by Poirier et al. [PDG21] on SH glyph rendering takes a more pragmatic
approach in trying to evaluate and set suitable tessellation levels, but fails to prevent
visual inaccuracies. Another recent approach is able to produce and render ultra-detailed
geometry at real-time frame rates on modern GPUs [Kut+23], but focuses on Catmull-
Clark subdivision surfaces only. In terms of SH glyph rendering, Peters et al. [Pet+23]
achieve pixel-perfect geometric detail by intersecting a ray with the SH glyph through
polynomial root finding for each screen pixel. Their visual results constitute a significant
improvement over the results from Poirier et al. [PDG21], but suffer from exceedingly
decreasing performance with increasing SH order and visual artifacts with SHs of orders
10 and higher. In terms of rendering configuration, our proposed method is more similar
to the approach by Poirier et al. [PDG21] insofar as we also use the graphics pipeline.
However, in terms of rendering quality and in terms of its performance characteristics, our
method is much more similar to the ray tracing-based approach by Peters et al. [Pet+23]:
both methods scale performance-wise relative to the number of rendered pixels: The
method of Peters et al. traces one ray per pixel, while our solution selects suitable levels
of geometric detail using a screen distance-based metric.

Further usages of glyphs in the context of medical or scientific visualization include
comparisons between healthy and infected persons [Zha+17b; Zha+17a; Zha+15] or
comparisons between ensembles of stress tensor fields [Abb+15].
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Point rendering can arguably also be described as an approach to render ultra-detailed
geometry, under the condition that sufficiently many samples are used. Recent work
shows that modern GPUs are capable of processing and rendering 50 to 144 billion points
per second [SKW21; SKW22], with the former being limited by memory bandwidth
and the latter improving the throughput through compression. By sampling points on
parametric functions, we avoid memory fetches as the bottleneck but potentially trade it
for a compute-based bottleneck.

Similar to Nanite [KSW21], our approach combines the strengths of the graphics and
compute pipelines of modern GPUs to produce geometry with close-to-pixel detail.
However, we instead target parametric functions, which can be sampled with arbitrary
fidelity, limited only by machine floating point precision. Furthermore, our solution
involves no preprocessing and recomputes the levels of detail from scratch in each frame;
thus, it also lends itself to animated shapes with erratic changes in appearance.

5.4 Parametric Function Definition
Our method considers parametric functions that transform two input parameters (u, v)
into Cartesian coordinates (x, y, z) of the three-dimensional Euclidean space, i.e., R2 → R3,
or intuitively a transformation of a quad/rectangle into a three-dimensional surface as
illustrated in Figure 5.2. Interpreting R2 as, for example, spherical coordinates and R3 as
the cartesian coordinates of the corresponding points on a sphere allows us transforming
the quad into a sphere. We can then further transform the sphere into spherical harmonic
glyphs using the respective SH functions.

Listing 5.1: GLSL source code of a parametric function which produces a heart shape
based on two input parameters u and v.

1 #define PI 3.14159265359
2 // Creates the surface "Johi’s Heart".
3 // Input: u ... first parameter in range [0, PI )
4 // v ... second parameter in range [0, 2*PI)
5 vec3 sampleJohisHeart(float u, float v) {
6 // Start with a sphere shape:
7 vec3 p = vec3(sin(u) * cos(u), cos(u), sin(u) * cos(v));
8 // Distort it into a heart shape:
9 if (u < PI / 2.0) {

10 p.y *= 1.0 - (cos(sqrt(sqrt(abs(p.x * PI * 0.7)))) * 0.8);
11 } else {
12 p.x *= sin(u) * sin(u);
13 }
14 p *= vec3(0.9, 1.0, 0.4);
15 return p;
16 }

In the context of our method, a parametric function is expressed directly in source code;
in addition to mathematical elements, it may also contain logical operators and flow

80



5.5. Method

control (conditional statements, loops, and recursions). This facilitates the intuitive
generation of features that are harder to express mathematically, such as creases or
discontinuities. An example of such a parametric function is given in Listing 5.1. It uses
if statements to scale parts of a sphere base shape such that the resulting surface forms
the heart shape shown in Figure 5.3a.

5.5 Method
In this section, we describe our approach, which is able to render a wide variety of
parametric functions in real time with controllable precision. Depending on the current
frame’s camera position, orientation, projection, and screen coordinates, a LOD stage
produces patches of similar size in screen space, which are subsequently rendered with
one of two different rendering variants. Figure 5.4 depicts the overview of our method
and its major stages:

1. Patch Initialization: A compute shader stores one patch per parametric object
in the buffer of patches to be evaluated, in particular the parameter ranges ui and
vi along with some auxiliary data, such as the type of object—which refers to a
particular fpi(u, v)—and which material shall be used for shading. For objects that
are known to be very detailed, ui, vi can already be uniformly subdivided in this
stage, which ensures a minimal number of output patches to be forwarded to the
rendering stage.

2. Patch Subdivision: The second stage executes up to a predefined number of n
LOD steps, which subdivide the parameter ranges ui, vi until their approximated
screen-space extents eui , evi when evaluated with fpi(u, v) no longer exceed screen-
space thresholds tu, tv. The point of this procedure is to create patches of similar
sizes to be forwarded to the Rendering stage in order to optimally utilize GPUs.

3. Rendering: All the patches which have been scheduled for rendering in one of
the preceding LOD steps during Patch Subdivision are rendered in one of two
manners:

a) Tessellation-based: Patches are rendered with a tessellation-enabled graph-
ics pipeline with either fixed or adaptive tessellation levels. Vertices generated
by the tessellator are positioned according to fpi(u, v).

b) Point-based: Patches are sampled by fpi(u, v) at fixed steps across parameter
ranges ui and vi. Results are projected into screen space and written to a
64-bit integer target image.

5.5.1 Patch Subdivision Stage
To determine whether and how a patch i should be subdivided, its parameter range ui, vi is
sampled and evaluated using its associated function fpi(u, v). The evaluated samples are
projected to screen space and analyzed separately to determine the subdivision pattern.
In order to achieve adaptive subdivision, we sample along lines in u- and v-direction
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Figure 5.4: Overview of the stages of our method, and the buffers and textures which
are accessed in each stage. Patches are evaluated and subdivided and then re-evaluated
up to n times in the n LOD steps before they are stored in the “Patches to be rendered”
buffer. The rendering stage reads all the patches from that buffer and either generates a
triangle mesh to render them via hardware tessellation, or performs point-based rendering.
The latter variant cannot be used with a renderpass that rasterizes into a framebuffer.
Instead, it must perform atomicMin writes into a 64-bit integer buffer or image.

independently. Concretely, we take 8 samples in u-direction at 4 fixed v-values v1, . . . , v4
(for a total of 32 samples), and the same for the v-direction at 4 fixed u-values u1, . . . , u4.
For each line, we compute the sum euik

or evik
respectively of screen-space extents

between the projected sample points, and compare them to user-defined thresholds tu, tv.
If for any line, e > t, then the patch half in which the line is located is split along the
direction of the line. For example, if this happens to at least one of the lines in u-direction
at v1 or v2, then the first half of the v-range needs to be split into two u-intervals and
its parts are scheduled for re-evaluation by the subsequent LOD step. The resulting
subdivision patterns are shown in Figure 5.5.

The 32 samples correspond to a typical subgroup size on NVIDIA and Intel GPUs.
After a subgroup has taken 2 × 32 samples for the patch splitting decisions, the same
subgroup takes a further 25 samples of the parametric function, which is crucial to
prevent false-positive culling decisions for cases where only a small part of a patch corner
reaches into the viewing frustum. Our evaluation scheme is illustrated in Figure 5.6,
showing the lines used for patch evaluation along u and v, and the 25 extra samples.

A fixed number of compute shader invocations is dispatched every frame to perform
these evaluations in multiple subsequent LOD steps. We use 12 dispatch calls, which is
enough to subdivide a (perfectly screen-aligned) 32k pixels-wide patch down to 8 pixels
and should suffice for the vast majority of cases. After sufficient patch subdivision has
been achieved in a certain LOD step, no further LOD step will store any more patches
into the “Patches to be evaluated” storage buffer and only store sufficiently subdivided
patches into the “Patches to be rendered” storage buffer—how both buffers are accessed
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u
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input
patch

no subdivision split u only split v only split both

split u and the
first half of v

split u and the
second half of v

split v and the
first half of u

split v and the
second half of u

Figure 5.5: During an LOD step, an input patch can either not be subdivided, or split
according to the seven patterns shown in this figure when being scheduled for re-evaluation.

is shown in Figure 5.4. All of the dispatch calls in the Patch Subdivision stage are
indirect dispatch calls. For those LOD steps for which no patches are left to be evaluated
this means that the GPU still has to process the respective dispatch commands, but will
find that the number of workgroups to be processed is zero and therefore, no compute
invocations will be executed [Khr24vsp]. The empty dispatch calls did not incur any
noticeable or measurable overhead in our tests. Alternatively, the number of dispatch
calls could be adapted based on the previous frame’s highest required LOD step, if
latencies of a few frames to reach the appropriate number of dispatch calls are acceptable
by an application.

In many scenarios, the Patch Subdivision stage is very fast, often taking less than 10%
of the total frame time, which is typically the case for the tests presented in Figures 5.12
and 5.16 even when the camera is near the parametric object so that many screen pixels
are covered. The exact percentage depends on the particular object and scene setup. In
the test presented in Figure 5.15, the LOD stage has to determine patch sizes for 358k
fiber curves (i.e., 358k initial patches), which leads to the LOD stage taking up to 50%
of the frame time for this particular rendering configuration.

One key factor of the Patch Subdivision stage’s low impact on frame times in our
implementation is its heavy use of subgroup operations. They allow sharing data between
compute invocations [Khr24sub]. For example, in order to compute the screen distance
between two adjacent samples, the parametric function does not have to be sampled twice
in the same thread—instead, the other sample’s screen-space coordinates are retrieved
from the thread which computed the neighboring sample by accessing this neighboring
thread’s invocation index through subgroup operations.

The second key factor for achieving fast rendering performance is non-uniform patch
subdivision, which is illustrated in Figure 5.5. There are eight possible cases when a
patch is evaluated in the LOD step: If the approximated screen-space extents euik

, evik

do not exceed thresholds tu, tv across ui, vi of patch i, no subdivision is performed. In
this case, patch i is not scheduled for re-evaluation but is instead stored in the buffer for
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(a) Patch evaluation found
that this patch does not need
to be split.

(b) Patch evaluation found
that this patch shall be split
across u and v.

(c) Patch evaluation pattern
on the example of Johi’s
Heart.

(d) Evaluation of one patch
of a sphere segment (LOD
step 1)

(e) Non-uniform subdivi-
sion of a sphere segment
(LOD step 1)

(f) Evaluation of one of
the now subdivided patches
(LOD step 2)

Figure 5.6: Each of our LOD steps analyzes a given ui, vi patch by sampling fpi(u, v) at
89 locations to determine if and which splits are necessary. Samples to approximate the
screen-space extents across ui are drawn in yellow. Samples to approximate the screen-
space extents across vi are drawn in orange. The 25 extra samples to help with the frustum
culling decision are indicated by red dots. Figure 5.6c shows why multiple evaluations
across a patch are crucial in many cases: The first and fourth measurements in v-direction
(evi1 and evi4) are very near to the poles, where the parameters are very condensed. The
middle two measurements (evi2, evi3) fall into usable positions. Figures 5.6d to 5.6f
show an example of evaluating a sphere segment. Assuming a resolution of 512×512
and user-defined screen thresholds of tu = tv = 256, LOD step 1 finds that the patch in
Figure 5.6d does not exceed the thresholds and hence, no subdivisions are required. With
the camera closer to the object in Figure 5.6e, the lower parts of the sphere segment exceed
tv. The patch is non-uniformly subdivided and the new parts are scheduled for evaluation
in LOD step 2. Figure 5.6f shows the evaluation pattern on one of these patches during
LOD step 2.

patches to be rendered. If, however, an exceedance of tu, tv was detected for any euik

or evik
, patch i is split according to the seven patterns shown in Figure 5.5—except in

LOD step n, where (possibly split) patches are scheduled for rendering in any case. Non-
uniform patch subdivision doesn’t influence the performance of the Patch Subdivision
stage too much, but to a greater degree leads to better performance in the Rendering
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stage, since the resulting patches are more similar in terms of their screen-space extents.
The reduction in total frame time when comparing non-uniform patch subdivision to
uniform patch subdivision—that is, a constant patch subdivision scheme of one patch
into four—amounts to already 15% for a simple parametrically defined sphere like shown
in Figure 5.3g, and can be as high as 50% for the close-up view of a SH glyph like shown
in Figure 5.12c.

5.5.2 Rendering Tessellated Patches
Rendering patches that have been scheduled for rendering with our Tessellation-based
variant is very straightforward: Each scheduled patch i is rendered as a quad with fixed
inner and outer tessellation levels l [Khr23tesb]. Each vertex produced by the tessellator
is set to the position produced by fpi(ux, vy), where ux and vy refer to the interpolated
parameter locations within ui and vi ranges, produced by the tessellator. In GLSL,
these can be computed with the help of gl_TessCoord.xy in tessellation evaluation
shaders [Khr23tesa]. The maximum tessellation level supported on modern GPUs is
typically 64, which means that an edge (of a triangle or quad to be tessellated) is
subdivided into 64 parts. A perfectly screen-aligned edge with a screen-space extent
of 64 (which could be the result of using a threshold value t = 64) would therefore
be subdivided so that there is one segment for each pixel. In many cases, choosing
such fine subdivisions is counter-productive due to the resulting impact on rendering
performance [KDR18; Ker+22]. Therefore, we propose to use fixed tessellation levels
only for parametric functions that are expected to produce sub-pixel geometric detail, or
resort to adaptive tessellation with SS, which might capture sub-pixel detail even better
and produce more uniform geometry density, enabling continuous LOD selection.

Adaptive tessellation levels are based on the actual approximated maximum screen-
space extents eui , evi of a given patch i. These extents are measured during Patch
Subdivision by taking the maximum of the four measurements euik

and the maximum of
the four measurements evik

, as illustrated in Figure 5.6. For example, splitting parameter
range u1 with approximated screen extents eu1 based on threshold tu can lead to split
patch sizes with extents eu2 ≈ tu

2 if eu1 is just slightly less than tu. Adaptive tessellation
in that context means to scale a tessellation level l as follows:

l = clamp( eu2 l

min(tu, l) , lmin, lmax).

The result is clamped to a minimum tessellation level lmin (e.g., lmin = 8) and a maximum
tessellation level lmax (e.g., lmax = 64).

5.5.3 Point-Based Rendering
With the Point-based variant, a patch i of range ui, vi to be rendered is sampled
point-wise by fpi(u, v) in equidistant steps along each parameter direction. The resulting
color values are stored in an image at the respective screen-space coordinates. Since
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...

Δu
Δv

Figure 5.7: With the Point-based variant, parameter range ui is processed in “columns”
of 32 samples. Within such a column, subgroups sample the patch to be rendered “row-wise”
in v parameter direction. A subgroup always keeps the data of two rows in registers,
which are marked in green. Data of neighboring u samples is shared through subgroup
operations. The samples that do not write pixels are marked in red—they take auxiliary
samples that are used for tangent and bitangent calculations.

color attachments are incompatible with this rendering variant, we use a 64-bit image
as the target to receive the rendering output as described in Section 5.5.2. Samples
of an input patch are produced in the following manner: The screen-space threshold
parameters tu, tv determine the size of a patch. Given a defined workgroup size of N ,
we divide the parameter range ui by the smallest multiple of N that is larger than
tu, i.e. by ⌈ tu

N ⌉, and use that as the total number of samples taken across ui for each
parameter v. Parameter range vi is sampled in steps of size Δv = vimax−vimin

tv
− ε,

where ε can be used to decrease the step size in order to prevent holes in the rendered
output. We use N = 31, which is not arbitrary, but rather tied to our compute shader-
based implementation: 32 subgroups—which is a typical subgroup size on NVIDIA and
Intel GPUs, while it is typically 64 on AMD GPUs—sample the patch “row-wise” in
⌈ tu

31⌉ “columns” (if we call parameter direction u a “row” and parameter direction v
a “column” for the sake of tangible description) and share data among neighboring
subgroups. Our approach is illustrated in Figure 5.7. Each subgroup keeps the data of
two rows in registers so that neighboring values in v parameter direction are available.
Neighboring values in u parameter direction are read from neighboring subgroups through
subgroupShuffle operations. The values of the neighboring samples in u and v directions
are used to calculate the normal vector for the current sample ux, vy through the
cross product of tangent vector t = fp(ux+1, vy) − fp(ux, vy) and bitangent vector
b = fp(ux, vy+1)−fp(ux, vy). The normal n = t×b is required for shading computations.
We avoid sampling fp(u, v) multiple times with the same parameters. The last u column
does not produce points since it does not have a neighbor with higher subgroup index.
Therefore, only 31 subgroups write pixel values, while the last subgroup only provides its
data to the second to last subgroup.

Our Point-based rendering variant also features a continuous LOD configuration based
on adaptive sampling, where the number of samples in u and v directions are not
calculated based on the threshold parameters tu, tv, but instead on the approximated
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screen distance extents eui , evi , which are measured during Patch Subdivision. The
adaptive sampling configuration processes patch i in

⌈︂
eui
31

⌉︂
columns, taking row-wise

steps of size Δv = vimax−vimin
evi

− ε. The adaptive sampling variant assumes fpi(u, v) to
distribute samples somewhat uniformly across ui, vi, since it takes approximately one
sample across the screen space-based extents eui and evi . This variant often leads to
much faster rendering speeds but runs the danger of producing small holes (often the size
of 1×1 pixel) in the rendered output. In some cases, they can be prevented by increasing
the ε values.

5.5.4 Render Targets

Since our Tessellation-based rendering variants are rendered with classical graphics
pipelines, their outputs are typically rasterized into a framebuffer’s color attachment. This
is the only option to profit from hardware-accelerated multi-sampling (MS) and its resolve
operation. MS evaluates the depth test for multiple subsamples of one fragment while
limiting the color samples—or fragment shader invocations—to one per fragment. I.e., it
enables higher depth resolution in a hardware-accelerated manner, which is especially
beneficial for fine-structured geometry such as the curtains shown in Figures 5.1d and 5.1e,
which consist of many small yarn or fiber curves like those shown in Figures 5.3b and 5.3c.
Rendering those with SS or MS produces much less Moiré patterns in the rendered
output thanks to the higher geometry sampling density. Eight subsamples per pixel are
currently the maximum on modern NVIDIA and AMD GPUs [Wil24]. If more evaluations
are desired for a single fragment, a combination of SS and MS has to be established. For
many of our evaluations presented in Section 5.6, we utilized a configuration of 4xSS (i.e.,
resolution doubled in each dimension) combined with 8xMS framebuffers. In total, this
leads to 32 depth evaluations, and four color evaluations for each fragment. The final
rendering results are produced by first resolving MS through hardware resolve [Khr24ras],
and then averaging the resulting four corresponding fragments of the high-resolution
color attachment into one.

We use color attachments as render targets for all our tests presented in Section 5.6
that use a Tessellation-based rendering variant since it is generally faster than the
alternative—which is storing the rendering output into a 64-bit integer image. The latter
is fundamentally the same approach as taken by Nanite [KSW21]. Depth writes and
also the depth test of a graphics pipeline can be disabled in this case. The resulting
depth and color values are instead written in software through atomic operations from
fragment shaders. By combining depth and color values into a single 64-bit integer value,
as illustrated below, atomicMin operations ensure that parallel writes will produce the
correct rendering result.

depth red green blue alpha
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Since our Point-based rendering variants operate within compute shaders, they cannot
use the hardware’s depth testing functionality, which is only accessible when rendering
via graphics pipelines into framebuffers with an attached depth attachment. Hence,
we have to use a 64-bit integer image and store their rendering results via atomic
operations. In general, it is undesirable to leave holes in the rendered result of a
connected parametrically defined surface. Therefore, useful rendering settings will rather
try to oversample a parametric function to some degree, so that at least one sample is
taken per output fragment. This leads to some amount of overdraw—meaning multiple
atomicMin operations accessing the same fragment in the 64-bit output image—which is
generally a tradeoff that must be taken to avoid holes with our implementation.

5.5.5 Anti-Aliasing with Point-Based Rendering
The Point-based rendering approach described in Section 5.5.3 writes its results into
a 64-bit image, as described in Section 5.5.4. A potential problem with this approach
is that even when a given pixel is oversampled, one of the samples—the one with the
smallest depth value—overwrites all the other samples, potentially producing aliased
results. In this section, we describe an alternative variant that first gathers samples in
small, virtual, local framebuffers in shared memory and then resolves them in software,
producing anti-aliased results. We refer to this variant by Point-basedlocal FB, and
denote the variant which writes directly into the 64-bit image as Point-baseddirect.

With the Point-basedlocal FB variant, the render target is subdivided into 16×16 pixels
sized local framebuffers which reside in shared memory. Since it would be highly inefficient
to render each patch into each of these tiles, we propose a patch-to-tile assignment step
that selects all the potentially relevant patches per tile based on each patch’s axis-aligned
bounding box (AABB). Whenever a patch’s AABB intersects a tile’s bounds, it is assigned
to this tile. Dividing the screen into 16×16 tiles can look like shown in Figure 5.8d.
Depending on the chosen screen distance threshold values tu and tv, a heatmap showing
how many patches have been selected per tile can look like shown in Figure 5.8e for the
different seashell variations from Figures 5.3d to 5.3f.

The patch to tile assignment step must be scheduled after the Patch Subdivision stage
and, naturally, before the Rendering stage (i.e., between stages 2 and 3 in Figure 5.4).
It is implemented in a compute shader with one thread per patch that has been scheduled
for rendering by the Patch Subdivision stage. This thread assigns the patch to all tiles
which overlap with the patch’s AABB. In our tests, 16×16-sized tiles showed favorable
performance over larger tile sizes. Overall, this intermediate step has a very low impact
on performance: Even in a relatively demanding scenario—namely 60k yarn curves, 358k
fiber curves, and six seashell models, covering the entire screen so that all tiles get patches
assigned—this step does not take longer than 0.14ms for a resolution of 1920×1080 on
an RTX 3070. Further performance evaluations are presented in Section 5.6.1.

Local framebuffers have the same format as the global render target: 64-bit integer as
described in Section 5.5.4. For 2×2 super-sampling, 32×32-sized local framebuffers must
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(a) Point rendering, aiming
for 1spp

(b) Point rendering, aiming
for 9spp (oversampling 3× in
both, u and v directions)

(c) Point rendering into local
framebuffers, 3×3 px per out-
put px, enabling up to 9xSS if
all pixels get values assigned.

(d) There is one local framebuffer for each
16×16 region of the screen.

(e) Heatmap indicating the numbers of
patches assigned to each 16×16 tile. Red
regions represent higher patch counts.

Figure 5.8: These images show different results of our point rendering variants. Fig-
ures 5.8a and 5.8b are results from directly rendering into the 64-bit integer image, while
Figure 5.8c shows a result from first rendering into small, virtual, local framebuffers per
16×16 tile (shown in Figure 5.8d). Relevant patches are first assigned to each tile. A cor-
responding heatmap illustrating the assigned patch counts per tile is shown in Figure 5.8d.

be allocated; for 3×3 they are sized 48×48 accordingly. For each tile, the following steps
are performed:

1. Initialize each pixel in the local framebuffer to the clear color.
2. Point-render each selected patch into the local framebuffer in the same manner as

described in Section 5.5.3.
• Discard points outside of the local framebuffer bounds
• atomicMin operations now access shared memory

3. Average each 2×2/3×3 region in the local framebuffer, producing one output pixel.
Write the latter into the global render target.

• Regard only entries that have been set, i.e., are different from the clear value

The main benefit of Point-basedlocal FB are super-sampled results, which are not possible
with our Point-baseddirect variant. The effect can be observed Figure 5.8: While just

89



5. Fast Rendering of Parametric Objects in Real Time on Modern GPUs

increasing the sample count (result shown in Figure 5.8b compared to Figure 5.8a)
succeeds in filling some holes, it is unable to get rid of Moiré patterns. Only Point-
basedlocal FB is able to reduce them as can be seen in Figure 5.8c—most notably on the
blue seashell on the right, which has a lot of tiny geometric details on the surface.

5.5.6 Rendering Variants and Configurations
In the previous sections, we have presented two fundamentally different rendering ap-
proaches: One uses the rasterization-based graphics pipelines in conjunction with the
hardware tessellator to amplify geometry, and the other uses point-rendering from com-
pute shaders. Each of these variants can be configured in different manners, adapting
them to the rendering requirements of different parametric objects.

Major configuration options for the Tessellation-based rendering variants are:

• Using 1 sample per pixel (noAA), MS, SS, or a combination of MS and SS, to
increase the sample count per pixel

• Using different tessellation levels
• Varying screen distance thresholds tu and tv, affecting patch sizes

The latter has an effect of approximate screen-space extents of the patches output by the
Patch Subdivision stage. In combination with the tessellation levels, patches can be
generated which lead to sub-pixel-sized triangles, or to triangles covering multiple pixels
in the resulting framebuffer. Adaptive tessellation levels, as described in Section 5.5.2,
lead to more homogeneous triangle sizes, while fixed tessellation levels can help with
avoiding artifacts on patch borders and for generating patches with sub-pixel geometric
detail for the Rendering stage. The latter is especially useful in combination with
MS or SS framebuffers, so that multiple samples can be captured per pixel, leading to
super-sampled and anti-aliased results. In terms of MS, the typical maximum number
of subsamples on modern GPUs is eight [Wil24]. If more subsamples per pixel are
desired, SS framebuffers or a combination of MS and SS must be utilized. For example,
combining a 4xSS framebuffer with an 8xMS framebuffer format, gives 32 samples for
one pixel, allowing to capture a lot of sub-pixel detail. As can be seen in our evaluations
in Section 5.6, our rendering method still renders at high FPS even for 4xSS+8xMS
configurations.

Major configuration options for the Point-basedrendering variants are the following:

• Using the Point-baseddirect or Point-basedlocal FB rendering approach
• Varying the sample density per patch
• Varying screen distance thresholds tu and tv, affecting patch sizes

The differences between Point-baseddirect and Point-basedlocal FB are mainly that the
former generally leads to better rendering performance, while only the latter is able to
produce anti-aliased rendering results. More technical details are described in Section 5.5.5.
Varying tu and tv typically has an impact on performance: While decreasing them leads
to higher computational load in the Patch Subdivision stage (more subdivisions, more
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LOD steps), it often has a positive impact on rendering performance since workload
per compute thread (pixel filling) decreases and workload can potentially be distributed
better across the GPU’s computing clusters. Increasing the sample density per patch
also affects the computational workload during rendering and leads to more memory
transfers due to overdraw, but is often necessary to fill holes in the rendered output.

For our evaluations presented in Section 5.6, we mainly focus on the configurations
Tessellation-based with noAA, Tessellation-based with 4xSS+8xMS, and Point-
basedlocal FB with 4xSS. We leave out Point-baseddirect from most comparisons because
it is unable to produce anti-aliased rendering results.

5.5.7 Hybrid Rendering
Some of the rendering variants described in Section 5.5.6 are better suited to certain
scenarios than others. Tessellation with noAA or Point-baseddirect generally lead to
better performance than the variants producing anti-aliased results. Depending on the
properties of a parametric object, one or the other variant would be better suited for
rendering it. For some parametric objects, it depends on factors such as distance to the
camera and framebuffer resolution whether or not its parametric description produces
sub-pixel features for certain rendered areas. A parametric yarn curve (like shown in
Figure 5.3b or a parametrically defined sphere (like shown in Figure 5.3g) will never have
sub-pixel details on its surface. However, super-sampling might still be desirable when
rendering them to get higher resolution for these objects’ boundaries to the background
or boundaries of other objects. The curtains consisting of several thousands of yarn or
fiber curves shown in Figures 5.1d and 5.1e would be an example of such a situation,
especially when the yarn or fiber curves are so small in screen space that they cover only
a few pixels or even less than a pixel. Rendering fiber curves (like shown in Figure 5.3c)
or the different seashell variants (shown in Figures 5.3d to 5.3f) often leads to situations
where the surface itself leads to sub-pixel detail. Such a situation is established by the
rendered seashells shown in Figures 5.8a to 5.8c: These seashell models are fundamentally
a self-repeating shape, gradually scaling their geometric features smaller towards the
top region. Consequently, also their surface features get scaled ever smaller, eventually
leading to sub-pixel geometric detail at some point. This is most obvious with the blue
seashell model on the right, which has small bumps across its surface. Pixel-level sampling
in Figures 5.8a and 5.8b leads to noticeable aliasing, while sub-pixel-level sampling and
averaging leads to an anti-aliased result in Figure 5.8c.

In this section, we propose a hybrid rendering variant, which performs a spot-check on
each patch that is about to be scheduled for rendering during the Patch Subdivision
stage. If this spot-check detects sub-pixel variations, the following actions are performed:

1. Do not schedule the patch in question for rendering.
2. Mark the patch to indicate that it has sub-pixel details that shall be rendered in

an anti-aliased manner.
3. Re-schedule the patch for evaluation in the next LOD step.
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(a) With the camera close to
the seashell models, it can be
seen that only few patches are
scheduled for super-sampled
rendering.

(b) With the camera mov-
ing away, more patches are
deemed to require super sam-
pling.

(c) With the camera further
away, all the patches of the
seashell model on the right
have been found to show sub-
pixel detail.

(d) Spot-checks are performed
in the middle of patches for a
region of 7×3 pixels.

(e) Sub-pixel feature detection
applied to a curtain model con-
sisting of 60k yarn curves

Figure 5.9: Figure 5.9d shows the positions of the spot-checks for sub-pixel feature
detection during the Patch Subdivision stage. In Figures 5.9a to 5.9c and 5.9e, the
effects of a two-level sub-pixel feature detection approach are visualized: The patches
colored in blue have not been found to have sub-pixel features in native resolution and
are consequently scheduled for rendering with noAA. The patches colored in green have
been found to have sub-pixel features w.r.t. native resolution and have been scheduled for
re-evaluation once, but haven’t been found to have sub-pixel features when tested against
an 8xMS framebuffer configuration. The patches colored in red have been detected to have
sub-pixel features also w.r.t. the increased resolution of 8xMS and have consequently been
scheduled for rendering with a 4xSS+8xMS rendering variant.

More details about the approach are given in Listing 5.2. It shows a part of a possible
GLSL compute shader implementation for the LOD steps with hybrid rendering enabled.
The code assumes that the configured workgroup size is equal to the subgroup size
so that one workgroup processes one patch, and can do so efficiently using subgroup
operations. Subgroup operations are used for estimating patch extents as described in
Section 5.5.1 and Figure 5.6. They are also used for the aforementioned spot-check for
detecting sub-pixel variations. In Listing 5.2, this check is performed within the function
hasSubpixelFeatures (invoked in Line 25) and evaluates a 7×3 pixel large region in the
middle of a patch to be scheduled for rendering in order to detect if it has sub-pixel
variations or not. These spot-check regions are highlighted in Figure 5.9d.

The fundamental task of one workgroup in the context of a LOD step is to analyze a
patch (via the call to analyzePatch in Line 12) and then either schedule its split parts for
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Figure 5.10: Different rendering variants require different render target formats.
Tessellation-based performs best in conjunction with framebuffers with color and
depth attachments, and they enable MS, providing multiple sub-samples per pixel (e.g.,
eight depth and color samples). Point-based rendering targets 64-bit integer images
which store both, color and depth, in one 64-bit integer value as described in Section 5.5.4.
The order of rendering variants indicated in this figure is important to not lose any detail:
Lower resolution targets are rendered first. The highest resolution comes last. Depth and
color data must be transferred between the different render target formats.

re-evaluation (in Line 19), or schedule a part that does not need to be split for rendering
(in Line 46). The hybrid rendering approach adds the code from Line 24 to Line 44,
introducing another decision on whether to schedule the patch for re-evaluation or for
rendering. If hasSubpixelFeatures in Line 25 detects that normals sampled at subpixel
locations differ from their respective interpolated normals—interpolated bi-linearly from
the corner points of an approximately 1×1 pixel large region—significantly, then the
patch is scheduled for re-evaluation at a higher effective resolution within an MS or
SS scenario in Line 35. If most of the subsamples’ normals are approximately equal
to their interpolated counterparts, the patch is assumed to not have severe sub-pixel
variations and therefore, scheduled for rendering with the rendering method currently set
for the patch in question in Line 40. Evaluating a patch at an effective higher resolution
corresponds to decreasing the screen distance thresholds tu and tv with respect to the
original resolution, as it is done in Line 32. For example, rasterizing into an 8xMS
framebuffer provides eight times more samples than in the noAA case, which corresponds
to a resolution increase by a factor of

√
8 in each direction; a 4xSS framebuffer corresponds

to a resolution increase by a factor of 2, and a 4xSS+8xMS framebuffer corresponds to a
resolution increase by a factor of

√
32. It shall be noted that implementations do not have

to stick to these exact adaptions of the screen distance threshold values, but they can
serve as a rough guideline. The point is that these factors correspond to approximately
how much additional geometric detail can be captured by such configurations.
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Listing 5.2: Partial compute shader code for an LOD step, focussing on the part of how
patches are processed for hybrid rendering.

1 // Main function of a compute shader that runs for every LOD step
2 void main()
3 {
4 uint patchId = getPatchIdOfCurrentWorkgroup();
5 vec4 uvParamRange = getPatchParameterRange(patchId);
6 int rv = getRenderVariantForPatch(patchId);
7 vec2 tutv = getScreenDistanceThresholdsForPatch(patchId);
8 // ...
9 // Evaluate whether or not a patch shall be split according

10 // to the approach shown in Figure \ref{fig:patch-eval-vis}:
11 vec4 outFromToUV[4];
12 int splitParts = analyzePatch(patchId, tutv, outFromToUV);
13
14 if (splitParts > 0) {
15 // Schedule each part for re-evaluation in the
16 // subsequent LOD step:
17 if (subgroupElect()) {
18 for (int i = 0; i < splitParts; ++i) {
19 scheduleForNextLodStep(patchId, outFromToUV[i]);
20 }
21 }
22 }
23 else {
24 if (useHybridRendering(patchId) && hasMoreDetailedRenderVariant(rv)) {
25 if (hasSubpixelFeatures(middleOf(patchId))) {
26 if (subgroupElect()) {
27 int rvNext = getNextMoreDetailedRenderVariant(rv);
28 // Will become effective in the subsequent LOD step:
29 setMoreDetailedRenderVariant(patchId, rvNext);
30 // Based on the render variant, adapt t_u and t_v:
31 float d = getDivisorForScreenDistanceThresholds(rvNext);
32 tutv = tutv / d;
33 setScreenDistanceThresholdsForPatch(patchId, tutv);
34 // Schedule for re-evaluation, not for rendering:
35 scheduleForNextLodStep(patchId, uvParamRange);
36 }
37 }
38 else {
39 if (subgroupElect()) {
40 scheduleForRendering(patchId, uvParamRange, rv);
41 }
42 }
43 }
44 else {
45 if (subgroupElect()) {
46 scheduleForRendering(patchId, uvParamRange, rv);
47 }
48 }
49 }
50 }
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All operations that schedule a patch either for re-evaluation in the subsequent LOD step
or for rendering are enclosed by if (subgroupElect()) statements [Khr24sub] to ensure
that only one single thread schedules the patch for re-evaluation or rendering. Without
these statements, each thread would schedule the same patch, which would be redundant
and immensely wasteful in terms of performance. The rest of the code in Listing 5.2
is supposed to remain executed in parallel on 32 threads (of an 8×4 sized workgroup),
which is the maximum subgroup size on NVIDIA and Intel GPUs. The subgroup size of
8×4 is also the reason why we chose to evaluate 7×3 pixels for each patch: It can be
done efficiently in one subgroup iteration. The respective last “rows” and “columns” do
not evaluate a separate pixel but merely provide data—similar as our point rendering
approach described in Figure 5.7. By keeping most of this shader’s implementation
parallel, threads can work together. This can be especially beneficial during analyzePatch

(invoked in Line 12) and during hasSubpixelFeatures (invoked in Line 25), where an
efficient implementation can make use of subgroup operations [Khr24sub] to share data
between threads: For distance computations between samples during analyzePatch , or
for computing normals through the cross product of tangents and bitangents, which can
be computed by getting neighboring threads’ positions, during hasSubpixelFeatures .

In our implementation of hasSubpixelFeatures we take a total of nine sub-sample
positions, sample the parametric function at these offsets, compute normals, and compare
them with the bi-linearly interpolated normals from the ≈1px sized region. In an attempt
to capture a wide range of frequencies, we select the sub-sample positions at all u, v-offset
combinations of dividing each ≈1px parameter range by the first three prime numbers:
1
2 , 1

3 , 1
5 . The effect of our hybrid rendering approach can be observed in Figure 5.9: It

shows a three-tier hybrid approach, first evaluating patches against the native resolution
with noAA, then against an 8xMS increased resolution, and finally rendering the patch
with 4xSS+8xMS if evaluation at the 8xMS-level still shows sub-pixel variations.

Care must be taken when creating an application that shall be able to dynamically use
different rendering variants since they might require different render target formats and the
application needs to switch between them during a frame. While Tessellation-based
render variants preferably render into a framebuffer’s color attachment (as described
in Section 5.5.2), Point-based render variants write into 64-bit integer images (as
described in Section 5.5.3). Depth and color information must be transferred between
these two formats—for these cases, compute shaders must be used to read and extract
color and depth values from 64-bit integer images, or to combine and write them to 64-bit
integer images. For MS framebuffers, transferring color and depth values from previous
rendering variants into all the relevant samples must be ensured as well. Figure 5.10
shows a setup supporting different render variants and indicates the order of rendering
them within the Renderingstage: It is important to start with the render variants
that use the coarsest render targets and always progress to render targets that provide
finer detail. Failing to follow this order will have the effect of losing resolution. Keeping
this order is essential to get correct rendering results at the geometry borders since
framebuffers of higher resolution capture more depth samples. In our implementation, we

95



5. Fast Rendering of Parametric Objects in Real Time on Modern GPUs

transfer the the previously rendered noAA results into an 8xMS framebuffer by rendering
a full-screen quad. Writing color and depth values in a fragment shader ensures that all
the subsamples get the already rendered color and depth values assigned. Also, color and
depth transfer from the 8xMS framebuffer into the 4xSS+8xMS framebuffer attachments
is performed through a full-screen quad for the same reason. We show in Section 5.6.2
that such a hybrid rendering setup can help to keep frame rates constant, but it must be
noted that our implementation also incurs some significant overhead from transferring
the data between the different render targets as shown in the following table:

3a. → 3b. 3b. → 3c. 3c. → 3d. Total
Values written 2.1M 16.6M 66.4M 85.0M
Bytes transferred 17MB 133MB 530MB 680MB
Time 0.05ms 0.11ms 0.78ms 0.94ms

The values written refer to color or depth values that have to be written by the render
output units for a resolution of 1920×1080. Color values of 8bit per channel + 32bit depth
values amount to the stated bytes transferred. The milliseconds have been measured on an
NVIDIA RTX 3070 using GPU timestamp queries, without rendering any patches. It shall
be noted that timestamp queries synchronize between measurements and that on a modern
GPU, the actual data transfer overhead might be less severe since a GPU might be able
to schedule other work in parallel. However, the overhead is not insignificant—especially
the data transfer of the 8xMS data into the 4xSS+8xMS framebuffer.

5.6 Results
We evaluate our method and its rendering variants based on the following parametric
functions, which have different characteristics and therefore pose different challenges to a
rendering method:

• SH glyphs
• Parametric plain-knit yarn curves
• Parametric seashells

One challenge when rendering SH glyphs—especially such of higher order—is that each
sample is computationally expensive. Furthermore, parameters are distorted very non-
uniformly across the entire parameter range. The challenge with rendering plain-knit
yarn curves is the vast amount that is required for a typical scene. While these two
parametric functions produce smooth surfaces, the parametric seashell model has very
small-scale surface features, leading to sub-pixel geometric detail for most of our test
setups. The results presented in Figures 5.12, 5.13, 5.15 and 5.16 were gathered after a
GPU warm-up phase of 2 seconds from multiple camera positions. The camera is located
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close to the object or center of the dataset for the first measurement and moves away
with every further measurement. Each measurement result (such as FPS, number of
pixels written, or number of render patches) represents the averaged data over a 5 second
time span, during which the camera moved around the center of the object or dataset
in one full circle—requiring the Patch Subdivision stage to generate and forward a
different set of patches to the Rendering stage every frame.

SH Glyphs: Spherical harmonics are mathematical functions defined on the surface of
a sphere and are parameterized using spherical coordinates (θ, ϕ) with θ ∈ [0, π] and
ϕ ∈ [0, 2π]. These functions result from a linear combination of a set of orthonormal
basis functions, an important property that makes them useful in a wide range of fields.
They are described via band index ℓ and parameter m. ℓ also states the order of an
SH. Higher orders allow the representation of higher frequencies but also come with an
increase in computational complexity, making them expensive to evaluate and challenging
to visualize. Thanks to their spherical parametrization, one way of representing them is
by using a sphere with the distance from its surface to its center set to the result of the
evaluated SH at the corresponding location (θ, ϕ), which aligns them with the definition
of parametric functions.

The SH glyphs we use represent measurements from a so-called high angular resolution
diffusion imaging (HARDI) [Tuc+02] dataset of a brain scan [Has+22], captured via
dMRI and shown in Figure 5.1b. We compare our method with the state-of-the-art SH
glyph rendering method by Peters et al. [Pet+23], which uses ray tracing to render
high-quality SH glyphs in real time. Figure 5.11 shows the effect of using different SH
orders for rendering. Our method shows remarkably consistent performance for varying
SH orders, while the method by Peters et al. suffers from strongly decreasing performance
with each SH order increase. While it renders more than 2000 FPS on an NVIDIA RTX
3070 for SH order 2, our method outperforms it for SH orders 8 and higher in single
SH glyph rendering (Figure 5.11a) and already for SH orders 4 and higher for the large
dataset (Figure 5.11b). Since higher SH orders reveal more detail about the measured
data they represent, we have focused further tests on SH order 12: For single glyph
rendering of SH order 12, Figure 5.12e shows that our method shows better performance
across all GPUs. The Tessellation-based variant is optimal for rendering SH glyphs
due to their smooth surface. Our recommended configuration is shown in Figures 5.12c
and 5.12e, which produces almost pixel-perfect geometric detail. Even a configuration
of our method with fixed tessellation factors outperforms the method by Peters et al.
across all GPUs but does not improve rendering quality despite the higher geometric
detail produced. Our method avoids the artifacts produced by the method by Peters et
al., which are shown in Figure 5.12b, but it also introduces small, much less noticeable
artifacts near the poles of the scaled sphere, an example of which is shown in Figures 5.21a
and 5.21b. 5.12f to 5.12i show how Patch Subdivision increases the number of patches
uniformly during the first four LOD steps to create sufficient geometric detail. Steps 5
and higher subdivide fewer patches or subdivide non-uniformly for larger distances to
the camera since the subdivisions suffice already in more cases. Rendering the HARDI
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(a) FPS comparison of using different SH orders for rendering a single SH glyph,
measured on an NVIDIA RTX 3070. tu = tv = 84, noAA, adaptive tessellation, and
lmax = 64 have been used as the configuration for our method.
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(b) FPS comparison of using different SH orders for rendering the HARDI dataset
containing 19,600 SH glyphs on an NVIDIA RTX 3070. tu = tv = 84, noAA,
adaptive tessellation, and lmax = 64 have been used for our method.

Figure 5.11: These diagrams show the impact of using different SH orders for rendering
the SH glyphs on rendering performance. The method by Peters et al. [Pet+23] is much
more affected by varying SH orders in that regard.

dataset, our method outperforms the method by Peters et al. even more strongly, as
shown in Figure 5.13g. It even provides headroom for a 4xSS and 8xMS variant, as shown
in Figures 5.13e and 5.13h. The image quality of this configuration is superior, which is
especially noticeable during camera movements and can also be observed in Figure 5.13f.

Plain-Knit Yarn: Gröller et al. [GRS95] provided an early parametric description of
knitwear, but we use the more recent parametric plain-knit yarn curves described by
Crane [Cra23]. Its fundamental shapes of yarn curves and fiber curves are shown in
Figures 5.3b and 5.3c. We use an extruded version of them for our evaluations, namely one
which takes the yarn direction (“tangent”) as parameter u, and constructs a circle around
each point along that direction via parameter v. We get an orthogonal vector (“normal”)
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(e) FPS rendered by different GPUs for different views of one single SH glyph,
comparing our method (tu = tv = 84, noAA, adaptive tessellation, lmax = 64) to
the method of Peters et al. The x axis shows the average number of pixels written
(excluding overdraw). The dotted line represents the number of patches to be rendered,
output by patch subdivision.
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Figure 5.12: For an SH glyph of order 12, Figures 5.12a to 5.12d show qualitative
comparisons of the rendered results compared with a reference image produced with
16xSS and 8xMS. For the first measurement, the camera starts at the view producing
Figures 5.12a and 5.12c and moves away for subsequent measurements. Figure 5.12e
presents the performance of our variants in comparison to the method by Peters et al.
Ours avoids their closeup artifacts. It also shows the number of patches to be rendered,
produced in our Patch Subdivision stage—while Figures 5.12f to 5.12i show the average
numbers of patches to be evaluated during each LOD step. No patches remain to be
evaluated after LOD step 10 in any of these test setups.

99



5. Fast Rendering of Parametric Objects in Real Time on Modern GPUs

to the tangent and rotate it using Rodrigues’ rotation formula [Rod40] around the tangent
by an angle θ, which is parameter v in the range [0, 2π). The source code repository
containing the code for Crane’s plain-knit yarn curves lists several implementations, none
of which is able to render a large number of yarn curves in real time with good rendering
quality and offers real-time changes to the code—our method enables this for at least
358k curves, as our results in Figure 5.15c show.

We show the performance comparisons of three different variants of our method on
the example of a blue curtain composed of 60k yarn curves or 358k fiber curves in
Figure 5.15. The configurations compared are a Tessellation-based variant with
adaptive tessellation, tu = tv = 62, lmax = 19, and no anti-aliasing (noAA), the same
configuration with 4xSS and 8xMS, and a Point-based variant with 4xSS. In both test
cases, the noAA configuration suffers from severe aliasing artifacts such as Moiré patterns,
which is due to the high number of yarn curves or fiber curves and the sub-pixel geometric
detail produced by them, especially for larger camera distances. The configurations
with SS produce visually satisfying results like those shown in Figures 5.1d and 5.1e. In
most situations, Tessellation-based shows better performance numbers, but there’s
also a noticeable sweet spot for the Point-based variant, where it outperforms the
former—namely when rendering a limited number of yarn curves or fiber curves at a
relatively small scale. However, our implementation of the Point-based variant suffers
from the problem that it produces a rendering result equivalent to that of conservative
rasterization, which can impair visual quality especially when rendering thin geometry.

In contrast to the results of single SH glyph rendering, where all the geometry is
raised from one single initial patch, Figures 5.15d to 5.15k show different subdivision
characteristics since Patch Initialization already creates 358k patches. Many of them
are culled for near-camera positions. Hence, only ≈12k remain after the first LOD step
in Figure 5.15d, all of which need to be subdivided due to the camera distance and screen
resolution. As the camera moves away, more fiber curves become visible but relatively
fewer patches need to be subdivided. The SS variants in Figures 5.15h to 5.15k generally
require more patch subdivisions due to the higher effective resolution.

Seashell: The parametric seashell model follows roughly the construction guidelines by
Wilson [Wil22], which allows the creation of a myriad of seashell variants by parameter
variations, such as the ones shown in Figures 5.3d to 5.3f. Achieving satisfying rendering
results for the variant shown in Figure 5.3f is challenging since its parametric model
creates many tiny bumps on the surface, resulting in sub-pixel geometric detail when
viewed from a distance or rendered in low resolution. For our tests with the parametric
seashell function, we use the same configurations that we have used for the yarn curves
tests, except for lmax = 64 to capture sub-pixel detail produced by the parametric
seashell model for many view positions. Also in this case, configurations with SS produce
much more satisfying visual results. The Point-based performance trails behind
Tessellation-based configurations. Results of different configurations are shown in
Figure 5.16.
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(g) FPS rendered by different GPUs for different views of the HARDI dataset,
comparing our method (tu = tv = 84, noAA, adaptive tessellation, lmax = 64) to the
method of Peters et al. The x axis shows the average number of SH glyphs rendered
for a certain view distance. The dotted line represents the patches output by our
patch subdivision stage.
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(h) Comparing our method (tu = tv = 84, 4xSS, 8xMS, adaptive tessellation,
lmax = 64) to the method of Peters et al. The x axis shows the average number of SH
glyphs rendered for a certain view distance. The dotted line represents the number of
patches to be rendered, generated by our patch subdivision stage, which is much
higher than in Figure 5.13g due to 4xSS.

Figure 5.13: For 19,600 SH glyphs of order 12, Figures 5.13a to 5.13f show qualitative
comparisons between the results and a reference image which has been produced with
16xSS and 8xMS. Figures 5.13g and 5.13h compare the performance of our variants with
the method by Peters et al. The camera starts at a view distance similar to the one
producing Figures 5.13a, 5.13c and 5.13e and moves away for subsequent measurements.
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(a) Initial camera position (b) Final camera position
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(c) Comparing the performance of three variants on multiple GPUs. The x axis states
tuples of number of yarn curves rendered, and pixels written (not counting overdraw)
for the different camera distances between Figures 5.14a and 5.14b.

1 2 3 4 5 6 7 8
0k

1.5k

3k

4.5k

(d) #patches out
per step (3k, 1.5M)

1 2 3 4 5 6 7 8
0k

1.5k

3k

4.5k

(e) #patches out
per step (5k, 1.5M)

1 2 3 4 5 6 7 8
0k

1.5k

3k

4.5k

(f) #patches out
per step (11k, 1.5M)

1 2 3 4 5 6 7 8
0k

1.5k

3k

4.5k

(g) #patches out
per step (27k, 1.2M)

1 2 3 4 5 6 7 8
0k

6k

12k

18k

(h) #patches out
per LOD step Tess.
4xSS (3k, 1.5M)

1 2 3 4 5 6 7 8
0k

6k

12k

18k

(i) #patches out
per LOD step Tess.
4xSS (5k, 1.5M)

1 2 3 4 5 6 7 8
0k

6k

12k

18k

(j) #patches out
per LOD step Tess.
4xSS (11k, 1.5M)

1 2 3 4 5 6 7 8
0k

6k

12k

18k

(k) #patches out
per LOD step Tess.
4xSS (27k, 1.2M)

Figure 5.14: Performance results and number of patches to be rendered of different
configurations for 60k yarn curves. Figures 5.14d to 5.14g show the numbers of patches
to be evaluated for the noAA and point rendering variants for each LOD step, while
Figures 5.14h to 5.14k show these numbers for the tessellation 4xSS configuration.
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(c) Comparing the performance of three variants on multiple GPUs. The x axis states
tuples of number of fiber curves rendered, and pixels written (not counting overdraw)
for the different camera distances between Figures 5.15a and 5.15b.
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Figure 5.15: Performance results and number of patches to be rendered of different
configurations for 358k fiber curves. Figures 5.15d to 5.15g show the numbers of patches
to be evaluated for the noAA and point rendering variants for each LOD step, while
Figures 5.15h to 5.15k show these numbers for the tessellation 4xSS configuration.
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(a) Initial camera position (b) Final camera position
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(c) Comparing the performance of three variants on multiple GPUs. The x axis
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number of pixels written on average (not counting overdraw).

1 2 3 4 5 6 7 8 9
0k

0.7k
1.4k
2.1k
2.8k

(d) #patches out
per LOD step (757k)

1 2 3 4 5 6 7 8 9
0k

0.7k
1.4k
2.1k
2.8k

(e) #patches out
per LOD step (482k)

1 2 3 4 5 6 7 8 9
0k

0.7k
1.4k
2.1k
2.8k

(f) #patches out
per LOD step (256k)

1 2 3 4 5 6 7 8 9
0k

0.7k
1.4k
2.1k
2.8k

(g) #patches out
per LOD step (117k)

1 2 3 4 5 6 7 8 910
0k
3k
6k
9k

12k

(h) #patches out
Tess. 4xSS (757k)

1 2 3 4 5 6 7 8 910
0k
3k
6k
9k

12k

(i) #patches out
Tess. 4xSS (482k)

1 2 3 4 5 6 7 8 910
0k
3k
6k
9k

12k

(j) #patches out
Tess. 4xSS (256k)

1 2 3 4 5 6 7 8 910
0k
3k
6k
9k

12k

(k) #patches out
Tess. 4xSS (117k)

Figure 5.16: Results of a parametric seashell with sub-pixel detail. Figures 5.16d
to 5.16g show the number of patches output to be evaluated for noAA and point rendering
configurations, Figures 5.16h to 5.16k for Tess. 4xSS configurations.
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5.6.1 Comparing Point-based Render Variants
Since Point-basedlocal FB first writes its results into small, virtual, local framebuffers,
the overdraw with this variant is first captured by the local framebuffers in contrast
to the global framebuffer. The single resulting color value after the software-resolve
operation leads to only one single atomicMin operation into the global 64-bit integer
target. While it would be reasonable to expect some performance improvement from
this approach—due to the atomic operations targeting shared memory instead of global
memory—this did not show in our measurements. The performance results of different
configurations are presented in Figure 5.17. They reveal that the super-sampled rendering
quality of Point-basedlocal FB variants takes a toll on performance. This can mainly be
attributed to increased computational load within the point rendering shaders, requiring
the additional clearing and resolve steps (as described in Section 5.5.5). The additionally
required patch-to-tile assignment step never took more than 0.4ms in our measurements.

5.6.2 Hybrid Rendering Performance
Performance reslts of our hybrid rendering approach are presented in Figures 5.18 and 5.19.
Both test cases show that a hybrid approach can lead to much more stable frame rates
as the Patch Subdivision selects a suitable render method which ultimately keeps
render load more stable. In contrast, fixed rendering with the 4xSS+8xMS configuration
shows varying frame rates and severe FPS drops when the camera is near the parametric
objects. The LOD stage takes even less time for the hybrid approach in the seashell
test shown in Figure 5.18. This is a result of fewer patch subdivisions required with the
hybrid approach, as the fixed 4xSS+8xMS configuration unconditionally aims for much
smaller patch sizes. This behavior can be observed well in Figures 5.18h and 5.18i: As
the camera is close to the parametric objects, they get subdivided into huge numbers of
small patches. In contrast, the hybrid approach determines that super-sampled rendering
is not required for many patches and hence, stops subdividing earlier as can be seen in
Figures 5.18d and 5.18e, scheduling much fewer patches for rendering. Overall, this leads
to a much less pronounced FPS drop when the camera moves closer to the parametric
seashells. However, the chart also shows the fixed overhead of a hybrid rendering setup,
as described in Section 5.5.7. This, unfortunately, leads to the hybrid rendering technique
not being able to outperform the fixed 4xSS+8xMS configuration in all cases.

The results of 60k yarn curves reveal a general weakness of the hybrid rendering approach
in situations with a high number of small initial patches—each one of the 60k yarn
curves is scheduled as an initial patch during Patch Initialization. Since the yarn
curves are very small in screen space, many of them are found to better be rendered in
higher detail, i.e., either 8xMS or 4xSS+8xMS. Therefore, many of them are rescheduled
for re-evaluation. One such situation is shown in Figure 5.9e and as the camera moves
further away, more patches are re-scheduled for re-evaluation. Since there is such a high
number of initial patches, this scenario already constitutes a relatively high workload for
the Patch Subdivision stage. As many patches are rescheduled, the workload increases
even more. Figures 5.19b to 5.19d reveal that almost all input patches are scheduled
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Figure 5.17: Comparison of different point-based rendering variants, including three
variants of Point-baseddirect with varying amounts of oversampling (and hence, over-
draw), and two variants of Point-basedlocal FB with different amounts of super-sampling,
which also require different local framebuffer sizes. The scene used for testing is the one
shown in Figure 5.8 with varying camera distances. The x-axis represents states the
number of pixels written (not counting overdraw).

three times for evaluation with the hybrid approach. Only as the camera moves closer in
Figure 5.19e, the workload in the Patch Subdivision stage declines. As a consequence,
we see high frame times of the LOD stage in Figure 5.19a. Only in the camera position
which is nearest to the curtain, the hybrid rendering approach is able to outperform fixed
4xSS+8xMS rendering. The latter shows optimal patch output characteristics when the
camera is further away, but subdivides vigorously as the camera moves closer. This can
be observed well in Figures 5.19h and 5.19i.

Overall, it can be stated that the hybrid rendering variant is well-suited for parametric
objects which do not consist of a huge amount of initial patches so that the LOD step code
presented in Listing 5.2 can figure out how much rendering detail is required. The hybrid
rendering approach can help to keep frame rates much more stable in such situations.

5.7 Construction of Parametric Objects
In this section, we give some general guidelines on the construction of parametric objects.
While it is rather straightforward to model simple shapes like a sphere or a heart shape
parametrically, things get more complicated when more complex shapes are constructed
in code. An example of a more complex and animated parametric object is the “giant
worm” model which is shown in Figure 5.20. It is constructed by several geometric
shapes: Its main body is basically a distorted cylinder that follows the path of a Bèzier
curve with added geometric detail on its skin. The skin detail is added via multiplication
of several sin functions, parameterized on u and v multiplied with factors, in order to
get a repeating pattern across the parameter ranges. The thickness of the worm’s body
is scaled via 1

u+o , where o is a small offset so that the thickness does not evaluate to
inf. The jaws consist of six patches (three for the skin on the outside, and three for
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(a) Performance results for rendering three seashell models, as shown in Figures 5.9a to 5.9c,
comparing a three-tier hybrid variant with the performance of Tessellation-based with fixed
4xSS+8xMS. The x axis shows the number of pixels covered on the screen as the camera moves
from a distance towards the parametric objects. The dashed lines show the milliseconds for
rendering all the patches, and the dotted lines represent the milliseconds how long all the LOD
steps of the Patch Subdivision took.
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Figure 5.18: These diagrams show performance results achieved with our three-tier
hybrid rendering technique which dynamically schedules patches for rendering with Tess.
noAA, Tess. 8xMS, or Tess 4xSS+8xMS rendering variants for a scene with three
seashells as shown in Figures 5.9a to 5.9c. Figures 5.18b to 5.18e put the numbers of
output patches after each LOD step in perspective to Figures 5.18f to 5.18i.

the inside of the mouth) that are brought into shape through trigonometric functions.
They are positioned relative to the body shape, which can be seen as its parent. By
sampling the parent shape at certain u, v parameter values, one gets a reference point
for positioning child patches. The tongue is a partially distorted sphere. The distortion
is performed based on its u and v parameter values. The teeth are many small cones,
each one positioned relative to a certain position of a parent jaw patch. By changing
parameters of, e.g., the Bèzier curve or by rotating the jaws, animations can be performed
and child objects move along with their parent objects, since they are positioned relative
to them.
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(a) Performance results for rendering a curtain consisting of 60k yarn curves, such as the one
shown in Figure 5.9e, comparing a three-tier hybrid variant with the performance of Tessellation-
based with fixed 4xSS+8xMS. The x axis shows the number of pixels covered on the screen as
the camera moves from a distance towards the parametric objects. The dashed lines show the
milliseconds for rendering all the patches, and the dotted lines represent the milliseconds how long
all the LOD steps of the Patch Subdivision took.
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Figure 5.19: These diagrams show performance results achieved with our three-tier
hybrid rendering technique which dynamically schedules patches for rendering with Tess.
noAA, Tess. 8xMS, or Tess 4xSS+8xMS rendering variants for a scene with 60k yarn
curves as shown in Figures 5.14a and 5.14b. Figures 5.19b to 5.19e put the numbers of
output patches after each LOD step in perspective to Figures 5.19f to 5.19i.

While this model does not satisfy the quality requirements of modern digital entertainment,
it shall be noted that it can be rendered with arbitrary precision thanks to its parametric
description. Figures 5.20b to 5.20d show that for different camera positions, our Patch
Subdivision stage always generates patches so that close to pixel-perfect geometric
detail is rendered. This aspect would be a perfect fit for a micro polygon scenario like
Nanite [KSW21], where pixel-sized triangles are not uncommon but rather the norm.
An additional benefit of using parametric models in such a scenario are the non-existent
memory requirements for a parametric model’s geometry. They can help to relieve
some of the high demands on storage requirements and memory transfers of typical
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(a) “Giant worm” modeled with parametric functions.

(b) Close-up view of the “gi-
ant worm” model, 1207 patches
have been generated, rendering
at 90 FPS with the point-based
rendering variant.

(c) A view of the “giant worm”
model where 949 patches have
been generated, rendering at
109 FPS with the point-based
rendering variant.

(d) Viewing the “giant worm”
model from further away, 238
patches have been generated,
rendering at 120 FPS with the
point-based rendering variant.

Figure 5.20: This parametrically modeled “giant worm” shape consists of multiple
parametrically defined and distorted geometric shapes. Figures 5.20b to 5.20d show the
resulting patches after the Patch Subdivision stage, ensuring that the object is rendered
with close to pixel-perfect geometric detail from all camera positions. The FPS have been
measured on an RTX 3050 Laptop.

ultra-high geometry scenarios, which often require loading or maintaining huge amounts
of geometry—sometimes even swapping geometry from GPU memory to main memory
in order to free space for other highly detailed meshes.
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(a) Artefacts at
SH poles

(b) Closeup of
Figure 5.21a

(c) Jump discon-
tinuities

(d) Rendered via
point rendering

(e) Rendered via
triangles

Figure 5.21: Current limitations of our method

5.8 Conclusion and Future Work

We have presented a general method for sampling and rendering parametric functions
in real time. Although a general method, it outperforms recent solutions for rendering
individual, high-detail SH glyphs and large glyph datasets in terms of rendering speed
and quality. For large datasets, our noAA configuration achieves higher frame rates on a
mobile AMD 680M GPU than the method by Peters et al. [Pet+23] on a dedicated desktop
NVIDIA RTX 4090 GPU. Even at the higher-quality 4xSS and 8xMS configurations,
our method running on the much weaker RTX 3050 Laptop is competitive with theirs
on an RTX 4090. We found non-uniform patch subdivision to be a key factor for good
performance, contrary to the recommendation of Eisenacher et al. [EML09] to always
split patches 1:4. Additional experiments for organic shapes and fabric yield several
hundred FPS while avoiding prominent artifacts. Our hybrid rendering approach is
another tool that can help to keep frame rates stable by supersampling only those patches
that have been found to show subpixel variations.

There are multiple avenues for future work: We intend to investigate better handling
of holes in parametric objects. Our Patch Subdivision ignores the concept of holes
and would currently subdivide patches strongly near the discontinuity as illustrated
in Figure 5.21c. An early exit criterion could improve performance in such cases.
Furthermore, the rendered output of a parametrically defined palm tree trunk shown
in Figures 5.21d and 5.21e currently differs between Point-based and Tessellation-
based since point rendering does not fill gaps, which are closed by the triangles produced
by the tessellator. Besides the proposed screen distance-based metric for deciding whether
to subdivide a patch, we hope to explore further metrics based, e.g., on the derivatives of
fp(u, v). We also plan to investigate relevant performance factors for our Point-based
variant, the speed of which we found to depend heavily on the test setup used. A more
optimized implementation might be able to increase the performance of Point-baseddirect
and Point-basedlocal FB rendering variants. Assuming better performance would make
the latter perfectly suitable for the supersampling variant in a hybrid rendering approach,
allowing to avoid the expensive data transfers between different framebuffer formats. A
new feature of modern graphics APIs called Work Graphs [PR23; Adv23] would allow
the number of dispatch calls for the Patch Subdivision stage to be determined and
scheduled within a frame, eliminating the latency of an adaptive approach like described
in Section 5.5.1.
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Since Patch Subdivision is fast enough to run every frame, our method is well suited
for use with animated objects or time-varying data. Although flowing curtains consisting
of hundreds of thousands of fiber curves have their appeal, we have only scratched
the surface: we believe that our general method can unlock a wide range of elaborate,
animated parametric functions, and enable glyph-based visualization of time-varying
medical data with high frame rates, or smooth morphing between data sets in real time.

Finally, the development of parametric modeling tools, or investigation into export
formats from existing modeling tools would be worthwhile. Constructing a model like a
“giant worm” in code can get exhausting. However, it is still notable that building such a
shape in code is entirely possible—and probably much easier than trying to construct a
similar model as a triangle mesh in code. Nevertheless, we assess suitable tooling as a
necessary stepping stone for creating more complex parametric objects in high fidelity.

The source code for this method is available on GitHub 1.

1https://github.com/cg-tuwien/FastRenderingOfParametricObjects
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CHAPTER 6
Conclusion

This dissertation presents in-depth descriptions and analyses of techniques that help
applications and games achieve better rendering performance in certain selected scenarios,
which are relevant in the context of achieving fast rendering of ultra-detailed geometry on
modern GPUs. While our work on fast rendering of multiple views provides rather general
recommendations for notoriously performance-intensive VR and multi-view applications—
which are arguably even more crucial with ultra-detailed geometry—our techniques for
enabling fine-grained culling of animated models’ clusters and rendering of parametrically-
defined objects in pixel-level or even sub-pixel-level detail directly target ultra-detailed
geometry scenarios, scenes, or parts of a scene.

Our extensive evaluations of MVR scenarios in Chapter 2 revealed that hardware-
accelerated MVR is not always faster than alternative pipeline configurations. We
describe two geometry shader-based variants that can outperform the OVR_multiview-
based P(

⌈︁
N
4

⌉︁
, , ... ) pipeline variant: P(

⌈︁
N
4

⌉︁
, , ... , VFCGS|BFCGS) shows better

performance in some test cases on older GPUs and is sometimes affected less by higher
geometry loads. P(1, , ... , VFCGS|BFCGS) outperforms all other pipeline variants for
scenarios with very high vertex shader load. Another notable finding of our evaluations
was that view frusta need to overlap to some degree for a positive effect on performance.
Otherwise, simple multi-pass rendering P(N, , ... ) might still be faster.

The technique we have described in Chapter 4 constitutes a fundamental algorithm
for preventing artifacts in rendering when using fine-grained culling of skinned models
that have been divided into meshlets. Our technique is guaranteed to yield conservative
bounds, which can be used to prevent premature VFC (at the borders of the screen) or
premature BFC (with deformed clusters w.r.t. their initial positions). Our evaluations
show that fine-grained culling results in almost linear savings in frame times in relation
to the number of clusters culled, which is especially helpful in scenarios with ultra-high
geometric detail.
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Our general method for rendering parametrically-defined objects described in Chapter 5
enables rendering of parametric objects with almost pixel-perfect precision, achieving
several hundred FPS for various parametric objects. Objects defined in such a manner
fit well into an ultra-detailed geometry scenario, such as a typical Nanite scene. The
advantages of this approach are revealed with the simple example of a sphere model:
Instead of storing a sphere model of ultra-high geometric detail in memory and streaming
it through the graphics pipeline each frame, it can be defined entirely in code using
a parametric function. Its geometry can be created at a later point in the graphics
pipeline, avoiding most of its high geometry load in early pipeline stages, while rendering
it in arbitrary geometric precision. Our method enables the rendering of a variety of
different shapes, and our evaluations revealed that our method outperforms a previous
state-of-the-art method for rendering SH glyphs in terms of speed and quality.
In conclusion, we can draw three general observations from our research:
First, some old wisdom remains still true and is now at least as important as it always
has been, and it is crucial to achieving good rendering performance with high geometry
loads: In ultra-detailed geometry scenarios, the key to achieving high FPS is rendering
not more than necessary by using culling (VFC and BFC) and the right amount of
detail (by applying a LOD strategy). We use fine-grained culling in geometry shader
instancing-based variants which performed well for the simultaneous rendering of multiple
views [Unt+20]. Culling is also the key to reducing render times significantly for our
technique for rendering ultra-detailed skinned meshes. Levels of detail further help to
render not more than necessary [Unt+21]. This is especially evident in our work on fast
rendering of parametrically-defined objects, where we create the geometry necessary for
almost pixel-perfect detail on the fly—but not more detailed than that thanks to precise
evaluation in each frame in our Patch Subdivision stage [Unt+24].
Second, a more recently applicable rule of thumb that can be stated is: It can be beneficial
to trade increased compute load for reduced memory transfers. This is especially true on
the latest GPU models, as shown in Figure 1.3. We follow this approach by computing
culling decisions in geometry shaders for simultaneous rendering of multiple views
[Unt+20], by computing culling decisions in task shaders to cull meshlets [Unt+21], and
most notably by evaluating parametric functions in compute, tessellation, and fragment
shaders during our method on fast rendering of parametric objects [Unt+24].
Lastly, modern GPUs offer a multitude of classical pipeline stages and features, as well as a
multitude of new pipeline stages and features. Maintaining an overview of them all can be
overwhelming but also worthwhile for achieving good performance in certain application
scenarios. We have tested hardware-accelerated MVR by means of the OVR_multiview
extension and found it to perform very well in many scenarios, but not in all. In some,
it was outperformed by classical geometry shader-based pipeline configurations, leading
to different caching and scheduling behavior on modern GPUs [Unt+20]. We have
used new task and mesh shader stages for fine-grained culling and rendering of skinned
meshes, which allowed for efficient scheduling of mesh shaders and data passing between
task and mesh shader stages, while still forwarding non-culled meshlets directly to the
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rasterizer [Unt+21]. While we attempted to use task and mesh shaders also for our
method for fast rendering of parametric objects, their fixed two-step nature turned out
to be too inflexible for our Patch Subdivision stage. Therefore, we resorted to multiple
compute shader invocations for this stage. While point rendering seemed to be beneficial
for rendering almost pixel-perfect detail, modern GPUs’ tessellation units led to much
better performance in almost all cases that we have tested. We found tessellation units
to perform their task very efficiently, which made them the variant of choice for fast
rendering of parametric objects in most cases [Unt+24].

With the contributions of this dissertation to the state of the art in rendering ultra-
detailed geometry in real time, we look forward to the techniques that other researchers
will develop in the future and hope that our research proves to be useful to them. There
are multiple opportunities for follow-up work.

Future Work
Each of the techniques presented has its own individual scope for possible follow-up
research, but especially combinations of the techniques presented in Chapters 2, 4 and 5
might provide some interesting research opportunities.

For multi-view rendering, evaluations should be performed with an implementation
that uses a low-level graphics API—such as Vulkan, as reasoned in Chapter 3—and
are performed on modern GPUs. Two newer NVIDIA GPU generations have been
released since we conducted our research presented in Chapter 2. The widely supported
VK_KHR_multiview extension should be included in the tests when using Vulkan. It
can be expected—but should not be taken for granted—that this extension outperforms
other graphics pipeline configurations.

Natural follow-up work to our research on conservative meshlet bounds, as described in
Chapter 4 for animated meshes, would be to extend our algorithm to further skinning
methods. Meaningful performance results could be gathered by integrating and testing
our algorithm in a Nanite-style micro-poly scene setup, including seamless transitions
between LODs on a per-cluster basis and cluster streaming. It would allow gathering
more insights into the performance savings achievable with fine-grained culling for clusters
of animated meshlets in such setups.

Follow-up work on our method on fast rendering of parametric functions, as described
in Chapter 5, should investigate the performance characteristics of our point-based
rendering variant since it seems to show subpar performance. Karis [KSW21] reported
better performance of the software rasterizer over the hardware rasterizer when rendering
small triangles. Such behavior was not observable in our evaluations shown in Section 5.6
and should, therefore, be subject to further investigation.

We assume potential for relative performance gains for both, our techniques on meshlet
bounds for animated meshes and fast rendering of parametric objects, in combination
with multi-view rendering: Both techniques perform view frustum culling. From our
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6. Conclusion

evaluations in Section 2.5 we know that many GPUs require view frusta to overlap
for achieving performance improvements when simultaneously rendering multiple views
over just rendering each view sequentially. For overlapping views, the culling steps
could be merged and not be run separately for each view. Meshlet bounds could be
used for view frustum culling against an all-encompassing multi-view frustum in the
task shader before scheduling the rendering of multiple views in the mesh shader. The
latter can be achieved via the GLSL_EXT_mesh_shader extension, which interacts
with VK_KHR_multiview [KB22]. Applying the same concept to the rendering of
parametric objects bears the potential for substantial performance savings since the
Patch Subdivision stage—which can take up to 50% of the frame time for some scenes,
as described in Section 5.5.1—only has to run once for all the views.

One possible way to combine our technique on fast rendering of parametric objects with
rendering meshlets of static or animated models would be to add geometric surface detail
onto objects using parametric functions. Since parametric functions do not require any
GPU memory but generate geometric detail on the fly, they constitute a powerful tool to
add geometric detail—especially useful in ultra-detailed geometry setups.

For the same reason—requiring no additional GPU memory—we believe that it could be
worthwhile in general to express as many objects as possible with parametric functions
in a game or application that strives to achieve almost pixel-perfect geometric precision
in its rendered output. Items or power-ups are prime examples of objects that could
be modeled in code with parametric functions. For expressing more complex objects
as parametric functions, specialized modeling tools might be required. Trying to learn
a parametric expression for given 3D models could constitute an interesting path of
research within the field of machine learning.

We can’t wait to marvel at the visual fidelity of future games and applications rendering
ultra-high geometric detail and hope that the techniques presented in this dissertation
can play a part in helping them reach their rendering performance goals.
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Overview of Generative AI Tools
Used

None.
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