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Kurzfassung

Online-Plattformen empfehlen Nutzern oft Artikel basierend auf ihrem aktuellen
Surfverhalten, insbesondere wenn keine langfristige Nutzerhistorie verfügbar ist.
Diese “sitzungsbasierten Empfehlungssysteme” basieren typischerweise auf der Ab-
folge von Artikeln, mit denen ein Nutzer interagiert. Die alleinige Betrachtung der
Sequenz (wie einem Graphen der Interaktionen) oder der Artikelbeschreibungen
(Text) kann jedoch einschränkend sein. Diese Masterarbeit untersucht, wie sich diese
Empfehlungen durch die effektive Kombination beider Informationsarten verbes-
sern lassen: den Beziehungen zwischen Artikeln (Graphdaten) und deren textuellen
Beschreibungen. Wir haben systematisch verschiedene Strategien zur Zusammen-
führung dieser Datenquellen untersucht – insbesondere deren Kombination früh im
Prozess (pro Artikel), später (pro Sitzung) oder die Anwendung einer einfacheren
Methode, bei der Textinformationen in die Graphanalyse integriert werden. Mithilfe
von Experimenten auf zwei realen E-Commerce-Datensätzen (AICrowd und Geizhals)
verglichen wir diese kombinierten Ansätze mit Systemen, die ausschließlich Graph-
oder Textinformationen nutzen. Wir untersuchten dabei nicht nur die Vorhersagege-
nauigkeit, sondern auch die rechnerische Effizienz und weitere Eigenschaften wie die
Diversität der Empfehlungen. Unsere Ergebnisse zeigen, dass die Kombination der
Informationen nach der getrennten Verarbeitung der Graph- und Textdaten (Fusion
auf Sitzungsebene) durchweg die genauesten Vorhersagen lieferte. Während eine frü-
here Kombination (Fusion auf Artikelebene) rechnerisch günstiger war, erwies sich
die einfache Methode der Textintegration als weniger effektiv. Wir stellten zudem
Zielkonflikte zwischen Genauigkeit, Rechenaufwand und der Vielfalt der empfohle-
nen Artikel fest. Diese Forschung unterstreicht die Bedeutung der Art und Weise,
wie Informationen in sitzungsbasierten Empfehlungssystemen kombiniert werden,
und liefert Erkenntnisse für die Abwägung zwischen Genauigkeit und praktischen
Beschränkungen. Zudem stellen wir ein Open-Source-Framework, SBRSFuse, bereit,
um zukünftige Forschung in diesem Bereich zu erleichtern.
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Abstract

Online platforms often recommend items to users based on their current browsing
activity, especially when long-term user history isn’t available. These Session-Based
Recommender Systems typically rely on the sequence of items a user interacts with.
However, just looking at the sequence (like a graph of interactions) or just looking
at item descriptions (text) alone can be limiting. This master thesis explores how to
improve these recommendations by effectively combining both types of information:
the relationships between items (graph data) and their textual descriptions. We
systematically investigated different strategies for merging these data sources –
specifically, combining them early in the process (per item), later (per session), or
using a simpler method of injecting text information into the graph analysis. Using
experiments on two real-world e-Commerce datasets (AICrowd and Geizhals), we
compared these combined approaches against systems using only graph or only
text information. We assessed not only prediction accuracy but also computational
efficiency and other qualities like recommendation diversity. Our findings show
that combining the information after processing the graph and text data separately
(session-level fusion) consistently gave the most accurate predictions. While combin-
ing earlier (item-level fusion) was computationally cheaper, the simple text injection
method was less effective. We also found trade-offs between accuracy, computational
cost, and the variety of recommended items. This research highlights the importance
of how information is combined in Session-Based Recommender Systems and pro-
vides insights for balancing accuracy with practical constraints. We also deliver an
open-source framework, SBRSFuse, to aid future research in this area.
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CHAPTER1
Introduction

Every day, millions of online shoppers navigate vast catalogs of products, often
struggling to find what they truly need while prioritizing their privacy. A single user
search query can lead to the retrieval of hundreds or even thousands of candidate
items, leading to information overload and eventually deteriorating user experience.
To counteract this issue, it is essential to provide only relevant recommendations,
which correspond to users’ preferences. Addressing this challange is crucial for price
comparison and e-Commerce platforms that help users explore and compare items.

1.1 Motivation and Problem Statement

In today’s digital world, users are often confronted with an overwhelming amount
of information and choices, whether browsing online stores, streaming services, or
news platforms. Finding relevant content or products efficiently can be a significant
challenge. Recommendation Systems (RS) have emerged as crucial tools to alleviate
this information overload [RRS22]. Their primary goal is to filter information and
predict items (e.g., products, movies, articles) that a user is likely to find interesting
or useful, thereby personalizing the user experience and increasing engagement
[RRS22]. Traditionally, many recommender systems rely heavily on historical user
data, such as past purchase history, item ratings, or long-term user profiles, to model
user preferences and generate suggestions.

However, there are numerous scenarios where such extensive historical data is
unavailable or impractical to use. Users might be browsing anonymously, interacting
with a platform for the first time, or their needs might be highly dynamic and context-
dependent, changing rapidly from one interaction to the next. Privacy concerns also
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1. Introduction

increasingly lead users and platforms to limit the collection and use of long-term
personal data [WCW19].

This specific set of challenges has driven the development of Session-Based Rec-
ommender Systems (SBRS). Unlike traditional systems, SBRS aim to provide rec-
ommendations based solely or primarily on the user’s interactions within their
current session – a limited sequence of actions like clicks, views, or additions-to-cart
[WCW19]. SBRS operate without relying on user identities or long-term historical
profiles, making them particularly relevant for:

• E-Commerce sites serving users who don’t have an account.

• Content platforms where user intent shifts quickly (e.g., news portals).

• Situations demanding high user privacy.

• Addressing the “cold-start” problem for new users or items.

The core task in SBRS is to predict the user’s immediate next action (e.g., the next
item they will interact with) based on the sequence of interactions observed so far
within that session [WCW19]. Early SBRS approaches often focused on sequential
patterns (e.g., using Markov Chains [EVK05] or Recurrent Neural Networks like
[HK18]) or simple item co-occurrences [WCW19]. More recently, modeling sessions
as graphs, where items are nodes and transitions are edges, has become a pow-
erful technique, often using Graph Neural Networks (GNNs) to capture complex
dependencies within the session [WCW19], [WTZ+18].

While modeling interaction patterns using graphs is effective, it often overlooks an-
other rich source of information: the textual descriptions associated with items (e.g.,
product titles, features, categories) [ZXL+24]. Users frequently rely on this textual
information to understand and evaluate items. Combining semantic information
with interaction patterns promises more accurate and nuanced recommendations
by potentially revealing the underlying reasons for item transitions, going beyond
simple sequential prediction [ZXL+24].

However, effectively combining these two distinct modalities – the structural infor-
mation from interaction graphs and the semantic information from text – presents a
significant challenge [ZZZ+23], [PWSR23]. How should these different data types
be integrated? At what stage of the recommendation process should they be fused?
What are the computational trade-offs [ZXL+24]?
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1.2. Aim of the Work

1.2 Aim of the Work

The primary aim of this thesis was to explore, implement, and systematically evaluate
different intermediate fusion strategies for combining graph (interaction-based) and
text (item description-based) modalities in session-based recommender systems.

To achieve this overarching goal, the work pursued several specific objectives.

The first objective was to define and implement three distinct intermediate fusion
strategies: item-level fusion, combining modalities at the item representation stage;
session-level fusion, combining modalities after separate session context modeling;
and text embedding propagation, using text features as initial input for graph models.
This required utilizing a set of established graph-, recurrent-, and text-based neural
network SBRS models as the foundation for these fusion experiments.

A second objective was to systematically evaluate and compare the performance
of these multimodal fusion approaches against their unimodal counterparts (GNN-
only and text-only). This evaluation aimed to assess effectiveness (e.g., accuracy),
computational efficiency (e.g., speed, parameters), and aspects beyond accuracy
(e.g., diversity) using two real-world e-Commerce datasets (Geizhals and AICrowd)
to ensure practical relevance.

The third objective was the development of a dedicated software framework, SBRS-
Fuse. The purpose of this framework was to facilitate the implementation of the
fusion strategies and baseline models, enable systematic and reproducible experi-
mentation, and allow for consistent comparison across different architectures and
datasets.

This investigation was guided by the following core research questions:

• RQ1: What is the impact of multimodal fusion (combining text and GNN repre-
sentations) on the performance of next-item prediction compared to unimodal
approaches (text-only and GNN-only)?

• RQ2: How does the choice between item- or session-level fusion points and fu-
sion layer types impact the performance of multimodal models when integrating
text and GNN representations?

• RQ3: What are the computational and memory efficiency implications of dif-
ferent intermediate fusion strategies and fusion levels (item vs. session) for
multimodal next-item prediction, and how do they compare to unimodal ap-
proaches?

To answer these questions, this thesis implemented and evaluated the range of
unimodal and multimodal SBRS models within the SBRSFuse framework. RQ1 was

3



1. Introduction

addressed by directly comparing the effectiveness metrics (MRR@K, HR@K) of
the resulting multimodal models against their unimodal counterparts. RQ2 was
tackled by analyzing the performance differences across the distinct multimodal
architecture variations (item-level vs. session-level, different fusion layer types).
Finally, RQ3 was investigated by measuring and comparing key efficiency metrics
(training time, inference time, parameter count) for all tested model configurations.
The results of this systematic experimental comparison provide the empirical basis
for the conclusions drawn in this work.

1.3 Main Contributions

This research provided a systematic exploration and evaluation of intermediate
fusion strategies, establishing a clearer understanding of how to effectively combine
graph-based interaction patterns and textual item descriptions in SBRS. The main
contributions of this work are:

• Demonstrated Effectiveness of Multimodal Fusion. The study empiri-
cally showed that specific multimodal fusion strategies, particularly session-
level fusion, significantly improved next-item prediction accuracy compared
to established unimodal (GNN-only and text-only) approaches on real-world
e-Commerce datasets. This highlights the tangible benefit of integrating both in-
teraction represented by graph modality and semantic information represented
by text modality.

• Advanced Understanding of Intermediate Fusion Techniques. This re-
search provided a systematic investigation into the relatively unexplored area
of intermediate fusion for multimodal SBRS. By directly comparing item-level
fusion, session-level fusion, and text embedding propagation, it clarified the per-
formance and efficiency trade-offs associated with where and how modalities
are combined within the SBRS pipeline.

• Identified Practical Guidelines for Multimodal Fusion. The comparative
analysis of different fusion strategies and layer types yielded actionable in-
sights and practical guidelines. It established session-level fusion as the most
effective for accuracy, identified gated item-level fusion as a potential efficiency-
effectiveness compromise, and quantified the limitations of simpler approaches
like concatenation item-level fusion and text embedding propagation in this
context.

The proposed solution delivers several artifacts:

4



1.4. Methodological Approach

• An open-source, modular software framework was developed to facilitate the
implementation, experimentation, and reproducible comparison of unimodal
and multimodal SBRS models, specifically focusing on intermediate fusion
strategies.

• This thesis document itself, comprehensively detailing the methodology, data
preparation, experimental setup, results, and analysis conducted.

1.4 Methodological Approach

1.4.1 Design Science Research

In the current work Design Science Research (DSR) is chosen as the methodological
framework. DSR framework was refined and adjusted to Information Systems domain
by Hevner [Hev07] and is characterized by three main interconnected components:
design cycle, rigor cycle and relevance cycle. DSR has a strong focus on developing
and validating prescriptive knowledge which is highly applicable to the current work
and in the context of exploration of multimodality fusion techniques in the SBRS
domain.

Relevance Cycle

The relevance cycle initiates the DSR process with an application context and aims
at providing the requirements to the research as inputs. Relevance cycle as an
element of DSR framework also defines the acceptance criteria for evaluation of the
resulting research artifacts. The problem of multimodal fusion in SBRS has a high
practical relevance as it addresses the needs of e-Commerce businesses seeking
to improve customer engagement, individuals looking for more efficient product
discovery, and researchers in the field of recommendation systems. While efficiency
and effectiveness are clearly defined evaluation criteria, “beyond accuracy” metrics
are often subjective and depend on the specific application context. We discuss the
model evaluation criteria and their application in the current work in more detail in
Chapter 4.

Rigor Cycle

Rigor cycle provides the foundation for research by referencing relevant existing
artifacts and processes, engineering methods and scientific theories. We rely on the
literature review and SOTA analysis to establish appropriate requirements for the
research artifacts that are developed in the scope of the current work. In Chapter 2
we provide an overview of existing SOTA approaches in the SBRS domain.

5
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Design cycle

Design cycle assumes an iterative approach of developing and evaluating the re-
search artifacts. During the experimentation phase we compare multiple multimodal
and unimodal approaches and evaluate them by applying the models to real-world
datasets in order to identify the approaches having the best effectiveness and evalu-
ate their practical value based on the efficiency evaluation criteria. Implications of
the obtained results are discussed in Chapter 5.

1.4.2 Multimodal Fusion Strategies

This work explored the integration of GNN-based and text-based approaches for
SBRS, aiming to develop effective architectural solutions for multimodal models. Key
challenges in the multimodal SBRS field were addressed, including the utilization of
multimodal approaches, the fusion of text and graph modalities, and the efficiency of
multimodal recommendation systems.

To address these challenges, unimodal baseline models for graph and text modalities
were implemented. The following GNN-based models were chosen based on their
strong performance in next item prediction tasks: GC-SAN [XZL+19], SR-GNN
[WTZ+18], SGNN-HN [PCC+20]. We also experimented with fusion between these
GNN models and well-established SBRS models like GRU4Rec [HK18], as well as text-
based SBRS models, including UniSREC [HMZ+22], FDSA [ZZL+19] and GRU4RecF
[HQKT16].

This iterative experimentation enabled us to identify the most effective approaches
for integrating graph and text modalities in SBRS. In particular, we investigated how
the choice between item- or session-level fusion points impacted the performance
of multimodal models. Understanding the impact of these fusion strategies on
recommendation quality provided valuable insights into the design and optimization
of multimodal SBRS architectures.

Finally, the performance of unimodal and multimodal approaches was compared,
evaluating their relative efficiency and effectiveness according to the criteria outlined
in the evaluation section 4.3.1. This comparative analysis provided insights into the
architectural choices that facilitate multimodal approaches in SBRS.

The high level diagram of fusion strategies is provided below:
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(a) Item-level fusion (b) Session-level fusion (c) Text embedding prop.

Figure 1.1: Intermediate fusion strategies

Item-Level Fusion

In item-level fusion approach 1.1a items are represented using unimodal text- and
GNN-based representations XI−T and XI−G. Then unimodal representations are
integrated together and fused into item-level representation XI−F , which are finally
aggregated into session-level representation XS−F .

Session-Level Fusion

In session-level fusion approach 1.1b unimodal item-level representations XI−T and
XI−G are obtained followed by aggregation into unimodal session-level represen-
tations XS−T and XS−G. Finally, session-level representations XS−T and XS−G are
integrated together into the fused session-level representation XS−F .

Text Embedding Propagation

In content-augmented SBRS approaches 1.1c fusion happens natively during training.
First each item is represented using unimodal text representation XI−T , which is
subsequently used as input for training the item-level representations XI−G/T . Then,
item-level representations XI−G/T are aggregated into session-level representation
XS−F .

1.5 Structure of the Work

The following sections detail the organization of this thesis, offering an overview of
each chapter’s content and contribution.

Chapter 2 provides preliminaries and discusses important concepts for the SBRS
domain that the current thesis operates with. We first establish the formal definition
of the next item prediction task and define a generic schema for modern neural
network-based SBRS approaches. We conduct a literature review for the following
sub-domains relevant for addressing the outlined research questions: session-based
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recommendation systems, GNN SBRS, text representations in SBRS as well as
multimodal SBRS. Significantly, we discuss the SOTA approaches in multimodal
SBRS recommendations. Through the literature review, we establish the scientific
context and justify our methodological choices.

In Chapter 3 we provide a detailed overview of the data pre-processing techniques
and describe the data preparation steps for Geizhals and AICrowd datasets to ensure
the high quality input data for experiments and reproducibility of the results. Among
the data preparation techniques and important pre-processing decisions that were
applied to the datasets we discuss the properties of the sequential data representing
user behavior in the context of next-item prediction task, describe the session
expansion technique for efficient utilization of available session data, specify data
filtering steps, describe construction of a unified graph structure that captures
relationships across multiple sessions and analyze the privacy aspect in the context
of SBRS. In addition to that we discuss the data preparation steps undertaken for
training, testing, and evaluation of both unimodal and multimodal approaches.

In Chapter 4 we discuss methodological approach used in the current work. First
we provide an in-depth analysis of the fusion strategies for SBRS. Notably, we
describe three architectural approaches that enable the fusion between text and GNN
modalities: item-level fusion, session-level fusion and text embedding propagation.
Then, we provide an overview of the fusion framework, whose development is
one of the main outcomes of the current work. Finally we discuss the evaluation
methods that were used for the performance evaluation of the SBRS models, including
efficiency, effectiveness and beyond accuracy criteria.

Chapter 5 outlines the experimental design in detail. It begins by revisiting the
core research questions, clarifying how the subsequent experiments are structured
to address each one. It presents the full experimental grid, specifying the precise
combinations of unimodal and multimodal models, fusion strategies (item-level,
session-level, text embedding propagation), fusion layer types (concatenation, gated),
and datasets (AICrowd, Geizhals) that are systematically evaluated. The chapter
also clarifies the specific hyperparameter settings and training procedures used to
ensure fair and reproducible comparisons, as well as the metrics considered in each
analysis.

Chapter 6 presents a thorough analysis of the experimental results obtained by the
implementations outlined in Chapters 4 and 5, providing a clear and comparative
summary of the performance of the different unimodal and multimodal models under
various conditions. The chapter includes detailed tables and figures illustrating the
impact of different fusion strategies, fusion points, and fusion layer types on key
metrics such as MRR, Hit Rate, training time, and inference time. We also compare
the performance in terms of the “beyond accuracy” qualities (serendipity, diversity

8
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and novelty). Chapter discusses the practical implications of these findings for the
design of effective and efficient SBRS.

Chapter 7 concludes the thesis with a summary of the findings compiled within the
scope of the research, outlining key observations, discussing limitations of the used
methodological approach, and suggesting future work directions for researchers who
decide to explore the topic further.

9





CHAPTER2
Background & Related Work

This chapter provides the necessary background for understanding the research
presented in this thesis. We begin by defining SBRS and the next-item prediction task.
We then review the evolution of SBRS methods, focusing on GNN-based approaches.
Next, we discuss the use of side information, particularly textual data, in SBRS.
Finally, we examine existing work on multimodal SBRS and identify key challenges.
This review establishes the context for our research and justifies the methodological
choices presented in later chapters.

2.1 Background on Session-Based Recommendation
Systems

This section lays the groundwork by introducing SBRS. It defines their core charac-
teristics, contrasts them with traditional recommender systems, formally outlines
the next-item prediction task, discusses the inherent challenges faced in this domain,
and briefly traces the evolution of SBRS methodologies.

Recommender systems is a diverse domain, that encompasses various recommen-
dation scenarios, embraces different recommendation contexts and operates on
multiple types of recommended entities. Traditional recommender systems rely on
available user preferences, represented as explicit or implicit preference signals,
e.g., ratings, item purchases or views. Normally the preferences of the users that are
modeled by traditional recommendation systems are typically assumed to be static
and relatively stable over time [ZZZ+23]. These recommendation approaches are
also associated with the assumption that historical interactions are equally important
for recommendation context of the current user recommendations intents. These
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2. Background & Related Work

assumptions neglect the evolution of user preferences and their temporal nature
[WCW19].

A wide range of recommendation scenarios requires a more dynamic approach to
providing recommendations. For instance, some of the recommendation domains
have a low frequency of user-item interactions, which significantly limits the data
collection for recommendation models training. Some recommendation domains, like
e-Commerce or price comparison sites offer vast item catalogs, enabling users to
address a wide range of search intents and information needs, however, this makes
modeling the long-term preferences difficult as users may not need to search for the
same category of items for extended period. Another reason for limited availability
of user-item interaction data are privacy concerns of users who prefer not to share
their search activity.

Those limitations of traditional RS have led to the emergence of SBRS domain,
which addresses the problem of dynamic recommendations and limited availability of
historical user-item interactions. SBRS systems deal with anonymous sessions, which
are represented as chronological sequences of user interactions with items. The main
focus of SBRS lies in identifying the user preferences from short interaction contexts.
Using each session as input to SBRS allows reflecting immediate preferences and
their dynamics [WCW19].

In SBRS sessions have the following properties:

• Time-Boundedness. Sessions are bound in time, meaning that sessions have
the maximum possible duration, typically ranging from minutes to a few hours.

• Size-Boundedness. Sessions contain a limited number of interactions.

• Item Order. Interactions comprising the session adhere to a chronological
interaction order.

• Short-Term Preferences. Sessions reflect short-term preferences of the users
that can change over time.

• Anonymity. While sessions are anonymous (not linked to specific user IDs),
session-related attributes, such as device type or location (if available), may be
used for modeling.

• Interaction Type. Sessions can consist of a single type of interaction (e.g.,
only clicks) or multiple interaction types (e.g., views, adds to cart, purchases).
The nature of these interactions can lead to homogeneous or heterogeneous
intra-session dependencies.
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2.1.1 Next Item Prediction Task Formulation

Session-based recommendation systems (SBRS) primarily address the task of next-
item prediction, which involves predicting the most likely item a user will interact
with next, given their current session history [WCW19].

Overall SBRS task involves such sub-tasks such as item modeling, session modeling
and item-session alignment [SWL23]. All three of these steps could vary significantly
in their implementation, based on the chosen strategy of representing items and
sessions as well as aligning them.

Formal definitions of SBRS task differ in notations; however, they cover very close
concepts. Taking this into account, we decided to provide our own formal interpreta-
tion of the next item SBRS task, such that it will preserve abstraction for session and
item representations and will not be specific to ID-based or text-based approaches
described in literature [WCW19], [LWL+23]. Next item prediction problem in the
context of the SBRS can be formally defined as indicated below.

Each session belonging to the session set S is represented as the interaction list sj ,
containing items from the item set V:

sj = [vs
1, vs

2, ..., vs
n], vn ∈ V, sj ∈ S (2.1)

To each item corresponds a feature vector xv, containing the item feature represen-
tation:

xv = [ιv
1, ιv

2, ..., ιv
k], xv ∈ Xv, ιv

k : v → F (2.2)

Where Xv is the item feature matrix and ιv
k is a latent feature vector that represents

the projection of an item vk into the problem space relevant to the next item prediction
task. While k represents the dimensionality of the latent feature space of an item v.

To each session corresponds a feature vector xs, containing a session feature repre-
sentation:

xs = [xv
1, xv

2, ..., xv
m], xv ∈ Xv, xs ∈ Xs (2.3)

Where Xs is the session feature matrix.

Learning objective of a SBRS model could be defined as the minimization of the
following loss function:

L(Θ) = min( 1
|b|

|b|∑︂
i=1

l(p̂i(vsi
n+1|{Θ, si, Xs, Xv, S, V }), yi)), b ∈ S (2.4)
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Where Θ is the set of model parameters, l is the loss function and b is a batch of
sessions used for training.

The majority of the modern SBRS approaches can be summarized as the task of
finding the optimal alignment between items in item set V with a representation of
a session sj , constructed from individual item representations xv contained in the
session context, such that the likelihood of the suggested next item is maximized.

v
sj

n+1 = argmax(p(vm, sj |{Θ, sj , Xs, Xv, S, V }), vm ∈ V, sj ∈ S (2.5)

In the current work we aim to explore the strategies for representing item features xv

and session features xs as well as alignment between them for next item prediction
task using graph and text modalities.

2.1.2 Challenges of SBRS

In the current subsection we discuss the challenges that are inherent to SBRS, which
will allow us to counteract them in the current work.

Internal Session Order Information. The interaction order is a crucial property
of the sessions in SBRS, as for accurate prediction of the next item the model needs
to capture item transition process within the sequence. For instance, early SBRS
models were focusing on capturing the transition information.

Cold Start Problem. The problem is characterized by the lack of information for
recommendation of the items that have a low number of user interactions or no prior
interaction. Incorporating textual descriptions of items can mitigate this issue by
providing semantic information even when interaction data is scarce. This allows
the model to infer relationships between items based on their content rather than
relying solely on interaction history.

Session Length. The problem with the session length is twofold. In shorter sessions
(3 or less interactions) the user intent may not be fully expressed leading to inaccurate
intent identification. On the other hand, in longer sessions, the user intent may evolve
leading to having several intents expressed in one session, which may complicate the
modeling process. Textual information associated with items in the session can help
disambiguate user intent, especially in short sessions where interaction data alone is
insufficient. In longer sessions, analyzing the semantic evolution of the items can
help track intent drift.

Scalability of SBRS With Large Catalog Size. Many real-world recommendation
systems deal with enormous catalog sizes (more than a 100 million items). The
prediction process may be addressed in several steps by employing faster retrieval
algorithms (e.g., BM25) and then refining the intermediate retrieved set with a more
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powerful model. However, model training also becomes challenging with bigger
catalog sizes. To address this issue, contrastive losses are used for model training
to reduce the number of samples made available for the model during the training
process, while preserving the expressiveness [PM22].

Session Anonymity. In SBRS historical information is not available, implying that
user preferences must be captured from limited contextual data. To address this
issue the interaction history within a session must be utilized in the most effective
and efficient way, requiring highly expressive item and session representations. By in-
corporating text information, we aim to create more expressive item representations
that capture nuanced user preferences beyond simple item IDs. This is particularly
important when user history is unavailable.

2.1.3 Evolution of SBRS Methods

The field of SBRS has witnessed significant advancements in recent years, driven
by the evolution of deep learning techniques. Approaches of modeling SBRS can
be chronologically sub-divided into the following broad categories: conventional,
RNN-based, GNN-based, attention-based and multimodal SBRS [WCW19]. Each of
these milestones in SBRS research corresponds to the dominating state-of-the-art
approaches. Highlighted categories vary not only in their applied architectures but
also in the key focus of the SBRS research community

Conventional SBRS Methods (Pre-2016). These approaches primarily focused
on modeling state transition process and local session context. Common techniques
included K-Nearest Neighbors (kNN) [JL17], Monte Carlo state transition models
[EVK05], and popularity-based methods [WCW19]. While these approaches provided
a baseline for SBRS; however, they were limited in their ability to capture complex
user behavior patterns within sessions.

RNN-based SBRS Methods (2016-Present). The emergence of Recurrent Neural
Networks (RNNs) marked a significant milestone in SBRS research. RNNs allowed
modeling the item transition process within a session as a next-item sequence
prediction task. The GRU4Rec architecture [HK18], inspired by Gated Recurrent
Units (GRUs), pioneered this approach. RNN-based approaches excelled at modeling
transition process and capturing positional information within sessions. However,
they might struggle to capture long-term dependencies within sequences or complex
relationships between items.

Attention-based SBRS Methods (2017-Present). The introduction of attention
mechanisms, popularized by the “Attention is all you need” paper [VSP+17], revo-
lutionized various machine learning domains, including sequence modeling. While
some argue that SBRS involves more intricate relationships than a simple sequence
modeling [QHCY21], attention-based approaches have been successfully adapted
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for SBRS tasks [LRC+17]. These approaches allow the model to focus on the most
relevant parts of the session history when making predictions.

GNN-based SBRS methods (2017-Present). The emergence of GNNs opened new
avenues for SBRS research. GNNs excel at learning expressive feature representa-
tions on graph structures. This makes them well-suited to modeling sessions, which
can be naturally represented as transition graphs between items. Pioneering work by
Wu et al. introduced the concept of representing sessions as graphs [WTZ+18]. This
idea was further developed to capture the global inter-session information, leading
to the creation of global session graphs that combine information from multiple
individual sessions [QHLY21]. GNN-based approaches excel at modeling both local
and global context, encoding positional information, and aligning items within a
session. They are currently a strong contender for state-of-the-art performance in
ID-based SBRS (recommending based on user interaction history) [WTZ+18].

Multimodal SBRS methods (2018-Present). An active sub-domain of SBRS
research focuses on incorporating auxiliary item information, particularly textual
and visual item attributes, to enrich user representations and capture nuanced user
preferences. Popular architectures such as Recformer [LWL+23], S3-Rec [ZWZ+20],
FDSA [ZZL+19] and UNISREC [HMZ+22] leverage textual descriptions and visual
features along with interaction data to improve recommendation accuracy [ZXL+24].
Text-based session representation approaches are gaining traction and demonstrate
the potential of utilizing additional item information for modeling item transition
process [ZXL+24].

2.2 Related Work: Graph Neural Network SBRS

Focusing specifically on GNN-based approaches, this section delves into how GNNs
are applied to the SBRS problem. It explains the fundamental concept of representing
sessions as graphs, details the typical GNN-based modeling pipeline, reviews common
GNN architectures (Gated, Convolutional, Attention), and analyzes several state-of-
the-art GNN SBRS models, concluding with a comparison of their techniques.

In recent years Graph Neural Networks have demonstrated a high expressive power
in modeling complex relationships of the graph-structured data [WCW19]. This
trend was also evident in SBRS domain. Utilization of graphs as the underlying
data structure for SBRS modeling task and application of Graph Neural Networks
to SBRS domain were first explored by Wu et al. [WTZ+18] who pioneered for a
GNN-based family of SBRS models. The key idea of the Graph Neural Network-based
SBRS is the representation of the session as an item transition graph opposed to its
representation as an item sequence adopted in early neural SBRS approaches and in
recurrent nueural network SBRS like GRU4Rec model [HK18]. GNNs are particularly
well-suited for SBRS because they can naturally capture the complex dependencies
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and transition patterns between items within a session. By representing a session as
a graph, where nodes represent items and edges represent transitions, GNNs can
effectively learn item embeddings that incorporate both local sequential information
and global relationships within the session.

Modern GNN-based SBRS are comprised of four high-level steps [WCW19]:

• Graph Construction. In the first step a graph representation of the session
data is obtained based on the session information represented as a sequence of
items.

• Item Representation. In the second step item representations are obtained
by applying Graph Neural Network message passing to the session graph
constructed in the first step.

• Session Representation. In the third step session representations are ob-
tained by aggregating item representations of the items from the second step
which are contained in the session sequence. This step reflects the extraction
of the user’s preference corresponding to the current session.

• Prediction. The fourth and final step is prediction, which involves obtaining
ranked lists of candidate items based on the session representation from the
third step.

Now we discuss the construction of graph representation of a session in more
detail. A dataset containing multiple user sessions is converted to a directed graph
representation G. Each unique item is mapped to a node V of the graph, while the
transition between consecutive items in the sessions is mapped to a set of edges
E, effectively resulting in the session representation as a graph G(V, E). Multiple
variations of graph normalization were proposed. One of them, suggested in SR-
GNN work [WTZ+18], proposes the normalization of the edge’s occurrance by the
out-degree of the edge’s start node.

The graph construction process is illustrated in Figure 2.1.
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Figure 2.1: Graph representation of the session [WTZ+18]

An important aspect of the graph neural networks is the type of the neighborhood
aggregation methods. The most widely used architectures in the SBRS domain are
Gated GNNs, Convolutional GNNs and Attention GNNs [WCW19].

Gated GNNs. In Gated GNNs gated recurrent units (GRUs) are used to update
the item embeddings by updating them recurrently. Particularly at each step the
embedding ht

i of node ni at step t is updated by the previous hidden state of itself

and its neighbors: correspondingly h
(t−1)
i and h

(t−1)
j . The hidden state of the node i

is calculated as follows:

ht
i = GRU(h(t−1)

i , Σnj∈N(ni)h
(t−1)
j , A) (2.6)

, where A is the adjacency matrix of the directed session graph Gs = G(Vs, Es)). Ex-
amples of the SBRS approaches that utilize Gated GNNs include SR-GNN [WTZ+18],
GC-SAN [XZL+19] and TA-GNN [YZL+20] models.

Convolutional GNNs. Compared to Gated GNNs the item embeddings of the graph
nodes ht

i are updated based on the pooling operation applied to the embeddings of
the neighborhood nodes [KW17] as follows:

ht
i = ht−1

i + pooling(ht−1
j , nj ∈ N(ni)) (2.7)

Convolutional GNNs can utilize various pooling operations, including max and mean
pooling.
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Attention GNNs. Graph Attention networks utilize attention mechanism to inte-
grate the information of the neighborhood nodes into the target node embeddings
[VCC+18]. Graph Attention Networks’ neighborhood aggregation procedure can be
described as follows:

ht
i = attention(ht−1

j , nj ∈ N(ni)) (2.8)

Here attention refers to a generic attention-based operation, which can include
self-attention, multi-head attention or other attention implementations. Attention ht

i

scores can be calculated as follows:

αij = softmax(qT
i kj), ht

i = Σj∈N(i)αijvj (2.9)

Where qi, kj , and vj are the query, key, and value vectors, respectively.

Examples of the SBRS models that utilize graph attention architecture for item
embedding calculation include Full Graph Neural Network model [CW20].

2.2.1 State-of-the-Art GNN-Based SBRS Models

Below we analyse SOTA GNN-based SBRS algorithms and discuss proposed architec-
tural decisions, their novelty and limitations.

SR-GNN. Session-Based Recommendation with Graph Neural
Networks.

SR-GNN is considered one of the first approaches which employed graph repre-
sentations for SBRS modeling [WTZ+18]. In SR-GNN a gated convolution layer is
applied to session graphs to obtain item representations, followed by a calculation of
self-attention scores of the last item in the session sequence to calculate session-level
representations, which is further combined with global session representation. By
the time of the publication comparison with contemporary approaches conducted
by the authors showed, that SR-GNN significantly outperforms existing competitor
models, including RNN-based approaches like GRU4Rec [HK18] and attention-based
approaches like STAMP [LZMZ18]. SR-GNN schema is represented in Figure 2.2.
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Figure 2.2: SR-GNN architecture [WTZ+18]

SR-GNN is a foundational GNN-based SBRS model. It represents sessions as directed,
weighted graphs, where edge weights are normalized by the out-degree of the source
node. Item embeddings are learned using a Gated GNN on these session-level
graphs. The session representation is a combination of long-term preferences (a
linear combination of all item embeddings in the session) and short-term preferences
(the embedding of the last-clicked item). Prediction is performed via a softmax over
the dot product of the session embedding and candidate item embeddings. It uses a
cross-entropy loss.

GC-SAN. Graph Contextualized Self-Attention Network for
Session-Based Recommendation

Compared to SR-GNN, GC-SAN model utilizes self-attention for assigning weights to
previous items regardless of their distance in the session, which in turn allows to
model long-distance dependencies between items in the session [XZL+19]. Similarly
to SR-GNN a representation of a last-clicked item in the session is combined linearly
with long-term self-attention representation to obtain session-level representations.
GC-SAN schema is represented in Figure 2.3.

Figure 2.3: GC-SAN architecture [XZL+19]
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Compared to SR-GNN, GC-SAN introduces self-attention within the session graph.
While both use Gated GNNs for item embeddings, GC-SAN’s long-term preference
representation uses self-attention to weigh the contributions of all previous items,
regardless of their position in the sequence. This allows it to capture longer-range
dependencies more effectively than SR-GNN’s simple linear combination. Like
SR-GNN, it combines this with the last-clicked item’s embedding for short-term
preferences and uses a similar prediction and loss function (though GC-SAN uses a
regularized cross-entropy loss). The main advancement is the use of self-attention
for long-term preference modeling.

TA-GNN. Target Attentive Graph Neural Networks for Session-Based
Recommendation

The authors of TA-GNN model suggested a novel approach to model the relationships
between session context and ground truth next items using target-aware attention
mechanism [YZL+20]. A key difference to previously existing approaches was learn-
ing the interest representation vectors with respect to the target next items, which
leads to higher model expressiveness. The authors introduced a local target attentive
unit to model the relation between specific user interests, which are activated when
interacting with specific target items. A high-level diagram of TA-GNN is represented
in Figure 2.4.

Figure 2.4: TA-GNN architecture [YZL+20]

TA-GNN differs from SR-GNN and GC-SAN by introducing target-aware attention.
Instead of just considering the session context, TA-GNN explicitly incorporates the
candidate target items into the attention mechanism. This allows the model to learn
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interest representations that are specifically relevant to each potential next item. The
session representation combines target-aware embeddings, long-term preferences
(aggregated item embeddings), and short-term preferences (last-clicked item). This
target-aware approach is the key innovation, aiming for a more precise alignment
between the session context and the predicted item. It still uses Gated GNNs for item
embeddings, a dot-product prediction, and cross-entropy loss (with backpropagation
in time).

SGNN-HN. Star Graph Neural Networks for Session-Based
Recommendation

With SGNN-HN architecture its authors addressed such important issues, specific
to previously introduced SBRS models, as taking into account relationships of the
unconnected items in the session graph as well as the overfitting problem [PCC+20].
Key architectural solution implemented in SGNN-HN is a star graph representation
of the session graph, in which a new star node is added along with edges that connect
both existing nodes in the session graphs as well as the edges that connect existing
nodes with the star node. This novel approach allowed to propagate information
between the nodes, which are not consecutively connected in the session graph and
thus allow node representations to aggregate information from unconnected nodes.
The schema of the SGNN-HN is reresented in Figure 2.5.

Figure 2.5: SGNN-HN architecture [PCC+20]

SGNN-HN addresses limitations in capturing relationships between non-consecutive
items in the session graph, a potential issue for SR-GNN, GC-SAN, and even TA-GNN.
It introduces a star node to the session graph, connecting all other item nodes. This
allows information to flow between non-adjacent items, improving the representation
of the overall session context. Item representations are obtained through message
passing between star and satellite nodes, using a combination of Gated GNNs, self-
attention (for the star node), and a highway network. The session representation, like
SR-GNN and GC-SAN, combines long-term (positional encoding and self-attention)
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and short-term (last-clicked item) preferences. The key difference is the star graph
structure and the more complex item embedding process. It uses layer normalization
and cross-entropy loss.

GCE-GNN. Global Context Enhanced Graph Neural Networks for
Session-Based Recommendation

Compared to models discussed previously, GCE-GNN model exploits global graph
information obtained by cumulatively adding edges between items, present in all ses-
sions in the dataset [WWC+20]. The approach proposed by the authors of GCE-GNN
is considered one of the first attempts to utilize global item transition information.
This strategy allows for learning item representations both based on the global graph
and session graphs, unlike other GNN-based SBRS models that utilize only session-
level item transition information. After obtaining both session-level and global item
representations, session representation is obtained using graph attention mechanism.
The architecture of the GCE-GNN model is represented in Figure 2.6.

Figure 2.6: GCE-GNN architecture [WWC+20]

GCE-GNN distinguishes itself from the previous models by incorporating global
item transition information, in addition to the session-level graphs used by all the
others. It constructs a global graph based on item co-occurrences across all sessions.
Item embeddings are learned from both the global graph and the session-specific
graph. This allows the model to capture broader item relationships that might not be
evident within individual sessions. The core innovation is the use of both global and
local context, providing a richer item representation. It uses a standard dot-product
prediction and cross-entropy loss.
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Comparison of GNN SBRS Models

In the Table 2.1 we compare the architectures of the GNN models:

Table 2.1: Comparison of GNN-based SBRS

Model Graph Struc-
ture

Item Embed-
ding Method

Session Representation Key Innovation

SR-GNN Directed,
weighted
(out-degree
normalized)

Gated GNN Long-term: linear com-
bination of item embed-
dings;
Short-term: last-clicked
item.

Foundational
GNN-based
SBRS.

GC-SAN As in SR-GNN Gated GNN Long-term: self-attention
over item embeddings;
Short-term: last-clicked
item.

Self-attention
for long-range
dependencies.

TA-GNN As in SR-GNN Gated GNN Target-aware attention
between session repre-
sentation and candidate
items;
Long-term: aggregated
item embeddings;
Short-term: last-clicked
item.

Target-aware
attention for
item-session
alignment.

SGNN-HN Star graph (ses-
sion graph +
star node)

Gated GNN
(satellite
nodes);
Self-attention
(star node);
Highway Net-
work (combina-
tion)

Long-term: positional en-
coding + self-attention;
Short-term: last-clicked
item.

Star graph
for non-
consecutive
item relation-
ships.

GCE-GNN Global graph
(item co-
occurrences) +
Session graph

Gated GNN
(both graphs)

Global and session-level
item embeddings;
reversed positional em-
bedding.

Global (inter-
session) and
local (intra-
session) con-
text.

This comparative analysis highlights the evolutionary steps in GNN-based SBRS,
from the foundational SR-GNN to more sophisticated models that address specific
limitations and incorporate additional information sources.
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Summary

This section has provided a comprehensive overview of GNN-based approaches to
session-based recommendation. GNNs have emerged as a powerful tool for SBRS
due to their ability to naturally capture the complex relationships and transition
patterns between items within a session [WCW19]. By representing sessions as
graphs, where nodes are items and edges represent transitions, GNNs can learn
rich item embeddings that incorporate both local sequential information and global
session context [WTZ+18].

The general framework for GNN-based SBRS typically involves four key steps: graph
construction (creating a graph representation of the session data), item represen-
tation learning (using GNN message passing to obtain item embeddings), session
representation learning (aggregating item embeddings to represent the overall ses-
sion), and prediction (ranking candidate items based on the session representation).
We discussed common graph normalization techniques, such as normalizing edge
weights by the out-degree of the source node (as used in SR-GNN) [WTZ+18]. We
also reviewed different types of neighborhood aggregation methods used in GNNs,
including Gated GNNs (which use GRUs), Convolutional GNNs [KW17] (which use
pooling operations), and Attention GNNs (which use attention mechanisms).

2.3 Related Work: Side Information-Driven SBRS

Shifting focus to the integration of auxiliary data, this section explores the role of
side information, particularly textual item attributes, in enhancing SBRS. It discusses
the motivation for using text to address data sparsity, reviews prominent text-aware
SBRS models, and examines different techniques for generating effective text rep-
resentations, including the selection criteria for the embedding model used in this
thesis.

We discussed earlier that the key task of SBRS systems is the identification of the user
intent from interactions within an anonymous session. Absence of the interaction
history is one of the main constraints that SBRS systems encounter, leading to a
severe data sparsity problem [ZZZ+23]. On the other hand, platforms accumulate a
vast amount of item-related side information, that can be used for recommendations
and potentially alleviate the data sparsity problem. Such side information can include
item images, textual descriptions (item characteristics, brand, product categories,
reviews), structural information (position in the product catalog hierarchy, timestamp
information) and numerical features (ratings, price, popularity). This trend has led
to the emergence of the side-information-driven sub-field of SBRS [ZXL+24].

As highlighted in the survey by Zhang et al., integration of the side information
into SBRS [ZZZ+23] has the following potential benefits compared to the symbolic
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ID-based approaches: session data enrichment, enhanced item expressiveness and
higher personalization of recommendations. In the scope of the current work we
focus on the integration of the text information into the recommendation process.

Text information represents one of the richest sources of item information in the
context of SBRS as it can potentially enrich the item representations with the text
semantics, which users rely heavily on when making judgements about the item
relevance [ZXL+24].

2.3.1 State-of-the-Art Text-Based SBRS Models

FDSA. Feature-Level Deeper Self-Attention Network for Sequential
Recommendation

Among early approaches aiming at incorporating the text information in SBRS
we can highlight the approach “Feature-level Deeper Self-Attention Network for
Sequential Recommendation” (FDSA) suggested by Zhang et al., who [ZZL+19]
proposed the enhancement of sequential recommendation by considering transition
patterns between both items and their features as shown in Figure 2.7.

Figure 2.7: FDSA architecture [ZZL+19]

UNISREC. Towards Universal Sequence Representation Learning for
Recommender Systems

“Towards Universal Sequence Representation Learning for Recommender System”
(UNISREC) approach [HMZ+22] uses the pre-training / fine-tuning paradigm to ob-
tain the transferable text representations across different recommendation domains
as shown in Figure 2.8. UNISREC incorporates the following item information into
the training process: categories, titles and descriptions.
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Figure 2.8: UNISREC architecture [HMZ+22]

Recformer. Text Is All You Need

The publication “Text is all you need” and the Recformer approach has exerted a
notable influence on the SBRS community. This widespread reception is due to both
its distinctive title and, more importantly, its substantial contribution to the domain of
multimodal SBRS [LWL+23]. In Recformer similarly to the UNISREC approach, one
of the main goals was reaching the cross-domain generalization of item features for
different datasets and domains. Item text feature representation approach proposed
in Recformer formulates the item as a “sentence” by concatenating item key-value
attributes as words, which conceptually transforms a sequence of items into the
sequence of item feature “sentences”. The Recformer architecture is depicted in
Figure 2.9. Recformer employs pre-training with masked language modeling and
two-stage fine-tuning phases.

Figure 2.9: Recformer item representation as a “sentence” [LWL+23]
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Text Representation

All of the text-based approaches discussed above rely on the text representation
for the extraction of the semantic signals from textual information. With the recent
remarkable progress in Natural Language Processing (NLP) and particularly in the
area of Large Language Models (LLM), text representations can be obtained using
a diverse set of architectures. A family of Bidirectional Pre-Trained Transformer
(BERT) models [DCLT19] are widely adopted for text feature representation in SBRS
domain. However, with advancements in embedding models, even more powerful
models can be employed for text representation.

Summary

We reviewed several key approaches in this area, including FDSA [ZZL+19], UNIS-
REC [HMZ+22], and Recformer [LWL+23]. FDSA pioneered the use of feature-level
self-attention to model transitions between item features, demonstrating the value
of incorporating fine-grained textual attributes. UNISREC and Recformer further
advanced this concept by leveraging pre-trained language models and fine-tuning
techniques to achieve cross-domain generalization of item representations. Rec-
former’s innovative approach of treating items as “sentences” composed of key-
value attributes is particularly noteworthy. These models showcase the power of
Transformer-based architectures in capturing the semantic relationships within
textual data and applying them to the SBRS task.

2.4 Related Work: Multimodal SBRS

Building upon the previous sections, this part addresses the emerging area of multi-
modal SBRS, focusing on the combination of different data types, specifically graph-
based interaction patterns and textual information. It outlines the key challenges
associated with effectively fusing these diverse modalities, discusses various fusion
strategies, and reviews existing state-of-the-art multimodal recommender systems,
setting the context for the fusion approaches investigated in this thesis.

Multimodality has recently gained increasing attention in Recommendation Systems
research community due to a vast availability of multimodal features and potential
benefits of incorporating them into recommendation process.

However, there exist multiple open challenges related to the co-integration between
different modalities. A survey on multimodal recommendation Systems [PWSR23]
identifies the following ones:

• Constructing multimodal representations (text, images, audio, video).
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• Implementation of the effective fusion procedure between individual modalities.

• Obtaining comprehensive representations under the data sparcity constraint.

• Model optimization with feature encoders.

In the current work we focus mostly on the second challenge, in particular we
investigate the approaches to fusion between different modalities.

2.4.1 Multimodal Fusion

This section discusses how fusion is achieved across different modalities. As a first
step feature encoders produce modality-specific features. As we have seen earlier,
pre-trained models are often used to obtain the feature representations for each
of the individual modalities as training the feature encoding models from scratch
is often sub-optimal. Fine-tuning techniques are often used to adjust pre-trained
feature encoders to a specific dataset or a recommendation domain [PWSR23].

In the second step modalities are integrated. This step is referred to as fusion step.
Fusion strategies can be categorized into early fusion, late fusion, and intermediate
fusion [PWSR23]:

• Obtaining representations from the complex modality features (text, images,
audio, video). This is especially critical in SBRS, where the model must ef-
fectively extract meaningful signals from limited and often noisy session data.
The quality of feature representations directly impacts the model’s ability to
understand user intent.

• Implementation of the effective fusion procedure between individual modalities.
Fusion is a significant challenge in SBRS because different modalities may have
varying levels of importance and noise. An inappropriate fusion strategy can
lead to one modality dominating the other or diluting the overall representation.
This is further complicated by the short-term nature of sessions, where a robust
and adaptive fusion technique is needed to capture evolving user preferences.

• Obtaining comprehensive representations under the data sparcity constraint.
Data sparsity is a pervasive issue in SBRS due to the anonymity and limited
length of sessions. Integrating multimodal information aims to mitigate this
problem, but it also requires efficient techniques to leverage the limited data
effectively. The challenge lies in creating representations that are both compre-
hensive and robust, even with sparse data.

• Model optimization with feature encoders. Optimizing the model parameters
for multimodal SBRS is challenging due to the increased complexity and the
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need to balance the contributions of different modalities. Ensuring that the
feature encoders are well-tuned and that the overall model converges efficiently
requires careful design and optimization strategies.

In the current work we focus on comparing early and intermediate fusion. More
details on the architectural solutions are discussed in Chapter 4.

2.4.2 State-of-the-Art Multimodal SBRS

MMSR. Adaptive Multi-Modalities Fusion in Sequential
Recommendation Systems

The work “Adaptive Multi-Modalities Fusion in Sequential Recommendation System”
(MMSR) by Hu et al. [HGLK23]. proposes an elegant approach that integrates
modalities by representing available multimodal feature embeddings as a graph
as shown in Figure 2.10. Effective fusion of modalities captures complementary
knowledge, but poorly designed fusion can introduce noise and reduce performance.
Challenges include determining optimal fusion strategies, handling missing data,
and balancing model complexity with scalability to improve the quality of multimodal
representations for next-item prediction.

Figure 2.10: MMSR architecture [HGLK23]

AlterRec. Enhancing ID and Text Fusion via Alternative Training in
Session-based Recommendation

AlterRec is a novel alternative training strategy designed to enhance the fusion of ID
and text information in session-based recommendation systems [LHC+24]. Li et al.
make several key observations regarding the domination of the ID modality when
using the naive fusion techniques. The key idea behind AlterRec is to address the
imbalance issue often seen in naive fusion methods by separating the training of
ID and text modalities, while still enabling them to mutually learn from each other.
This is achieved through an alternating training strategy where the ID and text
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components of the model are trained in turns, using the predictions of one modality
as training signals for the other. The training process is illustrated in Figure 2.11.
Experiments demonstrate AlterRec’s superior ability to integrate text information
compared to naive fusion methods, highlighting its advantage in session recommen-
dation scenarios. However, the complexity of the alternative training strategy and
the reliance on hard negative samples may pose computational challenges and limit
its scalability.

Figure 2.11: AlterRec [LHC+24]

DIF-SR. Decoupled Side Information Fusion for Sequential
Recommendation

Another multimodal model, introduced by Xie et al. - Decoupled Side Information
Fusion for Sequential Recommendation (DIF-SR) focuses on leveraging the side infor-
mation to enhance the next-item prediction by decoupling the side information from
the input to the attention layer and decoupling the attention calculation of various
side information and item representation [XZK22]. Diagram of the architectural
solution is provided in Figure 2.12. This approach enhances the expressiveness of
self-attention mechanisms, allowing for better learning of item representations and
improved next-item prediction, as demonstrated by its state-of-the-art performance
on multiple datasets. However, the increased complexity of decoupled attention calcu-
lation and the addition of attribute predictors may increase computational demands,
and the effectiveness relies on the quality and relevance of the side information.
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Figure 2.12: DIF-SR [XZK22]

Summary

This section explored the rapidly evolving field of multimodal SBRS, which aims
to enhance recommendations by integrating diverse data modalities, particularly
graph-based interaction patterns and textual item information. It highlighted the key
challenges in this area, including obtaining representations from complex modali-
ties, implementing effective fusion procedures, handling data sparsity, and model
optimization. We categorized fusion strategies into early, late, and intermediate
approaches and reviewed state-of-the-art multimodal SBRS models like MMSR, Alter-
Rec, and DIF-SR, emphasizing their distinct fusion techniques and contributions to
addressing these challenges in sequential recommendation.

These state-of-the-art multimodal SBRS models demonstrate diverse approaches to
fusion. MMSR employs a graph-based fusion of multimodal embeddings, aiming to
capture complementary knowledge [HGLK23]. AlterRec introduces an alternative
training strategy to mitigate ID modality domination in naive fusion, focusing on
separate but mutually informed training of modalities [LHC+24]. DIF-SR, conversely,
decouples side information within the attention mechanism to enhance item rep-
resentation learning. While each model tackles the core challenges of multimodal
SBRS, they differ significantly in their fusion techniques, training methodologies, and
the specific aspects of multimodal integration they prioritize, reflecting the ongoing
exploration in this active research area [XZK22].
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CHAPTER3
Data Analysis and Pre-processing

Having discussed the background for the current research in the previous chapter,
now let’s shift our focus to the data that we use for experimentation in the current
work. We conduct experiments on two e-Commerce datasets, that we discuss in more
detail below.

3.1 Geizhals Dataset

3.1.1 Dataset Information

This section introduces the Geizhals dataset, the first of two datasets used in this
thesis. Geizhals is a product price and feature comparison platform offering a wide
range of functionalities to its users in Austria, Germany, UK and Poland. The collected
data includes anonymized sessions of user actions, detailed product descriptions and
characteristics. This section details its structure, key characteristics derived from
initial analysis, and the specific pre-processing steps applied to address data quality
issues and prepare it for the recommendation task.

This dataset was made available within the framework of the cooperation between
the CDL RecSys-Laboratory 1 and Geizhals price comparison platform 2. Geizhals
platform maintains and updates the relevant information about products based on
the information provided by multiple producers. The platform provides information
for various high-level categories of products including hardware (computers, tablets,
mobile phones, video and photo cameras, wearable devices), pharmacy, sports and
leisure, construction, software, office and other products.

1CDL RecSys-Laboratory website: https://recsys-lab.at/
2Geizhals website: https://geizhals.at/
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Users can access product pages by making a direct search for a specific product or by
navigating through a product category tree, that is always being shown at the top of
the page. Products are internally organized in three hierarchical levels of categories
from the most generic to the most specific ones. This hierarchical organization
helps users to navigate and interact with the products of interest. Example of the
three-level product category hierarchy is shown in the Figure 3.1.

Figure 3.1: Example of the three-level hierarchy of product categories from Geizhals
website.

We use the sub-selection of user interactions with the Austrian domain of the platform
for the period from 01.09.2023 to 01.12.2023. The dataset contains a click-stream of
all user interactions, including filtering settings, page actions and page views. For
Geizhals dataset the ground truth is defined as the item that the user is most likely to
interact with. Therefore we define the session as a chronologically ordered history of
page views. This is particularly relevant for price comparison platforms because user
interaction often represents the act of comparing offers across different retailers
and exploring product details before potentially making a purchase elsewhere. When
a user clicks on a specific retailer’s offer listed on Geizhals, this action generates
a “lead” for that retailer, indicating potential customer interest. This approach is
suitable for the platform, where users are interested not only in purchasing items
through a direct transaction on the platform but also in exploring and comparing
them. An alternative session and ground truth definitions could be composed of
generated leads to an e-Commerce platform. However, this definition does not
capture users’ exploratory behavior and implies that recommendations are focused
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solely on purchases rather than exploration. Thus, we focus on the former definition
and as a first pre-processing step, remove all other interaction types from sessions,
leaving only product page views history.

Geizhals dataset is composed of two tables. The first table (user_item_interactions)
contains the user interaction history. The second table (product_info) contains
product-related information.

After removing the non-page view actions from the original dataset, we structure the
user_item_interactions table as follows:

• session_id: A unique session id of the current session.

• product_id: A unique product id of the user’s page view.

• timestamp: A timestamp of the beginning of the page view.

• page_view_duration Duration of the page view.

• first_lvl_category_id: First level id of the product hierarchy.

• second_lvl_category_id: Second level id of the product hierarchy.

• third_lvl_category_id: Third level id of the product hierarchy.

Importantly, the dataset contains timestamps of each of the product views, which
allowed us to establish the chronological order of product views within the user
sessions. The second table (product_info) contains detailed description of the
products as well as product characteristics. An example of the product page is
presented in Figure 3.2.

Figure 3.2: Example of a product page on the Geizhals website, showing product
details, characteristics, and price comparisons.
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We also need to take into account that products belonging to the different low-level
categories have a varying set of product characteristics, which indicates a high level
of diversity and low level of structure of the textual product-related information. This
challenge is addressed by applying the text embedding model on the unified item
“sentence” obtained by merging keys and values of item descriptions similarly to the
approach discussed in Recformer work [LWL+23]. Text representation aspect will be
discussed in more detail in Chapter 4.

3.1.2 Descriptive Analysis

This section details the pre-processing steps applied to the raw Geizhals dataset and
provides descriptive statistics to characterize the data before and after filtering.

Before any pre-processing steps were performed a statistical analysis of the sessions
was done. Figure 3.3 shows the distribution of the session length:

Figure 3.3: Session length distrubution for the sample period between 01.09.2023
and 12.09.2023.

On the histogram we can observe that the raw dataset is dominated by the sessions
with a relatively small number of sessions - predominantly single-view sessions. Data
filtering approaches have been widely discussed in other works. For instance, in
the SR-GNN work [WTZ+18] authors filter out all sessions with one item in order to
alleviate the data sparsity problem. The authors of SGNN-HN [PCC+20] filter out
sessions with one item and approach the evaluation of short and long sessions (with
separation threshold of 5 items) separately. Their work demonstrates a superior
performance of the model on the short session contexts. We decide to filter out
sessions with fewer than two items following the same data sparsity mitigation logic
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as in SR-GNN work [WTZ+18]. We aim to model the transition behavior between the
items within the session and for that purpose we need to reserve one item for the
ground truth and preserve the context to model the session intent and construct the
session graph.

Data Integrity Issues

During data analysis, we discovered a data integrity issue related to missing at-
tributes for some products. This resulted in some views in the user_item_interactions
table having no corresponding entry in the product_info table. We demonstrate the
impact of this issue in Table 3.2.

Table 3.1: Data filtering steps and their impact

Step Sess-s Views Δ Sess-s Δ Views % Sess-s Left % Views Left

0 6,837,801 22,060,335 - - 100.00% 100.00%
1 5,792,430 15,170,405 -1,045,371 -6,889,930 84.71% 68.77%
2 792,754 5,932,067 -4,999,676 -9,238,338 11.59% 26.89%

To ensure data quality and focus on meaningful user interactions for our session-
based recommendation task, we applied a series of filtering steps to the raw click-
stream data from the Geizhals dataset. The following table and explanations detail
the impact of each filtering step.

Data Filtering of the Raw Data

• Step 0: Initial Raw Data. This represents the total number of sessions and
views before any filtering and is based on all available page views within the
analyzed time period.

• Step 1: Remove Views Without Product Information. At this step of
the data cleaning process we have removed the page views of the products
that did not contain any product information. Since these views provide no
information about the item’s attributes, including its textual description, they
are uninformative for the recommendation task and were removed.

• Step 2: Remove Sessions by Session Length and Unique Items. This step
implements the session filtering rules. It simultaneously filters out the sessions
with:

– Sessions with more than 30 unique products viewed. Given the incorrectly
registered page view durations, and to avoid arbitrary time cutoffs, the
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length was measured in the number of product views. This filtering
criterion is aimed at filtering the sessions obtained as a result of potentially
autonomous activity (bots and crawlers). This value, derived from the
analysis depicted in Figure 3.3, captures the vast majority of user sessions
while excluding potential bot or crawler activity (which would tend to have
many more interactions). The threshold of 30 views represents the 99.5th
percentile of session lengths.

– Sessions with less than three unique products viewed. This eliminates
sessions unlikely to contain sufficient information about user intent. We
require unique views to avoid inflating session length with repeated views
of the same item.

After applying these filters, the resulting dataset consists of 792,754 sessions and
5,932,067 views. This represents 11.59% of the original sessions and 26.89% of
the original views. This dataset represents the interactions with 300,758 unique
products. The statistical summary of the session length in terms of the number of
page views is provided in the Table 3.2.

Table 3.2: Descriptive statistics of session length (number of product views)

Statistic Count Mean Std. Dev. Min 25% 50% 75% Max

Value 792,754 7.48 5.59 3.00 4.00 5.00 9.00 30.00

Performed filtering leads to a significant reduction in size of the initial dataset,
however, the remaining data is more focused and representative of genuine user
browsing sessions and more suitable for training and evaluating session-based
recommendation models. We apply several other filtering and data pre-processing
techniques both to Geizhals and AICrowd datasets, which we will discuss in section
3.3.2.

3.2 AICrowd Dataset

3.2.1 Dataset Information

This section introduces the second dataset employed in the experiments: the AICrowd
dataset. AICrowd 1 dataset is provided as the first task of the Amazon KDD Cup 2023
organized by the AICrowd Research community 2.

1Amazon KDD Cup 2023 website: https://www.aicrowd.com/challenges/amazon-kdd-cup-23-
multilingual-recommendation-challenge/problems/task-1-next-product-recommendation

2AICrowd Research community website: https://www.aicrowd.com/research
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AICrowd is a multilingual shopping session dataset, which represents a collection
of anonymized customer sessions containing products from six different locales —
English, German, Japanese, French, Italian, and Spanish. For comparison we use
only the German locale. Similarly to the Geizhals dataset, the AICrowd dataset is
comprised of two tables.

Compared to Geizhals dataset, which preparation for the modeling step was mainly
the result of the manual efforts, AICrowd dataset is already prepared for modeling
by the organizers of the Amazon KDD Cup 2023.

The first table (user_item_interactions) contains the user interaction history, rep-
resenting the list of products that a user has interacted with in the chronological
order:

• session_id: A unique session id of the current session.

• product_id: A unique product id that a user has engaged with.

In contrast to the Geizhals dataset, the AICrowd dataset does not contain timestamp
information, however, items are provided in the chronologically ordered format.

The second table (product_info) contains product-related information. Items have
the following attributes:

• locale: The locale code of the product (e.g., DE).

• id: A unique id of the product. Also known as Amazon Standard Item Number
(ASIN) (e.g., B07WSY3MG8).

• title: A title of the item (e.g., “Japanese Aesthetic Sakura Flowers Vaporwave
Soft Grunge Gift T-Shirt”).

• price: Price of the item in local currency (e.g., 24.99).

• brand: item brand (e.g., “Japanese Aesthetic Flowers & Vaporwave Clothing”).

• color: Color of the item (e.g., “Black”).

• size: Size of the item (e.g., “xxl”).

• model: Model of the item (e.g., “iphone 13”).

• material: Material of the item (e.g., “cotton”).

• author: Author of the item (e.g., “J. K. Rowling”).
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• desc: Description of item’s key features and benefits called out via bullet points
(e.g., “Solid colors: 100% Cotton; Heather Grey: 90% Cotton, 10% Polyester;
All Other Heathers . . . ”).

The dataset is provided in the split format, contains training and development sets,
divided in a 10:1 proportion. Training and development sets combined contain
1215984 sessions and cover the interaction of the users with over 513811 unique
products.

3.2.2 Descriptive Analysis

Table 3.3 below presents the summary statistics for the combined train and test sets
of the AICrowd session datasets.

Table 3.3: Descriptive statistics of session length (number of product views) for
AICrowd dataset

Statistic Count Mean Std. Dev. Min 25% 50% 75% Max

Value 1215984 5.26 3.55 3 3 4 6 30

Compared to the Geizhals dataset, sessions in the AICrowd dataset are shorter on
average (7.48 items and 5.35 respectively). AICrowd dataset contains information
about interaction of the users with 51747 unique products.

3.3 Pre-Processing Techniques and Data Format

Having introduced the individual datasets, this section focuses on the common data
pre-processing techniques and formatting procedures applied to both Geizhals and
AICrowd to prepare them for the models used in the experiments. It details the
strategies for filtering low-frequency items, splitting data temporally, augmenting
sessions via iterative revealing, generating item text embeddings, constructing graph
batches, and concludes with a discussion of privacy considerations.

3.3.1 Filtering Low-frequency Items

After filtering out the short and excessively long sessions, we are left with sessions,
which can be used for modeling. In many works, including those which were dis-
cussed in detail in Chapter 2 (e.g. SR-GNN [WTZ+18], SGNN-HN [PCC+20] and
DIF-SR [XZK22]) the low-frequency items are removed from the dataset. Removal of
the items with low occurrence in the dataset is oriented on decreasing the sparsity
of the data the next item prediction modeling task. The models cannot be expected
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to learn expressive item representations from a few interactions. For instance, in SR-
GNN [WTZ+18] and SGNN-HN [PCC+20] approaches authors remove items which
occurred at least 5 times. We follow the same common practice, however, given
our limited computational budget, we set the filtering threshold to 30 with the aim
to reduce the size of the catalog, which significantly affects the efficiency of the
computations, particularly for the Cross-Entropy loss that is used in the conducted
experiments.

3.3.2 Data Splitting

Now let’s shift our focus to splitting our data for evaluation. For the current work
we will use the Global Temporal split strategy, following the logic of the splitting
strategy analysis conducted in the work “Exploring Data Splitting Strategies for
the Evaluation of Recommendation Models” by Meng et al. [MMMO20]. For the
global temporal split strategy the single point in time is defined, which is used to
split the dataset into train, test and validation sets. The global temporal split is
considered a more realistic approach because it preserves the temporal order of
events. Recommender systems in real-world scenarios cannot access future data for
training purposes and therefore, this strategy prevents the use of future information
to predict past events.

Based on the defined point in time we split both datasets first into a training set
and a combined testing and validation set. Then we split a combined testing and
validations set into separate testing and validation sets using random sampling with
a fixed random seed for reproducibility. This ensures that the modeling results are
not affected by “data leakage” and the model does not have access to future data at
training time. The splitting schema is shown in Figure 3.4.

Figure 3.4: Global temporal split schema
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3.3.3 Target Construction & Data Augmentation

In the next item prediction task the target is defined as the last item that occurs in the
user session [WCW19]. In the literature, the session data augmentation technique
referred to as iterative revealing is widely adopted. It suggests that sessions can
be expanded by iteratively shifting the target item by moving in the direction from
the end of the session to its beginning, which results in obtaining multiple shorter
sessions from the original one. For instance, iterative revealing was used in GCE-
GNN [WWC+20], SGNN-HN [PCC+20], FDSA [ZZL+19] and other SBRS approaches.
Application of iterative revealing data augmentation technique to the session data is
motivated by the iterative nature of the user’s interaction with items in the session,
in which future interactions are affected by the previous interactions [LJ18].

The schema of the iterative revealing technique is illustrated in Figure 3.5.

Figure 3.5: Iterative revealing schema

For experiments involving fusion we apply iterative revealing data augmentation only
to the training set. Applying iterative revealing to the session dataset after it has
been split into training, validation and test sets prevents a possible “data leakage”
when oversampled sessions from the training set appear in the testing and validation
sets, leading to over-optimistic evaluation.

3.3.4 Application of Data Pre-Processing Techniques to Geizhals and
AICrowd Datasets

Having discussed data splitting, low-frequency item filtering, and the iterative reveal-
ing augmentation technique, we now examine how applying these methods to the
Geizhals and AICrowd datasets affects the number of sessions in each. The results
are summarized in the Table 3.4.
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Table 3.4: Filtering of low-frequency items

Step Geizhals (Sess-s) AICrowd (Sess-s)

TRAIN (Before filtering) 713,474 1,111,416
TRAIN (After low-frequency item filtering) 609,326 456,395
TRAIN (Added at iterative revealing) 1,187,925 501,897
TRAIN (Final number of sessions) 1,797,251 958,292

TEST/VAL (Before filtering) 79,277 104,568
TEST/VAL (After low-frequency item filtering) 65,365 71,851

Catalog size (Before filtering) 300,758 518,327
Catalog size (After low-frequency item filtering) 42,894 40,595

As shown in the table for both datasets the number of items is significantly reduced,
which is caused by the filtering of low-frequency items, leaving only the items with
high number of interactions in the dataset. Further in Chapter 4 we explain the
implications of the catalog size reduction.

3.3.5 Item Description Embeddings

In Section 2.3.1 we have discussed the semantic representation of the textual item
attributes. Item embeddings used for experimentation were obtained based on the
pre-trained jinaai V3 model [SMA+24]. We now describe how item attributes were
represented before embedding generation. Following the logic of the Recformer
approach we represent item’s attributes as sentences by concatenating the attributes’
keys and values.

Below we provide an example of the randomly selected product description from
Geizhals dataset in the JSON format.

1 {
2 "category": "mdruma",
3 "timestamp": "2023-12-05T22:05:34+01:00",
4 "product": "Gretsch Catalina Club Jazz CT1-J484 (verschiedene Farben

)",
5 "best_price": 745,
6 "id": 324432,
7 "Typ": "Shellset (4-teilig)",
8 "Material": "Mahagoni (7-lagig)",
9 "Bass Drum": "18x14\"",

10 "Snare Drum": "14x5\"",
11 "Tom Tom": "12x8\"",
12 "Floor Tom": "14x14\"",
13 "Oberflaeche": "lackiert",
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14 "Finish": "Gloss Crimson Burst (rot), Piano Black (schwarz), Satin
Antique Fade (dunkelbraun), Satin Walnut Gaze (hellbraun), Blue
Satin Flame (blau)",

15 "Hardware": "Tomhalter",
16 "Besonderheiten": null,
17 "first_lvl_cat_title": "Audio & HiFi",
18 "second_lvl_cat_title": "Instrumente",
19 "third_lvl_cat_title": "Akustische Drumsets"
20 }

Listing 3.1: Randomly selected example of the item text description available in
Geizhals dataset

We remove the attributes which are not related to the semantic representation
of the item - id, timestamp. We alse remove the attributes, which do not have a
value as passing them to the embedding model does not contribute to the overall
expressiveness of the item representation. The resulting item “sentence” literal is
demonstrated below:

1 {
2 "item_literal": "product: Gretsch Catalina Club Jazz CT1-J484 (

verschiedene Farben); best_price: 745.0; Typ: Shellset (4-teilig)
; Material: Mahagoni (7-lagig); Bass Drum: 18x14"; Snare Drum: 14
x5"; Tom Tom: 12x8"; Floor Tom: 14x14"; Oberflaeche: lackiert;
Finish: Gloss Crimson Burst (rot), Piano Black (schwarz), Satin
Antique Fade (dunkelbraun), Satin Walnut Gaze (hellbraun), Blue
Satin Flame (blau); Hardware: Tomhalter; Klassifizierung der
Produkthierarchie auf erster Ebene: Audio & HiFi; Klassifizierung
der Produkthierarchie auf zweiter Ebene: Instrumente;
Klassifizierung der Produkthierarchie auf dritter Ebene:
Akustische Drumsets;"

3 }

Listing 3.2: Randomly selected example of the item text description available in
AICrowd dataset

After preparing the item attribute sentences and removal of the missing data, we
proceed by embedding the sentences for each of the items using German language-
based jinaai v3 model with dimensionality of the embedding space of 768 [SMA+24].

3.3.6 Sessions Graph Batching

In Section 2.2 we have discussed the construction of the session graph represen-
tations from the sequences. Here we discuss the graph representation of multiple

44



3.3. Pre-Processing Techniques and Data Format

sessions for maximizing the GPU utilization at training and inference. Among avail-
able examples of GNN-based model implementations we have observed that the
adopted graph representation of the sessions is not fully utilizing the GPU scalability.
In a popular framework RecBole GNN 1 the implemented SBRS models are operat-
ing on single-session graphs. For the fusion framework discussed in Chapter 4 we
made a design decision to implement a more efficient graph representation based on
multiple sessions, that allows to process multiple sessions in a single graph batch,
which significantly increases the GPU utilization. In Figure 2.1 we demonstrated
the graph representation of a single session. In Figure 3.6 we show the graph batch
representation for multiple sessions.

Figure 3.6: Graph batch representation of sessions

In the current work we use PyTorch Geometric framework 2 for efficient graph neural
network computations.

3.3.7 Privacy Considerations

Session-based recommender systems (SBRS) inherently operate within a sensitive
privacy context. While the core data consists of anonymous sessions, without ex-
plicit user identifiers, several factors necessitate careful consideration of privacy
implications:

• Re-identification Risk. Although user identities are not directly linked, re-
identification remains a potential risk. Session-related attributes (like device
type, if available) and the unique patterns within interaction histories could, in
combination with external data sources, be used to infer user identities. This
thesis focuses on interactions without access to historical data or attributes of
the sessions that can be used for identification.

1Recbole GNN GitHub repository: https://github.com/RUCAIBox/RecBole-GNN
2PyTorch Geomtric website: https://pytorch-geometric.readthedocs.io/en/latest/
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• Side Information and Sensitivity. To combat data sparsity, SBRS often
incorporates item-level side information (e.g., textual descriptions). While
beneficial for accuracy, this additional data can introduce privacy risks if it
contains sensitive details or facilitates re-identification.

• Inference of User Attributes. Inference of User Attributes: The core task of
SBRS involves inferring user intent from limited session data. This inference
process, while necessary for recommendation, can reveal user preferences, be-
liefs, or characteristics, raising potential privacy concerns. This is particularly
relevant given the short session lengths common in SBRS.

• Multimodal Fusion Complexity. The integration of multiple data modalities
(e.g., text and graph data, as explored in this thesis) further complicates the
privacy landscape. Combining different information sources can increase the
risk of unintended inferences or re-identification.

This thesis acknowledges the inherent tension between providing personalized rec-
ommendations and preserving user privacy. The design choices, including the data
pre-processing steps and model architectures, aim to mitigate these risks by fo-
cusing on anonymous session data and carefully considering the implications of
incorporating side information. The evaluation focuses on effectiveness within this
privacy-conscious framework.

Summary

Chapter 3 details the pre-processing of the Geizhals (Austrian price comparison
platform) and AICrowd (German locale from Amazon KDD Cup 2023) datasets used
for experimentation. We began by describing the structure and characteristics of
each dataset, including identifying data integrity issues in Geizhals (missing product
data, inaccurate durations). Data cleaning involved removing page views with
missing product information. Data filtering was applied to both datasets, removing
sessions shorter than 3 interactions and longer than 30, as well as items with
fewer than 30 interactions to reduce sparsity. These filtering steps significantly
reduced the dataset sizes. Data was split using a global temporal split into training,
validation, and test sets to prevent data leakage. The iterative revealing data
augmentation technique was applied only to the training data to increase the number
of training examples. Sessions were represented using an optimized Graph Batch
Construction approach for efficient GPU utilization. Finally, textual item descriptions
were prepared by concatenating key-value attributes into“sentences”, which were
then used to generate embeddings using the pre-trained jinaai V3 model. These
pre-processing steps ensure data quality, address data sparsity, and prepare the data
for subsequent fusion experiments.
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CHAPTER4
Methodology

Building upon the background and related work presented earlier, Chapter 4 now
outlines the core methodology designed to explore the fusion of graph-based and
text-based modalities in SBRS. This chapter details and motivates the specific fusion
strategies that will be investigated, chosen to leverage the complementary strengths
of these data types. Section 4.1 will present these strategies along with a clear
rationale for their selection, including the justification for the unimodal SBRS baseline
architectures we employ as a foundation for comparison.

This chapter introduces the specific fusion strategies designed and evaluated to
leverage the complementary strengths of these different data types. To set the
groundwork for a systematic comparison, we first establish the foundational archi-
tecture of unimodal SBRS models before detailing the distinct intermediate fusion
approaches. Understanding these architectural variations, experimental configura-
tion, and method of evaluation will be key for addressing how different integration
points and mechanisms impact model behavior and overall recommendation perfor-
mance.

4.1 Fusion Strategies

In the current section we discuss the specific fusion strategies designed and evaluated
to leverage the complementary strengths of these different data types. We first
establish the foundational architecture of unimodal SBRS models before detailing
three distinct intermediate fusion approaches: item-level fusion, session-level fusion,
and item text embedding propagation. Understanding these architectural variations
is crucial for addressing how different integration points and mechanisms impact
model behavior and overall recommendation performance.
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This thesis focuses on investigating intermediate fusion strategies for SBRS, specif-
ically comparing item-level and session-level fusion. This focused approach is de-
liberate, as item-level and session-level fusion represent two fundamental and con-
ceptually distinct approaches to integrating modalities within the SBRS context
[PWSR23, ZXL+24]. Item-level fusion, combining modalities early at the item repre-
sentation stage, and session-level fusion, integrating modalities later after session
context modeling, are natural and interpretable points for fusion within the estab-
lished GNN-based SBRS framework [WCW19, WTZ+18]. While the spectrum of
fusion strategies is broad [PWSR23], concentrating on these two levels allows for a
systematic and direct comparison, addressing a gap in the existing literature where
such direct comparisons are often lacking [ZXL+24]. Furthermore, focusing on these
two levels maintains a computationally feasible scope for our experiments, allowing
for a more in-depth analysis of their effectiveness and efficiency, directly relevant to
RQ2 and RQ3.

For the GNN-based unimodal baselines, we strategically selected SR-GNN [WTZ+18],
GC-SAN [XZL+19], and SGNN-HN [PCC+20]. This selection is driven by several key
factors aligned with the thesis’s objectives and research questions. Firstly, these
models represent key advancements in the field of GNN-based SBRS, showcasing
the evolution of techniques in this domain. Secondly, they offer architectural diver-
sity, utilizing different GNN layers and attention mechanisms, which is crucial for
comprehensively exploring various fusion strategies. Finally, their complementary
strengths and weaknesses, as summarized in Table 2.1, provide a robust foundation
for evaluating the potential of multimodal fusion in GNN-based SBRS and directly
address our research questions (RQ1, RQ2, RQ3). This diverse set of GNN models
allows us to investigate how different fusion techniques impact models with varying
underlying architectures and capabilities.

For experimentation with fusion strategies we decided to choose FDSA [ZZL+19],
UNISREC [HMZ+22] and GRU4RecF [HQKT16] models as the models for text rep-
resentation. The decision to use those models for comparison stems from their
diverse architectures and level of complexity. FDSA focuses on individual feature
interactions, while UNISREC provides a holistic, semantically rich item represen-
tation. GRU4RecF is considered the simplest model, which is a modification of
RNN-based GRU4Rec approach. This difference is crucial for investigating the im-
pact of different text representations when fused with GNNs (relevant to RQ1 and
RQ2). FDSA’s feature-level output is ideal for item-level fusion, while UNISREC’s
item-level output suits both item- and session-level fusion [ZZL+19]. This allows
direct investigation of different fusion strategies (RQ2). Their varying complexities
(FDSA being simpler than UNISREC) provide context for the broader investigation of
computational efficiency in RQ3. In essence, FDSA and UNISREC provide a strong
foundation for exploring the integration of text-based information into multimodal
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SBRS, directly addressing the research questions and enabling a comprehensive
evaluation of different fusion approaches. They will be combined with selected GNN
models to test the impact of these fusions.

While pre-training and fine-tuning are powerful techniques often employed in natural
language processing and recommender systems, this thesis opts to use frozen jina-ai
v3 embeddings directly for several key reasons, primarily related to the scope of the
research [SMA+24].The core objective of this thesis is to investigate and compare
different fusion strategies for combining GNN-based and text-based representations
in SBRS. The primary research questions (RQ1, RQ2, and RQ3) center on how to ef-
fectively integrate these modalities, where to fuse them (item-level vs. session-level),
and the computational implications of these choices. Fine-tuning the text embedding
model itself would shift the focus away from these core fusion-related questions
and introduce an additional layer of complexity and optimization that is not directly
relevant to the central aims of the work. Jina-ai v3 was selected based on its strong
performance on the Massive Text Embedding Benchmark (MTEB) [MTMR23], demon-
strating its ability to generate high-quality, general-purpose embeddings across a
variety of tasks and domains. While fine-tuning might lead to marginal improvements
on the specific e-Commerce datasets used in this thesis, the potential gains are
unlikely to significantly alter the overall conclusions regarding the effectiveness of
different fusion strategies. Using frozen embeddings helps isolate the impact of the
different fusion strategies themselves. If we were to fine-tune the text embeddings, it
would be difficult to disentangle the performance gains due to the improved embed-
dings from the gains due to the fusion architecture. By keeping the text embeddings
constant, we can more confidently attribute any observed performance differences
to the fusion strategy itself, providing clearer answers to RQ1 and RQ2.

4.1.1 Unimodal SBRS Approaches

Before exploring the complexities of integrating multiple modalities, it is essential
to establish the baseline: the architecture of unimodal SBRS approaches. Building
on the concepts introduced in Chapter 2 and visually represented in Figure 4.1, this
subsection outlines the standard processing pipeline common to many modern neural
SBRS models relying on a single data source (either interaction history/IDs or textual
features alone). We define the key stages – typically involving item representation
learning, session context aggregation, and item-session alignment for prediction
[WCW19] – that form the fundamental structure upon which our multimodal fusion
strategies will be constructed and critically compared. Understanding this unimodal
schema provides the necessary reference point for evaluating the impact of fusion.

Modern neural SBRS approaches follow a well defined schema. We have discussed
the SBRS model schema in Section 2.1.1. It includes 3 main steps, to which most of
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the modern SBRS approaches adhere: item representation step, session aggregation
step and item-session alignment (prediction) step [WCW19].

Below in Figure 4.1 we provide a high-level architectural diagram, which illustrates
the end-to-end training process of the unimodal approaches. For better compara-
bility the diagram describes an abstract schema that is not specific to GNN-based
approaches and does not illustrate the GNN-specific steps like graph construction
and session batch graph construction.

Figure 4.1: Schema of unimodal neural SBRS

On the diagram the batch size is denoted as B, maximum length of the sequence in
a batch as max_len and internal dimension of the model as in_dim. Catalog size is
denoted as catalog_size. Catalog corresponds to a set of all unique items. In the
parentheses we specify the dimensions of the tensors.

The batch of sessions along with the target next items serves as the input tensor that
is passed to the model. Each of the items in the session are encoded numerically, such
that items are brought into correspondence with the catalog IDs. Item sequences that
are longer than the max_len parameter are shortened, while the sequences which
are shorter than the max_len are padded with a pad token. With such pre-processing
steps sessions in the batch are brought to the same length.

Trainable item embeddings play a crucial role in the next item prediction task as
they are used both to represent the items and to extract the session representation
by applying the aggregation logic.

Session aggregation is the step, where the most of the innovation in SBRS field has
happened. In Chapter 2 we have discussed a diverse set of approaches that were
suggested for obtaining expressive session representations, including RNN, attention
and GNN-based approaches.
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After item and session representations are obtained, at the prediction step the
scores are calculated as the dot product between the session representation and the
embeddings of the entire catalog of items.

Item embeddings along with session aggregation module’s parameters are updated
with respect to the model’s loss function. Commonly the Cross-Entropy loss is used,
however, according to the work of Petrov [PM22] one of the biggest challenges of
the SBRS is the scalability with respect to the catalog size. To address this issue,
contrastive losses, like Hinge or BPR losses are often used to significantly reduce the
number of items for loss computation by calculating the loss with respect to a set of
positive and negative examples [PM22]. However, it is reported that the convergence
of the models that employ contrastive losses is significantly slower, compared to the
Cross-Entropy loss.

In the current work we use the Cross-Entropy loss in combination with a frequency-
based item filtering, which allows for faster convergence. The dimensionality of the
resulting tensor with predicted scores using Cross-Entropy loss is (B x catalog_size).

4.1.2 Item-Level Fusion

This subsection details the first of our proposed multimodal integration strategies:
item-level fusion. Characterized as an ’early fusion’ approach within the SBRS
pipeline, this method focuses on combining textual and graph-based information
at the individual item representation stage, before these enriched embeddings are
aggregated to form the overall session context (Figure 4.2). The objective is to create
intrinsically multimodal item embeddings early on. We explore the architectural
specifics, including the examined concatenation and gated fusion mechanisms for
merging modality-specific item features, and discuss the potential implications of
performing fusion at this granular level.

Having discussed the high-level schema for the unimodal approaches as well as the
notation, we focus on the suggested item-level fusion strategy.

As discussed in the Section 2.4, the item-level fusion is oriented on obtaining the
fused item representations prior to the session representation construction, which
implies that session representations are constructed based on the cross-modal item
representations. This fusion type can be classified as the early fusion as it happens
before any major session aggregation step.

In Figure 4.2 we demonstrate the high-level architecture of the proposed item-level
fusion approach.
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Figure 4.2: Schema of the item-level fusion

We experiment with two types of the fusion module: concatenation fusion and gated
fusion. In both cases we project the resulting fused representation back to the
original in_dim dimension by applying a linear layer projection. The cross-modal
session context is created from the fused item representations, which is further
aggregated and cross-modal session representations are obtained.

As the final step, scores are obtained as a dot product between session and item
representations.

4.1.3 Session-Level Fusion

In contrast to the early integration characteristic of item-level fusion, this subsection
introduces the session-level fusion strategy. Classified as an intermediate fusion
approach (Figure 4.3), this architecture prioritizes processing each modality (text
features and graph interactions) independently to generate separate, modality-
specific session representations first. Only after capturing the session context within
each modality are these high-level representations combined using a dedicated fusion
module, alongside fused item representations for the final prediction. We examine
the rationale behind potentially allowing deeper modality-specific processing before
integration and detail its implementation, again considering both concatenation and
gated fusion variants.

The session-level fusion strategy in contrast to the item-level strategy assumes that
the fusion is performed both at the session and at the item levels. This approach
allows to incorporate the cross-modal information at the session representation level,
which might potentially increase the expressiveness of the session representations.

The session-level fusion schema is illustrated in Figure 4.3.
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Figure 4.3: Schema of the session-level fusion

The session representations are obtained separately for each modality based on
the unimodal representations. They are subsequently aggregated into modality-
specific session representations, which are further aggregated using the session
fusion module.

The item representations are fused in the same fashion as in the item-level fusion
strategy: item representations are fused using the item fusion module and cross-
modality item representations are obtained.

Taking into account the aforementioned considerations, session-level fusion can be
classified as the intermediate fusion. Information is fused between modalities both at
item and at the session levels, which might lead to a better information flow between
modalities.

The suggested schemas for both item- and session-level fusion strategies are appli-
cable for the cases with more than two modalities (e.g. text, image and sequential),
which makes them suitable for multimodal recommendation tasks.

Modality Domination Problem Mitigation

One of the challenges that needed to be addressed was the choice of the loss
computation approach. One approach was to calculate the joint loss at the final
prediction step and propagate the error through both of the modality-specific modules.
As reported in the AlterRec work [LHC+24], the effect of the ID modality domination
was likely to occur, which would imply that the ID-modality affects the training
process significantly more than the text modality.

This led us to an alternative approach. In order to avoid the ID modality domination
effect we decided to decompose the loss into 3 sub-losses, each responsible for a
separate parameter group. The text modality specific losstext is responsible for the
text module parameter group, while ID modality specific loss lossID is responsible
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for the ID module parameter group. The loss lossfused is responsible for the fusion
module parameters, which includes the weights of the session and item fusion layers.
With that approach we first calculated losstext and lossID, propagated the error with a
backward pass and then calculated the average loss lossfused = (losstext + lossID)/2.

4.1.4 Item Text Embedding Propagation

Distinct from the explicit fusion strategies requiring separate processing pathways,
this subsection explores the alternative approach of item text embedding propagation
(Figure 4.4). This method leverages powerful, pre-trained text embeddings (such
as jina-ai V3) directly as the initial node features within the GNN architecture
that models session interactions. Inspired by practices in graph machine learning
[MMK21], the core idea is that the GNN’s inherent message-passing mechanism itself
will propagate and integrate this rich semantic information across the session graph
structure, potentially eliminating the need for separate trainable ID embeddings or
explicit fusion layers.

As demonstrated in the work by Makarov et al. [MMK21] extension of the graph
neural networks with pre-trained embeddings leads to a significant performance
improvement on various graph-specific tasks.

Item text embedding propagation approach is inspired by the Graph Neural Networks’
ability to obtain representations of the items based on their neighbors. In the context
of SBRS task the neighbors are the co-occurring items in the sessions.

The schema of the item text embedding propagation is illustrated in Figure 4.4.

Figure 4.4: Schema of the item embedding propagation

We initialize the nodes of the GNN-based SBRS approaches with non-trainable jinaai-
V3 embeddings as discussed in section 3.3.5.
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4.2 SBRS Model Fusion Framework

Implementing and systematically evaluating the diverse fusion strategies described
necessitates a robust and flexible experimental platform. This section introduces
SBRSFuse, the custom software framework developed specifically for this thesis
to facilitate the exploration and comparison of multimodal fusion in session-based
recommender systems. Built upon Python, PyTorch, and PyTorch Geometric, and
drawing inspiration from the modular design of libraries like RecBole, SBRSFuse
provides the unified infrastructure for consistent data processing, model definition
(encompassing unimodal baselines and the proposed fusion architectures), training
loop management, and standardized metric calculation, as architecturally depicted
in Figure 4.5. We outline its key design principles and components, explaining how
it enables the rigorous and reproducible experimentation presented in subsequent
chapters.

4.2.1 Introduction to SBRSFuse Framework

The SBRSFuse framework is designed to facilitate the exploration and comparison
of different fusion strategies for session-based recommender systems. It is built using
Python, PyTorch, and PyTorch Geometric, leveraging their flexibility and efficiency
for deep learning and graph-based computations. SBRSFuse 1 follows an object-
oriented design, with classes representing different components of the SBRS pipeline.
This promotes modularity and code reusability.

The framework’s organization and design is inspired by the popular RecBole library
2. SBRSFuse supports various SBRS models, including those found in RecBole and
RecBole GNN 3.

The architectural diagram of the SBRSFuse framework is illustrated in the Figure
4.5.

1SBRSFuse framework GitHub repository: https://github.com/RomanGrebnev/sbrs_fuse
2Recbole website: https://recbole.io/
3RecBole GNN repository: https://github.com/RUCAIBox/RecBole-GNN/tree/main/recbole_gnn
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Figure 4.5: Schema of the SBRSFuse framework architecture

Data Preparation

The framework implements the dataset pre-processing. For instance, DatasetS-
BRSFuse class prepares the raw session and product attributes data for training.
DatasetSBRSFuse depends on the SessionPreprocessorTemporal and SessionDataset
classes. DatasetSBRSFuse class handles the following pre-processing operations:
it encodes the item ids into a numerical representation, extracts the target next
items and splits the data into train, test and validation sets according to the Global
Temporal splitting schema discussed earlier. DatasetSBRSFuse produces training,
testing and validation datasets of class SessionDataset, that are compliant with the
PyTorch Dataset API for efficient loading and batch collation.

For each of the train, test and validation instances of SessionDataset class corre-
sponding dataloaders are created. Efficient data loading is crucial for avoiding
training bottlenecks and the under-utilization of the GPU. To achieve this efficiency
within the SessionDataset class we pre-compute all the computationally intensive
operations and prepare data for training before the training loop begins.

Models

SBRSFuse implements three types of models, including text-based, ID-based and
fusion models. Text models include FDSA, GRU4RecF and UNISREC. ID-based
models include GRU4Rec, GC-SAN, SGNN-HN and SR-GNN models. The session-
level fusion model class FusionModelSessLvl is implemented as a wrapper class
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that is used to fuse the initialized text and ID-based models. Key methods that are
supported by the interfaces of the unimodal and item-level fusion models are predict,
calculate_loss and forward. Additionally we implemented get_item_embeddings_ce
and get_item_embeddings_contrastive methods which is a crucial design decision,
that facilitated session-level fusion.

Training Loop

The training loop is the core component of the SBRSFuse framework. We manage
the training loop with two trainer classes - TrainerUnimodalItemLvl manages the
training of unimodal and item-level fusion models, while TrainerSessionLvl manages
the training of the models obtained with session-level fusion. At initialization these
trainer classes instantiate optimizers, schedulers, dataloaders and an early stopping.
Both TrainerUnimodalItemLvl and TrainerSessionLvl classes implement the training
loop. In each of the epochs the training is performed based on the batches of
sessions provided by the training dataloader. Following the training phase, the model
is evaluated on the validation data. Training, validation and test metrics are cached
using MetricsCalculatorTopK class, while EarlyStopper class records the model if the
improvement in the reference metric is detected compared to the previous epochs.
EarlyStopper at each of the training epochs assesses, whether training should be
continued based on the patience conditions. Once the computational budget of 10
epochs is reached or EarlyStopper training interruption condition is met, the cached
best model is evaluated on the test dataset. This allowed us to stop the training
procedure in cases when there were no improvements detected on the reference
validation metrics and to conserve the computational budget.

For the purpose of reproducibility framework implements random seed initialization
for all libraries which rely on pseudo-random generators.

Evaluation

In order to systematically compare the experimental results we have implemented
the ExperimentTracker and ExperimentDefinition classes. They allow to efficiently
compute running top-k metrics and accumulate metrics during training, testing and
evaluation phases. These classes are referenced at training, validation and testing
phases of the training loop within the TrainerUnimodalItemLvl and TrainerSessionLvl
classes.

Loss Functions

As mentioned earlier, contrastive losses are highly popular for SBRS tasks [PM22].
Although we use the Cross-Entropy loss for training and evaluation, SBRSFuse
supports Hinge and BPR losses. Model classes can be easily extended to implement
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the calculation of the contrastive losses based on positive and negative samples.
Naive negative sampling procedure is implemented within the SessionDataset class,
which defines the negative examples for each session as a random item which is not
a part of the session.

Configuration

One of the most important design decisions in the foundation of the framework is
its high flexibility. We achieved that by implementing three types of configuration
classes: model configuration, dataset configuration and trainer configuration.

These are detailed below:

• Model Configuration. Each model has a corresponding model configuration
class, that contains the model hyper-parameters, specific to the architecture of
the given model.

• Dataset Configuration. Dataset configuration defines pre-processing parame-
ters, including maximum session length and parameters controlling iterative
revealing data augmentation.

• Trainer Configuration. Trainer configuration covers parameters of the op-
timizers, schedulers, dataloaders and early stopping. For the optimizer the
type of the optimizer, the learning rate and weight decay can be configured.
Scheduler configuration allows choosing between multiple scheduler types and
their parameters. Dataloader configuration controls train and validation batch
size. Configuration also specifies the K-parameter for the calculation of the Top-
K metrics and maximum number of epochs, which defines the computational
budget.

4.2.2 Reflecting on the Framework Design Process through DSR

The development of the SBRSFuse framework, described above, was guided by the
principles of Design Science Research (DSR), as outlined in our Methodological
Approach (Section 1.4.1). This involved iterating through the relevance, rigor, and
design cycles to ensure the framework effectively addressed the research needs
while being grounded in existing knowledge.

The Relevance Cycle initiated the process by identifying the practical and research
gap: the need for a systematic comparison of intermediate fusion strategies (specifi-
cally item-level vs. session-level) between graph and text modalities in SBRS. Existing
tools often lacked the specific flexibility required for this focused comparison across
different base model architectures. This defined the core requirement: a dedicated
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framework enabling controlled experimentation with these precise fusion types,
consistent data handling, and standardized evaluation.

The Rigor Cycle provided the necessary foundation by drawing upon existing knowl-
edge. This included leveraging established deep learning and graph processing
libraries (Python, PyTorch, PyTorch Geometric), adopting modular design princi-
ples inspired by frameworks like RecBole, and incorporating implementations or
architectural concepts from state-of-the-art unimodal SBRS models (e.g., SR-GNN,
UNISREC) and multimodal literature (e.g., awareness of modality domination issues
as highlighted by [LHC+24]). This ensured the framework used sound technical
components and built upon prior research.

The Design Cycle represented the core iterative development of the SBRSFuse
artifact itself. Several key decisions and refinements emerged during this phase:

• Initial Artifact Conception. The decision to build a custom framework, rather
than adapting existing ones, stemmed directly from the specific comparative
requirements identified in the Relevance cycle and the need for fine-grained
control over fusion implementation.

• Addressing Efficiency. Early prototyping, informed by the Rigor cycle’s review
of GNN practices, revealed potential inefficiencies in single-session graph
processing. A crucial design iteration was the implementation of multi-session
graph batching using PyTorch Geometric, significantly improving computational
resource utilization during training – a key practical requirement (Relevance).

• Implementing Fusion Logic & Loss. Developing the distinct item-level and
session-level fusion pathways required careful consideration. Insights from the
Rigor cycle regarding potential modality domination led to the design decision
of implementing the decomposed loss strategy. While alternative solutions like
alternating training exist [LHC+24], the decomposed loss offered a pragmatic
approach suitable for isolating parameter updates within our comparative
experimental setup.

• Enhancing Experimental Management. As the scope of experiments grew,
the framework evolved. Configuration classes (for datasets, models, trainers)
and experiment tracking utilities were added in a later design iteration to man-
age the complexity and ensure reproducibility of the 86 experiments detailed in
Chapter 5.

• Facilitating Text Propagation. Enabling the comparison of explicit fusion
with text embedding propagation required designing model interfaces that
could handle both trainable ID embeddings and fixed text embeddings as input
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features seamlessly. This design choice directly enabled testing one of the core
fusion concepts.

This iterative process, cycling between identifying needs (Relevance), consulting
existing knowledge (Rigor), and building/refining the artifact (Design), directly
resulted in the SBRSFuse framework presented here. Its specific architecture and
components are a direct consequence of applying DSR principles to address the
research questions effectively and systematically. The framework, as the primary
technological artifact produced through this DSR process, subsequently enabled the
comprehensive experimental evaluation detailed in Chapter 6.

4.3 Model Evaluation

Having defined the fusion strategies and the experimental framework (SBRSFuse),
the final crucial component of our methodology is the comprehensive approach
to model evaluation. Assessing performance solely based on one criterion can
be misleading; therefore, this section details the multifaceted suite of evaluation
metrics employed to rigorously assess the developed models and answer our research
questions. We categorize these metrics into three critical dimensions: effectiveness
(measuring core predictive accuracy), efficiency (evaluating computational resource
usage), and “beyond accuracy” qualities (exploring aspects like novelty and diversity).
Adopting this holistic evaluation strategy allows a nuanced understanding of the
strengths, weaknesses, practical trade-offs, and overall suitability of each SBRS
configuration investigated.

4.3.1 Effectiveness Metrics

The fundamental measure of a recommender system’s utility lies in its ability to
accurately predict items that align with user intent. This subsection details the
specific effectiveness metrics chosen to quantify this predictive performance within
the next-item prediction task common to SBRS. We primarily utilize Hit Rate at K
(HR@K), reflecting the model’s capability to include the correct next item within
the top K suggestions (recall), and Mean Reciprocal Rank at K (MRR@K), which
prioritizes the ranking quality by rewarding models that place the correct item higher
in the list [RRS22]. These metrics are particularly suitable for SBRS where explicit
ratings are often absent [LJ18], and their results form the quantitative basis for
addressing RQ1 and RQ2.

The following effectiveness metrics are used for comparison of the SBRS models:

• Hit Rate at K (HR@K). HR@K measures the proportion of sessions where the
ground-truth next item is ranked within the top K recommendations provided
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by the model. A higher HR@K indicates that the model is effectively identifying
relevant items for the user’s current session context [GA22]. The formula for
HR@K is provided below:

HR@K = 1
S

S∑︂
s=1

hits@K

K
, hits@K =

1 item is present in ranked list

0 item is not present in ranked list

(4.1)

Where S is the number of sessions and K is the number of top items in the
ranked list used for the calculation.

• Mean Reciprocal Rank (MRR@K).MRR@K calculates the average reciprocal
rank of the first relevant item across all sessions. This metric emphasizes
ranking the most relevant item at the top. A higher MRR@K indicates better
prioritization of relevant items [GA22]. MRR@K is calculated as follows:

MRR@K = 1
S

S∑︂
s=1

1
ranki

, i < K (4.2)

Where ranki indicates the ranking of the predicted item in the top K ranked
list.

Combining HR@K and MRR@K provides a comprehensive understanding of the
proposed SBRS models. HR@K gives insights into overall retrieval effectiveness,
while MRR@K focuses on ranking relevance. The top K parameter, typically chosen
as K = 5, 10, 20, represents the scores of the first K positions in the sorted ranking
list and is crucial for evaluating relevant recommendations [GA22].

Metrics like NDCG@K and Precision@K, which are valuable for systems with explicit
user ratings, are not ideal for SBRS without such ratings. Adapting these metrics to
SBRS can be problematic due to sensitivity to preference shifts in longer sessions
and infeasibility in shorter sessions. Therefore, they are not used in this evaluation
[LJ18].

HR@K and MRR@K metrics correspond to the RQ1 1.2 and RQ2 1.2. Research ques-
tion 1 is aimed at comparison of the performance between unimodal and multimodal
models, while research question 2 is aimed at comparison of the fusion point. A
chosen set of effectiveness metrics reflects both the importance of high retrieval
effectiveness and the ranking relevance, which are crucial aspects of SBRS solutions.
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4.3.2 Efficiency Metrics

The practical deployment and operational cost of recommender systems heavily de-
pend on their computational demands. This subsection defines the efficiency metrics
used to evaluate the resource utilization and scalability of the various unimodal
and multimodal SBRS approaches explored in this thesis. Specifically, we measure
Inference Time (average latency to generate recommendations, crucial for online
systems), Training Time and the Number of Model Parameters (indicating model
complexity, memory footprint, and potential training cost). Assessing these factors is
vital for understanding the real-world feasibility and identifying potential bottlenecks
associated with different fusion architectures, directly addressing the concerns of
RQ3.

We utilize the following efficiency metrics for evaluation:

• Training Time. This metric quantifies the average computational time in
seconds, needed to process a single batch of training data (1024 sessions per
batch is used), encompassing both forward and backward propagation. It
reflects the efficiency of the learning process, influencing the overall training
duration, computational cost, and feasibility of frequent retraining, relevant to
the efficiency considerations in RQ3.

• Inference Time. This metric measures the average latency in seconds, re-
quired for the deployed model to generate recommendations for a predefined
batch of sessions (1024 sessions per batch is used). Lower latency is critical for
real-time SBRS applications to ensure a seamless user experience and efficient
resource utilization, directly impacting the model’s operational viability as
investigated in RQ3.

• Number of Model Parameters. This value represents the total count of
trainable parameters within the model architecture. It serves as a key indica-
tor of model complexity, directly impacting memory requirements (VRAM for
training/inference, storage size) and often correlating with training data needs
and computational load during both training and inference phases, forming a
core part of the efficiency analysis for RQ3.

Inference time and number of model parameters measurements directly address the
RQ3 1.2 and help to assess the overall effectiveness of the models.

Three groups of metrics - efficiency, effectiveness and “beyond accuracy” metrics
provide an evaluation framework for a comprehensive assessment of the unimodal
and multimodal models.
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4.3.3 Beyond Accuracy Metrics

While predicting the correct next item is essential, the overall quality of user experi-
ence can be significantly influenced by other characteristics of the recommendations.
This subsection introduces the “beyond accuracy” metrics selected to evaluate these
complementary aspects [GA22]. We analyze Serendipity (the ability to recommend
relevant yet less obvious or popular items), Novelty (the degree to which recom-
mendations consist of less frequently encountered items overall), and Diversity (the
dissimilarity among items within a single recommendation list). Examining these met-
rics provides valuable insights into the exploratory nature versus exploitative focus of
different fusion strategies, although their interpretation must be carefully considered
given the specific definitions and the inherent characteristics of session-based data.

Serendipity

Serendipity metric captures the system’s ability to suggest items that are beyond
typical preferences and expectations of the users. It is challenging to quantify
this metric precisely, and there is a considerable lack of consensus on its very
definition within the recommender systems research community [KMG23]. A common
conceptualization casts serendipity as a complex combination of relevance, novelty,
and unexpectedness. This, however, differs from broader definitions of serendipity
found in other fields (e.g., information retrieval) and the common usage of the
term, which do not require discovered items to be novel or unexpected, but merely
“valuable or agreeable things not sought for” (as originally noted by Walpole and
captured by Merriam-Webster’s definition).

The challenge of defining serendipity is also apparent in determining how to ade-
quately measure it. The embedding-based serendipity metric calculation we utilize
attempts to capture whether recommended items differ from the user’s historical
interactions, while still being relevant. The metric performs this calculation by
comparing the recommended items to the user’s past interactions using cosine
similarity:

Serendipity@K(s) = 1
K

∑︂
i∈Rs

rel(i, s) ·
1 − 1

|Hs|
∑︂

j∈Hs

sim(i, j)

 (4.3)

Serendipity@K = 1
|S|

∑︂
s∈S

Serendipity@K(s) (4.4)

where:

• s is a session.
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• S is the set of all sessions.

• Rs is the set of top-K recommended items for session s.

• K is the number of recommended items considered.

• Hs is the set of items in the historical part of session s (i.e., the items the user
interacted with *before* the target item).

• sim(i, j) is the cosine similarity between the embedding vectors of item i and
item j. This requires item embeddings.

It’s important to acknowledge limitations with this specific approach. The embedding
space used for calculating similarity heavily influences the outcome, and the chosen
embeddings may not perfectly capture the nuances of user preferences or item
characteristics relevant to a user’s definition of serendipity. A key assumption here
is that cosine similarity in the embedding space adequately reflects “similarity” as a
user would perceive it. This formulation emphasizes a kind of personalized novelty,
however alternative definitions emphasize user-perceived novelty [KVW16]. These
caveats highlight the importance of carefully interpreting the results of this metric
and relating them back to the specific assumptions and limitations of its formulation,
as emphasized by discussions within the field [KMG23].

Diversity

This metric measures how dissimilar the recommended items are within a predicted
ranked list. A higher diversity means the user sees a wider variety of items. It is
calculated by averaging the dissimilarity (using cosine distance) between all pairs of
items in each user’s list, and then averaging these averages across all users. For the
calculation of the diversity metric we use trainable item embeddings for ID-based
models and non-trainable embeddings for text-based models.

Diversity@K(s) = 1
K(K − 1)

∑︂
i∈Rs

∑︂
j∈Rs
j ̸=i

(1 − sim(i, j)) (4.5)

Diversity@K = 1
|S|

∑︂
s∈S

Diversity@K(s) (4.6)

where:

• s, S, Rs and K are defined as same in Serendipity.

• sim(i, j) is the cosine similarity between the embedding vectors of item i and
item j.
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Novelty

Novelty measures how unexpected the recommendations are. A higher novelty score
indicates that the recommendations include more items that are uncommon or rarely
interacted with. It’s calculated by taking the negative logarithm (base 2) of how
often an item appeared in the training data. Less frequent items get higher novelty
scores. Finally, these scores are averaged within each user’s list and then across all
users. One of the key data pre-processing decisions that was made is the filtering of
the low-frequency items, which significantly affects the metric’s representativeness.

Novelty@K(s) = 1
K

∑︂
i∈Rs

− log2(p(i)) (4.7)

Novelty@K = 1
|S|

∑︂
s∈S

Novelty@K(s) (4.8)

where:

• s, S, Rs and K are defined as same in Serendipity.

• p(i) is the probability of item i appearing in the training data, calculated as:

p(i) = count(i)∑︁
j∈I count(j) (4.9)

where count(i) is the number of times item i appears in the training set, and I

is the set of all unique items.

The interpretation of these metrics must consider the unique characteristics of SBRS,
as the metrics were initially developed for classical systems. The limited interaction
history typical of SBRS, where user preferences might be dynamic, challenges the as-
sumptions behind historical-interaction-based serendipity calculations. Furthermore,
diversity metrics inherently reflect the specific co-occurrence distributions found
within the session data and the recommendation domain, requiring context-aware
analysis.

Summary

This chapter detailed the methodology employed to investigate the fusion of graph
and text modalities in session-based recommender systems. We first outlined the
general schema of unimodal neural SBRS models, encompassing item representation,
session aggregation, and item-session alignment. Building upon this foundation, we
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introduced three distinct intermediate fusion strategies: item-level fusion, session-
level fusion, and item text embedding propagation. Item-level fusion integrates
modalities before session representation construction, creating enriched item em-
beddings. Session-level fusion combines modalities after separate unimodal session
representations are learned, allowing for modality-specific context modeling. Item
text embedding propagation leverages pre-trained text embeddings directly within
a GNN-based architecture, bypassing the need for trainable item embeddings. For
each fusion strategy, we provided a high-level architectural diagram and described
the fusion mechanisms, including concatenation and gated fusion. We also addressed
the potential issue of modality domination by decomposing the loss function.

To facilitate our investigation, we developed SBRSFuse, a flexible and modular
fusion framework built using Python, PyTorch, and PyTorch Geometric. SBRSFuse
supports various SBRS models (both GNN-based and text-based), implements the
proposed fusion strategies, and provides a robust training and evaluation pipeline. We
described the key design decisions and components of the framework, including data
preparation, model implementations, the training loop, configuration management,
and loss functions. The framework’s modular design and clear separation of concerns
promote code reusability and extensibility.

The methodology presented in this chapter, combined with the detailed experimental
analysis in Chapter 5, provides a comprehensive framework for evaluating the
effectiveness and efficiency of different multimodal fusion strategies in session-based
recommender systems.

66



CHAPTER5
Experiment Design

Current chapter describes the experiment design for the experiments that address
the outlined research questions. In Section 5.1 we revisit the research questions
and discuss the evaluation criteria applied to answer each of the outlined research
questions. Further in Section 5.2 we provide an overview of the experimentation grid
and the scope of the conducted experiments. In the final Section 5.3 of this chapter
experiment configuration details are provided, covering the applied configuration for
dataset, model and trainer components of the experiments.

5.1 Revisiting Research Questions

Having established the methodology and fusion framework in Chapter 4, this initial
section of the experiment design serves to anchor the upcoming empirical work firmly
within the study’s objectives. We revisit the core research questions (RQ1, RQ2, RQ3 )
outlined previously and explicitly detail how the planned experiments are structured
to address each one. This involves operationalizing the questions by defining the
specific model comparisons (unimodal vs. multimodal), architectural variations
(fusion points, layer types), and evaluation metrics (effectiveness, efficiency, beyond-
accuracy) that will be employed to generate conclusive answers regarding the impact
and implications of multimodal fusion in session-based recommenders.

Research Question 1

In RQ1 1.2 we aim to assess the impact of the multimodal fusion on the performance
of the SBRS models by comparing the performance of the unimodal and multimodal
models.
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To address RQ1, we systematically compare the performance of several session-based
recommender models. These models are grouped into three categories:

• Unimodal Text Models. These models utilize only textual item information
(e.g., FDSA, UNISREC, GRU4RecF).

• Unimodal GNN Models. These models rely solely on the graph structure
derived from user-item interaction sequences (e.g., SR-GNN, GC-SAN, SGNN-
HN).

• Multimodal Models. These models integrate both textual and graph informa-
tion using the fusion strategies described in Chapter 4. This includes models
employing item-level fusion, session-level fusion, and text embedding propaga-
tion.

We evaluate the performance of each model category using standard recommendation
metrics (detailed in Section 4.3.1), allowing us to directly quantify the impact of
incorporating both modalities compared to using either modality alone.

Research Question 2

The goal of the RQ2 1.2 is to assess the impact on the performance of the fusion
points between modalities and fusion layer types of multimodal fusion.

This research question focuses on the specific architectural choices within multimodal
models. We compare three distinct fusion strategies:

• Item-Level Fusion. Text and graph representations are combined before
session representation learning (see Figure 4.2).

• Session-Level Fusion. Text and graph representations are combined after
separate session representations are learned for each modality (see Figure
4.3).

• Text Embedding Propagation. Text embeddings are directly used as node
features in the GNN, bypassing the need for separate trainable item embeddings
(see Figure 4.4).

We also test two fusion layer types: concatenation and gated fusion.

By evaluating models using each of these strategies, we can assess the relative
effectiveness of fusing information at different points in the SBRS pipeline. We
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analyze the performance differences across various model combinations (e.g., SR-
GNN with item-level fusion and concatenation fusion layer type vs. SR-GNN with
session-level fusion and gated fusion layer type) to determine the impact of both the
fusion points and the fusion layer types on the model performance.

Research Question 3

RQ 3 1.2 aims to compare the efficiency of the multimodal SBRS approaches obtained
as the result of the application of the suggested fusion strategies.

To address RQ3, we measure three key efficiency metrics:

• Inference Time. The average time required to generate recommendations for
a mini-batch of sessions of size 1024.

• Training Time. The average time required to train a model on a mini-batch of
sessions of size 1024.

• Number of Model Parameters. The total number of trainable parameters in
the model, reflecting its memory footprint.

We compare these metrics across all models and fusion strategies. This allows us to
quantify the computational trade-offs associated with multimodal fusion and identify
more efficient approaches. We can, for example, determine if the performance gains
of session-level fusion justify its potentially higher computational cost compared to
item-level fusion or text embedding propagation.

5.2 Experiment Scope

With the research questions operationalized, this section delineates the precise
scope and breadth of the experimental investigation undertaken. We present the
comprehensive experimental grid (summarized in Table 5.1), detailing the specific
unimodal and multimodal SBRS models, the distinct fusion strategies (item-level,
session-level, text propagation), fusion layer types (concatenation, gated), and the
datasets (AICrowd, Geizhals) included in the study. Outlining the scale, encompassing
a total of 86 distinct experimental runs, clarifies the boundaries of our analysis and
highlights the systematic approach taken to compare the performance landscape
across these varied dimensions.

Table 5.1 depicts the number of experiments with respect to all of the relevant
experiment dimensions.
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Table 5.1: Experiment grid overview

Model Fusion Strategy Model Types Models
Number of
Experiments

Unimodal Text models UNISREC, FDSA, GRU4RecF 6

ID models
SR-GNN, SGNN-HN, GC-SAN;
GRU4Rec

8

Multimodal
Session-Level Fusion

Combinations of all
text and ID models

e.g. UNISREC and SR-GNN 48

Multimodal
Item-Level Fusion

ID models
SR-GNN, SGNN-HN, GC-SAN;
GRU4Rec

16

Item Embedding
Propagation

ID models
SR-GNN, SGNN-HN, GC-SAN;
GRU4Rec

8

In total 86 experiments were conducted. The results of the experiments are used for
a systematic comparison between unimodal and multimodal approaches (RQ1 1.2) as
well as fusion strategies and fusion layer types (RQ2 1.2). For each of the conducted
experiments we collect 3 sets of metrics outlined in Section 4.3.1, including efficiency
metrics, which facilitates addressing the RQ3 1.2.

Experiment dimensions are summarized below:

• Model Fusion Strategy. Unimodal approaches that include text and ID-based
architectures. Multimodal approaches include session-level, item-level fusion
strategies and item embedding propagation.

• Model Type. As discussed in Chapter 2, we use 4 ID-based models (SR-GNN,
SGNN-HN, GC-SAN and GRU4Rec) and 3 text-based models (UNISREC, FDSA
and GRU4RecF).

• Datasets. In Chapter 3 we have discussed in detail 2 datasets that are used for
experimentation: AICrowd and geizhals datasets.

• Fusion layer types. We experiment with 2 fusion layer types: concatenation
and gated fusion.

5.3 Experiment Configuration

To ensure transparency and facilitate reproducibility, this final section of the design
chapter provides a detailed account of the specific configurations and hyperparam-
eters employed throughout the 86 experiments. We meticulously document the
technical environment, including hardware specifications and key software depen-
dencies. Furthermore, we specify the consistent dataset pre-processing parameters,
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crucial model configurations, and the precise trainer settings (random seed, learning
rate, optimizer, batch size, early stopping criteria based on MRR@10) used. These
details are essential for understanding the exact conditions under which the results
presented in Chapter 6 were obtained.

Hardware & Software Configuration

The instance that was used to conduct experiments is operated with Ubuntu 22.04.5
LTS OS. We run our experiments on the NVIDIA A40 instance with 45400 MB of
available video memory, 84 multi-processors and 6 MB L2 cache size. Data transfer
during experimentation was secured using SSH. Since only one GPU instance was
available for experimentation, neither data nor model parallelism techniques were
used.

Framework is implemented using Python 3.9.21. The following versions of key
dependencies were used: PyTorch 2.5.1, PyTorch Geometric 2.3.0 and CUDA 12.4.
Versions of the other dependencies are specified in the requirements.txt file.

Dataset Configuration

In Section 3.3.2 we specify the data pre-processing steps. We used a consistent
configuration across AICrowd and Geizhals datasets, applying the exact same pre-
processing steps to both datasets. For Geizhals dataset additional dataset construc-
tion phase was conducted, during which we prepared the session data for training.
We used the original AICrowd dataset, including the data splitting ratio, specified by
the organizers of the competition. For both datasets, we set the minimum session
length to 3 and the maximum session length (sequence length) to 14. During training
and inference we provide the padding mask to exclude the impact of the padding
tokens on the training procedure. We limit the number of maximum number of
possible sub-sessions resulting from the application of iterative revealing to 3 as for
longer sessions multiple sub-sessions can be generated.

We perform data shuffling for training with a fixed random seed and use the unshuf-
fled data for validation and testing. Given our computational budget, we conducted
single runs of each experiment instead of multiple runs with different random seeds.

Model Configuration

In the current work we do not perform hyper-parameter tuning mainly owing to
the following two reasons. Firstly we aim to collect metrics for the models that are
comparable in terms of the total parameter number, that allows us to establish the
best performing approaches with the controlled model parametrization. Second
reason stems from the limitations of the computation budget and high computational
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requirements of the experiments. As discussed in Section 4.2.1 each of the models is
configured individually, however, to achieve the fairness of the comparison between
the models we commonly set the internal dimension to 128, while preserving the
original model hyperparameters.

Trainer Configuration

During training we fix the random seed parameter and set it to the value of 42
in order to ensure the reproducibility of the results. We run all experiments with
a maximum number of training epochs limited to 10, which was identified as the
optimal threshold during framework development.

For early stopping we use MRR@10 metric improvements as the stopping criterion
with the patience of 2 epochs and the patience threshold of 0.002. Practically that
means that if for 2 epochs no improvements of MRR@10 greater than 0.002 on the
validation set were observed, training procedure stops and the best model is used to
obtain the test scores on the hold-out test set.

During training and inference we do not perform any pre-processing steps inside the
collation function and use efficient indexing of the arrays that contain pre-computed
features instead, including target item indexes, indexes of items in the session
context, masks and text embeddings. With that we ensure that the efficiency metrics
are not affected by data pre-processing operations.

During training and inference we use a fixed batch size of 1024 for all models. We do
not optimize the batch size to achieve the most efficient utilization of the available
GPU resources, despite the availability of the residual video memory during training
and inference. With that approach we ensure the fairness of the comparison between
the models. We also would like to note that, during real-world deployments the batch
size parameter needs to be optimized.

For training we use the adam optimizer for all models and a PyTorch implementation
of the StepLR scheduler 1 [KB14]. We start training the models with 0.01 learning
rate and decrease the learning rate by a factor of 2 at each training epoch until the
early stopping conditions are met or the epoch exceeds the total number of epochs.
With that we ensure faster convergence of the models and significant savings of the
computation budget.

1StepLR scheduler: https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html
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CHAPTER6
Experiment Results

Building upon the methodological framework detailed in Chapter 4 and the experi-
mental design outlined in Chapter 5, this chapter presents a comprehensive analysis
of the results obtained from our extensive experimentation. The primary objective
of this thesis is to investigate the effectiveness and efficiency of various multimodal
fusion strategies within SBRS. To this end, we systematically evaluated a range of
unimodal and multimodal models, employing different fusion points and layer types
across two distinct e-Commerce datasets: AICrowd and Geizhals.

This chapter is structured to address the core research questions outlied in Chapter
1. We begin by dissecting the effectiveness of the different approaches in Section
6.1, focusing on key metrics like MRR@10 and Hit Rate to quantify the predictive
accuracy of each fusion strategy and baseline model. Subsequently, Section 6.2
delves into the efficiency aspects, examining training time, inference latency, and
model parameter counts to understand the computational trade-offs associated with
each technique. Finally, recognizing that recommendation quality extends beyond
accuracy, Section 6.3 explores the beyond accuracy metrics of serendipity, novelty,
and diversity, providing a more nuanced understanding of the user experience
implications of each fusion approach. Building upon these detailed analyses, Section
6.4 then consolidates these findings into actionable guidance, explicitly discussing
the practical implications and recommendations for implementing multimodal fusion
in real-world SBRS. Through this comprehensive evaluation, Chapter 6 aims to
provide empirical evidence to answer our research questions and offer valuable
insights into multimodal fusion in SBRS.
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6.1 Effectiveness

Building upon the methodological framework established in Chapter 4, this section
critically evaluates the primary goal of any recommender system: effectiveness. We
analyze how well the different unimodal and multimodal approaches predict the
next item, using key metrics such as MRR@10 across the AICrowd and Geizhals
datasets. Through systematic comparison of fusion strategies (item-level, session-
level, propagation) and baseline models, this analysis directly addresses research
questions RQ1 (the overall impact of fusion) and RQ2 (the influence of fusion point
and layer type), providing empirical evidence on their influence on recommendation
quality.

6.1.1 Effectiveness Evaluation

For both AICrowd and Geizhals datasets the results are reported for the hold-out
test set, obtained using the global temporal splitting technique, described in the
Section 3.3.2. Models used for evaluation are those which had the best performance
on the validation hold-out set using MRR@10 as an early stopping criterion outlined
in Section 5.3.

Figures 6.1 and 6.2 demonstrate the aggregated MRR@10 results for unimodal and
multimodal approaches evaluated on AICrowd and Geizhals datasets.

Figure 6.1: Performance of the fusion strategies on AICrowd dataset

In Figure 6.1 effectiveness results are demonstrated for experiment runs grouped by
fusion strategy and applied concatenation layer type. We observe that the session-
level fusion models (both with concatenation and gated-based fusion layer types)
outperform unimodal ID-based models. Multimodal item-level fusion approaches with
concatenation fusion layer type demonstrate the worst performance among the ex-
amined multimodal fusion strategies. On average, item text embedding propagation
approaches perform on par with the unimodal text-based ones.
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Figure 6.2: Performance of the fusion strategies on Geizhals dataset

Figure 6.2 demonstrates the performance of the models on the Geizhals dataset.
Similarly to the results obtained on AICrowd dataset, session-level fusion models
outperform the unimodal ID-based approaches as well as the unimodal text-based
ones. Multimodal item-level fusion approaches with concatenation-based fusion
perform worse than those with the gated fusion type. While the text-based unimodal
models along with the item-level propagation models have the lowest performance
among the examined models.

Overall, performance of the models on the Geizhals dataset in terms of MRR@10
criterion is worse compared to the AICrowd dataset. This indicates that AICrowd
dataset has stronger signal.

In the Tables 6.2 and 6.3 we provide the comparison between the unimodal ID models
and the models obtained as a result of the application of the fusion strategies, where
a given unimodal ID model is used for fusion. With this approach we aim to quantify
the impact of the specific fusion technique on the effectiveness and isolate the effect
of the given design decision.

For reference the absolute values of HR@10 and MRR@10 metrics of the unimodal
approaches are provided in Table 6.1 for both Geizhals and AICrowd datasets.
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Table 6.1: Absolute values of HR@10 and MRR@10 metrics for unimodal approaches
on Geizhals and AICrowd datasets

Dataset Name AICrowd Geizhals
Model Type Model Name HR@10 MRR@10 HR@10 MRR@10

Unimodal ID GC-SAN 0.639 0.407 0.531 0.283
GRU4REC 0.649 0.402 0.538 0.272
SGNN-HN 0.649 0.398 0.531 0.270
SRGNN 0.657 0.407 0.536 0.278

Unimodal Text FDSA 0.601 0.281 0.401 0.195
GRU4RECF 0.595 0.281 0.409 0.193
UNISREC 0.577 0.275 0.379 0.170

Multimodal item-level fusion strategy is abbreviated as MIL and multimodal session-
level fusion strategy is abbreviated as MSL.

Table 6.2: Percentage difference of the MRR@10 of the unimodal ID models depend-
ing on the applied fusion strategy on AICrowd dataset

Fusion Type Fusion Layer Fused With GC-SAN GRU4Rec SGNN-HN SR-GNN

MIL Concat. Text emb. -13.16 -17.80 -7.85 -15.72
Gated Text emb. -14.01 0.58 2.87 0.29

Emb. Prop. No Fusion Text emb. -30.83 -29.29 -28.93 -30.51
MSL Concat. FDSA 3.43 2.38 3.52 1.66

GRU4RecF 3.08 1.17 2.67 1.54
UNISREC 3.40 1.46 2.87 0.88

Gated FDSA 2.28 1.94 4.02 1.93
GRU4RecF 3.13 2.14 3.70 2.48
UNISREC 1.53 2.66 3.27 1.61

The highest performance increase on the AICrowd dataset is observed among the
models obtained with session-level fusion. In particular, the fusion between SGNN-
HN and FDSA models with concatenation fusion layer type leads to 3.52% increase
compared to unimodal SGNN-HN implementation, while the same combination using
gated fusion leads to 4.02% increase. Median increase of the concatenation-based
session-level fusion models is 2.53% and the increase for the gated-based models
is 2.38%. The performance of the models obtained with item-level fusion is multi-
directional, leading to the median decrease of up to 14.44% and only to a marginal
median increase of 0.43% for SGNN-HN for gated-based fusion layer type. Text
embedding propagation yields the worst results, leading to a median effectiveness
decrease of 29.90%.
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Table 6.3: Percentage difference of the MRR@10 of the unimodal ID models depend-
ing on the applied fusion strategy on Geizhals dataset

Fusion Type Fusion Layer Fused With GC-SAN GRU4Rec SGNN-HN SR-GNN

MIL Concat. Text emb. -0.31 -7.44 -4.70 -1.41
Gated Text emb. -0.38 4.71 3.67 5.62

Emb Prop. No Fusion Text emb. -28.22 -29.06 -28.25 -27.81
MSL Concat. FDSA 9.82 12.53 10.88 8.75

GRU4RecF 6.44 15.18 11.28 10.43
UNISREC 7.87 13.35 10.13 10.14

Gated FDSA 7.81 14.31 12.38 10.45
GRU4RecF 7.46 15.65 12.73 11.54
UNISREC 8.05 14.78 12.32 11.62

As well as on the AICrowd dataset, on the Geizhals dataset the highest performance
increase is achieved using the session-level fusion strategy. The highest performance
increase for both concatenation and gated fusion layer type models is obtained
for the combination of GRU4Rec and GRU4RecF models. For concatenation-based
combination the increase constitutes 15.18%, while for the gated-based combination
the increase is 15.65%. Median performance increase of the concatenation-based
session-level fusion models is 10.28% and for the gated-based ones is 11.97%. Item-
level fusion approach with concatenation-based fusion layer type yields the median
decrease of 3.06% and the gated-based approaches lead to a 4.19% median increase
among tested unimodal ID-based models. On Geizhals dataset text embedding
propagation approach leads to a median decrease of 28.24%.

6.1.2 Discussion

Upon revisiting the research question 1,

• RQ1: What is the impact of multimodal fusion (combining text and GNN repre-
sentations) on the performance of next-item prediction compared to unimodal
approaches (text-only and GNN-only)?

we conclude that the direction and magnitude of the impact of the multimodal fusion
on the effectiveness of the SBRS models heavily depends on the applied fusion
strategy. The impact of multimodal fusion on performance compared to unimodal
approaches is highly dependent on the chosen fusion strategy.

Session-level fusion strategies consistently demonstrated a positive impact, outper-
forming both unimodal GNN (ID-based) models and unimodal text models on both
the AICrowd and Geizhals datasets (Figures 6.1, 6.2). The improvement over uni-
modal GNN models was notable, with median MRR@10 increases around 2.4-2.5%
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on AICrowd and a more substantial 10-12% on Geizhals (Tables 6.2 and 6.3). The
performance gain over unimodal text models (FDSA, GRU4RecF, UNISREC) was
significantly larger, indicating that incorporating interaction patterns via GNNs adds
substantial value beyond text alone.

Item-level fusion strategies yielded mixed results. While generally outperforming
unimodal text models (Figures 6.1, 6.2), their performance relative to unimodal GNN
models varied. Concatenation-based item-level fusion often resulted in decreased
performance, whereas gated item-level fusion sometimes offered slight to moderate
improvements (Tables 6.2 and 6.3). This aligns with observations in related multi-
modal learning literature, such as AlterRec [LHC+24], which found that naive fusion
does not always guarantee improvement over the best single modality and can suffer
from imbalance issues where one modality dominates. Our results suggest that
simple early fusion (concatenation) might indeed introduce noise or fail to balance
modalities effectively.

Text embedding propagation consistently underperformed compared to unimodal
GNN models, showing significant drops in effectiveness (median decrease around
28-30% MRR@10, Tables 6.2 and 6.3). It offered no substantial advantage over
using unimodal text models alone (Figures 6.1, 6.2). Simply initializing GNN node
embeddings with pre-trained text features, without trainable ID embeddings or a
dedicated fusion mechanism, appears insufficient for capturing the complex interplay
required for effective session-based recommendation in these datasets.

Therefore, while multimodal fusion can enhance performance beyond unimodal
capabilities, simply combining modalities does not guarantee improvement. The
fusion strategy is crucial. The challenges observed with simpler fusion approaches
(item-level concatenation, text propagation) echo concerns about naive fusion poten-
tially being suboptimal [LHC+24]. Session-level fusion emerged as the most reliable
approach in our experiments for achieving consistent performance gains over both
GNN-only and text-only baselines.

Upon revisiting research question 2,

• RQ2: How does the choice between item- or session-level fusion points and fu-
sion layer types impact the performance of multimodal models when integrating
text and GNN representations?

based on effectiveness, session-level fusion is the preferred fusion point, and gated
fusion layers appear slightly more advantageous than concatenation, particularly
when attempting item-level fusion.

When comparing the multimodal strategies directly, the architectural choices signifi-
cantly impact effectiveness:
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Fusion Point

The results clearly indicate that the fusion point is critical. Session-level fusion
consistently achieved the highest effectiveness (MRR@10) among all tested multi-
modal strategies, significantly outperforming item-level fusion and text embedding
propagation across both datasets (Figures 6.1 and 6.2, Tables 6.2 and 6.3). This sug-
gests that allowing each modality to model the session context independently before
integration is more beneficial than creating fused item representations early on. This
later fusion approach aligns conceptually with strategies where modality-specific
processing occurs before combination, as seen in various multimodal architectures
[ZWZ+20], [WWC+20], contrasting with early fusion approaches like simple concate-
nation [ZZL+19] or some variations discussed in [HGLK23].

Fusion Layer Type

Within the superior session-level fusion strategy, gated fusion generally showed a
slight advantage over simple concatenation (Tables 6.2 and 6.3). However, the benefit
of gated fusion was more pronounced for item-level fusion, where it significantly
outperformed concatenation, sometimes turning a performance decrease (relative
to GNN-only) into a slight increase. This suggests that gating mechanisms, com-
monly used in RNNs like GRUs [HK18] and GNNs like GC-SAN [XZL+19], might be
more effective at selectively integrating information from the different modalities,
especially when fusion happens early (at the item level) where noise or modality
imbalance [LHC+24] might be more detrimental. Concatenation, being simpler,
might be sufficient when fusing more refined, higher-level session representations.

6.2 Efficiency

Beyond predictive accuracy, the practical viability of session-based recommender
systems hinges on their computational efficiency. This section investigates this crucial
aspect by analyzing the resource demands of the explored unimodal and multimodal
fusion strategies. We measure key efficiency indicators, including training time per
batch, inference latency, and the number of model parameters, across both datasets.
By comparing these metrics, we illuminate the computational costs associated with
different architectural choices, directly addressing RQ3 and providing insights into
the critical trade-offs between model effectiveness and operational feasibility.

6.2.1 Efficiency Evaluation

Training Efficiency

We evaluate the training efficiency by comparing the time it takes the models to train
on a single batch of data of a fixed size, containing 1024 samples. On the Figure 6.3
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we demonstrate the training time per batch for both of the datasets combined.

Figure 6.3: Distributions of the training time per model type

The training time for multimodal session-level fusion approaches is the highest
with the median training time of around 0.3 seconds, corresponding to the median
throughput between 3313 and 3357 samples per second. The median training
time per batch for the item-level fusion approaches is between 0.085 and 0.86,
corresponding to the median throughput between 11907 and 12047 samples per
second. Item propagation strategy yields the median training time per batch of
0.073, corresponding to the throughput of 13473 samples per second. For the
unimodal ID-based approaches the median training time is 0.074, which corresponds
to 13838 samples per second. Finally, the median training time of the unimodal text
approaches is 0.135, corresponding to 7585 samples per second.

The balance between efficiency and effectiveness is crucial for the application of the
models in real-world scenarios. To investigate this aspect in greater detail, on the
Figure 6.4 we demonstrate both the model performance and the training time.

Figure 6.4: Distribution of the training time and MRR@10 scores per dataset
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Figure 6.5: Distributions of the inference time per model type

From this comparison we conclude that the results are consistent between datasets.
We also establish that unimodal ID-based approaches as well as the multimodal
item-level fusion approaches with gated fusion layer type have a good balance
between efficiency and effectiveness. Multimodal session-level fusion approaches
vary significantly in terms of the efficiency, while yielding the highest effectiveness
among the approaches compared. This indicates that the efficiency aspect should be
carefully considered for the application of this fusion strategy.

Inference Efficiency

Another aspect of efficiency which is important for the operationalization of the
approaches is the inference time of the models. This criterion affects the operation
costs and overall runtime costs of the models. In Figure 6.5 we demonstrate the
distribution of the inference time per model type.

The median inference time is relatively close among the investigated approaches
and ranging between 0.229 and 0.196 seconds, which corresponds to the throughput
between 4471 and 5224 samples per second. This indicates that fusion does not
increase the inference time significantly compared to the unimodal approaches.

On the Figure 6.6 we demonstrate the balance between efficiency (inference time
per batch) and effectiveness (MRR@10).
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Figure 6.6: Distribution of the inference time and MRR@10 scores per dataset

We observe that item text embedding propagation and unimodal text-based ap-
proaches stand apart in terms of the effectiveness from the rest of the approaches,
including multimodal session- and item-level fusion approaches as well as the uni-
modal ID-based approaches. This behavior is expected based on the architectural
decision to use the fixed text embeddings in order to isolate the effect of the applied
fusion techniques, which leads to the reduction of the active model parameters
during both training and inference.

Memory Implications

In Figure 6.7 we analyse the relation between performance represented by MRR at
cutoff 10 and the parametrization of the models (number of model parameters).

Figure 6.7: Distribution of the parameter number and MRR@10 scores per dataset

Based on the comparison we can conclude that parameterization beyond 6 ∗ 106 does
not lead to significant effectiveness improvements, while adding a computational
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overhead.

6.2.2 Discussion

Upon revisiting research question 3,

• RQ3: What are the computational and memory efficiency implications of dif-
ferent intermediate fusion strategies and fusion levels (item vs. session) for
multimodal next-item prediction, and how do they compare to unimodal ap-
proaches?

we can draw several conclusions based on the efficiency evaluations regarding
training time, inference time, and model parameter count.

The computational and memory efficiency implications vary significantly depending
on the chosen fusion strategy and level.

Training Efficiency

Session-level fusion strategy consistently incurred the highest training time per batch
across both datasets (Figure 6.3, 6.4). This is expected as it involves processing data
through two separate unimodal pathways (GNN for ID interactions, text processing
modules like in UNISREC [HMZ+22] or FDSA [ZZL+19]) before fusion, effectively
almost doubling the computational load compared to single unimodal approaches
during the forward and backward passes involving modality-specific parameters.

Item-level fusion approach was significantly more efficient in training than session-
level fusion. Since fusion occurs earlier (at the item embedding level), the subsequent
session aggregation operates on already fused representations, avoiding the dupli-
cation of session modeling computation. Gated item-level fusion was slightly less
efficient than concatenation-based item-level fusion due to the added gating compu-
tation.

Text embedding propagation strategy demonstrated the lowest training time among
fusion approaches, comparable to unimodal ID-based models (SR-GNN, GC-SAN,
SGNN-HN). By using fixed text embeddings [SMA+24] and only training the GNN
components, it significantly reduces the computational cost during training.

Session-level fusion is considerably less efficient than both unimodal ID and unimodal
text models. Item-level fusion is more comparable to unimodal ID models in training
efficiency, while being more efficient than unimodal text models (which often involve
complex architectures like Transformers [LWL+23], [HMZ+22]). Text embedding
propagation matches the efficiency of unimodal ID models.
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Inference Efficiency

Interestingly, the differences in inference time per batch were much less pronounced
than training times (Figure 6.5, 6.6). All tested approaches, including unimodal and
multimodal strategies, exhibited relatively similar median inference times.

This suggests that while session-level fusion adds complexity during training (due to
backpropagation through multiple pathways), the forward pass for generating predic-
tions does not impose a substantial additional overhead compared to sophisticated
unimodal GNN models or item-level fusion, once the model is trained. The primary
computations during inference (session encoding and dot-product with candidate
items) seem to dominate. This is a crucial practical finding, as low-latency inference
is often critical in real-world recommender systems [WCW19].

Memory Implications

Session-level and item-level fusion strategies generally resulted in higher model
parameter counts compared to their unimodal ID counterparts (Figure 6.7), as they
include parameters for both modalities’ processing pathways (or the fusion layer
itself in item-level) plus the fusion mechanism. Session-level models tended to have
the highest parameter counts. This increased complexity is a common characteristic
of multimodal models [HGLK23], [PWSR23].

Text embedding propagation and unimodal text approaches had significantly fewer
trainable parameters because the text embeddings themselves were frozen. This
highlights a key efficiency benefit if only the interaction modeling part needs training.
However, the total memory footprint including the large, fixed embedding table (jina-
ai v3 [SMA+24]) should be considered, which could be substantial. Approaches like
Recformer [LWL+23] or UNISREC [HMZ+22] that learn language representations
often involve large base models.

Figure 6.7 indicates that simply increasing parameters beyond a certain point (around
6M in these experiments) does not guarantee proportional gains in effectiveness
(MRR@10), suggesting potential overfitting or redundancy in larger models.

Summary

Overall, multimodal fusion strategies introduce varying efficiency trade-offs. Session-
level fusion, while most effective, carries the highest training cost and parameter
count.

Item-level fusion offers a middle ground. Gated item-level fusion shows a slightly
better effectiveness-efficiency balance than concatenation, being more efficient to
train than session-level while sometimes approaching its effectiveness. Concatenation
item-level is efficient but often less effective. This contrasts with approaches like
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AlterRec [LHC+24] which use alternating training to manage complexity instead of
direct architectural fusion points.

Text embedding propagation is highly efficient in terms of training time and trainable
parameters but suffers significantly in effectiveness.

Compared to unimodal approaches, fusion (especially session-level) increases train-
ing complexity and parameter count but does not drastically increase inference time
relative to unimodal GNNs. The choice of fusion strategy thus requires balancing
desired effectiveness gains against available computational resources for training
and model deployment constraints (memory). Unimodal ID-based models and gated
item-level fusion appear to offer the best balance between effectiveness and efficiency
among the tested configurations.

6.3 Beyond Accuracy Evaluation

While effectiveness and efficiency are paramount, a truly successful recommender
system often needs to offer more than just accurate predictions. This section delves
into the “beyond accuracy” aspects of the recommendations generated by our mod-
els, exploring qualities that influence user experience beyond simple relevance. We
evaluate metrics such as serendipity, novelty, and diversity to understand the unex-
pectedness, commonality, and variety within the recommendation lists produced by
different fusion strategies. Analyzing these dimensions provides a more nuanced
understanding of model behavior and helps interpret the trade-offs observed in the
context of session-based recommendations.

6.3.1 Evaluation

Serendipity

Figures 6.8 and 6.9 present the distribution of serendipity and MRR10 metrics.
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Figure 6.8: Serendipity score distribution per model type, AICrowd dataset

Figure 6.9: Serendipity score distribution per model type, Geizhals dataset

The ability to suggest items that are beyond typical preferences of users, represented
by serendipity slightly varies between fusion strategies. Multimodal session-level
fusion approaches with concatenation fusion layer type yield the lowest serendipity
(0.24 for AICrowd and 0.2 for Geizhals), while the gated-based fusion models yield
higher serendipity scores (around 0.26 for AICrowd and 0.24 for Geizhals). Unimodal
ID-based approaches yield the highest serendipity scores - around 0.31 and 0.29
for AICrowd and Geizhals datasets correspondingly. Overall serendipity scores stay
within range from 0.28 to 0.31 for AICrowd dataset and in the range between 0.2
and 0.3 for Geizhals dataset. This indicates, that overall serendipity scores remain
unaffected by the applied fusion strategies.

Novelty

In Figure 6.10 and Figure 6.11 we demonstrate the distribution of the novelty scores
per model type and dataset.
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Figure 6.10: Novelty score distribution per model type, AICrowd dataset

Figure 6.11: Novelty score distribution per model type, Geizhals dataset

From the visual inspection of the novelty score distribution with respect to the
fusion strategies we can conclude that novelty is not affected by the applied fusion
strategies.

Diversity

In Figures 6.12 and 6.13 we demonstrate the distribution of the diversity scores per
model type.
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Figure 6.12: Diversity score distribution per model type, AICrowd dataset

Figure 6.13: Diversity score distribution per model type, Geizhals dataset

We can observe that the unimodal ID-based models have the highest diversity score
for both of the models. Interestingly the diversity scores of the other approaches
(both unimodal and multimodal) remain low.

6.3.2 Discussion

Upon analyzing the beyond-accuracy metrics (serendipity, novelty, and diversity), we
can draw several conclusions regarding their behaviour and interpretability within
the context of session-based next-item prediction and the tested fusion strategies.

Serendipity

The definition of serendipity used measures the recommendation of relevant (correct
next item) but unpopular items. While unimodal ID models scored highest, suggesting
a better ability to capture niche transitions, the value proposition in next-item
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prediction is debatable. The primary goal is to predict the immediate next interaction,
which might often be a popular or predictable item given the session context. High
serendipity might sometimes conflict with short-term accuracy if it promotes less
likely (though relevant) unpopular items. The moderate scores for session-level
fusion models suggest they balance capturing relevance with potentially leaning
towards more common semantic paths. The low scores for text/propagation models
indicate difficulty in identifying unpopular relevant items based solely on text.

Novelty

Novelty metric measures the average unpopularity of the entire top-K list. The lack
of significant difference across models suggests that architectural choices related to
fusion did not fundamentally alter the overall popularity profile of the recommended
set. Models are likely optimized for the top-1 prediction (the next item), and the
overall novelty seems less sensitive to the specific fusion mechanism used. The
pre-filtering of low-frequency items might also contribute to homogenizing novelty
scores by removing the tail end of item popularity distribution. Therefore, novelty, as
measured here, appears less informative for distinguishing between the effectiveness
of different fusion approaches in the SBRS context.

Diversity

Diversity metric leads to the most distinct results. The high diversity of ID-based
models stems from their embeddings capturing varied interaction sequences. The
extremely low diversity of all models involving the fixed jina-ai text embeddings is
a critical finding. It implies that the pre-trained semantic space strongly dictates
similarity, making the top-K recommendations semantically homogeneous. Fusion
strategies, regardless of level or type, failed to overcome this. In the next-item
context, this low diversity might be detrimental if the user is exploring related but
distinct items (e.g., different types of accessories for a product). It suggests an over-
reliance on semantic similarity captured by the fixed embeddings, potentially missing
relevant next items that are semantically different but logical based on interaction
patterns. Conversely, high diversity might sometimes scatter recommendations too
widely if the user’s intent is highly focused.

Summary

While the session-level fusion consistently outperforms other fusion approaches in
accuracy (effectiveness), it offered moderate serendipity and very low diversity. This
suggests it effectively combines modalities for prediction accuracy but inherits the
low diversity characteristic from the textual component.
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Item-level fusion showed mixed results for accuracy and generally lower serendipity
than session-level or ID models. Gated item-level fusion had slightly better serendipity
and diversity than concatenation, but diversity remained very low overall compared
to ID models.

Text embedding propagation performed poorly on accuracy and offered low serendip-
ity and diversity, indicating that simply using fixed text embeddings as node features
without dedicated fusion or trainable item embeddings is insufficient for both accu-
racy and beyond-accuracy goals in this setup.

The interpretation relies heavily on the specific metric definitions used. The use of
fixed pre-trained text embeddings is a major factor, especially for diversity. Fine-
tuning or using different text models might yield different results. The inherent
nature of the next-item prediction task might naturally limit the variance observed in
some beyond-accuracy metrics like novelty. Another contributing factor is the focus
of the training objective on optimization of accuracy.

In conclusion, evaluating beyond-accuracy metrics reveals important trade-offs.
Unimodal ID models, while often less accurate, demonstrate superior diversity
and serendipity based on interaction patterns. Integrating textual information via
fusion, especially session-level fusion, boosts accuracy but significantly reduces
recommendation diversity due to the influence of the (fixed) semantic embedding
space. Novelty appears largely unaffected by the fusion architecture itself. Choosing
the optimal approach requires balancing the primary goal of next-item prediction
accuracy with the desired levels of exploration and diversity in the recommendations,
acknowledging that current fusion methods with fixed text embeddings strongly
favour semantic homogeneity.

6.4 Practical Implications and Recommendations

The systematic evaluation of intermediate fusion strategies for combining graph-
based interaction patterns and textual item descriptions in SBRS yields several
practical implications for developers and researchers building real-world recommen-
dation systems. Deciding on the most effective strategy for integrating graph and
text data requires balancing several competing factors. While improving predictive
accuracy is important, practical constraints like computational expense and deploy-
ment requirements (e.g., inference speed) must be also considered. Additionally,
the desired characteristics of the recommendations themselves – such as diversity
or novelty, which extend beyond simple relevance – need to be part of the decision.
Based on the findings presented in this thesis (Sections 6.2, 6.1, 6.3), we provide the
following guidance for making these practical choices.
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Maximizing Predictive Accuracy

For applications where maximizing predictive accuracy is the main objective, session-
level fusion consistently delivered the highest effectiveness (MRR@10, HR@10)
across both datasets (Figures 6.1, 6.2), significantly outperforming unimodal GNN
and text-only models, as well as other fusion strategies (quantified percentage
improvements shown in Tables 6.2, 6.3). This suggests that allowing each modality
to be processed independently before integration is highly beneficial. However,
practitioners must weigh this accuracy advantage against the considerable cost in
terms of training time (Figure 6.3) and model parameter count (Figure 6.7), which
were the highest among the tested strategies. Furthermore, the potential for reduced
recommendation diversity, stemming from the reliance on fixed semantic embeddings,
should also be considered.

Balancing Accuracy and Training Efficiency

When balancing predictive accuracy with constrained training resources, gated
item-level fusion emerges as a compromise. While generally less accurate than
session-level fusion, it sometimes offered modest effectiveness improvements over
unimodal GNN baselines (as seen in specific model comparisons in Tables 6.2, 6.3
and suggested in Figures 6.1, 6.2). Crucially, its training efficiency was substantially
higher than session-level fusion and approached that of unimodal GNN models
(Figure 6.3), making it more feasible when computational budgets or retraining
frequency are concerns. The gating mechanism appears vital, likely mitigating noise
more effectively than simple concatenation, which frequently degraded performance
in our tests (Tables 6.2, 6.3) and is thus generally discouraged item-level fusion.

Optimizing for Training Efficiency and Simplicity

In scenarios where training efficiency and minimizing model complexity are the abso-
lute priorities, text embedding propagation offered the fastest training times, com-
parable to efficient unimodal GNNs (Figure 6.3), and involved the fewest trainable
parameters. This drastically reduces the computational load during learning. How-
ever, this efficiency advantage came at a price: predictive accuracy was significantly
compromised (Figures 6.1, 6.2; Tables 6.2, 6.3), rendering this approach substantially
less effective than unimodal GNNs. Therefore, text embedding propagation should
likely be avoided unless accuracy is a secondary concern. The considerable memory
footprint of the large, fixed embedding table must also be factored into storage and
deployment considerations.
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Inference Speed Considerations

Regarding inference speed, a crucial factor for real-time applications, the differences
between the fusion strategies were less pronounced than during training. Most
multimodal approaches exhibited median inference times relatively close to those of
unimodal models (Figure 6.5). This suggests that the main computational overhead
of complex fusion strategies lies in the training phase. Once deployed, the inference
latency (Figure 6.6) might be less of a deciding factor between session-level and
item-level fusion than initially anticipated, although large-scale testing is needed to
confirm this.

In conclusion, the optimal fusion strategy is highly context-dependent. Session-
level fusion offers the highest accuracy potential but demands significant training
resources. Gated item-level fusion provides a practical balance between performance
and efficiency. Text embedding propagation prioritizes efficiency but at a considerable
cost to effectiveness.
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CHAPTER7
Conclusions

Having presented and analyzed the experimental results in Chapter 6, this final chap-
ter synthesizes the key findings and draws conclusions regarding the effectiveness
and efficiency of multimodal fusion in SBRS. This chapter serves to consolidate the
empirical evidence gathered throughout this research and to provide clear answers
to the research questions that motivated this thesis.

Section 7.1 begins by summarizing the principal outcomes of our investigation,
highlighting the relative strengths and weaknesses of the different fusion strate-
gies – item-level, session-level, and text embedding propagation – in the context of
combining graph-based modality and textual item descriptions. Moving beyond the
immediate results, Section 7.2 critically reflects on the limitations inherent in our
experimental design and methodology, acknowledging the scope and boundaries
of our findings. Finally, in Section 7.3, we look towards the future, proposing po-
tential topics for future research that build upon the insights gained in this work
and address the identified limitations, ultimately contributing to the advancement of
the field of multimodal SBRS. Chapter 7 thus aims to provide a comprehensive and
insightful conclusion to this thesis, solidifying its contributions and paving the way
for subsequent investigations in this dynamic research area.

7.1 Summary

This thesis investigated the critical challenge of effectively integrating diverse data
modalities within SBRS, focusing specifically on combining item interaction patterns
(modeled via GNNs) and rich textual item descriptions. Recognizing the limitations
of unimodal systems that utilize only interaction IDs or only text features, this work
aimed to systematically explore and evaluate different intermediate fusion strategies
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to leverage the complementary strengths of both graph and text information for the
next-item prediction task in anonymous user sessions.

The core objective was to understand the impact of how and where fusion occurs
within the SBRS pipeline. To achieve this, we proposed and compared three distinct
architectural approaches:

• Item-Level Fusion. Combining text and graph information early to create
intrinsically multimodal item embeddings before session context aggregation.

• Session-Level Fusion. Processing text and graph modalities independently
to generate separate session representations, which are then fused at a later
stage.

• Text Embedding Propagation. Utilizing pre-trained text embeddings directly
as initial node features within the GNN, relying on message passing to integrate
semantic information.

These strategies were implemented and evaluated using a custom-built, reproducible
software framework, SBRSFuse, built on Python, PyTorch, and PyTorch Geometric.
The framework facilitated consistent experimentation across a selection of repre-
sentative SBRS models: GNN-based (SR-GNN, GC-SAN, SGNN-HN, GRU4Rec) and
text-based (FDSA, UNISREC, GRU4RecF, using fixed jina-ai V3 embeddings). Exper-
iments were conducted on two distinct real-world e-Commerce datasets: Geizhals
(a European price comparison platform) and AICrowd (derived from the Amazon
KDD Cup 2023 challenge). Model performance was assessed comprehensively using
metrics for effectiveness (MRR@10, HR@10), efficiency (training time, inference
time, model parameter count), and “beyond accuracy” metrics (serendipity, novelty,
diversity).

These key findings were obtained

• RQ1 (Impact of Fusion) 1.2. Multimodal fusion can significantly enhance
SBRS performance compared to unimodal approaches, but its effectiveness
highly depends on the chosen strategy. Session-level fusion consistently out-
performed both unimodal GNN and unimodal text models across both datasets,
demonstrating substantial gains, particularly over text-only models. Item-
level fusion yielded mixed results; gated item-level fusion occasionally offered
marginal improvements over GNNs, while simple concatenation often degraded
performance. Text embedding propagation proved ineffective, performing
significantly worse than GNN-only models and offering little advantage over
text-only models.
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• RQ2 (Fusion Point & Layer Type) 1.2. The fusion point is critical. Session-
level fusion emerged as the superior strategy for effectiveness, suggesting
that allowing independent modality-specific processing before integration is
beneficial. Within fusion strategies, the layer type mattered, particularly for
item-level fusion where gated fusion was notably better than simple concatena-
tion, potentially by mitigating noise or modality imbalance. For the more robust
session-level fusion, the difference between gated and concatenation was less
pronounced, though gating still held a slight edge.

• RQ3 (Efficiency) 1.2. Fusion introduces efficiency trade-offs. Session-level
fusion was the most computationally expensive during training due to process-
ing dual pathways but, crucially, showed inference times comparable to other
strategies. Item-level fusion offered a middle ground in training efficiency.
Text embedding propagation was highly efficient in training time and trainable
parameter count (due to fixed embeddings) but sacrificed effectiveness. Model
parameter counts increased with fusion complexity, particularly for session-
level models, though gains in effectiveness plateaued beyond a certain size (6M
parameters in our experiments).

• Beyond Accuracy. The use of fixed pre-trained text embeddings impacted
diversity moderately. All fusion approaches incorporating these embeddings
exhibited very low diversity scores, suggesting the recommendations were
semantically homogenous. Unimodal ID-based models, while less accurate,
showed much higher diversity and serendipity, reflecting their reliance on
interaction patterns rather than semantic similarity. Novelty scores were
largely unaffected by the fusion strategy.

This research makes several contributions to the field of session-based and multi-
modal recommendation:

• Provides a structured comparison of item-level vs. session-level fusion and text
embedding propagation for integrating GNN and text modalities in SBRS.

• Demonstrates the consistent effectiveness benefits of fusing modalities after
independent session representation learning.

• Explores the computational costs (training and inference time, parameters)
associated with different fusion strategies, highlighting the similar inference
times despite varying training costs.

• Delivers an open, modular framework facilitating reproducible research on
multimodal fusion in SBRS.
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• Validates findings on two real-world e-Commerce datasets with differing char-
acteristics.

Broader Implications and Takeaways for Multimodal SBRS

Beyond the specific performance metrics, this research offers several broader take-
aways for the field of session-based recommendation and the integration of multi-
modal information:

Fusion Strategy is Not an Afterthought, It’s Central. The most significant
implication is that the method of combining modalities is as critical, if not more
so, than the individual unimodal models themselves. Naively adding modalities,
especially via simple early fusion like concatenation, can easily degrade performance.
This underscores the need for principled architectural design when moving towards
multimodal systems.

The Value of Independent Modality Processing. The consistent superiority of
session-level fusion strongly suggests that allowing different data types (like interac-
tion graphs and text semantics) to be processed and contextualized independently
before integration is highly beneficial for predictive accuracy. This implies that pre-
serving the distinct “view” each modality offers on user intent, at least initially, helps
mitigate noise and allows for a more synergistic combination later in the pipeline.

Practicality Demands Balancing Competing Goals. There is no single “bes”
fusion strategy when practical constraints are considered. While session-level fusion
excels in accuracy, its significant training cost demands justification. Gated item-
level fusion presents a viable compromise, potentially offering moderate gains with
efficiency closer to unimodal GNNs. This highlights the crucial need for practitioners
to weigh accuracy requirements against computational budgets, training frequency
needs, and deployment latency constraints.

Moving Beyond Accuracy is Necessary but Challenging. While accuracy remains
a primary goal, metrics like diversity and serendipity reveal crucial aspects of user
experience. The stark contrast in diversity between ID-based and text-based models
highlights that optimizing solely for accuracy might lead to systems that are effective
but potentially less engaging or useful for discovery. Future work must consider how
to design fusion strategies and potentially training objectives that explicitly balance
accuracy with these other desirable recommendation qualities.

In essence, this work demonstrates that effectively combining graph and text modal-
ities in SBRS is a nuanced task. It requires moving beyond simple concatenation
towards more sophisticated strategies, carefully considering where and how modali-
ties interact. Furthermore, it highlights the urgent need to address the trade-offs
between semantic richness, predictive accuracy, computational cost, and recom-

96



7.2. Limitations

mendation diversity to build truly effective and engaging multimodal session-based
recommender systems.

7.2 Limitations

While this thesis provides valuable insights into multimodal fusion for SBRS, several
limitations stemming from methodological choices and experimental scope should
be acknowledged. These define the boundaries of the current findings and highlight
important directions for future research.

Dataset Limitations

Limited Scope and Domain. The empirical validation was conducted on only two
datasets (Geizhals, AICrowd), both within the e-Commerce domain and primarily
using German language data. While these datasets possess differing characteristics
(e.g., structured vs. less structured text, varying session dynamics), generalizing
findings to fundamentally different domains (like news recommendation or media
streaming) or other languages requires caution. User behavior, the importance
of text vs. interaction history, and optimal fusion strategies may vary significantly
across contexts.

Data Pre-processing Impact. Specific filtering steps were applied (removing very
short/long sessions and low-frequency items) to manage data sparsity and potential
noise, following common practices. However, this curated specific data distributions.
Performance on raw, unfiltered data or under different filtering regimes might
differ, potentially impacting the observed effectiveness and especially the beyond-
accuracy metrics like novelty. Furthermore, initial data integrity issues in one dataset
(Geizhals) necessitated cleaning steps that could influence results.

Methodological Limitations

Reliance on Fixed Text Embeddings. A primary methodological limitation is
the exclusive use of fixed, pre-trained text embeddings (jina-ai V3) [SMA+24]. This
choice was deliberate to isolate the effect of the fusion architecture itself and manage
computational complexity. However, it means our findings, particularly regarding
effectiveness and diversity, are strongly conditioned by the specific properties and
semantic structure of this embedding model. We did not explore fine-tuning these
embeddings or jointly training a text encoder, which could potentially lead to repre-
sentations more adapted to the specific datasets and recommendation task, possibly
yielding different performance and diversity outcomes [PM22].

Specific Fusion Strategies Investigated. Our investigation focused on comparing
item-level, session-level, and text propagation strategies using relatively simple
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fusion mechanisms (concatenation and gating). More complex fusion techniques
– such as various forms of attention mechanisms between modalities, adaptive
weighting schemes based on context, or explicit late fusion after scoring – were
not explored. These alternative approaches might offer different trade-offs and
potentially overcome some limitations observed here.

Loss Function and Optimization. The work predominantly used the Cross-Entropy
loss, chosen for potentially faster convergence within budget constraints compared
to contrastive losses (like BPR or Hinge), despite the latter’s known benefits for
scalability with large item catalogs. A detailed analysis of how different loss functions
interact with these fusion strategies, particularly concerning scalability beyond our
filtered catalogs, remains an open area [PM22]. Furthermore, extensive hyperpa-
rameter optimization (HPO) for each model-fusion combination was not feasible
due to computational constraints; dedicated tuning could potentially alter relative
performance rankings.

Single Experimental Runs. Due to computational budget limitations, results are
based on single experimental runs with a fixed random seed. While efforts were
made to ensure consistency, multiple runs with different seeds would provide greater
statistical confidence in the observed differences between approaches.

Evaluation Limitations

Focus on Specific Metrics. While we employed standard effectiveness metrics
(MRR@10, HR@10) and explored beyond-accuracy dimensions, the evaluation pri-
marily centered on next-item prediction accuracy. The chosen formulations for
serendipity, novelty, and diversity are specific interpretations and have known com-
plexities, particularly within the short, anonymous session context of SBRS.

Interpretability of Beyond-Accuracy Metrics. The interpretation of beyond-
accuracy metrics is challenging here. Novelty scores seemed largely unaffected
by fusion, potentially due to the low-frequency item filtering. The significantly low
diversity observed in all models using fixed text embeddings highlights a major
challenge but is strongly tied to the methodological choice of fixed embeddings.
These metrics provide directional insights but require careful interpretation given
their specific definitions and the SBRS context.

These limitations collectively highlight that the presented results offer a valuable but
specific snapshot of multimodal fusion performance under the defined experimental
conditions. They underscore the need for further research exploring diverse embed-
ding strategies, datasets, fusion mechanisms, and training objectives to build a more
complete and generalizable understanding of multimodal SBRS.
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7.3 Future Work

This work opens several potential avenues for future research in multimodal session-
based recommendation.

Further exploration could focus on text representation strategies. Moving beyond
fixed embeddings, investigating the effects of fine-tuning or jointly training text
encoders within the SBRS framework might reveal benefits for both accuracy and
recommendation diversity. Examining different types of embedding models could
also yield insights into how the underlying semantic space impacts fusion outcomes.

Developing and evaluating more sophisticated fusion mechanisms presents another
promising direction. Techniques potentially involving attention, adaptive weighting
based on context, or integrating modalities at multiple architectural levels could
offer more nuanced ways to combine graph and text information compared to the
direct methods explored here.

The generalizability of the findings could be further assessed by applying these fusion
concepts across a wider range of SBRS model architectures and diverse application
domains beyond e-Commerce, potentially uncovering domain-specific interaction
effects.

Significant questions remain regarding the interplay between fusion strategies and
training objectives. A deeper comparison involving different loss functions, partic-
ularly contrastive losses, could provide valuable insights into efficiency, scalability,
and the crucial trade-offs with recommendation quality, especially when dealing with
very large item catalogs. Explicitly addressing the observed low diversity through
modified objectives or post-processing techniques also warrants further investigation.

Finally, understanding the scalability and practical implications of these multimodal
approaches through larger-scale experiments, dedicated hyperparameter optimiza-
tion, and eventual online validation could help bridge the gap between offline re-
search and real-world system deployment. Investigating model interpretability within
these fused systems might also offer valuable understanding.

Ultimately, advancing the understanding of multimodal fusion will enable the de-
velopment of recommender systems capable of providing more accurate, diverse,
and contextually nuanced suggestions by truly synthesizing different facets of user
behavior and item information.
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Overview of Generative AI Tools
Used

Generative AI tools were used as assistive technologies during the preparation of
this thesis to enhance the quality and efficiency of the writing process. These tools
were specifically applied to:

• Refine the grammar and style of self-authored sentences, ensuring clarity and a
scientific writing style.

• Facilitate brainstorming and idea generation for project setup and workflow
design.

• Assist with the formatting of LaTeX objects, including bullet point lists and
tables, to improve document presentation.

It is important to note that the core content, ideas, and research presented in this
thesis are entirely the author’s own. AI tools were used solely to improve language
quality, explore initial concepts, and streamline formatting tasks.

Following tools have been used in my work:

• NotebookLM - Accessed from 15.01.2025 to 15.04.2025.

• Gemini - Accessed from 15.12.2024 to 15.04.2025.
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