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Abstract The time optimal deployment of a satellite

from a space ship is studied. In order to take the mass

and lateral oscillations of the tether into account, a

discretized model of the tether is build. Applying

Pontryagin’s Maximum Principle a time-optimal

deployment from a trivial downhanging configuration

close to the space ship to another one farther away is

computed. It is found, that the obtained solution

displays a difficult switching pattern and during the

variation of the initial length different kinds of

bifurcations occur, leading to discontinuous variations

of the optimal solution candidates.
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Optimal control � Massive tether
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1 Introduction

The deployment and retrieval of tethered satellites is

an important and difficult operation in space missions.

Starting from a position close to the space ship the

satellite should be steered to a stable stationary

position farther away. The control input should

optimally be applied by tension control, that is by a

tension force at the outlet of the tether.

Several important goals for the control design have

been listed in the review [9], one of which is the

reduction of lateral oscillations during the process.

Also in the book [1] several aspects in the dynamics

and control of tethered systems are investigated.

For safety reasons a PD controller, called Kissel’s

law, is used commonly during space flights. This

controller leads to an exponential decay of the lateral

oscillations, but takes very long to complete the

mission. In order to find out, how much time could be

saved theoretically, a time optimal solution was

investigated in [8]. It turned out, that this solution

was by an order of magnitude faster than the conven-

tional strategy, but it used a bang–bang control, which

could cause unwanted oscillations in the tether. Even,

if such control strategies would never be performed,

the obtained control patterns should prove useful for

smoother control schemes.

Most studies on deployment control, e.g. [11],

assume a massless tether, which leads to a very simple

set of differential equations and still yields reliable

results. In [8] a comparison between the control of the

simple model with massless tether and a finite element

calculation of a massive tether with the tension force

obtained from the simple model is performed and it is
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demonstrated, that the control is able to steer the

satellite close to the target position in short time.

The focus of the present work is an investigation of

possible time optimal controls for a massive tether.

For the tether a simple discrete model is created and

the governing equations of motion are derived.

Unfortunately these equations of motion become

extremely lengthy even for quite coarse discretizations

and can be treated only numerically and by symbolic

algebra. For a reasonable set of parameters a valid

optimal control solution could be obtained. This

investigation is certainly not intended to provide a

control strategy, which should be used in real world

applications, but to learn about the typical shape of

optimally controlled deployment trajectories. The

obtained information should prove useful in designing

efficient trajectories in commonly used control

methods.

In Sect. 2 the mechanical model is presented and the

ingredients for the Lagrangian equations of motion, the

kinetic and potential energy, and the control and non-

conservative forces acting on the systems are intro-

duced. Also the setup of the optimal control equations

using Pontryagin’s Maximum Principle is presented. In

Sect. 3 the numerically obtained optimal solution is

shown and discussed. In order to demonstrate the

strong dependence of the derived solution on the initial

condition, also the variation of a one-parameter family

of optimal solutions with different initial lengths of the

tether is presented. In the studied parameter range we

observe large variations of the switching points, where

the bang–bang control jumps between its extremal

values. Further the solution family, which is calculated

by a continuation algorithm, displays a non-monotonic

behaviour, generating multiple candidates for the

optimal control strategy.

2 Model description

As displayed in Fig. 1, we consider a satellite, which is

connected to the main station by an inextensible tether.

The heavy main station is assumed to move with

constant velocity along a circular Keplerian orbit. The

connecting tether is regarded as an inextensible string

of constant cross-section and without bending stiff-

ness. Before the satellite is released from the space-

ship, the tether of length ‘L is reeled on a drum, which

is fixed at the space ship; during the deployment

process the tether unwinds from the drum. By applying

a torque on the drum, a tension force is exerted at the

tether, which is used to control the motion of the

satellite. For our calculations we neglect the rotational

motion of the drum and assume, that the stored part of

the tether moves with the main station. Since the

tension and velocity of the tether change discontinu-

ously at the outlet, so-called Carnot Energy Loss terms

have to be added to the tether equations.

The satellite is considered as point mass moving in

the orbital plane in a perfectly circular gravitational

field. Since the tether length ‘ is much smaller than the

orbital radius rM , we may simplify the equations of

motion by assuming near-field dynamics: The resul-

tant of the centrifugal and gravitational force is

proportional to the distance from the Keplerian orbit

and points into the vertical direction.

At the start of the deployment process the system

rests in the vertically downhanging relative equilib-

rium with released tether length ‘0. By varying the

tension force at the outlet, the satellite should be

steered to another relative equilibrium with released

length ‘T .

2.1 Lumped mass modelling of the massive tether

The partial differential equations for a massive tether

are derived in [3]. Since we investigate a control

problem, we first discretize the continuous string.

Motivated by the sinusoidal shape of the transversal

tether oscillations in numerical simulations we first

tried to apply a Ritz–Galerkin-type discretization

using low order sine waves about the connecting line

between main station and the satellite. Due to the

complicated dependence of the time varying length of

the released tether and the assumed shape of the

configuration that approach failed and we then tried a

rM

e03

e02

S

y

x

Fig. 1 Tethered satellite system, consisting of the space ship on

a circular orbit, the satellite in the orbital plane, and the

connecting tether. The local x-coordinate points into the flight

direction, and y points toward the center of the earth
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lumped-mass approach, as already proposed in [4] for

elastic beams and sketched in Fig. 2: The current

shape of the deployed tether is regarded as a chain of N

straight pendula of length hðtÞ ¼ ‘ðtÞ=N and mass

lhðtÞ, where l denotes the mass of the tether per unit

length. The first pendulum is attached to the outlet at

the main station; the angle between the ith pendulum

and the local vertical direction y is denoted by ui. Of

course, the individual pendula in this model should not

be regarded as rigid rods, but just as quite coarse

parametrization of the currently deployed tether

configuration. When the tether becomes longer, the

pendula grow accordingly. Since the tether is released

from the main station, the material points of the tether

move along the pendula.

The position of the tether at the relative length n
along the ith pendulum in the local frame is given by

riðnÞ ¼ nh
sinui

cosui

� �
þ h

Xi�1

j¼1

sinuj

cosuj

 !
; ð1Þ

for the position of the satellite we get

rS ¼ h
XN
j¼1

sinuj

cosuj

 !
: ð2Þ

At the tether outlet the control force F is acting against

the direction of the string

F ¼ �F
sinu1

cosu1

� �

The virtual work of this control force is therefore given

by

dAF ¼ �Fd‘: ð3Þ

The gravity potential of a mass m at r ¼ ðx; yÞT in the

near-field dynamics is obtained as the second order

approximation of the gravity field

Wðx; yÞ ¼ �mX2r2
M 1 þ y

rM
þ y2

r2
M

� x2

2r2
M

� �
; ð4Þ

with X denoting the orbital angular velocity. From this

expression we find the augmented potential

VX ¼ Wðx; yÞ � mX2

2
ðrM � yÞ2 þ x2
� �

¼ �3mX2

2
ðr2

M þ y2Þ:

With (4) the gravity potential of the system is given by

V ¼ mSWðxS; ySÞ þ lh
XN
i¼1

Z 1

0

WðxiðnÞ; yiðnÞÞdn:

ð5Þ

In order to calculate the kinetic energy, the velocities

of a point r ¼ ðx; yÞT in the local frame have to be

expressed in the inertial frame using the relation

vI ¼ vL þ X
rM � y

x

� �
:

The kinetic energy of the satellite is given by

TS ¼
mS

2

_xS

_yS

� �
þ X

rM � yS

xS

� �� �2

: ð6Þ

For the kinetic energy of the tether we first have to

calculate the velocity of the particles, which are

located at the position s along the tether, expressed in

the local frame. Due to the variation of the tether

length that velocity differs from dri=dt, because the

particles move along the pendulum chain with relative

speed _‘ð1 � s=‘Þ. The velocity in the local frame of the

particles, which are located at the positions riðnÞ of the

pendula, is therefore given by

viðnÞ ¼
dri

dt
þ ðN � iþ sÞ _‘

N

sinui

cosui

� �
ð7Þ

Now the kinetic energy of the released tether is given by

TT ¼ lh
2

XN
i¼1

Z 1

0

vi þ X
rM � yi

xi

� �� �2

dn

þ lh3

24
ð _ui � XÞ2

ð8Þ

M

S

ϕi
y

x

F

ξ
h
h

Fig. 2 Discretization of the tether configuration by a chain of N

pendula of length hðtÞ ¼ ‘ðtÞ=N connected by hinges. The angle

ui denotes the inclination of the ith pendulum to the local

vertical direction y. At the main station a tension force F is

applied in tangential direction
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The complete kinetic energy is then obtained as

T ¼ TS þ TT : ð9Þ

Finally we have to consider the Carnot energy loss

terms at the drums. According to [3] the instant

acceleration of the tether leads to a nonconservative force

FC ¼ � l _‘2

2

sinu1

cosu1

� �
; ð10Þ

which can be easily derived by comparing the

Lagrangian equations of motion for an inextensible

string, which is initially folded to a negligible volume

and pulled by a horizontal force F, and the momentum

balance equation for this system:

Assume that the unfolded length of the string is

denoted by x(t), then its kinetic energy is given by

TS ¼
l
2
x _x2; ð11Þ

and with the virtual work dA ¼ Fdx the generalized

force is obtained as Q ¼ F. Due to the absence of

further forces the Lagrangian equations of motion are

given by

d

dt

oTS

o _x
� oTS

ox
¼ lðx€xþ _x2=2Þ ¼ F ð12Þ

The momentum of the unfolded string is given by

IðtÞ ¼ lxðtÞ _x; ð13Þ

therefore the momentum balance _I ¼ F yields the

equation

lðx€xþ _x2Þ ¼ F; ð14Þ

which differs from (12) by the term l _x2=2.

Together with (3) we find the generalized work for

the length variable

Q‘ ¼ �F � l _‘2=2: ð15Þ

There occur no non-conservative forces for the

angular variables

Qui
¼ 0: ð16Þ

Before calculating the Lagrangian differential equa-

tions, the variables are scaled according to

‘7!‘=‘T x 7!x=‘T

y7!y=‘T t 7!Xt

F 7!F=ðmSX
2‘TÞ l7!l‘T=mS:

ð17Þ

It should be noted, that the rescaled time t now

corresponds to the ‘‘orbital time’’ for the main station:

A revolution around the earth takes 2p time units. The

parameter l denotes the ratio of the deployed tether

mass to the mass of the subsatellite. The dynamics of

the tethered satellite is then given by the second order

system

d

dt

oT

o _qi
� oT

oqi
þ oV

oqi
¼ Qi ð18Þ

for the degrees of freedom q ¼ ð‘;u1; . . .;uNÞT . Due to

the variation of the tether length the symbolic calcula-

tion of these equation is very elaborate even for N ¼ 2

and was carried out using symbolic algebra [10].

With the symmetric mass-matrix M with entries

m11 ¼ 6 þ 10l‘þ ð6 þ 3l‘Þ cosðu1 � u2Þð Þ=12

m12 ¼ �‘ 2 þ 3l‘þ ð2 þ l‘Þ cosðu1 � u2Þð Þ=8

m13 ¼ ‘ 4 þ l‘Þ sinðu1 � u2ð Þ=16

m22 ¼ ‘2ð3 þ 2l‘Þ=12

m23 ¼ ‘2ð4 þ l‘Þ cosðu1 � u2Þ=16

m33 ¼ ‘2ð6 þ l‘Þ=24

the Lagrangian differential equations for N ¼ 2 read

M

€‘

€u1

€u2

0
B@

1
CAþ

f1

f2

f3

0
B@

1
CA ¼

�F � l _‘2=2

0

0

0
B@

1
CA; ð19Þ

with the abbreviations

c12 ¼ cosðu1 � u2Þ; Ci ¼ cosð2uiÞ; ci ¼ cosui;

s12 ¼ sinðu1 � u2Þ; Si ¼ sinð2uiÞ; si ¼ sinui;

cþ12 ¼ cosðu1 þ u2Þ; sþ12 ¼ sinðu1 þ u2Þ;

and

f1 ¼ l‘2

32
5 � 12C1 þ 3c12 � 3C2 � 9cþ12 þ 8 _u2

1

�
� ð4 þ 6c12Þ _u2 þ 2 _u2

2

� _u1 16 þ 6ð1 � /2Þc12ð ÞÞ

þ ‘

8
6 þ 3C1 þ 6c12 þ 3C2 þ 6cþ12 þ 2 _u2

1

�
þ l _‘s12ð1 � 2 _u1 þ _u2Þ þ 2ð _u2 þ lc2Þ _u2

�4ð1 þ c12Þ _u2 � 4 � 6lc1 þ 4ð1 � _u2Þc12ð Þ _u1Þ

þ 1

24
ð10 þ 3c12Þl _‘2 þ 12ðlþ c1 _u1 þ c2 _u2Þ
�

þ6 _‘ð3ls1 þ ls2 � s12ð _u1 � _u2ÞÞ
�
; ð20Þ
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f2 ¼
_‘

4
ð2c1 � s12

_‘Þ

þ l‘3

32
8S1 � s12ð1� 2ð _u1 � _u2 � _u1 _u2ÞÞ þ 3sþ12

� �

� ‘

8
ls12

_‘2 þ 4s2 _u1 � 2 _‘ð3lc1 � c12ð _u1 � _u2ÞÞ
� �

� ‘2

16
12c2s1 þ 6C1 � lc12

_‘ð1� 2 _u1 þ _u2Þ
�

�4s12 _u2 þ _u1ð6ls1 � 4s12ð1� _u2ÞÞÞ; ð21Þ

f3 ¼
_‘

4
ð2c2 þ s12

_‘Þ

þ l‘3

32
s12 1� 2ð _u1 þ _u2 � _u1 _u2Þð Þþ 2S2 þ 3sþ12

� �

þ ‘

8
ls12

_‘2 � 4s2 _u2 þ 2 _‘ðlc2 þ c12ð _u1 � _u2ÞÞ
� �

� ‘2

16
6S2 � ð6� 4 _u1ð1� _u2Þ� 4 _u2Þs12ð

þ6sþ12 � lc12
_‘ð1� 2 _u1 þ _u2Þþ 2ls2 _u2

�
: ð22Þ

2.2 Optimal control problem

We search for the tension force F(t), which steers the

tethered satellite from the straight downhanging

configuration with initial length ‘ð0Þ ¼ ‘0 to the

downhanging configuration with final length ‘ðTÞ ¼
‘T [ ‘0 in shortest time. The tension force F(t) has to

satisfy the inequality constraints

0�Fmin �FðtÞ�Fmax: ð23Þ

In order to avoid a slack tether and too large deviations

from the straight configuration, we choose Fmin [ 0.

The upper boundary Fmax should be larger than the

required force Fs to hold the system in the final

equilibrium, but not too large for safety reasons. In our

numerical experiments we choose the scaled values

Fmin ¼ 0:02; Fmax ¼ 4:

The static equilibrium force is given by

Fs ¼ 3ð1 þ l=2Þ.
In order to derive the differential equations for the

Optimal Control problem [5], the system (18) is

rewritten as explicit first order system

_x ¼ fðx;FÞ; ð24Þ

with x ¼ ðq; _qÞT .

Since we are looking for the fastest solution, the

utility function is given by

I ¼ �
Z T

0

1dt: ð25Þ

Introducing the adjoint variables pi, we build the

Hamilton function

Hðx; p;FÞ ¼ �1 þ pT � f ðx;FÞ: ð26Þ

The optimal tension force FH is determined by the

Maximum Principle

FH ¼ argmaxFHðx; p;FÞ ¼
Fmin if S\0;

Fmax if S[ 0;

undet: if S ¼ 0:

8><
>:

ð27Þ

Since the tension force F occurs linearly in fðx;FÞ, the

switching function S is given by

S ¼ pT � of ðx;FÞ
oF

: ð28Þ

The singular case, that the switching function S van-

ishes in an interval, was never observed in our

calculations.

The adjoint variables satisfy the differential

equations

_pi ¼ � oHðx; p;FÞ
oxi

: ð29Þ

The required boundary conditions read

‘ð0Þ ¼ ‘0; _‘ð0Þ ¼ 0; uið0Þ ¼ 0; _uið0Þ ¼ 0;

ð30Þ

‘ðTÞ ¼ 1; _‘ðTÞ ¼ 0; uiðTÞ ¼ 0; _uiðTÞ ¼ 0:

ð31Þ

Since the shortest time T isn’t specified, the additional

boundary condition

HðxðTÞ; pðTÞ;FðTÞÞ ¼ 0 ð32Þ

has to be satisfied.

Remark The conversion of the Lagrange equations

(18) to the explicit system involves the symbolic

inversion of the mass matrix, which is already very

cumbersome for N ¼ 2. For the adjoint differential
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equations (29) the partial derivatives of that inverse

w.r.t. the state variables would be required. In order to

avoid these tedious calculations, one can exploit the

identity

oM�1ðxÞ
oxi

¼ �M�1 oMðxÞ
oxi

M�1:

If the state equations (24) are written in the implicit

form

MðxÞ _x ¼ gðx;FÞ; ð33Þ

where f ðx;FÞ ¼ M�1ðxÞgðx;FÞ, the corresponding

entries in the adjoint equations become

_pi ¼ �pT �
o M�1ðxÞgðx;FÞ
� �

oxi

¼ pT �M�1ðxÞ oMðxÞ
oxi

M�1gðx;FÞ � ogðx;FÞ
oxi

� �

¼ PT � oMðxÞ
oxi

_x� ogðx;FÞ
oxi

� �
; ð34Þ

where P ¼ M�1ðxÞp. Since already the calculation of

_x ¼ M�1ðxÞgðx;FÞ requires a factorization of M, the

additional step to solve the equation

MðxÞP ¼ p

can be carried out with the same factorization. The

derivatives of M w.r.t. xi are much easier to calculate

than those of its inverse.

3 Numerical solution of the boundary value

problem

Due to their complicated form the differential equa-

tions can only be solved numerically. We use the

Fortran solver Boundsco [6], which solves two-point

boundary value problems (BVPs) with switching

conditions using a multiple shooting method.

Because the endpoints of the integration interval

have to be specified in advance, we map the unknown

integration interval to the unit interval by introducing

a scaled time

t ¼ Ts; withs 2 ½0; 1�: ð35Þ

The differential equations (24) and (29) become

dx=ds ¼ Tf ðx;FÞ; dp=ds ¼ �T
oHðx; p;FÞ

oxi
:

ð36Þ

For the unknown variable T we introduce another

trivial differential equation dT=ds ¼ 0.

Self-evidently the boundary conditions (31) and

(32) apply at the right endpoint s ¼ 1.

The 4N þ 5 boundary conditions (30), (31), (32)

and the differential equations for the 4N þ 5 variables

xi, pi and T form the boundary value problem. Since

the Hamiltonian depends linearly on the tension forceF,

we expect a bang–bang control, with the tension force

F(t) jumping between its limiting values. At the

switching points si the switching function S(t) vanishes

SðsiÞ ¼ 0: ð37Þ

In Boundsco the switching points are treated as

internal additional variables, which are determined by

(37).

In order to find a solution with bang–bang control,

the user has to provide the number of switching points

and a proper initial guess for their values. Furthermore

the switching sequence has to be fixed at the entry to

Boundsco.

Since the differential equations (24) are independent

of the co-state variables and the boundary conditions

(30) and (31) involve only the state variables xi, we

expect to need at least 2N þ 1 switching points to

satisfy all prescribed boundary conditions and obtain a

unique solution for the co-state variables: For an

arbitrarily prescribed time interval T the solution of the

fully specified initial value problem (30) for the xi will

generically satisfy not any boundary condition (31) at

t ¼ T . By varying T we may expect to satisfy one

terminal condition. In order to satisfy the remaining

boundary conditions, 2N þ 1 further adjustable param-

eters are needed.

On the other hand more boundary conditions for the

2N þ 2 co-state variables are required: The optimality

condition (32) provides one linear constraint for pðTÞ,
the remaining 2N þ 1 equations are provided by the

switching conditions, which involve the costate

variables.

3.1 Numerical pathfollowing method

Although Boundsco is a very robust and efficient

solver for BVPs, we still have to provide sufficiently

2746 Meccanica (2016) 51:2741–2751
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good initial guesses for the state and co-state variables

and especially for the switching points. If the initial

guesses for the switching points are too inaccurate, the

solver will almost certainly fail to solve the problem.

A very efficient method for providing good initial

guesses is the so-called homotopy or continuation

method [7]: If the BVP depends on some parameter k
and a solution y0 for a certain value k0 is known, that

solution will usually be a good guess for a neighbour-

ing parameter value k ¼ k0 þ dk. With this method

one-parameter families of trajectories can be obtained

and ‘‘better’’ solutions can be found.

That method was successfully applied in [8] to

obtain a valid solution for the deployment problem

with a massless tether: In the first run the end

conditions, the three switching points, and the time

interval Twere prescribed and a solution was obtained,

which satisfied none of the remaining boundary

conditions. Starting with this trajectory and varying

the time interval T, a solution could be found, which

satisfied one initial condition.

In the next loop that initial condition was enforced

and T was allowed to vary freely. By varying one of

the switching points, another initial condition could be

satisfied. After another loop all homogeneous initial

conditions could be satisfied and some ‘ð0Þ quite close

to the final value ‘T was obtained. Applying the

homotopy method the initial value ‘ð0Þ could easily be

decreased down to ‘0 ¼ 0:05.

3.2 Numerical results for the massive tether

with N ¼ 2

In order to study the behaviour of the tethered satellite

with a lightweight tether we started with the simple

case N ¼ 2 and l ¼ 0:2. Depending on the tether

material and deployed tether length the value of l is

usually much smaller (about 0.01), but the relatively

large value causes slower transversal oscillations.

After a series of homotopy loops we arrived at a

solution with ‘0 ¼ 0:1 and 7 switching points, where

the control F changed between the Fmin and Fmax, the

trajectory in the co-rotating orbital frame is displayed

in Fig. 3. The parts of the path, where the tension force

F ¼ Fmax, is displayed by a heavy line, the switching

points are indicated by black circles. The trajectory

shows a quite strong deviation from the local vertical

direction.

The trajectory of the subsatellite is quite similar to

the obtained solution for the massless tether (see [8]),

but there occur three further short intervals of max-

imum tension, which straighten the tether configura-

tion before the final braking period. One of these

pulling periods occurs right at the beginning of the

manoeuvre.

For the same boundary conditions the control with a

massless tether requires only 3 switching points:

Initially the satellite is released (almost) freely. Since

it moves approximately on a Keplerian ellipse with

smaller major axis than the radius of the main station,

it moves ahead in the orbital plane. In order to make it

move back to the local vertical, maximum tension is

applied in the second phase. After another free flight

period it is steered to the target position using again

maximum tension. If the same control were applied to

the light-weight tether, quite heavy lateral oscillations

would persist beyond the control interval.

The temporal behaviour of the tension force F(t)

and the switching function S(t) is displayed in Fig. 4. It

shows a quite strong oscillation of the switching

function. Three pairs of switching points close to

t ¼ 0:2, t ¼ 2:2, and t ¼ 2:55 are quite narrow, such

that the influence of the short change in F is hardly

visible in the following figures.

The switching behaviour in the time interval

[1.7, 2.8] is displayed in Fig. 5.

In Figs. 6 and 7 the evolution of d‘=dt and of the

angular variables uiðtÞ is displayed. During maximum

tension the length change rate d‘=dt decreases. From

Fig. 7 it is visible, that the transversal oscillations are

quite heavy during the first long pulling period. When

the final braking period starts, the tether is almost

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9
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straight and the transversal oscillations are already

extinguished.

3.3 Variation of the calculated solution

for varying initial conditions

The previously displayed solutions correspond to a

fixed initial value ‘0 ¼ 0:1. (According to (17) the

final length is scaled to ‘T ¼ 1.) By applying a

continuation strategy solutions with different values

for ‘0 can be computed. As displayed in Fig. 8, ‘0 need

not vary monotonically during that continuation, but

may also turn around and lead to different solutions for

the same boundary conditions: In Fig. 8 the variation

of a selection of interior switching points si over the

initial length ‘0 is displayed.
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Starting with a solution with ‘0 � 0:14 and 7

switches in the control force and decreasing ‘0, a pair

of switching points s4 and s5 has to be inserted at

P1: ‘0 ¼ 0:133. Decreasing the new solution (‘‘A’’ in

Fig. 8) with 9 switches further down to

P1: ‘0 ¼ 0:0815, again a pair s6 and s7 has to be

inserted. Along the solution branch ‘‘B’’ with 11

switches the initial length ‘0 increases (dashed line)

until P3: ‘0 ¼ 0:127, where the switching points s4

and s5 coalesce and disappear. Along the new solution

branch ‘‘C’’ with 9 switches the value ‘0 decreases

again and extends below ‘0 ¼ 0:08. After traversing

the loop a pair of switching points has changed its

position significantly: The lower pair s4;5, which is

created at P1, vanishes at P3 along the branch ‘‘B’’.

The higher pair s6;7 is born at the start of branch ‘‘B’’ at

P2 and persists along branch ‘‘C’’. The remaining

switching points, e.g. s3 and s8, vary continuously

along the branches. All three branches of solutions

exist for ‘0 ¼ 0:1; in Fig. 9 the switching function S(t)

is displayed for the three solutions with initial length

‘0 ¼ 0:1. It looks rather similar, but solution ‘‘A’’ has

two zeroes close to t ¼ 1:8, while C has two zeroes at

about t ¼ 2:2. The intermediate solution B has all four

zeroes.

Since the difference between the required times T is

very small, the quantity T � TM is displayed in Fig. 10

for the three solution branches, where TM ¼
ðTA þ TCÞ=2. The swallowtail-shaped cost function

intersects itself at ‘0 � 0:12 For ‘[ 0:12 solution

‘‘A’’ is more efficient, whereas for ‘\0:12 ‘‘C’’

performs better. The intermediate solution ‘‘B’’ with

11 switching points takes always longer than the other

candidates and serves only to connect the two

branches.

Throughout the common domain of existence of the

two branches ‘‘A’’ and ‘‘C’’ both solutions are local

minima. At the intersection of the cost functions TA
and TC at ‘0 � 0:12 a so-called ‘‘Maxwell Catastro-

phe’’ [2] occurs, where the optimal solution candidate

changes discontinuously. Of course, the difference

between TA and TB is extremely small (less than a

second for a manoeuvre lasting almost an hour) and

plays no practical role. Nevertheless, the birth and

death of the switching points needs to be taken into

account during the variation of initial conditions and

parameters in the system.

3.4 Another bifurcation scenario

An almost similar bifurcation occurs for slightly

larger values of ‘0: Close to ‘0 ¼ 0:18 the homotopy

branch shows a non-monotonic variation of ‘0, as

depicted in Fig. 11. The distorted cost function T þ
4‘0 is displayed in Fig. 12. It shows again the shape of

a swallow-tail, with two different solutions ‘‘A’’ and

‘‘C’’ with the same cost function at the intersection

point. The intermediate solution ‘‘B’’ at the upper

branch again takes longer and just connects both

efficient branches.

The switching function S(t) is displayed in Fig. 13:

While the left switching points vary rapidly during the

loop, the remaining ones are almost not affected.

The behaviour of _‘ðtÞ and u1ðtÞ � u2ðtÞ for the

three solution candidates ‘‘A’’, ‘‘B’’, and ‘‘C’’ is

displayed in Figs. 14 and 15: Again mainly the phase
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after the first pulling period is affected strongly. Since

the influence of the variation of the first switching

points on the variation ofu1 þ u2 and on the trajectory

of the sub-satellite is very small, these quantities are

not drawn.

Contrary to the first bifurcation scenario, where the

non-monotonic variation of ‘0 along the continuation

path was caused by the birth and deletion of switching

points, in this case the switching points vary smoothly.

Both cases demonstrate, that it is important not to

calculate only one solution for the intended boundary

conditions, but to explore also the vicinity of that

solution in order to maybe detect more efficient

solutions.

4 Conclusions

For a tethered satellite system with a massive tether a

simple discretized model has been derived. For this
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model a time-optimal solution has been obtained

numerically. The overall solution shape looks quite

similar to that of the corresponding model with zero

tether mass. But there are some significant differences:

• The system with a massive tether requires signif-

icantly more switching points for its bang–bang

solution than the massless one. Some of these

switching points are quite likely not relevant for

the practical applications, because they are extre-

mely close and show almost no influence on the

performance.

• As expected, the strongest oscillation of the tether

occurs during the pulling face, when the curved

tether becomes stretched. Since there are no

damping forces present, these fast oscillations

can only be extinguished by releasing the tension

force at the right phase. Before starting the final

braking stage the lateral oscillations should

already be extinguished.

• The numerical detection of the obtained solution

was quite involved. According to the author’s

estimate the calculation of optimal trajectories for

more realistic parameters (finer discretization,

lighter tether, smaller ratio ‘0=‘T ) would require

a huge amount of work and it is quite unlikely that

a robust and efficient feedback law could be

designed to take care of perturbations to the

computed solution.

• The occurrence of turning points in the continu-

ation procedure—which also have to be expected,

if some parameters in the model are varied—

indicates, that it is important to explore the

behaviour of the system for larger ranges of

parameters and initial conditions. Otherwise one

might end up at some sub-optimal candidate. In the

author’s experience such loops occur frequently,

when the overall structure of the solution changes.

Looking closely at the change in the solution after

passing the turning points might provide valuable

insight in the control strategy.
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