
D I S S E R T A T I O N

Distribution Recovery in Probabilistic Loops

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften unter der Leitung von

Univ. Prof. Ph.D Efstathia Bura
E105-08 – Institut für Stochastik und Wirtschaftsmathematik, TU Wien

und

Univ. Prof. Dott. Ric. Ezio Bartocci
E191-01 – Institut für Computer Engineering, TU Wien

eingereicht an der Technischen Universität Wien
Fakultät für Mathematik und Geoinformation

von

Andrey Kofnov
Matrikelnummer: 00000000

00000000000000000000000

0000000000000

Diese Dissertation haben begutachtet:

1. Univ. Prof., Ph.D. Efstathia Bura
Institut für Stochastik und Wirtschaftsmathematik, Technische Universität Wien, Österreich

2. Univ. Prof., Dott. Ric. Ezio Bartocci
Institut für Computer Engineering, Technische Universität Wien, Österreich

3. Prof., Ph.D. Mirco Tribastone
Systems Security, Modeling and Analysis, IMT School for Advanced Studies Lucca, Italy

4. Prof., Ph.D. Max Tschaikowski
Department of Computer Science, Aalborg University, Denmark

Wien, am 3. April 2025

Kurzfassung

Diese kumulative Dissertation behandelt die Wiederherstellung von Verteilungen in probabilisti-
schen Schleifen (Kapitel 2 & 3) sowie die Berechnung von oberen und unteren Schranken der
kumulativen Verteilungsfunktion für die Ausgabe neuronaler Netze mit zufälligen Eingaben (Kapi-
tel 4).

Viele stochastische dynamische Systeme mit kontinuierlichem Zustandsraum lassen sich als
probabilistische Programme mit nichtlinearen, nicht-polynomialen Aktualisierungen in nicht ver-
schachtelten Schleifen modellieren. Wir präsentieren zwei Methoden – eine approximative und eine
exakte – zur automatischen Berechnung von momentenbasierten Invarianten für solche probabilisti-
schen Programme in geschlossener Form als Funktion der Schleifeniteration, ohne auf Stichproben
zurückzugreifen. Die exakte Methode ist für probabilistische Programme mit trigonometrischen und
exponentiellen Aktualisierungen anwendbar und in das Tool Polar eingebettet. Die approximative
Methode zur Momentenberechnung ist für beliebige nichtlineare Zufallsfunktionen geeignet, da sie
die Theorie der polynomialen Chaos-Entwicklung nutzt, um nicht-polynomiale Aktualisierungen
durch eine Summe orthogonaler Polynome zu approximieren. Dadurch wird das dynamische Sys-
tem in eine nicht-verschachtelte Schleife mit polynomialen Aktualisierungen überführt und somit
mit dem Polar-Tool kompatibel, das die Momente beliebiger Ordnung der Zustandsvariablen be-
rechnet. Wir evaluieren unsere Methoden anhand zahlreicher Beispiele, die von der Modellierung
der Geldpolitik bis hin zu physikalischen Bewegungssystemen in unsicheren Umgebungen reichen.
Die experimentellen Ergebnisse belegen die Vorteile unseres Ansatzes im Vergleich zum aktuellen
Stand der Technik.

In Kapitel 3 stellen wir die K-Serien-Methode vor, um die Verteilung aller Zufallsvariablen,
die in jeder Iteration einer probabilistischen Schleife erzeugt werden, aus ihren Momenten abzu-
leiten. Diese Methode ist direkt anwendbar auf die probabilistische Analyse von Systemen, die
als probabilistische Schleifen dargestellt werden können, also auf Algorithmen, die nichtdetermi-
nistische Prozesse aus Bereichen wie Robotik, Makroökonomie, Biologie sowie Software- und
cyber-physikalische Systeme ausdrücken und implementieren. Die K-Serien-Methode approximiert
statisch die gemeinsamen und marginalen Verteilungen eines Vektors kontinuierlicher Zufallsvaria-
blen, die in einer probabilistischen, nicht-verschachtelten Schleife mit nichtlinearen Zuweisungen
aktualisiert werden, unter der Annahme einer endlichen Anzahl von Momenten der unbekannten
Dichte. Darüber hinaus leitet K-Serien die Verteilung der Zufallsvariablen eines Systems symbo-
lisch als Funktion der Schleifeniteration her. Die Dichteschätzungen mittels K-Serien sind präzise,
effizient und schnell berechenbar. Wir demonstrieren die Anwendbarkeit und Leistungsfähigkeit
unseres Ansatzes anhand mehrerer Benchmark-Beispiele aus der Fachliteratur.

Das Problem der Schätzung der Verteilung der Ausgabe eines neuronalen Netzwerks (NN), wenn
der Input zufällig gestört wird, wird in Kapitel 4 behandelt. Dort leiten wir exakte obere und
untere Schranken für die kumulative Verteilungsfunktion (CDF) der Ausgabe eines NN über dessen
gesamten Definitionsbereich ab, wobei stochastische (rauschende) Eingaben berücksichtigt werden.
Die oberen und unteren Schranken konvergieren mit zunehmender Auflösung zur tatsächlichen cdf

über ihrem Definitionsbereich.
Unsere Methode gilt für jedes Feedforward-NN, das kontinuierliche, monoton wachsende, stück-

weise zweimal stetig differenzierbare Aktivierungsfunktionen verwendet (z. B. ReLU, tanh und
softmax), sowie für konvolutionale NNs, die über den Geltungsbereich konkurrierender Ansätze
hinausgehen. Die Neuheit und das zentrale Werkzeug unserer Methode besteht darin, allgemeine
NNs mit ReLU-NNs zu beschränken. Die auf ReLU-NNs basierenden Schranken werden dann
verwendet, um die oberen und unteren Schranken der CDF der NN-Ausgabe abzuleiten.

Experimente zeigen, dass unsere Methode garantierte Schranken für die Vorhersage der Ausgabe-
verteilung über deren Definitionsbereich liefert und somit exakte Fehlergrenzen bietet, im Gegensatz
zu konkurrierenden Ansätzen.

Abstract
This is a cumulative thesis on distribution recovery in probabilistic loops (Ch. 2 & 3) and the
computation of upper and lower bounds of the cumulative distribution function for the output of
neural networks with random inputs (Ch. 4).

Many stochastic continuous-state dynamical systems can be modeled as probabilistic programs
with nonlinear non-polynomial updates in non-nested loops. We present two methods, one ap-
proximate and one exact, to automatically compute, without sampling, moment-based invariants
for such probabilistic programs as closed-form solutions parameterized by the loop iteration. The
exact method applies to probabilistic programs with trigonometric and exponential updates and is
embedded in the Polar tool. The approximate method for moment computation applies to any
nonlinear random function as it exploits the theory of polynomial chaos expansion to approximate
non-polynomial updates as the sum of orthogonal polynomials. This translates the dynamical sys-
tem to a non-nested loop with polynomial updates, and thus renders it conformable with the Polar
tool that computes the moments of any order of the state variables. We evaluate our methods
on many examples ranging from modeling monetary policy to several physical motion systems in
uncertain environments. The experimental results demonstrate the advantages of our approach as
compared with the current state-of-the-art.

In Chapter 3 we propose the K-series method to derive the distribution of all random variables
generated at each iteration in a probabilistic loop from their moments. It is directly applicable to
the probabilistic analysis of systems that can be represented as probabilistic loops; i.e., algorithms
that express and implement non-deterministic processes ranging from robotics to macroeconomics
and biology to software and cyber-physical systems. K-series statically approximates the joint
and marginal distributions of a vector of continuous random variables updated in a probabilistic
non-nested loop with nonlinear assignments given a finite number of moments of the unknown
density. Moreover, K-series automatically derives the distribution of the systems’ random variables
symbolically as a function of the loop iteration. K-series density estimates are accurate, easy and
fast to compute. We demonstrate the feasibility and performance of our approach on multiple
benchmark examples from the literature.

The problem of estimating the distribution of the output of a neural network (NN) when the input
is randomly perturbed is considered in Chapter 4. There we derive exact upper and lower bounds
for the cumulative distribution function (cdf) of the output of a NN over its entire support subject to
noisy (stochastic) inputs. The upper and lower bounds converge to the true cdf over its domain as
the resolution increases. Our method applies to any feedforward NN using continuous monotonic
piecewise twice continuously differentiable activation functions (e.g., ReLU, tanh and softmax)
and convolutional NNs, which were beyond the scope of competing approaches. The novelty and
instrumental tool of our approach is to bound general NNs with ReLU NNs. The ReLU NN-based
bounds are then used to derive the upper and lower bounds of the cdf of the NN output. Experiments
demonstrate that our method delivers guaranteed bounds of the predictive output distribution over
its support, thus providing exact error guarantees, in contrast to competing approaches.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne fremde Hilfe
verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder
sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 3. April 2025
Andrey Kofnov

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Problem statement . 3
1.3 Research goals . 6
1.4 Impactful contributions . 7
1.5 Thesis structure. 9
1.6 Included publications. 10

2 Moment-based Invariants for Probabilistic Loops 13
2.1 Preliminaries . 13

2.1.1 Prob-Solvable Loops . 13
2.1.2 Polynomial Chaos Expansion . 14

2.2 Polynomial Chaos Expansion Algorithm . 16
2.2.1 Random Function Representation . 16
2.2.2 PCE Algorithm . 17

2.3 Prob-Solvable Loops for General Non-Polynomial Functions 19
2.3.1 Iteration-Stable Distributions of Random Arguments 20
2.3.2 Iteration Non-Stable Distribution of Random Arguments 20

2.4 Exact Moment Derivation . 23
2.4.1 Trigonometric and Exponential Functions of Random Variables 23
2.4.2 Trigonometric and Exponential Functions in Variable Updates 25

2.5 Evaluation . 26
2.6 Conclusion . 33

3 K-series for Moment-based Density Elicitation in Probabilistic Loops 35
3.1 K-series . 35

3.1.1 Univariate K-series . 35
3.1.2 K-series estimation in practice . 37
3.1.3 Special cases of K-series . 39
3.1.4 Approximation of the support . 42
3.1.5 Validity of the input . 43
3.1.6 Multivariate K-series . 44

3.2 Symbolic K-series representation along iterations 49
3.3 Experiments . 50

3.3.1 Kolmogorov-Smirnov and Energy Tests for Equality of Distributions 55
3.4 Effect of Reference Distribution . 59
3.5 Conclusion . 67

i

Contents

4 Exact Upper and Lower Bounds for the Output Distribution of Neural Net-
works with Random Inputs 69
4.1 Introduction . 69
4.2 Problem Overview . 70
4.3 Our Approximation Approach . 71

4.3.1 Exact cdf evaluation for a fully connected NN with ReLU activation function 72
4.3.2 Algorithm for Upper and Lower Approximation of the Neural Network

using ReLU activation functions. 75
4.3.3 Convergence of the approximation . 80
4.3.4 Application to an arbitrary function on a compact domain 91

4.4 Experiments . 93
4.4.1 Description of the Iris Experiments . 94

4.5 Related Work . 96
4.6 Conclusion . 97

5 Summary and Future Perspectives 99

References 101

ii

1 Introduction

1.1 Overview
The field of probabilistic programming has evolved as a critical component of modern statistical
modeling, particularly in artificial intelligence, machine learning, and stochastic dynamical systems.
Probabilistic programs (PPs) enable the modeling of systems with inherent randomness by allow-
ing variables to be treated as random rather than deterministic. This has led to their widespread
application in security protocols, automated reasoning, and inference problems.

Probabilistic programs are typically understood in two distinct ways:

• Randomized Algorithms – Programs designed to be executed, leveraging randomness to
enhance performance, in particular runtime [MR95]. For instance, Monte Carlo methods,
which trade computational efficiency for precision, or sorting algorithms like Randomized
Quicksort, which achieves an expected worst-case time complexity of O(n log n), signifi-
cantly improving upon the O(n2) worst-case of deterministic Quicksort, are among the most
popular randomized algorithms. Randomness is also utilized in cryptographic protocols,
consensus mechanisms, and load-balancing strategies to improve security, resilience, and
efficiency.

• Probabilistic (Generative) Models – Programs that define and manipulate probability distri-
butions to model uncertain phenomena. These models provide a structured way to represent
and reason about randomness in complex systems. They are commonly expressed using
probabilistic graphical models (PGMs) or formulated as mathematical equations governing
stochastic relationships. Bayesian networks (BNs), a widely used class of PGMs, capture
dependencies between variables through directed acyclic graphs, offering a compact and in-
terpretable representation of conditional probabilities. However, a fundamental challenge in
utilizing such models, especially Bayesian networks, lies in performing inference—extracting
meaningful conclusions from observed data. This inference process often involves compu-
tationally intensive tasks, such as marginalization and evidence propagation, which become
increasingly difficult as the complexity of the model grows.

Rapidly increasing reliance on AI and machine learning has led to the adoption of probabilistic
modeling techniques [Gha15]. Instead of relying on rigid mathematical formulations, many re-
searchers and practitioners now use probabilistic programming frameworks, which offer a flexible
yet rigorous approach to describing stochastic processes. These frameworks excel in representing
generative probabilistic models, wherein programs encode the mechanisms responsible for generat-
ing probability distributions, making them particularly useful for synthesizing new data samples or
simulating uncertain environments. By leveraging probabilistic programming as a modeling tool,
researchers can gain deeper insights into underlying distributions, streamline inference procedures,

1

1 Introduction

and refine model parameters for improved accuracy. Furthermore, the integration of probabilistic
programming with deep learning—through Bayesian deep learning and models capable of quanti-
fying uncertainty—has opened new avenues for its application. This synergy has proven especially
valuable in critical domains such as medical diagnostics, financial risk assessment, and autonomous
decision-making, where uncertainty estimation is essential for reliable and interpretable predictions.

A special category of probabilistic programs includes (in)finite probabilistic loops (PLs), which
define iterative processes where the number of iterations is either finite or potentially unbounded,
depending on probabilistic conditions. These loops introduce additional complexity in reasoning
about program behavior, as the execution flow depends on stochastic transitions, potentially leading
to undecidable termination conditions. Finite probabilistic loops are often used in randomized algo-
rithms and statistical simulations, whereas infinite loops appear in models describing long-running
or perpetual stochastic processes, such as queuing systems and Markov decision processes. The
analysis of such loops requires specialized techniques to determine loop termination probabilities,
expected runtimes, and steady-state distributions.

One of the challenges in probabilistic loop analysis is understanding the behavior of infinite loops,
where random variables evolve iteratively. Historically, researchers have tackled this challenge
through the development of moment-based invariants and probabilistic loop analysis techniques.
Early methods focused on polynomial updates in loops, leading to the introduction of Prob-solvable
loops [BKS19], a subclass of probabilistic programs that allow for the automatic computation of
statistical moments as closed-form expressions. However, these methods struggled to handle non-
polynomial updates, such as trigonometric and exponential functions, which are essential in various
real-world applications.

Significant efforts have been made to improve the analysis of finite PLs, particularly those
with non-polynomial updates. Some approaches extend existing moment-based methods to handle
more complex functional dependencies within loop iterations [SCG+20; JWW21]. Techniques
that approximate or transform these non-polynomial updates into analytically tractable forms have
played a crucial role in making probabilistic analysis more practical and broadly applicable.

By refining these analytical techniques, probabilistic programming has become an essential tool
for reasoning about uncertainty in diverse domains. From robotic motion planning to cyber-physical
systems and cryptographic security, probabilistic programs enable more accurate predictions, un-
certainty quantification, and improved decision-making processes.

Despite these advances, several research gaps remain:

a) Handling non-polynomial updates in unbounded loops: existing methods often struggle
with loops that involve trigonometric, exponential, or logarithmic transformations of state
variables, requiring new ways to represent and analyze such updates efficiently.

b) Accuracy of moment computation: While some techniques enable moment computation,
many either sacrifice accuracy for computational feasibility or lack generality when handling
arbitrary non-polynomial updates [SCG+20].

c) Distribution recovery in (unbounded) loops: Although many approaches focus on moment
computation, a significant challenge remains in reconstructing full probability distributions
from computed moments, which is crucial for accurate probabilistic inference and real-world

2

1.2 Problem statement

decision-making applications. Furthermore, existing methods that address this issue primarily
focus on finite loops, leaving the analysis of infinite probabilistic loops largely unexplored
[GMV16; GSV20; RBI+24].

By addressing these gaps, the field of probabilistic programming can continue to evolve, providing
robust solutions for increasingly complex systems that demand precise and scalable stochastic
analysis.

1.2 Problem statement
The central challenge addressed in this thesis is the accurate reconstruction of probability distribu-
tions in unbounded probabilistic loops with general functional self-updates. Existing approaches
either compute exact moments for a restricted class of functions (such as polynomials [BKS19])
or approximate moments using general-purpose polynomial expansions that are applicable only to
a limited class of smooth functions (e.g., Taylor series [MB03; SCG+20]). Additionally, many
existing techniques estimate distributions of loop variables based on discrete input perturbations or
polynomial self-updates, limiting their applicability to more general functional forms. To the best
of our knowledge, no prior work has systematically addressed the analysis of unbounded loops with
arbitrary self-updates.

This thesis aims to establish a unified framework that facilitates both exact and approximate
moment derivation for a broad class of functional forms beyond polynomials, with a particular
focus on continuous input perturbations. Furthermore, it introduces a methodology for recovering
probability density functions from computed moments, applicable to both finite and infinite loops,
significantly broadening the scope of probabilistic program analysis.

The ability to automatically compute moments and recover probability distributions has profound
implications in:

• AI and Machine Learning: Enhancing probabilistic inference techniques in Bayesian net-
works [BKS20b].

• Cyber-Physical Systems: Providing reliability and predictability in autonomous robotics and
distributed systems over the in(finite) time horizon [SCG+20; KMS+22b; KMS+24; JWW21].

• Financial Modeling: Improving the accuracy of economic and risk assessment models
[KMS+22b; KMS+24].

To demonstrate the translation of real-world scenarios into the probabilistic program form, let
us consider an example of continuous-time differential equation. The Ornstein-Uhlenbeck (OU)
process [UO30] is a stochastic process that models mean-reverting behavior, commonly used in
finance, physics, and neuroscience. It is governed by the stochastic differential equation (SDE):

dXt = θ(µ−Xt)dt+ σdWt, θ > 0, σ ≥ 0, (1.1)

where, X - is the state variable (e.g., interest rate, stock price deviation, or velocity of a massive
Brownian particle), θ is the rate of mean reversion, µ is the long-term mean, σ is the volatility,

3

1 Introduction

Parameters
θ = 0.7 # Mean reversion speed
µ = 0.5 # Long-term mean level
σ = 0.2 # Volatility
τ = 0.2 # Discretization step

Initial value
X = 0.0 # Value of X0

Probabilistic loop for the exact OU process
while true:

ω = Normal(0, 1 - e^{-2 * θ * τ }) # Brownian motion increment
α = e^{-θ * τ}
β = σ / (2 * θ)^0.5
X = α * X + (1 - α) * µ + β * ω
The last equation models the dependence of the incremented

discretized state variable Xτ(t+1) on its previous value Xτt

end

Figure 1.1: A probabilistic loop modeling the original OU process

which measures the strength of randomness, and W is a Wiener process (Brownian motion). A
solution to Equation 1.1 is well known and can be expressed as:

Xt = X0e
−θt + µ(1− e−θt) +

σ√
2θ

W1−e−2θt .

If one chooses the discretization rate τ > 0 which is the size of incremental time step and sets
initial parameters, one can simulate the behavior of X as a state variable in a probabilistic loop
shown in Fig.1.1.

Unfortunately, most stochastic differential equations, unlike the OU process, do not have closed-
form solutions. Therefore, we can apply the Euler-Maruyama scheme to discretize the process and
find an approximate representation. The corresponding probabilistic loop is shown in Fig. 1.2.

The goal here is to study the statistical properties of the state variable X at any iteration, where
the loop variable is implicitly defined as n = τ · t. This translates to computing moments of a given
order for specific (or all) iterations, as well as to estimating the distribution of the state variable.

For the Ornstein-Uhlenbeck process, the first part of the problem is addressed by the method
outlined in [BKS19], where the authors define a category of probabilistic programs called Prob-
solvable loops. For these loops, moment-based invariants of the program’s state variables are
automatically derived as closed-form expressions. Essentially, a Prob-solvable loop features an
initialization phase followed by a single-level loop where variables are updated by sampling from
distributions defined via their moments (for example, Bernoulli or Normal) and processed using
polynomial arithmetic.

In contrast, capturing more complex dynamics often demands non-polynomial updates, as
demonstrated by the turning vehicle example in Fig. 1.3. This raises an open research question:
How can the framework of Prob-solvable loops be extended to compute moment-based invariants
in closed form when the loop updates involve non-polynomial, nonlinear functions?

4

1.2 Problem statement

Parameters
θ = 0.7 # Mean reversion speed
µ = 0.5 # Long-term mean level
σ = 0.2 # Volatility
dt = 0.2 # Discretization step

Initial value
X = 0.0 # Value of X0

Probabilistic loop for the approximated OU process
while true:

ω = Normal(0, dt^{0.5}) # Brownian motion increment
X = X + θ * (µ - X) * dt + σ * ω

end

Figure 1.2: A probabilistic loop modeling the OU process after the Euler-Maruyama discretization

The turning vehicle model was introduced in [SCG+20] and depicts the position of a moving
vehicle. The state variables are (x, y, v, ψ), where (x, y) is the vehicle’s position with velocity
v and yaw angle ψ. The vehicle’s velocity is stabilized around v0 = 10 m/s. The dynamics are
modeled by the equations x(t+1) = x(t)+τv cos(ψ(t)), y(t+1) = y(t)+τv sin(ψ(t)), v(t+1) =
v(t)+τ(K(v(t)−v0)+w1(t+1)), and ψ(t+1) = ψ(t)+w2(t+1). The mean reversion parameter
K = −0.5. The disturbances w1 and w2 have distributions w1 ∼ U [−0.1, 0.1], w2 ∼ N(0, 0.01).
Initially, the state variables are distributed as: x(0) ∼ U [−0.1, 0.1], y(0) ∼ U [−0.5,−0.3],
v(0) ∼ U [6.5, 8.0], ψ(0) ∼ N(0, 0.01). We allow all normally distributed parameters take values
over the entire real line, in contrast to [SCG+20] who could not accommodate distributions with
infinite support and required the normal variables to take values over finite intervals.

In [SCG+20], the authors introduced a method called Polynomial forms, which employed Taylor
series expansion and constructed an error bound by manipulating the Lagrange remainder. However,
their approach proved to be quite unstable, limiting its use to estimating moments only for a few
iterations at the beginning of the loop execution. Additionally, the method was restricted to
distributions with bounded support, such as the truncated normal, meaning it could not handle
distributions defined over the entire real line.

To enable more precise probabilistic inference, one needs to estimate the probability distribution
of the state variables inside loops.

In previous works, exact distributions were computed. λPSI is a solver designed to compute exact
distributions of probabilistic programs (PPs) as symbolic mathematical expressions, supporting
features such as first-class functions, nested inference, and handling discrete, continuous, and mixed
random variables [GSV20]. However, its applicability is limited in two significant ways: it is
restricted to bounded loops, and the symbolic expressions it produces become extremely complex,
making them difficult to compute and implement even for a small number of loop iterations.

More recently, [KBC+23] introduced Prodigy, a method that enables exact inference in loop-
free PPs with discrete random states. To extend this capability to potentially infinite while-loops,
they attempt to identify classes of while-loop programs that can be treated as equivalent to loop-

5

1 Introduction

v0 = 10, τ = 0.1, K = -0.5
ψ = Normal(0, 0.01)
v = Uniform(6.5, 8.0)
x = Uniform(-0.1, 0.1)
y = Uniform(-0.5, -0.3)
while true:

w1 = Uniform(-0.1, 0.1)
w2 = Normal(0, 0.01)
x = x + τ v cos(ψ)
y = y + τ v sin(ψ)
v = v + τ (K(v-v0)+w1)
ψ = ψ + w2

end

Figure 1.3: A probabilistic loop modeling the behaviour of a turning vehicle [SCG+20] using non-polynomial
(cos, sin) updates in the loop body.

free programs. This approach is applicable to probabilistic programs involving discrete random
variables, where the distribution depends on parameters updated within a Bayesian framework.

While both λPSI [GSV20] and Prodigy [KBC+23] offer strong guarantees, they are limited
in their scope. Prodigy only works with discrete random variables and loop-free programs (or
those that can be transformed into such), while λPSI struggles to handle even modestly complex
expressions, becoming practically infeasible after just a few iterations. Neither tool offers broad
practical applicability.

The most recent paper, [RBI+24], proposes moment-based density approximations using a Gaus-
sian mixture, but is limited to bounded loops and only supports polynomial updates. None of the
methods mentioned above provides a probability distribution estimation for state variables within
infinite loops with non-polynomial updates.

1.3 Research goals
This research tackles the challenge of reconstructing probability distributions in unbounded proba-
bilistic loops with general functional self-updates. Existing methods either compute exact moments
for a restricted class of functions (such as polynomials) or approximate moments using polynomial
expansions with limited applicability. Additionally, current approaches focus on computing exact
or estimated probability distributions only in loop-free programs or bounded loops. This work
extends moment-based probabilistic program analysis to efficiently handle non-polynomial updates
in infinite loops, addressing key limitations in the field. This research focuses on probabilistic
loops with non-polynomial updates and continuous input distributions, addressing challenges in
both exact and approximate moment computation as well as density estimation. Our analysis is
static and does not rely solely on sampling-based inference techniques.

The primary objectives are:

1. Develop an exact methodology for computing moments in loops with trigonometric and
exponential updates.

6

1.4 Impactful contributions

2. Propose an alternative to existing techniques (e.g., Taylor series expansion) for approximating
wide class of non-polynomial functions, enabling their analysis in unbounded loops.

3. Introduce a moment-based approach to estimate probability distributions in probabilistic
loops for any iteration.

4. Characterize theoretical properties of the proposed methods.

5. Compare and validate the proposed methods against existing moment evaluation techniques.

6. Apply the developed methodologies to benchmark models in motion planning, cyber-physical
systems, and financial or economic modeling.

While some problems outside our primary scope can be transformed into a form compatible with
our approach, this study does not aim to address arbitrary stochastic processes beyond loop-based
structures, nor does it consider purely discrete or mixed input perturbations.

1.4 Impactful contributions
This work introduces two approaches for moment computation in probabilistic loops:

1) The approximate method based on general polynomial chaos expansion (gPCE) [XK02],
which enables the high-precision approximation of non-polynomial updates, thereby extending the
applicability of Prob-solvable loops. This approach decomposes a random function into a linear
combination of orthogonal polynomial basis functions. By expressing the non-linear functionals
of the updates as sums of orthogonal polynomials, we can perform an automatic closed-form
computation of moments at each loop iteration (n) using the methodology proposed in [BKS19;
BKS21].

2) The exact moment computation method for loops with trigonometric and exponential updates,
utilizing advancements in algebraic and probabilistic techniques. [JWW21] developed a method that
obtains the exact time evolution of the moments of random states for a class of dynamical systems
that depend on trigonometric updates. We amended their approach to make it compatible with the
Polar tool [MSB+22]. Specifically, we incorporated the approach of [JWW21] into Prob-solvable
loops when updates involve trigonometric functions. This allows us to automatically compute the
exact moments of any order and at all iterations. Moreover, we extended [JWW21] to include
exponential updates.

We also proposed K-series estimation, a density estimation method that recovers the probability
density function (pdf) of bounded support from a finite set of moments of a random vector X =

(X1, . . . , Xk)
T , mi1,i2,...,ik = E

'
Xi1

1 Xi2
2 · . . . ·Xik

k

.
, 0 ≤ ij ≤ dj , dj ∈ N, j = 1, . . . , k,

using a basis of orthogonal polynomials that target the unknown density by choosing the reference
pdf. Our approach is general in that it allows for any continuous reference distribution, whose
effect is incorporated in the construction of the orthogonal polynomials via the Gram-Schmidt
orthogonalization procedure and can be tailored to improve the accuracy of the estimation.

Moreover, the contributions of this thesis in probabilistic program analysis are to

7

1 Introduction

0 25 50 75 100 125 150 175

0

50

-50

-100

 100

 150

-150

X
Y

Figure 1.4: On the left is a probabilistic loop modeling the behavior of a turning vehicle [SCG+20] using
non-polynomial (cos, sin) updates in the loop body. On the top right is the exact expected position
(xn, yn) and other exact expected values computed automatically in closed-form in the number of
loop iterations n. The plot in the center contains 20 sampled trajectories (xn, yn) up to iteration
n = 201 (dashdot lines with different colors) and the approximated expected trajectory computed
by averaging the sampled ones (dashed blue line). Moreover, we automatically computed the
exact expected trajectory and standard deviation with our method. The solid purple line marks
the exact expected trajectory. The two solid red lines mark the boundary of the region contained
within ± two standard deviations of the expected trajectory.

x = Uniform(−0.1, 0.1)
y = Uniform(−0.1, 0.1)𝜃 = Normal(0, 0.1)

while true: Ω = Beta(1, 3)Ω = Uniform(−0.1, 0.1)𝜃 = 𝜃 + 0.1(2 + 𝛺 − 𝛺)
x = x + 0.05 (4 + 𝛺 + 𝛺) cos(𝜃)
y = y + 0.05 (4 + 𝛺 + 𝛺) sin(𝜃)

end

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

R1 R2 R3 R4 R5 R6 R7 R8 R9

Pe
rc

en
ta

ge
 o

f p
oi

nt
s

pe
r r

ec
ta

ng
le

 re
gio

n

Estimated True
R1: { (-1.0,-0.4);(-0.7,-0.4);(-1.0,-0.1);(-0.7,-0.1) }
R2: { (-1.0,-0.1);(-0.7,-0.1);(-1.0,0.2);(-0.7,0.2) }
R3: { (-1.0,0.2);(-0.7,0.2);(-1.0,0.6);(-0.7,0.6) }
R4: { (-0.7,-0.4);(-0.4,-0.4);(-0.7,-0.1);(-0.4,-0.1) }
R5: { (-0.7,-0.1);(-0.4,-0.1);(-0.7,0.2);(-0.4,0.2) }
R6: { (-0.7,0.2);(-0.4,0.2);(-0.7,0.6);(-0.4,0.6) }
R7: { (-0.4,-0.4);(-0.1,-0.4);(-0.4,-0.1);(-0.1,-0.1) }
R8: { (-0.4,-0.1);(-0.1,-0.1);(-0.4,0.2);(-0.1,0.2) }
R9: { (-0.4,0.2);(-0.1,0.2);(-0.4,0.6);(-0.1,0.6) }

Figure 1.5: Probabilistic loop with non-polynomial assignment for the Differential-Drive Mobile
Robot [JWW21] (top left), the approximations of the marginal distributions with K-series (top
right), the approximation of the joint distribution with K-series (bottom left) and comparison
with true histogram (bottom right).

(a) Demonstrate the use of Polynomial Chaos Expansion in moment-based inference in infinite
probabilistic loops.

(b) Provide formal guarantees on convergence properties of the gPCE estimator to the underlying
function in L1 sence.

8

1.5 Thesis structure.

(c) Adapt the mathematical framework for estimating the distribution of a random variable,
proposed by [FMS13], to the setting of probabilistic loops where multiple random variables
are generated at each iteration.

(d) Based on this framework, we introduce K-series: the first method to automatically derive
the distributions of multiple state variables in probabilistic programs, such as prob-solvable
loops [BKS19; MSB+22], symbolically and for any number of iterations.

(e) Derive the theoretical foundation in Proposition 2 and Theorem 2, where we prove that other
methods, such as the Gram-Charlier (GC) expansion [Cra57; KS77; Hal00] and Method of
Moments [MMR17], are special cases of our general approach.

(f) Obtain the convergence rate of our density estimator to the true pdf in Theorem 3.

(g) Show that K-series is an accurate estimator of the unknown true pdf by proving the moment
matching principle of K-series in Theorem 4; that is, we show that the first n moments of the
true pdf and the K-series estimator are the same.

(h) Derive the approximation to the true support of the target pdf.

1.5 Thesis structure.
This thesis is based on three peer-reviewed publications and one that is submitted. The corresponding
publications are listed at the beginning of each chapter. Each chapter is designed to be self-contained,
introducing its notation, preliminaries, and related work. Nevertheless, the logical flow in connecting
the chapters is preserved.

Chapter 2. Moment-based Invariants for Probabilistic Loops. Many stochastic dynami-
cal systems with continuous states can be represented as probabilistic programs featuring nonlinear,
non-polynomial updates in non-nested loops. In this chapter we introduce two complementary
methods—one exact and one approximate—to compute moment-based invariants for such pro-
grams without relying on sampling. The exact method, embedded in the Polar tool, handles
probabilistic programs with trigonometric and exponential updates. The approximate method em-
ploys polynomial chaos expansion to transform non-polynomial updates into sums of orthogonal
polynomials, enabling moment computation using Polar. This allows us to compute moments
of any order for state variables in a wide range of nonlinear systems. We evaluate our approach
on diverse examples, including economic models and physical motion systems, demonstrating its
effectiveness compared to existing techniques.

We replace Theorem 4.1 from [KMS+24] (which corresponds to Theorem 1 in [KMS+22b]) with
Theorem 1, which is more general and shows the universality of our method.

Chapter 3. The K-series Approach to Moment-based Density Elicitation in Proba-
bilistic Loops. We introduce the K-series estimation method for recovering unknown univariate
and multivariate distributions using a finite set of moment constraints. This method is partic-
ularly suited for probabilistic analysis of systems modeled as probabilistic loops, encompassing
applications in robotics, macroeconomics, biology, software, and cyber-physical systems. K-series

9

1 Introduction

provides a static approximation of joint and marginal distributions for continuous random variables
evolving within a probabilistic non-nested loop with nonlinear updates. Given a finite number of
known moments, it derives symbolic expressions for the distributions as functions of the loop iter-
ation. The approach is both computationally efficient and highly accurate in estimating probability
densities. We validate its effectiveness through multiple benchmark examples from the literature.

Chapter 4. Exact Upper and Lower Bounds for the Output Distribution of Neural
Networks with Random Inputs. In this chapter we establish exact upper and lower bounds
for the cumulative distribution function (cdf) of a neural network’s output across its entire support
when subjected to stochastic (noisy) inputs. These bounds progressively converge to the true cdf as
the resolution increases. Our approach applies to any feedforward neural network with continuous,
monotonic, and piecewise twice continuously differentiable activation functions, such as ReLU,
tanh, and softmax, as well as convolutional neural networks—extending beyond the capabilities of
existing methods. A key innovation of our work is the use of ReLU neural networks to bound general
neural networks, enabling the derivation of tight cdf bounds. Experimental results demonstrate that
our method provides guaranteed bounds on the predictive output distribution, offering exact error
guarantees that competing approaches lack.

Chapter 5. Summary and Future Perspectives. In this chapter, we summarize the thesis
and explore potential directions for future research based on our findings.

1.6 Included publications.
Peer-reviewed publications.

[KMS+22b] Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovič, Ezio Bartocci, and Efstathia
Bura. Moment-based invariants for probabilistic loops with non-polynomial assignments. In
E. Ábrahám and M. Paolieri, editors, Quantitative Evaluation of Systems, pages 3–25, Cham.
Springer International Publishing, 2022. DOI: 10.1007/978-3-031-16336-4_1

[KMS+24] Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovič, Ezio Bartocci, and Efstathia
Bura. 2024. Exact and Approximate Moment Derivation for Probabilistic Loops With Non-
Polynomial Assignments. *ACM Trans. Model. Comput. Simul.* 34, 3, Article 18 (July
2024), 25 pages. DOI: 10.1145/3641545

[KBB25] Andrey Kofnov, Ezio Bartocci, and Efstathia Bura. 2025. Moment-based Density Elicitation
with Applications in Probabilistic Loops. Accepted for publication in *ACM Trans. Probab.
Mach. Learn.*

Preprints under review.
[KKB+25] Andrey Kofnov, Daniel Kapla, Ezio Bartocci, and Efstathia Bura. Exact Upper and Lower

Bounds for the Output Distribution of Neural Networks with Random Inputs.
DOI: 10.48550/arXiv.2502.11672

In all four papers, Andrey Kofnov was not only the first author but also the lead contributor both
in terms of ideas and motivation as well as theory and method development.

10

https://doi.org/10.1007/978-3-031-16336-4_1
https://doi.org/10.1145/3641545
https://doi.org/10.48550/arXiv.2502.11672

1.6 Included publications.

Distinctions and Recognitions. The publication [KMS+22b] was honored with the Best
Paper Award at the 2022 International Conference on Quantitative Evaluation of Systems.

11

2 Moment-based Invariants for
Probabilistic Loops

This chapter is based on the following publications: [KMS+22b; KMS+24]

• Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovič, Ezio Bartocci, and Efs-
tathia Bura. Moment-based invariants for probabilistic loops with non-polynomial
assignments. In E. Ábrahám and M. Paolieri, editors, Quantitative Evaluation of
Systems, pages 3–25, Cham. Springer International Publishing, 2022.

• Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovič, Ezio Bartocci, and Efs-
tathia Bura. 2024. Exact and Approximate Moment Derivation for Probabilistic
Loops With Non-Polynomial Assignments. *ACM Trans. Model. Comput. Simul.*
34, 3, Article 18 (July 2024), 25 pages.

2.1 Preliminaries
We assume the reader is familiar with basic probability theory. For more details, we refer to [Dur19].

2.1.1 Prob-Solvable Loops
[BKS19] defined the class of Prob-solvable loops for which moments of all orders of program
variables can be computed symbolically: given a Prob-solvable loop and a program variable x, their
method computes a closed-form solution for E(xkn) for arbitrary k ∈ N, where n denotes the nth
loop iteration. Prob-solvable loops are restricted to polynomial variable updates.

Definition 1 (Prob-solvable loops [BKS19]). Letm ∈ N and x1, . . . xm denote real-valued program
variables. A Prob-solvable loop with program variables x1, . . . xm is a loop of the form

I; while true: U end, such that

• I is a sequence of initial assignments over a subset of {x1, . . . , xm}. The initial values of xi
can be drawn from a known distribution. They can also be real constants.

• U is the loop body and a sequence of m random updates, each of the form,

xi = Dist or xi = aixi + Pi(x1, . . . xi−1),

where ai ∈ R, Pi ∈ R[x1, . . . , xi−1] is a polynomial over program variables x1, . . . , xi−1

and Dist is a random variable whose distribution is independent of program variables with
computable moments. ai and the coefficients in Pi can be random variables with the same
constraints as for Dist.

13

2 Moment-based Invariants for Probabilistic Loops

The syntax of Prob-solvable loops as defined in Definition 1 is restrictive. For instance, an
assignment for a variable xi must not reference variables xj with j > i. Hence, the structural
dependencies among program variables are acyclic. Some of these syntactical restrictions were
lifted in a later work [MSB+22] to support distributions depending on program variables, if-
statements, and linear cyclic dependencies. The latter means that polynomial assignments can be
of the form xi = Li(x1, . . . , xn) + Pi(x1, . . . xi−1), where Pi is a polynomial, and Li is a linear
function, as long as all program variables in Li(x1, . . . , xn) with non-zero coefficient depend only
linearly on xi. In this work, we utilize this relaxation and allow for linear cyclic dependencies in
Prob-solvable loops.

Many real-life systems exhibit non-polynomial dynamics and require more general updates,
such as, for example, trigonometric or exponential functions. We develop two methods – one
approximate, one exact – that allow the modeling of non-polynomial assignments in probabilistic
loops by polynomial assignments. Doing so allows us to use the Prob-solvable loop based methods
in [BKS19; MSB+22] to compute the moments of the stochastic components of a much broader class
of systems. Our method for exact moment derivation for probabilistic loops with non-polynomial
functions builds upon Prob-solvable loops. In contrast, our PCE-based approach, described in the
following sections, is not limited to Prob-solvable and can be used in more general probabilistic
loops. The only requirement is that the loops satisfy the conditions in Section 2.2.1.

2.1.2 Polynomial Chaos Expansion
Polynomial chaos expansion (PCE) [EMS+12; XK02] recovers a random variable in terms of a
linear combination of functionals whose entries are known random variables, sometimes called
germs, or, basic variables. Let (Ω,Σ,P) be a probability space, where Ω is the set of elementary
events, Σ is a σ-algebra of subsets of Ω, and P is a probability measure on Σ. Suppose X is a
real-valued random variable defined on (Ω,Σ,P), such that

E(X2) =

ˆ
Ω
X2(ω)dP(ω) < ∞. (2.1)

The space of all random variables X satisfying (2.1) is denoted by L2(Ω,Σ,P). The elements of
L2(Ω,Σ,P) are real-valued random variables defined on (Ω,Σ,P) with finite second moments. If
we define the inner product as

E(XY) = (X,Y) =

ˆ
Ω
X(ω)Y (ω)dP(ω) (2.2)

and norm

||X|| =
8
E(X2) =

7ˆ
Ω
X2(ω)dP(ω),

then L2(Ω,Σ,P) is a Hilbert space; i.e., an infinite dimensional linear space of functions endowed
with an inner product and a distance metric. Elements of a Hilbert space can be uniquely identified
by their coordinates with respect to an orthonormal basis of functions, in analogy with Cartesian
coordinates in the plane. Convergence with respect to the norm || · || is called mean-square
convergence. A particularly important feature of a Hilbert space is that when the limit of a sequence
of functions exists, it belongs to the space.

14

2.1 Preliminaries

The elements in L2(Ω,Σ,P) can be classified into two groups: basic and generic random
variables, which we want to decompose using the elements of the first set of basic variables.
[EMS+12] showed that the basic random variables that can be used in the decomposition of other
functions have finite moments of all orders with continuous probability density functions (pdfs).

The σ-algebra generated by the basic random variable Z is denoted by σ(Z). Suppose we
restrict our attention to decompositions of a random variable X = g(Z), where g is a function
with g(Z) ∈ L2(Ω, σ(Z),P), and the basic random variable Z determines the class of orthogonal
polynomials {φi(Z), i ∈ N},

⟨φi(Z), φj(Z)⟩ =
ˆ
Ω
φi(Z(ω))φj(Z(ω))dP(ω) =

ˆ
φi(x)φj(x)fZ(x)dx =

1 i = j

0 i ̸= j
(2.3)

where fZ denotes the pdf of Z. The set {φi(Z), i ∈ N} is a polynomial chaos basis.

Definition 2. A random variable Z is said to be exponentially integrable1, if there exists a positive
a > 0 such that

´
R
exp{a|z|}fZ(z)dz < ∞. A random vectorZ is said to be exponentially integrable

if there exists a positive a > 0 such that
´
Rk

exp{a∥Z∥Rk}dFZ(z)dz < ∞ (see [EMS+12; Rah18]).

A pdf supported on an unbounded set is uniquely identifiable by its moments if and only if it is
exponentially integrable [EMS+12]. 2 This encompasses a very broad class, including most widely
used densities. However, notable counterexamples are the log-normal and Cauchy distributions.

When a distribution can be uniquely identified by its moments, it is also completely determined
by its moments, which enables a succinct and accurate representation of the distribution. More-
over, distribution identification by moments facilitates meaningful comparisons between diverse
distributions and streamlines statistical inference procedures. Further, we will consider reference
distributions (distributions of basic random variables) that either have compact support or are
exponentially integrable.

IfZ is normal with mean zero, the Hilbert spaceL2(Ω, σ(Z),P) is called Gaussian and the related
set of polynomials is represented by the family of Hermite polynomials (see, for example, [XK02])
defined on the whole real line. Hermite polynomials form a basis of L2(Ω, σ(Z),P). Therefore,
every random variable X with finite second moment can be approximated by the truncated PCE

X(d) =
d=

i=0

ciφi(Z), (2.4)

for suitable coefficients ci that depend on the random variable X . The truncation parameter d is the
highest polynomial degree in the expansion. Since the polynomials are orthogonal,

ci =
1

||φi||2 ⟨X,φi⟩ = 1

||φi||2 ⟨g, φi⟩ = 1

||φi||2
ˆ
R
g(x)φi(x)fZ(x)dx. (2.5)

The truncated PCE of X in (2.4) converges in mean square to X [EMS+12, Section 3.1]. The first
two moments of (2.4) are determined by E(X(d)) = c0, and Var(X(d)) =

>d
i=1 c

2
i ||φi||2.

1We use the term "exponentially integrable" interchangeably in the context of a random variable and its distribution
(i.e., its pdf).

2See also [Bil12, Th. 30.1, p. 388] and [CB01, Th. 2.3.11].

15

2 Moment-based Invariants for Probabilistic Loops

Representing a random variable by a series of Hermite polynomials in a countable sequence of
independent Gaussian random variables is known as Wiener–Hermite polynomial chaos expansion.
In applications of Wiener–Hermite PCEs, the underlying Gaussian Hilbert space is often taken to
be the space spanned by a sequence {Zi, i ∈ N} of independent standard Gaussian basic random
variables; i.e., Zi ∼ N (0, 1). For computational purposes, the countable sequence {Zi, i ∈ N}
is restricted to a finite number k ∈ N of random variables. The Wiener–Hermite PCE converges
for random variables with finite second moment. Specifically, for any random variable X ∈
L2(Ω, σ({Zi, i ∈ N}),P), the approximation (2.4) satisfies

X
(d)
k =

d=
i=0

aiφi(Z1, . . . , Zk) → X as d, k → ∞ (2.6)

in mean-square convergence (see [EMS+12]). The distribution of X can be quite general; e.g.,
discrete, singularly continuous, absolutely continuous as well as of mixed type.

2.2 Polynomial Chaos Expansion Algorithm
2.2.1 Random Function Representation
In this section, we state the conditions under which the estimated polynomial is an unbiased and
consistent estimator and has exponential convergence rate. Suppose k continuous random variables
Z1, . . . , Zk are used to introduce stochasticity in a PP with corresponding cumulative distribution
functions (cdfs) FZi , i = 1, . . . , k. Also, suppose all k distributions have probability density
functions, and let Z = (Z1, . . . , Zk) with cdf FZ. We assume that the elements of Z satisfy the
following conditions:

(A) Zi, i = 1, . . . , k, are independent.

(B) We consider functions g such that g(Z) ∈ L2(Q, FZ), where Q is the support of the joint
distribution of Z = (Z1, . . . , Zk).3

(C) All random variables Zi have distributions that are uniquely characterized by their moments.4

Under condition (A), the joint cdf of the components of Z is FZ =
6k

i=1 FZi . To ensure
the construction of unbiased estimators with optimal exponential convergence rate (see [XK02],
[EMS+12]) in the context of probabilistic loops, we further introduce the following assumptions:

(D) g is a function of a fixed number of basic variables (arguments) over all loop iterations.

(E) If Z(j) = (Z1(j), . . . , Zk(j)) is the stochastic argument of g at iteration j, then FZi(j)(x) =
FZi(l)(x) for all pairs of iterations (j, l) and x in the support of FZi .

If Conditions (D) and (E) are not met, then the polynomial coefficients in the PCE need be com-
puted for each loop iteration individually to ensure optimal convergence rate. It is straightforward
to show the following proposition.

3Ω is dropped from the notation as the sample space is not important in our formulation.
4Conditions that ascertain this are given in Theorem 3.4 of [EMS+12].

16

2.2 Polynomial Chaos Expansion Algorithm

Start

Input:

��������
Z1, d̄1,

Z2, d̄2,

...

Zk, d̄k,

Set of random vari-
ables and the highest
degrees of the corre-
sponding univariate

orthogonal polynomials

Input��������
f1(z1), [a1, b1] ,

f2(z2), [a2, b2] ,

...

fk(zk), [ak, bk] ,

Set of the density
functions and the

corresponding supports

Input
g(z1, ..., zk)

Target function

Orthonormal polynomials:��
{p̄deg1 }d̄1deg=0

...

{p̄degk }d̄kdeg=0

DL×k =

Z1 Z2 Z3 ... Zk,,
33

0 0 0 0 0
1 0 0 0 0
...

...
...

d̄1 d̄2 d̄3 · · · d̄k

1: Gram-Schmidt
Process

2: Matrix of
polynomials’
combinations

:

Fourier coefficients:
cj =

b1́

a1

...
bḱ

ak

g(z1, ...zk)
k6

i=1

�
fZi(zi)p̄

dji
i (zi)

�
dzk...dz1

3: Calculation of
coefficients

Output:>
j
cj

6
i
p̄
dji
i

4: Summation of
weighted polynomials

Figure 2.1: Illustration of PCE algorithm

Proposition 1. If Z = (Z1, . . . , Zk1), Y = (Y1, . . . , Yk2) satisfy conditions (A), (C) and (E) and
are mutually independent, and functions g and h satisfy conditions (B) and (D), then their sum,
g(Z) + h(Y), and product, g(Z) · h(Y), also satisfy conditions (B) and (D).

2.2.2 PCE Algorithm

Let Z1, . . . , Zk be independent continuous random variables, with respective cdfs Fi, satisfying
conditions (A), (B) and (C). Then, Z = (Z1, . . . , Zk)

T has cdf FZ =
6k

i=1 Fi. Let Q denote the
support of FZ. The function g : Rk → R, with g ∈ L2(Q,F), can be approximated with the

17

2 Moment-based Invariants for Probabilistic Loops

truncated orthogonal polynomial expansion, as described in Fig. 2.1,

g(Z) ≈ ĝ(Z) =
=

di∈{0,...,d̄i},
i=1,...,k

c(d1, . . . , dk)z
d1
1 · · · zdkk =

L=
j=1

cj

k5
i=1

p̄
dji
i (zi), (2.7)

where

• p̄
dji
i (zi) is a polynomial of degree dji, and belongs to the set of orthogonal polynomials with

respect to FZi that are calculated with the Gram-Schmidt orthogonalization procedure5;

• d̄i = max
j

(dji) is the highest degree of the univariate orthogonal polynomial, for i = 1, . . . , k;

• L =
k6

i=1
(1 + d̄i) is the total number of multivariate orthogonal polynomials and equals the

truncation constant;

• cj are the Fourier coefficients.

The Fourier coefficients are calculated using

cj =

ˆ

Q
g(z1, ..., zk)p

dji
i (zi)dF =

˙

Q
g(z1, ..., zk)

(
k5

i=1

p̄
dji
i (zi)

/
dFZk

...dFZ1 , (2.8)

by Fubini’s theorem.

Example 1. Referring to the Turning vehicle model in Fig. 1.4, the non-polynomial functions to
approximate are g1 = cos and g2 = sin in the updates of program variables y, x, respectively.
In both cases, we only need to consider a single basic random variable, Z ∼ N (0, 0.01) (ψ in
Fig. 1.4).

Using polynomials of degree up to 5, (2.7) has the following form for the two functions,

ĝ1(z) = cos(ψ) = a0 + a1ψ + ...+ a5ψ
5 (2.9)

and
ĝ2(z) = sin(ψ) = b0 + b1ψ + ...+ b5ψ

5. (2.10)

We compute the coefficients ai, bi in equations (2.9)-(2.10) using (2.8) to obtain the values shown
in Fig. 1.4.

Example 2. Consider the function g(x, y) =
8

x2 + y2, where x ∼ Uniform(−1, 1) and y has
pdf fy = 0.75(1−y2) supported on [−1, 1]. Up to degree 2, the basis elements in the PC expansion
are element-wise products of the univariate orthogonal polynomials

p0x(x) = 1, p0y(y) = 1, p1x(x) =
√
3x, p1y(y) =

√
5y,

p2x(x) = 1.5
√
5x2 − 0.5

√
5, p2y(y) = 1.25

√
14y2 − 0.25

√
14.

5Generalized PCE typically entails using orthogonal basis polynomials specific to the distribution of the basic variables,
according to the Askey scheme of [XK02; Xiu10]. We opted for the most general procedure that can be used for any
basic variable distribution.

18

2.3 Prob-Solvable Loops for General Non-Polynomial Functions

The corresponding PCE polynomial basis elements are

p00xy(x, y) = 1, p02xy(x, y) = 1.25
√
14y2 − 0.25

√
14, p20xy(x, y) = 1.5

√
5x2 − 0.5

√
5,

p22xy(x, y) = 1.875
√
70x2y2 − 0.375

√
70x2 − 0.625

√
70y2 + 0.125

√
70,

with corresponding non-zero Fourier coefficients c00 = 0.677408, c02 = 0.154109, c20 = 0.216390,
and c22 = −0.040153. The resulting estimator is

ĝ(x, y) =

(2,2)=
(i,j)=(0,0)

ci,jp
ij
xy(x, y) = −0.629900x2y2 + 0.851774x2 + 0.930747y2 + 0.249327.

Complexity. Assuming the expansion is carried out up to the same polynomial degree d for each
basic variable, d̄i = d, ∀i = 1, ..., k. This implies d = k

√
L − 1. The complexity of the scheme is

O(sd2k + skdk), where O(s) is the complexity of computing univariate integrals.
The complexity of our approximation scheme consists of of two parts: (1) the orthogonalization

process and (2) the calculation of coefficients. Regarding (1), we orthogonalize and normalize k sets
of d basic linearly independent polynomials via the Gram-Schmidt process. For degree d=1, we
need to calculate one integral, the inner product with the previous polynomial. Additionally, we need
to compute one more integral, the norm of itself (for normalization). For each subsequent degree
d′, we must calculate d′ additional new integrals. The computation of each integral has complexity
O(s). Regarding (2), the computation of the coefficients requires calculating L=(d+1)k integrals
with k-variate functions as integrands.

We define the approximation error to be

se(ĝ) =

;<<:ˆ
Q

(g(z1, ..., zk)− ĝ(z1, ..., zk))
2 dFZ1 . . . dFZk

(2.11)

since E(ĝ(Z1, ..., Zk)) = g(Z1, · · · , Zk) by construction.
The implementation of this algorithm may become challenging when the random functions have

complicated forms and the number of parametric uncertainties is large. In this case, the calculation
of the PCE coefficients involves high dimensional integration, which may prove difficult and time
prohibitive for real-time applications [SD20].

2.3 Prob-Solvable Loops for General Non-Polynomial
Functions

PCE allows incorporating non-polynomial updates into Prob-solvable loop programs and use the
algorithm in [BKS19] and exact tools, such as Polar [MSB+22], for moment (invariant) computa-
tion. We identify two classes of programs based on how the distributions of the generated random
variables vary.

19

2 Moment-based Invariants for Probabilistic Loops

2.3.1 Iteration-Stable Distributions of Random Arguments
Let P be an arbitrary Prob-solvable loop and suppose that a (non-basic) state variable x ∈ P has a
non-polynomial L2-type update g(Z), where Z = (Z1, . . . , Zk)

T is a vector of (basic) continuous,
independent, and identically distributed random variables across iterations. That is, if fZj(n) is
the pdf of the random variable Zj in iteration n, then fZj(n) ≡ fZj(n′), for all iterations n, n′ and
j = 1, . . . , k. The basic random variables Z1, . . . , Zk and the update function g satisfy conditions
(A)–(E) in Section 2.2.1. For the class of Prob-solvable loops where all variables with non-
polynomial updates satisfy these conditions, the computation of the Fourier coefficients in the PCE
approximation (2.7) can be carried out as explained in Section 2.2.2. In this case, the convergence
rate is optimal.

2.3.2 Iteration Non-Stable Distribution of Random Arguments
Let P be an arbitrary Prob-solvable loop and suppose that a state variable x ∈ P has a non-
polynomial L2-type update g(Z), where Z = (Z1, . . . , Zk)

T is a vector of continuous independent
but not necessarily identically distributed random variables across iterations. For this class of
Prob-solvable loops, conditions (A)–(C) in Section 2.2.1 hold, but (D) and/or (E) may not be
satisfied. In this case, we can ensure optimal exponential convergence by fixing the number of loop
iterations. For unbounded loops, we describe an approach converging in mean-square and establish
its convergence rate next.

Conditional estimator given number of iterations. LetN be an a priori fixed finite integer,
representing the maximum iteration number. The set {1, . . . , N} is a finite sequence of iterations
for the Prob-solvable loop P .

Iterations are executed sequentially for n = 1, . . . , N , which allows the estimation of the final
functional that determines the target state variable at each iteration n ∈ {1, . . . , N} and its set
of supports. Knowing these features, we can carry out N successive expansions. Let P (n) be
a PCE of g(Z) for iteration n. We introduce an additional program variable c that counts the loop
iterations. The variable c is initialized to 0 and incremented by 1 at the beginning of every loop
iteration. The final estimator of g(Z) can be represented as

ĝ(Z) =

N=
n=1

P (n)

 N5
j=1,j ̸=n

(c− j)

n− j

 . (2.12)

Replacing non-polynomial functions with (2.12) results in a program with only polynomial-type
updates and constant polynomial structure; that is, polynomials with coefficients that remain constant
across iterations. Moreover, the estimator is unbiased with optimal exponential convergence on the
set of iterations {1, . . . , N} [XK02].

Unconditional estimator. Here the iteration number is unbounded. Without loss of generality,
we consider a single basic random variable Z; that is, k=1. The function g(Z) is scalar-valued
and can be represented as a polynomial of nested L2 functions, which depend on polynomials
of the argument variable. Each nested functional argument is expressed as a sum of orthogonal
polynomials yielding the final estimator, which is itself a polynomial.

20

2.3 Prob-Solvable Loops for General Non-Polynomial Functions

Since PCE converges to the function it approximates in mean-square (see [EMS+12]) on the whole
interval (argument’s support), PCE converges on any sub-interval of the support of the argument in
the same sense.

Let us consider a function g with a sufficiently large domain and a random variable Z with known
distribution and support. For example, g(Z) = eZ , with Z ∼ N(µ, σ2). The domain of g and the
support of Z are the real line. We can expand g into a PCE with respect to the distribution of Z as

g(Z) =

∞=
i=0

cipi(Z). (2.13)

The distribution of Z is reflected in the polynomials in (2.13). Specifically, pi, for i = 0, 1, . . .,
are Hermite polynomials of special type in that they are orthogonal (orthonormal) with respect to
N(µ, σ2). They also form an orthogonal basis of the space of L2 functions. Consequently, any
function in L2 can be estimated arbitrarily closely by these polynomials. In general, any continuous
distribution with finite moments of all orders and sufficiently large support can also be used as a
model for basic variables in order to construct a basis for L2 (see [EMS+12]).

Table 2.1 lists examples of functions of up to three random arguments approximated by PCE’s of
different degrees and, correspondingly, number of coefficients. We useTruncNormal

)
µ, σ2, [a, b]

0
and TruncGamma (θ, k, [a, b]) to denote the truncated normal distribution with expectation µ and
standard deviation σ on the (finite or infinite) interval [a, b], and the truncated gamma distribution
on the (finite or infinite) interval [a, b], a, b > 0, with shape parameter k and scale parameter θ,
respectively. The approximation error in (2.11) is reported in the last column. The results confirm
(2.6) in practice: the error decreases as the degree or, equivalently, the number of components in
the approximation of the polynomial increases.

Now suppose that the distribution of the underlying variable Z is unknown with pdf fZ(z)
that is continuous on its support [a, b]. Then, there exists another basis of polynomials, {qi}∞i=0,
which are orthogonal on the support [a, b] with respect to the pdf fZ . Then, on the interval [a, b],
g(Z) =

>∞
i=0 kiqi(Z), and Ef [g(Z)] = Ef

�>M
i=0 kiqi(Z)

�
, ∀M ≥ 0.

Since [a, b] ⊂ R, the expansion
>n

i=0 cipi(Z), where pi are Hermite polynomials, converges in
mean-square to g(Z) on [a, b] with n −→ ∞. Also, Ef (g(Z)) = Ef (

>∞
i=0 cipi(Z)) for the true pdf

f on [a, b]. In general, though, it is not true that Ef (g(Z)) = Ef

'>M
i=0 cipi(Z)

.
for any arbitrary

M ≥ 0 and any pdf fZ(z) on [a, b], as the estimator is biased.
Let us consider a general case where fZ is exponentially integrable on a support Ω, and τ is

exponentially integrable positive everywhere on a support Q ⊂ R such that Ω ⊆ Q. We notice
that any continuous pdf on a bounded support is exponentially integrable. Let {pτi } be a set of
orthogonal polynomials on Q with respect to density τ .

Assumption 1. The ratio fZ(x)/τ(x) is in L1(Ω, fZ).

We define ?fZ(x) on Q to be

?fZ(x) =
fZ(x), x ∈ Ω,

0, x ∈ Q \ Ω.
Since {pτi } is an orthonormal system on Q with respect to pdf τ , any function in L2(Q, τ) can be
expanded into a Fourier series (see, e.g., [KF76] or [Rud76]) along the {pτi } basis elements. Under

21

2 Moment-based Invariants for Probabilistic Loops

Function Random Variables Degree / #coefficients Error

f(x1, x2) = ξe−x1 + (ξ − ξ2

2)e
x2−x1

ξ = 0.3

x1 ∼ Normal(0, 1),
x2 ∼ Normal(2, 0.01)

1 / 4
2 / 9
3 / 16
4 / 25
5 / 36

3.076846
1.696078
0.825399
0.363869
0.270419

f(x1, x2) = 0.3ex1−x2 + 0.6e−x2
x1 ∼ TruncNormal(4, 1, [3, 5]),
x2 ∼ TruncNormal(2, 0.01, [0, 4])

1 / 4
2 / 9
3 / 16
4 / 25
5 / 36

0.343870
0.057076
0.007112
0.000709
0.000059

f(x1, x2) = ex1x2
x1 ∼ TruncNormal(4, 1, [3, 5])
x2 ∼ TruncGamma(3, 1, [0.5, 1])

1 / 4
2 / 9
3 / 16
4 / 25
5 / 36

5.745048
1.035060
0.142816
0.016118
0.001543

f(x1, x2, x3) = 0.3ex1−x2+
0.6ex2−x3 + 0.1ex3−x1

x1 ∼ TruncNormal(4, 1, [3, 5])
x2 ∼ TruncGamma(3, 1, [0.5, 1])
x3 ∼ U [4, 8]

1 / 8
2 / 27
3 / 64

1.637981
0.303096
0.066869

f(x1) = ψcos(x1) + (1− ψ)sin(x1)
ψ = 0.3

x1 ∼ Normal(0, 1)

1 / 2
2 / 3
3 / 4
4 / 5
5 / 6

0.222627
0.181681
0.054450
0.039815
0.009115

Table 2.1: Approximations of 5 non-linear functions using PCE.

Assumption 1, r(x) = ?f(x)/φ(x) satisfies

ˆ

Θ

r2(x)τ(x)dx =

ˆ

Q\Ω

?fZ(x)
τ(x)

?fZ(x)dx+

ˆ

Ω

fZ(x)

τ(x)
dFZ(x) < ∞, (2.14)

so that r(x) ∈ L2(Q, τ). Moreover, r(x) ∈ L2(Q′, τ) for any Q′ ⊆ Q.

Theorem 1. Suppose the density fZ of Z is supported on Ω and exponentially integrable. Assume
Assumption 1 holds and let τ denote the exponentially integrable pdf that is positive everywhere on
Q, such that Ω ⊆ Q. Additionally, suppose g : R → R with g ∈ L2(Q, τ) and g ∈ L2(Ω, fZ), and
that gfZn =

n>
i=0

cfZi pfZi (x) is the PCE of g on Ω with respect to fZ and gτn =
n>

i=0
cτi p

τ
i (x) is the PCE

of g on Q with respect to τ . Then

(a) ∥g − gτn∥L1(Ω,fZ) −−−→
n→∞ 0;

(b) ∥gτn − gfZn ∥L1(Ω,fZ) −−−→
n→∞ 0.

Proof.
∥gτn − gfZn ∥L1(Ω,fZ) ≤ ∥g − gfZn ∥L1(Ω,fZ) + ∥g − gτn∥L1(Ω,fZ)

22

2.4 Exact Moment Derivation

The first norm in the right-hand side converges to zero due to the convergence of gfZn to g in L2

which implies convergence in L1. Taking a closer look at the second term,

∥g − gτn∥L1(Ω,fZ) =

ˆ

Ω

|g(x)− gτn(x)|fZ(x) dx =

ˆ

Ω

|g(x)− gτn(x)|τ(x)
fZ(x)

τ(x)
dx

=

�
|g − gτn|,

fZ
τ

�
L2(Ω,τ)

Cauchy-Schwarz
≤ ∥g − gτn∥L2(Ω,τ) ·

BBBBfZτ
BBBB
L2(Ω,τ)
 	� �

<∞ due to Assumption 1

≤ C · ∥g − gτn∥L2(Q,τ) −−−→
n→∞ 0

2.4 Exact Moment Derivation
In Sections 2.2 and 2.3, we combined PCE with the Prob-solvable loop algorithm of [MSB+22;
BKS19] to compute PCE approximations of the moments of the distributions of the random variables
generated in a probabilistic loop. In this section, we develop a method for the derivation of the exact
moments of probabilistic loops of specified loop structure and functional assignments. [BKS19],
and later [MSB+22], introduce a technique for exact moment computation for Prob-solvable loops
without non-polynomial functions. Prob-solvable loops support common probability distributions
F with constant parameters and program variables x with specific polynomial assignments (cf.
Section 2.1). In Section 2.4.1, we first show how to compute E(h(F)k) where h is the exponential
or a trigonometric function. In Section 2.4.2, we describe how to incorporate trigonometric and
exponential updates of program variables x into the Prob-solvable loop setting.

2.4.1 Trigonometric and Exponential Functions of Random Variables
The first step in supporting trigonometric and exponential functions in Prob-solvable loops is
to understand how to compute the expected values of random variables that are trigonometric
and exponential functions of random variables with known distributions. Due to the polynomial
arithmetic supported in Prob-solvable loops, non-polynomial functions of random variables can be
mixed via multiplication in the resulting program. We adopt the results from [JWW21] providing
a formula for the expected value of mixed trigonometric polynomials of distributions, given the
distributions’ characteristic functions.

Definition 3. We call p(x) a standard polynomial of order d ∈ N if

p(x) =
d=

k=0

αkx
k,

with coefficients αk ∈ R. Further, p(x) is defined to be a mixed trigonometric polynomial if it is a
mixture of a standard polynomial with trigonometric functions of the form

p(x) =

d=
k=0

αkx
bk · cosck(x) · sinsk(x),

23

2 Moment-based Invariants for Probabilistic Loops

with bk, ck, sk ∈ N and coefficients αk ∈ R [JWW21].
Following [JWW21], we define the mixed-trigonometric-polynomial moment of order α for a

random variable X as

mXα1c
α2
X s

α3
X

= E [Xα1 cosα2(X) sinα3(X)] , (2.15)

where (α1, α2, α3) ∈ N3 such that α =
>3

k=1 αk. When the characteristic function of the random
variable X is known, Lemma 4 in [JWW21], together with the linearity of the expectation operator,
provides the computation rule for (2.15):

mXα1c
α2
X s

α3
X

=
1

iα1+α32α2+α3
× (2.16)

(α2,α3)=
(k1,k2)=(0,0)

*
α2

k1

1*
α3

k2

1
(−1)α3−k2 dα1

dtα1
ΦX(t)

CCCC
t=2(k1+k2)−α2−α3

.

Example 3. Let X ∼ N (0, 1). Its characteristic function is ΦX(t) = exp(−0.5t2) and Φ′
X(t) =

−t exp(−0.5t2). Then,

E [X sin(X) cos(X)] =
1

i222
)−Φ′

X(−2) + Φ′
X(0)− Φ′

X(0) + Φ′
X(2)

0
= exp(−2).

To support exponential functions in Prob-solvable loops, we define mixed exponential polynomials
as

p(x) =
d=

k=0

αkx
bk expek(x),

with bk, ek ∈ N and coefficients αk ∈ R. Lemma 1 obtains a computational rule for moments of
mixed exponential polynomials, provided they exist, in terms of the moment-generating function of
the random variable X .
Lemma 1. Let X be a random variable with moment-generating function MX(t) = E [exp(tX)].
Suppose α1, α2 ∈ N, and let α = α1 + α2. If the mixed-exponential-polynomial moment of order
α exists, it can be computed using the following formula

mXα1e
α2
X

= E [Xα1 expα2(X)] =
dα1

dtα1
MX(t)

CCCC
t=α2

. (2.17)

Proof.

mXα1e
α2
X

= E [Xα1 expα2(X)] = E

�
dα1

dtα1
exp(tX)

CCCC
t=α2

�

=
dα1

dtα1
E [exp(tX)]

CCCC
t=α2

=
dα1

dtα1
MX(t)

CCCC
t=α2

.

Example 4. Suppose X ∼ N (0, 1) with moment generating function MX(t) = exp(0.5t2). Since
X exp2(X) is integrable with respect to the normal pdf,

E
�
X exp2(X)

=

d

dt
exp(0.5t2)

CCCC
t=2

= t · exp(0.5t2)
CCCC
t=2

= 2 · exp(2).

24

2.4 Exact Moment Derivation

Listing 2.1: PP loop prototype
z = 0; x = 0; y = 0
while true:

z = Normal(0, 1)
x = x+ z
y = y + h(x)

end

2.4.2 Trigonometric and Exponential Functions in Variable Updates
We now examine the presence of trigonometric and exponential functions of program variables,
specifically of accumulator variables, in Prob-solvable loops.

Definition 4 (Accumulator). We call a program variable x an accumulator if the update of x in the
loop body has the form x = x+ z, such that zi and zi+1 are independent and identically distributed
for all i ≥ 1.

Consider a loop P with an accumulator variable x, updated as x = x+ z, and a trigonometric or
exponential function h(x). Further, assume that the characteristic function (if h = sin or h = cos)
or the moment-generating function (if h = exp) of z is known. Note that the distribution of the
variable x is, in general, different in every iteration. Listing 2.1 gives an example of such a loop.

The idea now is to transform P into an equivalent Prob-solvable loop P ′ such that the term h(x)
does not appear in P ′. In the following, we assume, for simplicity, that first z is updated in P ,
then x, and only then h is used. The following arguments are analogous if the updates are ordered
differently (only the indices change). Note that we can rewrite h(xt+1) as h(xt + zt+1).

Transforming exp(x). In the case of h = exp, we have

exp(xt+1) = exp(xt + zt+1) = exp(xt) exp(zt+1). (2.18)

We utilize this property and transform the program P into a program P ′ by introducing an auxiliary
variable x̂ that models the value of exp(x). The update of x̂ in the loop body succeeds the update
of x and is

x̂ = x̂ · exp(z). (2.19)

The auxiliary variable is initialized as x̂0 = exp(x0). We then replace h(x) by x̂ in P to arrive at
our transformed program P ′. Because z is identically distributed in every iteration and its moment-
generating function is known, we can use the results from Section 2.4.1 to compute any moment of
exp(z). Thus, the update in (2.19) is supported by Prob-solvable loops.

Transforming sine and cosine. In the case of h = sin or h = cos, applying standard
trigonometric identities obtains

cos(xt+1) = cos(xt + zt+1) = cos(xt) cos(zt+1)− sin(xt) sin(zt+1),

sin(xt+1) = sin(xt + zt+1) = sin(xt) cos(zt+1) + cos(xt) sin(zt+1).
(2.20)

25

2 Moment-based Invariants for Probabilistic Loops

We introduce two auxiliary variables, s and c, modeling the values of sin(x) and cos(x), simulta-
neously updated6 in the loop body as

c, s = c · cos(z)− s · sin(z), s · cos(z) + c · sin(z), (2.21)

with the initial values s0 = sin(x0) and c0 = cos(x0). We then replace h(x) with s or c in P ′.
Again, because z is identically distributed in every iteration and its characteristic function is known,
we can use the results from Section 2.4.1 to compute any moment of sin(z) and cos(z). Thus, the
update in (2.21) is supported in Prob-solvable loops.

Example 5. Listings 2.2 and 2.3 show the program from Listing 2.1 with h = exp and h = cos,
respectively, rewritten as equivalent Prob-solvable loops. The program in Listing 2.2 has linear
circular variable dependencies due to the variables c and s.

Listing 2.2: PP prototype equivalent – cos
z = 0; x = 0; c = cos(z)
s = sin(z); y = 0
while true:

z = Normal(0, 1)
x = x+ z
c, s = c · cos(z)− s · sin(z), s · cos(z) + c · sin(z)

y = y + c
end

Listing 2.3: PP prototype equivalent – exp
z = 0; x = 0; x̂i = exp(z); y = 0
while true:

z = Normal(0, 1)
x = x+ z
x̂i = x̂i · exp(z)
y = y + x̂i

end

The following properties of sin and cos functions are also supported in Prob-solvable loops:

sin(nα) =
=
r=0,

2r+1≤n

(−1)r
*

n

2r + 1

1
cosn−2r−1(α) sin2r+1(α), n ∈ N

cos(nα) =
=
r=0,
2r≤n

(−1)r
*
n

2r

1
cosn−2r(α) sin2r(α), n ∈ N

2.5 Evaluation
We evaluate our PCE-based method for moment approximation and our exact moment derivation
approach on eleven benchmarks. We apply our PCE-based method to approximate non-polynomial
functions. This transforms all benchmark programs into Prob-solvable loops, which allows using
the static analysis tool Polar [MSB+22] to compute the moments of the program variables as a
function of the loop iteration n.

We implemented the techniques for exact moment derivation for loops containing trigonometric or
exponential polynomials, presented in Section 2.4, in the tool Polar. We evaluate the technique for

6Simultaneous updates c, s = expr1, expr2 can always be expressed as sequentially: t1 = expr1; t2 = expr2; c =
t1; s = t2.

26

2.5 Evaluation

ap = 0.5, ay= 0.5, y=1, y1 = 1
p=0.01, p1= 0.01, i=0.02, r = 0.015

while true:
dp = TruncNormal (0, 0.01,-1,1)
dy = TruncExponential (100, 0, 1)
p = p1
p1= p + dp
y = y1 + dy
ly = log(1+y)
ly1 = log(1+y1)
i = r +p + ap(p-p1) + ay(ly-ly1)

end

≈𝟓
ap = 0.5, ay= 0.5, y=1, y1 = 1
p=0.01, p1= 0.01, i=0.02, r = 0.015

while true:
dp = TruncNormal (0, 0.01,-1,1)
dy = TruncExponential (100, 0, 1)
p = p1
p1= p + dp
y = y1 + dy
ly = a5 𝑦5 + a4 𝑦4 + a3𝑦3 + a2𝑦2 + a1𝑦+ a0
ly1 = a5 𝑦 5 + a4𝑦 4 + a3𝑦 3 + a2𝑦 2 + a1𝑦 + a0
i = r +p + ap(p-p1) + ay(ly-ly1)

end

𝒂𝟓 = 𝟖. 𝟓𝟒𝟏𝟒𝟔𝟖𝟓𝟖𝟒𝟐𝟓𝟎𝟑𝟓 � 𝟏𝟎�𝟓𝒂𝟒 = −𝟎. 𝟎𝟎𝟐𝟗𝟒𝟓𝟓𝟏𝟎𝟒𝟔𝟑𝟏𝟕𝟕𝟗𝟐𝒂𝟑 = 𝟎. 𝟎𝟑𝟔𝟗𝟏𝟗𝟕𝟗𝟑𝟖𝟓𝟏𝟑𝟔𝟑𝟐𝒂𝟐 = −𝟎. 𝟐𝟐𝟒𝟏𝟖𝟗𝟔𝟖𝟏𝟎𝟓𝟗𝟐𝟏𝟓𝒂𝟏 = 𝟎. 𝟖𝟔𝟕𝟑𝟕𝟓𝟐𝟔𝟓𝟔𝟎𝟑𝟏𝟖𝟕𝒂𝟎 = 𝟎. 𝟎𝟏𝟔𝟐𝟕𝟓𝟏𝟖𝟒𝟗𝟓𝟔𝟔𝟏𝟐𝟏

𝑬 𝒊𝒏 ≈𝟓 𝒅�𝒏 𝒃𝟎𝒄𝟎𝒏 + 𝒃𝟏𝒄𝟏𝒏 + 𝒃𝟐𝒄𝟐𝒏 + 𝒃𝟑𝒄𝟑𝒏 + 𝒃𝟒𝒄𝟒𝒏 /𝐟

𝒃𝟎 = −𝟐𝟖𝟐𝟖𝟗𝟓𝟏𝟖𝟓𝟓𝟕𝟖𝟕𝟗𝟖𝟓𝟓𝟑𝟑𝟔𝟓𝟑𝟒𝟒𝟐𝟒𝟔𝟐𝟗𝟎𝒄𝟎 = 𝟏𝟎𝟏𝟔𝟎𝟏𝟓𝟔𝟐𝟓𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝒃𝟏 = 𝟑𝟎𝟐𝟒𝟐𝟑𝟔𝟔𝟎𝟓𝟗𝟕𝟎𝟏𝟏𝟔𝟖𝟎𝟒𝟓𝟏𝟏𝟗𝟕𝟔𝟔𝟓𝟐𝟖𝒄𝟏 = 𝟏𝟎𝟑𝟔𝟑𝟑𝟓𝟗𝟑𝟕𝟓𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝒃𝟐 = −𝟏𝟏𝟎𝟒𝟐𝟏𝟒𝟕𝟐𝟏𝟗𝟎𝟕𝟐𝟒𝟔𝟎𝟗𝟒𝟏𝟔𝟑𝟏𝟔𝟗𝟎𝟖𝟏𝒄𝟐 = 𝟏𝟎𝟓𝟕𝟎𝟔𝟐𝟔𝟓𝟔𝟐𝟓𝟎𝟎𝟎𝟎𝟎𝟎𝒃𝟑 = 𝟏𝟎𝟓𝟑𝟎𝟓𝟓𝟎𝟑𝟏𝟏𝟒𝟎𝟐𝟏𝟓𝟕𝟖𝟑𝟒𝟗𝟔𝟗𝟏𝟕𝟒𝟑𝟔𝟓𝟒𝟏𝟗𝒄𝟑 = 𝟗𝟕𝟔𝟓𝟔𝟐𝟓𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝒃𝟒 = 𝟏𝟏𝟒𝟐𝟐𝟑𝟗𝟏𝟗𝟐𝟎𝟐𝟎𝟓𝟑𝟐𝟓𝟔𝟏𝟖𝟗𝟐𝟗𝟎𝟗𝟒𝟑𝟗𝟖𝟐𝟒𝒄𝟒 = 𝟗𝟗𝟔𝟎𝟗𝟑𝟕𝟓𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝒅 = 𝟗𝟕𝟔𝟓𝟔𝟐𝟓𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝒇 = 𝟓𝟎𝟗𝟓𝟗𝟔𝟐𝟕𝟐𝟓𝟕𝟕𝟐𝟖𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎

𝑬 𝒊𝟐𝟎 ≈𝟓 𝟎. 𝟎𝟐𝟐𝟗𝟓
Figure 2.2: The probabilistic loop in the top left panel encodes the Taylor rule [Tay93], an equation that

prescribes a value for the short-term interest rate based on a target inflation rate and the gross
domestic product. The program uses a non-polynomial function (log) in the loop body to
update the continuous-state variable (i). The top right panel contains the Prob-Solvable loop
(with polynomial updates) obtained by approximating the log function using polynomial chaos
expansion (up to 5th degree). In the bottom left, we compute the expected interest rate (E[in])
as a closed-form expression in loop iteration n using the Prob-solvable loop and evaluate it at
n = 20. In the bottom right panel, we compare the true and estimated distributions for a fixed
iteration (we sample the loop 106 times at iteration n = 20).

exact moment derivation using Polar on all benchmarks satisfying the general program structure of
Listing 2.1 in Section 2.4. We also compare our approximate and exact methods with the technique
based on polynomial forms of [SCG+20]. When appropriate, we applied our methods, as well as the
polynomial form, on the eleven benchmark models. All experiments were run on a machine with
32 GB of RAM and a 2.6 GHz Intel i7 (Gen 10) processor.

Taylor rule model. Central banks set monetary policy by raising or lowering their target for the
federal funds rate. The Taylor rule7 is an equation intended to describe the interest rate decisions of
central banks. The rule relates the target of the federal funds rate to the current state of the economy
through the formula

it = r∗t + πt + aπ(πt − π∗
t) + ay(yt − ȳt), (2.22)

where it is the nominal interest rate, r∗t is the equilibrium real interest rate, r∗t = r, πt is inflation
rate at t, π∗

t is the short-term target inflation rate at t, yt = log(1 + Yt), with Yt the real GDP, and
ȳt = log(1 + Ȳt), with Ȳt denoting the potential real output.

7It was proposed by the American economist John B. Taylor as a technique to stabilize economic activity by setting an
interest rate [Tay93].

27

2 Moment-based Invariants for Probabilistic Loops

angles = [10,60,110,160,140,100,60,20,10,0] 𝜎 = 0.0001

x = TruncNormal (0, 0.0025,-0.5, 0.5)
y = TruncNormal (0, 0.01,-0.5,0.5)

while true:
for 𝜃 in angles:

d = Uniform (0.98, 1.02)𝜏 = TruncNormal (0, 𝜎 ,-0.05,0.05)
t = (1 + 𝜏)
x = x + d cos (t)
y = y + d sin (t)

end

t = ⁄ , 𝛾 = ⁄ , 𝜎 = ⁄ , c2theta = 0.75
x = Uniform (-0.1, 0.1)
while true:

w = TruncNormal (𝛾 , 𝜎 , 𝛾 − 0.05𝜋, 𝛾 + 0.05𝜋) 𝛽 = ⁄ + 𝑤𝛽 = ⁄ − 𝑤𝑢𝑝𝑑𝑎𝑡𝑒 = 1 − cos (𝛽),𝑢𝑝𝑑𝑎𝑡𝑒 = 1 − cos (𝛽)
x = c2theta (x + 20 𝑢𝑝𝑑𝑎𝑡𝑒) - 20 𝑢𝑝𝑑𝑎𝑡𝑒

end

A B

Figure 2.3: Probabilistic loops: (A) Rimless wheel walker [ST12] and (B) 2D Robotic arm [BGP+16] (in the
figure we use the inner loop as syntax sugar to keep the program compact).

x = Uniform (-0.1, 0.1)
y = Uniform (-0.1, 0.1)𝜃 = Uniform (𝜋/4 - 0.1, 𝜋/4 + 0.1)

while true: Ω = Uniform (-0.1, 0.1)
x = x + 0.1 (2 + Ω) cos(𝜃)
y = y + 0.1 (2 + Ω) sin(𝜃) 𝜃 = 𝜃 + 0.1 Uniform (-0.1, 0.1)

end

c = 0.06527415
x = Uniform (-0.1, 0.1), v = Uniform (-0.1, 0.1)
y = Uniform (0.4, 0.5), v = Uniform (-0.1, 0.1)𝜃 = Uniform (-0.1, 0.1), v = Uniform (-0.1, 0.1)

while true:Ω = Uniform (-0.1, 0.1)
x = x + 0.1 v
y = y + 0.1 vv = v − 1.202 sin(𝜃) v = v − 0.98 + 1.202 cos(𝜃)𝜃 = 𝜃 + 0.1 (v + Ω)v = v + c

end

𝜓 = Beta (3, 3), 𝜃 = Beta (1, 3)
x = Uniform (-0.1, 0.1), y = Uniform (-0.1, 0.1)
z = Uniform (0.1, 0.3)

while true:Ω = Beta (1, 3)Ω = Uniform (-0.1, 0.1)Ω = Normal (0, 0.3)
x = x + 0.1 (1 + Ω) cos(𝜓) cos(𝜃)
y = y + 0.1 (1 + Ω) sin(𝜓) cos(𝜃)
z = z + 0.1 (1 + Ω) sin(𝜃) 𝜃 = 𝜃 + 0.1 (1 + Ω)𝜓 = 𝜓 + 0.1 (1 + Ω)

end

𝜆 = 0.10, 𝑚 = 10000
m = 𝑚𝜆 = 0

while true:
s = Normal (𝜆 , 0.0625)𝜆 = 𝜆 + s
m = 𝑚 exp (-𝜆)

end

𝑥 = 0, 𝑦 = 0, 𝑧 = 0

while true:𝜃 = Uniform (-0.1, 0.1)𝜃 = Normal (𝜋/4, 1)𝜃 = Г (1, 2)𝑥 = Uniform (-0.1, 0.1) + cos(𝜃) (0.5 cos(𝜃 + 𝜃) + cos(𝜃))𝑦 = Normal (0, 1) + sin(𝜃) (0.5 cos(𝜃 + 𝜃) + cos(𝜃))𝑧 = Beta (3, 1) + 0.5 sin(𝜃 + 𝜃) + sin(𝜃)
end

A B C

E F

x = Uniform (-0.1, 0.1)
y = Uniform (-0.1, 0.1) 𝜃 = Normal (0, 0.1)

while true: Ω = Beta (1, 3)Ω = Uniform (-0.1, 0.1)
x = x + 0.05 (4 + Ω + Ω) cos(𝜃)
y = y + 0.05 (4 + Ω + Ω) sin(𝜃)𝜃 = 𝜃 + 0.1 (2 + Ω − Ω)

end
D

Figure 2.4: Probabilistic loops: (A) Uncertain underwater vehicle [PHC+22; JWW21], (B) Planar aerial
vehicle [ST12; JWW21], (C) 3D aerial vehicle [PHC+22; JWW21], (D) Differential-drive mobile
robot [vdBAG11; JWW21], (E) Stochastic decay, (F) 3D (Mobile) Robotic arm [JF14; JWW21]

Highly-developed economies grow exponentially with a sufficiently small rate (e.g., according to
the World Bank,8 the average growth rate of the GDP in the USA in 2001-2020 equaled 1.73%).
Accordingly, we set the growth rate of the potential output to 2%. We model inflation as a
martingale process; that is, Et [πt+1] = πt, following [AO01]. The Taylor rule model is described
by the program in Fig. 2.2.

8https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=US

28

https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=US

2.5 Evaluation

Figure 2.5: The approximations and their relative errors for the Taylor rule model.

Turning vehicle model. This model is described by the probabilistic program in Fig. 1.3. It was
introduced in [SCG+20] and depicts the position of a vehicle, as follows. The state variables are
(x, y, v, ψ), where (x, y) is the vehicle’s position with velocity v and yaw angle ψ. The vehicle’s
velocity is stabilized around v0 = 10 m/s. The dynamics are modelled by the equations x(t+1) =
x(t)+τv cos(ψ(t)), y(t+1) = y(t)+τv sin(ψ(t)), v(t+1) = v(t)+τ(K(v(t)−v0)+w1(t+1)),
andψ(t+1) = ψ(t)+w2(t+1). The disturbancesw1 andw2 have distributionsw1 ∼ U [−0.1, 0.1],
w2 ∼ N(0, 0.1). We set K = −0.5, as in [SCG+20]. Initially, the state variables are distributed
as follows: x(0) ∼ U [−0.1, 0.1], y(0) ∼ U [−0.5,−0.3], v(0) ∼ U [6.5, 8.0], ψ(0) ∼ N(0, 0.01).
We allow all normally distributed parameters to take values over the entire real line, in contrast to
[SCG+20] which could not accommodate distributions with infinite support and required the normal
variables to be truncated.

Rimless wheel walker. The Rimless wheel walker [SCG+20; ST12] is a system that describes
a walking human. The system models a rotating wheel consisting of ns spokes, each of length L,
connected at a single point. The angle between consecutive spokes is θ = 2π/ns. We set L = 1
and θ = π/6. This system is modeled by the program in Fig. 2.3 (A). For more details, we refer
to [SCG+20].

Robotic arm model. Proposed and studied in [BGP+16; San20; SCG+20], this system models
the position of a 2D robotic arm. The arm moves through translations and rotations. At every step,
errors in movement are modeled with probabilistic noise. The robotic arm model is described by
the program in Fig. 2.3 (B).

Uncertain underwater vehicle. This benchmark models the movement of an underwater vehicle
subject to external disturbances [JWW21; PHC+22] and is encoded by the program in Fig. 2.4
(A). The program variables x and y represent the position of the vehicle in a 2D plane and θ its
orientation. The external disturbances are modeled by probabilistic shocks to the velocity and the
orientation of the vehicle.

Planar aerial vehicle. This benchmark was studied in [JWW21; ST12] and models the vertical
and horizontal movement of an aerial vehicle subject to wind disturbances. It can be written as the
program in Fig. 2.4 (B), where the variables x and y represent the horizontal and vertical positions.
The variable θ models the rotation around the x axis. The linear velocities are captured by vx

29

2 Moment-based Invariants for Probabilistic Loops

and vy, and vθ represents the angular velocity. The wind disturbance is modeled by the random
variable Ωθ. For more details, we refer to [JWW21].

3D aerial vehicle. This system, studied in [JWW21; PHC+22], models the movement of an
aerial vehicle in three-dimensional space subject to wind disturbances. The system can be written
as a program as illustrated in Fig. 2.4 (C). The program variables x, y, and z represent the position
of the vehicle. The orientations around the y and z axis are captured by the variables θ and ψ,
respectively. The linear and angular velocities are constant 1. Wind disturbances are modeled by
the random variables Ων , Ωψ, and Ωθ. For more details, we refer to [JWW21].

Differential-drive mobile robot. This system models the movement of a differential-drive mobile
robot with two wheels subject to external disturbances and was studied in [JWW21; vdBAG11].
In Fig. 2.4 (D) we express the Differential-drive mobile robot system as a program. The program
variables x and y represent the robot’s position. Its orientation is captured by the variable θ. The
velocities are constant 1 for the left wheel and constant 3 for the right wheel. The random variables
Ωr and Ωl model external disturbances. For more details, we refer to [JWW21].

Mobile robotic arm. The system, studied in [JWW21; JF14; JF10], models the uncertain
position of the end-effector of a mobile robotic arm as a function of the uncertain base position and
uncertain joint angles. Fig. 2.4 (F) shows the system as a program. The program variables θ1, θ2,
and θ3 represent the uncertain angles of three joints. The distributions of θ1 and θ2 are uniform and
normal, respectively, while θ3 is gamma distributed with shape parameter 1 and scale parameter 2.
The position of the end-effector in 3D space is given by the variables xE , yE , and zE . The uncertain
position of the base in 3D space is modeled by three different distributions (uniform, normal, beta)
in the assignments of xE , yE , and zE . For more details, we refer to [JWW21].

Stochastic decay. The program in Fig. 2.4 (E) models exponential decay with a non-constant
stochastic decay rate. Variable m represents the total quantity subject to decay, where m0 is the
initial quantity. The decay rate λ starts off at 0 and changes according to a normal distribution at
every time step.

Fig. 2.5 illustrates the performance of our PCE-based approach as a function of the polynomial
degree of our approximation on the Taylor rule. The approximations to the true first moment (in red)
are plotted in the left panel and the relative errors, calculated as rel.err = |est − true|/true, for
the first and second moments in the middle and right panels, respectively, over iteration number. All
plots show that the approximation error is low and deteriorates as the polynomial degree increases
from 3 to 9, across iterations. For this benchmark, the drop is sharper for the second moment.

The Rimless wheel walker and the Robotic arm models are the only two benchmarks from
[SCG+20] with nonlinear non-polynomial updates. Polynomial forms of degree 2 were used
to compute bounding intervals for E(xn) (for fixed n) for these two models. The [SCG+20]
tool supports neither the approximation of logarithms (required for the Taylor rule model) nor
distributions with unbounded support (required for all benchmarks except for the Taylor rule model
on which the tool fails). To facilitate comparison with polynomial forms, our set of benchmarks is
augmented with a version of the Turning vehicle model using truncated normal distributions (ψ and
w2 ∼ TruncNormal(0, 0.01, [−1, 1]) in Fig. 1.4), which is called Turning vehicle model (trunc.)
in Table 2.2), instead of normal distributions with unbounded support.

Among the eleven benchmark models in Table 2.2, the polynomial form tool of [SCG+20] can
be used to approximate moments only in five, namely the Turning vehicle model (trunc.), Rimless

30

2.5 Evaluation

Benchmark Target Poly form Sim. Exact PCE estimate
Deg. Result # Runtime

Taylor rule
model

E (in)

n=20
× 0.022998 ×

3

5

9

0.02278

0.02295

0.02300

0.4s+0.5s

0.5s+5.0s

5.9s+34.6s

Turning vehicle
model

E (xn)

n=20
× 15.60666 15.60760

✞ 1.9s

3

5

9

14.44342

15.43985

15.60595

0.6s+3.6s

1.4s+9.2s

15.6s+16.1s

Turning vehicle
model (trunc.)

E (xn)

n=20

for deg. 2�−3 · 105, 3 · 105�
✞ 1057s

15.60818 15.60760
✞ 89.2s

3

5

9

14.44342

15.43985

15.60595

0.6s+3.6s

1.4s+9.1s

15.6s+15.8s

Rimless wheel
walker

E (xn)

n=2000

for deg. 2
[1.791, 1.792]

✠ 5.42s
1.79173 1.79159

✞ 8.0s

1

2

3

1.79159

1.79159

1.79159

0.2s+0.5s

0.3s+0.4s

0.6s+0.6s

Robotic arm
model

E (xn)

n=100

for deg. 2
[268.87, 268.88]

✞ 2.74s
268.852 268.85236

✞ 5.6s

1

2

3

268.85236

268.85236

268.85236

1.3s+0.3s

2.5s+0.6s

4.8s+0.7s

Uncertain
underwater vehicle

E
�
x2
n

�
n=10

for deg. 2
[1.9817, 2.0252]

✞ 2.9s
2.00332 2.00339

✞ 0.6s

3

5

8

2.08986

2.04514

2.00432

0.1s+0.9s

0.1s+2.8s

0.6s+8.6s

Planar aerial
vehicle

E (yn)

n=10

for deg. 2
[1.4306, 1.4315]

✞ 4.1s
1.43111 ×

6

8

10

1.42184

1.43016

1.43099

0.2s+5.9s

0.6s+13.7s

2.1s+28.0s

3D aerial
vehicle

E (xn)

n=20
× 0.67736 0.67770

✞ 4.9s

3

5

8

0.47805

0.65280

0.67245

0.1s+1.5s

0.1s+5.7s

0.6s+30.5s

Differential-drive
mobile robot

E
�
x2
n

�
n=25

× 0.29175 0.29151
✞ 12.0s

8

10

12

0.19919

0.29310

0.29215

0.6s+9.5s

2.1s+13.8s

8.3s+22.4s

Mobile Robotic
Arm

E (xn)

n=2000
× 0.38413 0.38535

✞ 0.2s

2

3

4

0.38535

0.38535

0.38535

0.8s+0.2s

1.3s+0.3s

2.0s+0.5s

Stochastic decay
E (mn)

n=10
× 5031.8404 5028.3158

✞ 0.3s

6

8

10

5035.7468

5028.0312

5028.3222

1.9s+1.0s

4.7s+1.6s

15.6s+2.0s

Table 2.2: Evaluation of our approach on 11 benchmarks. Poly form = the interval for the target as reported by
[SCG+20]; Sim = target approximated through 106 samples; Exact = the target result computed by
our technique for exact moment derivation; Deg. = maximum degrees used for the approximation
of the non-linear functions; Result = result of our approximate method per degree; Runtime =
execution time of our method in seconds (time of PCE + time of Polar); × = the respective
method is not applicable.

31

2 Moment-based Invariants for Probabilistic Loops

wheel walker, Robotic arm, Uncertain underwater vehicle, and Planar aerial vehicle. Our method
for exact moment derivation supports trigonometric functions and the exponential function but no
logarithms. Hence, it is not applicable to the Taylor rule model. Moreover, our exact method cannot
be applied to the Planar aerial vehicle benchmark because the perturbation of its program variable
θ is not iteration-stable and θ is used as an argument to a trigonometric function. Our PCE-based
moment estimation approach applies to all.

The Robotic arm, Rimless wheel walker, and Mobile robotic arm models contain no stochastic
accumulation: each basic random variable is iteration-stable and can be estimated using the scheme
in Section 2.3.1. Therefore, for these benchmarks, our estimates converge exponentially fast to
the true values. In fact, our estimates coincide with the true values for first moments, because the
estimators are unbiased. The other benchmarks contain stochasticity accumulation, which leads to
the instability of the distributions of basic random variables. For these benchmarks, we apply the
scheme in Section 2.3.2.

Table 2.2 contains the evaluation results of our approximate and exact approaches, and of the
technique based on polynomial forms of [SCG+20] on the eleven benchmarks. In consecutive
order, the table columns are: the name of the benchmark model; the target moment and iteration;
the polynomial form results (estimation interval and runtime), if applicable; the sampling-based
value of the target moment; the exact moment and the runtime of its calculation, if applicable; the
truncation parameter (polynomial degree) in PCE; the PCE estimate value; and the PCE estimate
calculation runtime.

Our results illustrate that our method based on PCE is able to accurately approximate general
non-linear dynamics for challenging programs. Specifically, for the Rimless wheel walker model,
our first moment estimate coincides with the exact result and falls in the interval estimate of the
polynomial forms technique. For the Robotic arm model, our results are equal to the exact result
and closer to the sampling one based on 106 samples. They lie outside the interval predicted by the
polynomial forms technique, pointing to the latter’s lack of accuracy in this model.

Our method for exact moment derivation can be faster than the polynomial form technique and our
PCE-based approximation approach, for instance, for the Turning vehicle model. Nevertheless, if all
basic random variables are iteration-stable, our approximation approach will provide an unbiased
estimation and hence the exact result for the first moments. This is the case, for example, for the
Rimless wheel walker benchmark for which our approximation method provides the true result in
under 0.7s, compared to our exact moment derivation method which needs 8s.

Our experiments also demonstrate that our PCE-based method provides accurate approximations
in a fraction of the time required by the polynomial form based technique. While polynomial
forms compute an error interval, they need to be computed on an iteration-by-iteration basis. In
contrast, our method based on PCE and Prob-solvable loops computes an expression for the target
parameterized by the loop iteration n ∈ N (cf. Fig. 1.4). As a result, increasing the target iteration n
does not increase the runtime of our approach. To see this, consider the Uncertain underwater
vehicle benchmark: the runtimes of polynomial forms and of our approach using the PCE estimate
of order 5 are comparable (2.9s). However, increasing the target iteration n from 10 to 20 escalates
the runtime of polynomial forms to 237s while the runtimes of both our approaches (approximate
and exact) remain the same.

32

2.6 Conclusion

2.6 Conclusion
We present two methods, one exact and one approximate, to compute in closed form the state variable
moments in probabilistic loops with non-polynomial updates. The latter employs polynomial
chaos expansion to estimate non-polynomial, general functional relationships. The approximations
produced by our technique have optimal exponential convergence when the parameters of the general
non-polynomial functions have distributions that are stable across all iterations. We demonstrate
the convergence of the PCE estimator to the true function in the L1 sense for the case of unstable
parameter distributions.

Our exact method applies to probabilistic loops with trigonometric and exponential assignments
if the random perturbations of the arguments of the non-linear functions are independent across
iterations.

Our methods can accommodate non-linear, non-polynomial updates in classes of probabilistic
loops amenable to automated moment computation, such as the class of Prob-solvable loops. We
emphasize that our PCE-based approximation is not limited to Prob-solvable loops and can be
applied to approximate non-linear dynamics in more general probabilistic loops.

Our experiments demonstrate the ability of our methods to characterize non-polynomial behavior
in stochastic models from various domains via their moments, with high accuracy and in a fraction
of the time required by other state-of-the-art tools. In future work, we plan to investigate how
to use these solutions to automatically compute stability properties (e.g. Lyapunov stability and
asymptotic stability) in stochastic dynamical systems.

33

3 K-series for Moment-based Density
Elicitation in Probabilistic Loops

This chapter is based on the following accepted paper: [KBB25]

• Andrey Kofnov, Ezio Bartocci, and Efstathia Bura. 2025. Moment-based Density
Elicitation with Applications in Probabilistic Loops. Accepted for publication in
ACM Trans. Probab. Mach. Learn.

3.1 K-series

We develop the K-series estimation method to recover the joint and marginal distributions of a
vector of random variables given a finite number of their moments. Our proposal generalizes the
Gram-Charlier (GC) series to estimate an unknown pdf with bounded support. Both K-series and
GC require a known reference distribution in order to derive the unknown continuous pdf. The
normal reference pdf is instrumental in GC series as it dictates the choice of Hermite polynomials.
Our approach allows using any continuous pdf provided its support covers the support of the target
pdf we want to estimate. We present the univariate and its multivariate extension in Sections 3.1.1
and 3.1.6, respectively.

3.1.1 Univariate K-series

Let X be a continuous random variable, supported on an arbitrary interval Ω ⊆ R, with cumulative
distribution function (cdf) FX(x) that is continuously differentiable on Ω and the corresponding
pdf f(x) = dFX(x)/dx is non-negative upper bounded everywhere on Ω with countable zeros. Let
M = {m1,m2, . . . ,mn, . . .} be the set of all moments of the random variable X and suppose only
the first n are known. We denote this finite subset of M by Mn = {m1, . . . ,mn}, n ∈ N and the
vector with elements the moments in Mn by mn = (1,m1, . . . ,mn)

T . Boldface symbols denote
vectors and matrices throughout the chapter.

From definition 2, a probability density function is said to be exponentially integrable, if there
exists a positive a > 0 such that

ˆ

R

exp{a|x|}f(x)dx < ∞.

For such pdfs, as well as distributions with bounded support, the probability distribution is fully
characterizable by its moments.

35

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

Let φ(x) be an arbitrary continuous pdf that is positive everywhere on its support Θ, where
Ω ⊆ Θ. We require either Θ be unbounded and φ(x) uniquely identifiable by its moments, or Θ be
finite (bounded). Let H = {h0(x), h1(x), . . . , hn(x)}, h0(x) ≡ 1 be a sequence of orthonormal
polynomials on Θ with respect to φ(x); i.e.,

⟨hi, hj⟩φ =

ˆ

Θ

hi(x)hj(x)φ(x)dx =

1 i = j

0 i ̸= j
.

A function l(x) is said to belong to Lp(Σ, ρ) if
´
Σ |l(x)|pρ(x)dx < ∞ (see [Rud86]). Throughout

this chapter, f is used to denote the target and φ the reference pdf, respectively. Also, at least one
of the following two assumptions is assumed to hold.

Assumption 2. The support Ω of the pdf of X is a bounded set.

Assumption 3. The ratio f(x)/φ(x) is in L1(Ω, f).

We define ?f(x) on Θ to be

?f(x) =
f(x), x ∈ Ω,

0, x ∈ Θ \ Ω. (3.1)

Since H is an orthonormal system on Θ with respect to pdf φ, any function in L2(Θ, φ) can be
expanded into a Fourier series (see, e.g., [KF76] or [Rud76]) along the H basis elements. Under
Assumption 2 or 3, g(x) = ?f(x)/φ(x) satisfies

ˆ

Θ

g2(x)φ(x)dx =

ˆ

Θ\Ω

?f(x)
φ(x)

?f(x)dx+

ˆ

Ω

f(x)

φ(x)
dFX(x) < ∞, (3.2)

so that g(x) ∈ L2(Θ, φ). In consequence, g has a Fourier series representation

g(x) =

∞=
i=0

αihi(x), (3.3)

with

αi = ⟨g, hi⟩φ =

ˆ

Θ

g(x)hi(x)φ(x)dx =

ˆ

Θ

?f(x)
φ(x)

hi(x)φ(x)dx

=

ˆ

Θ

?f(x)hi(x)dx =

ˆ

Ω

f(x)hi(x)dx+

ˆ

Θ/Ω

?f(x)hi(x)dx = ⟨1, hi⟩f .

The series in (3.3) converges in L2(Θ, φ). From (3.1) and (3.3), an estimator of f is

f̂(x) = φ(x)

n=
i=0

⟨1, hi⟩f hi(x). (3.4)

36

3.1 K-series

Each polynomial hi(x) is a sum of monomials, hi(x) =
>i

j=0 aijx
j , i = 0, . . . , n. Since the first

n moments of f(x) are known,

⟨1, hi⟩f =
i=

j=0

aij
�
1, xj

�
f
=

i=
j=0

aijmj , (3.5)

where mj is the jth raw moment of X for j = 0, . . . , i, i = 0, . . . , n.

Definition 5. The series-based estimator (3.4) of the pdf f of X is called a K-series estimator with
reference φ, or simply K-series.

Let A = {aij}ni,j=0 be a lower triangular matrix with entries the coefficients of the ordered vector
of polynomials hi(x), hn(x) = (h0(x), . . . , hn(x))

T from H . Then, (3.4) can also be computed
by

f̂(x) = φ(x) (A ·mn)
T · hn(x). (3.6)

The only requirements for the K-series estimator are (a) the unknown target pdf f have bounded
support and (b) the support of the reference φ be large enough to cover it. The only constraint for
the choice of the reference distribution is to be continuous with support larger than that of the target
pdf. Any such pdf can serve as a reference and thus polynomials hi of any order can be computed
using the Gram-Schmidt orthogonalization procedure in (3.4).

There is no technical necessity to strictly adhere to the ordered sequence of the sequence of
moments. It is possible to use moments of any order. What is necessary is to generate orthogonal
polynomials in equation (3.4) in a specific sequence. For example, if moments of order 1, 5, and
12 are available, we can construct a system of orthogonal polynomials from the monomial set
{1, x, x5, x12} by the Gram-Schmidt process.

3.1.2 K-series estimation in practice
We illustrate K-series estimation with two examples. For the first, we let the target pdf be truncated
exponential with known parameters and support and derive its first two moments and its K-series
estimate. In the second (Irwin-Hall Distribution), we express the distribution generating algorithm
as a prob-solvable loop, compute its exact moments using the Polar tool [MSB+22] and then its
K-series estimate.

Truncated Exponential. Suppose X ∼ Trunc Exp(1, [0, 1]) with support Ω = [0, 1]. We
assume the first two moments are known, specifically, we let M2 = {m1 = 0.418023,m2 =
0.254070}, and the reference distribution is uniform with the same support as the target unknown
distribution; i.e., φ(x) = 1 for x ∈ [0, 1].

Legendre polynomials ln(τ) are a standard basis of orthogonal polynomials on the interval [-
1,1] with a weight function of 1. Consequently, for any uniform pdf on an arbitrary bounded
interval, a corresponding set of orthonormal polynomials can be derived from the standard Legendre
polynomials through the substitution τ → (τ − µ)/σ and subsequent normalization.

Since φ is uniform, we use the shifted and scaled Legendre polynomials as the orthonormal basis
in the series (see [XK02]); l̄0 = 1, l̄1 =

√
3(2x − 1), l̄2 =

√
5(6x2 − 6x + 1). To compute the

unknown pdf estimator in (3.4), we need to compute the αi coefficients in (3.3). By (3.5), this
requires the substitution of xi with the corresponding moment mi in M2, for i = 1, 2. Doing so

37

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

yieldsα0 = 1, α1 =
√
3(2·0.418023−1) = −0.283976,α2 =

√
5(6·0.25407−6·0.418023+1) =

0.036407. The K-series estimator is

f̂(x) = 1− 0.283976 · l̄1(x) + 0.036407 · l̄2(x),

and almost fully coincides with the true truncated exponential pdf in panel (a) of Figure 3.1.

(a) (b)

x := 0
while true:

u := Uniform(0, 1)
x := x + u

end

Figure 3.1: K-series approximation of a truncated exponential distribution (panel (a)) and the Irwin-Hall
distribution (panel (b)).

The Irwin-Hall Distribution. Irwin–Hall is the probability distribution of a sum of indepen-
dent uniform random variables on the unit interval (uniform sum distribution). That is, X ∼
Irwin–Hall(t) if X =

>t
i=1 Ui, for Ui independent and identically distributed (i.i.d.) as Uni-

form(0,1). This distribution, parameterized by the number of its summands, is encodable as the
prob-solvable loop in the right panel of Fig. 3.1.

At each iteration t, the support of x is (0, t). Since the Irwin-Hall distribution is equivalent to a
prob-solvable loop, its exact n first moments can be computed with the algorithm in [BKS19]:

M(t) =

t

2
,
t(3t+ 1)

12
,
t2(t+ 1)

8
,
t(15t3 + 30t2 + 5t− 2)

240
,

t2(3t3 + 10t2 + 5t− 2)

96
,
t(63t5 + 315t4 + 315t3 − 91t2 − 42t+ 16)

4032
, . . .

�
.

The first 6 moments of Irwin-Hall (3) areM6(3) =
�
3
2 ,

5
2 ,

9
2 ,

43
5 ,

69
4 ,

3025
84

�
.We use the Uniform[0, 3]

as a reference and construct the K-series estimator of the pdf of x at iteration t = 3 with the 6 first
moments and the first 7 shifted and scaled Legendre polynomials. The true pdf and its K-series
estimate are plotted in panel (b) of Fig. 3.1, where we can see their almost perfect agreement.

While iteration t = 3 is used for illustration purposes, iteration number is not important for our
method. One only needs to specify an appropriate reference and support (for the uniform reference
the support is [0, t]). Alternatively, we can use a reference that has the appropriate support for any
iteration; normal, truncated normal, gamma, etc.

38

3.1 K-series

3.1.3 Special cases of K-series

The K-series density estimator generalizes the widely used Gram-Charlier (GC) series density
estimator. GC represents the pdf f of a random variable X as a series in terms of its cumulants and
a normal reference distribution φ by using Hermite polynomials (see, e.g., [Cra57; KS77]). The
GC (type-)A estimate of the pdf f of X is given by

fGC(x) = φ(x)
∞=
n=0

(−1)ncnHen (x) , (3.7)

where cn = (−1)n
´∞
−∞ f(t)Hen(t)dt/n!, φ is the standard normal pdf and

Hen (x) = n!

[n/2]=
k=0

'
(−1)kxn−2k

.
/
'
k!(n− 2k)!2k

.
Proposition 2 shows that the GC series A estimator in (3.7) is a special case of the K-series estimator.

Proposition 2. Suppose the reference pdf φ is normal with mean and variance corresponding to
the first and second moments of the target pdf f . Then, the K-series estimator (3.4) equals the
Gram-Charlier estimator (3.7).

Proposition 2 is easy to obtain using the standard normal as reference pdf and replacing the
polynomials hi in (3.4) by Hei/

√
i!.

[MMR17] developed the Method of Moments (MM) estimation algorithm for parameters of a target
distribution f by equating sample moments with the corresponding moments of the distribution.
The approximation is carried out on the interval where they wish to maximize accuracy. In practice,
this is the same as assuming finite or bounded support. [MMR17] showed that MM beats the GC
expansion for several distributions, such as the Weibull on a positive finite support, in simulation
experiments.

The MM algorithm starts by choosing an interval [a, b] that is thought to contain most of the mass
of the target unknown distribution. Using a finite set of moments {m1, . . . ,mn} and m0 = 1, MM
constructs a polynomial estimator f̂(x) by solving a linear system of equations,

mi =

bˆ

a

xif̂(x)dx, i = 0, . . . , n, (3.8)

which yields the coefficients pi of the series representation f̂MM(x) =
>n

i=0 pix
i.

Let mn = (1,m1, . . . ,mn)
T , pn = (p0, p1, . . . , pn)

T , and xn = (1, x, . . . , xn)T . The linear
system (3.8) can be expressed in matrix form as mn = Mab · pn, where Mab is the matrix with
elements the integrals of powers of x over the interval [a, b]. Theorem 2 shows that MM is a special
case of the K-series estimator.

Theorem 2. Suppose the reference pdf φ is the uniform with the same support as the target pdf f .
Then, the MM estimator coincides with the K-series estimator (3.4).

39

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

Proof. Suppose f is supported on (a, b). Then, φ(x) = φ = 1/(b − a). Let {lj(x) =>j
i=0 λjix

i}nj=0 be the set of the first n shifted scaled Legendre polynomials that are orthonor-
mal on [a, b], so that Λ = (λji)

n
j,i=0 is a lower triangular matrix.

Every polynomial of degree n can be expressed as a weighted sum of polynomials of degree up
to n. In such a case, we can represent the MM estimator f̂MM =

>n
i=0 pix

i as a weighted sum of
Legendre polynomials 1, l1(x), . . . , ln(x) with weight coefficients φ · aj , j = 0, . . . , n. Then,

f̂MM(x) =
n=

i=0

pix
i = φ

n=
j=0

ajlj(x) = φ
n=

j=0

aj

j=
i=0

λjix
i,

or, equivalently, pT
nxn = φ · aTn ln = φ · aTnΛxn, where ln = (1, l1(x), . . . , ln(x))

T and an =
(1, a1, . . . , an)

T . Thus, pn = φ ·ΛTan. Now,

mn = Mab · pn, (3.9)

implies mn = Mab · pn = φ ·Mab ·ΛTan, where Mab is the matrix with elements the integrals
of powers of x over the interval [a, b],

Mab =

,,,,,,
b− a b2−a2

2 . . . bn+1−an+1

n+1

b2−a2

2
b3−a3

3 . . . bn+2−an+2

n+2
... . . .

bn+1−an+1

n+1
bn+2−an+2

n+2 . . . b2n+1−a2n+1

2n+1

333333 . (3.10)

In the matrix form of the K-series estimator (3.6), Λ ·mn = an. It suffices to show that

φ ·Mab ·ΛT = Λ−1. (3.11)

The matrix φ · Mab contains the moments of the uniform distribution. Therefore, Λ is a matrix
with entries the coefficients of orthonormal polynomials and the left lower triangular factor of the
Cholesky decomposition of the moment matrix φ ·Mab. Thus, (3.11) follows from [Sza15, Prop.
2(i)].

MM and GC are special cases of K-series estimation. As such, they also enjoy the theoretical
properties of K-series in the constrained setting in which they apply. We next show in Theorem 3
that the general K-series estimator (3.4) converges to the true target pdf.

Theorem 3. Let φ(x) be continuous, positive everywhere on Θ: Ω ⊆ Θ and either (a) Θ is
unbounded and φ(x) is uniquely identifiable by its moments, or (b) Θ is finite (bounded). Under
Assumption 2 or 3, the K-series estimator (3.4) converges to the true pdf (3.1), ?f(x), in L1(Θ, 1).
Moreover, if φ(x) is a uniform pdf, it converges in L2(Θ, 1).

40

3.1 K-series

Proof. BBBBB ?f(x)
φ(x)

−
n=

i=0

αihi(x)

BBBBB
2

φ

=

ˆ

Θ

� ?f(x)
φ(x)

−
n=

i=0

αihi(x)

�2

φ(x)dx

=

ˆ

Θ

� ?f(x)− φ(x)
n=

i=0

αihi(x)

�2
1

φ(x)
dx

=

ˆ

Θ

φ(x)dx

ˆ

Θ

� ?f(x)− φ(x)
n=

i=0

αihi(x)

�2
1

φ(x)
dx

= ||
8

φ(x)||21 ·
BBBBB
(?f(x)− φ(x)

n=
i=0

αihi(x)

/
18
φ(x)

BBBBB
2

1

≥
ˆ

Θ

CCC ?f(x)− φ(x)

n=
i=0

αihi(x)
CCCdx

2

, (3.12)

where the last inequality is due to Cauchy-Schwarz inequality. The function ?f(x) in (3.1) is a
density. In the case where Θ is bounded, φ(x) is uniquely identifiable by its moments. When Θ is
unbounded, φ(x) is exponentially integrable by the assumption (a) of the theorem. Hence, for all
n ≥ 1, φ(x)

CCC>n
i=0 αihi(x)

CCC is integrable.

Since the truncated series
n>

i=0
αihi(x) converges to g(x) = ?f(x)/φ(x) in L2(Θ, φ), as n → ∞,

from (3.12) we obtain that the K-series estimator (3.4) converges to the extended true pdf ?f(x) in
L1(Θ, 1).

Next, suppose φ(x) is the pdf of the uniform distribution, so that Θ is bounded, and φ(x) = c.
Then,BBBBB ?f
φ
−

n=
i=0

αihi(x)

BBBBB
2

φ

=

ˆ

Θ

� ?f(x)
φ(x)

−
n=

i=0

αihi(x)

�2

φ(x)dx =
1

c

ˆ

Θ

� ?f(x)− c
n=

i=0

αihi(x)

�2

dx

Hence, ?f(x) = c · g(x) is in L2(Θ, 1), and
´
Θ

c2 [
>n

i=0 αihi(x)]
2 dx is an integral of a polynomial

over a bounded interval, so that the K-series estimator (3.4) converges to the true pdf ?f(x) in
L2(Θ, 1).

The following theorem provides formal guarantees that the moments of the obtained estimate
coincide with the corresponding moments of the target random variable based on which the estimate
is constructed.

Theorem 4 (Moment matching). Suppose the K-series estimator (3.4) is constructed using the first
n moments {m1, . . . ,mn} of the random variable X with pdf f(x) and set m0 = 1. Then,ˆ

Θ

xif̂(x)dx =

ˆ

Ω

xif(x)dx = mi,

41

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

for all 0 ≤ i ≤ n.

Proof. Let hi(x) be the ith orthonormal polynomial with respect to the reference pdf φ(x) in (3.4).
Then,

´
Ω

hi(x)f(x)dx = αi. Also, by the orthogonality of his, the following holds

ˆ

Θ

hi(x)f̂(x)dx =

ˆ

Θ

hi(x)φ(x)
n=

j=0

αjhj(x)dx =
n=

j=0

αj

ˆ

Θ

hi(x)φ(x)hj(x)dx = αi.

It remains to observe that any monomial xi, 0 ≤ i ≤ n, can be expressed as a linear combination
of the orthogonal polynomials hj , 0 ≤ j ≤ i.

3.1.4 Approximation of the support

The space spanned by ⌊(n+ 1)/2⌋ orthogonal polynomials with respect to the target density f(x)
can be constructed using the sequence of its first n moments (see [Sze39]). The determinant

Dj(x) =

CCCCCCCCCCC

m0 m1 . . . mj

m1 m2 . . . mj+1
...

...
mj−1 mn . . . m2j−1

1 x . . . xj

CCCCCCCCCCC
(3.13)

defines the corresponding orthogonal polynomial (non-normalized) of degree j. That is, if the
first n moments of a random variable X are known, then we can construct the first ⌊(n + 1)/2⌋
orthogonal polynomials.

We let ej(x) denote an orthogonal polynomial of degree j of the random variable X . Theorems
5, 6 and 7 (see [Sze39; Chi78]) state elementary properties of zeros of orthogonal polynomials.

Theorem 5. Let Ω be an interval which is a supporting set for the distribution of X . The zeros of
ej(x) are all real, simple and are located in Ω.

Theorem 6. Between two zeros of ej(x) there is at least one zero of ei(x), i > j.

Theorem 7. The zeros {xj,ν}jν=1 and {xj+1,ν}j+1
ν=1 of ej(x) and ej+1(x) respectively, mutually

separate each other. That is,

xj+1,ν < xj,ν < xj+1,ν+1, ν = 1, . . . , j

From Theorems 5, 6 and 7, we can conclude that all zeros of orthogonal polynomials are simple
and located precisely within the interior of the support. Moreover, as the polynomials’ degree
increases, the distance between the two outermost zeros also increases, resulting in a more accurate
inner approximation of the random variable’s support. The higher number of moments available,
the higher the degree of polynomials that can be obtained, and the more accurate the estimation of
the support becomes. One only needs to calculate the polynomial of the highest possible degree
using formula (3.13), determine its zeros, and identify the lowest and highest values.

42

3.1 K-series

We demonstrate this method using the example of the Irwin-Hall distribution in Section 3.1.2.
Let us suppose, that the first 6 moments of the random variable X are available:

M6 =

�
3

2
,
5

2
,
9

2
,
43

5
,
69

4
,
3025

84

�
.

We are interested in the minimum possible support of the pdf of X . Since the first 6 moments
are known, we can construct orthogonal polynomials of the random variable X up to degree
⌊(n+ 1)/2⌋ = 3. Applying (3.13) yields the highest degree computable polynomial,

D3(x) =

CCCCCCCC
1.00 1.50 2.50 4.50
1.50 2.50 4.50 8.60
2.50 4.50 8.60 17.25
1 x x2 x3

CCCCCCCC = 0.025x3 − 0.1125x2 + 0.1525x− 0.06. (3.14)

The polynomial in (3.14) has 3 distinct roots: {0.693774, 1.5, 2.306226}. Since all the roots belong
to the interior of the support, the inner approximation of the support is [0.693774, 2.306226].

3.1.5 Validity of the input

Not every sequence of real values can form a valid set of moments for any probability distribution.
This issue is known as the Hamburger moment problem (see [Chi78]). Given a sequence of real
numbers {mi}∞i=0, the question is whether there exists a positive Borel measure F such that

∞̂

−∞
xidF (x) = mi, i = 0, 1, 2, . . .

We introduce a procedure to examine whether the input set of values can be moments of a distribution.
We require the input sequence of moments to be consecutive and without gaps. Since we are dealing
with a truncated set of moments, we refer to it as the truncated moment problem. Let

Δr = det(mi+j)
r
i,j=0 =

CCCCCCCCCC
m0 m1 . . . mr

m1 m2 . . . mr+1
...

...

mr mr+1
. . . m2r

CCCCCCCCCC
(3.15)

be a sequence of determinants.

Theorem 8. [Chi78] The Hamburger moment problem has a solution if and only if the determinants
Δr in (3.15) are all positive.

By Theorem 8, the truncated moment problem admits a solution only if all the determinants
Δr, r = 0, . . . , ⌊n/2⌋ , are positive. The complete process of univariate K-series estimation is
described in Algorithm 1.

43

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

3.1.6 Multivariate K-series

K-series density estimation is easily generalizable to multivariate distributions by considering the
product of independent univariate distributions as the reference joint pdf. The coefficients of the
corresponding multivariate orthogonal polynomials recover the multivariate dependence structure
via their joint moments.

Let X = (X1, . . . , Xk)
T be a vector of continuous random variables with joint non-negative

pdf f(x), upper bounded and supported on Ω with countable zeros. Suppose that there exists a
k-dimensional compact cube Q, such that Ω ⊆ Q. We assume that a finite number of moments,
not necessarily an equal number for all, is known for each Xj , j = 1, . . . , k, and all cross-product
moments are also known. That is, we assume the set

Md1,...,dk =
�
mi1,...,ik = E

'
Xi1

1 . . . Xik
k

.
: ij = 0, . . . , dj , dj ∈ N, j = 1, . . . , k

�
(3.16)

is known. Let Z = (Z1, . . . , Zk)
T be a vector of continuous independent random variables and?φ(z) =

6k
j=0 φj(zj) be its pdf that is positive everywhere on its support Θ, where Ω ⊆ Θ. We

require either Θ be unbounded and ?φ(z) uniquely identifiable by its moments, or Θ be bounded (see
[Rah18]).

Let

h̃i1,...,ik(z) =
k5

j=1

hjij (zj), (3.17)

where hjij (zj) is a polynomial of degree ij that belongs to the set of orthogonal polynomials
with respect to φj(zj), ij = 0, . . . , dj , j = 1, . . . , k, that are calculated with the Gram-Schmidt
orthogonalization procedure. The set H = {h̃i1,...,ik(z), ij = 0, . . . , dj , dj ∈ N, j = 1, . . . , k}
contains the k-variate orthonormal polynomials on Θ with respect to ?φ(z). As in the univariate
case, we require Assumption 2 hold and let

?f(z) =
f(z), z ∈ Ω,

0, z ∈ Θ \ Ω. (3.18)

Then, ?f(z)/?φ(z) = g(z) is approximated by

ĝ(z) =
=

ij∈{0,...,dj},
j=1,...,k

α(i1, . . . , ik)h̃i1,...,ik(z) =
=

ij∈{0,...,dj},
j=1,...,k

α(i1, . . . , ik)
k5

j=1

hjij (zj),

44

3.1 K-series

Algorithm 1: Univariate K-series procedure
Input:

• {mi}ni=0 - sequence of n moments, m0 = 1

• φ(x) - reference pdf

• Θ - support of the reference

Output:

• True / False - is the sequence {mi}ni=0 feasible?

• [rootmin, rootmax]- inner approximation of the support

• f̂(x) = φ(x)
n>

i=0
⟨1, hi⟩f hi(x)- K-series estimator

Compute: Determinants Δr according to (3.15), 0 ≤ r ≤ ⌊n/2⌋.
if ∃r: Δr ≤ 0 then

return: False
end
/* Approximation of the support */
Compute: Orthogonal polynomial e⌊(n+1)⌋/2 of the highest degree using (3.13).
Search for: The lowest and the highest roots of e⌊(n+1)⌋/2: {rootmin, rootmax}
/* Orthogonal Polynomials Construction: */
h0(x) = 1
forall i in {1, 2, . . . , n} do
/* Gram-Schmidt Orthogonalization */?hi(x) = xi −

i−1>
j=0

⟨xi,hj(x)⟩φ
⟨hj(x),hj(x)⟩φ ;

hi(x) = ?hi(x)/ ∥ ?hi(x) ∥φ;
end
forall polynomial hi in {h1, . . . , hn} do

forall monomial xj in hi(x) =
i>

j=0
aijx

j do

Substitute: xj ← mj

end

Compute: Fourier coefficients αi = ⟨hi(x), 1⟩f =
i>

j=0
aijmj

end

Compute: f̂(x) = φ(x)
n>

i=0
⟨1, hi⟩f hi(x)

return: True, [rootmin, rootmax] , f̂(x)

45

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

where the Fourier coefficients α(i1, . . . , ik) are calculated as

α(i1, . . . , ik) =
�
g, h̃i1,...,ik

�
�φ =

ˆ

Θ

g(z)h̃i1,...,ik(z)
?φ(z)dz

=

ˆ

Ω

f(z)h̃i1,...,ik(z)dz+

ˆ

Θ/Ω

?f(z)h̃i1,...,ik(z)dz
=

�
1, h̃i1,...,ik(z)

�
f
. (3.19)

Since for all ij = 0, . . . , dj , j = 1, . . . , k, hjij (zj) =
>ij

l=0 a
j
ij l
zlj , their product is

h̃i1,...,ik(z) =
k5

j=1

hjij (zj) =
k5

j=1

ij=
l=0

ajij lz
l
j =

=
lj∈{0,...,ij},
j=1,...,k

zl11 · · · zlkk
k5

j=1

ajij lj .

Assuming all first cross-moments of f(z), ml1,...,lk = Ef

'
Z l1
1 · · ·Z lk

k

.
are known, we can compute

(3.19) as

�
1, h̃i1,...,ik(z)

�
f
=

=
lj∈{0,...,ij},
j=1,...,k

�
1, zl11 · · · zlkk

�
f

k5
j=1

ajij lj =
=

lj∈{0,...,ij},
j=1,...,k

ml1,...,lk

k5
j=1

ajij lj . (3.20)

The multivariate K-series estimator of f is

f̂(x) = ?φ(x) =
ij∈{0,...,dj},

j=1,...,k

�
1, h̃i1,...,ik(z)

�
f
h̃i1,...,ik(z). (3.21)

A probabilistic loop application of K-series estimation is shown in Fig. 1.5, where the pdf of the
location (X,Y) of the Differential-Drive Mobile Robot is estimated, assuming it is characterizable
by its moments. The joint and marginal distributions of the location variables X and Y are derived
from a finite set of moments at iteration t = 25. The value of 25 was chosen to provide a non-trivial
example of the capabilities of our approach. Moreover, it serves as a juxtaposition to competing
tools (such as λPSI [GSV20]), which fail to generate a meaningful expression even by iteration 5.
We use the first 6 moments for the marginals and the first 48 moments for the joint distribution.
The middle and right top panels of Fig. 1.5) plot the marginal pdfs of X and Y , respectively.
The histograms are based on 106 draws from the true marginals. Our K-series estimates are in
dashed red and agree almost perfectly with the true marginal pdfs. The left bottom panel plots
the estimated joint pdf of (X,Y). The right panel draws comparative frequency bar plots of 106
true and estimated values of the bivariate random variable (X,Y) over 2-dimensional grids of the
support of the bivariate distribution. Our estimate (red bars) practically coincides with the true joint
pdf (blue bars) over the grid.

We provide another illustration of this algorithm on the truncated bivariate normal.

46

3.1 K-series

Suppose we want to recover the joint pdf of two random variables X and Y on a set Ω =
[−2, 2]× [−4, 5] using their first eight cross-moments,

)
mxjyi = E(XjY i)

0
i,j=0,...,2

=

mx0y0 mx1y0 mx2y0

mx0y1 mx1y1 mx2y1

mx0y2 mx1y2 mx2y2

=

1.00000 0.71721 1.13054
1.99556 1.43124 2.25606
4.96894 3.56379 5.61757

 . (3.22)

We choose the reference marginal pdfs be both truncated normal φx(zx) and φy(zy) with Zx ∼
Trunc N (mx,mx2 − m2

x, [−2, 2]) = Trunc N (0.71721, 0.61614, [−2, 2]), and Zy ∼ Trunc
N (my,my2 −m2

y, [−4, 5]) = Trunc N (1.99556, 0.98667, [−4, 5]), respectively.
We construct sets of univariate orthonormal polynomials using, for example, the Gram-Schmidt

orthogonalization procedure, and obtain

hx0(zx) = 1, hy0(zy) = 1,
hx1(zx) = 1.42119zx − 0.89705, hy1(zy) = 1.01307zy − 2.01751,

hx2(zx) = 1.58907z2x − 1.63885zx − 0.38542, hy2(zy) = 0.74083z2y − 2.92557zy + 2.16624

Hence, starting from a reference joint pdf that is the product of the pdfs of the independent random
variablesZx andZy, ?φ(zx, zy) = φx(zx)φy(zy), the multivariate orthogonal polynomials are simply
all the pairwise products of univariate polynomials:

h̃0,0(zx, zy) = 1

h̃0,1(zx, zy) = 1.01307zy − 2.01751

h̃0,2(zx, zy) = 0.74083z2y − 2.92557zy + 2.16624

h̃1,0(zx, zy) = 1.42119zx − 0.89705

h̃1,1(zx, zy) = 1.43976zxzy − 2.86727zx − 0.90877zy + 1.80981

h̃1,2(zx, zy) = 1.05286zxz
2
y − 4.15779zxzy + 3.07864zx − 0.66456z2y + 2.62438zy

− 1.94323

h̃2,0(zx, zy) = 1.58907z2x − 1.63885zx − 0.38542

h̃2,1(zx, zy) = 1.60984z2xzy − 3.20596z2x − 1.66027zxzy + 3.30634zx − 0.39046zy

+ 0.77759

h̃2,2(zx, zy) = 1.17723z2xz
2
y − 4.64894z2xzy + 3.44231z2x − 1.21411zxz

2
y

+ 4.79457zxzy − 3.55014zx − 0.28553z2y + 1.12757zy − 0.83491

In order to compute the coefficients α(i1, i2) of the PCE along the reference pdf ?φ(zx, zy) for each
polynomial h̃i1,i2(zx, zy), we need to substitute every monomial factor zjxziy by the corresponding
moment mxjyi from (3.22) in each polynomial. For example, the coefficient of h̃1,1(zx, zy) is

47

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

1.43976mxy − 2.86727mx − 0.90877my + 1.80981 = 1.43976 · 1.43124− 2.86727 · 0.71721−
0.90877 · 1.99556 + 1.80981 = 0.00051. The resulting estimator is

f̂(zx, zy) = φ1(zx)φ2(zy)

(2,2)=
i1,i2=(0,0)

α(i1, i2)h̃i1,i2(zx, zy)

= φ1(zx)φ2(zy)×
�
1 + 0.00415 · h̃0,1(zx, zy) + 0.00924 · h̃0,2(zx, zy)

+ 0.12224 · h̃1,0(zx, zy) + 0.00051 · h̃1,1(zx, zy) + 0.00113 · h̃1,2(zx, zy)
+0.23568 · h̃2,0(zx, zy) + 0.00098 · h̃2,1(zx, zy) + 0.00218 · h̃2,2(zx, zy)

�
The estimated bivariate density is plotted in Fig. 3.2 (a). In panel (b), we plot the frequencies of
X and Y under the true f(x, y) (blue bars) and its K-series (red bars) pdf estimate over a 2D grid
comprising of eight parallelograms, where we can see their close agreement.

(a) (b)

0%

5%

10%

15%

20%

25%

R1 R2 R3 R4 R5 R6 R7 R8

Pe
rce

nt
ag

e o
f p

oi
nt

s
pe

r r
ec

ta
ng

le
re

gio
n

Estimated True

R1: { (-2,-1);(-1,-1);(-2,2);(-1,2) }
R2: { (-2,2);(-1,2);(-2,5);(-1,5) }
R3: { (-1,-1);(0,-1);(-1,2);(0,2) }
R4: { (-1,2);(0,2);(-1, 5);(0, 5) }
R5: { (0,-1);(1,-1);(0,2);(1,2) }
R6: { (0,2);(1,2);(0,5);(1,5) }
R7: { (1,-1);(2,-1);(1,2);(2,2) }
R8: { (1,2);(2,2);(1,5);(2,5) }

Figure 3.2: K-series estimates of the truncated bivariate normal distribution f(x, y) =
Trunc Normal((1, 2), (1, 1),−0.3, [−2, 2] , [−4, 5]).

Example V ar |M | ! Orthogonalization ! K-series
Runtime (in seconds) Runtime (in seconds)

Truncated exponential X 2 0.00246 0.04379
The Irwin-Hall Distribution X 6 0.05029 0.06922
Probabilistic loop with
non-polynomial assignment r 4 0.03568 0.04936

Truncated Bivariate Normal (X,Y) 8 0.07077 0.03613

Table 3.1: Runtimes of orthogonalization procedure and K-series estimation for the illustrative bench-
marks. |M | denotes number of used moments and V ar the variable(s) whose density is
estimated.

48

3.2 Symbolic K-series representation along iterations

3.2 Symbolic K-series representation along iterations
In this section, we demonstrate the unique ability of our method to express the distribution of one
or multiple state variables as a function of the iteration number in closed form.

We introduce the semantics of prob-solvable loops, introduced by [BKS19], as we are considering
infinite probabilistic loops and the properties of state variables at each iteration. For the class of prob-
solvable loops (see Definition 1), moments of all orders of program variables can be symbolically
computed. Given a prob-solvable loop and a program variable x, [BKS19] calculate a closed-form
solution for E(xkt) for any arbitrary k ∈ N, with t representing the t-th loop iteration. Prob-solvable
loops were initially restricted to polynomial variable updates. [KMS+22b] relaxed the restriction to
allow square-integrable function updates (see Section 2.1.1).

The K-series estimator can be expressed as a quantitative invariant in the sense that its formula is
a function of loop iteration. In the univariate case, the K-series estimator (3.4) of the unknown pdf
of the random variable X is f̂(x) = φ(x)

>n
i=0

'>i
j=0 aijmj

.
hi(x), where mj = E(Xj). The

estimator is a function of the moments of X , which in turn, vary along iterations in a probabilistic
loop. That is, the K-series estimator can be equivalently expressed as

f̂t(x) = φ(x)

n=
i=0

 i=
j=0

aijmj(t)

hi(x), (3.23)

where mj(t) = E(Xj(t)) is the moment of the random variable X at iteration t. Formula (3.23)
is the symbolic representation of the K-series pdf estimator as a function of iteration number.
Similarly, the multivariate K-series estimator (3.21) can be written as

f̂(x) = ?φ(x) =
ij∈{0,...,dj},

j=1,...,k

,, =
lj∈{0,...,ij},
j=1,...,k

ml1,...,lk(t)
k5

j=1

ajij lj

33 h̃i1,...,ik(z) (3.24)

where ml1,...,lk(t) = E
'
X l1

1 (t) · . . . ·X lk
k (t)

.
at iteration t, since the moments of the random

vector depend on the iteration in a probabilistic loop.
We illustrate (3.23) by considering the probabilistic loop in Fig. 3.3(A): the target random

variable r is modeled as the minimum of random variables x and y. Variable y is uniformly
distributed on (0, 20), while x follows a mean-reverting process and is affected by the stochastic
shock θ ∼Uniform(−8, 8) at each iteration. We can now use the approach from [BKS19] to estimate
moments for arbitrary iterations and use them to receive the symbolic expression for the pdf of r for
the corresponding iteration. Since min(·, ·) is a non-polynomial function, we apply the approach in
[KMS+22b] to represent min(·, ·) as an expansion in orthogonal polynomials. The transformation
is given in the bottom panel of Fig. 3.3.

Once this is computed, the program in Fig. 3.3 (B) can be handled using the algorithm in [BKS19].
The equations estimating the first four moments for each iteration are in the left panel of Fig. 3.4. We
choose the uniform distribution on (0, 20) as the reference pdf. We compute the shifted and scaled
Legendre polynomials and substitute the moment equations as functions of iteration t. Similarly,
we can derive the symbolic expression of the pdf estimate for any arbitrary iteration t. The right

49

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

x = 10
y = 10
r = 0
while true:𝜃 = Uniform(-8, 8)

x = x + 0.8 * (10 - x) + 𝜃
y = Uniform(0, 20)
r = min(x, y)

end
A

x = 10
y = 10
r = 0
while true:𝜃 = Uniform(-8, 8)

x = x + 0.8 * (10 - x) + 𝜃
y = Uniform(0, 20)
r = G(x, y)

end
B

G(x, y) = 0.000536*x**2*y**2 - 0.0107143*x**2*y + 0.0107143*x**2
- 0.0107143*x*y**2 + 0.274286*x*y - 0.3142861*x + 0.0107143*y**2
- 0.3142861*y + 1.71429

C

Figure 3.3: (A) Probabilistic loop with non-polynomial assignment, (B) Transformation of the program A
using Polynomial Chaos Expansion [KMS+22b], by replacing the function min(·, ·) with the
polynomial G(x, y).

panel of Fig. 3.4 plots the pdf estimate of the random variable r at iteration t = 30 given by

f̂30(r) = 5.165866e− 7 ∗ r4 + 2.561246e− 5 ∗ r3 − 0.001472 ∗ r2 + 0.012320 ∗ r + 0.055246.

𝒎𝟏(𝒕) = 187492939/27000000 + 750061*5**(–2*𝒕)/1350000𝒎𝟐(𝒕) = 34756375423767691/526500000000000
– 64300843368749*5**(–2*𝒕)/40500000000000
+ 23501075919823*5**(–4*𝒕)/13162500000000𝒎𝟑(𝒕) = 5**(–6*𝒕)*
(4114569739731588153215860816*5**(6*𝒕)
– 613776873699588813188623971*5**(4*𝒕)
– 125901255682938531172675284*5**(2*𝒕)
+ 74449367080739959917092000
) / 5598274500000000000000000𝒎𝟒(𝒕) = 5**(–8*𝒕)*
(17874329430144082715244495016176034298875*5**(8*𝒕)
– 5678224316230210217205931826650223156410*5**(6*𝒕)
+ 63704661735875927570203339028926621491*5**(4*𝒕)
– 987332923551172533795649104121262914000*5**(2*𝒕)
+ 368901831491823303396040188902924200000
) / 1976924672336250000000000000000000000

Figure 3.4: Left panel: First four moments expressed symbolically in the number of iterations. Right panel:
Comparison between the histogram of the sampling pdf and the symbolic K-series estimation at
t = 30.

We report the runtimes of the illustrative examples in Table 3.1.

3.3 Experiments
We carried out K-series estimation of the distributions of the random variables generated in the
execution of several probabilistic loops. The implementation code is available upon request. The
first application is the Differential-Drive Mobile Robot in Fig. 1.5, where we observe a practically
perfect approximation of both marginal and joint pdfs of the location of the robot. All experiments
were conducted on a machine equipped with 16 GB of RAM and an Apple M1 Pro processor. The

50

3.3 Experiments

R1: { (9.8,-10);(14.8,-10);(9.8, -5);(14.8, -5) }
R2: { (9.8,5);(14.8,5);(9.8, 10);(14.8, 10) }
R3: { (14.8,-10);(19.8,-10);(14.8, -5);(19.8, -5) }
R4: { (14.8,-5);(19.8,-5);(14.8, 0);(19.8, 0) }
R5: { (14.8,0);(19.8,0);(14.8, 5);(19.8, 5) }
R6: { (14.8,5);(19.8,5);(14.8, 10);(19.8, 10) }

0%

5%

10%

15%

20%

25%

30%

35%

40%

R1 R2 R3 R4 R5 R6

Pe
rce

nta
ge

 of
 po

int
s

pe
r r

ec
tan

gle
 re

gio
n

Estimated True

Figure 3.5: Turning Vehicle Model (Fig. 1.3, Panel A1 of Fig. 3.7): K-series estimates of the marginal pdfs
of X and Y (right upper and lower panels), the joint (lower left panel) and comparison bar plot
(upper left panel) at iteration t = 20.

runtimes of all experiments in this section are displayed in Table 3.3. The Python code for the
experiments in this chapter can be found at GitHub. We distinguish between the time required for
the Gram-Schmidt process and the time for the estimator construction. Our approach is highly time-
efficient. Additionally, users can leverage precomputed standard sets of orthogonal polynomials to
avoid recomputing them using the Gram-Schmidt process. Formal statistical tests for the goodness-
of-fit of our estimates and the true (sampling) pdfs are carried out in Appendix 3.3.1 and the results,
which overwhelmingly support our estimation procedure, are reported in Table 3.2.

The program in Panel A1 of Fig. 3.7 encodes the turning vehicle model in [SCG+20; KMS+22b].
We use the truncated normal on (1, 18) × (−15, 15) with mean the sample mean and variance 4
for X , and the sample variance of the Y distribution as reference pdfs. While the support of X is
not important, the accuracy of the estimation depends on the variance for X . When the variance is
very small, the estimation becomes numerically unstable. This effect on the estimation is reflected
in the K-series detecting, possibly artificially, two modes in Fig. 3.5.

The program in Panel A of Fig. 3.7 is the same as the turning vehicle model [SCG+20; KMS+22b]
in Panel A1 of Fig. 3.7, with the difference that the variance of the basic random variables ψ and
w2 is about 3 times larger. The effect of this on the joint and marginal distributions of X,Y can
be seen in Fig. 3.8. In this case, the reference is truncated normal on (−18, 18) × (−20, 20) with
mean the sample mean and variance the sample variance of the marginal distributions of X and Y ,
respectively. While the support of X is not important, the accuracy of the estimation depends on
the variance for X . The K-series estimator is a sum of weighted orthonormal polynomials whose
Gram-Schmidt orthogonalization with respect to the reference distribution involves the variance of
the generated variables in the denominator. Thus, when the variance is very small, the fraction
explodes and the estimation becomes numerically unstable. This can be managed by increasing the
variance of the reference, as done in Fig. 3.8.

In Fig. 3.7, Panel B encodes the Taylor rule , a model for monetary policy [Tay93; KMS+22b],
D the rimless wheel walker [ST12], and E the Vasicek [Vas77; KMS+22a] model. The Taylor rule
(B), rimless wheel (D) and Vasicek model (E) generate a single random variable at each iteration.

51

https://anonymous.4open.science/r/K-Series_TOPML-8D2F

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

Figure 3.6: K-series estimate of pdf of household electricity

We plot the histograms from sampling the probabilistic loop programs (blue) and the overlaid pdf
K-series estimates of these models in Fig. 3.10. The 2D robotic arm model [BGP+16] in panel C
of Fig. 3.7 generates a bivariate random variable. We plot the marginal K-series pdf estimates in
the right panels, the joint pdf approximation in the bottom left panel, and the comparison of the
true (blue bars) with our estimate (red bars) over a 2D parallelogram grid in the top left panel of
Fig. 3.9. The moments of the true distribution were computed with the method in [KMS+22b] for
the Taylor rule, and in [BKS19] for the rimless wheel, Vasicek and 2D robotic arm models. We used
the following reference pdfs: truncated normal on (−30, 30) for the Taylor rule, truncated normal
on (0, 10) for rimless wheel, normal distribution for the Vasicek model, and truncated normal on
(260, 280)× (525, 540) for the 2D robotic arm model. For all univariate and bivariate models, our
K-series estimator exhibits excellent estimation accuracy.

In a real data application, we use K-series to estimate the density of "household electricity use with
a ten-minute resolution for a detached house over one year" [MMR17]. The data were analyzed by
[MMR17], who estimated the unknown pdf by using sample-based estimates for the true unknown
moments of the target distribution. Histograms of the data indicate that the pdf is bimodal. In real
data examples, the true moments are unknown, so we also use the sample-based moment estimates
to compute our K-series estimate, which is drawn in Fig. 3.6. We juxtapose our sample-moment-
informed estimate with a nonparametric kernel density estimate, a standard data-driven approach
for density estimation, for visual comparison. The K-series estimate fits the data better, especially
at both endpoints of the support, than [MMR17]’s MM estimate, which can be viewed at the PLOS
One site.

Regarding the time efficiency of K-series vis-à-vis other methods, Gram-Charlier is a special
case of K-series for a normal reference distribution (Proposition 2), and the Method of Moments
[MMR17] is a special case of K-series for a uniform reference distribution (Theorem 2). As such, the
computational time for their implementation is the same as for K-series. Kernel density estimation
(KDE) is not based on moments but requires a large number of samples from the population at
hand. That is, the probabilistic program would have to be run many times to compute the kernel
density estimator over its realized range of values to achieve comparative accuracy if even possible.
Theoretically, K-series cannot be beaten in accuracy when true moments are available. As
an example, in Fig. 3.11 we plot the true pdf of a mixture of an equal-weighted mixture of four
beta distributions with parameters (1.3, 5), (5, 1.3), (6, 7) and (7, 6), respectively, in green. The
K-series estimator is the red dashed curve and the KDE estimate, based on the Gaussian kernel, is

52

https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0174573.g004
https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0174573.g004

3.3 Experiments

v0 = 10, 𝜏 = 0.1, K=-0.5 𝜓 = Normal (0, 0.1)
v = Uniform (6.5, 8.0)
x = Uniform (-0.1, 0.1)
y = Uniform (-0.5, -0.3)
while true:

w1 = Uniform (-0.1, 0.1)
w2 = Normal (0, 0.1)

x =x+𝜏 v cos(𝜓)
y =y+𝜏 v sin(𝜓)
v =v+𝜏 (K (v–v0)+w1) 𝜓 = 𝜓 + w2

end

ap = 0.5, ay = 0.5, y=1, y1=1,
p=0.01, p1=0.01, i=0.02, r=0.015
while true:

dp = TruncNormal (0, 0.01, -1, 1)
dy = TruncExponential (100, 0, 1)
p = p1

p1 = p + dp
y1 = 0.01 + 1.02 y
y = y1 – dy
ly = log(1 + y)
ly1 = log(1 + y1)
i = r+p+ap (p - p1)+ay (ly - ly1)

end

angles= [10,60,110,160,140,100,60,20,10,0]

x = TruncNormal (0, 0.0025,-0.5, 0.5)
y = TruncNormal (0, 0.01,-0.5,0.5)

while true:
for 𝜃 in angles:

d = Uniform (0.98, 1.02)𝜏 = TruncNormal (0, 0.0001,-0.05,0.05)
t = (1 + 𝜏)
x = x + d cos (t)
y = y + d sin (t)

end

t = ⁄ , 𝛾 = ⁄ , 𝜎 = ⁄ , c2theta = 0.75
x = Uniform (-0.1, 0.1)
while true:

w = TruncNormal(𝛾 , 𝜎 , 𝛾 − 0.05𝜋, 𝛾 + 0.05𝜋) 𝛽 = ⁄ + 𝑤𝛽 = ⁄ − 𝑤𝑢𝑝𝑑𝑎𝑡𝑒 = 1 − cos (𝛽),𝑢𝑝𝑑𝑎𝑡𝑒 = 1 − cos (𝛽)
x = c2theta (x + 20 𝑢𝑝𝑑𝑎𝑡𝑒) - 20 𝑢𝑝𝑑𝑎𝑡𝑒

end

a = 0.5, b = 0.02, 𝜎 = 0.2, w = 0, r = 0.08
while true:

w = TruncNormal(0 , 1, −10, 10)
r = (1 – a)r + ab + 𝜎w

end

A B C

D E

v0 = 10, 𝜏 = 0.1, K=-0.5 𝜓 = Normal (0, 0.01)
v = Uniform (6.5, 8.0)
x = Uniform (-0.1, 0.1)
y = Uniform (-0.5, -0.3)
while true:

w1 = Uniform (-0.1, 0.1)
w2 = Normal (0, 0.01)

x =x+𝜏 v cos(𝜓)
y =y+𝜏 v sin(𝜓)
v =v+𝜏 (K (v–v0)+w1) 𝜓 = 𝜓 + w2

end A1

Figure 3.7: Probabilistic loops: (A) Turning vehicle model [SCG+20; KMS+22b], (A1) Small variance
Turning vehicle model [SCG+20; KMS+22b], (B) Taylor rule [Tay93; KMS+22b], (C) 2D
Robotic Arm [BGP+16], (D) Rimless Wheel Walker [ST12], (E) Vasicek model (truncated
version) [Vas77; KMS+22a].

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

R1 R2 R3 R4 R5 R6 R7 R8

Pe
rce

nta
ge

of
po

int
sp

er
rec

tan
gle

reg
ion

Estimated True

R1: { (1.9,-15);(6.9,-15);(1.9, -10);(6.9, -10) }
R2: { (1.9,5);(6.9,5);(1.9, 10);(6.9, 10) }
R3: { (6.9,-10);(11.9,-10);(6.9, -5);(11.9, -5) }
R4: { (6.9,-5);(11.9,-5);(6.9, 0);(11.9, 0) }

R5: { (6.9,0);(11.9,0);(6.9, 5);(11.9, 5) }
R6: { (6.9,5);(11.9,5);(6.9, 10);(11.9, 10) }
R7: { (11.9,-5);(16.9,-5);(11.9, 0);(16.9, 0) }
R8: { (11.9,0);(16.9,0);(11.9, 5);(16.9, 5) }

Figure 3.8: Turning vehicle model Fig. 3.7 (A): K-series estimates of the marginal pdfs of X and Y (right
upper and lower panels), the joint (lower left panel) and comparison bar plot (upper left panel)
at iteration t = 20.

the blue curve. We sampled 10000 observations from the true pdf and plotted their histogram in
gray. The time to produce the KDE estimate is {0.00644s + 0.0138s} (sample and compute pdf,
resp.). The time to compute the K-series estimate is longer, {0.73s + 0.662s + 4.58s} (compute

53

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

0%

5%

10%

15%

20%

25%

30%

35%

R1 R2 R3 R4 R5 R6 R7

Pe
rc

en
ta

ge
 o

f p
oi

nt
s

pe
r r

ec
ta

ng
le

 re
gio

n Estimated True

R1: { (268.0,532.2);(268.6,532.2);(268.0, 532.8);(268.6, 532.8) }
R2: { (268.0,532.8);(268.6,532.8);(268.0, 533.4);(268.6, 533.4) }
R3: { (268.6,532.2);(269.2,532.2);(268.6, 532.8);(269.2, 532.8) }
R4: { (268.6,532.8);(269.2,532.8);(268.6, 533.4);(269.2, 533.4) }
R5: { (268.6,533.4);(269.2,533.4);(268.6, 534.0);(269.2, 534.0) }
R6: { (269.2,532.8);(269.8,532.8);(269.2, 533.4);(269.8, 533.4) }
R7: { (269.2,533.4);(269.8,533.4);(269.2, 534.0);(269.8, 534.0) }

Figure 3.9: Robotic arm model Fig. 3.7 (C): K-series estimates of the marginal pdfs of X and Y (right
upper and lower panels), the joint (lower left panel) and comparison bar plot (upper left panel)
at iteration t = 100.

A A B C

Figure 3.10: K-series estimates of pdf for variable A) i at iterations t = 20 in Fig. 3.7 (B): Taylor rule model,
B) x at iteration t = 2000 in Fig. 3.7 (D): rimless wheel model, C) r at iteration t = 100 in
Fig. 3.7 (E): Vasicek model.

moments, construct a system of orthogonal polynomials and compute K-series, respectively). But
Fig. 3.11 reveals that K-series tracks the true pdf much more accurately than the KDE, which is also
subject to boundary effects, a well-known problem in nonparametric estimation. In Fig. 3.12, we
visually compare the cdf estimates of the two approaches using 50000 samples. Again, the K-series
cdf is closer to the true cdf, especially at the endpoints. Also, the Kolmogorov-Smirnov distance
between the K-series and the true cdf is 0.0012478, much smaller than 0.0226002, the value of the
Kolmogorov-Smirnov distance between the true cdf and the cdf of the KDE estimate. As an aside
comment, we note that we used a grid of 1000 points to compute all the pdfs for all other examples

54

3.3 Experiments

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
K-series

Gaussian KDE

Histogram of sampled Data

Mixture of Betas

Figure 3.11: Comparison of K-series and KDE
with Gaussian kernel performance
in estimating a mixture of four Beta
pdfs. We used 9 moments for K-
series.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 True CDF

KDE CDF

K-series CDF

Figure 3.12: Comparison of K-series and KDE
with Gaussian kernel performance
in estimating a mixture of four Beta
pdfs. We used a grid of 50.000
points.

in the chapter. Here, we had to use a much larger number of points to receive a sample of reliable
size for KDE.

Panel A in Fig. 3.13 describes the 1D Random Walk, and panel B the 2D Random Walk
[KUH19]. For the former, we used a truncated normal distribution on (−98, 102) as reference. For
the 2D Random Walk, we used two independent truncated normal distributions on (−100, 100) ×
(−100, 100) with true means and variances of corresponding marginal pdfs obtained with the
algorithm in [BKS19]. The K-series estimator exhibits excellent performance for both 1D and 2D
random walks, as can be seen in Fig. 3.13.

We explore the robustness of our method to violations of the assumption of continuity of random
variables in Fig. 3.14 , where we estimate the distributions of random variables generated in Prob-
solvable loops with discrete random components. Panel A in Fig. 3.14 encodes the Stuttering P
model in [BKS19] and panel B the piece-wise deterministic process, or PDP model, modeling gene
circuits that can be used to estimate the bivariate distribution of protein x and the mRNA levels y
in a gene [IHR18].

For the Stuttering P model, we used a truncated normal distribution on (0, 50) with true mean and
variance as the reference pdf. For the PDP model, we used the truncated normal on (100, 1800) for
X and uniform on (8, 80) for Y as reference pdfs to estimate marginal pdfs of X and Y and joint
pdf (X,Y). The parameters of the truncated normal distribution are the exact mean and variance
of the marginal pdf of the corresponding variable computed using [BKS19].

3.3.1 Kolmogorov-Smirnov and Energy Tests for Equality of Distributions

The Kolmogorov-Smirnov (K-S) test [HWC13] compares two cumulative distribution functions
(cdfs). We compute the cdf F̂KS of the estimated pdf f̂KS. We also compute the (empirical)
cdf FSample of the data resulting from sampling the probabilistic program variables. The 2-sample

55

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

x = 2
while true:

x = x + 1 {1/2} x - 1
end

A

h = 0
x = 0
y = 0
while true:

h = 1 {1/2} 0
x = x - h {1/2} x + h
y = y + (1 - h) {1/2} y - (1 - h)

end

B 0%

10%

20%

30%

40%

50%

60%

R1 R2 R3 R4 R5 R6

Pe
rc

en
ta

ge
 o

f p
oi

nt
s

pe
r r

ec
ta

ng
le

 re
gi

on

Estimated

True

R1: { (-25,-10);(-10,-10);(-25, 5);(-10, 5) }
R2: { (-10,-25);(5,-25);(-10, -10);(5, -10) }
R3: { (-10,-10);(5,-10);(-10, 5);(5, 5) }
R4: { (-10,5);(5,5);(-10, 20);(5, 20) }
R5: { (5,-10);(20,-10);(5, 5);(20, 5) }
R6: { (5,5);(20,5);(5, 20);(20, 20) }

Figure 3.13: K-series estimates of the pdf of X in 1D Random Walk (A) [KUH19] at iteration t = 100,
marginal pdfs for variables X , Y and joint distribution of (X , Y) in 2D Random Walk
(B) [KUH19] at the iterations t = 100.

Kolmogorov-Smirnov (K-S) test statistic for testing equality of the population (true) cdfs is

DKS = max
x

(|FKS(x)− FSample(x)|) , (3.25)

where N1 and N2 are the sample sizes from the K-series and empirical cdf, respectively. We reject
the equality of the two distributions if

DKS > c(α)

9
N1 +N2

N1 ·N2
=

9
−1

2
ln

α

2

9
N1 +N2

N1 ·N2

at significance level α.
The two-sample E-statistic for testing for equality of multivariate distributions proposed by [SR04]

is the energy distance e(S1, S2), which is defined by

e(S1, S2) = N1N2 (2D12 −D11 −D22) /(N1 +N2),

for two samples S1, S2 of respective sizes N1, N2, where

Dij =

Ni=
p=1

Nj=
q=1

||Xip −Xjq||/(NiNj), i, j = 1, 2,

|| · || denotes the Euclidean norm, and X1p denotes the p-th and X2q the q-th (vector-valued)
observations in the first and second sample, respectively. The test is implemented by nonparametric
bootstrap, an approximate permutation test in the R-package energy [RS22].

56

3.3 Experiments

We used the Kolmorov-Smirnov test to compare univariate distributions and the energy test for
multivariate distributions [SR04]. We draw 1000 observations from the sampling (“true”) and
estimated distributions. The critical values are 0.0607 and 0.0479 for significance levels 0.05 and
0.2, respectively. Except for very few instances, when a small number of moments is used in the
K-series estimation, our estimate is statistically the same as the true distribution. We also test the
agreement of the K-series with the GC estimates. When the true distribution is similar to normal,
K-series is statistically indistinguishable from Gram-Charlier. But when the true distribution is not
close to normal, K-series provides a far more accurate estimate than Gram-Charlier.

57

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

Problem V ar |M | KS Distance KS Distance Energy test
(GC) (p-value)

Differential-Drive Robot
X 6 0.00069 ✔ ! 0.00072 ✔ !
Y 6 0.00059 ✔ ! 0.00059 ✔ !

(X,Y) 48 0.4700

PDP
X 2 0.00664 ✔ ! 0.00680 ✔ !
Y 6 0.00033 ✔ ! 0.05190 ✔

(X,Y) 8 0.4250

Turning vehicle
X 8 0.00807 ✔ ! 0.02109 ✔ !
Y 8 0.00494 ✔ ! 0.01030 ✔ !

(X,Y) 80 0.4150

Turning vehicle
(small variance)

X 8 0.02614 ✔ ! 0.11054 ✗

Y 8 0.00070 ✔ ! 0.00169 ✔ !
(X,Y) 80 0.5000

Taylor rule model
i 6 0.00037 ✔ ! 0.00037 ✔ !

2D Robotic Arm
X 2 0.00037 ✔ ! 0.00037 ✔ !
Y 2 0.00048 ✔ ! 0.00048 ✔ !

(X,Y) 8 0.9650

Rimless Wheel Walker
X 2 0.00180 ✔ ! 0.00180 ✔ !

Vasicek model
r 2 0.00074 ✔ ! 0.00074 ✔ !

1D Random Walk
X 2 0.03834 ✔ ! 0.03834 ✔ !

2D Random Walk
X 2 0.02743 ✔ ! 0.02743 ✔ !
Y 2 0.02714 ✔ ! 0.02714 ✔ !

(X,Y) 8 0.4902

Stuttering P
S 2 0.00351 ✔ ! 0.00354 ✔ !

✔ Null hypothesis is not rejected at significance level 0.05.
✔ ! Null hypothesis is not rejected at significance level 0.2.
✗ Null hypothesis is rejected at significance level 0.05.

Table 3.2: Kolmogorov-Smirnov distances for univariate distributions and testing for equality of multivariate
distributions.

58

3.4 Effect of Reference Distribution

f = 0, x = -1, y = 1, s = 0 p =
0.75
while true:

u1 = Uniform(0, 2)
u2 = Uniform(0, 4)
f = Bernoulli(p)
x = x + f*u1
y = y + f*u2
s = x + y

end

k1 = 4, k2 = 40, a = 0.2, b = 4
p = 0.5, 𝜌 = 0.5, y = 0, x = 0
while true:

k = k1 {p} k2� y = (1 −𝜌)∗y + k
x = (1 − a)∗x + b∗y

end

A B 0%

5%

10%

15%

20%

25%

30%

35%

40%

R1 R2 R3 R4 R5 R6 R7 R8

Pe
rce

nt
ag

e o
f p

oin
ts

pe
r r

ec
ta

ng
le

re
gio

n

Estimated

True

R1: { (100,8);(600,8);(100, 38);(600, 38) }
R2: { (100,38);(600,38);(100, 68);(600, 68) }
R3: { (600,8);(1100,8);(600, 38);(1100, 38) }
R4: { (600,38);(1100,38);(600, 68);(1100, 68) }
R5: { (600,68);(1100,68);(600, 98);(1100, 98) }
R6: { (1100,8);(1600,8);(1100, 38);(1600, 38) }
R7: { (1100,38);(1600,38);(1100, 68);(1600, 68) }
R8: { (1100,68);(1600,68);(1100, 98);(1600, 98) }

Figure 3.14: K-series estimates of the pdf of variable S in Stuttering P model [BKS19] (A) at iteration
t = 10, marginal pdfs for variables X , Y and joint distribution for variables (X , Y) in PDP
model [IHR18] (B) at the iterations t = 100.

3.4 Effect of Reference Distribution

We study the effect of the choice of the reference distribution in K-series on estimation accuracy. We
consider reference distributions with the same support as the target unknown pdf f , with bounded
support that contains the support of f and with unbounded support in absence of any knowledge
about the possible values of the target distribution.

Table 3.4 lists the combinations of target and reference distributions we consider in our ex-
periments. We plot the true target pdfs (red) and the K-series estimates for different numbers of
moments using reference pdfs with the same support as the target in Figure 3.15. Our method
does not suffer from the numerical instability associated with closeness to zero. In most cases, the
uniform reference pdf works better on exact support.

In Figure 3.16, we plot the true four pdfs in Table 3.4 and their K-series estimates using different
number of moments and the uniform reference supported on an interval that contains the support
of the target pdf. Specifically, the reference pdf is supported on the interval that extends by 2 units
the true support in either side. The estimation improves significantly as the number of moments
increases. The left panels of Figure 3.17 plot the true pdfs and their K-series estimates using different
numbers of moments and a truncated normal reference supported on the interval that extends by
2 units the true support in both ends. The right panels of Figure 3.17 plot the true pdfs and their
K-series estimates using different numbers of moments and a normal reference pdf supported on
the entire real line.

Visual inspection of these plots indicates that the estimation is better if the support of all reference
pdfs is close to the support of the target pdf. The uniform reference distribution results in accurate
estimates provided its support is close to the support of the true pdf. On the other hand, both
truncated and regular normal reference pdfs lead to accurate K-series estimates the closer the target
pdf is to a normal. Moreover, the truncated normal distribution tends to work better on a support

59

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

Model V ar |M | ! Orthogonalization ! K-series
Runtime (in seconds) Runtime (in seconds)

Differential-Drive Robot
X 6 0.67484 0.15971
Y 6 0.57628 0.15921

(X,Y) 48 1.23404 0.18318

PDP
X 2 0.03708 0.13438
Y 6 0.24701 0.07646

(X,Y) 8 0.03880 0.27987

Turning vehicle
X 8 0.46561 0.17895
Y 8 0.48054 0.17901

(X,Y) 80 0.84230 0.99251

Turning vehicle
(small variance)

X 8 0.68676 0.17829
Y 8 0.62172 0.17739

(X,Y) 80 1.19591 0.98794

Taylor rule model
i 6 2.66375 0.16011

2D Robotic Arm
X 2 0.15185 0.13439
Y 2 0.13663 0.13528

(X,Y) 8 0.28913 0.36801

Rimless Wheel Walker
X 2 0.10627 0.10915

Vasicek model
r 2 0.16654 0.09937

1D Random Walk
X 2 0.09753 0.15714

2D Random Walk
X 2 0.13076 0.15916
Y 2 0.13033 0.15678

(X,Y) 8 0.25956 0.40327

Stuttering P
S 2 0.06936 0.15530

Table 3.3: Runtimes of orthogonalization procedure and K-series estimation for the benchmarks in Section
3.3. |M | denotes number of used moments and V ar the variable(s) whose density is estimated.

wider than the true in comparison with the uniform.
Formal assessment of the estimation accuracy is carried out with Kolmogorov-Smirnov tests.

Tables 3.5, 3.6 and 3.7 report the values of the Kolmogorov-Smirnov test statistic comparing the
K-series estimates with the true pdfs and whether the null of their equality is rejected for different

60

3.4 Effect of Reference Distribution

Target pdf f Reference pdf φ

TruncExp(λ = 2/3, [0, 4])
Uniform(0, 4)

TruncNormal(E(f),Var(f), [0, 4])
Uniform(−2, 6)

TruncNormal(E(f),Var(f), [−2, 6])
Normal(E(f),Var(f))

TruncGamma(α = 2, β = 0.5, [0, 5])
φ ∼ Uniform(0, 5)

TruncNormal(E(f),Var(f), [0, 5])
Uniform(−2, 7)

Trunc Normal(E(f),Var(f), [−2, 7])
Normal(E(f),Var(f))

Continuous Bernoulli(π = 0.3)
φ ∼ Uniform(0, 1)

TruncNormal(E(f),Var(f), [0, 1])
Uniform(−2, 3)

TruncNormal(E(f),Var(f), [−2, 3])
Normal(E(f),Var(f))

TruncNormal(1.5, 5.76, [−6, 6])
φ ∼ Uniform(−6, 6)

TruncNormal(E(f),Var(f), [−6, 6])
Uniform(−8, 8)

TruncNormal(E(f),Var(f), [−8, 8])
Normal(E(f),Var(f))

Table 3.4: Target and reference distributions.

61

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

numbers of moments and reference distributions. The sample size for both the estimated and true
distribution is 1000. The critical values are 0.0607 and 0.0479 for significance levels 0.05 and 0.2,
respectively.

Target pdf f |M | Uniform TruncNormal
(Same support) (Same support)

TruncGamma(α = 2, β = 0.5, [0, 5])
2 0.0172 ✔ ! 0.0188 ✔ !
3 0.0031 ✔ ! 0.0093 ✔ !
5 < 1e− 4 ✔ ! 0.0033 ✔ !
8 < 1e− 4 ✔ ! 0.0002 ✔ !

TruncNormal(1.5, 5.76, [−6, 6])
2 0.0617 ✗ 0.0011 ✔ !
4 0.0122 ✔ ! < 1e− 4 ✔ !
7 0.0002 ✔ ! < 1e− 4 ✔ !

Continuous Bernoulli(π = 0.3)
3 < 1e− 4 ✔ ! 0.0124 ✔ !
5 < 1e− 4 ✔ ! 0.0012 ✔ !
8 < 1e− 4 ✔ ! < 1e− 4 ✔ !

TruncExp(λ = 2/3, [0, 4])
2 0.0082 ✔ ! 0.0212 ✔ !
4 0.0001 ✔ ! 0.0025 ✔ !
6 < 1e− 4 ✔ ! 0.0003 ✔ !

✔ Null hypothesis is not rejected at significance level 0.05.
✔ ! Null hypothesis is not rejected at significance level 0.2.
✗ Null hypothesis is rejected at significance level 0.05.

Table 3.5: Kolmogorov-Smirnov distances and significance test results for reference distributions on the
same support as the true pdf.

62

3.4 Effect of Reference Distribution

(a) φ ∼ U(0, 4) (b) φ ∼ TruncNormal(E(f),Var(f), [0, 4])

(c) φ ∼ U(0, 5) (d) φ ∼ TruncNormal(E(f),Var(f), [0, 5])

(e) φ ∼ U(−6, 6) (f) φ ∼ TruncNormal(E(f),Var(f), [−6, 6])

(g) φ ∼ U(0, 1) (h) φ ∼ TruncNormal(E(f),Var(f), [0, 1])

Figure 3.15: K-series estimates of the truncated exponential pdf, the truncated gamma pdf, the truncated nor-
mal pdf and the continuous Bernoulli with uniform reference (Method of Moments [MMR17]),
left panels) and truncated normal (right panels) on exact support.

63

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

(a) φ ∼ U(−2, 6) (b) φ ∼ U(−2, 7)

(c) φ ∼ U(−8, 8) (d) φ ∼ U(−2, 3)

Figure 3.16: Approximations of the truncated exponential pdf, the truncated gamma pdf, the truncated
normal pdf and the continuous Bernoulli using K-series with uniform reference on the extended
support.

64

3.4 Effect of Reference Distribution

Target pdf f |M | Uniform
(Extended support)

TruncGamma(α = 2, β = 0.5, [0, 5])
4 0.0213 ✔ !
8 0.0186 ✔ !

10 0.0152 ✔ !
TruncNormal(1.5, 5.76, [−6, 6])

5 0.0099 ✔ !
7 0.0061 ✔ !

10 0.0048 ✔ !
Continuous Bernoulli(π = 0.3)

5 0.2285 ✗
10 0.0939 ✗
17 0.0579 ✔

TruncExp(λ = 2/3, [0, 4])
6 0.1099 ✗

10 0.0713 ✗
15 0.0546 ✔

✔ Null hypothesis is not rejected at significance level 0.05.
✔ ! Null hypothesis is not rejected at significance level 0.2.
✗ Null hypothesis is rejected at significance level 0.05.

Table 3.6: Kolmogorov-Smirnov distances and significance test results for the uniform
reference distribution on extended support.

Target pdf f |M | Trunc Normal Normal
(Extended support) (real line)

TruncGamma(α = 2, β = 0.5, [0, 5])
6 0.0172 ✔ ! 0.0202 ✔ !
8 0.0158 ✔ ! 0.0169 ✔ !
10 0.0132 ✔ ! 0.0033 ✔ !

TruncNormal(1.5, 5.76, [−6, 6])
2 0.0171 ✔ ! 0.0182 ✔ !
5 0.0071 ✔ ! 0.0095 ✔ !
10 0.0044 ✔ ! 0.0066 ✔ !

Continuous Bernoulli(π = 0.3)
5 0.0516 ✔ 0.0527 ✔
8 0.0374 ✔ ! 0.0387 ✔ !
12 0.0340 ✔ ! 0.0352 ✔ !

TruncExp(λ = 2/3, [0, 4])
6 0.0667 ✗ 0.0757 ✗
10 0.0558 ✔ 0.0617 ✗
15 0.0391 ✔ ! 0.0524 ✔

✔ Null hypothesis is not rejected at significance level 0.05.
✔ ! Null hypothesis is not rejected at significance level 0.2.
✗ Null hypothesis is rejected at significance level 0.05.

Table 3.7: Kolmogorov-Smirnov distances and significance test results for truncated normal on extended
support and normal reference distributions.

65

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

(a) φ ∼ TruncNormal(E(f),Var(f), [−2, 6]) (b) φ ∼ Normal(E(f),Var(f))

(c) φ ∼ TruncNormal(E(f),Var(f), [−2, 7]) (d) φ ∼ Normal(E(f),Var(f))

(e) φ ∼ TruncNormal(E(f),Var(f), [−8, 8]) (f) φ ∼ Normal(E(f),Var(f))

(g) φ ∼ TruncNormal(E(f),Var(f), [−2, 3]) (h) φ ∼ Normal(E(f),Var(f))

Figure 3.17: Approximations of the truncated exponential pdf, the truncated gamma pdf, the truncated
normal pdf and the continuous Bernoulli using K-series with truncated normal reference on the
extended support (left) and normal reference on the whole real line (Gram-Charlier, right).

66

3.5 Conclusion

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

K-series 8 moments

Beta(2,3)

Figure 3.18: K-series estimates using first 8 mo-
ments of a Beta distribution with
parameters (2, 3) and exponential
reference with scale parameter 0.2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 K-series 3 moments

K-series 5 moments

K-series 11 moments

Beta(2,3)

Figure 3.19: K-series estimates using the first 3,
5, and 11 moments, respectively, of
a Beta distribution with parameters
(2, 3) and a Gamma reference with
shape and scale 2 and 0.14, respec-
tively.

To show that any continuous reference pdf that is positive on its support which contains the
support of the unknown target can be used in K-series, we present an example where the reference
is exponential with scale parameter 0.2 in Fig. 3.18, and an example where the reference is Gamma
with shape parameter 2 in Fig. 3.19. The latter serves to illustrate that the requirement for the
reference to be positive everywhere on its support is sufficient, but not necessary, in general. The
limit at point x = 0 of the ratio f2(x)/φ(x), in this case, is zero and the integral exists. But in
general, this condition cannot be checked when the true target pdf is unknown.

3.5 Conclusion
K-series is a general distribution recovery method that approximates the density function as a series
in terms of a finite number of its moments. It targets the unknown density via the choice of the
reference probability density function and includes existing series-based density estimation, such as
Gram-Charlier, as special cases. The K-series estimator converges to the true pdf in L1, satisfies the
moment matching principle, and is fast to compute. The method is complemented by an estimation
algorithm of the minimal support of the target distribution.

K-series requires the target pdf have bounded support. This is not a serious limitation since,
in practice, as in nature, observable values occur with effectively nonzero probability within an
interval, and values outside a certain range are never realized. The choice of the reference is based
on subject-matter knowledge, if available. We study the effect of the reference pdf on estimation in
Appendix 3.4. The uniform reference distribution results in accurate estimates provided its support
is close to the support of the true pdf. Both truncated and regular normal reference pdfs lead to
accurate K-series estimates the closer the target pdf is to a normal. Overall, the truncated normal
distribution typically results in better estimation.

67

3 K-series for Moment-based Density Elicitation in Probabilistic Loops

Characterizing the distribution of random quantities generated in probabilistic programming lan-
guages (PPLs) [BKS20a] is essential: Distributions are the building blocks of inference. PPLs codify
probabilistic models and are used, for example, in computer security/privacy protocols [Dwo06],
distributed consensus algorithms [Her90], randomized algorithms [Raj95], generative machine
learning models [Gha15] and scenario-based testing [FDG+19] of cyber-physical systems operating
in uncertain environments.

In future work, we will extend K-series to recover probability mass functions for discrete random
variables. We also aim to compute error bounds and explore the Fourier series representation
of functions in conjunction with [JWW21], which obtains exact moments for sine and cosine
assignments, to reduce the estimation error for fixed loop iterations. We will also develop a tool to
automate the entire procedure in Algorithm 1.

68

4 Exact Upper and Lower Bounds for the
Output Distribution of Neural Networks
with Random Inputs

This chapter is based on the following preprint: [KKB+25]

• Andrey Kofnov, Daniel Kapla, Ezio Bartocci, and Efstathia Bura. Exact Upper
and Lower Bounds for the Output Distribution of Neural Networks with Random Inputs.

4.1 Introduction
Increased computational power, availability of large datasets, and the rapid development of new NN
architectures contribute to the ongoing success of neural network (NN) based learning in image
recognition, natural language processing, speech recognition, robotics, strategic games, etc. A
limitation of NN machine learning (ML) approaches is that it is difficult to infer the uncertainty
of the predictions from their results: there is no internal mechanism in NN learning to assess how
trustworthy the network outputs are with unseen data. A NN is a model of the form

Y = f(X,Θ), (4.1)

where Y is the output and X the input (typically multivariate), and f is a known function modeling
the relationship between X and Y parametrized by Θ. Model (4.1) incorporates uncertainty neither
in Y nor in X and NN fitting is a numerical algorithm for minimizing a loss function. Lack
of uncertainty quantification, such as assessment mechanisms for prediction accuracy beyond the
training data, prevents neural networks, despite their potential, from being deployed in safety-critical
applications ranging from medical diagnostic systems (e.g., [HB20]) to cyber-physical systems such
as autonomous vehicles, robots or drones (e.g., [YLC+20]). Also, the deterministic nature of NNs
renders them highly vulnerable to not only adversarial noise but also to even small perturbations in
inputs ([BAG18; FFF18; GPM+14; GSS14; HXP17]).

Uncertainty in modeling is typically classified as epistemic or systematic, which derives from
lack of knowledge of the model, and aleatoric or statistical, which reflects the inherent randomness
in the underlying process being modeled (see, e.g., [HW21]). The universal approximation theorem
(UAT) [Cyb89; HSW89] states that a neural network with one hidden layer can approximate
any continuous function for inputs within a specific range by increasing the number of neurons.
When working with neural networks, epistemic uncertainty is often considered less significant than
aleatoric uncertainty, which directly impacts predictions and is usually prioritized in tasks requiring

69

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

robust modeling against data variability. Herein, we focus on studying the effect of random inputs
on the output distribution of NNs and derive uniform upper and lower bounds for the cumulative
distribution function (cdf) of the outputs of a NN subject to noisy (stochastic) input data.

We evaluate our proposed framework on three benchmark datasets (Iris [Fis36], Wine [AF92]
and Diabetes [EHJ+04]) and demonstrate the efficacy of our approach to bound the cdf of the NN
output subject to Gaussian and Gaussian mixture inputs. We demonstrate that our bounds cover the
true underlying cdf over its entire support. In contrast, the competing approach of [KHM+24], as
well as large sample Monte-Carlo simulations, are shown to produce estimates outside the bounds
over several areas of the output range.

4.2 Problem Overview

A neural network is a mathematical model that produces outputs from inputs. The input is typically
a vector of predictor variables, X ∈ Rn0 , and the output Y , is univariate or multivariate, continuous
or categorical.

A feedforward NN with L layers from Rn0 → RnL is a composition of L functions,

fL(x;Θ) = f (L) ◦ f (L−1) ◦ ... ◦ f (1)(x), (4.2)

where the l-th layer is given by

f (l)(x;W(l),b(l)) = σ(l)(W(l)x+ b(l)),

with weights W(l) ∈ Rnl×nl−1 , bias terms b(l) ∈ Rnl , and a non-constant, continuous activation
function σ(l) : R → R that is applied component-wise. The NN parameters are collected in
Θ = (vec(W1), b1, . . ., vec(WL), bL) ∈ R

�L
l=1(nl−1·nl+nl).1 The first layer that receives the

input x is called the input layer, and the last is the output layer. All other layers are called hidden.
For categorical outputs, the class label is assigned by applying a decision function, such as argmax
as the final step.

Despite not being typically acknowledged, the training data in NNs are drawn from larger
populations, and hence they contain only limited information about the corresponding population.
We incorporate the uncertainty associated with the observed data assuming that they are random
draws from an unknown distribution of bounded support. That is, the data are comprised of
m draws from the joint distribution of (X, Y), and the network is trained on observed (xi, yi),
xi = (xi1, xi2, . . . , xin0), and yi, i = 1, . . . ,m.2 A NN with L layers and nl neurons at each layer,
l = 1, . . . , L, is trained on the observed (xi, yi), i = 1, . . . ,m, to produce m outputs ỹi, and the
vector of the NN parameters, Θ = (vec(W1),b1, . . . , vec(WL),bL), is obtained. Θ uniquely
identifies the trained NN. Given Θ, we aim to quantify the robustness of the corresponding NN, to
perturbations in the input variables. Let FX denote the cumulative distribution function (cdf) of X,

X ∼ FX, (4.3)

1The operation vec : Rnl−1×nl → Rnl−1·nl stacks the columns of a matrix one after another.
2We use the convention of denoting random quantities with capital letters and their realizations (observed) by lowercase

letters.

70

4.3 Our Approximation Approach

where X ∈ Rn0 are the randomly perturbed input variables. We assume X has probability density
function (pdf) φ(x) that is piecewise continuous and bounded on a compact support. We study the
propagation of uncertainty (effect of the random perturbation) in the NN by deriving upper and
lower bounds of the cdf F �Y(y) = P(?Y ≤ y) of the random output, ?Y = fL(X | Θ).3

Our contributions:

1. We develop a method to compute the exact cdf of the output of ReLU NNs with random input
pdf, which is a piecewise polynomial over a compact hyperrectangle. This result, which can
be viewed as a stochastic analog to the Stone-Weierstrass theorem,4 significantly contributes
to the characterization of the distribution of the output of NNs with piecewise linear activation
functions under any input continuous pdf.

2. We derive guaranteed upper and lower bounds of the NN output distribution resulting from
random input perturbations on a given support. This provides exact upper and lower bounds
for the output cdf provided the input values fall within the specified support. No prior
knowledge about the true cdf is required to guarantee the validity of our bounds.

3. We show the convergence of our bounds to the true cdf; that is, our bounds can be refined to
arbitrary accuracy.

4. We provide a constructive proof that any feedforward NN with continuous monotonic piece-
wise twice continuously differentiable5 activation functions can be approximated from above
and from below by a fully connected ReLU network, achieving any desired level of accuracy.
Moreover, we enable the incorporation of multivariate operations such as max, product and
softmax, as well as some non-monotonic functions such as |x| and xn, n ∈ N.

5. We prove a new universal distribution approximation theorem (UDAT), which states that
we can estimate the cdf of the output of any continuous function of a random variable (or
vector) that has a continuous distribution supported on a compact hyperrectangle, achieving
any desired level of accuracy.

4.3 Our Approximation Approach

We aim to estimate the cdf F �Y(y) of the output ?Y = fL(X | Θ) of the NN in (4.2) under (4.3); i.e.,
subject to random perturbations of the input X. We do so by computing upper and lower bounds of
F �Y; that is, we compute F �Y, F �Y such that

F �Y(y) ≤ F �Y(y) ≤ F �Y(y), ∀y (4.4)

We refer to the NN in (4.2) as prediction NN when needed for clarity. We estimate the functionsF �Y,
F �Y on a “superset” of the output domain of the prediction NN (4.2) via an integration procedure.

3The notation fL(X | Θ) signifies that Θ, equivalently the NN, is fixed and only X varies.
4A significant corollary to the Stone-Weierstrass theorem is that any continuous function defined on a compact set can

be uniformly approximated as closely as desired by a polynomial.
5A wide class of the most common continuous activation functions, including ReLU, tanh and logistic function.

71

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

0.25 0.20 0.15 0.10 0.05 0.00

Outcome of the first element of the NN

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

 V
al

u
e

Exact cdf

Empirical cdf

Figure 4.1: Exact CDF of the ReLU neural network outcome for the class Setosa in the Iris problem, assuming
Beta-distributed inputs.

The cdf of ?Y is given by

F �Y(y) = P(?Y ≤ y) =

ˆ
{ �Y≤y}

φ(x)dx, (4.5)

where φ(x) is the pdf of X. To bound F �Y, we bound φ by its upper (φ) and lower (φ) estimates on
the bounded support of φ as described in Section 4.3.4. If φ is a piecewise polynomial, then (4.5)
can be computed exactly for a ReLU prediction network, as we show in Section 4.3.1. Once φ, φ
are estimated, then

F �Y (y) =
ˆ
{ �Y≤y}

φ(x)dx ≤ F �Y(y) ≤
ˆ
{ �Y≤y}

φ(x)dx = F �Y(y)

Remark 1. F �Y(y) and F �Y(y) are not always true cdfs since we allow the lower estimator not to
achieve 1, while the upper bound is allowed to take the smallest value greater than 0.

4.3.1 Exact cdf evaluation for a fully connected NN with ReLU activation
function

Definition 6 (Almost disjoint sets). We say that sets A and B are almost disjoint with respect to
measure α, if α(A ∩ B) = 0.

Definition 7 (Closed halfspace). A n0-dimensional closed halfspace is a set H = {x ∈ Rn0 |vTx ≤
c} for c ∈ R and some v ∈ Rn0 , which is called the normal of the halfspace.

It is known that a convex polytope can be represented as an intersection of halfspaces, called
H-representation [Zie95].

72

4.3 Our Approximation Approach

Definition 8 (H-polytope). A n0-dimensional H-polytope P =
h&

j=1
Hi is the intersection of finitely

many closed halfspaces.

Definition 9 (Simplex). An0-dimensional simplex is an0-dimensional polytope withn0+1 vertices.

Definition 10 (Piecewise polynomial). A function p : K → RnL is a piecewise polynomial, if there

exists a finite set of n0-simplices such that K =
qA

i=1
ki and the function p constrained to the interior

koi of ki is a polynomial; that is, p
CC
koi

: koi → RnL is a polynomial for all i = 1, . . . , q.

Remark 2. We do not require piecewise polynomials to be continuous everywhere on the hyperrect-
angle. Specifically, we allow discontinuities at the borders of simplices. However, the existence of
left and right limits of the function at every point on the bounded support is guaranteed by properties
of polynomials.

[RPK+17] showed that ReLU deep networks divide the input domain into activation patterns
(see [SKS+20]) that are disjoint convex polytopes {Pj} over which the output function is locally
represented as the affine transformation fL(x) = NN j(x) = cj+Vjx forx ∈ {Pj}, the number of
which grows at the order O((max{nl}l=1,...,L)

n0L). [SKS+20] outline an algorithm for extracting
the full set of polytopes and determining local affine transformations, including the coefficients
cj ,Vj for all {Pj}, by propagating through the layers. For our computations, we utilize a recent
GPU-accelerated algorithm from [Ber23].

We aim to derive a superset of the range of the network output. For this, we exploit the technique of
Interval Bound Propagation (IBP), based on ideas from [GDS+18; WAP+22; GMD+18]. Propagating
the n0-dimensional box through the network leads to the superset of the range of the network output.
We compute the cdf of the network’s output at each point of a grid of the superset of the output
range.

Theorem 9 (Exact cdf of ReLU NN w.r.t. piecewise polynomial pdf). Let ?Y : Rn0 → RnL be a
feed-forward ReLU neural network, which splits the input space into a set of almost disjoint polytopes
{Pj}qYj=1 with local affine transformations ?Y(x) = NN j(x) for x ∈ Pj . Let φ(x) denote the pdf
of the random vector X that is a piecewise polynomial with local polynomials, φ(x) = φi(x) for
all x ∈ koi over an almost disjoint set of simplices {ki}qφi=1, and a compact hyperrectangle support
K ⊂ Rn0 . Then, the cdf of ?Y is

F �Y(y) = P
� ?Y ≤ y

�
=

qφ=
i=1

qY=
j=1

I �
φi(x);Pr

j,i

=

qφ=
i=1

qY=
j=1

Si,j=
s=1

I [φi(x); Ti,j,s] ,

where I [φi(x); Ti,j,s] is the integral of the polynomial φi(x) over the simplex Ti,j,s such that the
reduced polytope

Pr
j,i = Pj ∩ ki ∩ {x : NN j(x) ≤ y} =

Si,j@
s=1

Ti,j,s (4.6)

is defined by the intersection of polytopes Pj and ki, and the intersection of halfspaces

{x : NN j(x) ≤ y} =

nL%
t=1

�
x : NN j

t (x) ≤ yt

�
.

73

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Proof. Suppose the activation function in the prediction NN (4.2) is ReLU and n0 and nL are the
number of input and output neurons, respectively. The integral of a function over a given domain can
be expressed as the sum of integrals over a partition of the domain (disjoint subdomains whose union
constitutes the original domain). To compute the cdf of ?Y = fL(x) at y, F �Y(y) = Pr[fL(x) ≤ y],
we compute the sum of P[NN j(x) ≤ y | x ∈ Pj], each of which is the integral of the pdf of
the input over the given polytopes subject to NN j(x) ≤ y. These sets of polytopes {Pj} and the
corresponding local affine transformations {NN j(x)} always exist, as shown in [RPK+17].
Pj is a convex polytope and can be represented as the intersection of halfspaces (see [Zie95]).

The set {x : NN j(x) = cj +Vjx ≤ y} is defined as the intersection of halfspaces

nL%
t=1

x : NN j

t (x) = cjt +

n0=
z=1

xzv
j
t,z ≤ yt

�
,

which when intersected with Pj defines the reduced complex polytope Pr
j,i. The desired local

probability, P[NN j(x) ≤ y | x ∈ Pj], can be found as the integral of the pdf of X over the reduced
polytope.

Using the Delaunay triangulation (see [Del34]) one can decompose any convex polytope Pr
j,i

into a disjoint set of simplices Ti,j,s. This triangulation allows us to compute the integral over
the polytope as a sum of integrals over each simplex. Assuming that the pdf of the input is a
piecewise polynomial allows us to use the algorithm from [Las21] to compute exact integrals over
all simplices. The sum of all these localized integrals (probabilities) is the exact cdf value at point
y.

The proof relies on the algorithm for evaluating the integral of a polynomial over a simplex,
as described in [Las21], justifying its applicability. The right-hand side of (4.6) results from
the Delaunay triangulation [Del34], dividing the reduced polytope Pr

j,i into Si,j almost disjoint
simplices.

Remark 3. Theorem 9 is a tool for approximating the output cdf of any feedforward neural network
with piecewise linear activation functions on a compact domain, given random inputs with arbitrary
continuous distribution at any desired degree of accuracy (see 4).

Remark 4. Theorem 9 serves as an applicable tool for deriving the exact cdf of the ReLU neural
network on a compact support with a piecewise polynomial pdf. This contrasts with Theorem 2 from
[KHM+24], which provides a formal theoretical result for computing the pdf of a piecewise affine
function of a random variable with a piecewise pdf but does not offer a practical method for exact
computation. Specifically, [KHM+24] offer no method to evaluate the underlying integral, except
for the special case of a piecewise constant input pdf, as done later in their Theorem 3.

Example 6. We compute the output cdf of a 3-layer, 12-neuron fully connected ReLU neural network
with the last (before softmax) linear 3-neuron layer trained on the Iris dataset [Fis36]. The Iris
dataset consists of 150 samples of iris flowers from three different species: Setosa, Versicolor, and
Virginica. Each sample includes four features: Sepal Length, Sepal Width, Petal length, and Petal
width. We focused on two features, Sepal Length and Sepal Width (scaled to [0, 1]), classifying
objects into three classes. Specifically, we recovered the distribution of the first component (class

74

4.3 Our Approximation Approach

Setosa) before applying the softmax function, assuming Beta-distributed inputs with parameters
(2, 2) and (3, 2). The exact cdf is plotted in purple in Figure 4.1, with additional details provided
in Section 4.4.1. The agreement with the empirical cdf is almost perfect.

4.3.2 Algorithm for Upper and Lower Approximation of the Neural Network
using ReLU activation functions.

Theorem 10. Let ?Y be a feedforward neural network with L layers of arbitrary width with contin-
uous activation functions. There exist sequences of fully connected ReLU neural networks {Y n},
{Y n}, which are monotonically decreasing and increasing, respectively, such that for any ϵ > 0
and any compact hyperrectangle K ⊂ Rn0 , one can find N ∈ N such that for all n ≥ N

0 ≤ ?Y (x)− Y n(x) < ϵ, 0 ≤ Y n(x)− ?Y (x) < ϵ

for all x ∈ K.

Proof. Since ?Y is a feedforward neural network with continuous activation functions on a compact
support, for any ϵ > 0, let {ϵn}, ϵ > ϵn > 0 be a decreasing sequence. By the universal
approximation theorem (UAT) [HSW89], there exists a sequence of ReLU networks {Yϵn}, such
that

sup
K

∥?Y (x)− Yϵn(x)∥Rn0 < ϵn.

Setting Y ′
n(x) = Yϵn(x)− ϵn and Y

′
n(x) = Yϵn(x) + ϵn, we have

Y ′
n(x) ≤ ?Y (x) ≤ Y

′
n(x).

Now, we let Y n(x) = max1≤i≤n Y
′
n(x), which is still not greater than ?Y (x), and Y n(x) =

min1≤i≤n Y
′
n(x), which is still not smaller than ?Y (x). One can see that {Y n} and {Y n} are

monotonically decreasing and increasing, respectively. It should be noted that the min and max
operators can be represented as ReLU networks (see Fig. 4.4), and the composition of ReLU
networks is itself a ReLU network.

Definition 11. Let Ω = [a, a] ⊂ R be a closed interval and g : Ω → R is well-defined, continuous
on Ω. We will say that g is piecewise twice continuously differentiable on Ω, that is g ∈ C2

p.w.(Ω),
if there exists a finite partition of Ω into closed subintervals

An
i=1 [ai, ai+1] = Ω where a = a1 <

a2 < . . . < an+1 = a and n ∈ N, such that g
CC
[ai,ai+1]

is twice continuously differentiable.

We develop an approach to approximate the activation functions of a neural network provided
they are non-decreasing continuous functions in C2

p.w.(Ωi) at each node i, where Ωi is the input
domain of node i. Consequently, the output of the neural network is approximated using the ReLU
activation function to create piecewise linear upper and lower bounds. These bounds approximate
the true activation function, making the neural network more analyzable. This method provides
a constructive proof for the restricted case of Theorem 10 for non-decreasing activation functions
from C2

p.w. and applies to any fully connected or convolutional (CNN) feedforward neural network
with non-decreasing continuous piecewise twice continuously differentiable activation functions
analyzed on a hyperrectangle. The key features of our approach are:

75

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

• Local adaptability: The algorithm adapts to the curvature of the activation function, provid-
ing an adaptive approximation scheme depending on whether the function is locally convex
or concave.

• Streamlining: By approximating the network with piecewise linear functions, the complexity
of analyzing the network output is significantly reduced.

How it works:

Input/Output range evaluation: Using IBP [GDS+18], we compute supersets of the input and
output ranges of the activation function for every neuron and every layer.

Segment Splitting: First, input intervals are divided into macro-areas based on inflection points
(different curvature areas) and points of discontinuity in the first or second derivative (e.g., 0 for
ReLU). Next, these macro-areas are subdivided into intervals based on user-specified points or their
predefined number within each range. The algorithm utilizes knowledge about the behavior of the
activation function and differentiates between concave and convex regions of the activation function,
which impacts how the approximations are constructed and how to choose the points of segment
splitting. A user defines the number of splitting segments and the algorithm ensures the resulting
disjoint sub-intervals are properly ordered and on each sub-interval the function is either concave
or convex. If the function is linear in a given area, it remains unchanged, with the upper and lower
approximations equal to the function itself.

Upper and Lower Approximations: The method constructs tighter upper and lower bounds
through the specific choice of points and subsequent linear interpolation. It calculates new points
within each interval (one per interval) and uses them to refine the approximation, ensuring the linear
segments closely follow the curvature of the activation function.

The method guarantees that the piecewise linear approximation of the activation function for each
neuron (a) is a non-decreasing function, and (b) the output domain remains the same.

To see this, consider a neuron of a layer. For upper (lower) approximation on a convex (concave)
segment, we choose a midpoint alin_int

k′ = (ak + ak+1)/2 for each subinterval [ak, ak+1] and
compute a linear interpolation, as follows:

κ1 =
f(alin_int

k′)− f(ak)

alin_int
k′ − ak

, κ2 =
f(ak+1)− f(alin_int

k′)

ak+1 − alin_int
k′

,

?f lin_int(τ) =

����
f(ak) + (τ − ak)κ1, τ ∈

�
ak, a

lin_int
k′

�
f(alin_int

k′) + (τ − ak′)κ2, τ ∈
�
alin_int
k′ , ak+1

�
For upper (lower) approximation on a concave (convex) segment, we compute derivatives and look
for tangent lines at border points of the sub-interval [ak, ak+1]. We choose a point apie_tan

k′ : ak ≤
apie_tan
k′ ≤ ak+1 to be the intersection of the tangent lines. The original function is approximated

76

4.3 Our Approximation Approach

0.0
0.2

0.4
0.6

0.8
1.0

Feature 1 (Sepal Length)

0.0
0.2

0.4
0.6

0.8
1.0

 Feature 2 (Sepal Width)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5N
N

 o
u
tp

u
t (S

e
to

s
a
)

0.0
0.2

0.4
0.6

0.8
1.0

Feature 1 (Sepal Length)

0.0
0.2

0.4
0.6

0.8
1.0

 Feature 2 (Sepal Width)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

N
N

 o
u
tp

u
t (S

e
to

s
a
)

Figure 4.2: Tanh NN output for the Setosa class (blue) in the Iris dataset, and its ReLU NN upper (red) and
lower (green) approximations with 5 (left panel) and 10 (right panel) segments of bounding per
convex section.

by the following two tangent line segments:

apie_tan
k′ =

f(ak)− f(ak+1)− (f ′
+(ak)ak − f ′−(ak+1)ak+1)

f ′−(ak+1)− f ′
+(ak)

?fpie_tan(τ) =

����
f(ak) + f ′

+(ak)(τ − ak), τ ∈
�
ak, a

pie_tan
k′

�
f(ak+1) + f ′−(ak+1)(τ − ak+1), τ ∈

�
apie_tan
k′ , ak+1

�
,

where f ′−(·), f ′
+(·) are left and right derivatives, respectively.

For monotonically increasing functions, this procedure guarantees that the constructed approxi-
mators are exact upper and lower approximations. Moreover, decreasing the step size (increasing the
number of segments) reduces the error at each point, meaning that the sequences of approximators
for the activation functions at each node are monotonic, that is fn+1(x) ≤ fn(x), fn+1

(x) ≥ f
n
(x)

for all x in the IBP domain. This procedure of piecewise linear approximation of each activation
function in each neuron is equivalent to the construction of a one-layer ReLU network for a given
neuron which will approximate it. By the UAT, for any continuous activation function σl,i at each
neuron and any positive ϵl,i we can always find a ReLU network-approximator NNl,i, such that
|NNl,i(x) − σl,i(x)| < ϵl,i for all x in the input domain, defined by the IBP. To find such an
approximating network we need to choose the corresponding number of splitting segments of the
IBP input region. Additionally, uniform convergence is preserved by Dini’s theorem, which states
that a monotonic sequence of continuous functions that converges pointwise on a compact domain
to a continuous function also converges uniformly. Moreover, the approximator always stays within
the range of the limit function, ensuring that the domain in the next layer remains unchanged and
preserves its uniform convergence.

Transformation into ReLU-Equivalent Form: The approximating piecewise linear upper-
lower functions are converted into a form that mimics the ReLU function’s behavior; i.e., f̃(x) =

77

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

W (2)ReLU(W (1)x+ b(1)) + b(2). This involves creating new weighting coefficients and intercepts
that replicate the ReLU’s activation pattern across the approximation intervals.

Specifically, we receive a set of intervals {[xi−1, xi]}ni=1 with the corresponding set of parameters
of affine transformations {(ai, bi)}ni=1:?f(τ) = bi + aiτ, τ ∈ [xi−1, xi] ,

and additionally set a0 = 0. Then, the corresponding ReLU-equivalent definition of approximation?f on [x0, xn] is

?f(τ) = x0a1 + b1 +

n=
i=1

ξiReLU(|ai − ai−1|(τ − xi−1)),

ξi = sign(ai − ai−1).

Full Neural Network Approximation: The entire NN is approximated by applying the above
techniques to each neuron, layer by layer, and then merging all intermediate weights and biases. For
each neuron, both upper and lower approximations are generated, capturing the range of possible
outputs under different inputs. To ensure the correct propagation of approximators, to create an
upper approximation, we connect the upper approximation of the external layer with the upper
approximation of the internal subnetwork if the internal subnetwork has a positive coefficient, or
with the lower approximation if it has a negative coefficient. The reverse applies to the lower
approximation. This leads to a composition of uniformly convergent sequences, guaranteeing the
overall uniform convergence of the final estimator to the original neural network. The final output
is a set of piecewise linear approximations that bound the output of the original neural network,
which can then be used for further analysis or verification.

Example 7. Using the same setup as in Example 6, we train a fully connected neural network with
3 layers of 12 neurons each with tanh activation followed by 1 layer of 3 output neurons with linear
activation on the Iris dataset, focusing on the re-scaled features Sepal Length and Sepal Width. We
construct upper and lower approximations of the network’s output by ReLU neural networks with
linear output layer. Two approximations are performed: with 5 and 10 segments of bounding per
convex section at each node (left and right panels of Figure 4.2, respectively). Notably, with 10
segments, the original network and its approximations are nearly indistinguishable.

This procedure applies to various non-monotonic functions, such as monomials xn, n ∈ N.
These functions can be attained by a sequence of transformations that ensure monotonicity at
all intermediate steps. These transformations can be represented as a subnetwork. Furthermore,
multivariate functions like softmax and the product operation also have equivalent subnetworks
with continuous monotonic transformations, as shown next.

Square. The quadratic function x2 is not monotone on an arbitrary interval. But x2 is monotonic
on [0,∞). We can modify the form of the function by representing it as a subnetwork to be a
valid set of sequential monotonic operations. Since x2 = |x|2, x ∈ R, and the output range of
|x| is exactly [0,∞), we represent |x| as a combination of monotonic ReLU functions, |x| =
ReLU(x) + ReLU(−x). The resulting subnetwork is drawn in Figure 4.3a.

78

4.3 Our Approximation Approach

𝒙
𝑹𝒆𝑳𝑼(𝒀)

𝟏
-𝟏 𝒀𝟐𝑹𝒆𝑳𝑼(𝒀) 𝟏

𝟏 = 𝒙𝟐
(a) Subnetwork equivalent to operation of taking a

square.

= 𝒙𝟏 ⋅ 𝒙𝟐
𝒙𝟏
𝒙𝟐

𝑹𝒆𝑳𝑼(𝒀)
𝑹𝒆𝑳𝑼(𝒀)
𝑹𝒆𝑳𝑼(𝒀)
𝑹𝒆𝑳𝑼(𝒀)
𝑹𝒆𝑳𝑼(𝒀)
𝑹𝒆𝑳𝑼(𝒀)

𝟏
-𝟏
𝟏
-𝟏

𝟏
-𝟏
𝟏
-𝟏

𝟏
𝟏
𝟏
𝟏
𝟏
𝟏

𝒀𝟐

𝒀𝟐

𝒀𝟐

𝒀
-𝟎. 𝟓
𝟎. 𝟓

-𝟎. 𝟓

(b) Subnetwork equivalent to the product operation.

Figure 4.3

Product of two values. To find a product of two values x1 and x2 one can use the formula
x1 · x2 = 0.5 · ((x1 + x2)

2 − x21 − x22). This leads us to the feedforward network structure in
Figure 4.3b.

Maximum of two values. The maximum operation can be expressed via a subnetwork with
ReLU activation functions only, as follows. Observing thatmax{x1, x2} = 0.5·(x1+x2+|x1−x2|)
results in the corresponding network structure in Figure 4.4.

= 𝐦𝐚𝐱{𝒙𝟏, 𝒙𝟐}𝒙𝟏
𝒙𝟐

𝑹𝒆𝑳𝑼(𝒀)

𝑹𝒆𝑳𝑼(𝒀)

𝑹𝒆𝑳𝑼(𝒀)

𝑹𝒆𝑳𝑼(𝒀)

-𝟏
𝟏
𝟏

𝟏
𝒀

𝟎. 𝟓𝟎. 𝟓 -𝟎. 𝟓-𝟎. 𝟓𝟎. 𝟓-𝟎. 𝟓-𝟎. 𝟓𝟎. 𝟓

Figure 4.4: Subnetwork equivalent to a maximum of two values.

Softmax. The function softmax transforms a vector of real numbers to a probability distribution.
That is, if x = (x1, . . . , xn) ∈ Rn, then there is a multivariate function SfMax : Rn −→ Rn, so
that

SfMaxi = softmax(xi) =
exi

n>
j=i

exj

79

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Then, log(SfMaxi) = xi− log
n>

j=i
exj , which is a composition of monotonic functions. This leads

to the feedforward network structure in Figure 4.5.

𝒙𝟐

= 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒙𝟏)

𝒙𝟏 𝒆𝒀𝟏

𝒙𝒏
𝒆𝒀

𝒆𝒀
𝒀
𝒀
𝒀

𝒍𝒐𝒈(𝒀)𝟏
𝟏 𝟏

𝟏
𝟏 𝒀

𝒀
𝒀

𝟏
𝟏
𝟏

𝟏𝟏
𝟏

𝒀
𝒀
𝒀

𝟏
𝟏
𝟏

-𝟏
-𝟏

-𝟏
𝒆𝒀
𝒆𝒀

𝒆𝒀

𝟏
𝟏
𝟏

= 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒙𝟐)
= 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒙𝒏)

Figure 4.5: Subnetwork equivalent to one softmax node.

4.3.3 Convergence of the approximation
The main result of this section is Theorem 13 that shows that the upper and lower ReLU bounds
converge uniformly and monotonically to the target NN. The proof requires a several steps that are
shown in the following lemmas.

Lemma 2. Let ak, ak+1 ∈ R with ak+1 > ak and assume f : [ak, ak+1] → R is twice
continuously differentiable, monotone increasing and strictly convex (concave) on [ak, ak+1].
Then the values of the linear interpolation and piecewise tangent approximation at boundary
points coincide with the original function. That is, ?f lin_int(ak) = ?fpie_tan(ak) = f(ak) and?f lin_int(ak+1) = ?fpie_tan(ak+1) = f(ak+1).

Proof. ?f lin_int(ak) = f(ak) + (ak − ak)κ1 = f(ak),

?f lin_int(ak+1) = f(alin_int
k′) + (ak+1 − alin_int

k′)κ2

= f(alin_int
k′) + (ak+1 − alin_int

k′)
f(ak+1)− f(alin_int

k′)

ak+1 − alin_int
k′

= f(ak+1),

?fpie_tan(ak) = f(ak) + f ′
+(ak)(ak − ak) = f(ak),

?fpie_tan(ak+1) = f(ak+1) + f ′
−(ak+1)(ak+1 − ak+1) = f(ak+1).

80

4.3 Our Approximation Approach

Lemma 3. Let [ak, ak+1] ∈ R be a closed interval with ak+1 > ak, and let f : [ak, ak+1] → R
be twice continuously differentiable, monotonically increasing, and strictly convex (or concave) on
[ak, ak+1]. Then, the intermediate points lie strictly within the interval [ak, ak+1], ak < alin_int

k′ <

ak+1 and ak < apie_tan
k′ < ak+1, and the functions of linear interpolation and piecewise tangent

approximation are continuous on [ak, ak+1].

Proof. For linear interpolation, the statement follows immediately from the definition. Specifically,
for the midpoint interpolation, we have

alin_int
k′ =

ak + ak+1

2
,

ak <
ak + ak+1

2
< ak+1.

For piecewise tangent approximation, we define apie_tan
k′ as

apie_tan
k′ =

f(ak)− f(ak+1)−
)
f ′
+(ak)ak − f ′−(ak+1)ak+1

0
f ′−(ak+1)− f ′

+(ak)
.

Consider first the case where f is convex on [ak, ak+1]. By the convexity of f , we have the inequality

(ak − ak+1)f
′
−(ak+1) < f(ak)− f(ak+1) < (ak − ak+1)f

′
+(ak).

Adding the terms f ′−(ak+1)ak+1 − f ′
+(ak)ak to each part of the inequality, we get

akf
′
−(ak+1)− akf

′
+(ak) < f(ak)− f(ak+1)− f ′

+(ak)ak + f ′
−(ak+1)ak+1

< ak+1f
′
−(ak+1)− ak+1f

′
+(ak).

Since the denominator of apie_tan
k′ , i.e., f ′−(ak+1)−f ′

+(ak), is strictly positive by convexity, dividing
the entire inequality by this denominator yields

ak < apie_tan
k′ < ak+1.

In the case where f is concave on [ak, ak+1], we have a similar inequality:

(ak+1 − ak)f
′
−(ak+1) < f(ak+1)− f(ak) < (ak+1 − ak)f

′
+(ak).

Adding the terms f ′
+(ak)ak − f ′−(ak+1)ak+1 to each part of the inequality, we get

akf
′
+(ak)− akf

′
−(ak+1) < f(ak+1)− f(ak) + f ′

+(ak)ak − f ′
−(ak+1)ak+1

< ak+1f
′
+(ak)− ak+1f

′
−(ak+1).

Since the denominator f ′−(ak+1) − f ′
+(ak) of apie_tan

k′ is strictly negative for concave functions,
dividing the entire inequality by this negative denominator yields

ak < apie_tan
k′ < ak+1.

81

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Next, we show that the interpolation functions are continuous at the intermediate point. For linear
interpolation, we check the continuity by verifying that the two parts meet at alin_int

k′ . We have

f(alin_int
k′) = f(alin_int

k′) + (alin_int
k′ − alin_int

k′)κ2
right
= ?f lin_int(alin_int

k′),

left
= f(ak) + (alin_int

k′ − ak)κ1 = f(ak) + (alin_int
k′ − ak)

f(alin_int
k′)− f(ak)

alin_int
k′ − ak

= f(alin_int
k′).

Thus, the two parts of the linear interpolation meet at alin_int
k′ , and ?f lin_int is continuous at alin_int

k′ .
For piecewise tangent approximation, we check that the left and right parts meet at apie_tan

k′ . From
the left, we have

?fpie_tan(τ) = f(ak) + f ′
+(ak)(τ − ak), τ ∈ [ak, a

pie_tan
k′].

Substituting τ = ak′ , we get

?fpie_tan(a−k′) = f(ak) + f ′
+(ak)(a

−
k′ − ak).

From the right, we have

?fpie_tan(τ) = f(ak+1) + f ′
−(ak+1)(τ − ak+1), τ ∈ [apie_tan

k′ , ak+1].

Substituting τ = ak′ , we get

?fpie_tan(a+k′) = f(ak+1) + f ′
−(ak+1)(a

+
k′ − ak+1).

Setting these equal, we have

f(ak) + f ′
+(ak)(ak′ − ak) = f(ak+1) + f ′

−(ak+1)(ak′ − ak+1).

Solving for ak′ , we obtain

ak′ =
f(ak)− f(ak+1)− (akf

′
+(ak)− ak+1f

′−(ak+1))

f ′−(ak+1)− f ′
+(ak)

= apie_tan
k′ .

This confirms the continuity of ?fpie_tan(τ) at apie_tan
k′ .

Lemma 4. Let ak+1 > ak and [ak, ak+1] ⊂ R, and let f : [ak, ak+1] → R be a twice continu-
ously differentiable, monotonically increasing, and strictly convex (or strictly concave) function on
[ak, ak+1]. Then, the estimating functions defined by linear interpolation ?f lin_int and piecewise
tangent approximation ?fpie_tan are non-decreasing on [ak, ak+1].

Proof. We prove that both local estimators are non-decreasing functions.
Case 1: Linear Interpolation. The slopes of the linear interpolation segments are given by

κ1 =
f(alin_int

k′)− f(ak)

alin_int
k′ − ak

> 0, κ2 =
f(ak+1)− f(alin_int

k′)

ak+1 − alin_int
k′

> 0.

82

4.3 Our Approximation Approach

Since the original function f is non-decreasing and ak < alin_int
k′ < ak+1, as established by Lemma

3, both slopes are non-negative, ensuring that the interpolated function is non-decreasing.
Case 2: Piecewise Tangent Approximation. The derivatives of both the left and right segments

of the piecewise tangent approximation are non-negative due to the increasing nature of the approx-
imated function. Furthermore, by Lemma 3, we have ak < apie_tan

k′ < ak+1, and the approximation
remains continuous everywhere. Since both segments are non-decreasing linear functions, their
combination also results in a non-decreasing estimator over [ak, ak+1].

Thus, both estimation methods preserve the monotonicity of f .

Lemma 5. Let [a, a] ⊂ R be a closed interval, and let f : [a, a] → R be a continuous function
satisfying f ∈ C2

p.w.([a, a]). Assume that there exist points a = a1 < a2 < · · · < an+1 = a
for some n ∈ N such that f is twice continuously differentiable, monotonically increasing, and
either strictly convex, strictly concave, or linear on each subinterval [ak, ak+1] for 1 ≤ k ≤ n.
Then, the approximation method described in Section 4.3.2 constructs a continuous, non-decreasing
estimating function ?f(x) over the entire interval [a, a].

Proof. The claim follows from the following observations:

a) Each subinterval [ak, ak+1] is suitable for approximating f using either linear interpolation,
piecewise tangent approximation, or local linear approximation.

b) All the methods mentioned in (a) ensure that the estimator matches the original function at
the boundary points of each subinterval, by Lemma 2.

c) The approximations described in (a) are continuous within their respective subintervals (see
Lemma 3).

d) The methods in (a) produce non-decreasing functions within each subinterval (see Lemma 4).

By sequentially linking the estimators across all segments {[ak, ak+1]}, we obtain a continuous,
non-decreasing, piecewise linear function ?f(x) over [a, a].

Lemma 6 (Image of the local estimator). Let f : [a, a] → R be continuous, f ∈ C2
p.w.([a, a])

with a = a1 < a2 < . . . < an+1 = a for n ∈ N, such that f
CC
[ak,ak+1]

is twice continuously
differentiable, monotonic increasing and either strictly convex (concave), or linear on [ak, ak+1] for
1 ≤ k ≤ n. Then the image of the estimating function ?f(x) defined by the approximation method
in Section 4.3.2 coincides with the image of the target function f , that is f([a, a]) = ?f([a, a]).
Proof. Since function f is continuous on a compact [a, a], and monotonic, then it maps [a, a] into
the closed interval (compact) [f(a), f(a)] ∈ R. But the estimator ?f is also continuous monotonic
function [a, a], and by Lemmas 2, 3, f(a) = ?f(a) and f(a) = ?f(a). That is why, the ranges of
values of f and ?f on [a, a] coincide and equal to [f(a), f(a)] ∈ R.

Theorem 11 (Convergence of piecewise linear interpolation [DB18], Ch.5). Suppose that f(x)
has a continuous second derivative in [ak, ak+1], that is f ∈ C2([ak, ak+1]). Let pnint(x) be the
piecewise linear interpolant of (aki , f(aki)) for i = 0, . . . , nint, where

aki = ak + ih, h =
ak+1 − ak

nint
.

83

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Then, the error bound satisfies

∥f − pnint∥∞ = max
x∈[ak,ak+1]

|f(x)− pnint(x)| ≤ Mh2,

where
M = max

[ak,ak+1]
f ′′(x)

Theorem 12 (Convergence of piecewise tangent approximation). Suppose that f ∈ C2([ak, ak+1])
and is strictly convex (or concave) in [ak, ak+1]. Let ?fpie_tan

ntan (x) be the piecewise tangent approxi-
mator over subsegments

�
aki , aki+1

for i = 0, . . . , ntan, where

aki = ak + ih, h =
ak+1 − ak

ntan
.

Then, the error bound satisfies

∥f − ?fpie_tan
ntan

∥∞ = max
x∈[ak,ak+1]

|f(x)− ?fpie_tan
ntan

(x)| ≤ Mh2,

where
M = max

[ak,ak+1]
f ′′(x)

Proof. Each element of the piecewise tangent approximation is the Taylor series expansion of the
first order around the boundary point of the subsegment. We consider the double Taylor series
approximation on the refinement

�
aki , aki+1

of the segment [ak, ak+1] for i = 0, . . . , nint, where

aki = ak + ih, h =
ak+1 − ak

ntan
.

Since for the twice continuously differentiable in
�
aki , aki+1

the Lagrange Remainder of the Taylor

series expansion [Rud76], which represents an error term, can be bounded with

max�
aki ,a

pie_tan
k′
i

� �f(x)− ?fpie_tan(x)
�
≤ Mi1

(apie_tan
k′i

− aki)
2

2
≤ Mi1

(aki+1
− aki)

2

2
,

max�
apie_tan
k′
i

,aki+1

� �f(x)− ?fpie_tan(x)
�
≤ Mi2

(aki+1
− apie_tan

k′i
)2

2
≤ Mi2

(aki+1
− aki)

2

2

where
Mi1 = max�

aki ,a
pie_tan
k′
i+1

� f ′′(x) ≤ max
[ak,ak+1]

f ′′(x) = M

Mi2 = max�
apie_tan
k′
i

,aki+1

� f ′′(x) ≤ max
[ak,ak+1]

f ′′(x) = M

84

4.3 Our Approximation Approach

The maximum M exists and is attainable due to the continuity of the second derivative on a compact
[ak, ak+1]. That is, the maximum error on the whole segment of approximation can be bounded as

M

�
ak+1 − ak

ntan

!2
= Mh2 −−−−−→

ntan→∞ 0

The following lemma demonstrates that the approximation procedure presented in Section 4.3.2
generates sequences of estimators that: i) serve as valid bounds for the target function, and ii)
converge monotonically to the target function. This implies that each new estimator can only
improve upon the previous one.

Lemma 7. Suppose that f ∈ C2([ak, ak+1]) is monotonic increasing and strictly convex (or
concave) on [ak, ak+1]. Let ?f lin_int

n (x) be the piecewise linear interpolant and ?fpie_tan
n (x) be the

piecewise tangent approximator over subsegments
�
aki , aki+1

for i = 0, . . . , 2n, where

aki = ak + ih, h =
ak+1 − ak

2n
,

with n ∈ N. Then the estimating functions defined by the linear interpolation ?f lin_int
n and piecewise

tangent approximation ?fpie_tan
n define upper (lower) and lower (upper), respectively, bounds on

the target function f . Moreover, { ?f lin_int
n (x)}n and { ?fpie_tan

n (x)}n are non-increasing (non-
decreasing) and non-decreasing (non-increasing) sequences, respectively.

Proof. By the definition of the convex (concave) function,

f(αx1 + (1− α)x2) ≤ (≥)αf(x1) + (1− α)f(x2)

for any α ∈ [0, 1] and x1, x2 from the region of convexity, and plot of the linear interpolant between
any x1, x2 lies above (below) the plot of the function. That is, linear interpolation is always an
upper (lower) approximation of the convex (concave) function.

On the other hand, any tangent line lies below (above) the plot of the convex (concave) function.
Indeed, since on a convex segment the derivative of the function increases, that is f ′

+(aki) ≤
f ′(x) ≤ f ′−(aki+1

) for all x ∈ �
aki , aki+1

, then

f(x) = f(aki) +

xˆ

aki

f ′(t)dt ≥ f(aki) +

xˆ

aki

f ′
+(aki)dt

= f(aki) + f ′
+(aki)(x− aki), x ∈

�
aki , ak′i

�

f(x) = f(aki+1
)−

xˆ

aki+1

f ′(t)dt ≥ f(aki+1
)−

xˆ

aki+1

f ′
−(aki+1

)dt

= f(aki+1
) + f ′

−(aki+1
)(x− aki+1

), x ∈ �
a1′ , aki+1

85

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Similarly, we can show that the piecewise tangent upper bounds the true concave function.
Without loss of generality, we consider the case of a convex segment. We fix n. The current
element of the sequences of piecewise linear interpolants ?f lin_int

n (x) includes the local linear item
based on the interval [t1, t2]. The case of a concave segment is analogous. We define the current
local linear approximation of the element of sequence of upper approximation as

?f lin_int
{t}n (x) = f(t1) + (x− t1)

f(t2)− f(t1)

t2 − t1

Let α be such that 0 ≤ α ≤ 1 and define a new point t as a convex combination t = αt1+(1−α)t2.
Let us show that ?f lin_int

{t}n+1
(x)(x) ≤ ?f lin_int

{t}n (x) for x ∈ [t1, t2], where

?f lin_int
{t}n+1

(x) =

��
f(t1) + (x− t1)

f(t)−f(t1)
t−t1

, x ∈ [t1, t]

f(t) + (x− t)f(t2)−f(t)
t2−t , x ∈ [t, t2]

Taking into account the convex segment,

f(t1) + (x− t1)
f(t)− f(t1)

t− t1
= f(t1) + (x− t1)

f(αt1 + (1− α)t2)− f(t1)

αt1 + (1− α)t2 − t1

≤ f(t1) + (x− t1)
αf(t1) + (1− α)f(t2)− f(t1)

(1− α)(t2 − t1)

= f(t1) + (x− t1)
f(t2)− f(t1)

t2 − t1

f(t) + (x− t)
f(t2)− f(t)

t2 − t
= f(αt1 + (1− α)t2)

+ (x− αt1 + (1− α)t2)
f(t2)− f(αt1 + (1− α)t2)

t2 − αt1 + (1− α)t2

≤ αf(t1) + (1− α)f(t2)

+ (x− t1)
αf(t1) + (1− α)f(t2)− f(t2)

αt1 + (1− α)t2 − t2

+ (t1 − αt1 + (1− α)t2)
αf(t1) + (1− α)f(t2)− f(t2)

αt1 + (1− α)t2 − t2

= f(t1) + (x− t1)
f(t2)− f(t1)

t2 − t1

Since the refinement on each subsegment leads to the reduced next element of the sequence, the
sequence is decreasing on the whole convex segment.

We next consider the piecewise tangent approximation on [t1, t2],

?fpie_tan
{t}n (x) =

f(t1) + f ′

+(t1)(x− t1), x ∈ [t1, t1′] ,

f(a2) + f ′−(t2)(x− t2), x ∈ [t1′ , t2] ,

86

4.3 Our Approximation Approach

where t1′ is the point of intersection of the tangents. If we choose some parameter α, where
0 ≤ α ≤ 1, and define the corresponding intermediate point as t∗ = αt1 + (1 − α)t2, then the
refined approximation is given by:

?fpie_tan
{t}n+1

(x) =

��
f(t1) + f ′

+(t1)(x− t1), x ∈ [t1, t1∗] ,
f(t∗) + f ′(t∗)(x− t∗), x ∈ [t1∗, t2∗] ,
f(t2) + f ′−(t2)(x− t2), x ∈ [t2∗, t2] ,

where t1∗ is the intersection point of the left and middle lines, and t2∗ is the intersection point of
the middle and right lines. We aim to show that ?fpie_tan

{t}n+1
(x)(x) ≥ ?fpie_tan

{t}n (x) for x ∈ [t1, t2].
Thus, the plot of the linear function corresponding to the middle curve lies above that of the

left curve for x > t1∗ and above that of the right curve for x < t2∗ due to the monotonicity of
the estimator, by Lemma 4. Consequently, the refined estimator f

2
coincides with the previous

estimator f
1

on the left and right segments, i.e., for x ∈ [t1, t1∗] and x ∈ [t2∗, t2], while it takes
higher values for x ∈ [t1∗, t2∗]. To confirm this, it remains to show that t1∗ ≤ t1′ ≤ t2∗.

First, we note that t1 ≤ t1′ ≤ t2, by Lemma 3. This automatically leads to t1 ≤ t1∗ ≤ t∗ ≤
t2∗ ≤ t2.

Consider the function
fleft(x) =

xf ′−(x)− f(x)− C

f ′−(x)−K
,

defined on (t1, t2), where C = t1f
′
+(t1)− f(t1) and K = f ′

+(t1). Its derivative is given by

f ′
left(x) =

f ′′(x)(f(x) + C −Kx)

(f ′(x)−K)2
.

The numerator simplifies to

f ′′(x)(f(x) + C −Kx) = f ′′(x)
 	� �
>0

�
f(x)− (f(t1) + f ′

+(t1)(x− t1))

 	� �

>0

,

which is positive due to the convexity of f . This implies that shifting the right boundary t2 to the
left, reaching position t∗, also shifts the intersection point t1′ to the left, reaching t1∗. A similar
argument holds for the right boundary.

The same reasoning applies to the concave segment.

Lemma 8. Let fn : Af → Ag be continuous functions, uniformly convergent to a continuous
function f : Af → Ag on a compact interval Af ⊂ R, and let gn : Ag → A be continuous
functions, uniformly convergent to a continuous function g : Ag → A on a compact interval
Ag ⊂ R. Then the sequence of composition functions gn(fn(x)) converges uniformly to g(f(x))
on Af with n → ∞.

Proof. An outer limit function, g, is uniformly continuous by the Heine–Cantor theorem [Rud76],
since it is continuous and defined on the compact set Ag. That is, for any ϵ1 > 0, there exists ϵ2 > 0
such that

|g(y1)− g(y2)| < ϵ1
2
, whenever y1, y2 ∈ Ag and |y1 − y2| < ϵ2.

87

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Since the sequence {fn(x)} converges uniformly to f(x) on Af , and {gn(y)}converges uniformly
to g(y) on Ag, we can conclude that for any ϵ1 > 0 and ϵ2 > 0, there exists N ∈ N such that for all
n ≥ N , we simultaneously have

|gn(y)− g(y)| < ϵ1
2
, for all y ∈ Ag,

|fn(x)− f(x)| < ϵ2, for all x ∈ Af .

Since the range of possible values of fn(x) coincides with the range of values of f(x), which equals
fi(Af) = Ag, the domain of g, we obtain

|gn(fn(x))− g(f(x))| = |gn(fn(x))− g(fn(x)) + g(fn(x))− g(f(x))|
≤ |gn(fn(x))− g(fn(x))|
 	� �

uniform convergence of the outer

+ |g(fn(x))− g(f(x))|
 	� �
uniform continuity of the outer

<
ϵ1
2

+
ϵ1
2

= ϵ1

Thus, the uniform convergence of the composition follows.

Lemma 9. Let f i
n : Ai → R be continuous functions that converge uniformly to continuous functions

f i : Ai → R on compacts Ai ⊂ R, and let αi ∈ R be constants for i = 1, . . . , nl. Then a linear
combination of sequences, fα,n =

>nl
i αif

i
n, defined on the direct product A = A1× . . .×Anl

⊂
Rnl , converges uniformly to fα =

>nl
i αif

i : A → R, where α = (α1, . . . , αnl
); that is,

sup
x∈A

|fα,n(x)− fα(x)| −−−→
n→∞ 0.

The images of fα,n(A) and fα(A) are compact.

Proof. Since fα,n(A) and fα(A) are linear combinations of continuous functions, defined on
compact sets, they are continuous functions. Also, since a direct product of compact sets is
compact, by the continuous mapping theorem [Rud76], the images of fα,n(A) and fα(A) are also
compact.

If every sequence of functions {f i
n(x

i)} converges uniformly to the corresponding limit function
f i(xi), then for any ϵ > 0, there exists an integer N ∈ N such that for all n ≥ N , we have

sup
xi∈Ai

CCf i
n(x

i)− f i(xi)
CC < ϵ

maxi{αi}nl

for all i = 1, . . . , nl. Consequently, the supremum of the differences in the linear combination can
be bounded as

sup
x∈A

CCfα,n(x)− fα(x)
CC = sup

x∈A

CCCC nl=
i=1

αi(f
i
n(x

i)− f i(xi))

CCCC
≤

nl=
i=1

CCαi

CC sup
xi∈Ai

CCf i
n(x

i)− f i(xi)
CC < ϵ

This establishes the uniform convergence of the linear combination of functions.

88

4.3 Our Approximation Approach

Lemma 10. Let f i
, f i, f i : Ai → R be continuous functions on compact intervals Ai ⊂ R,

satisfying
f i(xi) ≤ f i(xi) ≤ f

i
(xi)

for all xi ∈ Ai and for every i = 1, . . . , nl.
Suppose that the index sets I and J are disjoint and their union forms the full sequence:

I ∪ J = {1, . . . , nl}.
Then, for any coefficients αi, βj ≥ 0 for i ∈ I , j ∈ J , the following inequality holds:=

i∈I
αif

i(xi)−
=
j∈J

βjf
j
(xj) ≤

=
i∈I

αifi(x
i)−

=
j∈J

βjfj(x
j) ≤

=
i∈I

αif
i
(xi)−

=
j∈J

βjf
j(xj),

for all xi ∈ Ai and xj ∈ Aj .

Proof. For any non-negative coefficients αi, βj and given that f
i
(xi) ≤ fi(x

i) ≤ f i(x
i), we derive

the following inequalities:

αif
i(xi) ≤ αif

i(xi) ≤ αif
i
(xi),

−βjf
j
(xj) ≤ −βjf

j(xj) ≤ −βjf
j(xj).

Summing these inequalities over all indices completes the proof.

Lemma 11. Let f, f , f : A → B be continuous functions on a compact interval A ⊂ R, satisfying

f(x) ≤ f(x) ≤ f(x) for all x ∈ A.

Furthermore, let g, g, g : B → R be continuous and monotonically increasing functions on a
compact interval B ⊂ R, satisfying

g(y) ≤ g(y) ≤ g(y) for all y ∈ B.
Then, for all x ∈ A, the following inequality holds:

g(f(x)) ≤ g(f(x)) ≤ g(f(x)).

Proof. By assumption, for any y ∈ B,

g(y) ≤ g(y) ≤ g(y).

Since g(y), g(y), and g(y) are monotonically increasing, it follows that for any y1, y2 ∈ B such that
y1 ≤ y ≤ y2,

g(y1) ≤ g(y) ≤ g(y) ≤ g(y) ≤ g(y2).

Setting y = f(x), y1 = f(x), and y2 = f(x), and using that f(x) ≤ f(x) ≤ f(x) for all x ∈ A,
we obtain the desired result:

g(f(x)) ≤ g(f(x)) ≤ g(f(x)).

89

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

Theorem 13 (Main Theorem: Uniform Monotonic Convergence of the Bounds). The sequences
of estimating functions that are ReLU neural networks generated by the method in Section 4.3.2,
establish upper and lower bounds for the target neural network. These sequences are monotonically
decreasing for the upper bounds and monotonically increasing for the lower bounds, and they
converge uniformly to the target network.

Proof. We establish the uniform monotonic convergence of the bounds by considering several key
properties.

First, we analyze the approximation of neuron domains. Using the concept of over-approximating
the input domain of each neuron (as in IBP [GDS+18]), we define Ωi as a superset of the true input
domain Ωi for each neuron i. It is well known that if a sequence of approximations converges
uniformly on Ωi, it must also converge uniformly on any subset of Ωi, including Ωi. Therefore, we
perform all neuron-wise approximations over the supersets of their original domains.

By Lemma 3, both the upper and lower bounds for each neuron in every layer are continuous
functions over a bounded domain. Additionally, by Lemma 6, the images of these bounds coincide
with the image of the activation function. Since the activation function and its estimators are contin-
uous, and the domain is compact, the output range remains compact throughout the approximation
process. This compactness follows from the continuity of the mapping [Rud76].

Furthermore, the error between the linear interpolation (or piecewise tangent approximation) and
the original activation function converges to zero as the approximation grid is refined, as established
in Theorems 11 and 12. Consequently, the sequence of bounds on the activation function converges
uniformly to the target activation function for all neurons in the network.

By Lemma 6, the image of each activation function is preserved by both the upper and lower
bounds, ensuring that the domain of uniform convergence for the bounds of the outer functions is also
preserved. Moreover, by Lemma 9, the linear combination of these estimators converges uniformly
to the corresponding linear combination of the true activation functions, thereby preserving the
image of the original linear combination. As a result, Lemma 8 guarantees the uniform convergence
of the composed bounds on the outer functions and the linear combinations of the inner functions.

Next, we establish monotonicity. By Lemma 7, the sequences of upper and lower bounds on
the activation functions are monotonic: the upper bounds {fn(x)} are monotonically decreasing,
while the lower bounds {f

n
(x)} are monotonically increasing. Additionally, by construction, these

sequences are bounded by the target function itself, ensuring they remain within the correct range.
By Lemma 10, the linear combination of neurons’ estimators forms the overall upper and lower
bounds for input arguments in subsequent layers.

Moreover, the compositions of the upper and lower bounds for the inner and outer functions
provide valid upper and lower bounds for the composition of the target inner and outer activation
functions. Since the outer activation function (and consequently its bounds, by Lemma 4) is non-
decreasing, Lemma 11 ensures these bounds are valid. Finally, these bounds converge monotonically
by Lemmas 7 and 11.

Combining all the results above, we conclude that the sequences of upper and lower ReLU bounds
for the network converge uniformly and monotonically to the target network. The monotonicity
of the sequences, the uniform convergence of individual approximations, and the preservation of
continuity and compactness through compositions collectively ensure the uniform convergence of
the entire network. This completes the proof.

Remark 5. Although Theorem 10 follows from the UAT, the proof of its particular case, Theorem

90

4.3 Our Approximation Approach

13, is constructive and explicitly provides the sequences that form the bounds.

4.3.4 Application to an arbitrary function on a compact domain

We present a universal distribution approximation theorem, which may serve as a starting point for
further research in the stochastic behavior of functions and the neural networks that describe them.

Theorem 14 (Universal distribution approximation theorem). Let X be a random vector with
continuous pdf φ(x) supported over a compact hyperrectangle K ⊂ Rn0 . Let Y = W(x) be a
continuous function of X with domain K, and let F (y) denote its cdf. Then, there exist sequences
of cdf bounds {Fn}, {Fn}, n = 1, 2, . . ., which can be constructed by bounding the distributions
of sequences of ReLU NNs and such that

Fn(y) ≤ F (y) ≤ Fn(y)

for all y ∈ {W(x) : x ∈ K} and

Fn(y) → F (y), Fn(y) → F (y)

for all y where F (y) is continuous. Moreover, if W(X) is almost surely nowhere locally constant,
that is

ˆ

{W(x)=y}
φ(x)dx = 0 (4.7)

for all y ∈ {W(x) : x ∈ K}, then both bounds Fn, Fn converge uniformly to the true cdf F .

Proof. By the UAT [HSW89], for any ϵ > 0 there exist one-layer networks ?Y , ?φ with ReLU
activation function, such that

sup
x∈K

∥ W(x)− ?Y (x) ∥Rn0< ϵ, sup
x∈K

∥ φ(x)− ?φ(x) ∥Rn0< ϵ.

Define Y n(x) = ?Y (x)− ϵ, which is also a neural network. Similarly, for Y n, φ
n
, φn. Then,

W(x)− 2ϵ ≤ Y n(x) = ?Y (x)− ϵ ≤ W(x) ≤ ?Y (x) + ϵ = Y n(x) < W(x) + ϵ

φ(x)− 2ϵ < φ
n
(x) = ?φ(x)− ϵ ≤ φ(x) ≤ ?φ(x) + ϵ = φn(x) < φ(x) + 2ϵ,

which proves that, as ϵ → 0, Y n, Y n → W and φ
n
, φn → φ, uniformly on a compact domain while

guaranteeing to be upper/lower bounds.
Let

Fn(y) = min

1, ˆ

{x:x∈K∩Y n(x)≤y}
φn(x)dx

 , Fn(y) = max

0, ˆ

{x:x∈K∩Y n(x)≤y}

φ
n
(x)dx

91

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

The limit cdf is

F (y) =

ˆ

{x:x∈K∩Y (x)≤y}
φ(x)dx

Since φ
n
(x) ≤ φ(x) ≤ φn(x) and Y n(x) ≤ W(x) ≤ Y n(x) for any x ∈ K, {x : x ∈

K ∩ Y n(x) ≤ y} ⊇ {x : x ∈ K ∩ W(x) ≤ y} and {x : x ∈ K ∩ Y n(x) ≤ y} ⊆ {x : x ∈
K ∩W(x) ≤ y}. Since 0 ≤ F (y) ≤ 1 for all y,

Fn(y) ≤ F (y) ≤ Fn(y)

for all y ∈ {W(x) : x ∈ K}.
Now let us fix an arbitrary y = W(x) for x ∈ K, such that y is a continuity point of F .

Fn(y)− F (y) ≤
ˆ

{x:x∈K∩Y n(x)≤y}
φn(x)dx−

ˆ

{x:x∈K∩W(x)≤y}
φ(x)dx

=

ˆ

{x:x∈K∩Y n(x)≤y}
(φn(x)− φ(x))dx

 	� �
A

+

ˆ

{x:x∈K∩Y n(x)≤y}
φ(x)dx−

ˆ

{x:x∈K∩W(x)≤y}
φ(x)dx

 	� �
B

F (y)− Fn(y) ≤
ˆ

{x:x∈K∩Y≤y}
φ(x)dx−

ˆ

{x:x∈K∩Y n(x)≤y}

φ
n
(x)dx

=

ˆ

{x:x∈K∩Y n(x)≤y}

(φ(x)− φ
n
(x))dx

 	� �
C

+

ˆ

{x:x∈K∩Y≤y}
φ(x)dx−

ˆ

{x:x∈K∩Y n(x)≤y}

φ(x)dx

 	� �
D

The left integrals in both equations (A and C) converge to zero due to the uniform convergence to
zero of the integrands over the whole set K. The second differences (B and D) converge to zero,
since the superset {x : x ∈ K ∩ Y n(x) ≤ y} and subset {x : x ∈ K ∩ Y n(x) ≤ y} of the limits
of integrals, respectively, converge to the true limit set {x : x ∈ K ∩W(x) ≤ y} due to continuity.

We showed the pointwise convergence at every continuity point of the limiting cdf; that is,
convergence in distribution.

Requiring (4.7) means that the limiting distribution has no point mass; i.e., it is continuous. We
can then apply Polya’s theorem [Rao62] that the convergence of both bounds is uniform since the
sequences converge in distribution to random variables with continuous cdfs.

92

4.4 Experiments

The proof leverages the UAT [HSW89] to approximate the function W(x) and input pdf φ(x)
with ReLU NNs to arbitrary accuracy. Cdf bounds are then computed over polytope intersections,
with greater NN complexity yielding more simplices for finer local affine approximations of the pdf.

To bound the cdf of a given NN with respect to a specified input pdf, we construct upper and lower
bounding ReLU NNs to approximate the target NN. Next, we subdivide the resulting polytopes of
the bounding ReLU NNs into simplices as much as needed to achieve the desired accuracy and
locally approximate the input pdf with constant values (the simplest polynomial form) on these
simplices, transforming the problem into the one described in Section 4.3.1.

4.4 Experiments
In numerical experiments, we consider the following three datasets: Diabetes [EHJ+04], Iris [Fis36]
and Wine [AF92]6.

For all of the experiments, we compare our guaranteed bounds for the output cdf with cdf estimates
obtained via Monte Carlo (MC) simulation (100 million samples), as well as with the “Piecewise
Linear Transformation” (PLT) method of [KHM+24]. Given that the true cdf is contained within
these limits, the experiments assess the tightness of our bounds compared to both MC and PLT by
tallying the number of “out of bounds” instances. Essentially, achieving very tight bounds makes
it challenging to stay within those limits, whereas even imprecise estimates can fall within broader
bounds.

Our experimental setup is based on small pre-trained (fixed) neural networks. For the Diabetes
dataset we trained a ReLU network with 3 fully connected layers with 32, 16, and 8 neurons,
respectively. The univariate output has no activation. Training was performed on 70% of the data,
randomly selected. The remaining 30%, consisting of 73 observations, comprise the test set. As
there is no randomness in the observations, we added univariate normal noise to one randomly
selected feature of every observation (different features in different observations). The standard
deviation of the Gaussian noise is set to the sample standard deviation of the selected feature within
the test set.

For both, Iris and Wine, we replicated the exact experimental setup from [KHM+24] using the
same test sets, Gaussian Mixtures as randomness as well as the same pre-trained networks7. The 1
to 3 dimensional Gaussian mixtures were computed by first deleting 25% or 50% of the test dataset.
Subsequently, 50 new observations are imputed using MICE [vBG11].The only difference in the
experimental setup is the MC estimate, which we recomputed with a higher sample count. Here,
the MC estimate does not play the role of the “ground truth” as in their experiments, but as another
estimate.

We summarize our results in Table 4.1. We observe a high ratio of “out of bounds” samples
for both MC and PLT compared to the number of grid points the cdf was evaluated at. This has
two components: (a) In regions where the cdf is very flat, we obtain very tight bounds leading to
small errors in a bucketed estimation approach easily falling outside these tight bounds; (b) due to
either pure random effect in the case of MC or numerical estimation inaccuracies in case of PLT,
it produces estimates outside the bounds. We note, however, that in these examples, especially as
regards PLT, a “coarse grid” can cause inaccuracies in areas where the pdf is volatile despite that

6All three datasets are provided by the Python package scikit-learn
7GitHub page https://github.com/URWI2/Piecewise-Linear-Transformation, accessed Jan 25, 2025

93

https://scikit-learn.org/stable/
https://github.com/URWI2/Piecewise-Linear-Transformation

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

their estimator targets the pdf directly and it should be more accurate than ours (as our methods goal
is to bound the cdf instead).

Table 4.1: Comparison of our approach (guaranteed upper and lower bounds) with pointwise estimators from
Monte-Carlo simulations and PLT [KHM+24]. Under column headed by n0 are numbers of input
variables, # tests gives the number of observations deleted, under U/L-dist (std) are the mean
distance (standard deviation) upper and lower bounds, under OOBMC (median) and OOBPLT

(median) are the average (standard deviation) of the median of number of points outside our
bounds for Monte-Carlo simulations and PLT, respectively. The grid size we used was 20 raised
to the power of the number of output classes, that is, 20nL .

dataset %unc n0 # tests U/L-dist (std) OOBMC (median) OOBPLT (median) Grid size
diabetes - 1 73 0.01337 (0.005) 7 (7) 18 (19) 20

1 25 0.00988 (0.016) 1093 (1080) 1604 (2148) 8000
iris 25 2 10 0.01236 (0.021) 793 (697) 1528 (2162) 8000

3 – — — — 8000
1 20 0.05534 (0.077) 305 (30) 500 (4) 8000

iris 50 2 23 0.04709 (0.090) 980 (1016) 1312 (2031) 8000
3 8 0.06864 (0.108) 779 (599) 1150 (1000) 8000
1 32 0.02014 (0.055) 1066 (1242) 1708 (2172) 8000

wine 25 2 8 0.00909 (0.017) 1188 (1347) 1839 (2275) 8000
3 2 0.00008 (0.000) 1324 (1324) 2516 (2516) 8000
1 27 0.07590 (0.109) 757 (273) 1027 (45) 8000

wine 50 2 21 0.04214 (0.079) 1031 (1193) 1304 (2057) 8000
3 13 0.06612 (0.102) 550 (128) 797 (40) 8000

4.4.1 Description of the Iris Experiments
We trained a fully connected [3× 12] ReLU NN with a final [1× 3] linear layer, as well as a
fully connected [3× 12] tanh NN with the same final [1× 3] linear layer, on the Iris dataset. The
networks classify objects into three classes: Setosa, Versicolor, and Virginica, using two input
features: Sepal Length and Sepal Width. The allocation of the data for these two variables in the
three classes is shown in Figure 4.6a. The input data were rescaled to be within the interval [0, 1].

Experiment 1: ReLU-Based Network with Random Inputs. The ReLU network was pre-
trained. We next introduced randomness to the input variables by modeling them as Beta-distributed
with parameters (2, 2) and (3, 2), respectively. The pdfs of these input distributions are shown in
Figure 4.6b. The first is symmetric about 0.5 and the second is left-skewed.

In our first experiment, Example 6, we computed the exact cdf of the first output neuron (out of
three) in the ReLU network before applying the softmax function. Due to the presence of a final
linear layer, the output may contain negative values. To validate our computation, we compared
it against a conditional ground truth obtained via extensive Monte Carlo simulations, where the
empirical cdf was estimated using 105 samples. As shown in Figure 4.1, both cdf plots coincide. The

94

4.4 Experiments

cdf values were computed at 100 grid points across the estimated support of the output, determined
via the IBP procedure.

For further comparison, Figure 4.6c presents an approximation of the output pdf based on the
previously computed cdf values. This is compared to a histogram constructed from Monte Carlo
samples. Additionally, we plot the Gaussian kernel density estimate (KDE) of the pdf computed
from the sampled data using a smoothing parameter of h = 0.005. The results indicate that our
pdf approximation better represents the underlying distribution compared to KDE and tracks the
histogram more closely.

Experiment 2: Bounding a Tanh-Based Network with ReLU Approximations. In our
second experiment, we used a pre-trained NN with a similar structure but replaced the ReLU
activation functions in the first three layers with tanh. To approximate this network, we constructed
two bounding fully connected NNs—one upper and one lower—using only ReLU activations.

We conducted computations in two regimes: one using 5 segments and another using 10 segments,
into which both convex and concave regions of the tanh activation function at each neuron in the
first three layers were divided. Over each segment, we performed piecewise linear approximations
according to the procedure described in Section 4.3.2 and combined these approximations into
three-layer ReLU networks with an additional final linear layer for both upper and lower bounds.
The results of these approximations are shown in Figure 4.2. In the 10-segment regime, both the
upper and lower approximations closely align with the original NN’s output.

0.0 0.2 0.4 0.6 0.8 1.0

Feature 1 (Sepal Length)

0.0

0.2

0.4

0.6

0.8

1.0

F
e
a
tu

re
 2

 (
S

e
p

a
l

W
id

th
)

Class 1: setosa

Class 2: versicolor

Class 3: virginica

(a) Plot of Sepal Width vs Sepal Length with class indica-
tion.

0.0 0.2 0.4 0.6 0.8 1.0

Beta support

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

P
D

F
 V

al
u
e

Beta(2, 2): 1(x1) = 6 x1 (1 x1)

Beta(3, 2): 2(x2) = 12 x
2
2 (1 x2)

(b) Plots of the Beta(2, 2) and Beta(3, 2) pdfs, resp.

0.25 0.20 0.15 0.10 0.05 0.00

Outcome of the first element of the NN

0

1

2

3

4

5

6

7

8

P
D

F
 V

al
u
e

KDE Gaussian

Sampled histogram

Estimated pdf

(c) Estimated output pdf compared with KDE with
smoothing parameter h = 0.005 and histogram of MC
simulations.

Figure 4.6: Iris Dataset

95

4 Exact Upper and Lower Bounds for the Output Distribution of NNs with Random Inputs

4.5 Related Work

The literature on NN verification is not directly related to ours as it has been devoted to standard
non-stochastic input NNs, where the focus is on establishing guarantees of local robustness. This
line of work develops testing algorithms for whether the output of a NN stays the same within a
specified neighborhood of the deterministic input (see, e.g., [GDS+18; XSZ+20; ZWC+18; ZCX+20;
SJK+24; BLT+19; FMJ+22; KBD+17; KHI+19; WIZ+24]).

To handle noisy data or aleatoric uncertainty (random input) in NNs, two main approaches
have been proposed: sampling-based and probability density function (pdf) approximation-based.
Sampling-based methods use Monte Carlo simulations to propagate random samples through the NN
(see, e.g., [AWH+15; JRL20]), but the required replications to achieve similar accuracy to theoretical
approaches such as ours, as can be seen in Table 4.1, can be massive. Pdf approximation-based
methods assume specific distributions for inputs or hidden layers, such as Gaussian [AWH+15] or
Gaussian Mixture Models [ZS21], but these methods often suffer from significant approximation
errors and fail to accurately quantify predictive uncertainty. Comprehensive summaries and reviews
of these approaches can be found in sources like [SAS+22] and [GTA+23].

In the context of verifying neural network properties within a probabilistic framework, [WCN+19]
proposed PROVEN, a general probabilistic framework that ensures robustness certificates for neural
networks under Gaussian and Sub-Gaussian input perturbations with bounded support with a given
probability. It employs CROWN [ZWC+18; ZCX+20] to compute deterministic affine bounds and
subsequently leverages straightforward probabilistic techniques based on Hoeffding’s inequality
[Hoe63]. PROVEN provides a probabilistically sound solution to ensuring the output of a NN is the
same for small input perturbations with a given probability, its effectiveness hinges on the activation
functions used. It cannot refine bounds or handle various input distributions, which may limit its
ability to capture all adversarial attacks or perturbations in practical scenarios.

The most relevant published work to ours we could find in the literature is [KHM+24]. They
propagate input densities through NNs with piecewise linear activations like ReLU, without needing
sampling or specific assumptions beyond bounded support. Their method calculates the propagated
pdf in the output space using the ReLU structure. They estimate the output pdf, which is shown to
be very close to a pdf estimate obtained by Monte Carlo simulations. Despite its originality, the
approach has drawbacks, as they compare histograms rather than the actual pdfs in their experiments.
Theorem 5 (App. C) in [KHM+24] suggests approximating the distribution with fine bin grids and
input subdivisions, but this is practically difficult. Without knowledge of the actual distribution,
it is challenging to define a sufficiently “fine” grid. In contrast, we compute exact bounds of the
true output cdf over its entire support (at any point, no grid required), representing the maximum
error over its support, and show convergence to the true cdf. [KHM+24] use a piecewise constant
approximation for input pdfs, which they motivate by their Lemma 3 (App. C) to deduce that exact
propagation of piecewise polynomials through a neural network cannot be done. We demonstrate that
it is feasible and provide a method for exact integration over polytopes. Additionally, their approach
is limited to networks with piecewise linear activations, excluding locally nonlinear functions. In
contrast, our method adapts to CNNs and any NN with continuous, monotonic piecewise twice
continuously differentiable activations.

96

4.6 Conclusion

4.6 Conclusion
We develop a novel method to analyze the probabilistic behavior of the output of a neural network
subject to noisy (stochastic) inputs. We formulate an algorithm to compute bounds (upper and
lower) for the cdf of a neural network’s output and prove that the bounds are guaranteed and that
they converge uniformly to the true cdf.

Our approach enhances deterministic local robustness verification using non-random function
approximation. By bounding intermediate neurons with piecewise affine transformations and known
ranges of activation functions evaluated with IBP [GDS+18], we achieve more precise functional
bounds. These bounds converge to the true functions of input variables as local linear units increase.

Our method addresses neural networks with continuous monotonic piecewise twice continuously
differentiable activation functions using tools like Marabou [WIZ+24], originally designed for
piecewise linear functions. While the current approach analyzes the behavior of NNs on a compact
hyperrectangle, we can easily extend our theory to unions of bounded polytopes. In future research,
we plan to bound the cdf of a neural network where the input admits arbitrary distributions with
bounded piecewise continuous pdf supported on arbitrary compact sets. Moreover, we intend to
improve the algorithmic performance so that our method applies to larger networks.

97

5 Summary and Future Perspectives

We have presented two complementary methodologies for analyzing probabilistic loops with non-
polynomial updates: one for computing state variable moments in closed form and another for
recovering unknown probability density functions from a finite number of moments. These methods
contribute to the broader goal of advancing automated probabilistic analysis in diverse domains,
including stochastic dynamical systems, probabilistic programming, and machine learning.

Our first approach provides both an exact and an approximate method for the computation of
the moments of random state variables in probabilistic loops. The exact method applies to loops
with trigonometric and exponential assignments under independent random perturbations across
iterations. The approximate method leverages polynomial chaos expansion (PCE) to represent non-
polynomial updates as orthogonal polynomial series, ensuring optimal exponential convergence
when function parameters exhibit stable distributions. Moreover, we establish the L1 convergence
of the PCE estimator to the true function in the presence of unstable parameter distributions. These
methods enable moment-based characterization of stochastic models across multiple domains and
significantly reduce computational time compared to existing tools. Future work in this direction
will focus on leveraging these moment-based representations to analyze stability properties, such
as Lyapunov and asymptotic stability, in stochastic dynamical systems.

Our second approach, the K-series estimation method, recovers a probability density function
from a finite set of its moments. By selecting a reference density function, K-series generalizes
existing series-based density estimation techniques, such as Gram-Charlier expansions, and ensures
convergence to the true density in L1 norm. The method also includes an algorithm to estimate
the minimal support of the target distribution, a crucial feature for practical applications where
distributions have bounded support. The choice of the reference density affects estimation accuracy,
with the truncated normal distribution typically yielding the best results. Future work will focus
on extending K-series to recover probability mass functions for discrete random variables, deriving
explicit error bounds, and integrating Fourier series representations to enhance estimation accuracy
for finite loop iterations. Additionally, we aim to develop an automated tool that implements the
full K-series methodology.

Together, these approaches provide a robust framework for probabilistic analysis, offering efficient
and accurate solutions for moment computation and density estimation. By extending these methods
to broader classes of probabilistic models, we seek to further bridge the gap between formal
verification, uncertainty quantification, and real-world applications in probabilistic programming,
control systems, and machine learning.

We plan to develop a fully automated tool that streamlines the entire process of moment com-
putation and density recovery. This tool will serve as an add-on to Polar [MSB+22], an existing
framework for computing moment-based invariants. By integrating our methodologies within an
automated pipeline, we aim to provide a seamless and efficient solution for probabilistic loop analy-
sis. This extension will enable users to compute moments in closed form and reconstruct probability
density functions with minimal manual intervention, significantly enhancing accessibility and us-

99

5 Summary and Future Perspectives

ability.

We have also developed a novel framework for analyzing the probabilistic behavior of neural
networks subjected to stochastic (noisy) inputs. Our approach introduces an algorithm to compute
upper and lower bounds for the cumulative distribution function of a neural network’s output
and rigorously proves that these bounds are both guaranteed and converge uniformly to the true
cdf. This method provides a fundamental step toward understanding uncertainty propagation in
neural networks, offering formal probabilistic guarantees beyond traditional deterministic robustness
verification.

A key contribution of our work is enhancing deterministic local robustness analysis by leveraging
non-random function approximation. By bounding intermediate neurons through piecewise affine
transformations and utilizing known activation function ranges evaluated with interval bound propa-
gation (IBP) [GDS+18], we establish precise functional bounds. These bounds improve in accuracy
as the number of local linear units increases, leading to tighter approximations of the network’s
behavior.

Our method applies to neural networks with continuous, monotonic, and piecewise twice
continuously differentiable activation functions. We extend existing verification tools such as
Marabou [WIZ+24], originally designed for piecewise linear functions, to analyze broader classes
of networks. While the current framework evaluates neural network behavior within a compact
hyperrectangle, our theoretical foundations allow for a natural extension to unions of bounded
polytopes, providing greater flexibility in handling more complex input spaces.

Looking ahead, we aim to extend our methodology to input data with arbitrary bounded piecewise
continuous probability density functions supported on general compact sets. This generalization
will enable a more comprehensive analysis of neural networks operating under realistic, data-driven
uncertainty models. Additionally, we plan to enhance the computational efficiency of our algo-
rithm, ensuring scalability to larger and deeper networks while maintaining rigorous probabilistic
guarantees. These advancements will narrow the gap between formal verification and real-world
neural network applications, ensuring safer and more reliable deployments in high-risk areas such
as autonomous systems and medical AI.

100

References
[AF92] S. Aeberhard and M. Forina. Wine. UCI Machine Learning Repository, 1992. doi:

10.24432/C5PC7J.
[AO01] A. Atkeson and L. E. Ohanian. Are Phillips curves useful for forecasting inflation?

Quarterly Review, 25(Win):2–11, 2001.
[AWH+15] A. Abdelaziz, S. Watanabe, J. Hershey, E. Vincent, and D. Kolossa. Uncertainty

propagation through deep neural networks. English. Proceedings of the Annual Con-
ference of the International Speech Communication Association, INTERSPEECH,
2015-January:3561–3565, 2015. Publisher Copyright: Copyright © 2015 ISCA.;
16th Annual Conference of the International Speech Communication Association,
INTERSPEECH 2015 ; Conference date: 06-09-2015 Through 10-09-2015.

[BAG18] A. Bibi, M. Alfadly, and B. Ghanem. Analytic expressions for probabilistic moments
of pl-dnn with gaussian input. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9099–9107, 2018. doi: 10.1109/CVPR.2018.00948.

[Ber23] A. Berzins. Polyhedral complex extraction from ReLU networks using edge subdi-
vision. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Research, pages 2234–2244. PMLR,
2023.

[BGP+16] O. Bouissou, E. Goubault, S. Putot, A. Chakarov, and S. Sankaranarayanan. Un-
certainty propagation using probabilistic affine forms and concentration of measure
inequalities. In International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 225–243. Springer, 2016.

[Bil12] P. Billingsley. Probability and Measure. Wiley, anniversary edition edition, 2012.
[BKS19] E. Bartocci, L. Kovács, and M. Stankovič. Automatic generation of moment-based

invariants for prob-solvable loops. In Y.-F. Chen, C.-H. Cheng, and J. Esparza,
editors, Automated Technology for Verification and Analysis, pages 255–276, Cham.
Springer International Publishing, 2019. doi: 10.1007/978-3-030-31784-3_15.

[BKS20a] G. Barthe, J.-P. Katoen, and A. Silva. Foundations of Probabilistic Programming.
Cambridge University Press, 2020.

[BKS20b] E. Bartocci, L. Kovács, and M. Stankovič. Analysis of bayesian networks via prob-
solvable loops. In V. K. I. Pun, V. Stolz, and A. Simao, editors, Theoretical Aspects of
Computing – ICTAC 2020, pages 221–241, Cham. Springer International Publishing,
2020. doi: 10.1007/978-3-030-64276-1_12.

[BKS21] E. Bartocci, L. Kovacs, and M. Stankovic. Mora – automatic generation of moment-
based invariants, 2021. arXiv: 2103.03908 [cs.FL].

101

https://doi.org/10.24432/C5PC7J
https://doi.org/10.1109/CVPR.2018.00948
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-030-64276-1_12
https://arxiv.org/abs/2103.03908

References

[BLT+19] R. Bunel, J. Lu, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar. Branch and
bound for piecewise linear neural network verification. ArXiv, abs/1909.06588, 2019.

[CB01] G. Casella and R. L. Berger. Statistical Inference. Cengage Learning, 2nd edition,
2001.

[Chi78] T. S. Chihara. An Introduction to Orthogonal Polynomials. Gordon and Breach,
Science Publishers, 1978.

[Cra57] H. Cramér. Mathematical Methods of Statistics. eng. Princeton Univ. Press, Princeton,
NJ, 1957.

[Cyb89] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems, 2(4):303–314, 1989. doi: 10.1007/BF02551274.

[DB18] T. A. Driscoll and R. J. Braun. Fundamentals of numerical computation. eng. Society
for Industrial and Applied Mathematics, Philadelphia, 2018.

[Del34] B. Delaunay. Sur la sphère vide. French. Bulletin de l’Académie des Sciences de
l’URSS. Classe des sciences mathématiques et na, 1934(6):793–800, 1934.

[Dur19] R. Durrett. Probability: Theory and Examples. Cambridge University Press, 2019.
doi: 10.1017/9781108591034.

[Dwo06] C. Dwork. Differential privacy. In Proc. of ICALP 2006: the 33rd International
Colloquium on Automata, Languages and Programming, volume 4052 of LNCS,
pages 1–12. Springer, 2006. doi: 10.1007/11787006.

[EHJ+04] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The
Annals of Statistics:407–451, 2004.

[EMS+12] Ernst, Oliver G., Mugler, Antje, Starkloff, Hans-Jörg, and Ullmann, Elisabeth. On
the convergence of generalized polynomial chaos expansions. ESAIM: M2AN,
46(2):317–339, 2012. doi: 10.1051/m2an/2011045.

[FDG+19] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and S. A.
Seshia. Scenic: a language for scenario specification and scene generation. In Proc. of
PLDI 2019: the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 63–78. ACM, 2019. doi: 10.1145/3314221.

[FFF18] A. Fawzi, H. Fawzi, and O. Fawzi. Adversarial vulnerability for any classifier. In
Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, pages 1186–1195, Montréal, Canada. Curran Associates Inc.,
2018.

[Fis36] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Human Genetics, 7:179–188, 1936.

[FMJ+22] C. Ferrari, M. N. Mueller, N. Jovanović, and M. Vechev. Complete verification via
multi-neuron relaxation guided branch-and-bound. In International Conference on
Learning Representations, 2022.

[FMS13] D. Filipović, E. Mayerhofer, and P. Schneider. Density approximations for multivari-
ate affine jump-diffusion processes. Journal of Econometrics, 176(2):93–111, 2013.
doi: 10.1016/j.jeconom.2012.12.003.

102

https://doi.org/10.1007/BF02551274
https://doi.org/10.1017/9781108591034
https://doi.org/10.1007/11787006
https://doi.org/10.1051/m2an/2011045
https://doi.org/10.1145/3314221
https://doi.org/10.1016/j.jeconom.2012.12.003

[GDS+18] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato, R. Arandjelović,
T. A. Mann, and P. Kohli. On the effectiveness of interval bound propagation for
training verifiably robust models. ArXiv, abs/1810.12715, 2018.

[Gha15] Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nature,
521(7553):452–459, 2015. doi: 10.1038/nature14541.

[GMD+18] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev.
Ai2: safety and robustness certification of neural networks with abstract interpreta-
tion. In 2018 IEEE Symposium on Security and Privacy (SP), pages 3–18, 2018. doi:
10.1109/SP.2018.00058.

[GMV16] T. Gehr, S. Misailovic, and M. T. Vechev. PSI: exact symbolic inference for prob-
abilistic programs. In Proc. of CAV 2016: the 28th International Conference on
Computer Aided Verification, volume 9779 of LNCS, pages 62–83. Springer, 2016.
doi: 10.1007/978-3-319-41528-4_4.

[GPM+14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

[GSS14] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. CoRR, abs/1412.6572, 2014.

[GSV20] T. Gehr, S. Steffen, and M. Vechev. λPSI: Exact Inference for Higher-Order Prob-
abilistic Programs. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. ACM, 2020. doi: 10.1145/
3385412.3386006.

[GTA+23] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel,
P. Jung, R. Roscher, M. Shahzad, W. Yang, R. Bamler, and X. X. Zhu. A survey of
uncertainty in deep neural networks. Artificial Intelligence Review, 56:1513–1589,
2023. doi: 10.1007/s10462-023-10562-9.

[Hal00] A. Hald. The Early History of the Cumulants and the Gram-Charlier Series. Inter-
national Statistical Review, 68(2):137–153, 2000.

[HB20] A. M. Hafiz and G. M. Bhat. A survey of deep learning techniques for medical
diagnosis. In M. Tuba, S. Akashe, and A. Joshi, editors, Information and Communi-
cation Technology for Sustainable Development, pages 161–170, Singapore. Springer
Singapore, 2020.

[Her90] T. Herman. Probabilistic self-stabilization. Inf. Process. Lett., 35(2):63–67, 1990.
doi: 10.1016/0020-0190(90)90107-9.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, 1963.

[HSW89] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989. doi: 10.1016/
0893-6080(89)90020-8.

103

https://doi.org/10.1038/nature14541
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1145/3385412.3386006
https://doi.org/10.1145/3385412.3386006
https://doi.org/10.1007/s10462-023-10562-9
https://doi.org/10.1016/0020-0190(90)90107-9
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8

References

[HW21] E. Hüllermeier and W. Waegeman. Aleatoric and epistemic uncertainty in machine
learning: an introduction to concepts and methods. Machine Learning, 110(3):457–
506, 2021. doi: 10.1007/s10994-021-05946-3.

[HWC13] M. Hollander, D. A. Wolfe, and E. Chicken. Nonparametric Statistical Methods.
John Wiley & Sons, New York-London-Sydney, 3rd edition, 2013.

[HXP17] H. Hosseini, B. Xiao, and R. Poovendran. Google’s cloud vision api is not robust
to noise. In 2017 16th IEEE International Conference on Machine Learning and
Applications (ICMLA), pages 101–105, 2017. doi: 10.1109/ICMLA.2017.0-172.

[IHR18] G. C. P. Innocentini, A. Hodgkinson, and O. Radulescu. Time dependent stochastic
mrna and protein synthesis in piecewise-deterministic models of gene networks.
Frontiers in Physics, 6, 2018. doi: 10.3389/fphy.2018.00046.

[JF10] A. M. Z. Jasour and M. Farrokhi. Fuzzy improved adaptive neuro-nmpc for online
path tracking and obstacle avoidance of redundant robotic manipulators. Int. J. Autom.
Control., 4(2):177–200, 2010. doi: 10.1504/IJAAC.2010.030810.

[JF14] A. M. Jasour and M. Farrokhi. Adaptive neuro-predictive control for redundant robot
manipulators in presence of static and dynamic obstacles: a lyapunov-based approach.
International Journal of Adaptive Control and Signal Processing, 28(3-5):386–411,
2014. doi: 10.1002/acs.2459.

[JRL20] W. Ji, Z. Ren, and C. K. Law. Uncertainty propagation in deep neural network using
active subspace, 2020. arXiv: 1903.03989 [stat.ML].

[JWW21] A. Jasour, A. Wang, and B. C. Williams. Moment-based exact uncertainty propagation
through nonlinear stochastic autonomous systems, 2021. arXiv: 2101.12490.

[KBB25] A. Kofnov, E. Bartocci, and E. Bura. Moment-based density elicitation with applica-
tions in probabilistic loops. Accepted for publication in *ACM Trans. Probab. Mach.
Learn.*, 2025.

[KBC+23] L. Klinkenberg, C. Blumenthal, M. Chen, and J.-P. Katoen. Exact bayesian inference
for loopy probabilistic programs, 2023. arXiv: 2307.07314 [cs.PL].

[KBD+17] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: an efficient
smt solver for verifying deep neural networks. In R. Majumdar and V. Kunčak,
editors, Computer Aided Verification, pages 97–117, Cham. Springer International
Publishing, 2017.

[KF76] A. Kolmogorov and S. Fomin. Elements of the Theory of Functions and Functional
Analysis. Nauka, Moscow, 4th edition, 1976.

[KHI+19] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor,
H. Wu, A. Zeljić, D. L. Dill, M. J. Kochenderfer, and C. Barrett. The marabou
framework for verification and analysis of deep neural networks. In I. Dillig and
S. Tasiran, editors, Computer Aided Verification, pages 443–452, Cham. Springer
International Publishing, 2019.

104

https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1109/ICMLA.2017.0-172
https://doi.org/10.3389/fphy.2018.00046
https://doi.org/10.1504/IJAAC.2010.030810
https://doi.org/10.1002/acs.2459
https://arxiv.org/abs/1903.03989
https://arxiv.org/abs/2101.12490
https://arxiv.org/abs/2307.07314

[KHM+24] T. Krapf, M. Hagn, P. Miethaner, A. Schiller, L. Luttner, and B. Heinrich. Piece-
wise linear transformation – propagating aleatoric uncertainty in neural networks.
Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):20456–20464,
2024. doi: 10.1609/aaai.v38i18.30029.

[KKB+25] A. Kofnov, D. Kapla, E. Bartocci, and E. Bura. Exact upper and lower bounds
for the output distribution of neural networks with random inputs. 2025. doi:
10.48550/arXiv.2502.11672.

[KMS+22a] A. Karimi, M. Moosbrugger, M. Stankovič, L. Kovács, E. Bartocci, and E. Bura.
Distribution estimation for probabilistic loops. In E. Ábrahám and M. Paolieri, edi-
tors, Quantitative Evaluation of Systems, pages 26–42, Cham. Springer International
Publishing, 2022.

[KMS+22b] A. Kofnov, M. Moosbrugger, M. Stankovič, E. Bartocci, and E. Bura. Moment-based
invariants for probabilistic loops with non-polynomial assignments. In E. Ábrahám
and M. Paolieri, editors, Quantitative Evaluation of Systems, pages 3–25, Cham.
Springer International Publishing, 2022. doi: 10.1007/978-3-031-16336-4_1.

[KMS+24] A. Kofnov, M. Moosbrugger, M. Stankovič, E. Bartocci, and E. Bura. Exact and
approximate moment derivation for probabilistic loops with non-polynomial assign-
ments. ACM Trans. Model. Comput. Simul., 2024. doi: 10.1145/3641545.

[KS77] M. Kendall and A. Stuart. The Advanced Theory of Statistics. Volume 1: Distribution
Theory. Macmillan, New York, NY, 1977.

[KUH19] S. Kura, N. Urabe, and I. Hasuo. Tail probabilities for randomized program runtimes
via martingales for higher moments. In T. Vojnar and L. Zhang, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 135–153, Cham.
Springer International Publishing, 2019.

[Las21] J. B. Lasserre. Simple formula for integration of polynomials on a simplex. BIT,
61(2):523–533, 2021. doi: 10.1007/s10543-020-00828-x.

[MB03] K. Makino and M. Berz. Taylor models and other validated functional inclusion
methods. Int. J. Pure Appl. Math, 2003.

[MMR17] J. Munkhammar, L. Mattsson, and J. Rydén. Polynomial probability distribution
estimation using the method of moments. PLOS ONE, 12(4):1–14, 2017. doi:
10.1371/journal.pone.0174573.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995. doi: 10.1017/CBO9780511814075.

[MSB+22] M. Moosbrugger, M. Stankovič, E. Bartocci, and L. Kovács. This is the moment
for probabilistic loops. Proc. ACM Program. Lang., 6(OOPSLA2), 2022. doi:
10.1145/3563341.

[PHC+22] È. Pairet, J. D. Hernández, M. Carreras, Y. R. Petillot, and M. Lahijanian. Online
mapping and motion planning under uncertainty for safe navigation in unknown
environments. IEEE Trans Autom. Sci. Eng., 19(4):3356–3378, 2022. doi: 10.
1109/TASE.2021.3118737.

105

https://doi.org/10.1609/aaai.v38i18.30029
https://doi.org/10.48550/arXiv.2502.11672
https://doi.org/10.1007/978-3-031-16336-4_1
https://doi.org/10.1145/3641545
https://doi.org/10.1007/s10543-020-00828-x
https://doi.org/10.1371/journal.pone.0174573
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1145/3563341
https://doi.org/10.1109/TASE.2021.3118737
https://doi.org/10.1109/TASE.2021.3118737

References

[Rah18] S. Rahman. A polynomial chaos expansion in dependent random variables. Journal
of Mathematical Analysis and Applications, 464(1):749–775, 2018. doi: 10.1016/
j.jmaa.2018.04.032.

[Raj95] P. R. Rajeev Motwani. Randomized Algorithms. Cambridge University Press, 1995.
[Rao62] R. R. Rao. Relations between Weak and Uniform Convergence of Measures with

Applications. The Annals of Mathematical Statistics, 33(2):659–680, 1962. doi:
10.1214/aoms/1177704588.

[RBI+24] F. Randone, L. Bortolussi, E. Incerto, and M. Tribastone. Inference of probabilistic
programs with moment-matching gaussian mixtures. Proc. ACM Program. Lang.,
8(POPL), 2024. doi: 10.1145/3632905.

[RPK+17] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the expressive
power of deep neural networks. In D. Precup and Y. W. Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 2847–2854. PMLR, 2017.

[RS22] M. Rizzo and G. Szekely. energy: E-Statistics: Multivariate Inference via the Energy
of Data. R package version 1.7-11. 2022.

[Rud76] W. Rudin. Principles of mathematical analysis. English. McGraw-Hill New York,
3d ed. Edition, 1976, x, 342 p.

[Rud86] W. Rudin. Real and Complex Analysis. McGraw-Hill Science/Engineering/Math,
1986.

[San20] S. Sankaranarayanan. Quantitative analysis of programs with probabilities and con-
centration of measure inequalities. Foundations of Probabilistic Programming:259,
2020.

[SAS+22] J. Sicking, M. Akila, J. D. Schneider, F. Huger, P. Schlicht, T. Wirtz, and S. Wrobel.
Tailored uncertainty estimation for deep learning systems. ArXiv, abs/2204.13963,
2022.

[SCG+20] S. Sankaranarayanan, Y. Chou, E. Goubault, and S. Putot. Reasoning about uncertain-
ties in discrete-time dynamical systems using polynomial forms. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 17502–17513. Curran Associates,
Inc., 2020.

[SD20] J. Son and Y. Du. Probabilistic surrogate models for uncertainty analysis: dimension
reduction-based polynomial chaos expansion. International Journal for Numerical
Methods in Engineering, 121(6):1198–1217, 2020. doi: 10.1002/nme.6262.

[SJK+24] Z. Shi, Q. Jin, Z. Kolter, S. Jana, C.-J. Hsieh, and H. Zhang. Neural network ver-
ification with branch-and-bound for general nonlinearities. ArXiv, abs/2405.21063,
2024.

[SKS+20] A. Sudjianto, W. Knauth, R. Singh, Z. Yang, and A. Zhang. Unwrapping the black
box of deep relu networks: interpretability, diagnostics, and simplification. ArXiv,
abs/2011.04041, 2020.

106

https://doi.org/10.1016/j.jmaa.2018.04.032
https://doi.org/10.1016/j.jmaa.2018.04.032
https://doi.org/10.1214/aoms/1177704588
https://doi.org/10.1145/3632905
https://doi.org/10.1002/nme.6262

[SR04] G. J. Székely and M. L. Rizzo. Testing for equal distributions in high dimension. In
volume 5 of InterStat, 2004.

[ST12] J. Steinhardt and R. Tedrake. Finite-time regional verification of stochastic non-linear
systems. The International Journal of Robotics Research, 31(7):901–923, 2012.

[Sza15] P. J. Szabłowski. A few remarks on orthogonal polynomials. Applied Mathematics
and Computation, 252:215–228, 2015. doi: 10.1016/j.amc.2014.11.112.

[Sze39] G. Szegő. Orthogonal Polynomials. American Mathematical Society, 1939.
[Tay93] J. B. Taylor. Discretion versus policy rules in practice. Carnegie-Rochester Confer-

ence Series on Public Policy, 39(1):195–214, 1993.
[UO30] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Phys.

Rev., 36:823–841, 5, 1930. doi: 10.1103/PhysRev.36.823.
[Vas77] O. Vasicek. An equilibrium characterization of the term structure. Journal of

Financial Economics, 5(2):177–188, 1977. doi: 10.1016/0304-405X(77)90016-
2.

[vBG11] S. van Buuren and K. Groothuis-Oudshoorn. Mice: multivariate imputation by
chained equations in r. Journal of Statistical Software, 45(3):1–67, 2011. doi:
10.18637/jss.v045.i03.

[vdBAG11] J. van den Berg, P. Abbeel, and K. Y. Goldberg. LQG-MP: optimized path planning
for robots with motion uncertainty and imperfect state information. Int. J. Robotics
Res., 30:895–913, 7, 2011. doi: 10.1177/0278364911406562.

[WAP+22] Z. Wang, A. Albarghouthi, G. Prakriya, and S. Jha. Interval universal approximation
for neural networks. Proc. ACM Program. Lang., 6(POPL), 2022. doi: 10.1145/
3498675.

[WCN+19] L. Weng, P.-Y. Chen, L. Nguyen, M. Squillante, A. Boopathy, I. Oseledets, and
L. Daniel. PROVEN: verifying robustness of neural networks with a probabilistic
approach. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 6727–6736. PMLR, 2019.

[WIZ+24] H. Wu, O. Isac, A. Zeljić, T. Tagomori, M. Daggitt, W. Kokke, I. Refaeli, G. Amir,
K. Julian, S. Bassan, P. Huang, O. Lahav, M. Wu, M. Zhang, E. Komendantskaya,
G. Katz, and C. Barrett. Marabou 2.0: a versatile formal analyzer of neural networks.
In A. Gurfinkel and V. Ganesh, editors, Computer Aided Verification, pages 249–264,
Cham. Springer Nature Switzerland, 2024.

[Xiu10] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Ap-
proach. Princeton University Press, 2010.

[XK02] D. Xiu and G. Karniadakis. The Wiener-Askey polynomial chaos for stochastic
differential equations. SIAM J. Sci. Comput., 24(2):619–644, 2002. doi: 10.1137/
S1064827501387826.

[XSZ+20] K. Xu, Z. Shi, H. Zhang, M. Huang, K.-W. Chang, B. Kailkhura, X. Lin, and C.-J.
Hsieh. Automatic perturbation analysis on general computational graphs. ArXiv,
abs/2002.12920, 2020.

107

https://doi.org/10.1016/j.amc.2014.11.112
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1016/0304-405X(77)90016-2
https://doi.org/10.1016/0304-405X(77)90016-2
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1177/0278364911406562
https://doi.org/10.1145/3498675
https://doi.org/10.1145/3498675
https://doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826

References

[YLC+20] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A survey of autonomous
driving: common practices and emerging technologies. IEEE Access, 8:58443–
58469, 2020. doi: 10.1109/ACCESS.2020.2983149.

[ZCX+20] H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li, D. Boning, and C.-J.
Hsieh. Towards stable and efficient training of verifiably robust neural networks. In
International Conference on Learning Representations, 2020.

[Zie95] G. M. Ziegler. Lectures on polytopes. Springer-Verlag, New York, 1995.
[ZS21] B. Zhang and Y. C. Shin. An adaptive gaussian mixture method for nonlinear

uncertainty propagation in neural networks. Neurocomputing, 458:170–183, 2021.
doi: 10.1016/j.neucom.2021.06.007.

[ZWC+18] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. Efficient neural
network robustness certification with general activation functions. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, pages 4944–4953, Montréal, Canada. Curran Associates Inc., 2018.

108

https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1016/j.neucom.2021.06.007

Curriculum Vitae
Personal data

Name Andrey Kofnov
Date of birth 00.00.0000

Birth place Krasnogorsk, Moscow Region, Russia
Nationality Russia

Email 00000000000000000000000

Education
2021 - 2025 Doctoral Studies in Technical Mathematics,

Vienna University of Technology (TU Wien), Vienna, Austria
2015 - 2017 Master’s Degree in Applied Economics,

Higher School of Economics (HSE), Moscow, Russia
2013 - 2018 Bachelor’s Degree in Economics and Finance,

University of London, London, the United Kingdom
2011 - 2015 Bachelor’s Degree in Applied Mathematics and Computer Science,

Lomonosov Moscow State University (MSU), Moscow, Russia

Work Experience
Apr 2021 - May 2025 University Assistant, TU Wien, Vienna, Austria

Mar 2020 - Apr 2021 Lead Data Scientist, Sberbank, Moscow, Russia

Jan 2019 - Feb 2020 Chief Validation Specialist, DOM.RF, Moscow, Russia

Oct 2017 - Jan 2019 Economist, Bank of Russia, Moscow, Russia

Jun 2016 - Oct 2017 Econometrician, HAVAS Media Group, Moscow, Russia

Publications
A. Kofnov et al. Moment-based invariants for probabilistic loops with non-polynomial assignments.
In E. Ábrahám and M. Paolieri, editors, Quantitative Evaluation of Systems, pages 3–25, Cham.
Springer International Publishing, 2022. doi: 10.1007/978-3-031-16336-4_1

A. Kofnov et al. Exact and approximate moment derivation for probabilistic loops with non-
polynomial assignments. ACM Trans. Model. Comput. Simul., 2024. doi: 10.1145/3641545

A. Kofnov, E. Bartocci, and E. Bura. Moment-based density elicitation with applications in
probabilistic loops. Accepted for publication in *ACM Trans. Probab. Mach. Learn.*, 2025

https://doi.org/10.1007/978-3-031-16336-4_1
https://doi.org/10.1145/3641545

	Introduction
	Overview
	Problem statement
	Research goals
	Impactful contributions
	Thesis structure.
	Included publications.

	Moment-based Invariants for Probabilistic Loops
	Preliminaries
	Prob-Solvable Loops
	Polynomial Chaos Expansion

	Polynomial Chaos Expansion Algorithm
	Random Function Representation
	PCE Algorithm

	Prob-Solvable Loops for General Non-Polynomial Functions
	Iteration-Stable Distributions of Random Arguments
	Iteration Non-Stable Distribution of Random Arguments

	Exact Moment Derivation
	Trigonometric and Exponential Functions of Random Variables
	Trigonometric and Exponential Functions in Variable Updates

	Evaluation
	Conclusion

	K-series for Moment-based Density Elicitation in Probabilistic Loops
	K-series
	Univariate K-series
	K-series estimation in practice
	Special cases of K-series
	Approximation of the support
	Validity of the input
	Multivariate K-series

	Symbolic K-series representation along iterations
	Experiments
	Kolmogorov-Smirnov and Energy Tests for Equality of Distributions

	Effect of Reference Distribution
	Conclusion

	Exact Upper and Lower Bounds for the Output Distribution of Neural Networks with Random Inputs
	Introduction
	Problem Overview
	Our Approximation Approach
	Exact cdf evaluation for a fully connected NN with ReLU activation function
	Algorithm for Upper and Lower Approximation of the Neural Network using ReLU activation functions.
	Convergence of the approximation
	Application to an arbitrary function on a compact domain

	Experiments
	Description of the Iris Experiments

	Related Work
	Conclusion

	Summary and Future Perspectives
	References

