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Abstract

In this work, we tackle the problem of performing multi-label clas-
sification in the case of extremely heterogeneous data and with
decentralized Machine Learning. Solving this issue is very impor-
tant in IoT scenarios, where data coming from various sources, col-
lected by heterogeneous devices, serve the learning of a distributed
ML model through Federated Learning (FL). Specifically, we focus
on the combination of FL applied to Human Activity Recognition
(HAR), where the task is to detect which kind of movements or
actions individuals perform. In this case, transitioning from cen-
tralized learning (CL) to federated learning is non-trivial as HAR
displays heterogeneity in action and devices, leading to significant
skews in label and feature distributions. We address this scenario
by presenting concrete solutions and tools for transitioning from
centralized to FL for non-IID scenarios, outlining the main design
decisions that need to be taken. Leveraging an open-sourced HAR
dataset, we experimentally evaluate the effects that data augmenta-
tion, scaling, optimizer, learning rate, and batch size choices have on
the performance of resulting machine learning models. Some of our
main findings include using SGD-m as an optimizer, global feature
scaling across clients, and persistent feature skew in the presence
of heterogeneous HAR data. Finally, we provide an open-source
extension of the Flower framework that enables asynchronous FL.
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1 Introduction

During the last decade, IoT has been able to connect millions of
devices thereby supplying an unprecedented amount of data used
by applications to provide innovative services [17]. Considering
individual use, smartphones, smart wristbands, and smartwatches
have become part of people’s everyday lives. One prominent task is
collecting real-time data from individuals to provide assistance; a
notable application is human activity recognition (HAR). The HAR
rapidly became pivotal in many areas, such as healthcare, human-
computer interaction, surveillance systems, entertainment, and
more [19]. The HAR tasks span from recognizing simple common
activities, such as walking or running, to assisting in more complex
ones, such as doing laundry or preparing meals [12]. Gathering
data from various sensors, such as accelerometers, gyroscopes, and
magnetometers, becomes essential to precisely model the observed
activities. At the same time, the pervasiveness of such applications
comes with certain costs. It increases the devices’ computation
demands as well as the need for real-time feedback and it amplifies
privacy concerns, especially in sensitive applications [21, 23].
State of the art and beyond. Federated learning (FL) [18] has
been emerging with the promise to address these challenges, offer-
ing methods for privacy, security, and scalability by decentralizing
the machine learning (ML) model training to the clients’ devices.
These characteristics make FL particularly suitable for IoT sys-
tems [35]. However, dynamic scenarios such as the HAR bring new
challenges. The HAR typically shows broad data heterogeneity
due to many individuals performing the same actions differently
and with varying frequencies. This scenario produces high intra-
class variability and inter-class dissimilarity [24], making client
model training non-trivial. Indeed, it is established that having
non-independently and non-identically distributed (non-IID) data
across FL clients leads to divergent local model updates and, con-
sequently, undermines global model performance [36]. Further-
more, device heterogeneity in HAR-IoT applications impacts the
FL model training by introducing unreliable device connectivity
and limitations in storage and computation capabilities [22]. To
mitigate the challenges associated with real-time updates in such
unstable scenarios, asynchronous FL (AFL) was proposed [32]. This
approach allows clients to train models and send updates once
ready or connected while the server continuously accommodates
received model updates. Unfortunately, AFL amplifies the problem
of diverging models with non-IID data. In fact, AFL natively favors
clients that train faster and communicate more frequently with the
server [33]. Therefore, AFL on non-IID data further increases the
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global variance of model updates [31]. As of today, the challenge
of non-1ID data in asynchronous FL remains open [33], urging the
development of robust methods to address it.

Contributions. The open challenges in both the HAR and FL
research make transitioning from centralized learning (CL) to FL
and AFL with non-IID data non-trivial, largely limiting the adop-
tion of FL in practice. In this paper, we select one of the prominent
and robust HAR datasets, Extrasensory [29], for the experimen-
tation and identification of the main challenges inherent to the
transition from CL to (A)FL with severe non-IID data. Based on
this experimentation, we define a replicable methodology shaped
to guide this transition by focusing on the HAR use-case and non-
IID data. We offer key insights on how certain decisions impact
AFL and model training and performance in this set of problems.
Notably, we implement a publicly available extension of the Flower
[2] framework that enables AFL and use it for our evaluation!. In
summary: (1) We present a realistic HAR case study, where we
evaluate the effects of synchronous and asynchronous federated
learning and its main optimization strategies in this paradigmatic
scenario. This study empirically demonstrates how different design
decisions impact model performance, offering key takeaways as
a blueprint for similar datasets and tasks in IoT. (2) We develop a
novel, publicly available framework that extends the open-source
Flower [2], based on the works of FedAsync [32], ASO-Fed [6] and
PAFLM [15]. We offer practical tools not only to reproduce our
results but to implement AFL solutions in other use cases. (3) We
introduce a methodology, which is specifically designed to enable
structured transitioning from centralized learning to synchronous
and/or asynchronous federated learning in the presence of non-I1ID
data, considering the main design decisions and potential pitfalls.

2 Methodology

The general process of developing a centralized ML model is quite
standardized and can be summarised (with various levels of detail)
into 4 main steps: (1) data analysis and preprocessing, (2) model
training and tuning, (3) performance evaluation and (4) model de-
ployment. When developing federated models with non-IID data,
the process becomes non-trivial. This section introduces a method-
ology that applies common ML design steps while systematically
analyzing case-specific decisions for FL systems, revealing their
impact on performance in IoT environments.

2.1 Data Analysis & Preprocessing

In CL, full access to the dataset enables the use of sophisticated tech-
niques for data analysis and preprocessing. However, to properly
federate these processes, it is necessary to establish the expected
level of data heterogeneity and willingness to share local data sta-
tistics, potentially introducing additional privacy risks. Thus, one
can choose from two main approaches for data analysis and pre-
processing in (non-IID) FL:

(1) Local approach — preprocessing local data based solely on
local dataset statistics, for instance, scaling data with local

10ur work is part of the Centaurus Linux Foundation project that provides a novel open-
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mean and standard deviation or performing data augmenta-
tion considering local data label imbalance statistics.

(2) Global approach - considering aggregation of data statistics
from client devices on the server to form global statistics,
which are then shared among all clients, and used to guide
local preprocessing.

We illustrate the effects local and global analytics approaches
have on scaling and on the resulting model performance for the
HAR use case in Section 5.2.3. We further federate data augmen-
tation strategies in Section 4.2.1 and show their effect in FL in
Section 5.2.2.

2.2 Model Training & Tuning

In CL, the model is trained on a single device, which has consistent
access to the entire training dataset. In contrast, in FL training
occurs on multiple devices and involves recurrent broadcasting of
the global model to devices and aggregating updates from them.
Introducing FL affects several design decisions:

e The choice of the model architecture and hyperparameters,
such as batch size and learning rate, due to the data and
resource heterogeneity across HAR devices, is influenced by
memory constraints, convergence speed, overfitting tracking,
and more. We talk more about the effects of hyperparameters
in Section 4.4 and Section 5.3

o Setting the number of local epochs is a new hyperparameter
introduced in the FL setting to control the iteration count
over the local dataset. Intuitively, it controls to what extent
local updates can be fitted toward their own data distribu-
tions before synchronizing with the server.

o Coordinating the FL training process synchronously or asyn-
chronously. This decision depends on the reliability and het-
erogeneity of devices participating in FL, with the latter
being more suitable for failure-prone scenarios such as IoT.
Depending on whether synchronous or asynchronous FL
is chosen, the process of broadcasting and aggregating the
model differs, introducing more hyperparameters for train-
ing to consider.

In synchronous FL the step of model broadcasting involves
a set of clients being chosen for the current round of training,
parametrized by S - number of clients to choose from the available
pool of clients - and a specific client selection strategy (random by
default). The server sends them the current global model x; and
instructs them to train the passed global model further with their
local data. After local training, the clients send their updated models
(x;' 4+ for client i) back to the server where the server aggregates
the resulting client models and updates the global model with this
aggregate. Equation 1 describes the synchronous update procedure
(N is the total number of samples and n; is the number of samples
present on client i):

ni, ;
X4l = Xp + ; N(xt-'.l) (1)

In asynchronous FL the process of broadcasting and aggregat-
ing model updates does not proceed in rounds; contrary to that,
clients start training as soon as they merge their newest update with
the global model and receive the new merged global model from the
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server [15, 32]. Thus, the model aggregation step needs to account
for individual clients’ model updates in the current global model.
This step is parametrized by mixing ratio which dictates the aver-
aging weights (e.g. 50-50 or 30-70) between the global model and
the client update. The mixing ratio is multiplied by the proportion
of samples held by the client that sends the update (%)

To formally express the update rule of the asynchronous feder-
ated baseline we provide the following Equation 2. Assume that A;
denotes client i’s gradients sent to the server for aggregation. ayr
is the above-defined mixing ratio.

n:
Xt41 = Xt + DlMRﬁl(xt +A;) (2)

2.3 Performance Evaluation & Model Testing

In CL, due to the centrally located dataset, partitioning of data
can be done using random shuffling and performance evaluation
can further be reliably tracked throughout the training process.
However, the absence of a centralized dataset affects the formation
of train/validation/test sets in FL, allowing for three partitioning
scenarios:

o Dividing clients into training, validation and test subsets

o Dividing local datasets and aggregating the reported perfor-
mance metrics on the server

o Applying hybrid (semi-centralized) techniques, such as main-
taining a test dataset on the server while validating model
performance on clients subset or parts of local datasets

Without detailed data distribution statistics, ensuring represen-
tative data partitions is challenging, leading to skewed performance
indicators and suboptimal model performance, further emphasizing
the importance of the proper performance evaluation scheme. More
details on the implications of the test scheme in non-IID FL are
provided in Section 5.2.1.

2.4 Model Deployment

Model deployment may be considered the only step in the pipeline
where FL has some advantage over CL as in order to deploy the
model one should only ensure proper final model broadcasting to
all clients, allowing them to start using it for inference.

To sum up, although we can roughly apply the classical CL steps
in FL, this distributed setting complicates their proper execution,
requiring more ingenuity, especially when facing non-IID data.

3 Asynchronous FL with Flower

To evaluate the challenges of non-IID FL with HAR we selected the
Flower framework [2] as the base for our experiments because it is
one of the established frameworks for developing and researching
FL workflows. However, Flower does not support AFL, which is why
we extend the framework to implement it, following the description
provided in Section 2.2. We provide our implementation as open-
source software to enable quick prototyping and facilitate further
research in this area. In the following, we briefly describe the main
modifications that enabled AFL with Flower.

We modify the thread pool executor to avoid waiting for clients
to finish training. Instead, a callback is triggered upon arrival of
each client update and the global model is updated according to
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Figure 1: Violin plot highlighting the data and label skew. We
can see how certain activities are underrepresented, as well
as, from the violin width, how each activity is not equally
distributed across clients.
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Equation 2. If the maximum train duration is not exceeded it re-
submits the client for training with the updated global model. This
adaptation is transparent for the participating clients. The server
still contains one loop that periodically executes central evaluation
until the maximum training duration is exceeded. Our implemen-
tation of AFL in Flower and further implementation details are
available in this GitHub repository?.

4 Case Study: Federated Learning for Human
Activity Recognition
In this section we first describe the used HAR dataset and its char-

acteristics. Later, we present the main data engineering adaptations
to prepare the data for our approach.

4.1 Extrasensory Dataset

Our work leverages the Extrasensory dataset [29]. This source con-
tains sensor readings from smartphones belonging to 60 different
individuals including such sensors as accelerometer, gyroscope, au-
dio, etc. Time-series-related signal features encompassing various
statistical and spectral properties were already extracted for the
dataset. The original dataset contains in total 225 features from
11 sensors (sources). As labels, the authors presented 6 primary
mutually exclusive labels that describe the individual’s current sta-
tus: standing, walking, sitting, laying down, running, and cycling.
The individuals themselves reported the labels through a dedi-
cated smartphone app, during or immediately before starting an
action/changing status. In addition to this set, there exists an ex-
panded set of labels (non-mutually exclusive) that encompass user
actions and locations. This dataset is ideal for our work because it
reflects the real-world IoT setting. The data was collected in-the-
wild, thus guaranteeing natural heterogeneities among different
clients: individuals have different devices (sensor heterogeneity),
different behavior (means of performing actions or being in a cer-
tain body state), different habits (certain individuals tend to run
more, while others cycle more etc.). The non-IID property of data
is simulated in most federated learning research [34], whereas we
use a real case. Furthermore, only a few authors [5, 6, 25] tested FL
in the Extrasensory dataset and without a detailed analysis.

4.1.1 Dataset Characteristics. The dataset illustrates different types
of skew among the clients, namely, label, quantity, and feature

Zhttps://github.com/r-gg/flower-async-fork
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skews [37]. Figure 1 depicts the data and label skew through a
violin plot. The x axis reports each activity, while the y axis shows
how many occurrences of that activity are present in each client.
The width represents the commonness of having y occurrences
for that activity in a client. E.g., if 20 clients have roughly 3000
sitting events, then for the sitting violin plot, at y = 3000 a large
width would be present. This plot allows us to see how certain
activities are underrepresented, especially running and bicycling
(violin height), as well as, how each activity is unequally distributed
across clients (violin width). These label and data quantity skews
are further complicated by the natural feature skew that is present
in the HAR datasets [24] due to individual behavioral patterns ex-
pressed by humans, leading to the variability of data representing
the same activity as well as making similar activities even harder to
distinguish. This combination of several data skews materialized in
a real-life IoT scenario makes the Extrasensory Dataset a challeng-
ing yet valuable candidate for testing solutions for heterogeneous
FL.

4.2 Data Preprocessing

Data partitioning As the data was originally partitioned by indi-
viduals we proceeded with this predefined split among the clients.
Each client’s local dataset was split into three parts following the
64-16-20 % shuffled split among train-validation and test sets (apply-
ing the 80-20 rule consecutively). Each client’s test set was sent to
the server to create a fair centralized test set for evaluation. In the
CL setting the local train/validation sets were merged into central
train and validation sets.

Feature selection For our experiments, we focused on the original
set of 6 labels. Data from the majority of the sensors was used as
inputs. We discarded the sensors with more than 60% of missing
values in any feature belonging to the respective sensor. The final
sensors used for our models are: accelerometer (26 features), gyro-
scope (26), watch accelerometer (46), watch compass (9), audio (26),
audio properties (2) and phone state as one hot encoded discrete
measurements (32), resulting in 175 input features in total. This
subset of sensors was selected to avoid handling the many missing
values from other sensors and making the input dimension too
large.

Standardization & Cleaning In our preprocessing pipeline, we ap-
ply global standardization, which sends feature means and standard
deviations of all clients to the server in order to create a globally
scaled view of the data. We impute the missing values with the
feature statistical means.

4.2.1 Data Augmentation. As the classes are already severely im-
balanced without any augmentation (See Figure 2), we perform
data augmentation after standardization and missing value imputa-
tion. We extract and replicate samples of each class an empirically-
defined number of times (Running 20 times, Cycling 8 times, Stand-
ing 1 time, Walking 2 times). Then, we use Gaussian noise to aug-
ment the features of each replica (Mean 0 and std 10~%). We call
this augmentation stage “base”. We also examine the balanced aug-
mentation setting; here, all existing labels are balanced on each
client separately. In this case, the number of replicas separately cre-
ated for each sample dictates the balance augmentation result. This
number is the ratio of the number of samples of the most common
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Figure 2: Label distribution with different data augmentation
settings: none, base and balanced. Note that in the balanced
setting running and cycling are still less represented globally.

label over the number of samples of the currently augmented label.
(e.g. if sitting is the most common label on the client i and has
ng samples, then the number of replicas of the running samples

on the same client will be I_Z—%J The resulting label distributions

are depicted in Figure 2, which shows how, previously negligible
labels, like running and bicycling have a better representation and
better compensate for the data skew. In particular, the balanced
augmentation brings labels like waling and standing to have almost
the same volume as the prominent one, i.e., sitting.

4.3 Quality Assessment Metrics

Another essential step is to define a clear set of quantitative mea-
sures of the model’s quality. In particular, we want metrics that aid
the understanding of the goodness of each model in their training
phase while being general enough to allow the comparison across
CL and FL implementations. Therefore, we choose the following
set of metrics:

(1) Balanced Accuracy (BA), a commonly used [30] metric in
label-imbalanced settings. It is the macro-averaged recall
across all labels.

(2) Macro-averaged F1-Score, similarily to BA, in class-
imbalanced settings, it can assess the models predictive
power across all classes, without the bias toward the ma-
jority class introduced by the label imbalance.

(3) F1-Score on the minority class Running showcases the model’s
capability to predict severely underrepresented classes.

(4) F1-Score on the majority class Sitting on the hand shows how
the model works when there is enough information.

We use these metrics for tuning, comparing and selecting the
best setting for our CL and FL models. Furthermore, they work
as a reference during the evaluation of the presented method, in
Section 5.

4.4 Model Design & Tuning

We model the problem with a multi-layer perception (MLP) with 64,
and 16 neurons in each layer. Leaky ReLU was used as the activation
function of the hidden layer and softmax as the output activation.
The model architecture (activation functions and number of neu-
rons) is inspired by the work performed by the Extrasensory dataset
authors [30], allowing us to have a direct comparison. The main
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difference to their work is that we perform multi-class classification
on the mutually exclusive labels, whereas they focus on multi-label
distribution on many different subsets of labels and also experiment
with different layer/neuron number combinations. As we employ
softmax as the activation, we use categorical cross entropy as the
loss function. SGD optimizer was used with momentum set to a
common value of 0.9.

First, we focus on the CL model. We tune the batch size and learn-
ing rate to find the optimal configuration, using the base-augmented
dataset. We evaluate the model with the following hyperparam grid:
batch size € {32,64,128,256} and learning rate € {0.01,0.001}.
We monitor the convergence as well as the performance of the mod-
els on the test set using the metrics defined in Section 4.3. We display
the average of the last 5 epochs for BA, Macro F1 and F1 Score on
Running class in Table 1. Overall, the [BS = 256, LR = 0.01] con-
figuration outperforms the others on almost all the metrics. These
results tell us that the CL model can accurately perform HAR, espe-
cially with the aforementioned configuration, reaching up to ~ 0.7
for BA and Macro F1 and =~ 0.64 on the Running F1 Score.

As a result of multiple preliminary experiments, our configura-
tion for synchronous FL is as follows: we train each model for a
maximum of 100 rounds with 2 local epochs on all 60 clients, as the
FL model requires, overall, more epochs for converging than the
CL one. We varied the number of clients per round S € 20, 40, 60
and found that they all achieved comparable performance, where
the larger values implied fewer fluctuations in the observed met-
rics between each round. Therefore we select all 60 clients in each
round to make the results comparable to the AFL setting where
all 60 clients run continuously. For lower time complexity, we use
early stopping; the training process is truncated if the performance
doesn’t improve after 50 rounds. On top of this setup, we tune the
BS and LR, using the same values as used in CL. Table 1 contains
the average of the last 5 values of hyperparameter tuning results
for this setting. We can immediately notice that the overall scores
for BA and Macro F1 are lower than in CL (x 0.6 vs. ~ 0.7). This
degradation seems to impact more the less-represented labels, e.g.,
Running class (= 0.5 vs. & 0.6 in CL), than the majority ones. The
F1 Score for the Sitting class is in fact only slightly lower.

In asynchronous FL, for hyperparameter tuning, we train all the
models for 40 minutes. The goal is to select the model with the
highest F1-Score as the baseline defined by batch size and learning
rate. Table 1 summarizes the performance of the models trained
with different hyperparameters, which are comparable to the syn-
chronous FL tuning results presented in the same Table. Ultimately,
we select the [BS = 128, LR = 0.01] configuration as it achieves the
best performance across the majority of tracked metrics. Likewise,
we performed the experiments for various mixing ratio settings
amR € {0.2,0.4,0.8}. We discovered that only the speed of conver-
gence changes with different values. Therefore, to reach maximum
convergence ayr = 0.8 was selected.

To summarize the results of hyperparameter tuning across all
three paradigms of training: CL, SFL and AFL, we present the scores
of each metric averaged across the last five convergence observa-
tions in Table 1 for different batch size and learning rate configura-
tions.

loT 2024, November 19-22, 2024, Oulu, Finland

LR 0.001 0.01
BS 32 64 128 256 32 64 128 256

CL m-F1 [ 0.69 0.70 059 0.58 | 0.60 0.68 0.60 0.71
BA | 0.69 070 0.60 0.59 | 0.66 0.67 0.61 0.71

F1-R | 0.54 0.60 0.00 0.00 | 0.45 0.49 0.00 0.64

SFL  m-F1 | 0.61 0.59 050 043 | 062 062 0.63 0.61
BA | 0.60 059 053 047 | 0.61 0.61 0.61 0.59

F1-R | 041 043 025 0.00 | 046 052 0.53 0.49

AFL m-F1 | 0.58 0.56 046 044 | 0.62 0.62 0.63 0.61
BA | 059 056 050 047 | 0.60 0.61 0.61 0.60

F1-R | 036 0.29 0.00 0.09 | 048 046 0.54 0.47

Table 1: Summary of the batch size (BS) and learning rate
(LR) hyperparameter tuning for the three settings: Central-
ized Learning (CL), Synchronous Federated Learning (SFL)
and Asynchronous Federated Learning (AFL). The monitored
metrics are macro-averaged F1 score (m-F1), balanced accu-
racy (BA) and F1 score on the underrepresented running class
(F1-R). As the performance on F1 score on the sitting class
did not significantly vary, it was omitted from the table.

5 Evaluation

In this section, we evaluate the challenges or complications that
may arise when transitioning from CL to FL models in non-IID
settings. We first describe our evaluation framework. Then, we
group the design decisions (presented in Section 2) into two groups:
1) data-related decisions and 2) system/model-related decisions and
describe their impact on FL model training and evaluation.

5.1 Evaluation Testbed Setup

We need to consider various aspects when setting up the evaluation
testbed. First, we need to guarantee that the results produced for
AFL are comparable with the other methods. To do so, we (1) extract
performance metrics values after a fixed number of updates (instead
of a fixed training duration) and (2) consider two evaluation vantage
points (VP), central (2a) and distributed (2b). In the central VP (2a),
we perform the evaluation on the centralized test set on the server.
In synchronous settings, this step is performed before starting
the round; in AFL, we perform it periodically (every 20s). In the
distributed VP (2b), the evaluation happens locally on each client
before the local training starts. In this case, we use the local client
validation set. Finally, we need to specify the performance metrics.
As model quality indicators, we leverage the metrics defined in
Section 4.3, i.e., BA, Macro F1, F1 Score for Running, and F1 Score
for Sitting.

For the execution setup, we reproduce clients and server by run-
ning a ray simulation provided by the Flower framework [2]. We
perform our experiments on a Ubuntu 24.04 LTS VM with the AMD
EPYC 7742 64-Core CPU and 384GB of memory.

5.2 Data-related Decisions

We now evaluate the effects of data preprocessing decisions and
which pitfalls they might lead to when transitioning from CL to FL
in non-IID settings.

5.2.1 Fair vs Hold-out Test set. There are two ways for generating
the test set in federated learning settings with IoT data, i.e., with
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Figure 3: Zoomed-in convergence plots of the evaluation
metrics for different data augmentation schemes (DA) in
asynchronous FL. Different line length is the result of fixing
a number of average client updates rather than train time.

multiple clients: (1) with Hold-Out Clients (HOC), that keeps
only the data of a subset of clients for testing, or (2) by using a
Fair Test Set (FTS), where each client selects a portion of data
to send to the server to create the test set. HOC (1) offers better
privacy guarantees, but the final test set suffers from client-selection
bias. This effect is even more prominent in severe non-IID settings,
amplifying quantity, feature, and label skews. FTS (2) is weaker
from the privacy perspective but enables a fairer evaluation of the
global model performance by sampling data from all clients.

Our work targets the fair examination of the models; therefore,
we use FTS. Especially considering our use case, the skew in label
distribution is so accentuated that with HOC, we could even leave
out some categories altogether, leading to a partial evaluation.

Takeaway: The client-selection bias present in HOC is amplified by
the non-IIDness of typical IoT data. FTS can be used to gain a clear and
stable view on the global data distribution enabling fair evaluation
while carrying privacy risks.

5.2.2  Data augmentation and its effects in non-1ID FL. Here we
re-visit these augmentation schemes from Section 4.2.1 only within
the federated learning context. Figure 3 depicts the convergence
results of training the AFL baseline model with varied data aug-
mentation. Likewise, a summary of the results for CL, SFL, and AFL
is presented in Table 2. Across all three settings, the running label
is almost always ignored by the models. The model trained with
no augmentation performs comparably on the majority label as the
one trained with base augmentation. However, excessive augmen-
tation can be problematic. The balanced setting, despite equal class
representation, introduces oversampling bias, making it better than
no augmentation but worse than moderate augmentation.
Takeaway: Adding Gaussian noise as data augmentation scheme par-
tially addresses the label skew in CL, SFL, and AFL. The magnitude of
the performed data augmentation is a tunable parameter as excessive
augmentation can lead to oversampling bias and no augmentation
leaves the minority classes severely underrepresented and ignored by
the model.

5.2.3 Global Data Scaling and Persistence of Feature Skew . We
further evaluate the influence of two data scaling (standardization)
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Figure 4: Zoomed-in convergence plots of the evaluation

metrics for different feature standardization schemes (STD)

in asynchronous FL.

methods on model convergence in asynchronous FL. In the first
approach, we scale the features of the data based on client-local
means and standard deviations. In the second one, we first share the
local means and standard deviations with the server before training,
and then we scale the data on all clients with the aggregated global
mean and standard deviation. While carrying privacy risks due to
the communicated statistics, the second, global, method improves
the performance of the models in all four tracked metrics, as it is
visible from the Figure 4 and Table 2. Individuals’ personal habits
and way of performing them usually influence their local feature
distributions (e.g. every individual cycles differently and introduces
different sensor readings for this class). Secondly, additional feature
skew among the clients stems from device heterogeneity. As a result,
scaling the features locally tends to keep a considerable proportion
of the already present feature skew and provides skewed data views
for the model degrading its performance.

Global scaling addresses these causes for feature skew, however,
a significant amount of feature skew remained for the running class
samples as depicted in Figure 5. This skew is potentially a result of a
difference in local label distributions. As each client has a different
ratio of the samples of each class, the feature means and standard
deviations will be skewed towards each client’s distribution as well.
As the minority class usually has fewer samples on each client, the
effects of such skews are more prominent in minority classes.
Takeaway: Scaling the data globally, significantly improves the con-
vergence of the models, but it introduces privacy risks. Even with
global data standardization, the clients might still have different rep-
resentations of the same class. This proves that feature skew is a
persistent issue in non-IID IoT (HAR) datasets and is amplified in the
minority classes.

5.3 System & Model-related Decisions

In the following, we focus on the effect of different optimizers
on model performance with non-IID data and the implications of
server-processing delays on AFL with non-IID data.

5.3.1 Optimizer Selection. Here, we compare two optimizers,
ADAM [11], commonly used in FL settings, and SGD with mo-
mentum (SGD-m), a performative optimizer in Deep Learning. To
examine the magnitude of the optimizer’s impact on the model
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Figure 6: Zoomed-in convergence plots of the evaluation
metrics for different optimizer (optim) in asynchronous FL.

performance, we fix all the other training parameters. We present
the results in Figure 6 and Table 2. ADAM converges faster but with
lower overall performance. Moreover, Figure 6 depicts how training
using ADAM has a much more unstable behavior, obviously shown
in the case of Running (bottom left)). We assume that the unsat-
isfactory results with the ADAM optimizer are due to extremely
short local train times (2 epochs only), leading to restarting the
ADAM state with each round of training and essentially forgetting
it. At the same time, leveraging naive approaches such as extending
the local train time or locally maintaining the ADAM state are not
recommended. First, significantly increasing the (local) train time
would lead, in FL settings, to local gradients that diverge toward
the clients’ local distributions, causing issues during aggregation.
On the other hand, maintaining the local ADAM state and keeping
fewer local epochs carries the risk of ADAM overfitting to the local
data. To make the momentum and learning rate adaptive and utilize
ADAM’s full potential, one could consider either applying ADAM
on the server side, as presented in [9, 13], or sharing ADAM state
among the clients, as presented in [10]. Exploring these solutions
is however outside of the scope of this paper.

Takeaway: Applying SGD-m as the optimizer in FL settings has
proven to be more advantageous than applying ADAM. As ADAM
contains more stateful parameters that are tracked over multiple
epochs, the approach does not perform well in, typically stateless,
federated optimization. To improve the performance of ADAM, one
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Figure 7: Zoomed-in convergence plots of the evaluation
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can either apply ADAM on the server or share the optimizer’s state
with the server during the entire training.

5.3.2  Effects of Busy Servers. Custom FL workflows typically in-
clude additional processing on the server (e.g. for clustering [3, 8])
that introduces delays. To examine the effect of these delays on
AFL with non-IID data we simulate them by adding busy waiting
on the server on two vantage points (VPs): (1) before centralized
evaluation we add a busy wait of 10 seconds and (2) before each
client’s update is merged into the global model we add 1 second of
busy wait. The results of this run compared to the baseline (without
the delays) are illustrated in Figure 7. The model trained without
the delays naturally reaches the fixed number of updates sooner
(hence the shorter line). However, adding delay to the server signif-
icantly degrades model performance even with the same number
of average updates per client. This discrepancy is especially visi-
ble in the minority class running. This observation highlights the
importance of timely model updates and underscores the need for
adequate server resources and time-efficient adaptation techniques,
even without direct model training expected on the server.

Takeaway: For AFL workflows involving intensive computations,
achieving the baseline without additional computations may be diffi-
cult due to the performance discrepancy caused by server delays.

6 Related Work

We categorize previous contributions based on the two main topics
of our research. First, we focus on related work on FL applied to
Human Activity Recognition. Furthermore, we present the findings
of other authors on the issues that non-IID data brings to FL.
Human Activity Recognition with Deep and Federated Learning
Better devices’ hardware, together with higher privacy aware-
ness, led HAR research to focus on using FL approaches. Sozinov
et al. [27] train a deep neural network to model the Heterogenous
HAR data.They prove that the model performance in both balanced
and simulated imbalanced settings is acceptable for this dataset.
However, the applicability of their insights to the Extrasensory
dataset [28] is limited as the actions performed have a uniform
label distribution. Smith et al. [26] introduce MOCHA, a multi-task
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Param  data augmentation scaling optimizer
Value none base bal glob. loc. adam sgd-m

CL m-F1 047 0.71 0.68 - - - -
BA 046 071 0.69 - - - -
F1-R 0.00 0.64 0.60 - -
SFL  m-F1 051 0.63 0.61 0.63 0.61 0.59 0.63
BA 047 0.61 059 061 0.61 0.56 0.61
F1-R 000 053 049 053 044 0.31 0.53
AFL m-F1 039 062 059 063 0.60 0.59 0.63
BA 039 0.60 0.58 0.60 0.59 0.56 0.61
F1-R 0.00 048 045 053 048 0.32 0.53

Table 2: Summary of the influence of data augmentation:
none, base and balanced (bal), standardization (scaling) : lo-
cal and global, and optimizer: SGD-m and ADAM on model
performance. Only the federated settings were considered for
the effects of data scaling and optimizer. As the performance
on F1 score on the sitting class did not significantly vary, it
was omitted from the table.

learning framework for addressing both statistical as well as system-
level heterogeneities in FL, which was evaluated on the UCI-HAR
dataset [1]. More specifically, for non-IID data in asynchronous FL,
an approach [6, 14] is to learn shared feature representations on
the server, together with a decayed update coefficient. The goal is
to the previous global model with new updates and improve the
local loss function. Chen et al. [4] integrate this method with a
drift detection and drift correction scheme to address and test it
on the Extrasensory dataset. However, these contributions solely
use the HAR dataset as an evaluation. Our work instead proposes
a fully IoT/HAR-oriented analysis approach. We offer a thorough
examination of the HAR use case from both IoT and FL perspectives.
We find that the typical feature learning approaches usually work
around the issue of non-IID data without trying to understand it
fully. In contrast, we aim to provide an in-depth analysis of the
issues and causes of performance degradation.

Issues with Non-IID data in Federated Learning There are two
primary surveys addressing the topic of non-IID data in FL [37] and
[16]. The former lays a basis for the classification of approaches to
non-IID data in FL and identifies three groups of solutions (data-,
algorithm- and system-oriented solutions), while the latter focuses
on the evolution of FL research that happened in the years after the
publishing of the former survey. While these surveys offer a broad
overview of the non-IID data issue, they do not analyze the influence
of different hyperparameters, model evaluation schemes or different
data scaling methods. Contrary to their work, we focus on the
method of transitioning from centralized to federated learning and
the effects of various design decisions on model performance and
model evaluation properties.

Transitioning from Centralized to Federated Learning The most
similar contribution to our work is presented by Drainakis et al.[7].
They evaluate the effects of transitioning from centralized (CL) to
FL settings in non-IID data scenarios. In contrast to our research,
their focus is on the network resources and energy consumption.
Furthermore, while they compare CL and FL performance, they do
not work towards mitigating non-IIDness in FL and do not consider
AFL setting.
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7 Conclusion

In this paper, we presented a methodology for transitioning from
CL to SFL/AFL in the IoT landscape with non-IID settings. We
discussed the critical design decisions of the IoT FL model develop-
ment lifecycle. We illustrated our methodology on a realistic HAR
case study to analyze its practical feasibility in real-world settings.
We evaluated the implications of data- and model-related design
decisions on the model development in IoT FL systems. Based on
our evaluation results we identified the following main takeaways
to support the researchers and practitioners developing FL IoT sys-
tems: 1) generating a stable and fair test set carries privacy risks
but is crucial to ensure reliable performance, 2) data augmentation
is a tunable parameter that can significantly improve performance
in non-IID FL, 3) global data scaling carries privacy risks while
offering a more consistent view of the data, 4) even after global
standardization feature skew often remains (especially in minority
classes), 5) using a state-based optimizer such as ADAM degrades
the performance in non-IID FL and 6) additional delays on the server
degrade performance and influence comparability. To obtain the
AFL results presented in this work we implemented an open-source
extension of the Flower framework which supports AFL.

Limitations and Potential Concerns While the use of a single
dataset may raise concerns about the generalizability of the find-
ings, the Extrasensory dataset is an excellent representative of a
realistic and naturally non-IID HAR setting. Therefore, the take-
aways of our exhaustive experimentation with this dataset create a
stable blueprint for similar tasks and datasets across the IoT and
HAR fields. While global scaling might introduce privacy risks, we
point it out as one of the trade-offs, i.e. stronger privacy vs better
performance. Further discussion on the severity of this privacy risk
and privacy-preserving techniques that could be used to mitigate
this issue is out of the scope of this work. Similarly, there are more
sophisticated techniques for addressing the persistent feature skew
such as an adaptive learning rate or weighted loss functions for
minority classes, however, they typically require additional assump-
tions and their effectiveness may vary depending on the use case.
On the contrary, our experiments were guided by the typical ML
pre-processing steps that can be applied immediately, and therefore,
a discussion of these advanced methods is out of the scope of this
work.

Future work In the future, we intend to continue our work in
several directions. After establishing the performance degradation
present in non-IID federated HAR settings, we aim to further inves-
tigate the model update gradients and develop an adaptive asyn-
chronous solution that leverages this approach. This solution will
have the goal of improving the performance of underrepresented
classes and, by proxy, the general model performance. We also in-
tend to extend our current solution to streaming and continuous
learning settings which are important for the FL systems in IoT set-
tings. Our further aim is to advance our approach from the system
perspective, enabling the provisioning and governance [20] of FL
models in the IoT and the Edge-Cloud landscape.
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