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ABSTRACT
The Robertson model describing a chemical reaction involving three reactants is one of the classical examples of stiffness in
ODEs. The stiffness is caused by the occurrence of three reaction rates 𝑘1, 𝑘2, and 𝑘3, with largely differing orders of magnitude,
acting as parameters. The model has been widely used as a numerical test problem. Surprisingly, no asymptotic analysis of
this multiscale problem seems to exist. In this paper, we provide a full asymptotic analysis of the Robertson model under
the assumption 𝑘1, 𝑘3 ≪ 𝑘2. We rewrite the equations as a two-parameter singular perturbation problem in the rescaled small
parameters (𝜀1, 𝜀2) ∶= (𝑘1∕𝑘2, 𝑘3∕𝑘2), which we then analyze using geometric singular perturbation theory (GSPT). To deal with
the multiparameter singular structure, we perform blowups in parameter- and variable space. We identify four distinct regimes in
a neighborhood of the singular limit (𝜀1, 𝜀2) = (0, 0). Within these four regimes, we use GSPT and additional blowups to analyze
the dynamics and the structure of solutions. Our asymptotic results are in excellent qualitative and quantitative agreement with
the numerics.
MSC2020: 34E10, 34E13, 34E15, 92E20

1 Introduction

In this paper, we give a dynamical systems analysis of the
Robertson model [30] based on methods from geometric singular
perturbation theory (GSPT). The Robertson model describes a
chemical reaction of three reactants 𝑋, 𝑌, and 𝑍, which interact
according to the reaction scheme shown in Figure 1.

With mass-action kinetics, the Robertson model leads to the
following system of ODEs:

�̇� = −𝑘1𝑥 + 𝑘3𝑦𝑧

�̇� = 𝑘1𝑥 − 𝑘2𝑦
2 − 𝑘3𝑦𝑧

�̇� = 𝑘2𝑦
2,

(1.1)

with corresponding concentrations 𝑥, 𝑦, 𝑧 ∈ ℝ, reaction rates
𝑘𝑖 > 0, 𝑖 = 1, 2, 3. As usual, ̇( ) ∶= 𝑑

𝑑𝑡
denotes the time derivative.

The classical choice of parameters and initial values in [30] is

𝑘1 = 4 ⋅ 10−2, 𝑘2 = 3 ⋅ 107, 𝑘3 = 104 (1.2)

and

(𝑥(0), 𝑦(0), 𝑧(0))𝑇 = (1, 0, 0)𝑇. (1.3)

The qualitative dynamics of system (1.1) is fairly simple.

Lemma 1.1. All solutions of (1.1) starting in the nonnegative
orthant ℝ3

+ exist globally in forward time. The 𝑧-axis is a line of
attracting equilibria. The solution with initial value (𝑥0, 𝑦0, 𝑧0)

𝑇 ∈
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FIGURE 1 Reaction scheme of the Robertson model.

ℝ3
+ converges to the equilibrium (�̂�, �̂�, �̂�)𝑇 = (0, 0, 𝑐)𝑇 , with 𝑐 ∶=

𝑥0 + 𝑦0 + 𝑧0 > 0.

Proof. Adding the three equations of (1.1) implies that the
quantity 𝑥 + 𝑦 + 𝑧 = 𝑐𝑜𝑛𝑠𝑡. is conserved. Since on the boundary
of the nonnegative orthant ℝ3

+, the flow does not point outward,
that is,

�̇�|𝑥=0 = 𝑘3𝑦𝑧 ≥ 0, �̇�|𝑦=0 = 𝑘1𝑥 ≥ 0, �̇�|𝑧=0 = 𝑘2𝑦
2 ≥ 0,

we can conclude that ℝ3
+ is forward invariant under (1.1), see

[1, p. 219]. Consequently, the solution starting at an initial value
(𝑥0, 𝑦0, 𝑧0)

𝑇 ∈ ℝ3
+, where 0 < 𝑐 ∶= 𝑥0 + 𝑦0 + 𝑧0, is contained in

the compact set

𝐾 =
{
(𝑥, 𝑦, 𝑧)𝑇 ∈ ℝ3

+ ∶ 𝑥 + 𝑦 + 𝑧 = 𝑐
}

and therefore exists for all times 𝑡 ≥ 0.

Due to the conserved quantity, we may reduce the dimension of
(1.1) by using 𝑥 = 𝑐 − 𝑦 − 𝑧 to obtain

�̇� = 𝑘1(𝑐 − 𝑦 − 𝑧) − 𝑘2𝑦
2 − 𝑘3𝑦𝑧

�̇� = 𝑘2𝑦
2.

(1.4)

Since the divergence of the vector field (1.4) given by−𝑘1 − 2𝑘2𝑦 −
𝑘3𝑧 is negative for positive reaction rates, we can exclude noncon-
stant periodic solutions by the Bendixson–Dulac criterion. The
unique equilibrium of (1.4) is given by (�̂�, �̂�)𝑇 = (0, 𝑐)𝑇 , hence
by the Poincaré–Bendixson theorem all solutions of (1.4) will
ultimately converge to this equilibrium. □

In particular, we conclude from Lemma 1.1 that the solution of
(1.1) with initial value (1.3) converges to the unique equilibrium
(�̂�, �̂�, �̂�)𝑇 = (0, 0, 1)𝑇 . Thus, our interest in the Robertson model
is not this rather simple dynamics but the multiscale structure
of these solutions which we now describe in a preliminary way
based on numerical simulations. The time series of a numerical
solution of (1.1) with the classical choice of reaction rates (1.2) and
initial condition (1.3) is shown in Figure 2.

In the time series, three distinct parts can be distinguished. The
reaction starts with a very fast initial increase of 𝑦 up to a plateau
value 𝑦𝑚𝑎𝑥

𝑛𝑢𝑚 ≈ 3.65 ⋅ 10−5. This is followed by an intermediate
phasewhere 𝑦 is almost constant. In the third part, the conversion
of 𝑥 into 𝑧 (via 𝑦) proceeds on a much longer time scale.

Remark 1.2. Our analysis predicts a plateau value of 𝑦𝑚𝑎𝑥 =√
𝑘1𝑐

𝑘2

+ (
𝑘1

𝑘2

). A detailed derivation of this value can be found

at the end of Section 3. With the parameter values (1.2) and
initial condition (1.3) (which implies 𝑐 = 1) this leads to 𝑦𝑚𝑎𝑥 =

FIGURE 2 Numerical solution of Equation (1.1) with an implicit
BDF solver [32]. Note the logarithmic time scale.

2√
3
⋅ 10

− 9

2 + (10−9) = 3.651 ⋅ 10−5 + (10−9), whichmatches the
numerical value 𝑦𝑚𝑎𝑥

𝑛𝑢𝑚 above.

Numerical experiments indicate that this solution structure
occurs for all parameter values

0 < 𝑘1, 𝑘3 ≪ 𝑘2. (1.5)

This peculiar structure of solutions has been observed early
on as the Robertson model was widely used as a test problem
for stiff numerical solvers, for example, [14, p. 3]. Up to our
knowledge, the Robertson model (1.1) has been investigated
only numerically. No analytical results explaining the solution
structure described above seem to be available. In this paper,
we provide a full asymptotic analysis of the Robertson model
under the assumption 𝑘1, 𝑘3 ≪ 𝑘2, which covers the classical
values (1.2).We rewrite the equations as a two-parameter singular
perturbation problem in the rescaled small parameters (𝜀1, 𝜀2) ∶=
(𝑘1∕𝑘2, 𝑘3∕𝑘2), which we then analyze using GSPT.

Similar phenomena and solution structures occur in many
chemical reactions andmore general classes of biological models.
Due to the occurrence of variables and parameters of widely
different orders ofmagnitudemost of thesemodels aremultiscale
in nature, see, for example, [22, 33, 34] and references therein.
As a consequence of these multiple scales, some variables may
vary little and can thus be treated as constants. Some parameters
may have almost no effect and can be neglected. Some variables
may rapidly approach a (quasi)equilibrium and can thus be
slaved to other variables. Different mechanisms may dominate
the dynamics in certain regions of phase- and/or parameter-
space. Correspondingly, individual trajectories contain segments
generated by sequences of fast and slow processes on widely
separated time scales. Identifying and analyzing these regimes
and the resulting decompositions into subsystems is crucial
in the analysis of the dynamics. In suitably scaled variables,
the equations in the individual regimes often have the form
of a slow–fast dynamical system and the dynamics is (locally)
organized by a slow invariant manifold of lower dimension. The
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dynamics on the slow manifold is governed by a reduced model
of lower dimension.

The most widely used realization of these ideas is the well-
known quasi-steady-state approximation (QSSA), which is used
to obtain lower-dimensional approximating models, that is, reac-
tants involved in fast processes are eliminated by assuming that
they are in equilibrium [33, 34].

A powerful mathematical concept in explaining these phe-
nomena are slow manifolds. The mathematical theory of slow
manifolds and more general of slow–fast dynamical systems,
known asGSPT, iswell-developed forODEs depending singularly
on one distinguished parameter 𝜀 ≪ 1 (see [10, 19, 24, 27, 38]
an the numerous references therein). The origins of GSPT date
back to the work of Fenichel [10], where he introduced an
invariant manifold approach for singularly perturbed differential
equations of the form

𝑧′ = 𝐻(𝑧, 𝜀) (1.6)

with 𝑧 ∈ ℝ𝑘, 𝑘 ≥ 2, and 𝜀 ≪ 1, see also [38] for a modern
presentation. In this setting, singular perturbation problems
correspond to situations where the set

 ∶= {𝑧 ∈ ℝ𝑘 ∶ 𝐻(𝑧, 0) = 0}

contains manifolds of dimension 𝑙 ≥ 1. In many situations,  is
a manifold of dimension 𝑙, however, in other situations it is not
a manifold in the strict sense due to the existence of singular
points. Therefore,  is denoted as the critical set. The critical set
 corresponds to the equilibrium points of the 𝜀 = 0 limit of (1.6)
𝑧′ = 𝐻(𝑧, 0). Under certain conditions, manifolds ̃ ⊂  perturb
to slowmanifolds ̃𝜀 for 0 < 𝜀 ≪ 1 onwhich the dynamics is slow,
while away from ̃𝜀 the dynamics is fast.

An important special case of (1.6) are slow–fast systems in
standard form given by

𝑥′ = 𝑓(𝑥, 𝑦, 𝜀)

𝑦′ = 𝜀𝑔(𝑥, 𝑦, 𝜀)
(1.7)

with 𝑥 ∈ ℝ𝑚, 𝑦 ∈ ℝ𝑛, and 𝜀 ≪ 1, where differentiation is with
respect to the fast time 𝜏. Systems of the form (1.7) are called slow–
fast in standard form, because as long as 𝑓 and 𝑔 are (1) the
dynamics of 𝑥 is fast compared to 𝑦, that is, 𝑥 is the fast variable
and 𝑦 the slow variable.

Remark 1.3. It will turn out that for the analysis of the
Robertson model both forms (1.6) and (1.7) are relevant. In the
following explanation of the basic principles of GSPT, we will
limit ourselves to the important special case (1.7).

The 𝜀 = 0 limit problem of (1.7)

𝑥′ = 𝑓(𝑥, 𝑦, 0)

𝑦′ = 0
(1.8)

is called layer problem, which is used as an approximation of the
fast dynamics. With a slight abuse of notation, we denote the set

of equilibria of (1.8)

 =
{
(𝑥, 𝑦)𝑇 ∈ ℝ𝑚+𝑛 ∶ 𝑓(𝑥, 𝑦, 0) = 0

}
,

as critical manifold, despite the fact that  does not need to be a
manifold in the strict sense (as pointed out above in the discussion
of the general form (1.6)). By switching to the slow time 𝑡 = 𝜀𝜏, we
may write system (1.7) in the (for 𝜀 > 0) equivalent form

𝜀�̇� = 𝑓(𝑥, 𝑦, 𝜀)

�̇� = 𝑔(𝑥, 𝑦, 𝜀),
(1.9)

where differentiation is with respect to the slow time 𝑡. The limit
problem on the slow time scale

0 = 𝑓(𝑥, 𝑦, 0)

�̇� = 𝑔(𝑥, 𝑦, 0)
(1.10)

is called reduced problem and is used as an approximation of the
slow dynamics. Observe that the reduced problem is a dynamical
system on the critical manifold  . Parts of the critical manifold
 , where the Jacobian 𝜕𝑓

𝜕𝑥
is regular, may be represented locally as

graphs 𝑥 = ℎ(𝑦) by the implicit function theorem. The reduced
flow on  is then given by

�̇� = 𝑔(ℎ(𝑦), 𝑦, 0).

The goal of GSPT is to combine the dynamics of the two simpler
limiting systems (1.8), and (1.10) to understand the behavior of
(1.7) for 0 < 𝜀 ≪ 1. In [10], Fenichel showed that if the Jacobian
𝜕𝑥𝑓 is uniformly hyperbolic, the critical manifold  perturbs
smoothly to a locally invariant slow manifold 𝜀 which is (𝜀)-
close to  , shares its stability properties with  and the slow flow
on 𝜀 converges to the reduced flow as 𝜀 → 0.

A major difficulty that remained in GSPT were nonhyperbolic
points, that is, pointswhere at least one eigenvalue of the Jacobian
𝜕𝑥𝑓 lies on the imaginary axis. Frequently, these points are
given by the singularities of the critical manifold. The problem
remained open until the pioneering work of Dumortier and
Roussarie [9] where they introduced the blowup method, which
was then developed into a powerful tool in GSPT by Krupa and
Szmolyan, see [24, 25]. The main idea of the blowup method is to
first extend the state space by adding the trivial equation 𝜀′ = 0

and then introducing suitable weighted spherical coordinates to
blow up the singularity, for example, a point to a sphere or a line
to a cylinder. After dividing out a suitable power of the radial
variable, less singular differential equations are obtained which
often allow for a complete analysis with dynamical systems tools.
By now, the blowup method has been widely used in the analysis
of singularly perturbed differential equations (see, e.g. [6, 13, 15,
16, 20, 21, 26, 29, 35]). It seems fair to say that GSPT is very well
developed for systems with a distinguished singular perturbation
parameter 𝜀 and that it has proven to be very useful in a large array
of applications.

However, surprisingly little seems to be known in the case
of systems depending singularly on several small or large
parameters, for example, chemical reactions with reaction rates
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𝑘𝑖 , 𝑖 = 1, … , 𝑝 of widely differing orders of magnitude. Since this
singular dependence on several parameters is rather the rule than
the exception for realistic chemical reactions and many other
classes of biological models, it is important to develop methods
suitable for the asymptotic analysis of such problems.

Our interest in the Robertson model comes from the fact, that
it is a well-known but fairly simple representative of this class
of problems. We expect that the approach of this paper will be
useful in a wide variety of problems, for example, various variants
and extensions of the basic Michaelis–Menten mechanism [11,
31] and models of the Belousov–Zhabotinskii reaction [37]. In
ongoing work, we are using this approach in the analysis of a five-
variable model of the cell cycle [8, 36] with singular dependence
on three parameters.

An obvious and often used approach to apply asymptoticmethods
and in particular GSPT to multiparameter problems is to reduce
to the one-parameter case by identifying a suitable parameter 𝜀

such that

(𝑘1, … , 𝑘𝑝)
𝑇 ∼ (𝜀𝛼1 , … , 𝜀𝛼𝑝 )𝑇, 𝛼𝑖 ∈ ℤ, 𝑖 = 1, … , 𝑝. (1.11)

A simple illustration of this approach (and its inherent arbi-
trariness) in the context of the Robertson model with the
classical parameters (1.2) would be 𝜀 = 1∕10 which leads to 𝛼1 =
2, 𝛼2 = −7, and 𝛼3 = −4. This widely used approach, where
parameters are restricted to a curve, can be very successful if
good numerical values of the parameters are available (see, e.g.,
[18, 22]). Unfortunately, this is often not the case and tools
for qualitative analysis covering wider ranges of parameters are
needed.

A powerful tool in finding significant scalings of parameters and
variables in (polynomial) systems of differential equations based
on Newton polyhedra and the associated power transformations
was developed by Bruno (see [3] and references therein). A
related approach based on ideas from tropical geometry has been
developed in [8, 22]. The connections between these approaches
and our geometric approach will be explored in future work.
Clearly, such problems can also be treated by more conventional
methods based onmatched asymptotic expansions. An advantage
of the geometric dynamical systems approach is that it provides
(i) detailed insight into the underlying singular structures and (ii)
leads to rigorous results on the dynamics in appropriate ranges of
the parameters.

Hence, it is desirable to develop or adapt GSPT to prob-
lems depending singularly on several independent parameters
(𝜀1, … , 𝜀𝑙)

𝑇 , 𝑙 ≥ 2. Such problems are potentiallymore challenging
since the singular behavior and the multiscale structure can vary
significantly in a neighborhood of the singular limit (𝜀1, … , 𝜀𝑙)

𝑇 =
(0, … , 0)𝑇 . As a step toward a framework for multiparameter
singular perturbations of ODEs, we distinguish three different
cases. We expect that this classification is preliminary and not
exhaustive, nevertheless we feel it is useful as a first step. For
simplicity, we phrase this classification for systems depending
on two parameters, but it can be easily extended to systems
depending on more parameters.

Case 1: There exists an ordered sequence of time scales, that is,
the system of differential equations has the form

�̇�1 = 𝑓1(𝑥, 𝜀1, 𝜀2)

�̇�2 = 𝜀1𝑓2(𝑥, 𝜀1, 𝜀2)

�̇�3 = 𝜀1𝜀2𝑓3(𝑥, 𝜀1, 𝜀2),

(1.12)

with 0 < 𝜀1, 𝜀2 ≪ 1, which is the three-time scale analog to the
slow–fast standard form (1.7). In this situation, one can apply
Fenichel theory iteratively to obtain a nested sequence of critical
manifolds. This case is fairly well understood if the manifolds are
normally hyperbolic (see [4]). If there are nonhyperbolic points,
the situation can be more complicated, for example, see the early
influential paper [23] and the more recent [17].

In the two remaining cases, we consider more general systems in
nonstandard form, that is,

�̇� = 𝐻(𝑧, 𝜀1, 𝜀2) (1.13)

with 0 < 𝜀1, 𝜀2 ≪ 1.

Case 2: The parameter 𝜀1 is a classical singular perturbation
parameter of (1.13) with corresponding critical manifold (𝜀2)

(depending on 𝜀2) by standard Fenichel theory. The singular
dependence of (1.13) on 𝜀2 is caused by singularities of the
critical manifold (𝜀2) as 𝜀2 → 0, for example, (𝜀2) loses normal
hyperbolicity (see [15, 21]).

Case 3: Both parameters 𝜀1 and 𝜀2 act as singular perturba-
tion parameters, leading to fundamentally different slow–fast
structures in different regions of the parameter space.

So far, the analysis of problems corresponding to cases 2 and 3 has
been carried out mostly in the form of individual case studies,
for example, see the very interesting work [7] and also [5]. For
more examples and an attempt to extract common features of
existing results, we refer to the recent review [28] and the many
references therein.

The goal of this work is to make progress on adapting and
extending GSPT to multiparameter singular perturbation prob-
lems which is the topic of the ongoing thesis project [2]. We give
an asymptotic analysis of the Robertson model (1.1) under the
assumption (1.5), which covers the classical choice (1.2) in [30].
It turns out that the Robertson model has features of cases 2
and 3, which shows that the above classification is not strict. We
view our analysis as a step in adapting GSPT to multiparameter
singular perturbation problems like (1.13) and also as a starting
point for the analysis of similar problems depending onmore than
twoparameters. First, we rewrite (1.1) as a two-parameter singular
perturbation problem in the rescaled parameters

(𝜀1, 𝜀2)
𝑇 ∶= (𝑘1∕𝑘2, 𝑘3∕𝑘2)

𝑇
∈ ℝ+ × ℝ+

varying in a neighborhood of (𝜀1, 𝜀2)
𝑇 = (0, 0)𝑇 .

Recall from the proof of Lemma 1.1, that we can reduce the
Robertson model to a planar dynamical system of the form (1.4).

4 of 20 Studies in Applied Mathematics, 2025
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FIGURE 3 The four scaling regions 𝐵11, 𝐵12, 𝐵2, and 𝐵3.

By switching to the fast time scale 𝜏 = 𝑘2𝑡, we obtain

𝑦′ = 𝜀1(𝑐 − 𝑦 − 𝑧) − 𝑦2 − 𝜀2𝑦𝑧

𝑧′ = 𝑦2,
(1.14)

with initial value (𝑦0, 𝑧0)
𝑇 = (0, 0)𝑇 , “ ′ ” denotes the derivative

with respect to the fast time 𝜏, and 0 < 𝜀1, 𝜀2 ≪ 1. System (1.14)
is now a planar multiparameter singularly perturbed differential
equation of the form (1.13). Up to a reparameterization of time,
system (1.14) is equivalent to (1.1), hence, we will perform our
GSPT analysis based on the planar system (1.14).

Remark 1.4. It follows from Lemma 1.1 that the solution of (1.14)
with initial value (𝑦0, 𝑧0)

𝑇 = (0, 0)𝑇 converges to the equilibrium
𝑄 = (0, 𝑐)𝑇 for 𝜀1, 𝜀2 > 0. The linearization of (1.14) at𝑄 has eigen-
values 𝜆1 = −𝜀1 − 𝜀2𝑐 and 𝜆2 = 0with corresponding eigenvectors
𝑣1 = (1, 0)𝑇 and 𝑣2 = (𝜀1,−𝜀1 − 𝜀2𝑐)

𝑇 . Standard center manifold
theory [12] implies that this solution converges to the equilibrium
tangent to the center direction 𝑣2.

It turns out that for an asymptotic analysis, a small neighborhood
of (𝜀1, 𝜀2)

𝑇 = (0, 0)𝑇 must be divided into four regions correspond-
ing to different singular limits and slow–fast structures in phase
space (see Figure 3). Our main result can be summarized as
follows.

Theorem 1.5. There exists 𝛿 > 0 such that the following holds in
the 𝛿-neighborhood:

𝐷𝛿 ∶=
{
(𝜀1, 𝜀2)

𝑇 ∈ ℝ2 ∶ 𝜀1 ≥ 0, 𝜀2 ≥ 0, 𝜀2
1 + 𝜀2

2 ≤ 𝛿
}

of the origin in parameter space.

1. There exist constants 0 < 𝛽3 < 𝛽2 and 𝛽1 > 0 such that the
curves 𝐶1 = {(𝜀1, 𝜀2)

𝑇 ∈ ℝ2 ∶ 𝜀1 = 𝛽1𝜀2}, 𝐶2 = {(𝜀1, 𝜀2)
𝑇 ∈ ℝ2 ∶

𝜀1 = 𝛽2𝜀
2
2}, and 𝐶3 = {(𝜀1, 𝜀2)

𝑇 ∈ ℝ2 ∶ 𝜀1 = 𝛽3𝜀
2
2} divide𝐷𝛿 into

four regions 𝐵11, 𝐵12, 𝐵2, and 𝐵3 (see Figure 3).

2. In each of the regions 𝐵11, 𝐵12, 𝐵2, and 𝐵3, the problem (1.14)
has a different slow–fast structure each depending on a dis-
tinguished singular perturbation parameter. These structures
become visible in suitable rescalings and blowups.

3. For each of these regions 𝐵11, 𝐵12, 𝐵2, and 𝐵3, we identify a
singular orbit 𝛾0 of a certain type connecting the initial value
𝑂 = (0, 0)𝑇 to the unique equilibrium 𝑄 = (0, 𝑐)𝑇 of (1.14).

4. In each of the regions 𝐵11, 𝐵12, 𝐵2, and 𝐵3, the orbit corre-
sponding to the initial value approaches the corresponding
singular orbit 𝛾0 in Hausdorff distance as (𝜀1, 𝜀2)

𝑇 → (0, 0)𝑇 in
the respective region,with error estimates depending on the sizes
of 𝜀1, 𝜀2.

Remark 1.6 (i). By choosing slightly different constants 𝛽𝑖 , the
regions 𝐵11, 𝐵12, 𝐵2, and 𝐵3 can be viewed as overlapping. This
implies that the multiscale structure of the solution changes in
a smooth way for 𝜀1, 𝜀2 close to the curves 𝐶1, 𝐶2, and 𝐶3. (ii)
Actually, Theorem 1.5 holds for arbitrary constants 0 < 𝛽3 < 𝛽2

and 𝛽1 > 0 if 𝛿 is chosen sufficiently small.

To give a first impression of the different slow–fast structures
in these four scaling regions numerically computed solutions of
(1.14) are shown in Figure 4. As one moves counterclockwise
(increasing 𝜀2 relative to 𝜀1), one observes that the plateau value
𝑦𝑚𝑎𝑥

𝑛𝑢𝑚 is shrinking and given by 𝑦𝑚𝑎𝑥
𝑛𝑢𝑚 ≈ 2.16 ⋅ 10−2, 𝑦𝑚𝑎𝑥

𝑛𝑢𝑚 ≈ 6.98 ⋅

10−3, 𝑦𝑚𝑎𝑥
𝑛𝑢𝑚 ≈ 7.05 ⋅ 10−4, 𝑦𝑚𝑎𝑥

𝑛𝑢𝑚 ≈ 7.07 ⋅ 10−5, and 𝑦𝑚𝑎𝑥
𝑛𝑢𝑚 ≈ 2.26 ⋅

10−6 in 𝐵11, 𝐵12, 𝐵2 (lower), 𝐵2 (upper), and 𝐵3, respectively. The
structure of these solutions will be explained by relating them to
the singular orbits 𝛾0 of Theorem 1.5. Note that the two solution
profiles shown for region 𝐵2 correspond to minor changes in the
geometry of the underlying critical manifold (cf. the analysis in
Section 3 summarized in Figure 7). In addition, we will show that
the numerical values for 𝑦𝑚𝑎𝑥

𝑛𝑢𝑚 fit well with corresponding values
obtained by our analysis (see Section 6).

Our analysis and proofs are based on suitable blowups of the
origin in parameter spacewhich combinedwith blowups in phase
space reveal the underlying slow–fast structures in the regions
𝐵11, 𝐵12, 𝐵2, and 𝐵3. We are confident that this approach can also
be useful in the analysis of systems with more than two singular
perturbation parameters.

The rest of the paper is organized as follows: In a first step, it is
convenient to blow up the origin in parameter space (𝜀1, 𝜀2)

𝑇 =
(0, 0)𝑇 in a suitable way. This is done in Section 2. Loosely
speaking, this allows to apply GSPT with the radial parameter as
a distinguished singular perturbation parameter. In Section 3, we
carry out the rather straightforward GSPT analysis for region 𝐵2.
The slow–fast structures corresponding to the regions 𝐵11, 𝐵12,
and 𝐵3 are more complicated and require additional blowups.
The analysis of these cases is carried out in in Sections 4 and 5,
respectively. We end with a conclusion and outlook.

2 Structure of Parameter Space

The goal in singularly perturbed systems with a single parameter
𝜀 ≪ 1 is to prove statements which hold for 𝜀 ∈ ( 0, 𝜀] for some
𝜀 > 0. In system (1.14), we are now dealing with a two-parameter
problem in 𝜀1, 𝜀2 ≪ 1, hence we need to prove results which hold
in a small neighborhood of the origin in the parameter spaceℝ2

+.

As a first step, it is instructive to look at the three limiting
problems of (1.14):

5 of 20
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FIGURE 4 Numerical simulations of (1.14) in different regions of the parameter space for 𝑐 = 1.

1. 𝜀2 = 0, 𝜀1 > 0 ∶ There exists a unique equilibrium given by
(𝑦, 𝑧)𝑇 = (0, 𝑐)𝑇 . The linearization at the equilibrium has one
negative and one vanishing eigenvalue, thus center manifold
theory can be applied there.

2. 𝜀1 = 0, 𝜀2 > 0 ∶ The line 𝑦 = 0 consists of equilibria. The line
of equilibria {(0, 𝑧)𝑇, 𝑧 > 0} is attracting for 𝜀2 > 0. The origin
(𝑦, 𝑧)𝑇 = (0, 0)𝑇 ismore degenerate, that is, the corresponding
linearization has a double zero eigenvalue.

3. 𝜀1 = 0 = 𝜀2 ∶ The line 𝑦 = 0 consists of degenerate equilibria,
that is, the corresponding linearizations have a double-zero
eigenvalue.

The three cases above are qualitatively quite different, ranging
fromaunique equilibrium,which can be analyzed by centerman-
ifold reduction, to a very degenerate line of nilpotent equilibria.
This indicates that in the double limit we should expect that
the relative sizes of 𝜀1 and 𝜀2 have a significant influence on the
detailed dynamics and asymptotics. It turns out that this is indeed
the case and parameter space must be divided into three regions
𝐵1, 𝐵2, and 𝐵3, where

𝜀2
2 ≪ 𝜀1, 𝜀1 ≈ 𝜀2

2, 𝜀1 ≪ 𝜀2
2,

respectively. To be precise, we define the curves

𝐶2 ∶=
{
(𝜀1, 𝜀2)

𝑇 ∈ ℝ2 ∶ 𝜀1 = 𝛽2𝜀
2
2

}
,

𝐶3 =∶
{
(𝜀1, 𝜀2)

𝑇 ∈ ℝ2 ∶ 𝜀1 = 𝛽3𝜀
2
2

}
(2.1)

for 0 < 𝛽3 < 𝛽2 and the regions

𝐵1 =
{
(𝜀1, 𝜀2)

𝑇 ∈ ℝ2 ∶ 𝜀1 > 𝛽2𝜀
2
2

}
(2.2)

𝐵2 =
{
(𝜀1, 𝜀2)

𝑇 ∈ ℝ2 ∶ 𝛽3𝜀
2
2 ≤ 𝜀1 ≤ 𝛽2𝜀

2
2

}
(2.3)

𝐵3 =
{
(𝜀1, 𝜀2)

𝑇 ∈ ℝ2 ∶ 𝜀1 < 𝛽3𝜀
2
2

}
, (2.4)

see Figure 5 (left).

To separate the curves 𝐶2 and 𝐶3 in a neighborhood of the origin,
we perform a nonhomogeneous blowup transformation. It turns
out that this allows for a GSPT analysis in Region 𝐵2, by using the
radial parameter as singular perturbation parameter.

The blowup map respecting the scaling properties of the curves
𝐶2 and 𝐶3 is

Φ1
𝑝𝑎𝑟 ∶ [0,∞) × 𝕊1 → ℝ2

(𝑟, 𝜀1, 𝜀2) ↦

{
𝜀1 = 𝑟2𝜀1

𝜀2 = 𝑟𝜀2,

(2.5)

where we naturally restrict ourselves to the meaningful param-
eter space 𝜀1, 𝜀2 ≥ 0. The preimage of the origin under Φ1

𝑝𝑎𝑟 is
the quarter circle (𝑟 = 0), which implies that Φ1

𝑝𝑎𝑟 is not injective
for 𝑟 = 0. Away from the origin, the blowup map Φ1

𝑝𝑎𝑟 is a
diffeomorphism. In the blown-up parameter space, the quadratic
curves 𝐶2 and 𝐶3 correspond to well-separated straight lines �̄�2

and �̄�3 given by

�̄�2 =
{

(𝑟, 𝜀1, 𝜀2)
𝑇 ∈ [0,∞) × 𝕊1 ∶ 𝜀1 = −1∕2𝛽2 +

√
1∕4𝛽2

2 + 1

}
(2.6)

�̄�3 =
{

(𝑟, 𝜀1, 𝜀2)
𝑇 ∈ [0,∞) × 𝕊1 ∶ 𝜀1 = −1∕2𝛽3 +

√
1∕4𝛽2

3 + 1

}
(2.7)

6 of 20 Studies in Applied Mathematics, 2025
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FIGURE 5 Parameter blowup Φ1
𝑝𝑎𝑟 of the origin and charts 1 (orange) and 2 (blue).

with𝛽3 < 𝛽2 from (2.1), respectively (see Figure 5). The regions𝐵1,
𝐵2, and 𝐵3 correspond to �̄�1, �̄�2, and �̄�3 in the obvious way. The
size of the constants 𝛽2 and 𝛽3 determines the size of the regions
�̄�1, �̄�2, and �̄�3. For 𝛽2 → ∞, the line �̄�2 approaches the 𝜀1-axis,
similarly the line �̄�3 approaches the 𝜀2-axis as 𝛽3 → 0.

Remark 2.1. The choice of the constants 𝛽2 and 𝛽3 determines
the size of the neighborhood in which our GSPT analysis is valid.
However, for arbitrary constants 0 < 𝛽3 < 𝛽2, we can always find
such a sufficiently small neighborhood.

It is natural to perform the remaining analysis in directional
charts1 and2 corresponding to the directions 𝜀1 = 1 and 𝜀2 = 1,
respectively. In these charts, the blowup transformation has the
form

1 ∶ 𝜀1 = 𝑟2, 𝜀2 = 𝑟𝜀2 (2.8)

2 ∶ 𝜀1 = 𝑟2𝜀1, 𝜀2 = 𝑟, (2.9)

respectively. Chart 1 covers the regions �̄�1 and �̄�2, while 2

covers the regions �̄�2 and �̄�3 (see Figure 5 where the regions
covered by charts 1 and 2 are shown in orange and blue,
respectively). The alternating colors in region �̄�2 indicate that this
region is covered by both charts.

The regions �̄�1 and �̄�2 in chart 1 are given by 0 ≤ 𝜀2 <

√
1

𝛽2

and√
1

𝛽2

≤ 𝜀2 ≤

√
1

𝛽3

, respectively. For the analysis in region �̄�3, its

description in chart 2, that is, 0 ≤ 𝜀1 < 𝛽3, will be relevant.

We start with the analysis in region �̄�2, which is the simplest case
and covers the slow–fast structure corresponding to the classical
parameters (1.2). The regions �̄�1 and �̄�3 correspond to more
degenerate cases and somewhat more complicated slow–fast
structures, which we will treat afterward.

3 Analysis in Region B2

The analysis in region �̄�2 can be carried out in any of the two
charts 𝑖 , 𝑖 = 1, 2, we choose to work in chart 1. Inserting (2.8)
into (1.14), we obtain a slow–fast system in nonstandard form

𝑦′ = 𝑟2(𝑐 − 𝑦 − 𝑧) − 𝑦2 − 𝑟𝜀2𝑦𝑧

𝑧′ = 𝑦2,
(3.1)

where 𝑟, 𝜀2 ∈ ℝ≥0. It will be important that in region �̄�2 we have

𝜀2 ∈

[√
1

𝛽2

,

√
1

𝛽3

]
. This avoids degeneracies occurring as 𝜀2 → 0

or 𝜀2 → ∞ which are treated in the analysis of regions �̄�1 and �̄�3.
For better readability, we are dropping the “̃” in the following.

In system (3.1), the parameter 𝑟 is the slow–fast parameter. The
layer problem (𝑟 = 0) has the simple form

𝑦′ = −𝑦2

𝑧′ = 𝑦2,
(3.2)

which obviously coincides with the limit problem 𝜀1 = 𝜀2 = 0 of
(1.14). System (3.2) is explicitly solvable and its orbits are straight
lines with slope −1, that is,

𝑧 = −𝑦 + 𝑠, 𝑠 ∈ ℝ.

As mentioned before, 𝑦 = 0 is a line of nilpotent equilibria which
attracts all orbits with 𝑦(0) > 0 in forward time and attracts all
orbits with 𝑦(0) < 0 in backward time. As a consequence of this
degeneracy, solutions are very sensitive to perturbations around
𝑦 = 0. Note that the initial value 𝑂 = (0, 0)𝑇 and also the unique
equilibrium 𝑄 = (0, 𝑐)𝑇 of (3.1) lie on the line of equilibria 𝑦 = 0

represented by a teal and black dot in Figure 6, respectively.

In terms of slow–fast systems, the critical manifold  is given by

 =
{
(𝑦, 𝑧)𝑇 ∈ ℝ2 ∶ 𝑦 = 0

}
,

FIGURE 6 Phase portrait of the layer problem (3.2).
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which is not normally hyperbolic (which is indicated by green
simple arrows in Figure 6). Due to the lack of normal hyperbolic-
ity, Fenichel theory is not applicable. We resolve this degeneracy
by rescaling the variable 𝑦 with

𝑦 = 𝑟�̃�. (3.3)

Inserting (3.3) into (3.1) gives

�̃�′ = 𝑟(𝑐 − 𝑟�̃� − 𝑧 − �̃�2 − 𝜀2�̃�𝑧)

𝑧′ = 𝑟2�̃�2.
(3.4)

For 𝑟 = 0, this vector field vanishes identically, thus we desingu-
larize the systemby dividing out a factor 𝑟, which can be viewed as
transforming to a slower time scale. Clearly, this does not change
the orbits of the system. This leads to

�̃�′ = 𝑐 − 𝑟�̃� − 𝑧 − �̃�2 − 𝜀2�̃�𝑧

𝑧′ = 𝑟�̃�2.
(3.5)

System (3.5) is of standard slow–fast form with respect to the
singular perturbation parameter 𝑟. To simplify the notation in the
following computations, we drop the “̃” and obtain

𝑦′ = 𝑐 − 𝑟𝑦 − 𝑧 − 𝑦2 − 𝜀2𝑦𝑧

𝑧′ = 𝑟𝑦2,
(3.6)

which will be the starting point for the analysis throughout the
rest of the analysis in Sections 3 and 4.

For 𝑟 = 0, we obtain the layer problem

𝑦′ = 𝑐 − 𝑧 − 𝑦2 − 𝜀2𝑦𝑧

𝑧′ = 0.
(3.7)

The critical manifold is  = {(𝑥, 𝑦)𝑇 ∈ ℝ2 ∶ 𝑐 − 𝑧 − 𝑦2 − 𝜀2𝑦𝑧 =
0}. In the following, we focus on the part of  in the half
plane 𝑦 ≥ 0, denoted by 𝑎, which is normally attracting for 𝜀2 ∈[√

1

𝛽2

,

√
1

𝛽3

]
and can be described as a graph

𝑧 =
𝑐 − 𝑦2

1 + 𝜀2𝑦
. (3.8)

The hyperbolicity of 𝑎 follows since the eigenvalue of the
corresponding linearization of (3.7) is 𝜆1 = −2𝑦 − 𝜀2𝑧 < 0. Note
that 𝑎 intersects the positive 𝑦-axis at 𝑦 = 𝑦𝑚𝑎𝑥 ∶=

√
𝑐 (see

Figure 7).

The parameter 𝜀2 changes the geometry of the critical manifold
 , compare Figure 7 where  is shown in blue. These changes
are due to the occurrence of a transcritical bifurcation of  at
(𝑦, 𝑧)𝑇 = (−

√
𝑐, 2𝑐)𝑇 for 1

𝜀2
2

= 𝑐. We do not study this in detail

since it occurs in the nonphysical part of phase space. For 𝜀2 ∈[√
1

𝛽2

,

√
1

𝛽3

]
, these changes do not affect normal hyperbolicity

of 𝑎. For 𝜀2 → 0, however, the fold point of  approaches the
equilibrium 𝑄. In the limit 𝜀2 = 0, the critical manifold is given
by

𝑧 = 𝑐 − 𝑦2,

that is, the fold point of the critical manifold coincides with the
equilibrium 𝑄 = (0, 𝑐)𝑇 (see Figure 8a). For 𝜀2 → ∞, the critical
manifold  approaches the 𝑦- and 𝑧-axis (see Figure 8b). In
these two limits, normal hyperbolicity of 𝑎 is lost at 𝑄 and
𝑂, respectively.

Since we stay away from these degenerate limits in region �̄�2,
the following construction of singular orbits and proof of their
persistence based on Fenichel theory works for all 𝜀2 in region
�̄�2. In particular, the compact part of 𝑎 connecting 𝑦𝑚𝑎𝑥 and the
equilibrium 𝑄 = (0, 𝑐)𝑇

𝛾𝑠
0 =

{
(𝑦, 𝑧)𝑇 ∈ 𝑎 ∶ 𝑦 ∈ [0, 𝑦𝑚𝑎𝑥]

}
(3.9)

is normally attracting (which is indicated by green double arrows
in Figure 7). The first part of the singular orbit, which connects
the initial value 𝑂 = (0, 0)𝑇 along the fast fiber (green) with the
point (𝑦𝑚𝑎𝑥, 0)𝑇 ∈ 𝑎 is given by

𝛾
𝑓

0 =
{
(𝑦, 0)𝑇 ∈ ℝ2 ∶ 𝑦 ∈ [0, 𝑦𝑚𝑎𝑥]

}
. (3.10)

It remains to check the reduced flow on𝑎.We change to the slow
time scale 𝑡 = 𝑟𝜏 and obtain the reduced flow on 𝑎

�̇� = 𝑦2 ≥ 0, (3.11)

where “ ̇ ” denotes differentiation with respect to 𝑡. Thus, the
solution of the reduced problem starting at (𝑦𝑚𝑎𝑥, 0)𝑇 converges

(a) (b) (c)

FIGURE 7 Singular orbit structure (green and blue) of (3.6) and genuine orbit (red) connecting 𝑂 and 𝑄 for 0 < 𝑟 ≪ 1.

8 of 20 Studies in Applied Mathematics, 2025
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(a) (b)

FIGURE 8 Limits of the singular dynamics of (3.6).

center-like, that is, with an algebraic rate, to the equilibrium 𝑄 =
(0, 𝑐)𝑇 . We obtain the following lemma.

Lemma 3.1. There exists a singular orbit 𝛾0 ∶= 𝛾
𝑓

0 ∪ 𝛾𝑠
0 of (3.7)

connecting the initial value 𝑂 and the equilibrium 𝑄.

Due to the following theorem, the singular orbit perturbs to a
genuine orbit for 𝑟 small.

Theorem 3.2. There exists 𝑟0 > 0 such that for all 𝜀2 ∈[√
1

𝛽2

,

√
1

𝛽3

]
and 𝑟 ∈ (0, 𝑟0] there exists a smooth orbit 𝛾𝑟 of

system (3.6), connecting the initial value 𝑂 = (0, 0)𝑇 with the
equilibrium 𝑄 = (0, 𝑐)𝑇 . The perturbed orbit 𝛾𝑟 is (𝑟)-close to 𝛾0

in Hausdorff distance.

Proof. The normally hyperbolic attracting critical manifold 𝑎

perturbs to an attracting slow manifold 𝑎
𝑟 by Fenichel theory for

0 < 𝑟 ≪ 1, which contains the equilibrium 𝑄. Since there are no
further equilibria for 𝑟 > 0 the slow flow on 𝑎

𝑟 converges to 𝑄

for 𝑦 ≥ 0 (as a center flow). Viewed as an equilibrium of system
(3.6), 𝑄 has a two-dimensional center-stable manifold𝑊𝑐𝑠 which
intersects 𝑎

𝑟 transversally. By Fenichel theory, the solution with
initial value 𝑂, that is, the orbit 𝛾𝑟, is attracted exponentially
onto 𝑎

𝑟 and hence converges to 𝑄 in the center direction. By
construction, 𝛾𝑟 is (𝑟) close to 𝛾0. □

We conclude that for all (𝜀1, 𝜀2)
𝑇 ∈ 𝐵2 with ||(𝜀1, 𝜀2)

𝑇|| < 𝑟0 there
exists a smooth orbit 𝛾𝜀1

of system (1.14), which is(
√

𝜀1)-close to
𝛾0 in Hausdorff distance, connecting the initial value 𝑂 with the
equilibrium 𝑄.

A possibility to compare our asymptotic results with the numerics
is the maximal value of the 𝑦-component 𝑦𝑚𝑎𝑥 , which we will
focus on in the following. Due to the extra rescaling (3.3), we
even achieve an error estimate of (𝜀1) in 𝑦-direction. Indeed, by
undoing the rescalings (2.8) and (3.3), we obtain

𝑦 = 𝑟�̃� =
√

𝜀1�̃�. (3.12)

Along the singular orbit 𝛾0, we have

max
{
�̃� ∶ (�̃�, 𝑧)𝑇 ∈ 𝛾0

}
= �̃�𝑚𝑎𝑥 =

√
𝑐,

such that

𝑦𝑚𝑎𝑥 =
√

𝜀1(
√

𝑐 + (
√

𝜀1)) =
√

𝜀1𝑐 + (𝜀1).

Inserting the parameter values (1.2) of the original problem gives

𝑦𝑚𝑎𝑥 = 3.651 ⋅ 10−5 + (10−9), (3.13)

which fits well with the value obtained by numerical simulations,
for example, compare with Figure 2. In particular, this confirms
the numerical results in [14].

Remark 3.3. From the blowup point of view, the rescaling (3.3)
can be viewed as the scaling chart of a cylindrical blowup of the
degenerate line (0, 𝑧, 0), 𝑧 ∈ ℝ in extended (𝑦, 𝑧, 𝑟) phase space.
Since this scaling chart covers the relevant dynamics, there is no
need to introduce this blowup explicitly.

It remains to do the analysis of the degenerate cases correspond-
ing to 𝜀2 → 0 and 𝜀2 → ∞ in regions �̄�1 and �̄�3, respectively. We
start with the region �̄�1, since this allows us to continue in the
current chart 1.

4 Analysis in Region B1

The starting point of the following analysis in chart 1 are
Equations (3.6), which we restate here for convenience

𝑦′ = 𝑐 − 𝑟𝑦 − 𝑧 − 𝑦2 − 𝜀2𝑦𝑧

𝑧′ = 𝑟𝑦2.
(4.1)

As described before, for 𝜀2 → 0 the fold point of  is at𝑄 = (0, 𝑐)𝑇

(see Figure 8a). To treat this loss of normal hyperbolicity, we
perform a blowup of the fold point (0, 𝑐, 0)𝑇 in extended (𝑦, 𝑧, 𝜀2)

𝑇

space. To handle the terms −𝑟𝑦 and −𝜀2𝑦𝑧 in (4.1), an additional
homogeneous parameter blowup of the origin (𝑟, 𝜀2)

𝑇 = (0, 0)𝑇

in chart 1 is introduced. Otherwise, we would not be able to
desingularize the dynamics in the blowup of the fold point. In
the original parameters, the second parameter blowup amounts
to dividing the region 𝐵1 into two parts 𝐵11 and 𝐵12 by a curve

𝐶1 ∶=
{
(𝜀1, 𝜀2)

𝑇 ∈ ℝ2 ∶ 𝜀1 = 𝛽1𝜀2

}
(4.2)

9 of 20
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FIGURE 9 Schematic picture of the parameter blowup Φ2
𝑝𝑎𝑟 of the point 𝐹 (corresponding to the origin in chart 1) shown in blown-up (ℝ ×

𝕊1)-space.

with some 𝛽1 > 0. The parts 𝐵11 and 𝐵12 correspond to scaling
regimes 0 ≤ 𝜀2 ≲ 𝜀1 and 𝜀2

2 ≪ 𝜀1 ≲ 𝜀2, respectively. The second
parameter blowup map is given by

Φ2
𝑝𝑎𝑟 ∶ [0,∞) × 𝕊1 → ℝ2

(𝑠, 𝑟, ̄̃𝜀2) ↦

{
𝑟 = 𝑠𝑟

𝜀2 = 𝑠 ̄̃𝜀2.

(4.3)

In the blown-up space, the curve 𝐶1 corresponds to the line

𝜀2 =
√

1

1 + 𝛽2
1

.

Again, it is convenient to perform the analysis in two charts
corresponding to the directions 𝑟 = 1 and 𝜀2 = 1, respectively. In
these charts, the blowup transformation Φ2

𝑝𝑎𝑟 is given by

11 ∶ 𝑟 = 𝑠, 𝜀2 = 𝑠𝜀21, (4.4)

12 ∶ 𝑟 = 𝑠𝑟1, 𝜀2 = 𝑠 (4.5)

such that in chart 11 the regions 𝐵11 and 𝐵12 in the blown-up
space are given by 𝜀21 < 𝛽1 and 𝜀21 ≥ 𝛽1, respectively. A schematic
representation of the second blowup in parameter space is shown
in Figure 9. As can be seen in Figure 9, chart 11 will be used for
analyzing the limit 𝜀2 → 0 in region �̄�11, whereas chart 12 covers
region �̄�12. We begin with the analysis in chart 11.

4.1 Analysis in Region B11

Inserting the parameter blowup transformation (4.4) into (4.1),
we obtain

𝑦′ = 𝑐 − 𝑠𝑦 − 𝑧 − 𝑦2 − 𝑠𝜀21𝑦𝑧

𝑧′ = 𝑠𝑦2.
(4.6)

In the following analysis, it will be important that 𝜀21 ∈ [0, 𝛽1].
System (4.6) is of classical slow–fast type with parameter 𝑠. The
critical manifold is given by

 =
{
(𝑦, 𝑧)𝑇 ∈ ℝ2 ∶ 𝑧 = 𝑐 − 𝑦2

}

with a fold point at the equilibrium 𝑄 = (0, 𝑐)𝑇 (see again
Figure 8). The candidate singular orbit starting from the initial
value 𝑂 = (0, 0)𝑇 is again 𝛾0 = 𝛾

𝑓

0 ∪ 𝛾𝑠
0, but it approaches 𝑄 along

the slowmanifold  , which loses normal hyperbolicity at the fold
point. Therefore, we cannot use Fenichel theory directly to prove
convergence to the genuine equilibrium along 𝛾0. We resolve this
degeneracy by artificially adding 𝑠′ = 0 to (4.6) and applying a
spherical blowup of the nilpotent point (𝑦, 𝑧, 𝑠)𝑇 = (0, 𝑐, 0)𝑇 of this
extended system, see [24] for a detailed explanation of the blowup
method in the context of planar fold points.

The suitable blowup transformation is given by

Φ ∶ [0,∞) × 𝕊2 → ℝ3

(𝜎, �̄�, �̄�, 𝑠) ↦

⎧⎪⎨⎪⎩
𝑦 = 𝜎�̄�

𝑧 = 𝑐 + 𝜎2�̄�

𝑠 = 𝜎𝑠.

(4.7)

The nilpotent point (0, 𝑐, 0)𝑇 is blown up to the sphere {0} × 𝕊2,
which is the preimage of (0, 𝑐, 0)𝑇 under themapΦ (see Figure 10).

Remark 4.1. Note that in the transformation (4.7) the weights
of the radial variable 𝜎 deviate from the weights in the analysis
of the generic fold point. This is a consequence of the fold point
coinciding with an equilibrium in our case.

Much of the following analysis proceeds along the lines of [24],
the dynamics on the sphere 𝜎 = 0 is, however, different from the
standard fold point, so we give the necessary details. Again, it will
be convenient to work in directional charts which correspond to
directions �̄� = 1, 𝑠 = 1, and �̄� = −1. The blowup transformation
in these charts is given by

1
11 ∶ 𝑦 = 𝜎1, 𝑧 = 𝑐 + 𝜎2

1𝑧1, 𝑠 = 𝜎1𝑠1 (4.8)

2
11 ∶ 𝑦 = 𝜎2𝑦2, 𝑧 = 𝑐 + 𝜎2

2𝑧2, 𝑠 = 𝜎2 (4.9)

3
11 ∶ 𝑦 = 𝜎3𝑦3, 𝑧 = 𝑐 − 𝜎2

3, 𝑠 = 𝜎3𝑠3, (4.10)

respectively. Note that subscripts refer to the parameter blowup
chart, whereas a superscript denotes the corresponding chart in
phase space. Chart1

11 covers the right (�̄� > 0) side of the sphere,

10 of 20 Studies in Applied Mathematics, 2025
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FIGURE 10 Dynamics of the blown-up extended system (4.6).

chart2
11 covers the top (𝑠 > 0) of the sphere, and chart3

11 covers
the front (�̄� < 0) side of the sphere (see Figure 10).

Remark 4.2. For blowups in phase space, we will often follow
the useful convention, that an object𝐴 is denoted as𝐴𝑖 in a chart
𝑖 , 𝑖 = 1, 2, 3 in which the blowup is studied. As an example,
consider the equilibrium𝑄whichwill be studied in chart2

11 and
is denoted as 𝑄2 there.

The following subset of the sphere is central for our analysis.

Definition 4.3. LetΩ be the compact subset of the sphere (𝜎 =
0) enclosed by the equator (𝑠 = 0), the meridian (�̄� = 0), and the
curve which is represented by 𝑠1 = −𝑧1 in chart1

11 and 𝑧2 = −𝑦2

in chart2
11 (see Figure 10 where Ω is shown in red).

We have the following result.

Lemma 4.4. The flow of the blown-up vector field on the sphere
has the properties:

i. The setΩ is forward invariant.

ii. There exists a heteroclinic orbit 𝛾𝑐
0 connecting the endpoint 𝑃𝑎

of  with the equilibrium 𝑄.

Proof. We start the analysis in chart 1
11, which is one of

the entrance charts since it contains the endpoint 𝑃𝑎 of the
attracting branch of the critical manifold  , denoted by 𝑎, with
reduced flow toward the sphere. Inserting (4.8) into (4.6) and after
desingularizing, that is, dividing out a factor of 𝜎1, we obtain

𝑧′
1 = 𝑠1 + 2𝑧1

(
𝑠1 + 𝑧1 + 1 + 𝜎2

1𝜀21𝑠1𝑧1 + 𝑠1𝜀21𝑐
)

𝑠′
1 = 𝑠1

(
𝑠1 + 𝑧1 + 1 + 𝜎2

1𝜀21𝑠1𝑧1 + 𝑠1𝜀21𝑐
)

𝜎′
1 = −𝜎1

(
𝑠1 + 𝑧1 + 1 + 𝜎2

1𝜀21𝑠1𝑧1 + 𝑠1𝜀21𝑐
)
.

(4.11)

The planes 𝜎1 = 0 and 𝑠1 = 0 are invariant. They intersect in a
line, which corresponds to a part of the equator of the sphere,

on which the dynamics is governed by 𝑧′
1 = 2𝑧1(𝑧1 + 1). There

are two equilibria 𝑃𝑎 = (−1, 0, 0)𝑇 and 𝑃𝑟 = (0, 0, 0)𝑇 which are
attracting and repelling on this line with eigenvalues −2 and
2, respectively.

On the plane 𝑠1 = 0, the dynamics is given by

𝑧′
1 = 2𝑧1(𝑧1 + 1)

𝜎′
1 = −𝜎1(𝑧1 + 1).

(4.12)

The normally attracting line of equilibria

𝑧1 = −1

corresponds to the attracting branch of the critical manifold 𝑎

(see Figure 10). We now investigate the dynamics on the plane
𝜎1 = 0 (on the sphere) near the point 𝑃𝑎 governed by

𝑧′
1 = 𝑠1 + 2𝑧1(𝑠1 + 𝑧1 + 1 + 𝑠1𝜀21𝑐)

𝑠′
1 = 𝑠1(𝑠1 + 𝑧1 + 1 + 𝑠1𝜀21𝑐).

(4.13)

We recover the equilibria 𝑃𝑎 and 𝑃𝑟. The eigenvalues of the
linearization at 𝑃𝑎 and 𝑃𝑟 are −2, 0 and 2, 1, respectively. We
conclude that 𝑃𝑟 is a source on the sphere. Standard center
manifold theory [12] implies the existence of an attracting one-
dimensional center manifold 𝑁𝑎 at 𝑃𝑎, which is given as a graph
𝑧1 = ℎ1(𝑠1) with expansion

ℎ1(𝑠1) = −1 −
(

1

2
+ 𝜀21𝑐

)
𝑠1 + 

(
𝑠2
1

)
. (4.14)

The corresponding flow on 𝑁𝑎 is governed by

𝑠′
1 = 𝑠2

1∕2 + 
(
𝑠3
1

)
,

hence 𝑧1 increases along 𝑁𝑎. This implies that the branch of 𝑁𝑎

in 𝑠1 > 0 is unique. For proving assertion (ii), it remains to show
that the continuation of this branch of𝑁𝑎 by the flow connects 𝑃𝑎

with the equilibrium 𝑄 (which is only visible in the scaling chart

11 of 20
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2
11). This is done in the following by first proving assertion (i)

and using a phase plane argument.

The part of 𝜕Ω that is visible in chart1
11 is given by the invariant

half line 𝑠1 = 0 and the line 𝑠1 = −𝑧1, respectively, both with 𝑧1 ≤

0. On these half lines, the flow cannot exitΩ. For the line 𝑠1 = −𝑧1,
this follows from

(𝑠1 + 𝑧1)
′|𝑠1=−𝑧1

= −𝑠2
1𝜀21𝑐 ≤ 0 (4.15)

for all 𝜀21 ≥ 0 (see [1, p. 219]).

Now we switch to the chart 3
11 in which the governing

equations are

𝑦′
3 = −𝑦3𝑠3 + 1 − 𝑦2

3 + 𝜎2
3𝜀21𝑦3𝑠3 − 𝑠3𝜀21𝑦3𝑐 +

1

2
𝑦3

3𝑠3

𝑠′
3 =

1

2
𝑦2

3𝑠
2
3

𝜎′
3 = −1

2
𝜎3𝑦

2
3𝑠3.

(4.16)

On the invariant plane 𝑠3 = 0, we recover the two normally
hyperbolic parts of the critical manifold as lines of equilibria

𝑦3 = ±1,

where the attracting line 𝑦3 = 1 terminates in 𝑃𝑎. Clearly, this
chart also covers the center manifold 𝑁𝑎 originating at 𝑃𝑎.

The part of 𝜕Ω on the sphere 𝜎 = 0 that is visible in chart 3
11

is given by the invariant half line 𝑠3 = 0, 𝑦3 ≥ 0 and the half line
𝑦3 = 0, 𝑠3 ≥ 0. The flow on the sphere cannot leaveΩ at these half
lines. For the line 𝑦3 = 0, 𝑠3 ≥ 0 this follows from 𝑦′

3 = 1.

To cover the part of Ω close to 𝑄, we change to the scaling chart
2

11 where we can trace 𝛾𝑐
0 once it has entered Ω. The dynamics

in the scaling chart2
11 is governed by

𝑦′
2 = −𝑦2 − 𝑧2 − 𝑦2

2 − 𝑦2𝜀21𝑐 − 𝜎2
2𝑧2𝑦2𝜀21

𝑧′
2 = 𝑦2

2

𝜎′
2 = 0.

(4.17)

On the invariant sphere 𝜎 = 0, this simplifies to

𝑦′
2 = −𝑦2 − 𝑧2 − 𝑦2

2 − 𝑦2𝜀21𝑐

𝑧′
2 = 𝑦2

2.
(4.18)

The boundary of Ω in 𝑠 > 0 is given by parts of the lines 𝑦2 = 0,
𝑧2 ≤ 0,z and 𝑧2 = −𝑦2, 𝑦2 ≥ 0. The flow of (4.18) cannot leaveΩ at
these parts of the boundary since

𝑦′
2 = −𝑧2

on the line 𝑦2 = 0 and

(𝑦2 + 𝑧2)
′ = −𝑦2𝜀21𝑐 ≤ 0

on the line 𝑧2 = −𝑦2. We conclude that Ω is indeed a compact
forward invariant trapping region on the sphere. This concludes
the proof of assertion (i).

In chart 2
11, the equilibrium 𝑄 corresponds to the point 𝑄2 =

(0, 0)𝑇 . The linearization of (4.18) at 𝑄2 has eigenvalues 𝜆𝑠 =
−1 − 𝜀21𝑐 and 𝜆𝑐 = 0with corresponding eigenvectors 𝑣𝑠 = (1, 0)𝑇

and 𝑣𝑐 = (1,−1 − 𝜀21𝑐)
𝑇 . Standard center manifold theory implies

the existence of an attracting (nonunique) center manifold 𝑊𝑐,
which lies in the interior of Ω for 𝜀21 > 0 and coincides with the
line 𝑧2 = −𝑦2 in the limiting case 𝜀21 = 0. The flow on the center
manifold𝑊𝑐 inΩ is directed toward the equilibrium𝑄2. There are
no equilibria in the interior ofΩ such thatwe can exclude periodic
orbits. The only equilibrium in the forward invariant compact
set Ω which is not repelling is the equilibrium 𝑄2 ⊂ 𝜕Ω. On the
sphere 𝜎 = 0, the Poincaré–Bendixson theorem applies, therefore
all orbits within Ω must converge to the equilibrium 𝑄2 along
the center manifold𝑊𝑐. Therefore, the continuation of the𝑁𝑎 in
𝑠1 > 0 converges to𝑄2. We denote the corresponding heteroclinic
orbit by 𝛾𝑐

0, which is shown in yellow in Figure 10. This proves
assertion (ii). □

By collecting the results of this subsection, we obtain

Lemma 4.5. There exists a singular orbit 𝛾0 of the blown-up
extended system (4.6) connecting the initial value 𝑂, via 𝑃𝑎 , with
the equilibrium 𝑄.

Proof. Starting from the initial value 𝑂, we follow 𝛾
𝑓

0 and 𝛾𝑠
0 as

before. In the blown-up problem, 𝛾𝑠
0 terminates in the point 𝑃𝑎.

From there, we follow 𝛾𝑐
0 which connects 𝑃𝑎 and𝑄. We define the

singular orbit as 𝛾0 ∶= 𝛾
𝑓

0 ∪ 𝛾𝑠
0 ∪ 𝛾𝑐

0 (see Figure 10). □

Nowwe prove that the singular orbit 𝛾0 perturbs to a smooth orbit
𝛾𝑠 connecting the initial condition 𝑂 and the equilibrium 𝑄 for
0 < 𝑠 ≪ 1.

Theorem 4.6. There exists a constant 𝑠 > 0 such that for
all 𝜀21 ∈ [0, 𝛽1] and 𝑠 ∈ (0, 𝑠], there exists a smooth orbit 𝛾𝑠 of
(4.6) connecting the initial value 𝑂 and the equilibrium 𝑄. The
corresponding orbit �̄�𝑠 in blown-up space is (𝑠)-close to 𝛾0 in
Hausdorff distance.

Proof. The proof is carried out in the blowup of system (4.6)
extended by 𝑠′ = 0. In a first step, we show that the continuation
of the slow manifold by the flow, which exist by Fenichel theory
away from the fold, converges to the equilibrium 𝑄. For this
purpose, we define two sections in the entrance chart 1

11 close
to 𝑃𝑎 as

Σ𝑖𝑛 ∶=
{
(𝑧1, 𝑠1, 𝜎1)

𝑇 ∈ ℝ3 ∶ 𝜎1 = 𝑎, |𝑧1 + 1| < 𝑏, 𝑠1 < 𝑎
}
(4.19)

and

Σ𝑜𝑢𝑡 ∶=
{
(𝑧1, 𝑠1, 𝜎1)

𝑇 ∈ ℝ3 ∶ 𝜎1 < 𝑎, |𝑧1 + 1| < 𝑏, 𝑠1 = 𝑎
}
(4.20)

with 𝑎, 𝑏 > 0 small enough (see Figure 10). Away from the sphere
𝜎 = 0, the attracting branch 𝑎 of the critical manifold perturbs
to an attracting slow manifold 𝑎

𝑠 for 𝑠 ≪ 1 by Fenichel theory.
In extended phase space, this one-parameter family of slow man-
ifolds can be viewed as a two-dimensional invariant attracting
slow manifold . The manifold  is defined at least up to
the section Σ𝑖𝑛. We extend the manifold  by the forward flow
of the blown-up vector field past Σ𝑖𝑛, the corresponding larger
manifold is still denoted as. The results in [24] on the standard

12 of 20 Studies in Applied Mathematics, 2025
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singularly perturbed fold point imply that  is attached to the
orbit 𝛾𝑐

0. Therefore, we can track across the sphere for 𝑠 small.
In the blown-up phase space, the equilibrium 𝑄 corresponds
to a line of equilibria (0, 0, 𝜎2)

𝑇 , 𝜎2 ∈ [0, 𝑠]. The linearization
along this line of equilibria has one negative and a double
zero eigenvalue. Standard invariant manifold theory implies the
existence of a three-dimensional center-stable manifold 𝑊𝑐𝑠 of
this line of equilibria. Since the orbit 𝛾𝑐

0 on the sphere intersects
𝑊𝑐𝑠 transversely, the manifold also intersects 𝑊𝑐𝑠 since it is a
small smooth perturbation of 𝛾𝑐

0 for 𝑠 ≪ 1. This implies that all
orbits in converge to 𝑄.

Viewed in chart 3
11 of the extended blown-up phase space,

the line of initial conditions {(0, 0, 𝑠)𝑇, 𝑠 ∈ [0, 𝑠]} corresponds to
the line (0,

√
𝑐,

𝑠√
𝑐
)𝑇 , 𝑠 ∈ [0, 𝑠]. All orbits starting on this line

are exponentially attracted onto the manifold  by Fenichel
theory until they reach Σ𝑖𝑛. During the passage from Σ𝑖𝑛 to
Σ𝑜𝑢𝑡, an additional exponential contraction toward occurs due
to [24, Proposition 2.8]. Beyond the section Σ𝑜𝑢𝑡, the evolution
of these orbits is governed by system (4.17) with 𝜎2 ∈ [0, 𝑠].
Since 𝜎2 acts as a regular perturbation parameter, these orbits
intersect 𝑊𝑐𝑠 for 𝑠 sufficiently small. This implies the existence
of a smooth perturbed orbit �̄�𝑠 connecting the lines of equilibria
corresponding to 𝑂 and 𝑄, respectively. The assertions of the
theorem follow by applying the blowup transformation (4.7), that
is, 𝛾𝑠 = Φ(�̄�𝑠). □

In order to complete the argument in region �̄�1, we use chart 12

which covers the region �̄�12.

4.2 Analysis in Region B12

We insert the transformation (4.5) into (4.1) and obtain

𝑦′ = 𝑐 − 𝑠𝑟1𝑦 − 𝑧 − 𝑦2 − 𝑠𝑦𝑧

𝑧′ = 𝑠𝑟1𝑦
2,

(4.21)

where 𝑠 and 𝑟1 are both small. The goal is to construct the orbit
connecting 𝑂 to the equilibrium 𝑄 for (𝑠, 𝑟1)

𝑇 , 𝑟1 > 0, 𝑠 > 0 in a
small neighborhood of the origin. For 𝑠 = 0, we again obtain the
critical manifold

𝑧 = 𝑐 − 𝑦2

with the equilibrium 𝑄 = (0, 𝑐)𝑇 at the fold point.

Again, we use the blowup transformation (4.7) to resolve the
degeneracy of the fold point and we obtain the following
result.

Lemma 4.7. In the blown-up space of system (4.21) extended
by the equation 𝑠′ = 0, there exists for 𝑟1 = 0 a two-dimensional
attracting critical manifold 𝑎 (blue in Figure 11), which contains
the line of equilibria corresponding to the genuine equilibrium 𝑄.
The critical manifold 𝑎 perturbs regularly to a slow manifold 𝑎

𝑟1

for 𝑟1 small enough. All orbits of the reduced flow on 𝑎 approach
the line of equilibria in the center direction, that is, with an algebraic
rate, for all 0 < 𝑠 ≤ 1∕

√
𝛽2.

Proof. We carry out the analysis in two directional charts

2
12 ∶ 𝑦 = 𝜎2𝑦2, 𝑧 = 𝑐 + 𝜎2

2𝑧2, 𝑠 = 𝜎2 (4.22)

3
12 ∶ 𝑦 = 𝜎3𝑦3, 𝑧 = 𝑐 − 𝜎2

3, 𝑠 = 𝜎3𝑠3 (4.23)

covering the top 𝑠 > 0 and the front �̄� < 𝑐 part of the sphere,
respectively (see Figure 11). The parts of 𝑎 investigated in chart
2

12 and
3
12 are denoted by 

𝑎
2 and 

𝑎
3 , respectively.

As before, we start the analysis in the entrance chart 3
12. By

inserting (4.23) into (4.21) and desingularizing by dividing out a
factor 𝜎3, we obtain

𝑦′
3 = 1 − 𝑦2

3 − 𝑦3𝑠3𝑐 + 𝜎2
3𝑠3𝑦3 + 𝑟1

(
𝑠3𝑦3 +

1

2
𝑠3𝑦

3
3

)
𝑠′
3 =

1

2
𝑟1𝑠

2
3𝑦

2
3

𝜎′
3 = −1

2
𝑟1𝜎3𝑠3𝑦

2
3 .

(4.24)

Note that system (4.24) is of standard slow–fast type with singular
perturbation parameter 𝑟1 and corresponding layer problem

𝑦′
3 = 1 − 𝑦2

3 − 𝑦3𝑠3𝑐 + 𝜎2
3𝑠3𝑦3

𝑠′
3 = 0

𝜎′
3 = 0.

(4.25)

For 𝑟1 = 0, we find the two-dimensional critical manifold

3 =
{
(𝑦3, 𝑠3, 𝜎3)

𝑇 ∈ ℝ3 ∶ 1 − 𝑦2
3 − 𝑦3𝑠3𝑐 + 𝜎2

3𝑠3𝑦3 = 0
}
, (4.26)

which for 𝑠3 = 0 reduces to the two lines of equilibria 𝑦3 = ±1.

Remark 4.8. Note that here the variable 𝜎3 changes the geometry
of the critical manifold 3 and 𝑟1 is the singular perturbation
parameter. In terms of the original system (1.14), this means
that—loosely speaking—𝜀2 changes the geometry and 𝜀1 is the
singular perturbation parameter. We will see that these roles will
be switched when we study the dynamics in region 𝐵3.

The eigenvalue of the linearization of the layer problem (4.25) is
𝜆 = −2𝑦3 − 𝑠3(𝑐 − 𝜎2

3). At the line 𝑠3 = 0, 𝑦3 = 1, we obtain

𝜆 = −2 < 0

andwe conclude that the line 𝑠3 = 0, 𝑦3 = 1 is part of the attracting
branch 𝑎

3 of the critical manifold, which extends regularly into
𝑠3 > 0, since 𝑠3 acts as a regular perturbation parameter in (4.26).

The reduced flow on 𝑎
3 is given by

�̇�3 =
1

2
𝑠2
3𝑦

2
3

�̇�3 = −1

2
𝜎3𝑠3𝑦

2
3 .

(4.27)

For 𝑠3 = 0, the reduced flow along 𝑎
3 is stationary, whereas for

𝑠3 > 0 the variable 𝑠3 increases and 𝜎3 decreases (see Figure 11).
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FIGURE 11 Dynamics of the blown-up extended system (4.21).

For the remaining analysis of 𝑎 close to the top of the sphere, we
change to the scaling chart 3

12 where the dynamics is governed
by

𝑦′
2 = −𝑧2 − 𝑦2

2 − 𝑦2𝑐 − 𝜎2
2𝑦2𝑧2 − 𝑟1𝑦2

𝑧′
2 = 𝑟1𝑦

2
2

𝜎′
2 = 0,

(4.28)

which is again a slow–fast system with singular perturbation
parameter 𝑟1. Note that system (4.28) has a line of equilibria
(independent of 𝑟1) at 𝑦2 = 𝑧2 = 0 which corresponds to the
genuine equilibrium 𝑄.

The layer problem is given by

𝑦′
2 = −𝑧2 − 𝑦2

2 − 𝑦2𝑐 − 𝜎2
2𝑦2𝑧2

𝑧′
2 = 0

𝜎′
2 = 0,

(4.29)

with critical manifold

2 =
{
(𝑦2, 𝑧2, 𝜎2)

𝑇 ∈ ℝ3 ∶ −𝑧2 − 𝑦2
2 − 𝑦2𝑐 − 𝜎2

2𝑦2𝑧2 = 0
}
. (4.30)

For 𝜎2 = 0, that is, on the sphere, the critical manifold has the
simple form

𝑧2 = −𝑦2(𝑦2 + 𝑐)

with a fold point at 𝑦2 = − 𝑐

2
and nonvanishing eigenvalue 𝜆 =

−2𝑦2 − 𝑐. We conclude that 𝑧2 = −𝑦2(𝑦2 + 𝑐), 𝑦2 ≥ 0 is part of the
attracting branch𝑎

2 of the criticalmanifold and extends regularly
into 𝜎2 > 0 since 𝜎2 is a regular perturbation parameter in (4.30).
The critical manifold 𝑎

2 is uniformly normally attracting for
𝑦 ≥ 0 and 𝜎2 ≥ 0 small enough since for 𝜎2 = 0 the fold point at
𝑦2 = − 𝑐

2
is bounded away from the half space 𝑦2 ≥ 0. The reduced

flow on 𝑆𝑎
2 is given by

�̇�2 = 𝑦2
2

such that orbits along 𝑆𝑎
2 with 𝑦2(0) > 0 converge to the line of

equilibria 𝑦2 = 𝑧2 = 0 corresponding to𝑄 in a center-likemanner,
that is, with an algebraic rate. By Fenichel theory, we conclude
that there exists a two-dimensional attracting invariant slow
manifold 𝑎

𝑟1
for 0 < 𝑟1 ≪ 1 with slow flow converging to the

reduced flow on 𝑎 as 𝑟1 → 0. Since no new equilibria occur for
𝑟1 > 0 all orbits of the slow flow converge to a point on the line of
equilibria corresponding to 𝑄. □

Based on Lemma 4.7, we can now construct an 𝜀2-family of
singular orbits connecting the line of initial values corresponding
to 𝑂 with the line of equilibria corresponding 𝑄.

Lemma 4.9. There exists a family of singular orbits 𝛾
𝜀2
0 , 𝜀2 ∈

[0, 1∕
√

𝛽2] of the blown-up extended system of (4.21) connecting the
line of initial values with the line of equilibria corresponding to 𝑂

and 𝑄, respectively.

Proof. We define the fast fibers connecting the line of initial
conditions

𝑂3 =

(
0,

𝜀2√
𝑐
,
√

𝑐

)𝑇

, 𝜀2 ∈ [0, 1∕
√

𝛽2]

with

(𝑦3, 𝑠3, 𝜎3)
𝑇 =

(
1,

𝜀2√
𝑐
,
√

𝑐

)𝑇

∈ 𝑎
3

14 of 20 Studies in Applied Mathematics, 2025
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as 𝛾
𝜀2,𝑓

0 . The orbits under the reduced flow along the critical
manifold 𝑎 connecting

(𝑦3, 𝑠3, 𝜎3)
𝑇 =

(
1,

𝜀2√
𝑐
,
√

𝑐

)𝑇

∈ 𝑎
3

with the line of equilibria

𝑄2 = (0, 0, 𝜀2)
𝑇 ∈ ℝ3 ∶ 𝜀2 ∈ [0, 1∕

√
𝛽2]}

are defined as 𝛾
𝜀2,𝑠

0

The 𝜀2-family of singular orbits is therefore given by

𝛾
𝜀2
0 ∶= 𝛾

𝜀2,𝑓

0 ∪ 𝛾
𝜀2,𝑠

0 ,

see Figure 11. □

In the following result, we prove that the singular orbits 𝛾
𝜀2
0

perturb to smooth orbits connecting 𝑂 and 𝑄 for 0 < 𝑟1 ≪ 1.

Theorem 4.10. There exists a constant 𝑟 > 0 such that for all
𝜀2 ∈ (0, 1∕

√
𝛽2] and 𝑟1 ∈ (0, 𝑟], there exists a smooth orbit 𝛾

𝜀2
𝑟1
of

(4.21) connecting the initial value 𝑂 with the genuine equilibrium
𝑄. The corresponding orbit in blown-up space �̄�

𝜀2
𝑟1
is (𝑟1)-close to

its corresponding singular orbit 𝛾𝜀2
0 in Hausdorff distance.

Proof. The existence of the singular orbits in Lemma 4.9,
standard Fenichel theory, Lemma 4.7, and arguments similar to
the proof of Theorem 3.2 imply that the forward solution with
initial value 𝑂 converges to 𝑄 for 0 < 𝑟1 ≪ 1. We denote this
solution by �̄�

𝜀2
𝑟1
which by construction is(𝑟1)-close to the singular

orbit �̄�𝜀2
0 for all 𝜀2 ∈ (0, 1∕

√
𝛽2] and 0 < 𝑟1 ≪ 1. The assertions of

the theorem follow by applying the blowup transformation (4.7),
that is, 𝛾𝜀2

𝑟1
= Φ(�̄�

𝜀2
𝑟1
). □

Remark 4.11. Note that 𝜀2 = 0 is not included in Theorem 4.10,
since this corresponds to the original parameters 𝜀1 = 𝜀2 = 0. In
this case, we do not observe dynamics because 𝑦 = 0 is a line of
equilibria, as already mentioned in the rough classification in the
beginning of Section 2.

This concludes the analysis in region �̄�1. It remains to investigate
the dynamics in region �̄�3.

5 Analysis in Region B3

The analysis in region �̄�3 is carried out in chart 2. Inserting (2.9)
into (1.14), we obtain

𝑦′ = 𝑟2𝜀1(𝑐 − 𝑦 − 𝑧) − 𝑦2 − 𝑟𝑦𝑧

𝑧′ = 𝑦2.
(5.1)

For 𝑟 = 0, this results in the same limiting system as in chart 1,
see (3.2) and Figure 6, with nonhyperbolic critical manifold

𝑦 = 0.

Rescaling 𝑦 with (3.3), as before, we obtain (after dividing out a
factor of 𝑟)

�̃�′ = 𝜀1(𝑐 − 𝑟�̃� − 𝑧) − �̃�2 − �̃�𝑧

𝑧′ = 𝑟�̃�2.
(5.2)

System (5.2) is of standard slow–fast type with singular pertur-
bation parameter 𝑟. In the following, we will again omit the “
̃”.

The corresponding layer problem is given by

𝑦′ = 𝜀1(𝑐 − 𝑧) − 𝑦2 − 𝑦𝑧

𝑧′ = 0,
(5.3)

which for 𝜀1 > 0, resembles (actually is identical to) the situation
in region �̄�2. Indeed, the critical manifold is given by

 =
{
(𝑦, 𝑧)𝑇 ∈ ℝ2 ∶ 𝜀1(𝑐 − 𝑧) − 𝑦2 − 𝑦𝑧 = 0

}
(5.4)

and is normally attracting (repelling) for all 𝑦 > −𝜀1 (𝑦 < −𝜀1))
(see Figure 12a and compare with Figure 7c).

In the limit 𝜀1 → 0, normal hyperbolicity is lost at the origin since
for 𝜀1 = 0 the critical manifold consists of two lines

𝑦 = 0 and 𝑧 = −𝑦

which intersect at the origin. The linearization of the layer
problem (5.3) at these lines has eigenvalue 𝜆1 = −𝑧 and 𝜆2 =
−𝑦, respectively. Hence, the critical manifold  is not normally
hyperbolic at the origin for 𝜀1 = 0 (see Figure 12b).

To regain normal hyperbolicity, we once again enlarge phase
space by adding the equation 𝜀′

1 = 0 and blow up the degenerate
equilibrium (𝑦, 𝑧, 𝜀1)

𝑇 = (0, 0, 0)𝑇 of this extended system. The
suitable blowup transformation is

Φ ∶ [0,∞) × 𝕊2 → ℝ3

(𝜎, �̄�, �̄�, 𝜀1) ↦

⎧⎪⎨⎪⎩
𝑦 = 𝜎�̄�

𝑧 = 𝜎�̄�

𝜀1 = 𝜎2𝜀1,

(5.5)

which uses the same weights as the analysis of the slow passage
through a transcritical bifurcation, see [25].

Lemma5.1. In the blown-up space of system (5.2) extended by the
equation 𝜀′

1 = 0, there exists for 𝑟 = 0 a two-dimensional attracting
critical manifold 𝑎 (shown blue in Figure 13), which contains the
line of equilibria corresponding to the genuine equilibrium 𝑄. The
critical manifold 𝑎 perturbs regularly to a slow manifold 𝑆𝑎

𝑟 for
𝑟 > 0 small enough. All orbits of the reduced flow on 𝑎 approach
the line of equilibria in the center direction, that is, with an algebraic
rate, for all 0 < 𝜀1 ≤ 𝛽3.

Remark 5.2. For better visibility, we have changed the orienta-
tion in Figure 13, that is, we look toward the origin from the �̄� = 1

side of the sphere.
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(a) (b)

FIGURE 12 Singular dynamics of (5.2).

FIGURE 13 Dynamics of the blown-up extended system (5.2).

Proof. Again, it will be convenient to work in directional charts,
which we denote by 2

3 and 3
3. The blowup transformation in

these charts is given by

2
3 ∶ 𝑦 = 𝜎2𝑦2, 𝑧 = 𝜎2𝑧2, 𝜀1 = 𝜎2

2 (5.6)

3
3 ∶ 𝑦 = 𝜎3𝑦3, 𝑧 = 𝜎3, 𝜀1 = 𝜎2

3𝜀13, (5.7)

covering the top 𝜀1 > 0 and the front �̄� > 0 part of the sphere,
respectively (see Figure 13). The parts of 𝑎 investigated in chart
2

3 and
3
3 are denoted by 

𝑎
2 and 

𝑎
3 , respectively. Since we have

blown-up the initial value 𝑂, we start the analysis in the scaling
chart2

3, where the dynamics is governed by

𝑦′
2 = 𝑐 − 𝜎2𝑧2 − 𝑦2

2 − 𝑦2𝑧2 − 𝑟𝜎2𝑦2

𝑧′
2 = 𝑟𝑦2

2

𝜎′
2 = 0.

(5.8)

System (5.8) is of standard slow–fast type with singular pertur-
bation parameter 𝑟. The corresponding layer problem is given by

𝑦′
2 = 𝑐 − 𝜎2𝑧2 − 𝑦2

2 − 𝑦2𝑧2

𝑧′
2 = 0

𝜎′
2 = 0.

(5.9)

For 𝑟 = 0, we find the critical manifold

2 =
{
(𝑦2, 𝑧2, 𝜎2)

𝑇 ∈ ℝ3 ∶ 𝑐 − 𝜎2𝑧2 − 𝑦2
2 − 𝑦2𝑧2 = 0

}
, (5.10)

which simplifies on the sphere 𝜎2 = 0 to 𝑧2 =
𝑐

𝑦2

− 𝑦2.

As already indicated in Remark 4.8, we note the following.

Remark 5.3. In system (5.8), 𝑟 is the slow–fast parameter and
𝜎2 changes the geometry of the critical manifold. Translated to
the original parameters, that is, undoing the blowup transfor-
mations (2.9) and (5.6), this implies that in region 𝐵3 we have

16 of 20 Studies in Applied Mathematics, 2025
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𝜀2 as slow–fast parameter and 𝜀1 changes the geometry of the
critical manifold.

The eigenvalue of the linearization of the layer problem (5.9) is
𝜆 = −2𝑦2 − 𝑧2.We conclude that the curve 𝑧2 =

𝑐

𝑦2

− 𝑦2, 𝑦2 > 0 on
the sphere 𝜎2 = 0 is part of the normally attracting branch of the
critical manifold 𝑎

2 , which again extends regularly into 𝜎2 > 0,
since 𝜎2 acts as a regular perturbation parameter in (5.10).

The reduced flow on 𝑆𝑎
2 is given by

�̇�2 = 𝑦2
2,

hence 𝑧2 increases for all 𝑦2 ≠ 0 (see Figure 13).

For the remaining analysis of𝑎 away from the sphere, we change
to the exit chart3

3 where the dynamics is governed by

𝑦′
3 = 𝜀13(𝑐 − 𝑟𝜎3𝑦3 − 𝜎3) − 𝑦2

3 − 𝑦3 − 𝑟𝑦3
3

𝜎′
3 = 𝑟𝜎3𝑦

2
3

𝜀′
13 = −2𝑟𝜀13𝑦

2
3 .

(5.11)

The layer problem is now given by

𝑦′
3 = 𝜀13(𝑐 − 𝜎3) − 𝑦2

3 − 𝑦3

𝜎′
3 = 0

𝜀′
13 = 0,

(5.12)

with critical manifold

3 =
{
(𝑦3, 𝜎3, 𝜀13)

𝑇 ∈ ℝ3 ∶ 𝜀13(𝑐 − 𝜎3) − 𝑦2
3 − 𝑦3 = 0

}
. (5.13)

On the invariant plane 𝜀13 = 0, the critical manifold 3 corre-
sponds to the lines 𝑦3 = 0 and 𝑦3 = −1. The eigenvalue of the
linearization of the layer problem (5.12) is 𝜆 = −2𝑦3 − 1, hence
the line 𝑦3 = 0, 𝜀13 = 0 is part of the normally attracting branch
𝑆𝑎

3 of the critical manifold. As before this line extends regularly
into 𝜀13 > 0 to a smooth manifold 𝑎

3 .

The reduced flow on 𝑆𝑎
3 is given by

𝜎′
3 = 𝜎3𝑦

2
3

𝜀′
13 = −2𝜀13𝑦

2
3,

(5.14)

such that𝜎3 increases and 𝜀13 decreases for 𝑦3 > 0 on𝑎
3 . All orbits

on 𝑎
3 with 𝜎3, 𝜀13 > 0 approach the line of equilibria 𝑦3 = 0, 𝜎3 =√

𝑐 corresponding to 𝑄 (which is contained in 𝑎
3 ) in a center-

like manner, that is, with an algebraic rate. For completeness,
note that on the invariant plane 𝜀13 = 0 the critical manifold
corresponds to the line 𝑦3 = 0 with stationary reduced flow. We
conclude that there exists a two-dimensional attracting invariant
slow manifold 𝑎

𝑟 for 0 < 𝑟 ≪ 1 with slow flow converging to the
reduced flow on 𝑎 as 𝑟 → 0. Since no new equilibria occur for
𝑟 > 0, all orbits of the slow flow converge to a point on the line of
equilibria corresponding to 𝑄. □

Based on Lemma 5.1, we can now construct an 𝜀1-family of
singular orbits connecting the line of initial values corresponding
to 𝑂 with the line of equilibria corresponding to 𝑄.

Lemma 5.4. There exists a family of singular orbits 𝛾
𝜀1
0 , 𝜀1 ∈

[0, 𝛽3] of the blown-up extended system of (5.2) connecting the line
of initial values with the line of equilibria corresponding to 𝑂 and
𝑄, respectively.

Proof. We define the fast fibers connecting the line of initial
conditions

𝑂2 = (0, 0,
√

𝜀1)
𝑇, 𝜀1 ∈ [0, 𝛽3]

with

(𝑦2, 𝑧2, 𝜎2)
𝑇 = (

√
𝑐, 0,

√
𝜀1)

𝑇 ∈ 𝑎
2

as 𝛾
𝜀1,𝑓

0 . The forward orbits under the reduced flow along the
critical manifold 𝑎 connecting

(𝑦2, 𝑧2, 𝜎2)
𝑇 = (

√
𝑐, 0,

√
𝜀1)

𝑇 ∈ 𝑎
2

with the line of equilibria

𝑄3 =
(
0, 𝑐,

𝜀1

𝑐2

)𝑇

∈ 𝑎
3 , 𝜀1 ∈ [0, 𝛽3]

are denoted as 𝛾
𝜀1,𝑠

0 . The 𝜀1-family of singular orbits is therefore
given by

𝛾
𝜀1
0 ∶= 𝛾

𝜀1,𝑓

0 ∪ 𝛾
𝜀1,𝑠

0 ,

see Figure 13. □

The following theorem assures that the singular orbits 𝛾𝜀1
0 perturb

to smooth orbits connecting 𝑂 and 𝑄 for 0 < 𝑟 ≪ 1.

Theorem 5.5. There exists a constant 𝑟0 > 0 such that for all
𝜀1 ∈ (0, 𝛽3] and 𝑟 ∈ (0, 𝑟0], there exists a smooth orbit 𝛾

𝜀1
𝑟 of (5.2)

connecting the initial value 𝑂 with the genuine equilibrium 𝑄.
The corresponding orbit in blown-up space �̄�

𝜀1
𝑟 is (𝑟)-close to its

corresponding singular orbit 𝛾𝜀1
0 in Hausdorff distance.

Proof. Combining Lemmas 5.1 and 5.4, it follows from standard
Fenichel theory with slow–fast parameter 𝑟 applied to the blown-
up extended system of (5.2) and arguments similar to the proof of
Theorem 3.2 imply that the singular orbits 𝛾

𝜀1
0 perturb to smooth

orbits �̄�
𝜀1
𝑟 converging to 𝑄, which are (𝑟)-close for all 𝜀1 ∈ (0, 𝜀3]

and 𝑟 > 0 small enough. The assertions of the theorem follow by
applying the blowup map (5.5), that is, 𝛾𝜀1

𝑟 = Φ(�̄�
𝜀1
𝑟 ). □

Remark 5.6. Note that 𝜀1 = 0 (actually 𝜀1 = 0 since the theorem
is stated in chart 2) is not included in Theorem 5.5, since this
corresponds to the original parameter 𝜀1 = 0. In this case, we do
not observe dynamics because 𝑦 = 0 is a line of equilibria, as
already mentioned in the rough classification in the beginning of
Section 2.

We conclude with the proof of the main result, that is, Theo-
rem 1.5.

Proof of Theorem 1.5. It follows from Theorems 3.2, 4.6, 4.10,
and 5.5 that in each of the regions 𝐵11, 𝐵12, 𝐵2, and 𝐵3 there
exists a different slow–fast structure of (1.14)with a corresponding
singular orbit 𝛾0 which perturbs to a genuine orbit for 𝜀1, 𝜀2
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FIGURE 14 Multiscale structure and singular orbits of (1.14) in different regions of parameter space.

small. The error estimates in 𝜀1 and 𝜀2 for each case are obtained
by undoing the rescalings of the blowup transformations as in
(3.12). □

6 Summary and Outlook

In this paper, we conducted an asymptotic analysis of the
Robertson model, a prominent example of stiffness in ODEs
characterized by three reaction rates 𝑘1, 𝑘2, and 𝑘3 of widely
differing orders of magnitude. We focused on the scenario where
𝑘1, 𝑘3 ≪ 𝑘2. By rescaling the problem in terms of the small
parameters (𝜀1, 𝜀2) ∶= (𝑘1∕𝑘2, 𝑘3∕𝑘2), we transformed the original
equations into a two-parameter singular perturbation problem.
To deal with the singular structures associated with the two
small parameters, we introduced suitable blowup transforma-
tions in parameter space. This allowed us to systematically
explore the behavior of the system in a neighborhood of the
singular limit (𝜀1, 𝜀2) = (0, 0). Our analysis revealed four distinct
scaling regimes with different singular structures. Within each
regime, we applied GSPT and further blowups in phase space to
investigate the dynamics and the structure of the solutions. This
combined approach enabled us to capture the various multiscale
structures of the model, see Figure 14, which illustrates the
main result Theorem 1.5 and the details of the analysis given in
Sections 3, 4, and 5. In each region, we identified a specific type
of singular orbit connecting the initial value 𝑂 with equilibrium
𝑄, which perturbs to a genuine orbit (shown in red) for 𝜀1, 𝜀2

small.

TABLE 1 Comparison of the numerical (𝑦𝑚𝑎𝑥
𝑛𝑢𝑚 ) and the analytical

(𝑦𝑚𝑎𝑥) plateau value obtained at representative points (𝜀1, 𝜀2) in the
different parameter regions corresponding to the simulations shown in
Figure 4.

Region 𝒚𝐦𝐚𝐱
𝐧𝐮𝐦 𝒚𝐦𝐚𝐱

𝐵11 2.16 ⋅ 10−2 2.2 ⋅ 10−2 + (10−4)

𝐵12 6.98 ⋅ 10−3 7.0 ⋅ 10−3 + (10−5)

𝐵2 (lower) 7.05 ⋅ 10−4 7.07 ⋅ 10−4 + (10−7)

𝐵2 (upper) 7.07 ⋅ 10−5 7.071 ⋅ 10−5 + (10−9)

𝐵3 2.26 ⋅ 10−6 2.236 ⋅ 10−6 + (10−10)

The asymptotic results derived from our analysis are in excellent
qualitative and quantitative agreement with numerical simula-
tions, compare Figure 4 with 14, for example, the maximal value
of the 𝑦-component. Our analysis predicts 𝑦𝑚𝑎𝑥 =

√
𝜀1𝑐 + (𝜀1)

in 𝐵11, 𝐵12, and 𝐵2 and 𝑦𝑚𝑎𝑥 =
√

𝜀1𝑐 + (
√

𝜀1𝜀2) in 𝐵3. The values
obtained for 𝑦𝑚𝑎𝑥 (with the same parameter values as in the
simulations shown in Figure 4) are collected in Table 1, which
fit well with the corresponding numerical results 𝑦𝑚𝑎𝑥

𝑛𝑢𝑚 of the
simulations shown inFigure 4. In addition,we observe in Figure 4
that the time it takes for 𝑧 to increase becomes longer as we move
counterclockwise. The analytical explanation for this observation
is the change in the geometry of the attracting part of the critical
manifold 𝑎 in the different regions (cf., Figure 14).

Overall, this work provides a thorough understanding of the
dynamics and detailed asymptotics of the Robertson model.
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This case study highlights the potential of combining GSPT
with blowup in parameter space for analyzing multiparameter
singular perturbation problems. We believe that this approach is
applicable to more complicated problems and has the potential to
lead to a framework for the analysis of multiparameter singular
perturbations. In ongoing work, we are using this approach in
the analysis of a five-variable model of the cell cycle [8, 36] with
singular dependence on three parameters.
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