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Abstract

Weyl-Kondo semimetals are materials in which strong electron correlations and non-

trivial electronic topology are combined. In these materials, the quasiparticles - Weyl

fermions - have a linear dispersion relation, making them an analogue of relativistic

massless particles. Candidate materials must have a crystal structure with broken in-

version symmetry or time-reversal symmetry. New aspects of Weyl fermion physics are

expected in crystals of even lower symmetry, in chiral crystals. A candidate for Kramers

Weyl Kondo semimetal CeIrSi was found based on its chiral structure (space group P213,

N198), strong spin-orbit coupling and signatures of strong electron correlations in heat

capacity. High-quality, stoichiometric single crystals were successfully grown for the first

time using the optical floating zone method and subsequently used for magnetization

(up to 6T), heat capacity, and electrical transport measurements (up to 12T) along

the crystallographic directions [100] and [110] over a temperature range from room tem-

perature down to 2K. Heat capacity measurements revealed an enhanced Sommerfeld

coefficient, indicating strong electronic correlations, while resistivity exhibited a strong

anisotropic behaviour, showing semimetallic character along [100] and semiconducting

behaviour along [110]. The material is paramagnetic down to 8K, however, in contrast

to the literature, which reports it as non-magnetic, at least three different magnetically

ordered phases were found below 8K. At magnetic fields above 3.7T, the compound be-

haves like a collinear ferromagnet. Below this field, two different magnetic phases 1 and 2

with ferromagnetic and antiferromagnetic features appear, possibly conical and helical in

nature, but their exact structure is still unclear and requires further investigation. Hall

effect measurements between 2K and 8K show a strong non-linear contribution, which

cannot be easily attributed to intrinsic effects from the Berry curvature. It may arise

from complex magnetic ordering at low temperatures. Therefore, further measurements

are needed to clarify the complex magnetic ordering and to determine the topological

contributions to the strong non-linear Hall effect.



Zusammenfassung

Weyl-Kondo-Semimetalle sind Materialien, in denen starke Elektronenkorrelationen und

nicht-triviale elektronische Topologie kombiniert sind. In diesen Materialien haben die

Quasiteilchen – Weyl-Fermionen – eine lineare Dispersion, was sie zu einem Analogon

relativistischer masseloser Teilchen macht. Potentielle Materialien müssen eine Kristall-

struktur mit gebrochener Inversionssymmetrie oder Zeitumkehrsymmetrie aufweisen. In

Kristallen mit noch geringerer Symmetrie, insbesondere in chiralen Kristallen, werden

neue Facetten der Weyl-Fermionenphysik erwartet. Ein Kandidat für ein Kramers Weyl

Kondo Semimetall, CeIrSi, wurde aufgrund seiner chiralen Struktur (Raumgruppe P213,

N198), starken Spin-Bahn-Kopplung und Hinweise starker Elektronenkorrelationen in

der Wärmekapazität gefunden. Zum ersten mal wurden hochwertige, stöchiometrische

Einkristalle erfolgreich mittels der optischen Floating-Zone-Methode gezüchtet und an-

schließend für Magnetisierungsmessungen (bis 6T), Wärmekapazitätsmessungen sowie

elektrische Transportmessungen (bis 12T) entlang der kristallographischen Richtungen

[100] und [110] im Temperaturbereich von Raumtemperatur bis 2K verwendet. Wärmeka-

pazitätsmessungen offenbaren einen erhöhten Sommerfeld-Koeffizienten, der auf starke

elektronische Korrelationen hindeutet. Gleichzeitig zeigt der Widerstand ein deutlich

anisotropes Verhalten: Entlang der Richtung [100] tritt semimetallisches Verhalten auf,

während entlang [110] ein halbleitendes Verhalten beobachtet wird. Das Material ist bis

8K paramagnetisch, jedoch sind im Gegensatz zur Literatur, die es als nicht-magnetisch

beschreibt, mindestens drei verschiedene magnetisch geordnete Phasen unterhalb von

8K gefunden worden. Bei Magnetfeldern über 3.7T verhält sich die Verbindung wie ein

kollinearer Ferromagnet. Unterhalb dieses Feldes treten zwei verschiedene magnetische

Phasen 1 und 2 mit ferromagnetischen und antiferromagnetischen Anteilen auf, möglicher-

weise konischer und helikaler Natur, deren genaue Struktur jedoch ohne weitere Unter-

suchungen nicht eindeutig identifiziert werden können. Hall Effekt Messungen im Bereich

von 2K bis 8K zeigen einen starken nichtlinearen Beitrag, der nicht einfach den intrinsis-

chen Effekten der Berry Krümmung zugeordnet werden kann. Stattdessen, könnte dieser

auch durch die komplexe magnetische Ordnung bei niedrigen Temperaturen entstehen.

Folglich sind weitere Messungen erforderlich, um die komplexe magnetische Ordnung zu

klären und die topologischen Beiträge zum starken nichtlinearen Hall-Effekt zu bestim-

men.
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1 Introduction

Strongly correlated systems are defined by the presence of significant electron–electron

interactions, where the Coulomb repulsion is comparable to or even larger than the ki-

netic energy of the electrons [1]. A prominent class within these systems are heavy

fermion compounds, often found among intermetallic materials that contain rare-earth

elements. These elements host localized magnetic moments originating from 4f or 5f

electrons. Heavy fermion systems are characterized by extremely flat electronic bands,

which result in a dramatically enhanced effective electron mass. One particularly intrigu-

ing aspect of these systems is the competition between a non-magnetic ground state,

arising from Kondo screening, and a magnetically ordered state favoured by the Ruder-

man–Kittel–Kasuya–Yosida (RKKY) interaction. Especially at low temperatures, where

both effects may coexist, this competition can give rise to complex magnetic phenomena

and non-Fermi-liquid behaviour. [2].

In the last decades, a new class of topological materials has garnered significant attention

in condensed matter physics. Among these, topological insulators, Dirac semimetals, and

Weyl semimetals have emerged as key players in the study of exotic electronic states,

owing to their rich variety of exotic phases. These materials exhibit unique and highly

non-trivial topological properties, which give rise to new quantum states such as Fermi

arcs [1, 3, 4]. In 2015, the first Weyl fermions were discovered in the strong spin-orbit

coupled material TaAs, where fermi arcs were observed using angle-resolved photoemis-

sion spectroscopy (ARPES) [5]. In materials with broken inversion and/or time-reversal

symmetry, Weyl points of opposite chirality emerge from band inversion. These Weyl

points, respresented by the Berry curvature field, can be described by massless chiral

fermions [3, 6, 7]. In addition to the surface states, the Berry curvature field influences

transport properties. The sources and sinks of the Berry curvature (the Weyl nodes)

behave like fictitious magnetic monopoles, leading to pronounced contributions in Hall

effect measurements. These contributions will serve as a central experimental approach

for identifying topological electronic states in this thesis [8, 9].

In the absence of certain crystal symmetries, as found in chiral crystals, a new class of

Weyl fermions, known as Kramers-Weyl fermions, has emerged. Kramers-Weyl semimet-

als are characterized by large, non-trivial topological energy windows and are known to

host large Fermi arcs, as observed in RhSi [10]. Moreover, these materials exhibit unusual
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phenomena such as the chiral anomaly and the circular photogalvanic effect (CPGE) [4].

They originate from band degeneracies that are lifted throughout the Brillouin zone, ex-

cept at time-reversal invariant momentum points (TRIMs) in chiral crystals, which leads

to Kramers-Weyl points that are maximally separated in momentum space [4, 11].

So far, the investigation of Kramers-Weyl fermions has primarily focused on non-interacting

systems and those with weak electronic correlations. However, it is anticipated that

strong correlations, in combination with spin-orbit interactions and special space group

symmetries, may give rise to a rich variety of topological states of matter, analogous to

Weyl-Kondo semimetals, such as Ce3Bi4Pd3 [1, 6]. In this work, we investigate CeIrSi

as a candidate for a Kramers-Weyl Kondo semimetal, distinguished by its chiral crystal

structure, strong spin-orbit coupling required to lift band degeneracies, and signatures of

strong electronic correlations.

Previous studies of polycrystalline samples revealed that this compound crystallizes in

the cubic chiral space group 198 - P213 [12, 13], which is known to host Weyl fermions

with high Chern numbers, resulting in strong topological protection [14]. While the single

crystal growth of CeIrSi is unexplored, polycrystalline samples of have been reported to

be non-magnetic down to temperatures as low as 300mK, exhibiting a semiconducting

temperature dependence. This makes CeIrSi a promising candidate, together with mate-

rials containing the heavy element iridium often exhibit strong spin-orbit coupling, and

the rare earth element Ce is known to support heavy fermion systems, such as CeAl3 [15].

This thesis presents the procedure for the single crystal growth of CeIrSi, as well as

investigations on its physical properties, including magnetization, thermal and electrical

transport, as well as Hall effect measurements, to identify any topological contributions

from room temperature to 2K. The following chapter discusses the theoretical models

essential for understanding these results.
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2 Theoretical background

The following section provides an overview of the physical concepts and interactions rel-

evant to understanding the phenomena observed in strongly correlated electron systems

and materials exhibiting topological states of matter, such as Weyl semimetals. Special

emphasis is placed on the Kondo effect and RKKY interactions, which commonly arise

in systems containing rare-earth elements, such as Ce with 4f electron configurations.

The concept of Kramers-Weyl semimetals is introduced in the context of CeIrSi, a chiral

compound proposed as a promising candidate in this emerging class of topological mate-

rials, where spin-orbit coupling and structural chirality play a central role. The chapter

concludes with a discussion of Hall effect measurements as a powerful tool for probing

topological materials, and the importance of high-quality single crystal growth to enable

precise and reliable experimental investigations.

2.1 Weyl semimetal (WS)

Weyl fermions were first introduced in 1929 as an alternative solution to the Dirac equa-

tion, alongside the known Dirac fermions, for relativistic particles in high-energy physics.

The mathematician Herman Weyl predicted the existence of massless fermions charac-

terized by a well-defined chirality, which are described by a two-component spinor that

satisfies the Weyl equation [3, 16, 17]. Despite this theoretical foundation, Weyl fermions

have yet to be experimentally identified in particle physics. In contrast, the concept has

been extended in the context of quantum materials to describe topological fermions.

In a Dirac semimetal, two degenerate bands (the conduction and valence bands) touch at

discrete points known as Dirac points (see Fig. 2.1) [7]. These points exhibit linear disper-

sion in all three momentum directions [3, 7, 18]. As a result, the low-energy quasiparticle

excitations behave as massless Dirac fermions.

If inversion symmetry (IS) and/or time-reversal symmetry (TRS) is broken, a Dirac point

splits into two non-degenerate Weyl points with opposite chirality (see Fig. 2.1)[3].

The Weyl points are represented as sources and sinks of the Berry curvature field
#   »

Ωm(
#»

k )

in momentum space
#»

k . To maintain neutrality within the Brillouin zone, Weyl points
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Figure 2.1: Degenerate Dirac points with linear dispersion in momentum space transform

into doubly degenerate chiral fermions of opposite charge when either IS or

TRS is broken. Adapted from Ref. [7].

always appear in pairs of opposite charge, as dictated by the Nielsen-Ninomiya no-go

theorem [7].

The integral of the Berry curvature field (Eq. 1) over a surface S that encloses a Weyl point

yields a quantized integer Chern number Cm, which serves as the topological invariant

associated with the Weyl fermion and defines its topological charge.

Cm =
1

2π

�
S

#   »

Ωm(
#»

k )d
#»

S (1)

whereas the Berry curvature is given by

#   »

Ωm(
#»

k ) = ∇ #»
k × #   »

Am(
#»

k ) (2)

with the Berry connection
#   »

Am(
#»

k ) which describes how the phase of a quantum state

evolves as the system undergoes adiabatic changes in parameter space.

In simpler terms, the Weyl points emerge from a band inversion where the conduction

band drops below the valence band in energy, creating a non-trivial topological energy

window (see Fig. 2.2a). Within this topological window, protected surface states manifest

themself as Fermi arcs (see Fig. 2.2b).

Typically, the Fermi surface forms closed loops in momentum space, however, in Weyl

semimetals, these loops transform into arcs. These unique surface states can be detected

using angle-resolved photoemission spectroscopy (ARPES), as demonstrated in the case

of TaAS [5], which was the first Weyl semimetal identified in 2015.
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(a) (b)

Figure 2.2: a) Weyl fermions generated by band inversion in crystals breaking IS or TRS.

The extrema of the bands give the limits of the topological non-trivial energy

window. b) Illustration of two chiral Weyl fermions in the bulk Brillouin zone

(BZ) and the Fermi arc in the surface of the BZ. Adapted from Ref. [3]

In addition to surface states, the Berry curvature field influences transport properties, as

the sources and sinks of Berry curvature (the Weyl nodes) behave like fictitious magnetic

monopoles. Research over the past decade has demonstrated that spontaneous Hall effect

measurements are an effective method for detecting these Weyl nodes (see section 2.7)

[6, 8, 9].

Weyl points exist exclusively within a finite topological energy window, which is mainly

determined by the degree of band inversion. A greater degree of band inversion leads

to a larger separation between Weyl points, thereby enhancing the stability of a robust

topological phase. However, studying topological phenomena can be challenging, as the

Fermi level often lies outside of the topolgical energy window [3].

Band inversion is a key criterion in the identification of potential topological material

candidates. In particular, in rare-earth materials, the strong spin-orbit coupling plays a

crucial role in driving band inversion [19].

2.2 Kondo effect

Strongly correlated heavy fermion systems are characterized by significant interactions

between localized magnetic moments (often associated with 4f or 5f electrons) and con-
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duction electrons. The foundational model for these interactions is the Kondo effect [2],

first explained by J. Kondo 60 years ago. In the early research phase of condensed matter

systems, W. J. de Haas, J. de Boer, and G.J. van den Berg discovered an unexpected

rise in the resistivity of magnetic impure gold wires at low temperatures in 1934. At

that time, total electric resistivity was attributed to electron scattering from phonons

(lattice vibrations) and impurities, following Matthiessen’s rule. While theoretical pre-

dictions and experimental observations aligned for simple metals, they could not account

for the anomalous resistivity behaviour observed in gold wires. J. Kondo addressed this

by incorporating electron scattering on magnetic impurities into his model, utilizing per-

turbation theory based on the s-d model developed by Anderson. He considered not

only first-order but also second-order scattering processes, including spin flips. Conse-

quently, localized 4f or 5f electrons from impurities can transition into the continuum

and exchange their orbital and spin quantum numbers through intermediate states, ac-

companied by electron-hole excitations, commonly referred to as quasiparticle excitations

in Landau’s Fermi-liquid theory. The contributions to the total energy can be described

using the Heisenberg model, accounting for both energy and spin changes as follows:

H = −J( #»r ) #»σ · #»

S (3)

where J( #»r ) is the exchange coupling parameter (J < 0 for antiferromagnetic and J >

0 for paramagnetic interactions), #»σ represents the spin component of the conduction

electrons, and
#»

S denotes the localized moment of the impurity.

By considering spin exchanges between conduction electrons and the localized moment,

an additional term proportional to J3 log T emerges, which accounts for the observed

logarithmic increase in electrical resistivity as temperature decreases (see Fig. 2.4) for

negative exchange coupling (i.e., antiferromagnetic, J < 0). The perturbation theory

breaks down as T → 0 due to the divergence of this logarithmic term, a phenomenon

known as the Kondo problem.

To deal with the unphysical divergence of several physical quantities, Abrikosov extended

perturbation theory to a general n-th order approach and successfully summarised the

leading logarithmic terms at low temperatures. However, it was found that the resistivity

for antiferromagnetic interactions diverges at finite temperatures TK .

kBTK ≈ D exp

�
− 1

2|J |N(EF )

�
(4)

with the Boltzmann factor kB, the bandwidth D of the conduction electrons and N(EF )
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representing the density of states of the conduction electrons at the Fermi energy.

The characteristic Kondo temperature TK defines the crossover between weak (T > TK)

and strong (T < TK) correlations. Below the Kondo temperature, conduction electrons

couple strongly with the spin of the impurity moments. Furthermore, the spins of the

conduction electrons align anti-parallel with the spin of the impurity. Hence, the magnetic

moment seems to be screened by the conduction electrons, forming a non-magnetic singlet

ground state (see Fig. 2.3), with an energy gain of kBTK in comparison to the magnetic

triplet state. As the magnetic impurity can no longer be seen by the conduction electrons,

the unphysical divergence vanishes, and the resistivity saturates for T → 0 (see Fig. 2.4).

Figure 2.3: Below the Kondo temperature, the system enters the strong coupling regime,

where conduction electrons strongly couple with the impurity to form a screen-

ing cloud. Adapted from reference [2]

The formation of a singlet ground state at low temperatures modifies the electronic density

of states (DOS) near the Fermi energy. An additional peak ρf (ω) with a large DOS

appears to compensate for the loss of spin degree of freedom. This peak is responsible

for unusual behaviour at low temperatures, as well as the enhanced effective mass of

electrons, and is known as the Kondo resonance with a width of kBTK (Fig. 2.5a & 2.5b).

Mainly adapted from reference [2].

2.2.1 Kondo lattice

In the case of a periodic arrangement of localized magnetic moments, known as a Kondo

lattice, the magnetic ions decouple above the Kondo temperature TK , resulting in be-

haviour characteristic of the single-ion Kondo effect. In contrast, within the Kondo co-

herence regime below TK , the electrical resistivity decreases (Fig. 2.4), as the conduction

12



Figure 2.4: The typical low-temperature resistivity behaviour for the single-ion and lattice

Kondo effect. Adapted from Ref. [2].

electrons can pass through the periodic scattering centers in the form of Bloch waves.

Figure 2.5: a) Single impurity: Spin of the impurity (pink) in the sea of the spins of the

conduction electrons. b) The local density of states (LDOS) associated with

panel a. c) Kondo lattice created from a series of impurities d) The LDOS

corresponding to panel c. In panels b and d, ϵd denotes the energy level of

the singly occupied electronic state of the impurity, while ϵd+U indicates the

energy required for double occupancy of that state. Adapted from Ref. [20].

The hybridization of the localized (mostly) f-electrons with the conduction electrons cre-

13



ates a partial hybridization gap in the density of states at the Fermi energy (see Fig. 2.5d).

Since the effective mass of the electrons is proportional to the density of states, this

results in the formation of a flat band of heavy quasiparticles with a width of kBTK .

Consequently, these systems are often referred to as heavy fermion systems.

The periodic arrangement of the Kondo scattering centers, along with the resulting de-

magnetized ground state, leads to a T 2 dependence of the electrical resistivity

ρ(T ) = ρ0 + AT 2 (5)

with the prefactor A and the residual resistance ρ0 that arises from the scattering of

impurities and defects.

2.2.2 Ground state competition

In the Kondo lattice, the magnetic moments are effectively screened by the conduction

electrons, leading to a non-magnetic ground state. However, in this periodic arrangement

of magnetic moments, long-range intersite interactions, such as the RKKY interaction

(Rudermann, Kittel, Kasuya, Yoshida), become significant. This interaction represents

an indirect coupling between localized magnetic moments that is mediated by conduc-

tion electrons. The screening of these localized moments induces a spin polarization

in the conduction electrons. As a result, neighbouring magnetic ions adjust their mo-

ments in response to this spin polarization. Due to the oscillatory nature of the RKKY

interaction (Eq. 6), the response can be either negative (antiferromagnetic) or positive

(ferromagnetic), depending on the ion distance r. This behaviour is depicted by the

RKKY exchange relation shown in (Fig. 2.6).

JRKKY ∝ J2N(EF )
x cos x− sin x

x4
(6)

where x = 2kF r and kF ≡ represents the Fermi wavevector.

The favourable formation of a compensated spin state or magnetic order, which is pri-

marily influenced by the RKKY interaction, hinges on the exchange integral |JN(EF )|.
The strength of the Kondo interaction is characterized by an exponential dependence:

TK ∝ exp (−1/|JN(EF )|)

14



Figure 2.6: Oscillating RKKY interaction with positive or negative exchange coupling

Parameter. Adapted from Ref. [21].

In contrast, the RKKY interaction exhibits a quadratic dependence:

TRKKY ∝ |JN(EF )|2

For small values of J , the relationship TRKKY > TK holds due to the exponential nature

of the Kondo interaction (see Fig. 2.7). This condition favours the emergence of a mag-

netically ordered ground state. However, for large values of J , the energy gain associated

with singlet formation becomes dominant compared to that of a magnetically ordered

state. Even when lowering the temperature below the Kondo temperature, achieving an

ordered state becomes impossible because the magnetic moments are already screened by

conduction electrons [22].

At the critical point Jc, where TK ≈ TRKKY , both interactions can coexist simultaneously,

leading to intriguing magnetic phenomena. Near this quantum critical point (QCP) at

(T = 0), non-Fermi liquid behaviour emerges as a result of strong spin fluctuations.
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Figure 2.7: The Doniach phase diagram depicts the transition from a magnetically or-

dered state to a paramagnetic heavy Fermi liquid state, highlighting the pas-

sage through a quantum critical region that exists between these two phases

as a control parameter |J |D(ϵF ) = |JN(EF )| is varied. Adapted from Ref.

[22].

2.3 Weyl-Kondo semimetal (WKS)

Typically, investigations into topological phases have focused on weakly interacting sys-

tems. However, strongly correlated systems are particularly fascinating due to their

complex phase diagrams and highly tunable ground states, especially in heavy fermion

materials. Theoretical studies using the periodic Anderson model in noncentrosymmet-

ric systems [23] and non-symmorphic Kondo lattices [19] with broken IS or TRS have

shown that, when combined with strong electron correlations, Weyl nodal excitations

can emerge with significantly reduced electron velocities. Furthermore, in the presence

of strong corrolations, these Weyl nodes may be pinned to the Fermi energy [6].

An experimental example of this phenomenon is the Kondo-driven Weyl semimetal phase

observed in Ce3Bi4Pd3 [6]. The large magnitude of the spontaneous Hall effect has been

interpreted as the result of the formation of Weyl nodes within the Kondo resonance,

located in the immediate vicinity of the Fermi energy (Fig. 2.8b). Additionally, the

theoretically calculated contribution to the electronic specific heat exhibits a cubic tem-

perature dependence (Eq. 7) [23], which corresponds to the linear specific heat coefficient

observed in ΔC/T as a function of T 2 (Fig. 2.8a).

Cv =
7π2

30
kB

�
kBT

ℏv∗

�3

(7)

Here, kB is the Boltzmann constant, ℏ is the Planck constant, and v∗ represents the
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highly reduced quasiparticle velocity. The cubic temperature dependence of the electronic

specific heat, Cel ∝ T 3, directly indicates a linear electronic dispersion characteristic of

Dirac and Weyl semimetals (see Fig. 2.8b).

(a) (b)

Figure 2.8: a) Linear behaviour in T 2 of the electronic specifc heat over T at low temper-

atures. b) Linear electronic dispersion in momentum space near a Weyl point

at the Fermi energy. Adapted from Ref. [1]

2.4 Chirality

A novel class of Weyl fermions has been identified in chiral systems. Chirality refers to a

geometric object that cannot be superimposed on its mirror image. The simplest example

of chirality is the human hand, as illustrated in Fig. 2.9a. Chirality manifests in various

contexts, ranging from chiral particles in particle physics to chiral molecules in biology

and medicine.

There are 65 space groups (SGs) that consist solely of symmetry operations of the first

kind, thereby lacking inversion symmetry, mirror planes or any rotation-reflection axes

[24]. The absence of improper symmetry operations (e.g., rotoinversion and rotoreflec-

tion) ensures that the crystal structure cannot be superimposed onto its mirror image,

resulting in an enantiomeric pair with opposite chirality [25]. Furthermore, this class can

be divided into 43 achiral SGs with chiral structures, which include the presence of the

neutral 21,42 and 63 screw axes (see Fig. 2.9b), and 22 chiral SGs that contain at least

one screw axis that is not the neutral screw axis. These include 11 enantiomeric pairs
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[24].

(a) (b)

Figure 2.9: a) Example for left and right handed chirality. Adapted from Ref. [26] b)

Left, neutral, and right handed screw axis. Adapted from Ref. [24]

2.5 Kramers-Weyl semimetal (KWSM)

In the absence of specific crystal symmetries, as observed in chiral systems, a novel class

of Weyl fermions known as Kramers-Weyl fermions has been identified [4]. In crystals

that preserve TRS, Kramers theorem mandates the presence of doubly degenerate energy

eigenstates at time-reversal invariant momentum points (TRIMs), given that the time-

reversal symmetry operator T for half-integer spin systems satisfies T 2 = −1. Spin-

orbit coupling lifts degeneracies everywhere except at the high-symmetry TRIM points,

where the Kramers degeneracy remains protected (see Fig. 2.10a) [4, 11]. The resulting

Kramers-Weyl points are located at the center and the boundary of the Brillouin zone,

thereby achieving maximal separation in momentum space. This configuration leads to

the largest topological energy windows (see Fig. 2.10b) and facilitates the formation of
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(a) (b)

Figure 2.10: a) Illustration of chiral fermions hosted at TRIMs in the Brillouin zone in all

non-magnetic chiral crystals with SOC. b) The influence of SOC in Kramers-

Weyl semimetals using SG 16 as an example. SOC splits the bands except

at TRIMs, as deduced from Kramers theorem. Adapted from Ref. [4]

the longest possible Fermi arcs on the surface, as observed in the chiral Kramers-Weyl

semimetal RhSi [10].

Moreover, they can give rise to monopole-like electron spin textures [27], chiral magnetic

effects, and the quantized circular photogalvanic effect (CPGE) [4]. In the CPGE, circu-

larly polarized light generates a measurable electric current within the material. When

illuminated by this light, an asymmetry in the absorption of left- versus right-handed

circular polarization occurs, leading to an imbalance in the population of charge carriers.

This imbalance results in a current that flows perpendicular to both the direction of light

propagation and its polarization [28].

Additionally, they may be utilized in the development of spin-torque devices [29]. In

systems lacking inversion symmetry, Kramers-Weyl points can also influence supercon-

ducting pairing mechanisms and magnetic exchange interactions [30].

In symmorphic chiral SGs, all Kramers degeneracies exhibit Kramers-Weyl nodes sit-

uated at time-reversal invariant momenta. Conversely, in non-symmorphic SG, nodal

planes may emerge alongside isolated Weyl nodes when specific screw rotation symme-

tries interact with time-reversal symmetry. To preserve a two-fold degeneracy for a given

crystal symmetry S, it is necessary that T ×S returns a momentum point k to itself and

satisfies the condition T 2 = −1 for that particular value of k.
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It has been demonstrated that nodal planes can be enforced by screw rotation symmetries

associated with: two-fold rotations combined with a 1/2 lattice translation (21), four-fold

rotations accompanied by a 1/4 translation (41) and six-fold rotations with either a 1/6

translation (61) or a 1/2 translation (63) [4]. In particular, a two-fold rotation axis

characterized by T × 21 results in the formation of a nodal plane at ki = π.

2.6 Kramers Weyl Kondo semimetal

So far, the investigation of Kramers Weyl fermions has primarily focused on non-interacting

systems and those with weak electronic correlations. However, it is anticipated that

strong correlations, in combination with spin-orbit interactions and reduced SG symme-

tries, may give rise to a rich variety of topological states of matter, analogous to Weyl

Kondo semimetals [1]. The effects and potential properties of such material candidates

remain open for exploration and could lead to new discoveries, although a well-defined

theoretical framework has yet to be established.

In this work, we will investigate a candidate identified as a Kramers Weyl Kondo semimetal,

characterized by its chiral structure, strong spin-orbit coupling, and indications of signif-

icant electronic correlations. It may be possible that within the Kondo coupling regime,

the coherence of the electrons may tune the Kramers Weyl fermions to the Fermi level.

Furthermore, multifold fermions are expected to emerge, which are associated with in-

triguing phenomena such as the chiral anomaly and the CPGE [4, 28].

2.7 Hall effect

Hall measurements have become a powerful tool to investigate strongly correlated systems

as well as topological materials. Heavy fermion systems, known for their large effective

masses and complex interactions, display unique transport phenomena that can be in-

vestigated using Hall effect measurements. These measurements often reveal anomalous

behaviour related to skew scattering and the interaction between localized f -electrons and

conduction electrons [31]. For topological materials, Hall measurements have emerged as

a crucial technique for detecting and quantifying Berry curvature effects. The singular-

ities of the Berry curvature field, an intrinsic property of electronic wave functions in

momentum space, can act as magnetic monopoles and lead to unconventional transport
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phenomena such as the anomalous Hall effect and the non-linear Hall effect [6, 32, 33].

In 1879, Edwin H. Hall conducted an experiment [34] in which he passed a current

through a gold leaf while applying an external magnetic field perpendicular to the current

direction. Due to the Lorentz force
# »

FL = q( #»v × #»

B) acting on the moving charge carriers,

an electric field Ey is generated that is perpendicular to both the magnetic field B and

applied current I. This results in a transverse voltage, known as the Hall voltage VH ,

which balances the Lorentz force and establishes a steady state, with VH ∝ B · I.

Consider a rectangular conductor with width b and thickness d (Fig. 2.11). A current is

applied in Ix with charge carriers q, density n flowing with velocity vx. Furthermore an

external magnetic field is applied in Bz. The resulting transverse Hall voltage is given by

Vxy = Ey/b and within the free electron model [35]:

Vxy =
1

nq

Ix
d
Bz = RH

Ix
d
Bz (8)

RH = 1/nq is called the Hall voltage and provides information about the type and the

concentrtion of charge carriers in the conductor (electrons, holes, ions).

Figure 2.11: Schematic setup for a Hall measurement. Adapted from Ref. [35].

2.7.1 Anomalous Hall effect

The anomalous Hall effect (AHE) occurs in materials that exhibit broken time-reversal

symmetry, which is commonly found in ferromagnets and topological materials. Unlike

the ordinary Hall effect, the anomalous Hall effect is influenced not only by the Lorentz

force but is fundamentally a quantum phenomenon arising from the coherent mixing of

quantum states due to external electric fields and disordered potentials [36]. As a result, it
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often exhibits a non-linear relationship between the Hall voltage and external parameters

such as magnetic field strength or current density.

Research into the anomalous Hall effect began in the 19th century and has historically

been complex and not entirely understood [36]. Currently, three distinct contributions

to this effect have been identified. However, the overall picture remains incomplete, with

several open questions still to be addressed. These contributions include the intrinsic

contribution related to Berry curvature, as well as two extrinsic contributions known as

skew scattering and side-jump effects [36].

In 1932, Pugh and Lippert [36] formulated an empirical expression for ferromagnetic

materials:

ρxy(B) = ROBz +RSMz(B) = ρxy,O + ρxy,A (9)

The transverse resistivity ρxy is governed by a linear component originating from the

ordinary Hall effect, which depends on the external magnetic flux Hz and a constant RO,

arising from the Lorentz force. The second term on the right-hand side of Eq. 9 represents

a characteristic contribution from magnetic materials, known as the AHE.

In single ferromagnetic domains, even in the absence of an external field, a net internal

spontaneous magnetization generates a Hall signal. This phenomenon is referred to as

the spontaneous Hall effect and depends on the magnetization Mz and a constant RS

[37].

The first theories for the origin of the anomalous contribution were introduced by Karplus

and Luttinger in 1954 [38]. They considered an intrinsic contribution due to SOC in ferro-

magnetic materials. The spin-orbit interaction (SOI) of polarized conduction electrons in

ferromagnetic crystals creates spin-dependent energy levels that interact with the inter-

band matrix elements of the applied electric potential energy. This interaction promotes

interband transitions, resulting in a transverse current that is both perpendicular to and

proportional to the direction of magnetization and the applied electric field [37]. The

topological nature of the intrinsic contribution, along with the concept of Berry curva-

ture, came into prominence in 2002 [39].

When a quantum system undergoes adiabatic changes during a cyclic evolution from

an initial state back to the same final state in the presence of SOC, the electron wave

functions acquire a geometric phase known as the Berry phase, which arises from the

trajectory in parameter space [40]. This results in a non-trivial contribution from the
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Berry curvature. In Weyl semimetals, the existence of Weyl points leads to a non-zero

Berry curvature that behaves like a magnetic field in momentum space, contributing to

a transverse current when an electric field is applied. The transverse Hall conductivity is

then given by [41]

σAH,int
xy =

e2

ℏ

�
d

#»

k

(2π)3
f(ϵ(

#»

k ))Ωz(
#»

k ) (10)

where f(ϵ(
#»

k )) presents the Fermi-Dirac distribution function for the energy eigenstates

ϵ(
#»

k ). Moreover, the equation of motion for a charged particle can be adjusted to in-

corporate an anomalous velocity term. This modification demonstrates that charged

particles in a non-zero Berry curvature field behave analogously to how charged particles

experience a Lorentz force in a magnetic field [41]:

#»v Anomalous = − e

ℏ
#»

E × #»

Ω(
#»

k ) (11)

Two additional extrinsic contributions to the AHE were proposed in 1958 by Smit, known

as skew scattering, and in 1970 by Berger, referred to as the side jump mechanism [36].

Therefore, the anomalous Hall conductivity σAH consists of three terms:

σAH = σint
AH + σsk

AH + σsj
AH (12)

where σint
AH is the intrinsic Berry curvature term, σsk

AH the extrinsic skew scattering and

σsj
AH the extrinsic side jump term.

Skew scattering occurs when charge carriers are deflected by non-magnetic impurities or

defects within the crystal. These carriers are preferentially scattered in one direction

based on their momentum and spin orientation, resulting in a net transverse current

when an electric field is applied [36]. This asymmetry can also arise from magnetic

impurities that enhance one spin state. In 1958, Smit proposed that the anomalous Hall

conductivity σsk
AH is influenced by the scattering rate and typically scales quadratically

with the longitudinal conductivity σAH
xy ∝ σ2

xx [32].

The side-jump effect occurs when an electron experiences a spin–orbit-coupled scattering

event, resulting in a transverse displacement Δy. In 1970, Berger demonstrated that this

mechanism contributes to the anomalous Hall resistivity with the relation ρAH
xy ∝ ρ2xx to

the anomalous Hall resistivity [37].
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2.8 Single crystal growth

The investigation of single crystals is of significant interest, as crystals can provide more

accurate and reliable measurements of physical properties. This enhanced precision arises

from reduced defects and impurities in single crystals compared to polycrystalline ma-

terials. Furthermore, studying the crystalline anisotropy inherent in single crystals is

essential for understanding fundamental phenomena and the physical properties that are

influenced by their underlying structure. Various crystal growth techniques are employed

across a wide spectrum of applications, ranging from industrial uses to fundamental re-

searches. The selection of an appropriate technique depends on the specific material and

the desired quality of the resulting crystal. This study specifically focuses on the growth

of single crystals from the melt using the floating zone method. The information provided

in the following subsections is mainly retrieved from reference [42].

2.8.1 Principle of crystal growth from the melt

The growth of single crystals from the melt involves a complex interplay between thermo-

dynamic stability and processes kinetics. Initially, a solid material is heated to achieve a

molten state. Subsequently, this liquid is cooled to a critical supersaturation level, which

initiates the nucleation process and facilitates further crystal growth.

Figure 2.12: Gibbs free energy as a function of the nucleation radius on the left handside.

The radius rc defines the fist stable particles.

The cooling of a molten liquid results in the formation of a supercooled melt, which
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provides the necessary conditions for nucleation processes to occur. The change in Gibbs

free energy ΔG determines the thermodynamically favourability to form small clusters

of atoms (a solid phase in the liquid). This energy is a sum of the competing volumetric

contribution ΔGV which favours nucleation by promoting the formation of a new phase,

and the surface contribution ΔGS, which opposes nucleation due to increased surface

area.

ΔG = ΔGV +ΔGS (13)

In this resulting nucleation barrier a critical nucleus size, known as the critical radius

rc (Fig. 2.12), exists at which the nucleus becomes stable enough to grow rather than

dissolve back into the melt. The rate of nucleation as well as the rate of growth, is

controlled by the undercooling ΔT . A larger ΔT increases supercooling levels, leading to

a higher nucleation rate but resulting in smaller crystals with potentially more defects. In

contrast, a smaller ΔT favours fewer nucleation events, allowing existing nuclei to grow

larger and more uniformly. This promotes better atomic arrangement within the crystal

lattice, reducing the likelihood of dislocations and vacancies, which are detrimental to

the crystal quality.

2.8.2 Optical floating zone technique

The floating zone crystal growth technique is renowned for its capacity to facilitate the

production of high-purity single crystals. The advantage of this method is that no crucible

is used, which effectively reduces the impact of contamination on the crystal. A typical

setup consists of ellipsoidal or parabolic mirrors used to heat a molten zone of a vertical

crystalline rod with one or more lamps. The growth configuration includes a feed crystal

positioned at the top, a molten zone in the center, and a growing crystal at the bottom

(Fig. 2.13a). The rod is gradually lifted as it rotates in a fixed position heater. In certain

cases, the use of a seed crystal (single or polycrystalline) may be beneficial, particularly

when the free energy of the nucleation barrier is excessively high. Upon contact between

the seed crystal and the liquid, a monocrystalline structure grows on the seed crystal,

adhering to its orientation and structure.

The liquid zone in this crucible free method is stabilized by the surface tension whereas

the maximal length Lmax is limited by the gravitational field g of the earth,

Lmax = K ·
�

γ/ρg (14)

25



where ρ is the density of the liquid melt, γ the surface tension and K a factor depending

on the meniscus angle, which defines the angle of the tangent between the liquid and the

solid surface at their point of contact.

An optimal cylindrical form of the melt can only be reached in a microgravitional envi-

ronment, whereas under terrestrial conditions the shape is controlled by gravity, as shown

in Fig. 2.13b.

(a) (b)

Figure 2.13: a) Typical growth configuration in the optical floating zone furnace. b)

Molten zone in a microgravitational environment features a cylindrical form

and a bottle shape under terrestrial conditions. Adapted from Ref. [42].

This technique is also often used to purify crystals as the impurities tend to be concen-

trated in the melt. The impurity atoms with different electronic structures and sizes

cause strain in the lattice and less favourable chemical bondings that increase the overall

energy in the system. Furthermore, impurities contribute more to the overall entropy by

remaining in the more disordered liquid state. This trend is evident in the segregation

coefficient k = CS/CL, where CS represents the impurity concentration in the solid crys-

tal and CL denotes the impurity concentration in the liquid. Typically, this coefficient is

less than 1.

In the case of an incongruently melting compound, a solvent is used in the travelling

solvent method [43].
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3 Experimental background and meth-

ods

This section provides an overview of the techniques, apparatus, and measurement de-

vices used for the growth of CeIrSi single crystal as well as the investigation of physical

properties under extreme conditions, including electric transport, specific heat and mag-

netic properties at temperatures down to 2K and high magnetic fields. The first section

addresses the description of the investigation techniques employed, including Scanning

Electron Microscopy (SEM), X-ray Diffraction (XRD), and Laue diffraction. This is

followed by an explanation of the sample preparation and the process of single crystal

growth using an optical mirror furnace. The focus then shifts to the equipment and

techniques used to measure the physical properties and, finally, the procedure for Hall

measurements.

3.1 Analytical investigation techniques

At first, a short introduction to the investigation techniques used to determine crystal

structure, phase composition and chemical composition. This includes X-ray powder

Diffraction (XRD), Scanning Electron Microscopy (SEM) and energy dispersive X-ray

analysis (EDX) as well as Laue diffraction.

3.1.1 X-ray powder diffraction

X-ray powder diffraction (XRD) uses monochromatic X-rays to analyze the crystal struc-

ture of a material, providing insights into unit cell dimensions, atomic arrangement, and

the crystalline phases present in the sample. As X-rays penetrate the material, they are

scattered by atoms in various layers, which are identified by their Miller indices hkl (see

Fig. 3.1). The constructive interference of the scattered light can be described using the

incident wavelength λ, the interplanar spacing dhkl of the atomic layers and the Bragg

angle θ

nλ = 2dhkl · sin θ (15)
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where n presents the diffraction order [44].

Figure 3.1: Reflection of X-rays on a set of crystallographic planes [45]

In this thesis, powdered samples were placed onto a single crystal silicon zero diffraction

plate and analyzed using the multi-purpose diffractometer AERIS from Malvern Pana-

lytical. The well-known Rietveld refinement method was employed to refine the crystal

structure and extract the structural parameters.

3.1.2 Scanning electron microscopy & Energy dispersive X-ray

analysis

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) is

used for imaging at the micrometer scale and the local elemental analysis of the sample’s

microstructure. Therefore, a beam of high-energy electrons (≈ 30 V̨) is directed onto the

surface, generating various signals, including backscattered electrons (BSE), secondary

electrons (SE), and element specific X-rays [46]. SE and BSE are used for the topolog-

ical characterization and imaging of the sample surface. The characteristic X-rays are

emitted as inner-shell electrons are ejected by the incident beam and outer-shell electrons

fill the vacancies. The analyses are performed as calibration free measurements with

uncertainties of ±1At.%.

3.1.3 Laue diffraction

Laue diffraction is a well-established technique for evaluation of the quality and determin-

ing the orientation of single crystals. Polychromatic X-rays are focused on a stationary
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single crystal and reflected by the atomic plane arrays according to the Bragg equation

(15). Since d and θ are fixed, constructive interference of the X-rays occurs for specific

incident wavelengths λ and diffraction orders n, resulting in spots on the detector that

correspond to particular sets of crystallographic planes (hkl). These spots are arranged in

ellipses, forming a characteristic Laue pattern that reflects the underlying crystal struc-

ture.

For further reading and deeper understanding, see reference [47].

3.2 Optical floating zone technique

The crystal growth is performed using the travelling heater method in a FZ-T-1000-H-VI-

VPM-PC mirror furnace from Crystal Systems Corporation, equipped with four 1500W

lamps. The schematic setup is shown in Fig. 3.2a. These lamps are positioned within

four ellipsoidal mirrors, ensuring optical heating with a focal spot centered on the sample.

An overpressure argon atmosphere of 1.5 bar inside a quartz tube prevents oxidation and

unwanted diffusion processes.

Two polycrystalline rods with a stoichiometric composition and a diameter of 5mm were

prepared to serve as seed and feed crystals. Additionally, a solvent is attached to the

bottom of the feed rod.

The experimental setup is shown in Fig. A.1 in the Appendix.

3.3 Electric transport

Electric transport measurements conducted on monocrystalline rectangular samples of

CeIrSi, included resistivity measurements for two different orientations, as well as field-

dependent resistivity and Hall effect measurements in the crystallographic direction [100]

up to 9T. These measurements were performed using the four-point technique. There-

fore, the samples were contacted via spot welding with gold wires of diameter d = 25 µm.

Two outer contacts, aligned in the longitudinal direction of the sample, served as the

current supply, as shown in Fig. 3.3. The voltage drop Vxx across the sample, resulting

from its internal resistivity, was measured using two separate inner contacts. The Hall

voltage Vxy, associated with both spontaneous Hall effect and field-induced Hall effect,
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(a) (b)

Figure 3.2: a) Schematic setup of a mirror furnace with parabolic mirrors and optical heat-

ing. Adapted from Ref. [48]. b) Rod configuration in the mirror furnace with

seed, feed rod in stoichiometric composition and a solvent in off-stoichiometric

composition.

was measured using two contacts positioned transversely, perpendicular to the applied

current. This configuration of separate contact pairs effectively eliminates contributions

from contact resistance, which can exceed the actual intrinsic resistivity of the sample.

The Resistance can be calculated using Ohm’s law:

Rxi =
Vxi

Ix
with i = x,y (16)

Considering the samples geometry (thickness d, width b) and contact placement (length

Lxx), the longitudinal resistivity ρxx is given by

ρxx = Rxx
b · d
Lxx

(17)

The transverse resistivity ρxy, on the other hand, is determined by the transverse resis-

tance Rxy and the thickness d:

ρxy = Rxy · d (18)

Figure 3.3 shows the ideal setup with perfectly aligned contacts. However, in practice,

contacting the small samples often results in misalignment, which can significantly affect

measurements taken in a magnetic field. A well-established technique to address this
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Figure 3.3: Experimental setup for electric transport measurments

issue involves measuring the Hall resistance in both positive and negative fields, followed

by symmetrizing the Rxx component and antisymmetrizing the Rxy component.

RS
xx =

Rxx(B) +Rxx(−B)

2
(19)

RA
xy =

Rxy(B)−Rxy(−B)

2
(20)

The longitudinal resistance should be homogeneous and stable; therefore, antisymmetric

contributions are expected to account for misalignment or other sources of instability. In

contrast, the antisymmetrization of the Hall signal ensures that only the Hall effect is

considered, eliminating any contributions from the longitudinal signal.

AC resistivity and field-dependent resistivity measurements from 300K to 2K has been

performed by using the PPMS He4 cryostat with a superconducting magnetic coil from

Quantum design. The spot welded contacted sample has been glued on a sample holder

with GE vanish. Magnetic fields were applied perpendicular to the current up to 9T.

Switching from positive to negative fields in the PPMS system has been realized with a

horizontal rotator.

Hall measurements were performed using a VTI flow cryostat from Oxford Instruments.

Similar to the Setup in the PPMS, the sample was glued onto a sample holder with GE

varnish. Magnetic fields up to 15T were applied perpendicular to the direction of the
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current over a temperature range from 300K to 1.85K.

3.4 Heat capacity

Measuring the heat capacity of solids serves as a powerful tool for elucidating the mag-

netic, electronic, and lattice properties of materials. Particularly at low temperatures, it

facilitates direct comparisons between experimental and theoretical predictions of certain

energy levels. Additionally, heat capacity measurements facilitate the calculation of the

systems entropy and can probe phase transitions when combined with other electrical

transport measurements, such as resistivity [49, 50].

The total heat capacity for a metallic magnetic material includes electrons, phonons and

magnons [2]:

Cp(T ) = Cel(T ) + Cph(T ) + Cm(T ) (21)

And in the absence of magnetic contributions:

Cp(T ) = γT + βT 3 (22)

where the Sommerfeld coefficient γT , which is known to indicate strong electron corre-

lations, accounts for electronic and βT 3 for phonon contributions to the total specific

heat.

The PPMS employs the well-established thermal relaxation method to measure heat

capacity Cp = (dQ/dT )p at constant pressure over a temperature range from 300K to

2K. In a typical setup, the sample is mounted using thermal grease onto a platform

equipped with a heater and thermometer, as shown in Fig. 3.4.

The sample is heated for a limited time dT/dt, after which the exponential temperature

decay during cooling is monitored. This can be described by a heat balance equation with

the total heat capacity Ctotal, a thermal conductance parameter Kw, the bath temperature

Tbath and the supplied heat power P (t) [49]:

Ctotal
dT

dt
= −K · (T − Tbath) + P (t) (23)

The solution to this differential equation is given by:

T (t) = Tbath +ΔT exp

�
− t

τ

�
(24)

32



Figure 3.4: Experimental setup for measuring the heat capacity in PPMS. Adapted from

Ref. [49].

with the thermal relaxation time τ = Ctotal/K.

The heat capacity of the sample can be determined by conducting an addenda measure-

ment of the platform without the sample and subtracting it from the total heat capacity:

Csample = Ctotal − Cplatform (25)

3.5 Vibrating sample magnetometer

The PPMS vibrating sample magnetometer (VSM) is used to measure the magnetic

properties of samples within a temperature range from 300K to 2K and under magnetic

fields of up to 6T. The VSM operates on an induction-based principle, measuring the

magnetic moment of the sample via a pickup coil while the sample vibrates perpendicular

to a uniform magnetic field, as shown in Fig. 3.5. For a magnetic sample, the magnetic

moments align with the external magnetic field B. As the sample oscillates vertically,

a changing magnetic flux dΦ/dt induces a voltage Vcoil in the pickup coils, which is

proportional to the sample’s magnetization. The sample is affixed to a quartz holder and

driven sinusoidally at a frequency of f = 40Hz within the magnetic field. Consequently,

the magnetic moment µ can be expressed as [51]:

µ =
Vcoil

2πfCA · sin (2πft) (26)

where C is the coupling constant and A is the amplitude of the oscillation.

Finally, the molar magnetization M and the susceptibility χ can be determined using the

mass of the sample msample, the molar weight Mw of CeIrSi Mw(CeIrSi) = 360.418 g/mol
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Figure 3.5: Schematic setup for a vibrating sample magnetometer. Adapted from Ref.

[52].

and the magnetic field strength H:

M =
µ ·Mw

msample

; χ =
M

H
;
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4 State of the Art - CeIrSi

4.1 Structural investigations

Previous investigations by F.Kneidinger et al. [12] on polycrystalline samples of CeIrSi,

as well as studies by B Heying et al. [53] of single crystal X-ray diffraction revealed the cu-

bic chiral space group 198 (P213) with a lattice constant a = 629.51(1) pm (629.15(2) pm

respectively). Nearest Ce neighbours crystallize within a trillium type structure (see inset

of Fig. 4.1). Trillium lattice arrangements are known to host complex magnetic inter-

actions due to their geometrical frustration. Powder X-ray diffraction of polycrystalline

samples by F.Kneidinger et al. revealed the impurity phases CeSi2−x and CeIr2Si2.

Figure 4.1: Rietveld refinement for polycrystalline samples of CeIrSi. Small amounts of

impurities are visible in the spectra. The inset show the unit cell for CeIrSi

as well as the trillium structure type for Ce. Adapted from Ref. [12]

4.2 Physical properties

F.Kneidinger et al. identified this material as a paramagnetic compound down to 0.3K

characterized by dominant antiferromagnetic interactions among the Ce3+ ions. Fer-
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romagnetic contributions observed below the critical temperature Tc = 11K (see inset

of Fig. 4.2) were attributed to foreign phases, specifically CeSi2−x (with x = 0.2) and

CeIr2Si2. Additionally, spurious contributions at approximately T ≈ 6K were linked to

traces of oxide impurities [12].

Figure 4.2: Inverse susceptibility of CeIrSi in an external field of 1T. The inset shows

ferromagnetic contributions below 11K. Adapted from Ref. [12]

Magnetic anomalies observed at 1K and 1.2K were addressed to two magnetic phases

(see Fig. 4.3).

Figure 4.3: Low-temperature magnetization curves measured in relatively low magnetic

fields reveal two distinct anomalies. Adapted from Ref. [12]
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Electrical transport measurements reveal a semiconducting type behaviour as shown in

Fig. 4.4. At low temperatures, the resistivity decreases under applied magnetic fields due

to spin alignment along the field direction, which reduces spin-dependent scattering. In

contrast, no significant field-induced effect is observed at temperatures above 60K.

Figure 4.4: Temperature and field dependent electrical resistivity measurements. The

inset shows the field dependencies below the critical temperature Tc. Adapted

from Ref. [12]
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5 Results

In the following section, the growth, structural characterization, and physical properties

of CeIrSi are presented in detail. Beginning with the investigation of polycrystalline sam-

ples to evaluate phase formation and stability, the section progresses to the successful

single crystal growth using the optical floating zone technique. The structural quality

and composition are assessed through X-ray diffraction, SEM, and EDX. Subsequently,

temperature- and field-dependent measurements of heat capacity, magnetization, elec-

trical resistivity, field-dependent resistivity, and Hall effect are discussed. These results

provide insight into the complex magnetic ordering and electronic correlations in this

non-centrosymmetric compound and suggest the presence of multiple magnetic phases at

low temperatures.

5.1 Polycrystalline CeIrSi

To achieve successful single crystal growth of CeIrSi in the optical floating zone setup, it

is essential to investigate the phase relation in the ternary Ce-Ir-Si system and determine

the phase diagram. The previous investigation of the ternary alloy at an isothermal

section at 950◦ [13] serves as a starting reference, as shown in Fig. 5.1.

Polycrystalline samples were synthesized using high-purity elements in stoichiometric

proportions. The elements were melted in a high-frequency furnace under an argon

atmosphere to minimize oxidation. X-ray diffraction confirmed the presence of the desired

phase CeIrSi. However, secondary phases CeIr2Si2 and Ce3Ir2Si2 were also detected,

comprising a not negligible fraction of approximately 40% (Fig. 5.2).

The secondary phases did not disappear after annealing the sample for 5 days at 950◦.

SEM images of polished sample surface (Fig. 5.3) revealed the crystallization sequence

during the cooling process

CeIr2Si2 → CeIrSi → Ce3Ir2Si2

suggesting an incongruently melting CeIrSi compound.

EDX measurements indicated a small deviation from the stoichiometric composition of
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Figure 5.1: Ternary phase diagram for Ce-Ir-Si at an isothermal section of 950 ◦C [13].

The target compound CeIrSi is refereed to τ9.

Figure 5.2: Rietveld refinement of powder XRD for as-cast sample CeIrSi01. Relative in-

tensity as function of 2θ diffraction angle, calculated fit by Rietveld refinement

shown as black curve, and difference illustrated as blue line. The position of

the Bragg peaks is indicated by black strips underneath. The identified phases

and their proportion are listed in the upper right corner.
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(a) (b)

Figure 5.3: a) SEM images for the polycrystalline sample CeIrSi01. b) Determined phases

in the enlarged image of figure a).

the CeIrSi phase, showing higher Si (≈ 36%) and lower Ir content (≈ 32%) in the target

phase. This may be explained by the substitution of Si in the Ir sublattice.

The assumption of an incongruent melting character, combined with the information

on the crystallization sequence and the performed differential thermal analysis (DTA),

provides an initial tentative phase diagram as shown in Fig. 5.4. It shows a primary crys-

tallization field for CeIrSi extending from the stoichiometric composition toward higher

Ce concentrations. A peritectic point is located at approximately35% Ce on the x-axis.

Based on this, the composition is adjusted from the initial 33.3% Ce to 37.5% Ce, which,

according to the phase diagram, shifts the material away from the CeIr2Si2 phase field

and promotes the formation of CeIrSi. This adjustment leads to a polycrystalline sample

with an overall composition of approximately 75% CeIrSi.

Two different methods were employed for the single crystal growth: crystal growth using

common fluxes and the floating zone technique. However, only the second has been

successful and is therefore worth discussing in more detail.

5.2 Single crystal

For the single crystal growth of CeIrSi, the travelling solvent floating zone (TSFZ) method

is necessary due to the incongruent melting of the compound. Incongruent melting limits
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Figure 5.4: Schematic temperature-composition diagram for the ternary compound

CeIrSi

(a) (b)

Figure 5.5: a) Extracted single crystal of CeIrSi b) CeIrSi single crystal Laue pattern in

the crystallographic direction [100].

the formation of the target phase to a specific region of the phase diagram, particularly

within the primary crystallization field of CeIrSi, which extends from the peritectic to

the eutectic point, as shown in Fig. 5.4. For this purpose, a solution with the previously

optimised composition containing 37.5% Ce is used as a travelling solvent in the optical

floating zone setup.

A crystalline rod with a length of 33mm was successfully grown in the optical mirror

furnace using a growth rate of 0.3mm/h. SEM, EDX, and Laue diffraction analyses
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confirmed the growth of monocrystalline CeIrSi. A single crystal from this batch, oriented

along the (100) plane (see Fig. 5.5b), was cut into a piece measuring 3.5×3×2mm (l, w, h)

(see Fig. 5.5a).

SEM and EDX analysis confirmed a high-purity single crystal of CeIrSi, free of impurities

and close to the stoichiometric composition, as shown in Tab. 1.

Table 1: Composition of CeIrSi single crystal

Phase
Atom %

CeL IrL SiK

CeIrSi 33.41 33.30 33.30

The structural parameters of CeIrSi were determined by the Rietveld refinement from

powder XRD (see Tab. 2 and Fig. 5.6). Calculations were performed using the FullProf

software.

Figure 5.6: Rietveld refinement for powder XRD spectra of single crystal CeIrSi. Char-

acteristic Bragg peaks are indicated by sharp lines underneath.

5.2.1 Sample declaration

The extracted single crystal was polished into a rectangular shape for physical property

measurements, maintaining its orientation along the crystallographic (100) plane. This
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Table 2: Structural parameter of CeIrSi determined from refined powder XRD data

Space Group P213/ No.198

Pearson symbol cP12

Formula weight (g/mol) 360.41

Lattice parameter a = b = c (pm) 629.44(1)

Literature [12] 629.51(1)

Literature [53] 629.15(2)

Density (g/cm3) 9.833

Wickoff position Ce, Ir, Si 4a

Atomic coordinates x = y = z

Ce 0.3660(2)

Ir 0.0784(2)

Si 0.6573(7)

sample is hereafter referred to as CeIrSi-S1. For electrical transport measurements, gold

wires were attached via spot welding, as illustrated in Fig. 5.7. Furthermore, a single

crystal was prepared approximately along the crystallographic plane (110), called CeIrSi-

S2 (see Fig. 5.8a), shown in Fig. 5.8b.

Figure 5.7: Single crystal sample CeIrSi-S1, oriented along the (100) plane, contacted

with gold wires.
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(a) (b)

Figure 5.8: a) Laue image for single crystal sample CeIrSi-S2, oriented approximately in

[110]. b) Sample CeIrSi-S2 placed on a 1× 1mm square ruled paper.

5.3 Heat capacity

The heat capacity at constant pressure Cp for the single crystal sample CeIrSi-S1 has

been measured in zero magnetic fields using the thermal relaxation method as discussed

in section 3.4. Fig. 5.9a shows the decreasing heat capacity over a temperature range

from 260K to 2K with a maximum of 72.4 J/(molK) and a minimum of 1.76 J/(molK)

at 8.5K. A sharp jump at the critical temperature TC ≈ 8K, visible in the inset of Fig.

5.9a may indicate a magnetic phase transition as often seen in rare earth compounds

containing magnetic ions such as CePdAl [54, 55] or TbMn2Ge [56].

In the absence of magnetic contributions, the Sommerfeld coefficient γ = 112.2(7)mJ/(molK2)

can be evaluated by plotting Cp/T vs T 2 and using Eq. 22 as shown in Fig. 5.9b.

It should be noted that for this compound, the linear behaviour is only present in a

small temperature range from 12 to 16.7K. Therefore, the evaluated values must be

treated with caution. Nevertheless, the trend towards an increased Sommerfeld coeffi-

cient, indicating strong electronic correlations, can be seen. Furthermore, the slope yields

β = 0.698(3)mJ/(molK4), corresponding to a Debye temperature of TD ≈ 141K.

The electronic heat capacity contribution Cel(T ) has been evaluated using polycrystalline

reference data of the non-magnetic compound LaIrSi from F. Kneidinger et al.[12]. Low-

temperature Cel(T )/T is shown in Fig. 5.10a together with the heat capacity of CeIrSi

and the isotypic reference compound LaIrSi, whereas Cel(T ) is given by subtracting the

phonon contribution: Cel(CeIrSi) = Cp(CeIrSi)−Cp(LaIrSi). The full temperature range
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Figure 5.9: a) Heat capacity as a function of temperature for CeIrSi. The inset shows

low-temperature heat capacity with a sharp jump at TC = 8K. b) Heat

capacity divided by temperature as a function of T 2. Linear fit to the data

by Cp/T = γ + βT 2. The inset shows the full temperature range.

is included in Fig. 5.10a.

The electronic entropy Sel(T ) can be calculated by integrate Cel/T (T ) over temperatures

[57]:

Sel(T ) =

� T

2K

Cel(T
′)

T ′ dT ′ (27)

Furthermore, the theoretic electronic entropy for a Ce3+ ion is in the 4f 1 electron con-

figuration is associated with the total angular momentum J = 5/2 and can be evaluated

by using [2]:

Sel = R ln (g) (28)

where R is the universal gas constant and g denotes the degeneration. For a Ce3+ ion in

cubic symmetry, the sixfold-degenerate J = 5/2 state is split by the crystal electric field

into a Γ7 doublet and a Γ8 quartet [2].

At high temperatures, all energy levels may be occupied and therefore Sel(Γ7 + Γ8) =

R ln (6) = 14.9 J/(molK). At low temperatures, a possible ground state is the Γ7 doublet

Γ7, which yields Sel = R ln (2) = 5.76 J/(molK) [2, 58], as indicated on the right y-axis

in Fig. 5.10b.
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Figure 5.10: a) Heat capacity divided by Temperature as a function of temperature for

CeIrSi, reference data LaIrSi (F. Kneidinger et al.[12]) and electronic contri-

bution to the heat capacity of CeIrSi. The inset shows the full temperature

range. b) Electronic heat capacity divided by Temperature as a function of

temperature for CeIrSi on the left y-axis. Electronic entropy as a function

of temperature displayed on the right y-axis. The marker on the right y-axis

shows the value of Sel = R ln 2 for a free Ce3+ ion in the ground state at

lowest temperatures.

5.4 Magnetic properties

The temperature-dependent magnetic susceptibility, χ = M/H, was measured in applied

fields of 1T and 3T parallel to the crystallographic a direction for the CeIrSi-S1 sample,

covering the temperature range from 2K to room temperature. The results are shown in

Fig. 5.11a (left y-axis). The CeIrSi single crystal exhibits typical paramagnetic behaviour,

with an increase in magnetic susceptibility at lower temperatures.

An anomaly in the inverse susceptibility is observed below T ≈ 20K, indicating a mag-

netic phase transition, as the data deviate from the linear Curie-Weiss law [59]:

1

χ
=

T

C
− θCW

C
(29)

where C is the Curie constant and θCW is the Curie-Weiss temperature. The data above

T ≈ 50K can be fitted to this model, yielding a negative Curie-Weiss temperature of
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Figure 5.11: a) Temperature depended magnetic susceptibility of CeIrSi (left y-axis) in

applied field of 1 and 3T and inverse susceptibility (right y-axis) in an ap-

plied field of 1T parallel to [100]. The inverse susceptibility at temperatures

above 50K, can be described by the Curie-Weiss law. b) Low-temperature

magnetic susceptibility for several fields applied parallel to [100] shows mag-

netic ordering below TC = 8K.

θCW = −15.7(3)K, which indicates dominating antiferromagnetic interactions between

Ce3+ ions. The effective magnetic moment, determined from the Curie constant, is cal-

culated as [59]:

µeff = 800
√
C µB (30)

This gives µeff = 2.52(1)µB, which agrees well with both experimental observations

µeff = 2.53µB[12] and the theoretical prediction of µcalc = 2.54µB for Ce3+ with J = 5/2

and a Landé g-factor of gJ = 6/7.

Low-temperature magnetic susceptibility measurements in fields ranging from 5mT to

500mT, parallel to the a direction, are shown in Fig. 5.11b. A steep increase in low-field

susceptibility at TC = 8K indicates a second-order phase transition from a paramagnetic

to a magnetically ordered state. This critical temperature is consistent with that, detected

in the heat capacity (see Fig. 5.9a). Additionally, an anomalous increase is observed below

3K for fields exceeding 20mT.
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5.4.1 Magnetization
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Figure 5.12: a) Low-temperature dependent magnetization in several magnetic fields ap-

plied parallel to [100] of CeIrSi b) Low-temperature dependent magnetization

shows significant difference in FC and ZFC curves at 5mT and 10mT.

The temperature-dependent magnetization reveals a more pronounced anomaly between

2K and 4K (similar to that observed in low-temperature magnetic susceptibility), as

shown in Fig. 5.12a. Combined with magnetization measurements under zero-field cooling

(ZFC) conditions at 0mT, 5mT, and 10mT (see Fig. 5.12b), this anomaly defines a

second critical temperature at approximately TC2(10mT) ≈ 2.7K.

A significant divergence between the FC and ZFC magnetization curves is observed. In

low fields, the magnetic moments may not fully align with the external field in the ZFC

state below 2K. This behaviour suggests the presence of at least two distinct magnetic

orderings, occurring below the critical temperatures TC1 = 8K and TC2 = 2.7K, which

are defined as magnetic phases 1 and 2, correspondingly.

Fig. 5.13a presents the low-temperature, field-dependent magnetization for five temper-

atures between 2K and 10K. At 2K, CeIrSi notes a maximal magnetic moment of

M = 0.86µB/Ce. Below 8K, the magnetization shows a characteristic increase. Further-

more, hysteresis loops are observed around B = ±50mT at temperatures of 2K and 4K,

which are characteristic for materials with ferromagnetic contributions, as shown in the

inset of Fig. 5.13a.
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Figure 5.13: a) Field dependent low temperature magnetization of CeIrSi in units of µB

per atom Ce with external field applied parallel to [100]. The inset shows

hysteresis loops for 2 and 4K. b) Arrott plot of CeIrSi for five different

temperatures between 2 and 10K.

At temperatures below 8K a step develops at BC(2K) ≈ 3.7T, indicating a field-induced

transition from ferromagnetic-like phase 1 to a second phase, referred to as phase 3.

Arrott plots are a well-established method for analyzing magnetic properties and identi-

fying ferromagnetic order in materials [60].

The isothermal plots exhibits linear behaviour at higher fields, which is characteristic

for ferromagnetic-like materials, as indicated by the black straight lines in Fig. 5.13b.

A pronounced anomaly is observed in the decreasing-field isotherms at BC(2K) ≈ 3.7T

corresponding to the step-like feature seen in Fig. 5.13a. This anomaly likely indicates

a field-induced transition from a ferromagnetic-like phase 1 to a collinear ferromagnet

(phase 3). Below the critical transition field BC , the Arrott plot exhibits a similar lin-

ear behaviour, further supporting the ferromagnetic-like character of phase 1. However,

at 2K the curve already deviates from linearity, which may indicate non-ferromagnetic

contributions.
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5.4.2 Magnetic anisotropy

Low-temperature magnetization has also been measured for the sample CeIrSi-S2 with

fields applied parallel to the crystallographic direction [110]. Fig. 5.14a & 5.14b shows

a significant anisotropy in the absolute value of the FC and ZFC magnetization but

not in the behaviour. Subtracting the magnetization for the applied field in different

crystallographic directions [100] and [110] reveals ΔM(4K) ≈ 170 emu/mol at 4K, while

the critical temperatures do not change.
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Figure 5.14: Low-temperature magnetization of CeIrSi for a magnetic field of 10mT ap-

plied parallel to [100] and [110]. The red curve shows the degree of anisotropy

for an external magnetic field applied to different crystallographic directions.

a) Field cooling b) Zero field cooling

5.5 Electrical resistivity

The temperature-dependent electrical resistivity ρ(T ) of CeIrSi, measured from 2K to

room temperature, exhibits semimetallic behaviour, as shown in Fig. 5.15a. The resistiv-

ity reaches a maximum value of 372 µΩcm at 250K. The deviation from simple metallic

behaviour at high temperatures, characterized by a continuously decreasing curvature,

may be attributed to the thermal population of higher-energy crystal electric field (CEF)

levels, a common phenomenon in Ce-based compounds [2, 12, 61, 62]. At TC = 8K, the
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Figure 5.15: a) Temperature dependent resistivity of CeIrSi with current parallel to [010]

b) Temperature dependent resistivity of CeIrSi in external magnetic fields

perpendicular to the current.

resistivity experiences a sharp drop from 308 to 267 µΩcm, corresponding to a decrease of

approximately 12%, after which it tends to saturate. This significant reduction in resistiv-

ity corresponds to the magnetic phase transition observed in heat capacity and magnetic

susceptibility measurements. It is likely associated with the reduction of spin-disorder

scattering due to the alignment of magnetic moments.

The low-temperature resistivity increases with increasing external fields up to 9T, as

shown in Fig. 5.15b. In contrast, external fields have no significant effect on the resistivity

above 100K.

A comparison with literature data by F. Kneidinger et al.[12] for polycrystalline CeIrSi

reveals a similar decreasing curvature, attributed to CEF effects on the energy levels.

The resistivity of the single-crystalline sample at 140K is significantly higher (363 µΩcm)

compared to that of the polycrystalline sample (303 µΩcm).

However, the resistivity of the polycrystalline sample reaches a maximum at approxi-

mately 140K, significantly lower than that of the single-crystal sample. Additionally, the

drop in resistivity at low temperatures due to magnetic ordering is less pronounced. A

notable difference is observed in the behaviour under magnetic fields, while the resistivity
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Figure 5.16: Comparison of temperature-dependent resistivity in zero field and 9T be-

tween polycrystalline samples (F. Kneidinger et al.[12]) and single-crystal

CeIrSi.

decreases in external fields for the polycrystalline sample, it increases in the single-crystal

sample.

5.5.1 Anisotropic electrical resistivity

Temperature-dependent resistivity measurements with current parallel to the [110] di-

rection for the sample CeIrSi-S2 reveal a significantly higher resistivity value at room

temperature of 546 µΩcm and 365 µΩcm respectively, as shown in Fig. 5.17a. The re-

sistivity increases with decreasing temperature, indicating semiconducting behaviour. A

small hump around 50K may still be attributed to CEF effects, while the sharp increase

at approximately 10K is likely associated with magnetic ordering at low temperatures.

Similar to the polycrystalline sample, the resistivity decreases under the influence of

external fields.

The pronounced anisotropy in resistivity between different crystallographic directions is

highlighted by the normalized resistivity relative to that at room temperature for the

(100) and (110) directions, as shown in Fig. 5.17b.
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Figure 5.17: a) Electrical resistivity of CeIrSi measured with current perpendicular to

the [110] direction across the full temperature range from 2K to room tem-

perature. The inset displays the resistivity under external magnetic fields

up to 7T. b) Temperature-dependent normalized resistivity, comparing the

crystallographic directions [100] and [110].

5.6 Field-dependent resistivity

The field-dependent resistivity of CeIrSi, with current applied parallel to a, was measured

at several temperatures ranging from 1.85K to 8K in external fields between −5T and

5T. As shown in Fig. 5.18a, the symmetric signal exhibits a pronounced anomaly that

becomes more distinct with decreasing temperature, centered around B = 3.76T (and

−3.76T, respectively) at 2K. This anomaly aligns well with the field-induced transition

from phase 1 to a ferromagnetic state, as observed in the field-dependent magnetization

and the Arrott plot discussed in Section 5.4.1. Additionally, the critical magnetic field

BC(T ) increases with decreasing temperature, as illustrated in Fig. 5.18b.

Similar to the hysteresis observed in the magnetization, the field-dependent resistivity

also exhibits hysteresis loops below 3.5K at the field-induced transition.
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Figure 5.18: a) Field-dependent resistivity of CeIrSi measured at various temperatures

between −5T to 5T. b) Temperature dependence of the critical magnetic

field associated with the transition observed in the field-dependent resistivity

of CeIrSi.
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Figure 5.19: Hysteresis in the field-dependent resistivity of CeIrSi at the field induced

transition.

5.7 Hall effect

The field dependent Hall effect for the sample CeIrSi-S1 has been measured for several

temperatures from 1.85K to 8K. The raw data in Fig. 5.20a, show an increasing strong
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non-linear behaviour for falling temperatures below 8K between −3.76T and 3.76T

according to the transition field evaluated in field-dependent resistivity and magnetization

measurements. Additionally, a hump is observed at 1.85K and 2K between −1.5T and
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Figure 5.20: a) Low-temperature Hall resistivity as function of magnetic field with cur-

rent parallel to a and magnetic field perpendicular to a b) Smoothed Hall

resistivity with a hump at 1.85 and 2K.

0.5T (Fig. 5.20b), which may be linked to the phase transition from phase 1 to phase 2

detected in magnetic susceptibility and magnetization measurements below TC2 = 2.7K

(see Fig. 5.11b & Fig. 5.12a).

Apart from the pronounced non-linear behaviour below 8K within the field range of

−3.76T to 3.76T, non-linearity is also evident in the Hall data at 8K (Fig. 5.21a).

Furthermore, strong asymmetry is observed in measurements conducted at 4K between

±12T (Fig. 5.21b). The red curve serves as a visual guide, helping to see the absence of

the anomalous behaviour below 3.7T. The orange straight line highlights the deviation

from a linear Hall effect.

The pronounced anomalous behaviour below 3.7T (−3.7T, respectively), which aligns

well with the critical magnetic field BC(T ) observed in magnetization measurements, may

be at least partially attributed to the anomalous Hall effect in the phase 1 induced by

magnetic ordering. To isolate the anomalous Hall contribution ρAH
xy the red reference

curve, serving as a guide for the eye, was taken as a baseline ρbaselinexy for the Hall data

(see Fig. 5.22a). Notably, the extracted anomalous Hall effect exhibits an asymmetric
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Figure 5.21: a) Hall resistivity as function of magnetic field at 8K. The red curve serves

as guide for the eye and a linear extrapolation shows the non-linearity of the

Hall effect. b) Hall resistivity as a function magnetic field up to ±12T at

4K. The red curve serves as guide for the eye and a linear extrapolation

shows the non-linearity of the Hall effect.

strength, nearly doubling in the negative magnetic field range at 2K.

−4 −2 0 2 4
0.0

0.4

0.8

1.2

1.6

r A
H

xy
 (m

W
 c

m
)

B (T)

 2 K
 5 K
 6 K

r AH
xy  = rxy - r baseline

xy

j || [010] 
B || [100]

(a)

0 1 2 3 4
−1.5

−1.0

−0.5

0.0

 2 K
 3 K
 3.5 K
 4 K
 5 K
 5.5 K
 6 K
 7 K
 8 K

r x
yod

d  (
mW

 c
m

)

B (T)

j || [010] 
B || [100]

(b)

Figure 5.22: a) Anomalous Hall resistivity as function of magnetic field evaluated by sub-

tracting the pseudo linear part ρlinearxy . b) Antisymmetrized Hall resistivity

as function of magnetic field.
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For further analysis, the raw Hall data ρxy were antisymmetrized, ρoddxy , to eliminate

contributions from the longitudinal resistivity, as shown in Fig. 5.22b. The charge carrier

concentration is determined from the slope of a linear fit to ρoddxy (8K) (Fig. 5.23). The

negative slope indicates electrons as the dominant charge carriers, with a concentration

of n = 2.176(2)× 1021/cm3.
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Figure 5.23: Linear fit for the odd-in-field Hall resistivity at 8K to evaluate the charge

carrier concentration.

The antisymmetrized Hall data are fitted above 3.7T and extrapolated to zero field to

approximate the linear Hall contribution in the whole field range (see Fig. 5.24a). This

linear component is then subtracted to isolate the anomalous Hall contribution ρAH
xy,odd at

each temperature, as shown in Fig. 5.24b.

A distinct form is observed in the pure symmetrized Hall signal ρevenxy , when subtracting

the symmetrized longitudinal resistivity ρeven,meas.
xx scaled by α from the symmetrized Hall

resistivity ρeven,meas.
xy as shown in Fig. 5.25. A step-like feature emerges as the material is

cooled, with the step located at the critical field BC .

Finally, Fig. 5.26 presents the temperature-dependent Hall resistivity measured between

2 and 40K at zero field, 1, 3.7, and 7T. In the absence of a magnetic field, the Hall

resistivity exhibits a sharp drop at TC1 = 8K, possibly marking the transition to a

magnetically ordered state. This critical temperature is also in good agreement with the

values obtained from heat capacity and magnetization measurements.
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Figure 5.24: a) Illustration for the evaluation of the anomalous Hall resistivity (orange)

from the odd-in-field resistivity (red) at 2K. The linear Hall approxima-

tion is shown in pink. b) Calculated anomalous Hall resistivity for several

temperatures.
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Figure 5.25: Symmetrized Hall resistivity smoothed and scaled to the even-in-field curve

of 8K at 5T.

At 1T, ρxy exhibits a dip at a slightly higher temperature of 8.2K, defined as TC0,1,

followed by a sharp peak at TC2 = 3.7K. This second critical temperature may be

related to the magnetic ordering of phase 2 observed at the lowest temperatures in FC
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and ZFC magnetization measurements (see Fig. 5.12a & 5.12b).
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Figure 5.26: Low-temperature Hall resistivity of CeIrSi in the field of 0, 1, 3.7, and 7T

applied parallel to [100]. Kink and humps indicate magnetic transitions, TC0

standing for transition to ferromagnetic, TC1 to phase 1 and TC3 to phase 2.

The peak observed in the Hall resistivity at 4.4K in a 3.7T field aligns well with the

critical temperature of 4.1K at BC = 3.7T from field-dependent resistivity (Fig. 5.18b),

which marks the transition to a collinear ferromagnetic state. Consequently, the dip at

TC0 = 8.9K signifies the transition from the paramagnetic to the ferromagnetic state,

which shifts to higher temperatures with increasing magnetic field.

At higher fields of 7T, this transition temperature increases to 11K. The small hump

around 5K cannot be associated with any of these transitions.
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6 Discussion

This section focuses on the magnetic ordering at low temperatures by summarizing the

collected data in a comprehensive phase diagram and analyzing the low-temperature

phases observed in heat capacity, magnetization, and electrical transport measurements.

CeIrSi was initially selected as a candidate material because of its proposed classification

as a non-magnetic Kramers Weyl Kondo semimetal. In particular, Kneidinger et al. [12]

reported non-magnetic behaviour in polycrystalline samples of CeIrSi.

A central experimental method employed in this study to probe the potential topological

properties of CeIrSi is the Hall effect measurement. These reveal a pronounced non-

linear contribution, which will be examined in detail, especially in relation to possible

contributions from magnetic ordering at low temperatures.

6.1 Magnetic ordering

Magnetic susceptibility measurements reveal a high-temperature Curie–Weiss paramag-

netic behaviour with a negative Curie–Weiss temperature, suggesting the presence of

dominant antiferromagnetic interactions. In contrast, low-temperature measurements of

heat capacity, magnetization, and electrical transport uncover the emergence of complex

magnetic ordering below TC1 ≈ 8K, with a collinear ferromagnetic state developing un-

der applied magnetic fields, as illustrated in Fig. 6.1. The phase diagram is constructed

based on data from heat capacity, magnetization, and electrical transport measurements.

CeIrSi crystallizes in the non-centrosymmetric cubic structure P213, a structure type

that can be considered as a three-element version of the compound family B20, usually

related to binary systems. This class of materials is renowned for hosting chiral magnetic

orders, such as spiral and topologically non-trivial spin textures, as observed in canonical

systems like FeGe [63], MnSi [64], and Fe1−xCoxSi [65].

Magnetic phase diagrams of these B20 compounds are typically governed by competition

between ferromagnetic exchange interactions and the Dzyaloshinskii-Moriya interaction

(DMI) [66]. At zero or low magnetic fields, this interplay stabilizes a helical magnetic
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Figure 6.1: Magnetic phase diagram of CeIrSi as a function of temperature, constructed

from heat capacity, magnetization, and electrical transport measurements.

phase. Upon applying a finite magnetic field, the system transitions into a conical phase,

where the magnetic moments partially align along the field direction while preserving a

helical component. At higher magnetic fields, the spins align uniformly along the field

direction, resulting in a collinear ferromagnetic phase. In addition, within specific ranges

of temperature and magnetic field, topologically protected spin textures can emerge in the

form of a skyrmion lattice. These skyrmion phases have been experimentally observed,

for instance, in MnSi (Fig. 6.2a) [64] and FeGe (Fig. 6.2b) [67].

In analogy to the well-studied B20 material class, it may be plausible that the distinct

magnetic phase, denoted as phase 2 (orange-shaded region in Fig. 6.1), which emerges

below approximately 4K, originates from a helical magnetic state. In this scenario,

pairs of Ce atoms in a non-centrosymmetric environment may adopt a non-collinear spin

alignment due to the Dzyaloshinskii–Moriya interaction, leading to the formation of a

helical spin structure.

The blue-shaded region below 8K, referred to as phases 1, may correspond to a conical

magnetic phase. However, the precise nature of the magnetic phases observed in phases 1
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(a) (b)

Figure 6.2: a) Phase diagram of the B20 compound MnSi, showing the characteristic

helical and conical magnetic phases, along with the formation of a skyrmion

lattice (SKL) in a distinct region of the temperature–field space [64]. b) Phase

diagram of the B20 compound FeGe, exhibiting typical helical and conical spin

textures, as well as skyrmion lattice phases labeled A1 and A2, corresponding

to specific pockets within the phase space [67].

and 2 remains speculative. Notably, phase 2 could also correspond to a skyrmion lattice,

although a conclusive identification is not possible with the current dataset. Additionally,

this compound is known to exhibit magnetic frustration, arising from the trillium lattice

geometry formed by the Ce atoms. Such a configuration could lead to non-trivial magnetic

states as well.

To clarify the underlying magnetic ordering, neutron scattering would be an ideal tech-

nique, as it allows direct probing of spin structures in reciprocal space, as performed for

MnSi [66]. Additionally, detailed magnetic property measurements below 2K are essential

to fully capture the low-temperature regime.

6.2 Anisotropy

The availability of a single crystal enabled the investigation of anisotropic properties.

Our measurements showed that the cubic chiral compound CeIrSi exhibits pronounced
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anisotropy in its electrical resistivity. Along the crystallographic direction [100], CeIrSi

displays semimetallic behaviour with reduced resistivity under applied magnetic fields. In

contrast, measurements along the [110] direction reveal semiconducting behaviour, with

resistivity increasing in the presence of an external magnetic field. Furthermore, reference

measurements by F.Kneidinger et al.[12] on polycrystalline samples of CeIrSi revealed a

similar semimetallic character as observed in the [100] direction. The resistivity increases

with applied magnetic fields, similar to the trend seen in the [110] direction. This suggests

that the resistivity of the polycrystalline sample just averages the contributions from

all crystallographic directions. Furthermore, magnetic anisotropy is also evident in the

magnetization data, with the magnetization along the [110] direction being approximately

30% higher than along [100].

Measurement of various physical properties along the screw axis 21 oriented in the crys-

tallographic direction [111], may be highly promising to reveal pronounced anisotropy, as

this axis is directly associated with the intrinsic chirality of the crystal structure.

6.3 Non linear Hall effect

The presented Hall data exhibit a pronounced non-linearity, which could potentially be

attributed to a spontaneous Hall effect originating from the Berry curvature, although

this interpretation is not definitive. Alternatively, a more straightforward explanation

may lie in the complex underlying magnetic structure discussed in the previous section

6.1.

On one hand, the Hall effect observed below 8K may primarily originate from an anoma-

lous contribution associated with magnetic phases. On the other hand, Skyrmions are

known to exhibit topological features [68] that can lead to a non-trivial Berry curvature,

giving rise to a spontaneous Hall effect.

To identify the contributions of Berry curvature to the non-linear Hall effect (NLHE)

arising from Weyl points, two approaches can be taken:

First, focussing on the strong NLHE at low temperatures in the complex magnetically

ordered regime. Hence, a complete understanding of the magnetic phases is essential to

attribute portions of the NLHE to either conventional anomalous mechanisms originating

from magnetic ordering or topological origins arising from Skyrmions or Kramers-Weyl
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points.

Second, by focussing on the paramagnetic regime above 8K and the collinear ferromag-

netic state at higher magnetic fields (see Fig. 6.1). Measuring the Hall response in the

paramagnetic regime will identify whether any non-linear Hall contribution persists in the

absence of long-range magnetic order. If only an ordinary Hall effect is observed, it can be

clearly extracted and used as a baseline in the collinear ferromagnetic regime. Since the

magnetic structure in the ferromagnetic regime is well characterized, the anomalous Hall

contribution to the NLHE could be reliably distinguished. This allows for a separation of

ordinary and anomalous contributions, potentially uncovering topological contributions

from Berry curvature associated with Kramers-Weyl points.

7 Summary and Outlook

The aim of this thesis was the single crystal growth and physical characterization of

the chiral cubic compound CeIrSi. Due to its chiral crystal structure, strong spin-orbit

coupling, and signatures of strong electronic correlations in the heat capacity, CeIrSi has

been proposed as a promising candidate for a Kramers-Weyl Kondo semimetal. To probe

its potential topological properties, Hall effect measurements were performed as a key

experimental approach.

A high-quality, impurity-free single crystal with high stoichiometry was grown successfully

for the first time using the optical floating zone method. Two oriented samples, aligned

along the [100] and [110] crystallographic directions, were used for heat capacity, mag-

netization, and electrical transport measurements. Heat capacity measurements revealed

an enhanced Sommerfeld coefficient, indicating strong electronic correlations. Electrical

transport measurements revealed strong anisotropy, with semimetallic behaviour along

the [100] direction and semiconducting behaviour along the [110] direction.

While the material has a paramagnetic behaviour down to 8K, heat capacity, magnetiza-

tion, and electrical transport measurements, including field-dependent resistivity, reveal

multiple phase transitions at lower temperatures. This stands in clear contrast to previous

studies on polycrystalline samples, which reported the compound to be non-magnetic [12].

Two magnetic phases 1, and 2 were found below 8K in small external magnetic fields with

complex magnetic ordering. While the precise nature of the ordering remains unresolved,
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the behaviour is reminiscent of helimagnetic and conical magnetic structures, typically

seen in related B20 compounds. This assumption is further supported by the collinear

ferromagnetic state arising at higher magnetic fields. However, a skyrmion lattice phase

cannot be excluded.

A key result of this work is the observation of a strong non-linear Hall effect below 8K.

This effect cannot be straightforwardly attributed to Berry curvature contribution alone.

Instead, it may arise from the complex magnetic ordering itself. Distinguishing between

these possibilities will require further experimental efforts, particularly a detailed deter-

mination of the magnetic structures or Hall measurements in the paramagnetic regime,

which could serve as a baseline for identifying the non-linear Hall contributions in the

collinear ferromagnetic state. Finally, investigations on a single crystal oriented along

the screw axis in the [111] crystallographic direction should be considered, as this axis is

directly associated with the intrinsic chirality of the structure and may reveal pronounced

anisotropic and chiral effects.
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Appendix

Figure A.1: Experimental setup for the TFZ method
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