
DIPLOMA THESIS

High Dimensional Quantum Computing:
Qudit Circuit Compression for the

Quantum Fourier Transform

for obtaining the academic degree

Diplom-Ingenieur

in the course of studies

Master programme Technical Physics

submitted by

Pascal Windhager, BSc

prepared at the
Institute of Atomic and Subatomic Physics
Faculty of Physics
TU Wien

supervised by
Univ.-Prof. Dr. Marcus Huber
Dr. Paul Erker

Vienna, 14.05.2025
(Signature Author) (Signature Supervisor)

DIPLOMARBEIT

Hochdimensionales Quantencomputing:
Qudit Gatterkomprimierung für die

Quantenfouriertransformation

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Masterstudium Technische Physik

eingereicht von

Pascal Windhager, BSc

ausgeführt am Atominstitut
der Fakultät für Physik
der Technischen Universität Wien

Betreuung
Univ.-Prof. Dr. Marcus Huber
Dr. Paul Erker

Wien, 14.05.2025
(Unterschrift Verfasser:in) (Unterschrift Betreuer:in)

Abstract

The bottleneck of gate based quantum computation are entangling gates, which require precise
control of the interaction between two or more quantum systems. Qubit based quantum
computers are based on two-dimensional quantum systems and tend to use only a fraction
of the available Hilbert space, while qudit based quantum computers harness unused degrees
of freedom. The qudit embedding reduces the number of two-qubit gates by transforming
them into either local qudit gates or into embedded two-qubit gates, which can subsequently
be compressed into two-qudit gates using qudit circuit compression. In this thesis, the idea
of qudit circuit compression is applied to the 4-qubit Simon’s circuit and to the Quantum
Fourier transform (QFT). By compressing multiple embedded two-qubit controlled rotation
gates to two-qudit gates, it is possible to reduce the number of entangling gates significantly.
One can show that the next-neighbour cut, that embeds adjacent qubits into qudits, is the
best cut for the QFT, because it is always possible to reduce the number of two-qudit gates
to one per qudit pair. Using a graph approach, where the nodes are qudits and the edges are
(high-dimensional) controlled rotation gates, it is possible to deduce that the QFT resembles a
fully-connected graph in the next-neighbour cut. Through this method it is possible to derive
a formula for the number of required two-qudit gates as a function of the qudit dimension and
the number of input qubits.

Zusammenfassung

Die größte Herausforderung für gatterbasierte Quantencomputer sind verschränkende Gatter,
da man dafür eine präzise Kontrolle über zwei oder mehr Quantensysteme benötigt. Quan-
tencomputer die auf zwei-dimensionalen Quantensystemen basieren, tendieren dazu, nur einen
Bruchteil des verfügbaren Hilbertraumes zu nutzen, wohingegen Qudit basierte Quantencom-
puter mehrere Freiheitsgrade nützen. Durch die Einbettung der Qubits in den Qudits reduziert
sich die Anzahl an Zwei-Qubitgatter, da sie entweder zu lokale Gatter transformiert werden
oder zu eingebettete Zwei-Qubitgatter, welche anschließend zu Zwei-Quditgatter komprimiert
werden können mittels Qudit-Gatterkomprimierung. In dieser Arbeit wird die Idee der Qudit-
Gatterkomprimierung auf den Simons Algorithmus für vier Qubits und auf die Quantenfou-
riertransformation (QFT) angewendet. Es wird gezeigt, dass der Nächste-Nachbar-Schnitt für
die QFT, welcher benachbarte Qubits zu Qudits gruppiert, der bestmögliche Schnitt ist, da
man dabei, mehrere verschränkende Gatter immer zu einem einzigen Zwei-Quditgatter pro
Quditpaar, komprimieren kann. Mittels Graphentheorie, wobei die Qudits die Knoten und die
Zwei-Quditgatter die Kanten darstellen, ist es möglich die QFT im Nächste-Nachbar-Schnitt
immer als vollständig verbundenen Graphen darzustellen. Dadurch ist es möglich, eine For-
mel für die Anzahl an benötigten Zwei-Quditgatter, als Funktion der Quditdimension und der
Anzahl an Eingangsqubits, herzuleiten.

Statutory Declaration
I hereby declare that this thesis has been prepared in accordance with the code of
conduct of TU Wien, rules for safeguarding good scientific practice, particularly without
unauthorized assistance from third parties and without the use of any aids other than
those explicitly indicated. Data and concepts directly or indirectly borrowed from other
sources are properly cited.
This thesis has not been submitted, either in the same or a similar form, in any other
examination procedure, either in Austria or abroad.

Pascal Windhager
Vienna, 14.05.2025

Contents

1 Introduction 7

2 Theory background 9
2.1 Quantum theory . 9

2.1.1 Postulates of quantum theory 10
2.1.2 Superposition, composite systems and entanglement 11

2.2 Quantum computers . 12
2.2.1 Complexity classes . 14
2.2.2 Computational basis . 14
2.2.3 Quantum gates . 15

Identity gate . 15
Hadamard gate . 16
Rotation gate . 16
NOT gate . 17
Controlled gates . 17

2.2.4 Hardware implementation . 17
2.3 Quantum circuit model . 18
2.4 Quantum algorithms . 19

2.4.1 Simon’s algorithm . 20
2.4.2 Fourier transform . 21

2.5 Qudit circuit compression . 23

3 Qudit circuit compression 25
3.1 High dimensional gate construction . 25
3.2 4-qubit Simon’s algorithm . 28

3.2.1 Next-neighbour cut . 28
3.2.2 Inner-outermost cut . 31
3.2.3 Next-next-neighbour cut . 32

3.3 Quantum Fourier Transform . 33
3.3.1 2-qubit QFT . 34

5

3.3.2 4-qubit QFT embedded in two ququarts 34
Next-neighbour cut . 35
Inner-outermost cut . 39
Next-next-neighbour cut . 40

3.3.3 6-qubit QFT . 42
QFT6 embedded in three ququarts 43
QFT6 embedded in two quocts 47

3.3.4 8-qubit QFT . 49
QFT8 embedded in four ququarts 51
QFT8 embedded in two quhexes 54

3.3.5 N-qubit QFT . 57
3.3.6 Number of two-qudit gates . 59

4 Summary and outlook 64

A QFT product representation 71

B Rij matrices for QFT6 73

C Code for numeric prove of QFTN 75

6

Chapter 1

Introduction

Quantum computing is a disruptive technology that changes the way computation is
envisioned. There are two reasons, why quantum computers are theoretically superior
to classical computers. On the one hand, Moore’s law cannot be continued for the next
decades because classical chips are meanwhile at such a small scale that sooner or later
quantum effects will play a crucial role, hence disturbing the classical computation. On
the other hand, quantum computers can solve certain tasks, like integer factorization,
exponentially faster than any known classical algorithm. The quantum speedup is based
on either amplitude amplification, which is a generalization of Grover’s algorithm that
leads to a quadratic speedup, or on the Quantum Fourier transform (QFT) which leads
to an exponential speedup, for problems that are part of the Abelian hidden subgroup,
for example integer factorization, which plays a key role in cryptography because it is
used for encryption algorithms like RSA. Quantum algorithms, as they are formulated
today, are based on quantum bits, so called qubits, as the fundamental processing
unit.[1]

Quantum computers cannot solve quantum algorithms at a practically relevant scale
yet, because of noise and decoherence [2]. These limit the amount of entangling oper-
ations and consequently the circuit depth. As quantum systems tend to exploit only a
fraction of the available Hilbert space, it is possible to use d-dimensional quantum sys-
tem, called qudits, as the fundamental processing unit, in order to reduce the number of
entangling gates. The process of embedding qubits within higher dimensional quantum
systems is called qudit circuit compression. Qudit based quantum computing does not
only reduce the number of necessary entangling gates, but also offers richer coherence
[3] and entanglement structures [4] and it is also possible to formulate high dimensional
quantum error correction[5, 6]. As the fundamental bottleneck are entangling gates
[2], this approach is reasonable, as it can significantly reduces the number of two-qubit
gates by transforming them into either local qudit gates or into embedded two-qubit
gates, which can subsequently be compressed to two-qudit gates. In this thesis, the

7

idea of qudit circuit compression will be applied to Simon’s algorithm and the QFT.
The thesis is structured as follows. First, the necessary background on quantum the-

ory, quantum computers, the quantum circuit model, the Simon’s algorithm, the QFT
and qudit circuit compression will be explained. Since there are different ways to embed
the qubits within the qudits, it is necessary to investigate the so called different cuts,
but as the number of possible cuts vastly increases by increasing the number of qubits,
it is necessary to investigate them for simple circuits first. The way of transforming
two-qubit gates into two-qudit gates, is called high-dimensional gate construction. The
idea of qudit circuit compression will be applied to the 4-qubit Simon’s circuit in order
to understand the concepts on a simple level. Subsequently, the QFT will be examined
in detail in order to deduce the best possible cut for the QFT. In the end, a formula
for the number of entangling gates for the QFT, embedded in any type of qudits, will
be derived as a function of the qudit dimension and the number of input qubits.

8

Chapter 2

Theory background

In this chapter all the underlying theory for understanding chapter 3 is introduced. The
first section 2.1 covers the profound difference between quantum theory and the classical
world by introducing the postulates of quantum mechanics 2.1.1. Subsequently, con-
cepts like quantum computers, which exploit the characteristics of quantum mechanics
can be established. Quantum computers, which are covered in section 2.2, possess the
capability of solving certain tasks, like integer factorization, exponentially faster than
classical computers. These tasks are solved by quantum algorithms 2.4, which have a
graphical representation called quantum circuit model 2.3. In standard literature like
Nielsen [1], quantum algorithms are performed by encoding classical bits into quantum
bits, called qubits, which is a system that can be represented by two quantum states,
e.g. |0⟩ and |1⟩. Another way of executing quantum algorithms on a quantum com-
puter is, to embed qubits into higher dimensional systems called qudits, which leads to
a compressed quantum circuit, which is discussed in section 2.5. This so called qudit
circuit compression of the Simon’s algorithm and the Quantum Fourier transform is the
main goal of this master thesis and is the topic of the next chapter 3.

2.1 Quantum theory

The starting point of quantum theory was set by Max Planck in 1900, formulating
that the absorption or emission of energy can only happen in discrete energy packages,
so called Quanta [7]. In the 1920s the mathematical framework was formalized, by
introducing matrix mechanics and the wave formalism [8, 9]. Quantum physics dif-
fers profoundly from classical physics, which can be understood when looking at the
postulates of quantum theory, which is covered in the next section 2.1.1.

9

2.1.1 Postulates of quantum theory

The postulates of quantum mechanics are a series of axioms or rules, which provide a
formal framework for quantum theory. The postulates are formulated in various ways
and are divided into either four or five, but in the following, five postulates will be
formulated based on Dorobantu [10].

First postulate

A physical system is completely described by its state vector |ψ⟩, which is a unit
vector in the system’s state space, called Hilbert space H.

The Hilbert space H ∼= Cd is a complex linear vector space of dimension d equipped with
a defined inner product. The quantum state |ψ⟩∈ H is represented in bra-ket-notation
as a ket vector, introduced by Dirac [11]. The bra vector ⟨ψ| ∈ H∗ is a covector to |ψ⟩,
where H∗ denotes the dual vector space. The bra vector ⟨ψ| can be interpreted as a
linear functional that maps |ψ⟩ to a number of the complex plane C. The linearity of
the Hilbert space implies that the a superposition of states is also a state of the system,
if it is normalized to one.

Second postulate

Every measurable physical observable X is described by an operator X̂.

The operator associated to the observable is a Hermitian operator, which means that
the matrix representing the operator is equal to the conjugate transpose of this matrix
H = H† = HT . The eigenvectors of the operator |xi⟩ given by X̂ |xi⟩ = xi |xi⟩ form a
complete basis of H.

Third postulate

All possible outcomes, of measuring a physical quantity X of a quantum system,
are given by the eigenvalues xi of the corresponding operator X̂. The probability
of each outcome is given by the Born rule p(xi) = |⟨xi|ψ⟩|2.

One implication of this postulate is, that global phase factors do not matter in contrast
to relative phases. The probabilities of the measurement outcomes of

!!ψ′�
= eiϕ |ψ⟩ are

10

equal to those of |ψ⟩ because |eiϕ|2 = 1.

Fourth postulate

The measurement process itself influences the quantum system. By projecting the
quantum state |ψ⟩ onto the operator X̂, the state immediately becomes |xi⟩ corre-
sponding to the measured eigenvalue xi.

By preparing and measuring the quantum system multiple times a probability distribu-
tion can be obtained P(xi). The expectation value of the operator is then given by (2.1).

⟨X̂⟩ψ =

i

xiP(xi) = ⟨ψ| X̂ |ψ⟩ (2.1)

Two observables can be measured simultaneously if and only if the commutator of the
operators commute, which means [X̂, Ŷ] = X̂Ŷ − Ŷ X̂ = 0 [1].

Fifth postulate

Every quantum system evolves according to the Schrödinger equation:

iℏ
d

dt
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ (2.2)

Ĥ(t) denotes the Hamiltonian, which is an operator that corresponds to the total energy
of the system. Given a quantum state |ψ(t)⟩ at time t, the quantum state at time t+Δt
is given by |ψ(t+Δt)⟩ = U(t + Δt, t) |ψ(t)⟩ where the unitary matrix U is generated
by the Hamiltonian of the system U(t) = e−iĤ(t)t/ℏ with the reduced Planck constant
ℏ = h/(2π) = 6.626 070 15 × 10−34 JHz−1/(2π). A matrix is unitary if its inverse is
equal to its conjugate transpose, i.e. U−1 = U †.

2.1.2 Superposition, composite systems and entanglement

The Schrödinger equation is a linear differential equation, which implies that any linear
combination of solutions of the Schrödinger equation is also a solution. The state of a
quantum system, governed by the Schrödinger equation, is given by a linear combina-
tion, also called superposition, of the eigenvectors.

Composite systems are systems which consist of at least two subsystems. For exam-
ple, consider two systems A and B with Hilbert spaces HA and HB, then the Hilbert

11

space of the composite system is given by the tensor product of the two Hilbert spaces
HAB = HA⊗HB. The tensor product of two vector spaces is commutative, whereas the
tensor product of two vectors is not commutative, which means |x⟩A⊗|y⟩B ̸= |y⟩B⊗|x⟩A.
This can be seen in equation (2.3), where two two-dimensional vectors are tensored,
which yields a four-dimensional vector. In the context of quantum computation, these
two-dimensional vectors are called qubits, four-dimensional vectors ququarts and vec-
tors with an arbitrary dimension d qudits.

|z⟩AB = |x⟩A ⊗ |y⟩B =

�
x0

x1

�
⊗
�
y0
y1

�
=

��
x0y0
x0y1
x1y0
x1y1

�� (2.3)

The tensor product of two matrices is not commutative as well, which can be seen
in equation (2.4), where two 2 × 2 dimensional matrices are tensored to one 4 × 4
dimensional matrix. In the context of quantum computation a 2×2 dimensional matrix
is called a local qubit gate and a 4× 4 dimensional matrix a two-qubit gate or a local
ququart gate.

ZAB = XA⊗YB =

�
x00 x01

x10 x11

�
⊗
�
y00 y01
y10 y11

�
=

��
x00y00 x00y01 x01y00 x01y01
x00y10 x00y11 x01y10 x01y11
x10y00 x10y01 x11y00 x11y01
x10y10 x10y11 x11y10 x11y11

�� (2.4)

A composite state which can be written in the form |ψ⟩A ⊗ |ψ⟩B is called separable or
a product state. Any state which cannot be written in this separable form is called
entangled. Entanglement is a crucial resource in quantum computation, since in most
quantum algorithms the speedup is caused by entanglement [12], however, there are
quantum algorithms which do not rely on entanglement [13, 14].

2.2 Quantum computers
A classical computer performs an algorithm by executing logic gates on the input bits.
A bit is the smallest possible storage unit on a computer and takes the value of either
0 or 1. A logic gate takes one or more input bits, performs an operation and yields
one or more output bits. For example, a NOT gate operates on just a single bit, by
inverting the input bit, while an AND gate operates on two bits and the output is
only 1 if both input bits are 1. These calculations or algorithms can be performed
not only on bits, but also on multi-valued logic like trits, which take the value 0, 1
or 2. There exists no algorithm which can only be performed on multi-valued logic
systems, but not on binary systems, which is proven by the Church-Turing thesis [15].

12

The Church-Turing thesis implies that all Turing-complete systems do have the same
computational power. That means that any classical algorithm can be performed on
a Turing-machine independent of the arithmetic of the machine [16]. The Turing-
machine is a theoretical computational model, which defines an abstract machine that
can simulate any algorithmic process by a set of rules [17]. Since there is no obvious
reason that binary systems are superior to other systems, the first supercomputers in
the 1940s were based on decimal arithmetic [18]. Binary arithmetic is simpler and
more compact in terms of hardware implementation, therefore, the arithmetic speed is
increased [19].

A quantum computer is equivalent to a classical computer in a sense that it also
performs algorithms by executing gates on the input quantum bits (qubits) [1]. A qubit
is a two-level quantum system, which can be represented in the computational basis as
the quantum states |0⟩ and |1⟩, analogous to a classical bit, but the state can also be
in any superposition of these states, according to the postulates 2.1.1.

|ψ⟩ = α |0⟩+ β |1⟩ with {α, β} ∈ C (2.5)

In equation (2.5), α and β represent the probability amplitudes. Upon measurement,
the state |ψ⟩ collapses either into |0⟩ or |1⟩ with the probability of |α|2 or |β|2 re-
spectively, according to the Born rule. Due to the normalization of the wavefunction
|α|2 + |β|2 = 1 holds.

Analogously to the classical computer, the quantum computer can be based not only
on qubits, but also on higher-dimensional quantum systems, called qudits. For example,
a four dimensional quantum system, called ququart, can encapsulate the information
of two qubits.

A quantum algorithm is a sequence of quantum gates, which are given by unitary
operators according to the fifth postulate of quantum mechanics. A gate which acts
only on a single quantum system, for instance a qubit or ququart, is called a local gate
because it acts only on the local Hilbert space of the quantum system. An entangling
gate, also called two-qudit or multi-qudit gate, instead acts on two or more quantum
systems, respectively and therefore entangles them. There are a lot of different types
of quantum gates and a few of them will be covered in section 2.2.3.

There are two reasons why quantum computers can be advantageous to classical
computers. On the one hand, classical computers are limited in scaling down, since
quantum effects appear at tiny scales in the processing units, hence Moore’s law cannot
be continued in the next decades. On the other hand, quantum computers can solve
certain tasks, like integer factorization, exponentially faster, but they can also simulate
quantum systems efficiently, in contrast to classical computers [1]. The distinction
between efficient and inefficient and the difference between problems that a quantum
computer can solve efficiently compared to a classical computer, will be discussed in
the next section 2.2.1.

13

2.2.1 Complexity classes

It is not proven but believed by many researchers that a classical computer cannot
simulate a quantum system efficiently. As the number of complex numbers needed
to describe the quantum system grows exponentially with the size of the system, the
classical computation needs cn bits, whereas the quantum computation takes only kn
qubits, where k and c are constants determined by the simulated system.

A complexity class, groups problems that are described by the same kind of features.
The different combinations of features give rise to a lot of complexity classes, whereby
P and NP are the most important ones to describe the difference between classical and
quantum computation. All problem classes which are in P can be solved efficiently,
which means in polynomial time on a classical computer. However, NP describes all
problem classes which are solvable in non-polynomial time on a classical computer. P is
a subset of NP but as mentioned before, it is an unsolved problem if P and NP are the
same complexity class. NP-complete is a subclass of NP, with the distinction that all
NP-complete problem classes are equally hard, which means that an algorithm which
solves an NP-complete problem can solve all other NP-complete problems. If P is not
equal to NP, all NP-complete problems cannot be simulated efficiently on a classical
computer.

Integer factorization is believed to be a problem of the type NP, since there ex-
ists no algorithm that can solve this problem efficiently on a classical computer. Shor’s
algorithm is a quantum algorithm, which solves the integer factorization problem, repre-
sented by n bits, by using 3n qubits [20]. It is based on the Quantum Fourier transform
(QFT) as many other quantum algorithms and is therefore an interesting candidate for
qudit circuit compression. There is also another version of Shor’s algorithm which uses
only 2n+ 3 qubits [21].

2.2.2 Computational basis

The computational basis states for a qubit are given by |0⟩ and |1⟩ and they are usually
represented as two-dimensional vectors, as shown in equation (2.6).

|0⟩ =
�
1
0

�
|1⟩ =

�
0
1

�
(2.6)

The label 0 or 1 of the ket vector indicates the state of the quantum system. The
computational basis states for two qubits are given by the tensor product of the qubits,
which yields four possible states |00⟩, |01⟩, |10⟩ and |11⟩. The computational basis states
for n-qubits are given by |0⟩ , |1⟩ , . . . , |2n − 1⟩. The labels of these states, expressed in
binary representation of a n-qubit system, correspond to a n-bitstring x ∈ {0, 1}⊗n,
which is defined as n bits concatenated in a sequence and is referenced by either x =

14

x0x1x2 . . . xn−1 or x = (x0, x1, x2, . . . , xn−1). The value of x in decimal arithmetic can be
recovered through x with the binary representation x = x02

n−1+x12
n−2+ · · ·+xn−12

0,
which implies that x0 is the most significant bit and xn−1 is the least significant bit.
This representation can be used to express the binary fraction 0.xlxl+1 . . . xm = xl/2 +
xl+1/2

2 + xm/2
m−l+1, which is a useful shorthand notation to express the phases in the

QFT.
The computational basis states for a ququart are |0⟩, |1⟩, |2⟩ and |3⟩, where these

labels in binary representation are equal to the labels of the basis states for two qubits.
Like in the qubit case, the basis states for two ququarts are given by the tensor product,
hence 16 states are possible, which are given in binary representation as |0000⟩, |0001⟩,
|0010⟩, |0011⟩, |0100⟩, . . . , |1111⟩. These 16 basis states are equal to the quhex basis
states |0⟩, |1⟩, . . . , |15⟩ if they are also expressed in binary notation.

Expressing the state in binary representation for any number of qudits of dimension
d is always possible and it can be used to construct higher dimensional gates, which is
done in section 3.1.

2.2.3 Quantum gates

A quantum gate is a unitary matrix that acts on one (local gate) or more (entangling
gate) qudits. Since the qubit is a two-level quantum system, a local qubit gate has a
shape of a 2×2 matrix. A gate which entangles two qubits has consequently a shape of
a 4× 4 matrix. As two qubits can be encoded in one ququart, the two-qubit entangling
gate becomes a local gate in the ququart. Therefore the local ququart gate has a shape
of a 4× 4 matrix and the two-ququart entangling gate has a shape of a 16× 16 matrix.
This two-ququart gate can then again be encoded in a local quhex (16-dimensional
system, which encapsulates four qubits or two ququarts) gate and consequently the
two-quhex entangling gate has a shape of a 256 × 256 matrix. This can be continued
for systems of arbitrary dimension d, where d = 2, d = 4, d = 8 and d = 16 represent a
qubit, ququart, quoct and a quhex, respectively. Consequently, the shape of the local
qudit gate is d× d and the two-qudit gate has a shape of a d2 × d2 matrix.

In the following, quantum gates which are used in the Simon’s algorithm 2.4.1 and
in the QFT 2.4.2 are discussed.

Identity gate

The identity gate is an identity matrix, therefore leaves the quantum state unchanged.
The identity matrix for a qudit of dimension d is denoted like 1d. In the following
sections, it is used for the construction of high-dimensional qudit gates, where some
subsystems stay unchanged.

15

Hadamard gate

The Hadamard gate performs the Hadamard transformation on a qudit and is a type
of Fourier transform. The Hadamard gate H for a single qubit is shown in equation
(2.7) and it maps |0⟩ and |1⟩ to (|0⟩+ |1⟩)/√2 and (|0⟩− |1⟩)/√2, respectively and vice
versa.

H =
1√
2

�
1 1
1 −1

�
(2.7)

The Hadamard transformation can also be defined recursively which is useful if a H
gate is applied to each qubit within a qudit. The recursive formula is given in equation
(2.8) and is equivalent to equation (2.7) for n = 1.

Hn =
1√
2

�
Hn−1 Hn−1

Hn−1 −Hn−1

�
with H0 = 1 (2.8)

The recursive definition of the Hadamard transformation is only useful if an H gate is
applied to each qubit in the qudit. The QFT algorithm is constructed in such a way
that the Hadamard gate is only applied to a single qubit, while the remaining qubits
remain unaffected. Equation (2.9) presents a qudit Hadamard gate that acts on N
qubits within the qudit and operates non-trivially only when the labels xi are equal to
one.

Hx =
N−1�
i=0

Hxi (2.9)

For example, H11 applies an H gate to both qubits in the ququart and is equivalent to
H2 of equation (2.8). However, H01 = 12 ⊗H cannot be described by equation (2.8),
as it applies an H gate to the second qubit within the ququart while leaving the first
qubit unchanged.

Throughout this whole thesis, Hn will be used to denote an operation which applies
a Hadamard gate to the n-th qubit in the qudit and leaves all other qubits unchanged,
shown in equation (2.10), and Hx will only be used for two qubits which yields the three
gates H10, H01 and H11. This notation proves particularly valuable in the calculations
of the QFT presented in section 3.3.

Hn = 1⊗n−1
2 ⊗H ⊗ 1⊗N−n

2 (2.10)

Rotation gate

The rotation gate, also called phase shift gate, modifies the phase of the quantum
system. Applied on a qubit in the computational basis, it leaves the |0⟩ state unchanged
and maps |1⟩ to eiϕ |1⟩. Equation (2.11) shows the corresponding gate R(ϕ), which
performs this kind of operation, where ϕ is the phase factor. Rj, shown in equation

16

(2.11), represents a special form of R(ϕ), because it applies the phase e2πi/2
j to |1⟩ and

it is used in the QFT algorithm 2.4.2.

R(ϕ) =

�
1 0
0 eiϕ

�
or Rj =

�
1 0

0 e2πi/2
j

�
(2.11)

NOT gate

The NOT gate inverts the input bits and it exists also on a classical computer. The
quantum NOT gate does exactly the same, since it maps |0⟩ and |1⟩ to |1⟩ and |0⟩,
respectively, for the computational basis. For a superposition, like it is given in equation
(2.5), it interchanges the probability amplitudes α and β. The matrix representation of
the quantum NOT gate is equivalent to the Pauli-x matrix σx and is shown in equation
(2.12).

NOT = σx =

�
0 1
1 0

�
(2.12)

Controlled gates

The Hadamard, rotation and NOT gate are all local gates, which means that they do
not entangle the qubits, since they are only applied to a single qubit. A controlled gate
is an entangling gate, because it changes the target qubit depending on the state of
the control qubit. Any local gate can be controlled by a control qubit, therefore it is
possible to define an arbitrary controlled unitary gate, shown in equation (2.13).

CU =

��
1 0 0 0
0 1 0 0
0 0 U00 U01

0 0 U10 U11

�� (2.13)

The controlled NOT gate (CNOT) and the controlled rotation gate (CR) are used in
the Simon’s algorithm and in the QFT, respectively. The CNOT and CR matrices can
be obtained by replacing the unitary matrix in equation (2.13), by the corresponding
matrices, given in the previous subsections.

2.2.4 Hardware implementation

Any kind of quantum system can act as a quantum computer as long as it fulfills certain
criteria. These criteria can be summarized by DiVincenzo’s criteria [22]:

1. The Hilbert space of a quantum system must grow exponentially fast with the
system size. That means that the Hilbert space is made of the direct product of
multiple smaller subsystems.

17

2. It must be possible to prepare the quantum system to a fiducial quantum state.

3. The quantum system needs to be isolated well enough, so that the error is low
enough to be able to correct it.

4. It must be possible to perform controlled unitary operations between the quantum
subsystems up to a small error.

5. The coupling to the measurement apparatus must be strong enough, so that the
state of the wavefunction has a large impact on the result of the measurement.

The impossibility of completely isolating a quantum system from its environment, en-
tangles the environment with the quantum system which leads to quantum decoherence
[23]. There are two type of errors in quantum computers, namely bit-flip and phase-flip
errors. Bit-flip errors have the same impact as a NOT gate, whereas phase-flip errors
induce an unwanted rotation gate. Both of these errors are crucial, if uncorrected, the
result of the quantum algorithm is incorrect. Since it is impossible to isolate a gate-
based quantum computer completely from its environment, these errors need to be
corrected. Quantum error correction deals with this problem, by performing quantum
error correction codes like the 2D surface code. [24]

Any quantum system that fulfills DiVincenzo’s criteria can perform quantum com-
putation. There are different implementations of quantum systems, each with its own
advantages and disadvantages regarding decoherence, state preparation, gate errors,
measurement, etc. A non-exhaustive list of quantum computing architectures is su-
perconducting, trapped ion, neutral atom, photonic, nuclear magnetic resonance and
nitrogen-vacancy centred quantum computing [25]. Since quantum computing archi-
tectures are different, it is only natural that the gates which can be executed efficiently
with a low error, which are also called native gates, differ across platforms [1]. The
complexity of a quantum gate can be defined as the number of native gates required to
implement the desired operation.

2.3 Quantum circuit model
Quantum circuits are a theoretical model to visually depict a quantum algorithm, con-
sisting of an initial state, a sequence of quantum gates and measurements. The visual
representation of the quantum circuit was first used by Feynman [26], which is a mod-
ification of the Penrose graphical notation [27].

The time in a quantum circuit diagram flows from left to right, which implies that
the input qubits are on the left hand side and the measurement is on the right hand side
of the diagram. The notation for quantum circuit diagrams for qubits is well established
[28] and an exemplary circuit is presented in figure 2.1a. It shows a quantum algorithm,

18

which applies a Hadamard gate H, a CNOT gate, a controlled unitary gate U1 and an
arbitrary two-qubit gate U2 sequentially to the input qubits |x0⟩ and |x1⟩. The last
symbol in the quantum circuit 2.1a depicts the measurement process, which collapses
the qubit into a classical bit.

|x0⟩2 H U1

U2

|x1⟩2
(a)

!!x{i}
�

di Hp

U{n},{o}!!x{j}
�

dj
U{l},{m}

(b)

Figure 2.1: Example quantum circuits drawn with the quantikz [29] package. In (a), a two-
qubit quantum circuit, which applies a Hadamard H, CNOT, controlled unitary U1 and an
arbitrary unitary U2 gate sequentially, is shown. In (b), a two-qudit circuit with a high-
dimensional Hadamard Hp, controlled unitary U{l},{m} and an arbitrary unitary U{n},{o} gate,
is shown. The last symbol in both circuits represents the measurement of the qubit or qudit.

The quantum circuit 2.1b shows a two-qudit circuit, where each qudit
!!x{i}

�
di

,!!x{j}
�
dj

is of dimension di, dj and embeds {i}, {j} qubits, where di = 2|{i}|, dj = 2|{j}|

and |{i}|, |{j}| is the number of elements in the set. There is no common notation for
qudits yet, therefore, the notation for qudit circuits will be explained in the following.
The quantum circuit 2.1b shows an algorithm which applies a Hadamard gate Hp, a
high-dimensional controlled unitary gate U{l},{m} with {l} target qubits and {m} con-
trol qubits, and an arbitrary unitary gate U{n},{o}, with no defined control or target
qubits or one qudit acts as both a control and a target qudit. The high-dimensional
Hadamard gate Hp applies a qubit Hadamard gate to the qubit p within the qudit and
applies an identity gate to all remaining qubits.

It is possible to reverse the order of two adjacent gates, if they commute with
each other. As a consequence it is possible to compress adjacent two-qudit gates to a
single two-qudit gate. If there are multiple local gates between two entangling gates,
the commutators of all possible combinations of the local gates need to be checked, to
determine whether the two entangling gates can be aligned next to each other. Diagonal
matrices always commute with each other, which means that all commutators between
(high-dimensional) controlled rotation gates are zero.

2.4 Quantum algorithms

As already mentioned, a quantum algorithm is a sequence of quantum gates applied on
the input states. There are two main techniques, the QFT and amplitude amplification,

19

|0⟩⊗n H⊗n

Uf

H⊗n

|0⟩⊗n

Figure 2.2: Quantum circuit for Simon’s algorithm for 2n qubits. Before and and after the
entangling unitary querying function gate, a Hadamard gate is applied to the first qubit register
and in the end the quantum states are measured.

which are used by most quantum algorithms [1]. Amplitude amplification is a gener-
alization of Grover’s algorithm [30], which is a quantum search algorithm which leads
to a quadratic speedup compared to the best known classical algorithm. Algorithms
that use the QFT generally imply an exponential speedup. It is used in algorithms like
the Deutsch-Jozsa algorithm [31], Bernstein-Vazirani algorithm [32], Simon’s algorithm
[33], Shor’s algorithm [20], quantum phase estimation algorithm [1], or in general, for
problems that are part of the Abelian hidden subgroup [1].

A quantum algorithm, which solves the Abelian hidden subgroup problem, encom-
passes all quantum algorithms which use the QFT. It finds the period of a given periodic
function independent of the domain and range of the periodic function. [1]

2.4.1 Simon’s algorithm

Simon’s algorithm solves Simon’s problem in exponentially fewer queries than the best
classical algorithm. Simon’s problem questions if the output of a function is invariant
when applying an XOR mask to the input. XOR is the abbreviation for the exclusive
OR gate, which yields 0 if both inputs are equal, which means it yields 1 if one input is
0 while the other is 1. The XOR gate can also be understood as the bitwise addition of
two binary numbers modulo 2. In the example (2.14) and (2.15), the XOR operation
is applied to two bit-strings of length three.

s1 = 010 s2 = 110 with si ∈ {0, 1}3 (2.14)

s1 ⊕ s2 = (0, 1, 0)⊕ (1, 1, 0) = (0 + 1 mod 2, 1 + 1 mod 2, 0 + 0 mod 2) = 100 (2.15)

The definition of Simon’s problem is, given a function f : {0, 1}n → {0, 1}n that maps
a n-bit-string to a n-bit-string, which fulfills the condition f(x ⊕ s) = f(x), find the
hidden bit-string s by querying f . Any classical algorithm would need exponential
oracle queries to solve this problem, while Simon’s algorithm only needs O(n) queries
[33]. Simon’s algorithm consists of two steps, namely querying the function f n-times
by executing the quantum circuit 2.2 and classical post-processing that identifies the

20

secret string s. The quantum circuit 2.2 consists of two quantum registers, where each
register contains n qubits. First, a Hadamard gate is applied to the first register, then
the unitary gate which encapsulates the querying function is applied to both registers
and before measuring, another Hadamard gate is applied to the first register. The
measurement of the first register yields a string z ∈ {0, 1}⊗n, which fulfills condition
(2.16). [33]

zṡ = 0 (2.16)

Running the circuit m = O(n) times, yields zm bit strings and by solving this system
of linear equations via e.g. Gaussian elimination [34] the hidden string s can be found.

2.4.2 Fourier transform

The Fourier transform F(ω) of a time-dependent signal or function f(t) is given by
equation (2.17), which transforms the domain of the function from time to frequency.
If the function is localized in time, F(ω) will be spread across the frequency domain
and vice versa. The inverse Fourier transform is equivalent to equation (2.17) up to
a sign change in the exponential function, the integral domain changes from time to
frequency and the functions f(t) and F(ω) are interchanged.

F(ω) =

� ∞

−∞
f(t)e−2πitωdt (2.17)

In signal processing, an analog signal can only be measured at certain time steps,
therefore the function is discretized. The Fourier transform of such a signal is the
discrete Fourier transform (DFT), shown in equation (2.18). Due to the discretization,
the integral becomes a sum, where N is the number of samples and f [0], f [1], . . . , f [N−
1] represent the values of the signal at each time step. The inverse to the DFT is
equivalent to (2.18) up to a sign in the exponent and that the discrete functions F [ω]
and f [t] are interchanged again [35]. The Fourier transform in general is not restricted
to the time and frequency domain, but can be applied to any complementary variables,
like position and momentum.

F [ω] =
1√
N

N−1
t=0

f [t]e−2πitω/N (2.18)

The discrete Fourier transform (DFT) on n bits, denoted DFTn, operates on 2n entries
and is computed by naive algorithms in O((2n)2) steps. The best classical algorithm for
calculating the DFT is the fast Fourier transform (FFT) which calculates the DFTn in
O(n2n) steps, which is still exponential in time [12]. The DFT can also be expressed as
a single matrix, shown in equation (2.19), where ω = e−2πi/N and N = 2n. By adding

21

another bit to the DFT matrix, its size is doubled which means it grows exponentially
in size.

DFTn =
1√
N

�������

1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ω(N−1)

1 ω2 ω4 ω6 . . . ω2(N−1)

1 ω3 ω6 ω9 . . . ω3(N−1)

...
...

...
...

1 ω(N−1) ω2(N−1) ω3(N−1) . . . ω(N−1)(N−1)

�������
with N = 2n (2.19)

The quantum Fourier transform (QFT) is the quantum analogue to the DFT. With a
quantum computer it is possible to calculate the QFTn within O(n2) steps which is
polynomial in time [12]. The QFT maps a basis state |0⟩ , |1⟩ , . . . , |x⟩ , . . . , |N − 1⟩ to
a superposition of all basis states, multiplied by the respective amplitudes, as shown in
equation (2.20).

QFTn |x⟩ =
N−1
k=0

e−2πixk/N |k⟩ (2.20)

The product representation, shown in equation (2.21), is equivalent to equation (2.20)
which is proven in appendix A [1].

QFTn |x0x1 . . . xn−1⟩ =

(|0⟩+ e−2πi0.xn−1 |1⟩)⊗ (|0⟩+ e−2πi0.xn−2xn−1 |1⟩)⊗ · · · ⊗ (|0⟩+ e−2πi0.x0x1···xn−1 |1⟩)
2n/2

(2.21)

This product representation is suitable to construct the QFT quantum circuit, which
is shown in figure 2.3. First, a Hadamard gate is applied to the qubit |x0⟩ which
transforms the quantum state |x0 . . . xn−1⟩ to the quantum state shown in equation
(2.22) because e−2πi0.x0 = 1 if x0 = 1 and e−2πi0.x0 = −1 if x0 = 0. Second, a controlled
rotation gate R2 is applied to the state, which yields equation (2.23). For all remaining
qubits, controlled rotation gates R3, . . . , Rn−1 are applied to the first qubit |x0⟩, which
yields the quantum state shown in equation (2.24). This state is exactly the same
state as the last qubit state in equation (2.21). Therefore, the outermost qubits are
swapped in the end in order to obtain the desired state. If the QFT is at the end of a
quantum algorithm these SWAP gates can be omitted and replaced by classical post-
processing. The aforementioned procedure can be repeated for the remaining qubits,
with the modification that there are i fewer controlled rotation gates per qubit, where
i is the index of the input qubit. The resulting quantum state is equivalent to the state

22

. . .

. . .

.

.

|x0⟩2 H R2 Rn−2 Rn−1

|x1⟩2 H Rn−3 Rn−2

|xn−2⟩2 H R2

|xn−1⟩2 H

Figure 2.3: Quantum circuit for the QFT for n qubits, which consists of Hadamard gates H,
controlled rotation gates Ri and SWAP gates. The quantum circuit can be derived by the
product representation of the QFT, shown in equation (2.21).

shown in equation (2.21), up to the SWAP gates that exchange the first and the last
qubit, the second with the second-last qubit, and so on.

|ψ⟩ = 1

21/2
�|0⟩+ e−2πi0.x0 |1⟩� |x1 . . . xn−1⟩ (2.22)

→ 1

21/2
�|0⟩+ e−2πi0.x0x1 |1⟩� |x1 . . . xn−1⟩ (2.23)

→ 1

21/2
�|0⟩+ e−2πi0.x0x1...xn−1 |1⟩� |x1 . . . xn−1⟩ (2.24)

As stated before, the QFT is executable in O(n2) steps, which can be seen in the
quantum circuit 2.3, which requires n Hadamard gates, n(n− 1)/2 controlled rotation
gates and n/2 SWAP gates, where each SWAP gate can be constructed with three
CNOT gates [1].

The derivation above features the QFT in a qubit embedding, but in the following
chapter the qubits are embedded in qudits. Three qubits can be encoded in one quoct
but as the QFT is discussed only for even number of qubits the quoct-encoding of
the QFT3, QFT6, QFT9, . . . , QFT3n will not be investigated in detail. A comparison
between quocts and ququarts can be made by examining the QFT6 embedded in two
quocts and in three ququarts, as presented in section 3.3.3. To compare quocts with
quhexes one could investigate the QFT12 embedded in four quocts as opposed to three
quhexes.

2.5 Qudit circuit compression
Quantum computing based on qudits provides several advantages over qubit based
quantum computers, as they offer richer coherence [3] and entanglement structures [4],
but also improved quantum error correction [5, 6]. The qubits are encoded in higher

23

dimensional quantum systems, called qudits, in order to reduce the non-local gate count.
There are different ways to group the qubits, therefore it is necessary to find the best
so called cut to reduce the entangling gate count to the lowest possible number.

For example, a quantum circuit that consists of four qubits |x0⟩2 |x1⟩2 |x2⟩2 |x3⟩2
will be compressed to two ququarts, but there are three different ways to group these
qubits. The next-neighbour cut |x01⟩4 |x23⟩4 groups the qubits which are next to each
other, the inner-outermost cut |x03⟩4 |x12⟩4 groups the two outermost qubits and the two
innermost ones and the next-next-neighbour cut |x02⟩4 |x13⟩4 groups the qubits 0 and 2
and the qubits 1 and 3. These two ququarts can then be embedded in a quhex, where
all gates of the quantum circuit are reduced to local gates. The number of possible cuts
vastly increases, when increasing the number of qubits.

By embedding the qubits into qudits, the resulting gates are still two-qubit gates
embedded in a higher dimensional Hilbert space, therefore they are called embedded
two-qubit gates. However, these gates are harder to perform than a regular two-qubit
gate because they are often not natively available. Therefore, genuine qudit-entangling
gates, which do not admit a tensor-product structure, can be developed by exploiting
the high dimensional Hilbert space. [36]

The possibility to create completely new gates admits the possibility to create new
quantum algorithms, which are based on genuine qudit entangling gates. In general, the
number of entangling gates is reduced even further by exploiting these qudit-entangling
gates. For example, a four-qubit quantum circuit with multiple two-qubit gates can
be embedded in two ququarts, which yields multiple embedded two-qubit gates. These
gates, which represent 16×16 matrices, can then be multiplied with each other to obtain
a two-ququart gate. If there are local gates UL between the entangling gates, these can
be extended by the identity UL,emb = UL ⊗14, which yields an embedded local ququart
gate UL,emb, which can then be incorporated in an already existing two-ququart gate.
This might increase the complexity of the two-ququart gate, but as the goal of qudit
circuit compression is to minimize the number of entangling gates while increasing the
complexity of the genuine qudit entangling gates as little as possible, this method might
not be the best. One way to circumvent this problem is, to rearrange the order of the
gates if they commute. Subsequently, adjacent two-qudit gates can be compressed to a
single two-qudit gate.

In the next chapter 3, the idea of qudit circuit compression is applied to the 4-qubit
Simon’s circuit and to the QFT.

24

Chapter 3

Qudit circuit compression

In chapter 2, all the underlying theory, in order to understand the following chapter,
is discussed. By embedding the qubits into qudits the two-qubit gates are transformed
into either local ququart gates or embedded two-qubit gates. The construction of these
high dimensional gates is explained in section 3.1. In the next section 3.2, the quantum
circuit for Simon’s algorithm for four qubits is discussed. The number of entangling
gates of this circuit is reduced, by exploiting the methods of qudit circuit compression.
As there is no general formulation of the Simon’s circuit for more than four qubits, it is
not possible to investigate the properties of the qudit Simon’s circuit further. Therefore,
a more useful algorithm, the QFT, is discussed in detail. First, the simplest cases of the
QFT are investigated, to set the foundation for the generalization to arbitrary number
of qubits. In the final section 3.3.6, a formula for the number of two-qudit gates as a
function of the input qubits N and the qudit dimension d, is derived.

3.1 High dimensional gate construction

In this section, the high dimensional gate construction formalism is discussed only for
the CNOT and controlled rotation gate CR, because these are used by the Simon’s
algorithm and the QFT, respectively. In order to embed the two-qubit gate into the
higher dimensional Hilbert space, it is useful to express the dimension d in binary
representation. The two affected qubits in the binary representation are exposed to the
desired effect, like performing a CNOT gate or applying a phase. In the following, the
gate construction of the two-qubit gates CNOT and CR embedded in two ququarts, is
shown explicitly.

The computational basis states of a two-ququart system are given in section 2.2.2.
The two qubits within the two ququarts, which are affected by the controlled unitary
gate, are the indices of interest in the 16 × 16 matrix. As an example, two ququarts
|x01⟩ and |x23⟩ are examined in the next-neighbour cut. The CNOT gate between the

25

first and the third qubit, which are the control and target qubits respectively, becomes
an embedded two-qubit gate. The relevant states are those with a trailing one, as the
CNOT gate acts non-trivially only when the control qubit is in the state |1⟩. Therefore,
the states |1000⟩, |1001⟩, |1100⟩, |1101⟩ are mapped to the states |1010⟩, |1011⟩, |1110⟩,
|1111⟩ respectively, and vice versa or expressed in set notation {|x⟩ : x ∈ {0, 1}4 | x0 =
1, x2 → x2⊕ 1}, where 1⊕ 1 = 0. The described matrix is spanned by figure 3.1, where
the bit strings in the top row and the left column are shown for better identification
of the desired states. The states in the upper left corner, where x0 = 0, stay invariant
because of the identity matrix 18. The two 4 × 4 matrices in the lower right corner,
which map the states to x2 → x2 ⊕ 1, represent the base matrix X, shown in equation
(3.1), which is used in the C02 and C12 gates in the 4-qubit Simon’s circuit in the
upcoming section (3.2).

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 1
0001 1
0010 1
0011 1
0100 1
0101 1
0110 1
0111 1
1000 0 0 1 0
1001 0 0 0 1
1010 1 0 0 0
1011 0 1 0 0
1100 0 0 1 0
1101 0 0 0 1
1110 1 0 0 0
1111 0 1 0 0

Figure 3.1: High-dimensional gate construction of the embedded two-qubit CNOT gate be-
tween the first and third qubit, as the control and target qubit, respectively, embedded in two
ququarts in the next-neighbour cut. All states, where the first qubit is zero {|x⟩ : x ∈ {0, 1}4 |
x0 = 0}, remain identical, therefore they are multiplied with the identity matrix 18, as shown
in the upper left corner. For the lower right corner, the first qubit is one, therefore, all states
are mapped to its corresponding state {|x⟩ : x ∈ {0, 1}4 | x0 = 1, x2 → x2 ⊕ 1}. The 4 × 4
matrices represent the base matrix X, shown in equation (3.1), which is used for the C02 and
C12 gates in the next-neighbour cut of the 4-qubits Simon’s circuit.

In the next-neighbour cut the qubits are adjacent, therefore the standarad binary

26

representation works. In order to construct high-dimensional gates in other cuts than
the next-neighbour cut, the indices need to swapped according to the cut structure.
For four qubits |x0x1x2x3⟩ there are only two more cuts, namely the inner-outermost
and the next-next-neighbour cut, where the qubits are mapped according to {|x⟩ :
x ∈ {0, 1}4 | x2 → x3, x3 → x4, x4 → x2} and {|x⟩ : x ∈ {0, 1}4 | x2 → x3, x3 → x2},
respectively. As a consequence, the values of the binary representation in figure 3.1 need
to be rearranged, hence the high dimensional gates need to be constructed according
to the new indices.

The controlled rotation gate, which is used in the QFT, is a diagonal matrix, there-
fore it is only necessary to consider a vector, labeled by the computational basis states
in binary representation. Only if both control and target qubit are one, the gate acts
non-trivially. For example, a controlled rotation gate CR between the first and second
qubit would yield a local ququart gate in the next-neighbour cut. The first and second
qubit are only one in the last four states of the 16 basis states, which yields the gate
R01 = CR ⊗ 14. An example for an embedded two-qubit gate would be a CR gate be-
tween any qubit of the first ququart and second ququart, which can be constructed in
the exact same way. For example, the matrix construction of the embedded two-qubit
gate R02 between the first and third qubit in the next-neighbour cut is shown in figure
3.2, where ωi needs to be replaced with ω3 for the R02 gate. There, all states where
the first and third qubit are one, are multiplied by ωi, all other states remain identical,
which can also be expressed as {|x⟩ : x ∈ {0, 1}4 | x0 = 1, x2 = 1, |x⟩ → ωi |x⟩}. The
two 4-dimensional vectors (1, 1, ωi, ωi) represent the diagonal of the base matrix Ai,
shown in equation (3.8), which is used in the QFT.

This gate construction formalism can be applied to any multi-qudit gate, therefore,
it is used throughout the entire thesis.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

diag(1 1 1 1 1 1 1 1 1 1 ωi ωi 1 1 ωi ωi)

Figure 3.2: High-dimensional gate construction of the embedded two-qubit CR gate between
the first and third qubit, as the control and target qubit, respectively, embedded in two
ququarts in the next-neighbour cut. All states, where the first qubit is zero {x ∈ {0, 1}4 |
x0 = 0}, remain identical and are therefore multiplied with a one for all eight entries, as
shown in the left-hand part. For the right-hand side, the first qubit is one, therefore, all
states, where the third qubit is also one, are multiplied by ωi or expressed more compactly
{x ∈ {0, 1}4 | x0 = 1, x2 = 1, x → ωix}. The two 4-dimensional vectors represent the diagonal
of the base matrix Ai, shown in equation (3.8), which is used for the QFT in general.

27

3.2 4-qubit Simon’s algorithm

The details of Simon’s algorithm are discussed in section 2.4.1, where the general for-
mulation of the Simon’s circuit is given, which consists of a Hadamard gate on the first
qubit register before and after applying the querying function gate to both quantum
registers. There is no general formulation of the querying function gate, but for four
qubits it is known, that it can be implemented with four CNOT gates, shown in the
quantum circuit 3.3. In figure 3.4, a graph approach is used to illustrate the afore-
mentioned quantum circuit, where the four qubits (blue nodes |0i⟩) are embedded in
two ququarts (red rectangles) in three different ways. With this graph approach it is
directly visible, which gates become local ququart gates and those which remain entan-
gling gates, i.e. embedded two-qubit gates. There, the next-neighbour cut seems to be
the worst cut, as it does not reduce the number of entangling gates, but by combining
the gates to a two-ququart entangling gate, it is possible to reduce the number of en-
tangling gates to one. These three different cuts, shown in figure 3.4, are discussed in
more detail in the following sections.

|00⟩2 H H

|01⟩2 H H

|02⟩2

|03⟩2

Figure 3.3: Quantum circuit for Simon’s algorithm for four qubits. Hadamard gates H are
applied to the first register like in the general Simon’s circuit 2.2 and the querying function is
implemented with four CNOT gates.

3.2.1 Next-neighbour cut

The next-neighbour cut embeds the qubits 0 and 1 and the remaining two qubits 2 and
3 each in a ququart. The three base matrices X, Y and Z, shown in equation (3.1), are
built out of the tensor product of the Pauli-X matrix σx and the identity matrix. These
base matrices are 4 × 4 matrices, therefore they can either be viewed as entangling

28

|00⟩ |01⟩

|02⟩|03⟩

(a) Next-neighbour cut

|00⟩ |01⟩

|02⟩|03⟩

(b) Inner-outermost cut

|00⟩ |01⟩

|02⟩|03⟩

(c) Next-next-neighbour cut

Figure 3.4: All possible cuts of Simon’s circuit for four qubits represented with graphs. In
each cut, four qubits (blue nodes |0i⟩) are embedded in two ququarts (red rectangles). The
edges represent CNOT gates, which manifest as embedded two-qubit gates Cij in the ququart
embedding. Through the cut specific embedding, without compressing adjacent gates, cut (a)
does not reduce the number of entangling gates, while (b) and (c) reduce four CNOT gates to
two local ququart gates and two embedded two-qubit gates.

two-qubit gates or local ququart gates.

X = σx ⊗ 12 =

��
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

�� Y = 12 ⊗ σx =

��
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

��

Z = σx ⊗ σx =

��
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

��
(3.1)

The quantum circuit for the next-neighbour cut is shown in figure 3.5, where the
H11 = H ⊗H gate is a Hadamard gate applied to the qubits 0 an 1 and the Cij gates
are controlled NOT gates, where the first index is the control qubit and the second
one is the target qubit. All Cij gates become embedded two-qubit gates, because the
control and target qubits are always in two different ququarts. These gates, shown in
equation (3.2), are block matrices composed solely of the base matrices X and Y and
the identity matrix 14.

29

|001⟩4 H11 H11

|023⟩4 C02 C03 C12 C13

Figure 3.5: Next-neighbour cut for the four qubit Simon’s circuit. The first two and the last
two qubits are each embedded in one ququart.

C02 =

��
14

14

X
X

�� C03 =

��
14

14

Y
Y

��

C12 =

��
14

X
14

X

�� C13 =

��
14

Y
14

Y

��
(3.2)

The embedding of the ququarts in the next-neighbour cut does not reduce the entan-
gling gates, because no two-qubit gate becomes a local ququart gate, due to aforemen-
tioned reasons. However, the entangling gates can be reduced to one, by multiplying all
embedded two-qubit gates Cij, which yields a two-ququart gate which affects all four
qubits embedded in the two ququarts. The resulting quantum circuit is shown in figure
3.6.

C01,23 = C13C12C03C02 =

��
14

Z
Z

14

�� (3.3)

|001⟩4 H11 H11

|023⟩4 C01,23

Figure 3.6: Compressed quantum circuit for the next-neighbour cut. Four embedded two-qubit
gates Cij are compressed to one qudit entangling gate C01,23 or more specifically a two-ququart
gate.

30

3.2.2 Inner-outermost cut

The embedding of the qubits in the inner-outermost cut yields two ququarts, which
embed the outermost qubits 0 and 3 and the innermost ones 1 and 2. Therefore, the
C03 and C12 gates become local ququart gates, as the indices already suggest, because
the control and the target qubit are in the same ququart. The C03(C12) gate, shown in
equation (3.4), is composed of a local ququart CNOT gate that is applied to the first
(second) ququart, tensored with the identity matrix 14, which leaves the second (first)
ququart invariant. The C02 gate is equivalent to the C03 gate of the next-neighbour
cut and the C13 gate is built of up and down matrices U and D, which are shown in
equation (3.5).

The local ququart gates C03 and C12, given in equation (3.4), are 16× 16 matrices
that act on the entire Hilbert space while the gates shown in the quantum circuit 3.7,
which are also referenced by C03 and C12, act only on the respective ququart. This
ambiguity that C03 is used as a 16 × 16 matrix in the calculations of commutators
but also as a 4 × 4 local ququart gate in the quantum circuit, is used throughout the
whole thesis. This simplifies the expressions for the commutators but also allows one
to reference the gates C03 and C12 as two different gates although both are a CNOT
gate applied to its respective ququart.

C02 = C03_NN−Cut C03 = CNOT ⊗ 14 C12 = 14 ⊗ CNOT (3.4)

C13 =

��
U D
D U

U D
D U

�� U =

��
1

1
0

0

�� D =

��
0

0
1

1

�� (3.5)

The quantum circuit 3.7 consists of these four controlled NOT gates Cij and of
H10 = H ⊗ 12 gates, which apply a Hadamard gate to the first qubit and leave the
second qubit unchanged inside the ququart.

|003⟩4 H10 C03 C13 H10

|012⟩4 H10 C02 C12 H10

Figure 3.7: Inner-outermost cut for the four qubit Simon’s circuit. The first and the last qubit
and the second and third qubit are each embedded in a ququart.

The first gate C02 in the quantum circuit 3.7 can be switched with both local ququart
gates because the commutators [C02, C03] and [C02, C12] are zero. It would also be

31

possible to switch the local ququart gates with the last embedded two-qubit gate C13

because the commutators between those gates are also zero. The embedded two-qubit
gates C02 and C13 can then be combined to a two-ququart entangling gate Cent

01,23, which
yields the compressed quantum circuit 3.8. This entangling gate, shown in equation
(3.6), is composed of the already introduced U and D matrices, but also of the matrices
UH = HUH−1 and DH = HDH−1.

Cent
01,23 =

��
U DH

DH U
D UH

UH D

�� Cent&loc
01,23 =

��
U D
D U

UH DH

DH UH

�� (3.6)

|003⟩4 H10 C03

Cent
01,23

H10

|012⟩4 H10 C12 H10

Figure 3.8: Compressed quantum circuit for the inner-outermost cut. Embedded two-qubit
gates C02 and C13 commute with the local ququart gates C03 and C12, therefore the order
can be reversed and the embedded two-qubit gates can be compressed to a single two-ququart
gate Cent

01,23.

The hardness of the gate depends on the quantum computing architecture, therefore
it might be possible that the combination of all four controlled NOT gates is easier to
implement. This yields a new gate Cent&loc

01,23 = C12C
ent
01,23C03, shown in equation (3.6),

which is constructed of the same base matrices U , D, UH and DH as the Cent
01,23 gate,

but in a different arrangement.
As the qubits were encoded in a different order, classical post-processing, i.e. bit

permutation, is necessary, in order to receive the same results as in the next-neighbour
cut. If Simon’s circuit is a subroutine in a quantum algorithm, SWAP gates need to be
applied, if the next subroutine is processed in a different cut, to ensure the correctness
of further quantum computation.

3.2.3 Next-next-neighbour cut

In the next-next-neighbour cut the first and the third qubit and the second and the
last qubit are each embedded in a ququart. Therefore, the C02 and C13 gates become
local in the first and second ququart, respectively. This can be seen in the quantum
circuit, shown in figure 3.9, where H10 is the same Hadamard gate as in the inner-
outermost cut and the four controlled NOT gates are exactly the same gates as in the

32

inner-outermost cut, but in a different order. The local ququart gates C02 = CNOT⊗14

and C13 = 14 ⊗ CNOT are built again of a CNOT gate and the identity matrix. The
embedded two-qubit gates C03 and C12 are equal to the C02 and C13 gates of the inner-
outermost cut, respectively. The C03 gate is also equal to the C03 gate of the first cut
which means this gate is present in all three different cuts. These relations are also
shown in equation (3.7).

C02 = C03_IO−C C03 = C02_IO−C = C03_NN−C C12 = C13_IO−C C13 = C12_IO−C

(3.7)

|002⟩4 H10 C02 C12 H10

|013⟩4 H10 C03 C13 H10

Figure 3.9: Next-next-neighbour cut for the four qubit Simon’s circuit. The first and third
qubit aswell as the second and fourth qubit are each embedded in a ququart.

The embedded two-qubit gates are already aligned next to each other so they can
be combined again to a Cent

01,23 gate which is equal to the Cent&loc
01,23 of the second cut.

Combining the two local ququart gates and the two embedded two-qubit gates yields
a controlled NOT gate that encompasses all four gates Cent&loc

01,23 which is equal to the
Cent

01,23 gate of the inner-outermost cut.
The number of entangling gates can be reduced to one for any cut so by performing

this cut analysis no obvious advantage could be gained. The reason that the number
of entangling gates can be reduced to one for any cut lies in the symmetry of Simon’s
circuit, which implicates that all relevant commutators are zero. The structure of the
entangling gates in the first cut is different than in the other two cuts, therefore it is up
to the quantum computing architecture which gates are easy to implement and therefore
choose the best cut for this architecture. One other way to quantify the advantage of
a certain cut is to compute the entanglement power of these controlled NOT gates, to
compare which one has the lowest cost to create this kind of entanglement.

In the next section, the qudit circuit compression formalism is applied to the QFT,
where it is shown that the number of two-qudit gates is cut-dependent, in contrast to
the 4-qubit Simon’s circuit.

3.3 Quantum Fourier Transform
The quantum Fourier transform is the quantum analogue to the discrete Fourier trans-
form, covered in section 2.4.2. If the QFT is done on a single high-dimensional quantum

33

system with a single gate, this gate is exactly the DFT matrix. As the size of the DFT
matrix increases exponentially by increasing the number of bits, this approach is not
scalable.

In the following sections, the qudit circuit compression is applied to the simplest
cases of the QFT on 2n qubits. In this process, the different cuts are discussed and
in the last sections, the insights are generalized to any number of qudits and as a
consequence a formula for the number of two-qudit gates is derived as a function of the
input qubits N and qudit dimension d.

As already discussed for Simon’s circuit, classical post processing is necessary for all
cuts, but the next-neighbour cut, to obtain the correct results. As the circuit for the
QFTN , defined in figure 2.3, uses SWAP gates at the end, the cut-dependent classical
post-processing can be combined with the SWAP-post-processing. If the QFT is a
subroutine in a quantum algorithm, the corresponding SWAP gates, that match the
cut of the next quantum subroutine, need to be applied to receive the correct results.
For the rest of this chapter, the SWAP gates are typically omitted, as the precise
structure depends on the use case and can often be handled classically.

3.3.1 2-qubit QFT

The circuit for the QFT for two qubits can be seen in figure 3.10. It consists of
Hadamard gates H and a controlled rotation gate R2. The two qubits can be em-
bedded in a single ququart, therefore, there exists only one possible cut. The first
Hadamard gate H becomes a H10 = H ⊗12 gate, the controlled rotation gate, which is
a two-qubit gate becomes a local ququart gate and the last Hadamard gate becomes a
H01 = 12 ⊗H gate. These three local ququart gates can be combined to a single local
ququart gate, which is equivalent to the DFT2 matrix.

|x0⟩2 H R2

|x1⟩2 H

Figure 3.10: Quantum Fourier transform for two qubits

3.3.2 4-qubit QFT embedded in two ququarts

The QFT for four qubits is shown in the quantum circuit 3.12, which consists of
Hadamard gates H and controlled rotation gates Ri, where the index i defines the
phase, which is applied to the qubit as defined in equation (2.11). Similar to the previ-
ous section, four qubits are involved, therefore, there exist three different cuts. In figure

34

3.11, these three cuts are shown, where the blue nodes represent the qubits |xi⟩, the red
rectangles the ququart embedding |xij⟩ and the edges are the controlled rotation gates
Ri. In all three cuts, the embedded two-qubit gates Rij are built of the base matrices
Ai and Bi, shown in equation (3.8), two-qubit controlled rotation gates Ri and identity
matrices. The Cij matrix, shown in equation (3.9), is the multiplication of the base
matrices Ai and Bj and is used in the compressed controlled rotation gates. In the
following subsections, the three different cuts, shown in figure 3.11, are discussed.

|x0⟩ |x1⟩

|x3⟩ |x2⟩

(a) Next-neighbour cut

|x0⟩ |x1⟩

|x3⟩ |x2⟩

(b) Inner-outermost cut

|x0⟩ |x1⟩

|x3⟩ |x2⟩

(c) Next-next-neighbour cut

Figure 3.11: All possible cuts of the QFT4, where each cut embeds four qubits (blue nodes
|xi⟩) in two ququarts (red rectangles). The edges represent a controlled rotation gate Ri.

Ai =

�
1 0
0 ωi

�
⊗ 12 =

��
1 0 0 0
0 1 0 0
0 0 ωi 0
0 0 0 ωi

�� Bi = 12 ⊗
�
1 0
0 ωi

�
=

��
1 0 0 0
0 ωi 0 0
0 0 1 0
0 0 0 ωi

��
(3.8)

Cij = Ai · Bj

��
1 0 0 0
0 ωj 0 0
0 0 ωi 0
0 0 0 ωiωj

�� (3.9)

Next-neighbour cut

In the next-neighbour cut the first two and the last two qubits are each embedded in
a ququart. Therefore, the first and last R2 gate in the quantum circuit 3.12, which act
only on the first and last two qubits respectively, become the local ququart gates R01

and R23, shown in equation (3.10). This can also be seen in the graph 3.13a, where
the R01 and R23 gate are visualized by the red and green edge that are inside the
red rectangles, which represent the next-neighbour cut ququart embedding. For better

35

|x0⟩2 H R2 R3 R4

|x1⟩2 H R2 R3

|x2⟩2 H R2

|x3⟩2 H

Figure 3.12: Quantum Fourier transform for four qubits

|x0⟩ |x1⟩

|x3⟩ |x2⟩

(a)

|x01⟩

|x23⟩

(b)

|x01⟩

|x23⟩

(c)

Figure 3.13: Qudit circuit compression for the QFT4, where four qubits (blue nodes |xi⟩) are
embedded in two ququarts (red nodes |xij⟩). In (a), the next-neighbour cut is shown, where
two of the six controlled rotation gates become local ququart gates and four remain embedded
two-qubit gates, as can be seen in (b). In (c), these four gates are compressed to a single
two-ququart gate R01,23.

36

identification of the gates each controlled rotation gate Rij is labeled with two indices,
where the first index represents the target qubit and the second one the control qubit.
The phase information, which was encoded in the index before, is not lost as the phase
index of ωk is always k = j − i + 1. The other four controlled rotation gates become
embedded two-qubit gates, which are constructed of the base matrices Ai and Bi, as
can be seen in equation (3.11). These four embedded two-qubit gates are represented
by the two red and blue edges in the graph 3.13b and the respective quantum circuit
for the next-neighbour cut of the QFT4 is depicted in figure 3.14.

R01 = R2 ⊗ 14 R23 = 14 ⊗R2 (3.10)

R02 =

��
14

14

A3

A3

�� R03 =

��
14

14

B4

B4

��

R12 =

��
14

A2

14

A2

�� R13 =

��
14

B3

14

B3

��
(3.11)

|x01⟩4 H10 R01 R02 R03 H01 R12 R13

|x23⟩4 H10 R23 H01

Figure 3.14: Next-neighbour cut for the QFT4 realized on two ququarts. The controlled rota-
tion gates R01 and R23 become local ququart gates in the first and second ququart respectively.

The embedded two-qubit gates, which are next to each other in the quantum circuit
3.14, R02 and R03 and the gates R12 and R13 can be combined to the two-ququart gates
R0,23 and R1,23, respectively. These gates are built of the Cij base matrices, as can be
seen in equation (3.12). The resulting quantum circuit can be seen in figure 3.15.

R0,23 =

��
14

14

C34

C34

�� R1,23 =

��
14

C23

14

C23

�� (3.12)

In order to reduce the remaining two-ququart entangling gates to one, the commuta-
tor [R0,23, H01 ⊗14] or [R1,23, H01 ⊗14] needs to be zero. As the commutator regarding

37

|x01⟩4 H10 R01 R0,23 H01 R1,23

|x23⟩4 H10 R23 H01

Figure 3.15: Next-neighbour cut for the QFT4 realized on two ququarts. The embedded two-
qubit gates R02(R12) and R03(R13) can be combined to a two-ququart gate R0,23(R1,23).

R0,23 is zero, while the other one with R1,23 is non-zero, the R0,23 gate can only be
shifted to the right side. Finally, the two two-ququart gates can be compressed to a
single two-ququart gate R01,23, shown in equation (3.13). The final quantum circuit is
shown in figure 3.16.

R01,23 =

��
14

C23

C34

C23C34

�� (3.13)

|x01⟩4 H10 R01 H01 R01,23

|x23⟩4 H10 R23 H01

Figure 3.16: Next-neighbour cut for the QFT4 realized on two ququarts. The commutator
[R0,23, H01 ⊗ 14] is zero, therefore the order of these gates can be reversed and the two two-
ququart gates can be compressed to a single two-ququart gate R01,23.

In conclusion, six two-qubit gates could be reduced to one two-ququart gate and two
local ququart gates. This can also be seen in the graphs 3.13b and 3.13c, where four
embedded two-qubit gates represented by the red and blue edges are compressed to a
single two-ququart gate. As the commutators [R01, H01] and [R23, H10] are non-zero, it
is not possible to reduce the circuit even further. Likewise, the local embedded qubit
Hadamard gates H10 and H01 cannot be combined to a local ququart Hadamard gate
H11 because the commutators [R01, H10] and [R23, H01] are non-zero.

Intuitively, it can be understood that the R0,23 gate can be switched with the H01

gate while it is impossible with R1,23. The H01 gate changes the state of the second
qubit |x1⟩ inside the ququart |x01⟩, therefore R0,23 can be exchanged with H01, since
it does not depend on the qubit |x1⟩. This also applies to aforementioned non-zero
commutators to construct local ququart Hadamard gates.

38

Inner-outermost cut

In the inner-outermost cut the first and the last qubit and the second and third qubit
are each embedded in a ququart, as it is shown in the graph 3.11b. Therefore, the
two-qubit gates R03 and R12 become local ququart gates, shown in equation (3.14).
The other four controlled rotation gates become embedded two-qubit gates, which are
all constructed by the same base matrices Ai and Bi, which can be seen in equation
(3.15). The quantum circuit for the inner-outermost cut is shown in figure 3.17.

R03 = R4 ⊗ 14 R12 = 14 ⊗R2 (3.14)

R01 =

��
14

14

A2

A2

�� R02 =

��
14

14

B3

B3

��

R13 =

��
14

A3

14

A3

�� R23 =

��
14

B2

14

B2

��
(3.15)

|x03⟩4 H10 R01 R02 R03 H01

|x12⟩4 H10 R12 R13 H01 R23

Figure 3.17: Inner-outermost cut for the QFT4 realized on two ququarts. The controlled
rotation gates R03 and R12 become local gates instead of R01 and R23, like it is the case for
the next-neighbour cut.

The embedded two-qubit gates R01 and R02 can be directly combined to the two-
ququart gate R0,12. Since the commutator [14 ⊗ H01, R13] is zero, while the other
one with R23 is non-zero, the H01 gate can only be shifted to the left. Consequently,
the embedded two-qubit gates R13 and R23 can be combined to a two-ququart gate
R12,3. The circuit cannot be further reduced, since the R01 gate cannot commute with
the H10 gate in the second ququart, because both gates act on the first qubit |x1⟩
embedded in the second ququart |x1,2⟩. Analogously, the R23 gate cannot commute
with the H01 gate in the second ququart, therefore, it is impossible to reduce the
number of entangling gates one in this cut, which is verified by all non-zero commutator
combinations. Consequently, the next-neighbour cut is superior to the inner-outermost

39

cut in terms of number of two-ququart gates.

R0,12 =

��
14

14

C23

C23

�� R12,3 =

��
14

C23

14

C23

�� (3.16)

|x03⟩4 H10 R0,12 R03 H01

|x12⟩4 H10 R12 H01 R12,3

Figure 3.18: Compressed inner-outermost cut for the QFT4 realized on two ququarts. The
embedded two-qubit gates R01(R13) and R02(R23) can be combined to the two-ququart gate
R0,12(R12,3).

Next-next-neighbour cut

The quantum circuit for the next-next-neighbour cut is shown in figure 3.19. There, the
controlled rotation gates R02 and R13 become local ququart gates due to the ququart
embedding |x0,2⟩ and |x1,3⟩. The other four two-qubit controlled rotation gates become
embedded two-qubit gates and they are equal to the embedded two-qubit gates of the
first and second cut, which can be seen in equation (3.17). The R01 and R23 gate,
which become local gates in the first cut, are exactly equal to the respective gates in
the second cut. For the remaining two gates R03 and R12 it is exactly the same just
vice versa, since they are equal to the gates of the first cut and are the local gates in
the second cut.

R01 = R01_IO−Cut R02 = R3 ⊗ 14 R03 = R03_NN−Cut

R12 = R12_NN−Cut R13 = 14 ⊗R3 R23 = R23_IO−Cut

(3.17)

|x02⟩4 H10 R01 R02 R03 R23 H01

|x13⟩4 H10 R12 R13 H01

Figure 3.19: Next-next-neighbour cut for the QFT4 realized on two ququarts. The controlled
rotation gates R02 and R13 become local ququart gates.

40

The number of entangling gates in the quantum circuit 3.19 cannot be reduced
directly, because there are no entangling gates next to each other. In order to compress
two entangling gates to one, the entangling gate and the adjacent local gate extended
by the identity need to commute, i.e. [R01, R02] = 0 and [R12, (14 ⊗ H01)R13] = 0, so
that the order of these gates can be reversed. As a result the embedded two-qubit gates
R01 (R12) and R03 (R23) are aligned next to each other and can be compressed to a
two-ququart entangling gate R0,13 (R12,23). In contrast to all other two-ququart gates
so far, the R12,23 cannot be illustrated as a gate controlled by a qudit as can be seen in
the quantum circuit 3.20, because the second qubit embedded in the first ququart acts
as a control and target qubit at the same time.

|x02⟩4 H10 R02 R0,13

R12,23

H01

|x13⟩4 H10 R13 H01

Figure 3.20: Compressed next-next-neighbour cut for the QFT4 realized on two ququarts.
The embedded two-qubit gates R01(R12) and R03(R23) can be combined to a two-ququart
entangling gate R0,13(R12,23).

The quantum circuit, shown in figure 3.20, is not further reducible as no combination
of gates commutes in a way that the two remaining two-ququart gates can be reduced
to a single one. More specifically, the R03 gate commutes with 14 ⊗ H10 so it would
be possible to combine the gates R03 and R12 but the remaining embedded two-qubit
gates R01 and R23 would remain, which would result in three remaining entangling
gates. This is due to the fact that the R01 gate does not commute with the H10 gate of
the second ququart, nor does the R23 gate commute with the H01 in the second ququart,
because they affect the same qubits.

In conclusion, the quantum circuit for the next-next-neighbour cut, shown in figure
3.20, has the lowest number of two-ququart gates when restricted to the gate set of high-
dimensional Hadamard and controlled rotation gates. It is always possible, to express
a quantum circuit, which is embedded in only two qudits, with a single two-qudit gate.
In the case of the aforementioned quantum circuit, it would be possible to create a
unitary gate which includes all local gates which are in between the two two-ququart
gates, i.e. Uent = R12,23(14 ⊗H01)R13(14 ⊗H10)R0,13.

This unitary gate Uent is equal to the DFT4 matrix up to the remaining local gates
H10, R02 and H01 in the first ququart, consequently DFT4 = (H01⊗14)UentR02(H10⊗14).
The entire QFT4 matrix, which is equivalent to the DFT4 matrix, as mentioned in
section 2.4.2, reduces to a local quhex gate if both ququarts are embedded in one

41

quhex, which is shown in equation (3.18) for both Hadamard matrix notations.

QFT4 = H0001R23H0010R13R12H0100R03R02R01H1000

= H3R23H2R13R12H1R03R02R01H0

(3.18)

In order to generalize this approach to N-qubits, it is necessary to understand the
structure of the high-dimensional controlled rotation gates Rij. Therefore, the analysis
of the QFT6 and the QFT8 is necessary, but as the number of cuts vastly increases by
increasing the number of qubits, only the next-neighbour cut, which performed best in
the case of the QFT4, is taken into consideration.

3.3.3 6-qubit QFT

. . .

. . .

. . .

. . .

. . .

. . .

|x0⟩2 H R2 R3 R4 R5 R6

|x1⟩2 H R2 R3 R4 R5

|x2⟩2
|x3⟩2
|x4⟩2
|x5⟩2

. . .

. . .

. . .

. . .

. . .

. . .

|x0⟩2
|x1⟩2
|x2⟩2 H R2 R3 R4

|x3⟩2 H R2 R3

|x4⟩2 H R2

|x5⟩2 H

Figure 3.21: Quantum Fourier transform for six qubits

The quantum circuit for the QFT6, shown in figure 3.21, consists of local qubit Hadamard
matrices H and controlled rotation matrices Ri. Since 26 = 64 distinct states are possi-
ble, the QFT6 could be embedded in a 64-dimensional quantum system, but due to the

42

fact that addressing 64 distinct quantum states in a single qudit poses a serious experi-
mental challenge, this approach is impracticable at the moment. As one ququart (quoct)
embeds four (eight) different states, three ququarts 43 = 64 (two quocts 82 = 64) are
needed to embed the 64 different states. It would also be possible to embed the QFT6

in one ququart and one quhex 4× 16 = 64 but in the following subsections, the QFTN

is only discussed in pure embeddings, which means that the embedding only consists
of one type of qudit, because these are the most relevant use cases.

QFT6 embedded in three ququarts

|x0⟩

|x1⟩

|x2⟩

|x3⟩

|x4⟩

|x5⟩

(a)

|x01⟩

|x45⟩ |x23⟩

(b)

|x01⟩

|x45⟩ |x23⟩

(c)

Figure 3.22: Qudit circuit compression for the QFT6. Six qubits (blue nodes |xi⟩) are embed-
ded in three ququarts (red nodes |xij⟩). In (a), the next-neighbour cut is shown, where three
of the 15 controlled rotation gates become local ququart gates and twelve remain embedded
two-qubit gates as can be seen in (b). The red, blue, green and purple edges represent R0j ,
R1j , R2j and R3j gates, respectively. In (c), four embedded two-qubit gates each are com-
pressed to a single two-ququart gate.

The quantum circuit for the QFT6 embedded in three ququarts in the next-neighbour
cut is shown in figure 3.23, where the controlled rotation gates R01, R23 and R45 become
local ququart gates due to the cut specific embedding {0, 1}, {2, 3} and {4, 5}. This can
also be seen in the graph 3.22a, where two qubits |xi⟩ (blue nodes) are each embedded
in a ququart |xij⟩ (red rectangles). All gates (edges), which are inside a red rectan-
gle which represents the next-neighbour cut ququart embedding, become local ququart
gates, which are the red, green and orange edge R01, R23 and R45, respectively. In 3.22a,
it is observable that the QFT represents a fully connected graph, where each edge rep-
resents a controlled rotation gate with the target qubit |xi⟩ and the control qubit |xj⟩,
where i < j holds for any gate. The remaining twelve embedded two-qubit gates can

43

be seen in figure 3.22b. In the following section, it is proven that these twelve gates
can be compressed to only three two-ququart gates, which represent a fully connected
graph again, as can be seen in figure 3.22c.

All high-dimensional controlled rotation gates that have a shape of 64 × 64 follow
a specific structure, as can be seen in the following equations. In order to shorten the
notation in these equations, the notation X⊗y =

y−1
i=0 X is adapted to X⊗y = 1y⊗X =

block_diagy(X). The matrices below are shown in greater resolution in appendix B.

R01 =

132 �
116

ω2116

� R02 =

132 �
18

ω318

�⊗2

 R03 =

132 �
14

ω414

�⊗4

 R04 =

132 �
12

ω512

�⊗8

 R05 =

132 �
1

ω6

�⊗16

R12 =

116 �
18

ω218

�⊗2

R13 =

116 �
14

ω314

�⊗2

⊗2

R14 =

116 �
12

ω412

�⊗4

⊗2

R15 =

116 �
1

ω5

�⊗8

⊗2

R23 =

18 �
14

ω214

�⊗4

R24 =

18 �
12

ω312

�⊗2

⊗4

R25 =

18 �
1

ω4

�⊗4

⊗4

R34 =

14 �
12

ω212

�⊗8

R35 =

14 �
1

ω3

�⊗2

⊗8

R45 =

12 �
1

ω2

�⊗16

The controlled rotation gates R0j shown above are block diagonal matrices composed
of a 32-dimensional identity matrix and a base matrix Aabc = diag(1a, ω

b1a)
⊗c, where

the indices a, b and c depend on the indices i and j of Rij and N . The controlled
rotation gates R1j are block diagonal matrices composed of two blocks of Babcd, which
is again a block diagonal matrix of a 16-dimensional identity matrix and the base matrix
Aabc, i.e. Babcd = diag(1d, Aabc). This can be continued for the matrices R2j, R3j and
R45, which implicates that the dimensionality of the identity matrix d of Babcd decreases
with increasing index i, while the number of blocks of Babcd increases with i. The index
a of the base matrix Aabc decreases as j increases, while the index c increases with j.
The index b which specifies the phase ω depends on both i and j, more specifically b
increases with index j but decreases with i. The exact relationship between the indices
a, b, c, d and i, j and N is given in equation (3.19). Therefore, Rij(N) can be expressed
as a combination of identity matrices and ω, which depend on the indices i and j and
the total number of qubits N , which is 6 for the QFT6.

Rij(N) = 12i ⊗
1x

12k ⊗
�
1y

ωk1y

� with

��
x = 2N−i−1

y = 2N−j−1

k = j − i+ 1

(3.19)

Equation (3.19) does not only hold for the QFT6 but for any number of input qubits
N . Furthermore, the formula does not make any restrictions regarding the dimension-
ality of the qudits involved, which means that it can be used for the construction of
any high-dimensional controlled rotation gate Rij in an arbitrary qudit embedding in

44

. . .

. . .

. . .

|x01⟩4 H10 R01 R02 R03 R04 R05 H01 R12 R13

|x23⟩4
|x45⟩4

.

.

.

|x01⟩4 R14 R15

|x23⟩4 H10 R23 R24 R25

|x45⟩4

. . .

. . .

. . .

|x01⟩4
|x23⟩4 H01 R34 R35

|x45⟩4 H10 R45 H01

Figure 3.23: Next-neighbour cut for the QFT6 realized on three ququarts. The controlled
rotation gates R01, R23 and R45 become local ququart gates due to the next-neighbour-cut
embedding.

45

the next-neighbour cut. This formula is used throughout this thesis, especially in the
upcoming sections 3.3.4 and 3.3.5.

Due to the symmetry of the QFT in the next-neighbour cut, two embedded two-
qubit gates, which affect the same ququarts always align next to each other, hence can
be compressed to a two-ququart gate, which yields quantum circuit 3.24.

. . .

. . .

. . .

|x01⟩4 H10 R01 R0,23 R0,45 H01 R1,23 R1,45

|x23⟩4
|x45⟩4

. . .

. . .

. . .

|x01⟩4
|x23⟩4 H10 R23 R2,45 H01 R3,45

|x45⟩4 H10 R45 H01

Figure 3.24: Compressed next-neighbour cut for the QFT6 realized on three ququarts. Adja-
cent embedded two-qubit gates which affect the same ququarts can be compressed to a single
two-ququart gate, e.g. R0,23 = R03R02.

In order to further reduce the number of two-ququart gates, gates acting on the
same ququart must be compressed. However, since no two-ququart gates are adjacent
anymore, it must be verified that they commute with the intermediate gates. R0,23

commutes with R0,45 because they are both diagonal matrices and [R0,23, H01 ⊗ 116] is
also zero because H01 acts only on the second qubit |x1⟩ inside the first ququart |x01⟩ and
R0,23 acts only on the qubits {0, 2, 3} inside the first two ququarts. Therefore, R0,23 can
be combined with R1,23 to the two-ququart gate R01,23 = R1,23R0,23. However, it would
have not been possible to shift the R1,23 gate to the left of H01 because both gates act on
the second qubit |x1⟩. For the two-ququart gate pair R0,45 and R1,45, it is not possible
to move the R1,45 gate to the left side of H01, but R0,45 can be interchanged with H01 for
the same reason as before, which yields the gate R01,45 = R1,45R0,45. The same applies
to the gates R2,45 and R3,45, because of the commutators [R2,45,14 ⊗ H01 ⊗ 14] = 0
and [R3,45,14 ⊗ H01 ⊗ 14] ̸= 0, which yields the gate R23,45 = R3,45R2,45. All three
compressed two-ququart gates Rij,kl encompass four two-qubit gates each, which is also
shown in figure 3.22. The compressed quantum circuit, where all these commutator
relations were used, is shown in figure 3.25.

Gates which affect only the first two ququarts R0,23, R1,23 and R01,23 are equal to the
corresponding gates of the QFT4 up to the extension of the identity, i.e. R01,23_QFT6 =

46

. . .

. . .

. . .

|x01⟩4 H10 R01 H01 R01,23 R01,45

|x23⟩4
|x45⟩4

. . .

. . .

. . .

|x01⟩4
|x23⟩4 H10 R23 H01 R23,45

|x45⟩4 H10 R45 H01

Figure 3.25: Next-neighbour cut for the QFT6 realized on three ququarts. Two-ququart gates
R0,23, R0,45 and R2,45 can be combined with R1,23, R1,45 and R3,45 respectively, which yields
the two-ququart gates R01,23, R01,45 and R23,45 respectively, because the commutators with
intermediate gates are zero.

R01,23_QFT4 ⊗ 14.
In summary, there are 15 two-qubit gates in the qubit embedding, which reduce to

twelve embedded two-qubit gates and three local ququart gates by the next-neighbour
cut of the ququart embedding. These twelve embedded two-qubits gates are then com-
pressed to six two-ququart gates, which can then be reduced to only three two-ququart
gates by applying the commutator rules.

QFT6 embedded in two quocts

The graphical representation of the next-neighbour cut of the quoct embedding can be
seen in figure 3.26, where the blue and green nodes represent qubits |xi⟩ and quocts
|xijk⟩, respectively and the edges represent controlled rotation gates. For each quoct,
three two-qubit gates are transformed into a local quoct gate. These are represented
for the first quoct by the two red edges R01 and R02 and the blue edge R12, and for
the second quoct by the two purple edges R34 and R35 and the orange edge R45, as
illustrated in figure 3.26a. Therefore, 15 two-qubit gates become six local quoct gates
and nine are transformed to embedded two-qubit gates in a quoct embedding, contrary
to the embedded two-qubit gates in a ququart embedding. The remaining nine gates
between the two quocts can be compressed to a single two-quoct gate, which is shown
in the figures 3.26b and 3.26c, which is proven in the following.

The quantum circuit, that represents the graph 3.26b, is shown in figure 3.27. The
adjacent embedded two-qubit gates Ri3, Ri4, and Ri5 can be compressed to two-quoct
gates Ri,345. Therefore, the number of entangling gates is reduced from nine to three,

47

|x0⟩

|x1⟩

|x2⟩

|x3⟩

|x4⟩

|x5⟩

(a)

|x012⟩

|x345⟩

(b)

|x012⟩

|x345⟩

(c)

Figure 3.26: Qudit circuit compression for the QFT6 in the quoct embedding. Six qubits (blue
nodes |xi⟩) are embedded in two quocts (green nodes |xijk⟩). In (a), the next-neighbour cut is
shown, where six of the 15 controlled rotation gates become local quoct gates and nine remain
embedded two-qubit gates, as can be seen in (b). The red, blue and green edges represent
R0j , R1j and R2j gates, respectively. In (c), nine embedded two-qubit gates are compressed
to a single two-quoct gate.

. . .

. . .

|x012⟩8 H0 R01 R02 R03 R04 R05 H1 R12 R13 R14

|x345⟩8

. . .

. . .

|x012⟩8 R15 H2 R23 R24 R25

|x345⟩8 H0 R34 R35 H1 R45 H2

Figure 3.27: Next-neighbour cut for the QFT6 embedded in two quocts. Controlled rotation
gates that only include the indices {0, 1, 2} and {3, 4, 5} become local quoct gates in the first
and second quoct, respectively. Gates that include indices of both sets are non-local embedded
two-qubit gates.

48

which is shown in figure 3.28.

. . .

. . .

|x012⟩8 H0 R012 R0,345 H1 R12 R1,345 H2 R2,345

|x345⟩8

. . .

. . .

|x012⟩8
|x345⟩8 H0 R345 H1 R45 H2

Figure 3.28: Compressed next-neighbour cut for the QFT6 embedded in two quocts. Adjacent
emebedded two-qubit gates Ri3, Ri4 and Ri5 can be compressed a two-quoct gate Ri,345.

To reduce the number of entangling gates to one, it is required that R0,345 commutes
with both H1 and H2 and that R1,345 commutes with H2. As R0,345 does not act on the
qubits 1 and 2 inside the first quoct, it commutes with both Hadamard gates H1 and
H2. The commutator [R1,345, H2 ⊗ 18] is also zero because R1,345 does not act on the
second qubit. Therefore, all two-quoct gates can be compressed to a single two-quoct
gate R012,345 = R2,345R1,345R0,345, which yields the quantum circuit in figure 3.29.

. . .

. . .

|x012⟩8 H0 R012 H1 R12 H2 R012,345

|x345⟩8

. . .

. . .

|x012⟩8
|x345⟩8 H0 R345 H1 R45 H2

Figure 3.29: Compressed next-neighbour cut for the QFT6 embedded in two quocts. The
two-qucot gates R0,345 and R1,345 can be shifted to the right, since they commute with all
local gates in between, which yields a single compressed two-quoct gate R012,345.

As already seen, in the ququart embedding of the QFT4 and QFT6 it is always
possible to shift the controlled rotation gates to the right, but it is always impossible to
shift the gates to the left. This is also the case for the QFT6 in the quoct embedding.
In the next section, it is examined if this trend continues for the QFT8, but also if it is
always possible to reduce the number of entangling gates to one for each qudit pair.

3.3.4 8-qubit QFT

The quantum circuit for the QFT8 in the qubit embedding is not explicitly shown,
but as the general quantum circuit for the QFTN is given in figure 2.3, the derivation

49

|x0⟩
|x1⟩

|x2⟩

|x3⟩

|x4⟩
|x5⟩

|x6⟩

|x7⟩

(a)

|x01⟩ |x23⟩

|x45⟩|x67⟩

|x01⟩ |x23⟩

|x45⟩|x67⟩

(b)

|x4567⟩|x0123⟩

|x4567⟩|x0123⟩

|x0123⟩ |x4567⟩

(c)

Figure 3.30: Qudit circuit compression for the QFT8 in the next-neighbour cut, where in (a)
eight qubits (blue nodes |xi⟩) are embedded in four ququarts (red rectangles). 28 controlled
rotation gates become four local ququart gates and 24 remain embedded two-qubit gates. In
(b), four ququarts (red nodes |xij⟩) are embedded in two quhexes (yellow rectangles). There,
four embedded two-qubit gates become one two-ququart gate, which yields a fully connected
graph for four ququarts connected by six two-ququart gates. In (c), two quhexes can execute
the QFT8 by either 16 embedded two-qubit gates, four embedded two-ququart gates or a single
two-quhex gate. It is important to note that the four black edges in the bottom graph in (b)
are embedded two-ququart gates in two quhexes, while the middle graph in (c) shows four
two-quhex gates.

50

of the corresponding circuit is trivial. The QFT8 entails 28 = 256 distinct states,
which means it could be executed with a single unitary matrix DFT8 which possesses
256 × 256 = 65536 entries, but due to aforementioned reasons this is impractical.
Therefore, it can be embedded in four ququarts 44 = 256 or in two quhexes 162 = 256.
It is impossible to embed the QFT8 only in quocts as one quoct embedds three qubits,
but eight is not divisible by three without remainder. As N increases the number
of possible embeddings explodes as it is possible to combine qudits of all dimensions.
Therefore, it would be possible to use one quhex and two ququarts or two quocts and
one ququart or even one quhex, one quoct and one qubit.

In the following only those embeddings, which utilize only one type of qudit, which
are only the ququart and quhex embeddings for the QFT8, are investigated in the
next-neighbour cut. These embeddings are shown in figure 3.30, where the blue, red
and yellow nodes represent the qubits |xi⟩, the ququarts |xij⟩ and the quhexes |xijkl⟩,
respectively. It can be observed that the QFT consistently yields a fully connected
graph across all embeddings in the next-neighbour cut.

QFT8 embedded in four ququarts

The next-neighbour cut of the QFT8 embedded in four ququarts is shown in the quan-
tum circuit 3.31. Due to next-neighbour cut embedding every controlled rotation gate
Rij becomes a local ququart gate, if it fulfills the conditions j− i = 1 and i mod 2 = 0,
which yields the gates R01, R23, R45 and R67. This quantum circuit represents the
top graph in figure 3.30b, where all embedded two-qubit gates are shown. Due to the
next-neighbour cut ququart embedding, there are always two embedded two-qubit gates
adjacent, therefore they can be compressed to a two-ququart gate, e.g. R0,23 = R03R02.
This halves the amount of entangling gates and by shifting the controlled rotation gates
to the right of H01, which is always possible, all gates that affect the same ququarts
can be combined, which halves the amount of entangling gates again. The resulting
quantum circuit is shown in figure 3.32, which is equivalent to the bottom graph in
figure 3.30b.

In conclusion, 28 two-qubit gates become 4 local ququart gates and the remaining
24 embedded two-qubit gates are reduced by the factor of four to six two-ququart gates,
which are graphically represented as the six edges in the fully connected graph, shown
in the bottom figure 3.30b.

In the following section, the QFT8 is analyzed in the context of the next-neighbour
cut for four ququarts embedded within two quhexes, in order to assess whether the
same principles of qudit circuit compression — from four qubits to two ququarts —
also apply to higher-dimensional systems.

51

. . .

. . .

. . .

. . .

|x01⟩4 H10 R01 R02 R03 R04 R05 R06 R07 H01

|x23⟩4
|x45⟩4
|x67⟩4

.

.

.

.

|x01⟩4 R12 R13 R14 R15 R16 R17

|x23⟩4 H10 R23 R24

|x45⟩4
|x67⟩4

.

.

.

.

|x01⟩4
|x23⟩4 R25 R26 R27 H01 R34 R35 R36 R37

|x45⟩4 H10

|x67⟩4

. . .

. . .

. . .

. . .

|x01⟩4
|x23⟩4
|x45⟩4 R45 R46 R47 H01 R56 R57

|x67⟩4 H10 R67 H01

Figure 3.31: Next-neighbour cut of the QFT8 realized on four ququarts. 28 two-qubit gates be-
come four local ququart gates R01, R23, R45 and R67 due to the next-neighbour-cut embedding
and all other Rij gates represent embedded two-qubit gates.

52

. . .

. . .

. . .

. . .

|x01⟩4 H10 R01 H01 R01,23 R01,45 R01,67

|x23⟩4 H10 R23

|x45⟩4
|x67⟩4

.

.

.

.

|x01⟩4
|x23⟩4 H01 R23,45 R23,67

|x45⟩4 H10 R45 H01 R45,67

|x67⟩4

. . .

. . .

. . .

. . .

|x01⟩4
|x23⟩4
|x45⟩4
|x67⟩4 H10 R67 H01

Figure 3.32: Compressed next-neighbour cut for the QFT8 realized on four ququarts. Adjacent
controlled rotation gates are compressed and can be shifted to the right of H01, therefore, they
can be combined with the two-ququart gate that affects the same ququarts. This reduces the
number of entangling gates by a factor of four.

53

QFT8 embedded in two quhexes

The next-neighbour cut of the QFT8 for four ququarts is shown in figure 3.30b, where
the red nodes represent the ququarts |xij⟩, the yellow rectangles the next-neighbour cut
quhex embedding and the edges represent embedded two-qubit gates and embedded
two-ququart gates for the top and bottom graph, respectively. The next-neighbour cut
quhex embedding yields the quhexes |x0123⟩ and |x4567⟩. The controlled rotation gates
manifest as either 16 embedded two-qubit gates, four embedded two-ququart gates or
one two-quhex gate, which can be seen in figure 3.30.

. . .

. . .

|x0123⟩16 H0 R01 R02 R03 R04 R05 R06 R07 H1

|x4567⟩16

.

.

|x0123⟩16 R12 R13 R14 R15 R16 R17 H2 R23 R24

|x4567⟩16

.

.

|x0123⟩16 R25 R26 R27 H3 R34 R35 R36 R37

|x4567⟩16 H0

. . .

. . .

|x0123⟩16

|x4567⟩16 R45 R46 R47 H1 R56 R57 H2 R67 H3

Figure 3.33: Next-neighbour cut for the QFT8 embedded in two quhexes. Controlled rotation
gates that only include the indices {0, 1, 2, 3} and {4, 5, 6, 7} become local quhex gates in
the first and second quhex, respectively. Gates that include indices of both sets manifest as
embedded two-qubit gates.

The quantum circuit that corresponds to the top graph of figure 3.30c is shown in
figure 3.33. There, the four edges for each color represent the 16 embedded two-qubit
gates Ri4, Ri5, Ri6 and Ri7, where i ∈ {0, 1, 2, 3} belongs to the red, blue, green and
purple edges, respectively. The ququarts |x01⟩ and |x23⟩ in the top graph of figure 3.30b,
are encompassed by the yellow rectangle (quhex embedding), which implicates that the
R02, R03 and R12, R13 gates become local quhex gates, which are shown as the red and
blue edges, respectively. Same applies to the local quhex gates R46, R47 and R56, R57

which represent the orange and cyan edges between |x45⟩ and |x67⟩. The local quhex
gates R01 (R45) and R23 (R67) for the first (second) quhex are not shown figure 3.30b,
because they are already local in the respective ququart and can only be seen as the

54

four edges inside the red rectangles (ququart embedding) of figure 3.30a, hence they
can also be seen as embedded local ququart gates.

The number of entangling gates of this quantum circuit can be reduced by multiply-
ing adjacent embedded two-qubit gates Ri,4567 =

�7
j=4 Rij, which yields the quantum

circuit 3.34. This quantum circuit is equivalent to the middle graph of figure 3.30c
where the red, blue, green and purple edge represent the gates R0,4567, R1,4567, R2,4567

and R3,4567, respectively. It is important to note that these four gates represent two-
quhex gates, whereas the four black edges that connect the yellow rectangles (quhex
embedding) in the bottom graph of figure 3.30b are embedded two-ququart gates. The
difference between those gates is, that the two-quhex gate acts on both ququarts inside
one of the participating quhexes, while the embedded two-ququart gate acts only on
one ququart inside one quhex. The edges of the embedded two-ququart gates are black,
because they are a mixture of two colors, for instance the embedded two-ququart gate
between the ququarts |x01⟩ and |x45⟩ is the combination of two red and blue edges,
which represents the gate R01,45 = R15R14R05R04. In order to achieve a corresponding
quantum circuit, which only uses embedded two-ququart gates it would be necessary
to reorder all gates, which feature the same ququarts, next to each other by shifting
them to the right of the Hadamard gates Hi. Although this circuit also possesses four
entangling gates it is inherently different than the quantum circuit 3.34, because it uses
two-quhex gates instead of embedded two-ququart gates.

Adjacent local controlled rotation gates can be combined to a single local quhex
gate, which consists of three and two local gates for the first and second qubit inside
the first quhex, respectively, i.e. R0123 = R03R02R01 and R123 = R13R12. The local
quhex gates of the second quhex are constructed in the same way.

As already mentioned in previous sections, it is always possible to shift the controlled
rotation gates to the right of Hi in the next-neighbour cut, because they do not affect
the same qubits inside the qudit. Therefore, all four remaining two-quhex gates can be
combined to a single two-quhex gate R0123,4567 =

�3
j=0 Rj,4567, which yields the quantum

circuit 3.35. It is important to note, that the controlled rotation matrices defined above
with the product symbol

�
, are in the wrong order, but as all controlled rotation gates

are diagonal matrices, they commute and therefore the order is irrelevant. In order
to ensure the correct order of non-commuting gates in the next section, a decreasing
product

�
is defined.

In summary, 28 two-qubit gates are reduced to 16 embedded two-qubit gates and 12
local gates by the quhex embedding. The remaining 16 gates are reduced by the factor
of four by combining adjacent gates to two-quhex gates. The remaining four two-quhex
gates can be compressed to a single two-quhex gate by rearranging the order of the
gates by using the commutator rules.

In the previous sections, it is observable that the qudit circuit compression of the
QFT in the next-neighbour cut follows specific rules. The number of entangling gates

55

. . .

. . .

|x0123⟩16 H0 R0123 R0,4567 H1 R123 R1,4567

|x4567⟩16

.

.

|x0123⟩16 H2 R23 R2,4567 H3 R3,4567

|x4567⟩16 H0 R4567

. . .

. . .

|x0123⟩16

|x4567⟩16 H1 R567 H2 R67 H3

Figure 3.34: Compressed next-neighbour cut for the QFT8 embedded in two quhexes. Four ad-
jacent embedded two-qubit gates are each compressed to two-quhex gates Ri,4567 =

�7
j=4Rij ,

with i ∈ {0, 1, 2, 3}. Local controlled rotation gates can be compressed to a local quhex gate,
e.g. R0123 = R03R02R01.

. . .

. . .

|x0123⟩16 H0 R0123 H1 R123 H2 R23 H3 R0123,4567

|x4567⟩16

. . .

. . .

|x0123⟩16

|x4567⟩16 H0 R4567 H1 R567 H2 R67 H3

Figure 3.35: Compressed next-neighbour cut for the QFT8 embedded in two quhexes. All
two-quhex gates Ri,4567 can be shifted to the right, because they commute with intermediate
Hadamard gates Hi, which yields the two-quhex gate R0123,4567 =

�3
j=0Rj,4567.

56

depends on the number of qubits involved N and the dimension of the qudit embedding.
In the upcoming section 3.3.5, the general structure of qudit circuit compression of the
QFTN is discussed. Based on these results, a formula for the number of entangling
gates is derived in section 3.3.6.

3.3.5 N-qubit QFT

The symmetry of the QFT in the next-neighbour cut yields a fully connected graph
for all dimensions. This means that the QFT embedded in any type of qudits can
be always represented as a fully connected graph until d = 2N , because at this point
the QFT can be executed on a single qudit, which would represent a single node and
not a fully connected graph. The fully connected graphs in figure 3.30, which do not
use more than one edge per qudit pair, represent the QFT16 when replacing qubits by
ququarts, ququarts by quhexes and quhexes by a 256-dimensional qudit. With this
kind of recursion it is possible to create all possible graphs for any number of qubits N
embedded in any qudit dimension d.

In order to formally prove that the QFTN executed on qubits is equivalent to the
QFTN executed on qudits, it is necessary to formulate an equation that relates these
two approaches. The DFTN matrix, shown in equation 2.19, describes the QFTN for N
bits, therefore the DFTN matrix can be equated with the multiplication of all gates of
the quantum circuit. This is already shown for the QFT4 in equation (3.18), where the
entire QFT4 is performed with a single local quhex gate. In this equation is important
to notice that the first gate of the quantum circuit is the last gate in the equation. In
order to respect the correct order of execution of the gates, it is necessary to define a
decreasing product

�
, where the symbol of the coproduct

�
is used, which is shown

in equation (3.20).

M�
i=N

xi = xNxN−1xN−2 . . . xM with M < N (3.20)

The structure of the QFT requires two decreasing products, since there are N − 1
blocks, where each one consists of one Hadamard gate Hi and multiple Rij gates. Since
the controlled rotation matrices are diagonal — and therefore commute — it is not
necessary to use a decreasing product for the Rij gates. Nevertheless, a decreasing
product is employed to illustrate the underlying formalism. The Hi gates were defined
up to now as the local Hadamard gate, which act only on the respective qudit but in
order to multiply it with the controlled rotation gates Rij, which span over the entire
Hilbert space, it is necessary to extend the Hi gate by the identity matrix. As an
example the H0 gate on the second quhex in the quantum circuit in figure 3.35 of the
QFT8 embedded in two quhexes would be H0,new = 116 ⊗ H0 = H4, which is exactly
the continuation of the definition, given in equation (2.9). Therefore, it is possible to

57

use this definition of Hi with i ∈ [0, N] in equation (3.21), which defines the QFTN in
terms of high dimensional Hadamard and controlled rotation matrices.

QFTN =
0�

i=N−1

�
i+1�

j=N−1

Rij

�
Hi (3.21)

To express the preceding equation in standard notation using an increasing product,
the order of the product can be reversed through reindexing i → k = N − (i −M) =
N +M − i, which is shown in equation (3.22).

M�
i=N

xi =
N�

k=M

xN+M−k (3.22)

Using equation (3.22) two times on equation (3.21) yields equation (3.23), where the
indices i and j are replaced by k and l.

QFTN =
N−1�
k=0

�
N−1�

l=N−k

R(N−k−1)(2N−l−k−1)

�
HN−k−1 (3.23)

In the previous sections, SWAP gates were neglected due to aforementioned reasons, but
in order to match the DFTN matrix, SWAP gates need to be applied to the QFTN . One
way to define a high dimensional multi-qudit SWAP gate that acts on the entire Hilbert
space, which encapsulates all SWAP gates of the QFTN , is a recursive formula, shown
in equation (3.24). There, each entry of the SWAP(N) gate is 0 except for one entry in
each row i ∈ [0, 2N], where j(i) fulfills the recursive condition j(i) = j(i−a)+2N/(2a),
where a uses the floor function ⌊x⌋.

SWAPij(N) = 1 with j(i) = j(i− a) +
2N

2a
, j(0) = 0, a = 2⌊log2 i⌋, i ∈ �

0, 2N
�

(3.24)

The QFTN matrix, given in equation (3.23), is equal to the DFTN matrix up to the
SWAP(N) gate, therefore, the SWAP(N) gate is multiplied from the left onto the QFTN

matrix, which yields equation (3.25).

SWAP(N) ·
N−1�
k=0

�
N−1�

l=N−k

R(N−k−1)(2N−l−k−1)

�
HN−k−1 = DFTN = FN (3.25)

Although the formula for the Rij matrices was constructed only for the QFT2n, above
equation was proven for all n numerically up to N = 14. The matrices for N = 14
are already of size 214 × 214 = 16384 × 16384, consequently the computation on a
classical computer is too time-consuming to prove it for higher N . In figure 3.36, it

58

is illustrated that the time required for the calculation of the QFTN matrix, increases
exponentially with the system size N , where a linear and logarithmic scaling is shown
in figures (a) and (b), respectively. The green line represents the calculation through
standard matrix multiplication of formula (3.25), while the orange line exploits the fact
that the Rij matrices are diagonal matrices and can therefore efficiently multiplied by
an element-wise product of the corresponding vectors.

(a) (b)

Figure 3.36: The time required for the QFTN presented with a linear scaling (a) and a log-
arithmic scaling (b), illustrating the exponential increase in computational cost with growing
system size. The green line calculates the QFT through standard matrix multiplication, while
the orange line exploits the diagonal structure of the Rij matrices.

3.3.6 Number of two-qudit gates

The number of qudits q of dimension d, which are necessary to perform a QFT for
N input qubits, is given by q = N/ log2(d). Due to the symmetry of the QFT in the
next-neighbour cut, the number of two-qudit gates gE(N, d) ≡ gd(N) can be expressed
as a function of the input qubit count N and the qudit dimension d. In order to deduce
the structure of the formula for gE, it is useful to recap all the results from the previous
sections, which are shown in table 3.1. There, the number of (embedded) two-qubit
gates gd, the number of two-qudit gates compressed through adjacent gates gd−A and
the number of two-qudit gates gd−C , achieved through gate reordering, are shown. The
number of gates for the QFT4, QFT6 and QFT8 can be obtained by counting the

59

edges in the corresponding figures. The number of entangling gates for the QFT12

and QFT16 can be determined analogously using the graph-based approach described
earlier, however, the derivation is not shown explicitly for N = 12 and N = 16.

N g2 g4 g4−A g4−C g8 g8−A g8−C g16 g16−A g16−C

4 6 4 2 1 – – – 0 0 0
6 15 12 6 3 9 3 1 – – –
8 28 24 12 6 – – – 16 4 1
12 66 60 30 15 54 18 6 48 12 3
16 120 112 56 28 – – – 96 24 6

Table 3.1: Number of entangling gates gd of the QFT in the next-neighbor cut as a function of
the input qubit count N and the qudit dimension d. gd represents the (embedded) two-qubit
gates, gd−A represents the number of gates achieved through compressing adjacent gates and
gd−C describes the number of gates achieved through gate reordering by using the commutator
rules.

The number of entangling gates for the QFTN embedded in qubits is given by
equation (3.26), as already mentioned in section 2.4.2. There, the number of two-qubit
gates gd(N) does not depend on the qudit dimension d = 2, since it depends only on N .
This equation yields the number of two-qubit gates g2(N), shown in the first column in
table 3.1.

g2(N) =
N−1
i=1

i =
N(N − 1)

2
(3.26)

The number of entangling gates in the ququart embedding g4 is reduced by one for
each ququart, as one ququart transforms one two-qubit gate into a local ququart gate.
As already mentioned in section 3.3.2, the number of entangling gates is halved by
combining adjacent gates g4−A and is halved again by compressing two-ququart gates
via gate reordering, which yields g4−C . Equation (3.27) captures this behavior, as the
number of qudits q is subtracted from the original amount of two-qubit gates g2, which
is then halved twice by the factor of 22.

g4(N, d = 4) = g2(N)− q(N, d = 4) =
N(N − 1)

2
− N

log2(4)
=

N(N − 2)

2

g4−C(N, d = 4) =
N(N − 2)

2 · 22
(3.27)

The quoct embedding reduces three two-qubit gates to local quoct gates, therefore, it
is necessary to subtract 3q gates from the original amount g2. As can be seen in figure
3.26, the number of entangling gates is reduced by the factor 32, which yields equation

60

(3.28).

g8(N, d = 8) = g2(N)− 3q(N, d = 8) =
N(N − 1)

2
− 3N

log2(8)
=

N(N − 3)

2

g8−C(N, d = 8) =
N(N − 3)

2 · 32
(3.28)

In the quhex embedding six two-qubit gates are reduced to local quhex gates, therefore
it is necessary to subtract 6q, subsequently the number of entangling gates is reduced
by the factor four, two times, which gives equation (3.29).

g16(N, d = 16) = g2(N)− 6q(N, d = 16) =
N(N − 1)

2
− 6N

log2(16)
=

N(N − 4)

2

g16−C(N, d = 16) =
N(N − 4)

2 · 42
(3.29)

It is already possible to deduce the structure of the formula for the number of two-qudit
gates gE(N, d) by replacing the values 2, 3 and 4 in g4−C , g8−C and g16−C respectively,
with log2(d). It is also possible to derive the formula for gE(N, d), because the prefactors
of q are given by the column g2. This makes sense as the qudits always embed a
fully connected graph, which consists of one, three, six, ten, ... edges for a ququart,
quoct, quhex, qudit (d=32), ... , respectively. This prefactors which correspond to
the edges of a fully connected graph are also known as triangular numbers [37]. The
formula for the number of edges in a fully connected graph with N nodes is given by
g2(N) in equation (3.26). The expression g2(log2(d)) yields the number of two-qubit
gates, which are reduced to local qudit gates. Subsequently, the number of embedded
two-qubit gates is reduced by the factor of log2(d)2, because there are always log2(d)
adjacent gates and log2(d) gates, which can be combined through gate reordering. The
resulting expression for gE(N, d) is given in equation (3.30), where it is possible through
arithmetic simplification to derive the already anticipated formula for gE(N, d).

gE(N, d) = [g2(N)− g2(log2(d)) · q] / log(d)2

=

�
N(N − 1)

2
− log2(d)(log2(d)− 1)

2
q

�
/ log2(d)

2

=
N(N − 1)− N log2(d)(log2(d)−1)

log2(d)

2 log2(d)
2

=
N(N − 1)−N(log2(d)− 1)

2 log2(d)
2

=
N(N − log2(d))

2 log2(d)
2

(3.30)

61

The formula for gE(N, d) always yields the values of a fully connected graph, because
the QFT in the next-neighbour cut always represents a fully connected graph in any
qudit embedding. If N and d are not compatible with one another, which means that
the QFTN cannot be embedded in this type of qudit because of dimensionality issues,
gE(N, d) yields a non-integer value. For d = 2N , gE(N, d) is always zero because the
entire QFTN can be embedded in one local qudit gate. This behaviour can be observed
in table 3.2, where the first column represents the triangular numbers, but they can
also be found in all other columns separated by log2(d) − 1 non-integer values, which
are represented by a minus sign. The embedding is only possible if N/ log2(d) is an
integer value, which is equivalent to the number of qudits q.

N g2 g4 g8 g16 g32 g64 g128 g256
1 0 - - - - - - -
2 1 0 - - - - - -
3 3 - 0 - - - - -
4 6 1 - 0 - - - -
5 10 - - - 0 - - -
6 15 3 1 - - 0 - -
7 21 - - - - - 0 -
8 28 6 - 1 - - - 0
9 36 - 3 - - - - -
10 45 10 - - 1 - - -
11 55 - - - - - - -
12 66 15 6 3 - 1 - -
16 120 28 - 6 - - - 1
24 276 66 28 15 - 6 - 3
32 496 120 - 28 - - - 6
64 2016 496 - 120 - - - 28

Table 3.2: Listing of the number of entangling gates gE(N, d) for different N and d values. In
all rows and columns the triangular numbers can be observed, where the triangular numbers
are separated by log2(d) − 1 non-integer values, represented by a minus sign, which makes
sense because the qudit embedding is only possible for log2(d)n.

The graphical representation of gE(N, d) calculated for all valid pairs is shown in
figure 3.37. In (a), the quadratic scaling of gE(N, d) can be observed as a linear line
induced by the square root

�
gE(N, d) scaling used in this plot. In (b), a logarithmic

scaling of gE(N, d) is shown, which illustrates that the reduction of entangling gates
becomes less when increasing the exponent x of d = 2x linearly, while the reduction
factor stays constant when increasing the exponent exponentially d = 22

x , shown in
figure (c).

62

(a) (b) (c)

Figure 3.37: Graphical representation of gE(N, d) calculated for all valid pairs N and d. In
(a), a square root scaling of gE(N, d) is shown, which illustrates the quadratic behaviour. In
(b) and (c), a logarithmic scaling illustrates the behaviour of the reduction of entangling gates
for different qudit dimensions d.

In conclusion, the next-neighbour cut is the best cut for the QFT, because it is
always possible to reduce the number of entangling gates between two qudits to a
single two-qudit gate. The number of embedded two-qubit gates is given by gE(N, d)
without the divisor log2(d)

2 and the number of two-qudit gates is given by gE(N, d).

63

Chapter 4

Summary and outlook

Qudit based quantum computing provides several advantages over qubit based quan-
tum computing, where in this thesis the reduction of entangling gates achieved by a
qudit embedding was examined. The qudit circuit compression of the 4-qubit Simon’s
algorithm was investigated, where it was possible to reduce the number of entangling
gates always to a single two-ququart gate irrespective of the chosen cut.

The QFT was examined in detail, where it was possible to deduce, that the next-
neighbour cut is the best cut for the QFT, as it reduces all gates that affect the same
qudits to a single two-qudit gate. Furthermore, it was possible to ascertain that the QFT
in the next-neighbour cut can be represented by a fully connected graph in any qudit
embedding considered. Moreover, it was possible to derive a formula for the number of
entangling gates as a function of the number of input qubits N and the qudit dimension
d. The formula for the QFT decomposed as high dimensional controlled rotation and
Hadamard gates was proven numerically to be equal to the DFT matrix for all n up to
N = 14.

As the QFT is only a subroutine in most quantum algorithms, it would be interesting
if quantum algorithms, like Shor’s algorithm, also perform best in the next-neighbour
cut. It would also be possible to analyze the high dimensional controlled rotation
gates in terms of entanglement power. Furthermore, it would be interesting if these
high dimensional controlled rotation gates can be easily implemented experimentally.
Otherwise, one could try to find a decomposition of the QFT in terms of native two-
qudit gates, which are available in experiments at the moment.

64

Bibliography

[1] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum in-
formation. Cambridge university press, 2010.

[2] John Preskill. “Quantum computing in the NISQ era and beyond”. In: Quantum
2 (2018), p. 79.

[3] Martin Ringbauer et al. “Certification and quantification of multilevel quantum
coherence”. In: Physical Review X 8.4 (2018), p. 041007.

[4] Tristan Kraft et al. “Characterizing genuine multilevel entanglement”. In: Physical
review letters 120.6 (2018), p. 060502.

[5] Fern HE Watson et al. “Qudit color codes and gauge color codes in all spatial
dimensions”. In: Physical Review A 92.2 (2015), p. 022312.

[6] Earl T Campbell. “Enhanced fault-tolerant quantum computing in d-level sys-
tems”. In: Physical review letters 113.23 (2014), p. 230501.

[7] Max Planck. “Zur Theorie des Gesetzes der Energieverteilung im Normalspek-
trum”. In: Berlin (1900), pp. 237–245.

[8] Max Born and Pascual Jordan. “Zur Quantenmechanik”. In: Zeitschrift für Physik
34.1 (1925), pp. 858–888.

[9] Werner Heisenberg. “Über quantentheoretische Umdeutung kinematischer und
mechanischer Beziehungen.” In: Zeitschrift für Physik (1925), pp. 879–893.

[10] V Dorobantu. “The postulates of quantum mechanics”. In: (2006). arxiv preprint
physics/0602145.

[11] Paul Adrien Maurice Dirac. “A new notation for quantum mechanics”. In: Mathe-
matical proceedings of the Cambridge philosophical society. Vol. 35. 3. Cambridge
University Press. 1939, pp. 416–418.

[12] Richard Jozsa. “Entanglement and Quantum Computation”. In: (1997). arXiv:
quant-ph/9707034.

[13] Eli Biham et al. “Quantum computing without entanglement”. In: Theoretical
Computer Science 320.1 (2004), pp. 15–33.

65

[14] Dan Kenigsberg, Tal Mor, and Gil Ratsaby. “Quantum advantage without entan-
glement.” In: Quantum Inf. Comput. 6.7 (2006), pp. 606–615.

[15] JE Savage. “Models of computation. Exploring the power of computing Addison-
Wesley”. In: Reading, MA (1998).

[16] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. “Introduction to au-
tomata theory, languages, and computation”. In: Acm Sigact News 32.1 (2001),
pp. 60–65.

[17] Michael Sipser. “Introduction to the Theory of Computation”. In: ACM Sigact
News 27.1 (1996), pp. 27–29.

[18] Donald E Knuth. The Art of Computer Programming: Seminumerical Algorithms.
Vol. 2. Addison-Wesley Professional, 1969. Chap. 4.1, p. 186.

[19] Wilfried Buchholz. “Fingers or fists?(the choice of decimal or binary representa-
tion)”. In: Communications of the ACM 2.12 (1959), pp. 3–11.

[20] Peter W Shor. “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer”. In: SIAM review 41.2 (1999), pp. 303–332.

[21] Stephane Beauregard. “Circuit for Shor’s algorithm using 2n+ 3 qubits”. In: arXiv
preprint quant-ph/0205095 (2002).

[22] David P. DiVincenzo. “Topics in Quantum Computers”. In: (1996). arXiv: cond-
mat/9612126.

[23] Wojciech Hubert Zurek. “Decoherence and the transition from quantum to classi-
cal—revisited”. In: Quantum decoherence: poincaré seminar 2005. Springer. 2005,
pp. 1–31.

[24] A Yu Kitaev. “Fault-tolerant quantum computation by anyons”. In: Annals of
physics 303.1 (2003), pp. 2–30.

[25] Laszlo Gyongyosi and Sandor Imre. “A survey on quantum computing technol-
ogy”. In: Computer Science Review 31 (2019), pp. 51–71.

[26] Richard P Feynman. “Quantum mechanical computers.” In: Found. Phys. 16.6
(1986), pp. 507–532.

[27] Roger Penrose et al. “Applications of negative dimensional tensors”. In: Combi-
natorial mathematics and its applications 1 (1971), pp. 221–244.

[28] Adriano Barenco et al. “Elementary gates for quantum computation”. In: Physical
review A 52.5 (1995), p. 3457.

[29] Alastair Kay. “Tutorial on the quantikz package”. In: (2018). arXiv preprint
arXiv:1809.03842.

66

[30] Lov K Grover. “A fast quantum mechanical algorithm for database search”. In:
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
1996, pp. 212–219.

[31] David Deutsch and Richard Jozsa. “Rapid solution of problems by quantum com-
putation”. In: Proceedings of the Royal Society of London. Series A: Mathematical
and Physical Sciences 439.1907 (1992), pp. 553–558.

[32] Ethan Bernstein and Umesh Vazirani. “Quantum complexity theory”. In: Proceed-
ings of the twenty-fifth annual ACM symposium on Theory of computing. 1993,
pp. 11–20.

[33] Daniel R Simon. “On the power of quantum computation”. In: SIAM journal on
computing 26.5 (1997), pp. 1474–1483.

[34] Gilbert Strang. Introduction to linear algebra. SIAM, 2022.

[35] Alan V Oppenheim. Discrete-time signal processing. Pearson Education India,
1999.

[36] Xiaoqin Gao et al. “On the role of entanglement in qudit-based circuit compres-
sion”. In: Quantum 7 (2023), p. 1141.

[37] Ronald L Graham. Concrete mathematics: a foundation for computer science.
Pearson Education India, 1994.

67

List of Figures

2.1 Example quantum circuits drawn with quantikz package. 19
2.2 Quantum circuit for Simon’s algorithm for 2n qubits 20
2.3 Quantum circuit for the QFT for n qubits 23

3.1 High-dimensional gate construction of the embedded two-qubit CNOT
gate between the first and third qubit embedded in two ququarts 26

3.2 High-dimensional gate construction of the embedded two-qubit CR gate
between the first and third qubit embedded in two ququarts 27

3.3 Quantum circuit for Simon’s algorithm for four qubits 28
3.4 All possible cuts of Simon’s circuit for four qubits represented with graphs 29
3.5 Next-neighbour cut for the four qubit Simon’s circuit 30
3.6 Compressed quantum circuit for the next-neighbour cut 30
3.7 Inner-outermost cut for the four qubit Simon’s circuit 31
3.8 Compressed quantum circuit for the inner-outermost cut 32
3.9 Next-next-neighbour cut for the four qubit Simon’s circuit 33
3.10 Quantum Fourier transform for two qubits 34
3.11 All possible cuts of the QFT4 shown with graphs 35
3.12 Quantum Fourier transform for four qubits 36
3.13 Qudit circuit compression for the QFT4 36
3.14 Next-neighbour cut for the QFT4 realized on two ququarts 37
3.15 Next-neighbour cut for the QFT4 realized on two ququarts compressed

through adjacent gates . 38
3.16 Next-neighbour cut for the QFT4 realized on two ququarts compressed

through gate reordering . 38
3.17 Inner-outermost cut for the QFT4 realized on two ququarts 39
3.18 Compressed inner-outermost cut for the QFT4 realized on two ququarts 40
3.19 Next-next-neighbour cut for the QFT4 realized on two ququarts 40
3.20 Compressed next-next-neighbour cut for the QFT4 realized on two ququarts 41
3.21 Quantum Fourier transform for six qubits 42
3.22 Qudit circuit compression for the QFT6 43
3.23 Next-neighbour cut for the QFT6 realized on three ququarts 45

68

3.24 Next-neighbour cut for the QFT6 realized on three ququarts compressed
through adjacent gates . 46

3.25 Next-neighbour cut for the QFT6 realized on three ququarts compressed
through gate reordering . 47

3.26 Qudit circuit compression for the QFT6 in the quoct embedding 48
3.27 Next-neighbour cut for the QFT6 embedded in two quocts 48
3.28 Next-neighbour cut for the QFT6 embedded in two quocts compressed

through adjacent gates . 49
3.29 Next-neighbour cut for the QFT6 embedded in two quocts compressed

through gate reordering . 49
3.30 Qudit circuit compression for the QFT8 50
3.31 Next-neighbour cut of the QFT8 realized on four ququarts 52
3.32 Compressed next-neighbour cut for the QFT8 realized on four ququarts 53
3.33 Next-neighbour cut of the QFT8 embedded in two quhexes 54
3.34 Next-neighbour cut for the QFT8 embedded in two quhexes compressed

through adjacent gates . 56
3.35 Next-neighbour cut for the QFT8 embedded in two quhexes compressed

through gate reordering . 56
3.36 The time required to compute the QFTN matrix presented with a linear

scaling and a logarithmic scaling . 59
3.37 Graphical representation of gE(N, d) 63

B.1 High-dimensional controlled rotation matrices Rij used in the QFT6 . . 74

69

List of Tables

3.1 Number of entangling gates gd, gd−A and gd−C for the next-neighbor cut
of the QFT . 60

3.2 Listing of the number of entangling gates gE(N, d) for different N and d
values . 62

70

71

Appendix A

QFT product representation

The QFT maps the state |x⟩ to a superposition of |k⟩ states, shown in the first line
of equation A.1. There, the sum over 2n is split up into multiple sums over ki where
each sum goes from 0 to 1 for each qubit, which leads to the replacement of k by its
binary representation in the exponent. The sum in the exponent can be converted
to a tensor product, because the sum of exponents is equivalent to the product of its
exponentials. By reordering the tensor product with the sums for the qubits and by
directly replacing the sum with the two basis states for a qubit |0⟩ and |1⟩, it is possible
to derive the desired product representation of the QFT. This representation is used
in section 2.4.2 for the derivation of the quantum circuit of the QFT for n qubits. [1]

|x⟩ → 1

2n/2

2n−1
k=0

e−2πixk/2n |k⟩

=
1

2n/2

1
k1=0

· · ·
1

kn=0

e−2πix(
�n

l=1 kl2
−l) |k1 . . . kn⟩

=
1

2n/2

1
k1=0

· · ·
1

kn=0

n�
l=1

e−2πixkl2
−l |kl⟩

=
1

2n/2

n�
l=1

�
1

kl=0

e−2πixkl2
−l |kl⟩

=
1

2n/2

n�
l=1

�
|0⟩ e−2πix2−l |1⟩

	

=
(|0⟩+ e−2πi0.xn−1 |1⟩)⊗ (|0⟩+ e−2πi0.xn−2xn−1 |1⟩)⊗ · · · ⊗ (|0⟩+ e−2πi0.x0x1···xn−1 |1⟩)

2n/2
(A.1)

72

Appendix B

Rij matrices for QFT6

The high-dimensional controlled rotation matrices Rij are constructed via the formalism
of high-dimensional gate construction, explained in section 3.1. They are especially
easy to construct, since they are diagonal matrices, hence all entries are one except
for those with a phase ω, if both qubits, represented by the indices i and j, are one.
The constructed Rij matrices in the next-neighbour cut can be seen on the next page,
in greater resolution than in section 3.3.3. There the notation of X⊗y =

y−1
i=0 X is

adapted to X⊗y = 1y ⊗ X = block_diagy(X), in order to shorten the equations. By
identifying the correct scaling of the indices in the matrices as a function of i, j and N ,
it is possible to deduce the general formula for the Rij matrices in the next-neighbour
cut, given in equation 3.19.

73

R
0
1
=

 1
3
2

� 1
1
6

ω
2
1
1
6

� R
0
2
=

 1
3
2

� 1
8

ω
3
1
8

� ⊗2 R
0
3
=

 1
3
2

� 1
4

ω
4
1
4

� ⊗4
R

0
4
=

 1
3
2

� 1
2

ω
5
1
2

� ⊗8
R

0
5
=

 1
3
2

� 1
ω
6

� ⊗16

R
1
2
=

 1
1
6

� 1
8

ω
2
1
8

� ⊗2

R
1
3
=

 1
1
6

� 1
4

ω
3
1
4

� ⊗2 ⊗2

R
1
4
=

 1
1
6

� 1
2

ω
4
1
2

� ⊗4 ⊗2

R
1
5
=

 1
1
6

� 1
ω
5

� ⊗8 ⊗2

R
2
3
=

 1
8

� 1
4

ω
2
1
4

� ⊗4

R
2
4
=

 1
8

� 1
2

ω
3
1
2

� ⊗2 ⊗4

R
2
5
=

 1
8

� 1
ω
4

� ⊗4 ⊗4

R
3
4
=

 1
4

� 1
2

ω
2
1
2

� ⊗8

R
3
5
=

 1
4

� 1
ω
3

� ⊗2 ⊗8

R
4
5
=

 1
2

� 1
ω
2

� ⊗1
6

F
ig

ur
e

B
.1

:
H

ig
h-

di
m

en
si

on
al

co
nt

ro
lle

d
ro

ta
ti

on
m

at
ri

ce
s
R

ij
us

ed
in

th
e

Q
F
T
6

74

Appendix C

Code for numeric prove of QFTN

In the following, the code in python 3.12 is given to prove numerically the equivalence
of the constructed QFTN matrix, which consists of high-dimensional Hadamard and
controlled rotation matrices and a SWAP gate, and the DFTN matrix, which is also
shown in equation 3.25. The gen_U(self, i, j) and gen_U_vec(self, i, j) func-
tions generate the Rij matrices as matrices and vectors, respectively. The gen_H(self,
i), gen_swap(self) and the gen_F(self) functions generate the Hadamard, SWAP
and DFT matrix respectively. The functions for the generation of the QFTN matrix
are given by gen_QFT(self) and gen_QFT_vec(self), where the only the difference
of these functions is, that the first one uses standard matrix multiplication of the Rij

matrices, while the latter calculates the element-wise dot product of the diagonal vec-
tors of Rij first, embeds the result in a diagonal matrix and uses this matrix for further
calculation of the QFTN .

1 import numpy as np
2 import math
3 import time
4

5 c l a s s QFT:
6

7 de f __init__(self , N):
8 self.had2 = np.array ([[1, 1], [1, -1]])/np.sqrt (2)
9 self.N = N

10 self.dim = 2**N
11

12 de f setN(self , N):
13 self.N = N
14 self.dim = 2**N
15

16 de f gen_U(self , i, j):

75

17 m = j - i + 1
18 k = self.N - j - 1
19 l = self.N - i - 1
20 id_2k = np.eye (2**k)
21 id_2l = np.eye (2**l)
22 omega = (math.e**(2* math.pi*1j/(2**m)))
23 B_mk = np.block ([[id_2k ,

np.zeros_like(id_2k)],[np.zeros_like(id_2k),
omega*id_2k]])

24 R_mk = np.kron(np.eye (2**(m-2)), B_mk)
25 CR_mkl = np.block ([[id_2l ,

np.zeros_like(id_2l)],[np.zeros_like(id_2l), R_mk]])
26 U_ij = np.kron(np.eye (2**i), CR_mkl)
27 r e t u rn U_ij
28

29 de f gen_U_vec(self , i, j):
30 m = j - i + 1
31 k = self.N - j - 1
32 l = self.N - i - 1
33 id_2k = np.ones (2**k)
34 id_2l = np.ones (2**l)
35 omega = (math.e**(2* math.pi*1j/(2**m)))
36

37 B_mk = np.concatenate ([id_2k , omega*id_2k])
38 R_mk = np.kron(np.ones (2**(m-2)), B_mk)
39 CR_mkl = np.concatenate ([id_2l , R_mk])
40 U_ij = np.kron(np.ones (2**i), CR_mkl)
41 r e t u rn U_ij
42

43 de f gen_H(self , i):
44 H = 1
45 f o r j i n range (i):
46 H = np.kron(H, np.eye (2))
47 H = np.kron(H, self.had2)
48 f o r j i n range (self.N - i - 1):
49 H = np.kron(H, np.eye (2))
50 r e t u rn H
51

52 de f gen_QFT(self):
53 qft = np.eye(self.dim)
54 f o r i i n range (self.N-1, -1, -1):
55 f o r j i n range (self.N-1, i, -1):
56 qft = qft @ self.gen_U(i, j)

76

57 qft = qft @ self.gen_H(i)
58 qft = self.gen_swap () @ qft
59 r e t u rn qft
60

61 de f gen_QFT_vec(self):
62 qft = np.eye(self.dim)
63 f o r i i n range (self.N-1, -1, -1):
64 u_comp = np.ones(self.dim)
65 f o r j i n range (self.N-1, i, -1):
66 u_comp = u_comp * self.gen_U_vec(i, j)
67 qft = qft @ np.diag(u_comp)
68 qft = qft @ self.gen_H(i)
69 qft = self.gen_swap () @ qft
70 r e t u rn qft
71

72 de f gen_swap(self):
73 size = 2** self.N
74 permutation_matrix = np.zeros ((size , size), dtype= i n t)
75 f o r i i n range (size):
76 binary = np.array(l i s t (np.binary_repr(i,

width=self.N)), dtype= i n t)
77 f o r j i n range (self.N // 2):
78 left = j
79 right = self.N - 1 - j
80 binary[left], binary[right] = binary[right],

binary[left]
81 new_index = i n t ("".join(binary.astype(s t r)), 2)
82 permutation_matrix[new_index , i] = 1
83 r e t u rn permutation_matrix
84

85 de f gen_F(self):
86 F = np.zeros ((self.dim , self.dim), dtype= complex)
87 f o r i i n range (self.dim):
88 f o r j i n range (self.dim):
89 F[i, j] =

(math.e**(2* math.pi*1j/self.dim))**(i*j)
90 r e t u rn F/np.sqrt(self.dim)
91

92

93 # Tes t ing c o r r e c t n e s s
94 qft = QFT (14)
95 start = time.time()
96 res = qft.gen_QFT_vec ()

77

97 stop = time.time()
98 F = qft.gen_F ()
99 correct = np.allclose(F, res)

100 time = np. round ((stop - start , 6))

78

	Introduction
	Theory background
	Quantum theory
	Postulates of quantum theory
	Superposition, composite systems and entanglement

	Quantum computers
	Complexity classes
	Computational basis
	Quantum gates
	Identity gate
	Hadamard gate
	Rotation gate
	NOT gate
	Controlled gates

	Hardware implementation

	Quantum circuit model
	Quantum algorithms
	Simon's algorithm
	Fourier transform

	Qudit circuit compression

	Qudit circuit compression
	High dimensional gate construction
	4-qubit Simon's algorithm
	Next-neighbour cut
	Inner-outermost cut
	Next-next-neighbour cut

	Quantum Fourier Transform
	2-qubit QFT
	4-qubit QFT embedded in two ququarts
	Next-neighbour cut
	Inner-outermost cut
	Next-next-neighbour cut

	6-qubit QFT
	QFT6 embedded in three ququarts
	QFT6 embedded in two quocts

	8-qubit QFT
	QFT8 embedded in four ququarts
	QFT8 embedded in two quhexes

	N-qubit QFT
	Number of two-qudit gates

	Summary and outlook
	QFT product representation
	Rij matrices for QFT6
	Code for numeric prove of QFTN

