Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

ONIVERSITAT AICLLIN

WIEN

Grasping Reality: Simulation to Reality Transfer of

Pick-and-Place Policies

DIPLOMARBEIT

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. M. Vincze
Dipl.-Ing. M. Hirschmanner

submitted at the

TU Wien

Faculty of Electrical Engineering and Information Technology
Automation and Control Institute

by
Thomas Schénhofer

Vienna, May 2025

Vision for Robotics Group
A-1040 Wien, Gusshausstr. 27, Internet: http://www.acin.tuwien.ac.at




Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Danksagung

An dieser Stelle mochte ich all jenen Menschen danken, die mich auf dem Weg zu dieser
Masterarbeit begleitet und unterstiitzt haben. Mein herzlicher Dank gilt meiner Familie,
die mich wahrend meiner schulischen und akademischen Ausbildung stets geférdert und
unterstiitzt hat. Ohne diesen Riickhalt wére das Erreichen dieses Meileinsteins nicht
moglich gewesen.

Ich mochte mich bei Prof. Markus Vincze und der Vision for Robotics (V4R) Gruppe
an der TU Wien bedanken, die mich herzlich aufgenommen und mich bei der Erstellung
dieser Arbeit mit Rat und Tat unterstiitzt haben.

Ein grofler Dank gebiihrt meinem Betreuer Matthias Hirschmanner. Die zahlreichen
konstruktiven Diskussionen und Gespréiche mit ihm haben mir stets neue Denkanstofle
gegeben und wesentlich zum Fortschritt dieser Arbeit beigetragen. Seine bestdndige Un-
terstiitzung, iber mehrere Jahre hinweg, war unerldsslich um diese Arbeit fertigzustellen.
Auflerdem danke ich von Herzen meiner Partnerin Katharina. Thr Riickhalt, Verstdndnis
und ihre Unterstiitzung in dieser kraftezehrenden Zeit waren eine wichtige Quelle von
Zuversicht und Kraft.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Abstract

This thesis investigates simulation-to-reality transfer of pick-and-place policies. Pick-and-
place is a fundamental operation in robotics, allowing autonomous agents to interact
with their environment. The Transporter Networks architecture is a recently proposed
deep learning framework for robotic manipulation tasks, that combines high sample
efficiency with good generalization capabilities. Due to the high sample efficiency, previous
work has demonstrated the effectiveness of Transporter Networks mainly using human
demonstrations. In this thesis, we extend the Transporter Networks architecture to a
sim-to-real transfer setting. We enhance the Transporter Networks architecture with
adaptations to the training procedure and apply state-of-the art augmentation techniques.
For synthetic data generation, we utilize the Nvidia Omniverse platform, which offers
a combination of photorealistic rendering capabilities with a high-performance physics
simulation. Our developed synthetic data generation pipeline allows for the generation
of large-scale, domain randomized, pick-and-place datasets from a set of 3D models. To
evaluate the effectiveness of the developed methods, we use a simple box-picking task and
a more complex shoe-sorting task, which involves generalization to unseen objects. The
results indicate that augmenting depth data is crucial for successful sim-to-real transfer
using RGB-pointclouds. In the evaluated tasks, augmentations and randomizations
affecting color have minimal impact on performance. The trained models achieve an
estimated success rate on real data of 78.6% for pick operations and 75.0% for place
operations on the shoe-sorting task. Thus, we demonstrate successful generalization to
unseen objects despite being trained exclusively on synthetic data with only 20 individual
3D models. To our knowledge, this thesis presents the first application of Transporter
Networks in a sim-to-real setting, offering a promising approach for efficient simulation-to-
reality transfer of robotic manipulation tasks.
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Kurzzusammenfassung

Diese Arbeit beschéaftigt sich mit dem Transfer von Pick-and-Place-Strategien fiir robo-
tische Manipulationsaufgaben, von der Simulation zur Realitdt. Pick-and-Place ist eine
grundlegende Operation in der Robotik, die es autonomen Agenten ermoglicht, mit ihrer
Umgebung zu interagieren. Die Transporter-Networks-Architektur ist ein Deep-Learning-
Framework fiir Pick-and-Place Manipulationsaufgaben in der Robotik. Im Gegensatz zu
fritheren Ansétzen ermoglicht diese Architektur die Generalisierung zu neuen Umgebungen,
von einer geringen Anzahl an Demonstrationen. Aufgrund der geringen Anzahl benétigter
Demonstrationen wurden Transporter Networks in bisherigen Arbeiten vor allem mit
manuellen menschlichen Demonstrationen trainiert. In dieser Arbeit untersuchen wir den
Einsatz dieser effizienten Architektur im Kontext von Simulation-zu-Realitéts-Transfer.
Dazu wird die Transporter Networks-Architektur durch Anpassungen des Trainingspro-
zesses und Hinzufiigen von Datenaugmentation erweitert. Fir die Generierung von
synthetischen Trainingsdaten nutzen wir die Nvidia Omniverse-Plattform. Eine entwickel-
te Pipeline zur Datengenerierung ermoglicht die Erzeugung randomisierter Datensétze
aus 3D-Modellen mit minimalen héndischen Eingriffen. Um die Effektivitdt der entwickel-
ten Domain Randomization und Transformations-Methoden zu bewerten, werden zwei
Aufgaben genutzt. Zum einen wird das Greifen eines Quaders getestet und zum anderen
wird eine komplexere Schuh-Sortier-Aufgabe, die eine Generalisierung, auf im Training
nicht vorhandene Objekte, evaluiert. Die Ergebnisse zeigen, dass die Transformation von
Tiefendaten fiir einen erfolgreichen Simulations-zu-Realitéts-Transfer entscheidend ist.
Transformationen und Randomisierungen, die die Farbe beeinflussen, haben hingegen
nur minimale Auswirkungen auf die Erfolgsrate. Fiir die Schuh-Sortier-Aufgabe errei-
chen die trainierten Modelle eine Erfolgsrate von 78,6% fiir Pick-Operationen und 75,0%
fiir Place-Operationen bei einer Validierung mit realen Pointclouds und unbekannten
Objekten. Dies zeigt, dass die Netzwerke erfolgreich generalisieren, obwohl fiir das Trai-
ning ausschliellich synthetische Daten und nur 20 3D-Modelle genutzt werden. Diese
Arbeit demonstriert die erfolgreiche Anwendung der Transporter Networks-Architektur
in einem Simulations-zu-Realitdts-Transfer Szenario. Die entwickelten Methoden bieten
einen vielversprechenden Ansatz fiir effizientes Training von Pick-and-Place Aufgaben in
Simulation.

11
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1 Introduction

From industrial packaging to household chores, pick-and-place tasks are fundamental
to many applications of robotic systems. Pick-and-place tasks generally involve a robot
grasping and picking up an object from one location and placing it at a desired target
location. Despite its apparent simplicity, this task requires the integration of perception,
planning, and control in diverse environments. While simple cases assume fixed objects and
controlled environments, the real world is often more complex. In household applications,
objects often vary in appearance, and environments are cluttered and can even change
dynamically. Figure 1.1 shows a robot navigating a household clean-up scenario where it
must selectively interact with relevant objects, while ignoring others, as well as deal with
a wide range of object appearances.

The deployment of robots in such unstructured environments is challenging, as they need
to adapt to changing conditions and interact with a wide variety of objects. To operate
under such variability, robots require manipulation policies that can generalize well to
unseen scenes and objects. Instead of relying on rigid, hand-crafted methods, that often
fail to generalize, modern approaches often use learning-based methods to develop flexible,
and robust policies [1]. The ability to train generalizable manipulation policies is the
foundation for the deployment of robots into many human-centric settings.

Figure 1.1: Example of a robotic pick-and-place task in an unstructured, household
environment. From [2].
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1 Introduction 1.1 Challenge 2

1.1 Challenge

Deep learning based systems have shown great success in terms of generalization per-
formance for grasping and pick-and-place systems [1], [3]-[5]. The integration of deep
learning in pick-and-place systems can be roughly categorized into two groups: 1) Methods
that learn individual components of the plan, think, act - pipeline separately, and 2)
Methods that learn end-to-end solutions that map directly from sensor inputs to robot
actions. Approaches of the first category use deep learning to solve specific parts of
the manipulation pipeline, such as object detection, pose estimation, or grasp planning.
These methods often rely on hand-crafted control algorithms and task specific logic to
execute the manipulation task [6]. While these methods can be highly effective for specific
tasks, they often require a priori and domain knowledge to design and implement. Many
pose estimation and grasp planning algorithms require 3D models of the objects to be
manipulated [7], [8]. This is often not feasible in real-world applications, as objects may
vary significantly in appearance and shape. The second category aims to learn the entire
task end-to-end, mapping directly from sensors to robot actions. This often allows for
better generalization abilities but typically requires immense amounts of training data
and computation [3], [4]. End-to-end algorithms often require hundreds of thousands of
training samples to achieve good performance [3], [5]. Even when training such systems in
simulation or with synthetic data, the requirements on computational resources are often
prohibitively high. Furthermore, for successful generalization of policies to unseen objects
and scenes, many previous approaches require large datasets that are often difficult to
obtain in a robotics context.

Ideally, one would like to combine the benefits of both approaches, creating a system that
is both sample efficient and generalizable to unseen objects and environments. In a recent
publication, Zeng et al. [9] introduced a new architecture, that promises to unify these
properties, called Transporter Networks. The Transporter Networks architecture uses a
combination of neural networks to predict pick-and-place poses from a top-down view of
the workspace, containing color and depth information. Using a sequential approach, by
first predicting a pick position and using a crop around this position to guide the search for
the place position, the model is vastly more sample efficient than other end-to-end learning
approaches. The Transporter Networks architecture often requires only a few hundred
training samples to achieve good performance [9]. In previous work, the Transporter
Networks architecture has only used human demonstrations to generate training data for
real-world applications. Human demonstrations, however, are generally expensive and
tedious to obtain and can be especially impractical for tasks where precise demonstrations
are required. Because demonstrations are often provided in a specific environment, this
also limits the generalizability of the trained policies to unseen environments. Therefore,
we propose leveraging simulation-based training data generation for Transporter Networks,
combining the benefits of this architecture with the scalability of synthetic data generation.
Synthetic data generation allows for the generation of large amounts of training data,
without the need for expensive and time-consuming human demonstrations.

Ideally, policies trained in simulation would be able to directly generalize to the real
world. Due to discrepancies between the simulation environment and the real world,
however, systems trained purely on simulated data often fail when deployed in the real
world [10]. This is caused by what is known as the sim-to-real gap. The sim-to-real gap
is caused by unmodeled processes, differences in the environment conditions, and other
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1 Introduction 1.2 Contribution 3

real-world disturbances that are not present in the simulation. To overcome this problem,
a possible approach is to make the simulation as close to the real world as possible. This
is often referred to as scene engineering [11] or system identification [10]. For successful
transfer from simulation to reality, this method requires precise knowledge and accurate
modeling of the deployment domain. This becomes especially impractical in dynamic
environments like households, where conditions can vary significantly and unpredictably.
Rather than trying to precisely model the real world, an alternative approach is to make
the simulation environment as diverse as possible, by randomizing all aspects that may
vary during deployment. This approach, known as domain randomization, has been
shown to be highly effective for bridging the sim-to-real gap across multiple domains and
tasks [10], [12]. Domain randomization involves randomizing all aspects of the simulation
that may vary in the real world, such as textures, lighting conditions, viewpoints, and
camera parameters. The idea is to expose the model to a wide range of variations during
training, so that the model can generalize well to unseen conditions and domains. This is
especially important for robots that are deployed in unstructured environments, where
the deployment environment cannot be exhaustively modeled in advance. A related
approach to domain randomization is data augmentation, which involves applying random
transformations to the training samples, to increase diversity and improve a model’s
generalization performance [13].

1.2 Contribution

In this thesis, we propose a novel approach for efficient sim-to-real transfer of pick-and-place
policies. Our method allows for the flexible definition of desired task behavior in simula-
tion, and leverages state-of-the-art simulation to reality transfer methods to enable the
deployment of the trained policies in the real world. We leverage the strengths of the
Transporter Networks architecture, which has been shown to be highly sample efficient in
learning pick-and-place policies from demonstrations, and combine it with randomized
synthetic data generation. Figure 1.2 shows a diagram of the developed method. We show
that Transporter Networks can be trained on synthetic data and generalize to unseen
objects and real world environments.

We introduce synthetic data generation pipeline for training data generation, that allows
for the generation of large scale, domain randomized datasets from 3D object models, with
minimal human intervention. For synthetic data generation, we use the high-fidelity ren-
dering and physics simulation environment, Nvidia Omniverse [14]. Omniverse combines
photorealistic rendering with physics simulation and robot control capabilities in a single
platform, making it particularly suitable for sim-to-real transfer. We apply state-of-the-art
domain randomization and data augmentation methods, to enable simulation to reality
transfer of the learned policies. To the best of our knowledge, we are the first to use the
Transporter Networks architecture in a simulation to reality setting.

To benchmark the sim-to-real transfer and generalization performance of the developed
system, two tasks are designed. (1) A simple Boz picking task, where the goal is to predict
the pick pose of a cuboid with a fixed size. (2) A more complex Sort shoes task, where
a pair of shoes must be aligned next to each other. The latter requires the model to
generalize to unseen objects and environments simultaneously. Real-world pointcloud data
is collected for both tasks and the developed randomization and augmentation methods
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Figure 1.2: Overview of the Grasping Reality method developed in this thesis. The
method consists of a synthetic data generation pipeline that generates domain
randomized training data, used to train the Transporter Networks architecture,
with various sim-to-real augmentation methods applied.

are evaluated in multiple ablation studies.

For the Box picking task, a real-world dataset with 40 scenes is recorded, using two
cuboid-shaped tea boxes with different textures. For the Shoe sorting task, a dataset
with 28 scenes, using four different pairs of shoes is recorded. Additionally, a dataset
with distractor objects is recorded for the Shoe sorting task, to evaluate the robustness of
the trained policies in cluttered environments. This dataset contains 20 scenes with the
same four pairs of shoes, but with additional distractor objects present in the scene. The
recorded pointclouds are preprocessed and manually annotated using a newly developed
processing pipeline. From the annotated pointclouds we create datasets to evaluate the
performance of the trained policies and to analyze the sim-to-real transfer performance of
the developed methods. In extensive ablation studies, we find that the augmentation of
depth data is crucial for the performance of the model on real-world data. Especially, the
addition of random Gaussian noise to the depth data is essential for successful sim-to-real
transfer. Randomization and augmentation of color information, on the other hand, does
not significantly influence the performance.

In a final evaluation, we show successful transfer of pick-and-place policies, trained exclu-
sively on synthetic data, to real-world data. To quantify the performance of the trained
policies, we estimate the success rate using success-thresholds for the position- and angle
errors (Pick: 3.00 cm and 10.00°, Place: 5.00 cm and 10.00°). On the Box picking task,
we achieve an estimated pick success rate of 100.0 %, with a mean error of 6 mm. For
the Shoe sorting task, we achieve an estimated pick success rate of 78.6 and an estimated
place success rate of 75.0 %. The success rate for scenes where both, the pick and place
operation are successful is 67.9 %.

Compared to the results of the original Transporter Networks implementation, trained
without sim-to-real methods, we achieve an improvement of 57.0% in overall success
rate on the Shoe sorting task. The results show that the Transporter Networks architec-
ture, combined with the developed randomization and augmentation systems, is able to
successfully bridge the sim-to-real gap.
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1 Introduction 5

1.3 Thesis Structure

The remainder of this thesis is structured as follows. We first introduce the Transporter
Networks architecture, as well as the changes applied to the networks and training process
in Chapter 3. We continue with describing the synthetic data generation pipeline, the
randomizations used during training data generation, and the augmentation methods
employed during the training process.

In Chapter 4, we then describe the two tasks used for evaluation in detail, as well as the
data collection and annotation process. In following sections, we present the results of the
ablation studies and the final performance evaluation of the trained networks. Finally, we
discuss the results and the limitations of the developed methods in Chapter 5 and conclude
with a summary of the findings and an outlook on future work in Chapter 6.
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2 Related Work

Bridging the sim-to-real gap is essential to leverage the advantages of simulation for
training deep learning models for real-world use. The challenge of transferring knowledge
from simulation to the real world has been a long-standing issue in robotics and computer
vision. One of the first papers that uses disturbances in the simulation environment to
create more robust controllers is Evolutionary Robotics and the Radical Envelope of Noise
Hypothesis by Jakobi [15]. The author shows that algorithms trained in simulation will find
ways to exploit unrealistic details and flaws in the simulators. The way to mitigate this
behavior, is to add noise to all aspects of the simulation that may vary in the real world.
This has laid the foundation for the idea of domain randomization, which has become a
popular approach to bridge the sim-to-real gap. The idea of domain randomization is to
expose the model to such a wide range of variations during training, that the real world
appears to the model as just another variation [10].

A related approach to domain randomization is data augmentation. Data augmentation
describes a set of techniques to artificially increase the number of training samples by
applying various transformations to existing ones. It thereby enhances a given dataset
by creating new samples from existing ones. In the context of sim-to-real transfer, data
augmentation techniques can be used to add various perturbations to the synthetic training
data, to make it more similar to the real-world data.

The main distinction between domain randomization and data augmentation is their
position in the data generation and training pipeline. Domain randomization is applied to
the simulation environment during data generation, while data augmentation is applied to
the generated training data. More formally, domain randomization changes the mapping
from a state s; to the corresponding observation oy (s; — o;). Whereas data augmentation
transforms an observation o; into a new observation o4/ (0; — 04/). Data augmentation
can therefore not alter aspects of the mapping from a state to an observation, such as
the the viewpoint or the lighting conditions. It can however be used to impart variations
to the observations that are not present in the data sample, such as noise, blurriness, or
occlusions. Data augmentation is often used in conjunction with domain randomization
to further increase the diversity of the training data and improve the generalization of the
trained models.

This section reviews key developments and applications of these techniques.

2.1 Domain Randomization in Computer Vision

The idea of randomizing simulation parameters to improve the transfer from a simulation
environment to reality has been introduced to the computer vision domain by Tobin
et al. [10]. The authors showed that with enough variation in the training data, a object
localization model trained exclusively in a low fidelity simulation can generalize to real-
world data. To enable this transfer, the authors randomized object appearance, lighting
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2 Related Work 2.1 Domain Randomization in Computer Vision 7

Figure 2.1: Example scenes from the publication of Tobin et al. [10].

Figure 2.2: Example scenes from the publication of Sadeghi and Levine [12].

conditions, camera position, and other simulation parameters. They introduced the term
domain randomization for this concept. Since then, domain randomization has become a
core technique to bridge the sim-to-real gap in various robotic applications.

Around the same time, Sadeghi and Levine [12], used similar techniques to train an indoor
flight controller for an autonomous drone using simulated images only. Compared to the
work in [10], the authors used more complex object textures during randomization. While
[10] used simple textures, like gradients and checkerboards(Figure 2.1), the authors in [12]
used material surface textures from the Blender software [16](Figure 2.1).

In a following publication, James et al. [17] trained an controller for a robotic arm to solve
a pick-and-place task using visual input(Figure 2.3). The authors used a similar approach
to Tobin et al. [10], but instead of using simple textures, they used textures generated
from Perlin noise [18](Figure 2.3). Perlin noise is a type of procedurally generated gradient
noise that is often used in computer graphics. In a following study, Perlin textures have
been identified as especially effective for sim-to-real transfer [19].

With the wide availability of high-fidelity simulators, developing domain specific scenes
has become a more common practice. Recent papers, combine domain randomization with
scene engineering, randomizing unknown factors and modeling known ones. Eversberg
and Lambrecht [11] use an object detection task for an industrial use case as a benchmark.
The authors use a physics-based simulator to generate high quality synthetic data and
compare modeling the target domain to domain randomization. In [11] and [20] they show
that using realistic textures, combined with randomized background, lighting conditions,
and camera positions achieves optimal performance on a real-world dataset. Both of these
approaches, however, require that the target domain and the expected textures are known
in advance. This does not hold for many real-world applications, where the textures of
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Figure 2.3: Example scenes from the publication of James et al. [17].

encountered objects are not known beforehand.

All of these methods share the idea that model robustness improves by adding vari-
ation to the training data by randomizing the simulation parameters. Domain ran-
domization has been shown to be an essential technique for sim-to-real transfer in
various applications, including object detection, grasping, and navigation tasks cite-
sadeghiCAD2RLRealSinglelmage2017, tobinDomainRandomizationTransferring2017, ev-
ersbergGeneratinglmagesPhysicsBased2021. Domain randomization is often complemented
by data augmentation techniques to further increase the diversity of the training data.

2.2 Data Augmentation

While domain randomization, randomizes the simulation parameters to increase the
diversity of the training data, data augmentation introduces variations to the training
data itself. Data augmentation is a widely used technique in computer vision to improve
the performance of deep learning models, by artificially increasing the size of the training
dataset. One of the first works to demonstrate the effectiveness of data augmentation on
a machine learning computer vision task is the work of Lecun et al. [21]. The authors
applied a combination of random translations, rotations, and scaling operations to augment
training images for handwritten digit recognition. Extending previous work Krizhevsky
et al. [22] introduced many state-of-the-art image augmentation techniques such as random
crops, horizontal flips, and color jitter to improve the performance of an image recognition
CNN. Using data augmentation techniques lead to a reduction in error rate of almost
50.00 %, compared to other state of the art models at the time.

More recently, Laskin et al. [13], applied data augmentation techniques to end-to-end
reinforcement learning tasks. The authors show that augmenting the training data
with random crops, color jitter, and other transformations significantly improves the
performance of vision-based reinforcement learning algorithms.

In a sim-to-real context, data augmentation techniques are often used to add various
real-world imperfections to the synthetic training data [23], [24]. This can include adding
noise, blur, occlusions, or other artifacts that are commonly found in real-world data.
The goal is to make the synthetic training data more similar to the real-world data,
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Collecting Training with Running
demonstrations augmentations on real robot

Figure 2.4: Example of depth images, from raw, over augmented to real, from the publica-
tion of Pashevich et al. [23].

thereby improving the generalization of the trained models. In contrast to traditional
computer vision that mostly relies on RGB images, robotic perception often includes
depth information. Depth information is an essential component for control and decision
making. However, depth data is often noisy and incomplete, whereas synthetic depth
data generated using optimal sensor models is generally noise-free and complete. This is
a classic example of the sim-to-real gap.

Several works have explored the use of data augmentation techniques to improve the
performance of models trained on synthetic depth data. Pashevich et al. [23] show that
applying traditional image augmentation techniques such as transformations, cutouts, and
noise to synthetic depth data to be benefitial for successful sim-to-real transfer. Figure 2.4
shows a raw depth image generated in simulation, its augmented counterpart, and a real
depth image for comparison. The authors show an improvement of success rates from
15.00 % to 90.00 % when applying depth augmentations.

Other works have focused more on modeling the noise characteristics of real-world depth
sensors and applying these models to synthetic depth data. For a grasp success prediction
network, trained on simulated depth images, Mahler et al. [24] approximate real sensor
noise by adding a distance-dependent noise component to simulated depth images. Instead
of using depth images, Hagelskjaer and Buch [25], apply Gaussian noise to the xyz-
positions in a RGB-pointcloud. Although this noise model, using Gaussian noise only,
is far simpler than other methods [23], [26], the authors show successful simulation to
reality transfer of a pose estimation network. Reaching state of the art performance on the
LINEMOD pose estimation benchmark [27], while being trained exclusively on synthetic
data. An increasingly complex noise model was introduced by Thalhammer et al. [26].
The authors combined occlusion masks, Gaussian smoothing, depth-proportional noise
and Perlin noise to train a object detection network from synthetic depth images. They
show an improvement of 25.00 % in detection recall score when using the developed noise
augmentation pipeline.

In summary, data augmentation techniques have been shown to be especially effective in
improving the simulation to reality transfer performance of models trained on synthetic
depth data. These techniques can be used to add various real-world imperfections to the
synthetic training data, making it more similar to real-world data.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2 Related Work 10

Figure 2.5: Example depth image with augmentations from the publication of Thalhammer
et al. [26].

Combining domain randomization and data augmentation techniques promises to be a
powerful approach for sim-to-real transfer, especially for multimodal data such as RGB-D
images or pointclouds.

2.3 Simulation Environments for Sim-to-Real Transfer

The choice of simulation environment can drastically influence the sim-to-real performance,
as well as the required effort to implement domain randomization techniques [28]. In
the sim-to-real literature robotic simulators like PyBullet and Gazebo are often used to
generate domain randomized training data [23], [29], [30]. While these simulators offer
basic rendering capabilities, their focus is primarily on simulating the physics of robotic
systems. They do not provide the same level of realism and fidelity as dedicated rendering
engines.

Modern rendering engines, such as Unity [31], or Blender [16] on the other hand, focus on
rendering quality and visual realism. They often lack the physics engines, robot models
and controller support that are required for sim-to-real transfer in the robotics domain.

Nvidia Omniverse aims to offer the best of both worlds. The Omniverse platform combines
the PhsyX [32], high performance physics engine with a ray tracing capable rendering
engine. On top of this, Omniverse offers dedicated extensions for robotic control and
domain randomization. Isaac Sim is an extension built on top of the omniverse platform
that provides models, and controller support for various robotic applications [33]. With
the Replicator extension, the Omniverse platform even provides a dedicated framework
for domain randomization and synthetic data generation [34]. The combination of high-
fidelity rendering and physics simulation makes the omniverse platform a powerful tool
for sim-to-real transfer in robotics.
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3 Grasping Reality: Sample Efficient
Sim-to-Real Transfer for
Robotic Pick-and-Place Tasks

Learning generalizable pick-and-place policies for robotic manipulation tasks is a challeng-
ing problem. Especially variable object shapes, appearances, and locations make it hard
to generalize from limited data. Over the years, many different approaches have been pro-
posed to solve this problem, ranging from traditional computer vision systems, requiring
precise pose estimations of the task objects [35], to end-to-end deep learning approaches
that use deep neural networks to directly map visual input to robot actions [17]. A
recent approach to this problem are Transporter Networks [9]. The Transporter Networks
architecture predicts pick-and-place poses from visual input. The system is trained on
demonstrations of the task to solve. By reducing the problem to predicting two key poses,
and leaving the planning of the movement between these poses to the robot controller,
they achieve a high sample efficiency and good generalization to unseen configurations.
Another distinguishing factor of Transporter Networks is the combined use of color- and
depth information in the input data. This enables the network to learn both semantic
features in color information, and structural features in depth data. It is this combination
of feature that motivated the use of Transporter Networks for trying to transfer pick-
and-place policies from simulation to reality in thesis. We use a combination of domain
randomization and data augmentation techniques to train Transporter Networks to enable
sim-to-real transfer.

In contrast to most of the domain randomization literature, we use a high performance
rendering engine for synthetic data generation. The intuition is that this more complex
simulation can encompass a larger visual state space than simpler renderers and therefore
result in better simulation to reality transfer. In this thesis we use the Nvidia Omni-
verse [14] platform for synthetic data generation. Nvidia Omniverse, provides extensive
capabilities for robotic simulation and domain randomization. More details about its
usage are given in Section 3.3.

To bridge the simulation-to-reality gap, we use a combination of domain randomization
and data augmentation techniques. Explanations and implementation details of the used
domain randomization and data augmentation methods are given in Section 3.4 and
Section 3.5 respectively.

3.1 Transporter Networks

Transporter Networks are a neural network architecture designed for vision-based robotic
manipulation [9]. They efficiently learn to predict spatial displacements, like pick and
place poses, from visual input. By directly predicting two key poses, complex tasks such

11
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as object rearrangement, deformable manipulation, or even multi-step problem solving
can be learned very efficiently. The key features that motivate the use of the Transporter
Networks architecture for this thesis are its sample efficiency, the simple input-data format,
and the promise of good generalization to unseen scenes and objects. These properties
make it a good candidate for transferring policies from simulation to reality. To our
knowledge, this is the first usage of the Transporter Networks architecture in a sim-to-real
setting.

3.1.1 Network Architecture

One of the main contributions of Transporter Networks is the use of a mechanism the
authors call spatial transformer mechanism. This mechanism is best explained using
a pick-and-place task as an example. In the first step of prediction, the Transporter
Networks system uses a convolutional neural network(CNN) to predict a pick position in
the scene. The predicted pick position is then used to guide the search for the place pose.
A mechanism the authors call pick-conditioned-placing. Figure 3.1 shows the schematic of
this process [9]. To predict the place-pose, the input observation is fed into two CNNs, a
key network and a query network. By cropping a region of interest in the spatial feature
space generated by the query network, centered at the previously determined pick position
a query-feature map is created. This crop of feature-space values is then convolved
over the feature map generated by the key network. The place position is predicted
by finding the location of the maximum value in the result of this convolution. This
mechanism is combined with a rotation of the query feature map in 10 degree increments.
The convolution is done with each rotated feature map. This creates a 3D value map,
where 2 dimensions represent the spatial location and the third dimension represents the
orientation. The index of the maximum value in this 3D value map - the argmaz, is used
as the place pose.

+
Figure 3.1: Schematic of the Transporter Network architecture from [9]. (a) The scene
is projected into a top-down view. (b) The attention-network predicts the
pick position. (c) The input observation is fed into the key network and a

crop around the pick position is rotated and fed into the query network. The
resulting feature maps are convolved to predict the place pose.
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3.1.2 Sample Preprocessing

A contributing factor to the good sample efficiency of the Transporter Networks system
lies in the preprocessing of observation samples. Instead of using raw RGB-D images as
input to the networks directly, a top down view of the scene is created from the input
observations. This is done by combining the given RGB-D images to create a RGB
pointcloud. A top-down view of the scene is created from this pointcloud. Resulting in a
color and a heightmap image, which are combined and used as the input to the networks.
This preserves the 3D spatial structure of the scene, while at the same time making the
system largely viewpoint independent.

3.1.3 Data Augmentation

An additional mechanism that contributes to the sample efficiency of the transporter net-
works architecture is the use of specific data augmentation methods. Random translations
and rotations are applied to the input observation and the pose-labels. Thereby creating a
new data sample, where the relationship between pick pose and place pose stay constant,
but the absolute poses change. This way, more of the input space is covered with the
same amount of labeled data.

3.1.4 Equivariant Transporter Networks

A recent extension to the Transporter Networks architecture is the Equivariant Transporter
Networks system [36]. The authors have adapted the network to use a parallel-jaw gripper,
by adding a pick angle prediction network. Being able to use a parallel-jaw gripper
allows for a far broader range of objects to be manipulated. Therefore, we decided to use
FEquivariant Transporter Network for this thesis.

Additionally, the use of a special type of neural network, allows this system to be equivariant
to orientation of the target object. This means, that the network, by design, is able to
generalize to unseen orientation of the object to pick. This enables even higher sample
efficiency than the baseline Transporter Networks system.

3.2 Adapting Transporter Networks for Sim-to-Real Transfer

As noted before, to the best of our knowledge, we are the first to use a variation of the
Transporter Networks architecture in a sim-to-real setting. In previous publications the
networks were either trained and evaluated on simulated data, or on real world data
exclusively. No transfer from one domain to the other was done.

Despite that, we assume that the benefits of sample efficiency and generalizable policies,
also offer a promising basis for bridging the sim-to-real gap. To enable the use of the
Equivariant Transporter Networks architecture in a sim-to-real setting, we extend the
original implementation. The original implementation was obtained from the GitHub
repository of the authors [37].

Multiple modifications to the training code and network architecture were done and are
explained below.
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~a

Figure 3.2: A difference in crop position Ap between ground-truth(green) and predic-
tion(orange) leads to a difference in crop position.

3.2.1 Decoupling of Networks

During training we observed that the networks used to predict pick position, pick ori-
entation and place pose, require different amounts of training iterations to converge to
satisfactory results. This is likely due to the different complexity of the individual parts of
the task. It was therefore favorable to be able to train each of the networks(pick position,
pick angle and place pose) separately and only combine them for inference if necessary.
This also allowed to test different learning rates and other hyperparameters for each of
the networks individually. To achieve this separation, the common implementations used
by all networks were left in the original class, while the network specific implementations
were moved to separate classes, that could be individually trained and evaluated.

3.2.2 Augmentation of Crop Position

The crop input, used by the pick angle prediction network and the transporter network
is centered around the pick position. During deployment, the position where the crop is
taken, is therefore predicted by the Attention(pick position) network. Due to imperfections
in the performance of the attention network, the crops will not be centered precisely at
the ground-truth pick position. In the original implementation’s training process however,
crops are always centered at the ground-truth pick position. This leads to a difference
between the crops encountered in training and the crops encountered during deployment.
Figure 3.2 illustrates the difference in crop positions caused by a difference between
ground-truth pick position and predicted pick position.

To account for the expected differences during deployment, we introduce a method, that
adds a random offset to the crop position during training. With this perturbation, the
network learns to be more robust to errors in the pick position prediction.

3.2.3 Batched Processing

The original implementation of the Fquivariant Transporter Networks uses a batch size of
1 for training. This leads to high variability in the loss and error during training, since
network weight updates are based on the loss of only one sample. It has been shown, that
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higher batch sizes can lead to better generalization [38]. Batched training also allows
to use modern techniques such as batch normalization, which can improve the training
process [39]. Furthermore, batched training takes advantage of the parallel processing
capabilities of modern GPUs. To address this, the training process and the networks are
adapted to use a configurable batch size.

3.2.4 Dataset Format

The dataset from the original Fquivariant Transporter Networks publication uses individual
pickle files[40] to store the poses, color- and depth observations, and info fields for each
sample. While this is a simple and efficient way to store the data, it is not ideal for
the comparison of different randomizations of the same scene. Comparing different
randomizations is drastically easier, if the storage of labels and orbservations is separated,
so that the same scene can be used with different randomizations. To address this, the
dataset is modified to only store the poses for each scene, and store a reference to a folder
that contains the observation data. The connection between observation data and the
poses is established using the index of each scene as the folder name for the observation
data.

3.2.5 Input Data Format

The original Equivariant Transporter Network [36] uses RGB-D images as observation
input. The depth images are backprojected during each training step, to create a pointcloud
and from that, a top-down image of the scene. It is computationally inefficient, to do
this at each training step, rather than beforehand. Furthermore, many real-world depth
cameras already provide pointclouds as output.

For reasons of efficiency and simplicity, the network was adapted to use RGB-pointclouds
as input. This allows for easier integration of captured real-world pointclouds during
evaluation. The only requirement is that the pointclouds need to be roughly aligned
to the xy-plane, and the workspace in xy-coordinates is visible in the pointcloud. This
however can be done in a preprocessing step. The requirements for the alignment of the
pointclouds can be somewhat relaxed, when introducing perturbations to the simulation
data, as the network can learn to ignore the perturbations. This is describe in more detail
in Section 3.5. We use the Polygon File Format - PLY [41] for the pointclouds, which is a
simple file format for storing polygon objects or pointclouds. It can be easily read by most
pointcloud processing libraries, as well as be viewed in most pointcloud viewers, such as
Meshlab [42]. This is very valuable for validation of input data during development of the
training process.

3.2.6 Data Loading and Preprocessing

The aforementioned increase in batch size as well as the augmentations applied to the input
data, introduced in this thesis, increases the required processing time for each sample. We
parallelize the data loading and preprocessing using the Python multiprocessing library,
to alleviate this slowdown. The data loading and all augmentations for a training batch
can be moved to a separate process and computed in parallel.
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3.2.7 Dropout Layers

In an attempt to reduce overfitting and improve generalization, dropout layers are added
to the networks. Previous research has shown that dropout can be beneficial for training
deep neural networks, especially with limited dataset sizes [43]. Transporter Networks uses
a variation of a Residual Network - ResNet, a popular architecture for computer vision
tasks[44]. Dropout layers are added in the residual blocks, between the first activation
output and the second convolutional layer, as has been proposed in [45]. Since the effects
of dropout is compounding when using multiple encoder and decoder layers, the initial
dropout rate is reduced by 0.0125 for each layer, with the highest dropout at the bottleneck
of the encoder-decoder structure.

3.3 Synthetic Data Generation

Most deep learning approaches, rely on large amounts of training data to achieve good
performance. Especially in the field of robotics, acquiring training data in the real-world
can be costly and time-consuming. Using synthetic data generation is one of the most
common approaches to overcome this limitation. This section describes the implementation
details of the synthetic data generation pipeline used in this thesis.

Previous publications in domain randomization research often used low fidelity simulators
for data generation [12], [29], [46]. The used, simple physics- and rendering engines, are
not able to simulate complex surface materials or realistic lighting conditions. This limits
the visual state space of the generated data, which can be especially problematic for
challenging materials, such as transparent or reflective surfaces. In this thesis, we use the
high fidelity, ray-tracing capable simulator Nvidia Omniverse [14]. We argue that high
fidelity simulators are able to simulate more complex lighting conditions and material
properties, and the simulated data therefore covers parts of the visual state space that
cannot be reproduced by simpler rendering systems. Therefore, creating a more diversely
randomized dataset that is more likely to encompass the visual state space of the real
world.

The Omniverse platform contains a 3D rendering and physics simulation engine, and offers
various extensions for animation and design, synthetic data generation, as well as robotics
simulations and reinforcement learning. For scene and dataset generation in this thesis we
use the Isaac Sim [33] extension, and Omniverse Replicator [34] for domain randomization
and rendering. The Isaac Sim extension is a robotics simulation environment that allows
for the creation of complex 3D scenes, simulation of robot interactions, and development
of robotic control algorithms. Figure 3.3 shows an example of a scene in Isaac Sim. It
offers support for physics simulation as well as physically accurate lighting and material
simulation, which is especially beneficial for developing vision-based algorithms. A python
API is offered, that allows access to the full simulation environment, as well as various
extensions for control of robots and various environment conditions. This thesis uses Isaac
Sim in version 4.2.0, which was the latest version during development of the programs
for this thesis. The used extension for synthetic data generation, Nvidia Replicator offers
a range of capabilities for the randomization of lighting conditions, material properties,
physical properties of objects, camera parameters and many more. It also offers tools
for rendering of synthetic data in various formats, such as color images, depth images,
segmentation masks, point clouds, et cetera.
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Figure 3.3: Example scene in Omniverse Isaac Sim.

3.3.1 Data Generation Pipeline

The data generation pipeline(Figure 3.4) consists of two main parts, (1)Scene and Dataset
Generation and (2)domain randomization and Rendering. By doing so, we can randomize
the exact same scenes with different randomization parameters. Therefore, all observed
performance differences can be attributed to the choice of the applied randomizations.
In the Scene Generation step, the simulator ground truth information is used to create
training labels, i.e., the ground truth pick and place poses of the objects of interest. This
information, together with all required information to recreate each scene is saved to
the dataset json-file. In the domain randomization and rendering step the object poses
and scales for each scene are loaded from the dataset file and various randomizations are
applied to to scene.

3.3.2 Scene Generation

The scene generation step creates task-specific simulation scenes that serve as the basis for
training data generation. During scene generation, the objects of interest are placed in a
defined workspace and their poses are recorded. After the initial placement of the objects
in the workspace, the world pose of a pre-annotated grasp point on the object to pick is
recorded and stored as the pick-pose label for this scene. The place-pose is calculated
using task-specific logic. Optionally, the pick-and-place operation is executed to validate
the calculated place-pose.

The individual steps during scene generation are explained in more detail in the following
sections.
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Figure 3.4: Data generation pipeline

Model Import

The first step in scene generation is the import of the desired object models into the object
file format used by Omniverse. Omniverse uses the Universal Scene Description (USD)
format as a format to save individual objects and complex scenes. The conversion to USD
from various 3D object file formats is done using a provided importer in Isaac Sim. After
the import of the object model, the model is scaled, so that all models of a dataset are
initially the same size, regardless of the original size of the object mesh. This is done
to ensure that the same randomization parameters can be used for all objects in the dataset.

Grasp Point Annotation

To determine the pick position of the objects of interest, we use a pre-annotated grasp
point on the object. To explain how the desired grasp point is annotated on the object, it
is first necessary to discuss how objects are structured in the simulator. In Isaac Sim,
Scenes and objects are hierarchically structured, with the Scene being the top level object
and all other objects being children of the Scene-object in the hierarchy tree. Figure 3.5
shows an example of the scene hierarchy of a grasp-experiment object in Isaac Sim.

The most basic object type in Isaac Sim is the XFormable object, which is a transformable
object that has no physics properties or activated APIs. More complex object types,
with object meshes, physics properties, etc. are derived from the XFormable object. The
XFormable object is most often used as a container to group multiple objects, so that they
can be manipulated together. The hierarchical design allows for inheritance of properties
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Figure 3.5: Scene hierarchy of an grasp-experiment object in Isaac Sim.

in the tree and also to define local transformations and scales for each object in the tree,
with respect to its parent object. This parent-child inheritance model is used to define
the grasp point on the object.

The grasp point is defined in a way that transforms and scales together with the base
object. To implement this, the grasp point is defined as a child object of the object to
pick, with a fixed translation and rotation offset from the base object reference frame.
The annotation of the grasp points is done manually in the Isaac Sim user interface. An
example of a grasp point annotation is shown in Figure 3.6.

Figure 3.6: A shoe model with annotated grasp point in Isaac Sim.

Scene Generation

Using the annotated models, the scenes for the dataset are generated by placing the
objects in the workspace and calculating the pick and place poses. The workspace is
defined as a rectangular area with a size given by the dataset configuration. For each
sample, the objects can be optionally scaled by random factors in each dimension. While
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object scaling is a form of domain randomization, it must be implemented during the
Scene Generation step since it directly affects the pick and place poses of the objects.
After the scaling step, the objects are placed in the workspace in a random, collision-free
configuration. From this initial configuration, the pick pose is determined by saving the
world pose of the grasp point on the object of interest. The place-pose is calculated, from
the ground-truth simulator state, using a task-specific logic that must be implemented for
the task at hand.

The output of the generation procedure is a dataset-json file, that contains the labels for
each scene, i.e., the pick and place poses, as well as all necessary information to be able
to recreate the scenes in the domain randomization step. A json configuration file is used
to specify the parameters for scene generation and the dataset.

3.3.3 Domain Randomization and Rendering

In the domain randomization and rendering step, the observations for a given dataset are
generated by recreating the scenes from the dataset file, applying various randomizations,
and rendering a RGB-pointcloud to use as an observation. RGB-pointclouds contain the
xyz-coordinates, as well as the color information for each recorded point. For randomization
and rendering the Omniverse Replicator extension is used. It provides a Python API
to create complex randomization and rendering pipelines. The pipelines are created as
Omniverse Graphs, which is a node-based system within Omniverse, to interact with
simulation scenes. Figure 3.7 shows an example of a Omniverse Graph for randomizing a
light source. Omniverse Graphs can either be created via a graphical user interface or
programmatically using the Python APIL In this thesis, the Python API is used to create
the randomization and rendering graphs. Details about the used randomizations and their
implementation details are given in chapter Section 3.4.

Figure 3.7: Example of a Omniverse Graph for randomizing a light source
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Rendering

As explained in Section 3.2, the observations for the adapted Transporter Network are
RGB-pointclouds, in the Polygon File Format (PLY) format. To generate observations
for the dataset, the pointcloud annotator from the Omniverse Replicator extension is
used. The pointcloud annotator is a node in the Omniverse Graph that is a attached
to a camera and produces a pointcloud based on the depth and color information given
from the simulated camera. The output of the pointcloud annotator is a numpy-array,
containing the coordinates and color values of each recorded point in the scene. The
opendd library [47] is then used to write the obtained numpy-arrays to PLY files for the
training process.

As mentioned above, the pointcloud renderer is attached to a camera in the rendering
graph. Although the calculations for creating a pointcloud from the simulated depth
images is handled internally by Replicator, the created pointclouds are still influenced by
the camera parameters of the attached camera. For example, different opening angle and
distortion parameters of the camera change the created blind spots and potentially also
the recorded shapes of objects.

The real-world datasets for this thesis are recorded using a Intel RealSense D435 depth
camera. A model of this camera is already included in Isaac Sim, that approximates the
camera parameters of the real camera. More details on how the camera is modeled can be
found online at the Nvidia Omniverse documentation [48].

3.4 Domain Randomization

Using simulation develop algorithms and to collect data for training robotic systems
has many advantages over developing them with data collected in the real world only.
The environment can be controlled, large-scale data collection is cheap and easy, and
no harm can be done to the robot or the environment. In an ideal world, the resulting
algorithms, trained with simulated data, would be directly usable in the real world. Due
to discrepancies between the simulation and the real world, this is usually not the case
and the developed controllers fail to generalize to real-world data [17]. This is known as
the sim-to-real gap. It is caused by imperfect modeling of real-world processes, sensor
noise, and other factors that are not present in the simulation.

Reducing the sim-to-real gap is crucial to be able to successfully deploy algorithms
trained on synthetic data, in real-world settings. One of the most popular methods
for reducing the sim-to-real gap is by using domain randomization methods. Domain
randomization describes a set of techniques that aim to make the trained network invariant
to domain-specific features and learn task-relevant features that transfer between domains.
By varying all task-irrelevant features in simulation, such as object textures, lighting
conditions, camera positions, the trained network will ideally be agnostic to changes in
these factors in the real-world data. The appearances encountered in real-world data will
ideally be a subset of the appearances and scenes encountered during training.
Especially in the sim-to-real context, domain randomization and data augmentation are
closely related concepts, as both aim to make the training data contain variations that
enable transfer to the real-world domain. While domain randomization modifies the
mapping from a scene s; to an observation oy by varying properties in the rendering engine,
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data augmentation transforms an already rendered observation o, to a new observation o}.
Data augmentation is described in more detail in Section 3.5.

The following sections describe the domain randomization techniques used in this thesis
and the reasoning behind their selection.

3.4.1 Object Texture Randomization

One of the most used domain randomization techniques is the randomization of visual
appearances. For many applications, it is desirable that the trained algorithm is agnostic
to the color or texture of the objects of interest. The shape of an object is often the
same in different domains, but the color or texture can vary significantly, even from one
instance to another. For example, two cups might have the same shape, but could have
different colors and surface textures. By randomizing the objects texture and color, the
network learns to focus on the invariant features of the object rather than the potentially
varying appearance.

State of the Art

Randomizing object appearances by applying different textures has been a core random-
ization technique in many publications. One of the first publications to apply texture
randomization for sim-to-real transfer was by Tobin et al. [10]. They trained a CNN
to predict the position of an object of interest in a 2D RGB image. By varying the
textures of the objects, the background, as well as the lighting conditions, they were able
to successfully use a model trained exclusively in simulation to predict the position of
the object in real-world observations. They used a random choice of solid RGB colors, a
gradient between two RGB colors, and a checkerboard pattern with two colors as textures
for the objects. In the same year Sadeghi and Levine [12] developed a method to train a
controller for an autonomous indoor drone by simulating corridors with random obstacles.
Instead of relying on manually defined textures, they used a set of predefined material
textures included in the Blender rendering engine, such as wood, metal, and stone. They
achieved successful transfer to real-world domains while exclusively training with simulated
data.

Texture randomization has since been identified as a key component for sim-to-real transfer
and has been used in many publications [19], [28], [29], [49]. It has been shown that more
complex textures lead to better generalization to unseen textures and into the real world.
Borrego et al. [29] compared the performance of different randomization textures used for
training an object category detection model. They evaluated four types of textures: flat
colors, gradients of colors, chess pattern, and Perlin noise. Perlin noise is a type of gradient
noise that is often used in computer graphics to generate textures and realistic terrains.
It is generated by summing up multiple octaves of gradient noise, where each octave has
a different frequency and amplitude [18]. In an ablation study on different textures [29]
found that removing Perlin noise from the training set resulted in a performance decrease
by a factor of 3. They found the following order of importance for the textures: Perlin
noise, chess pattern, gradients, and flat colors. This is in line with the intuition that more
complex object textures lead to better generalization. Instead of relying on self-generated
textures, several publications have used publicly available textures to train their models
to successfully bridge the sim-to-real gap [11], [30], [49].
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Implementation

Based on the results of previous research, object texture randomization in this thesis
is implemented using a combination of Perlin noise textures, a diverse set of textures
from public websites, as well as a random selection of images from the Common Objects
in Context (COCO) dataset [50]. To increase the variety of the appearances, the used
texture-images are randomly scaled, shifted and rotated during the randomization.

e Perlin Noise textures: The Perlin noise textures are implemented using images of
black and white Perlin noise generated with the online generator Noise Maker [51].
The generator allows to set the size of the image, as well as various parameters
for the noise generation. Although it would be potentially beneficial to have the
Perlin noise scale between two random RGB colors, due to limitations in Omniverse
Replicator, only a single color could be used. To create colored version of the Perlin
textures, they are multiplied with a random color during the scene randomization
step. Examples of Perlin noise textures can be seen in Figure 3.8.

'.

Figure 3.8: Examples of colored Perlin noise textures used for object texture randomization.

o Material textures: For the set of material textures, 90 diverse, openly available
textures were obtained from various websites. The textures were selected to cover a
wide range of materials, surfaces and colors. Compared to the alternatively used
COCO images, it is evident that because they are intended for the use as textures,
they offer superior tiling properties when scaled. Figure 3.9 shows examples of the
material textures used. The used textures were obtained from the following websites:
Free Stock Textures [52], Texture Ninja [53], 3D TEXTURES [54], Poly Haven [55].

Figure 3.9: Examples of material textures used for object texture randomization.
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e COCO textures: The COCO dataset is a large scale image dataset containing over
200.000 images of 80 different object categories in a variety of scenes [50]. The
dataset is widely used for object detection and segmentation tasks. The high variety
of objects and real-world scenes also makes it attractive to use in a sim-to-real setting.
Eversberg and Lambrecht [11] have shown the effectiveness of using COCO images
as background images in a domain randomization setting. This idea is extended in
this thesis by using COCO images as textures for objects as well. A random subset
of 5000 images from the COCO dataset are used as textures for object materials.
Figure 3.10 shows examples of COCO images.

Figure 3.10: Examples of COCO images used for object texture randomization.

Texture Sampling

Having a large variety of different textures is important for good generalization ability of
the trained model. In our case, the number of available textures in the three different
categories is largely different. While there are only 90 material textures, there are 5000
COCO images and 20 pre-generated Perlin noise textures. If we were to sample from
all categories in equal quantities, the textures of categories with fewer available samples
would be re-used far more often. To ensure a wider range of different textures in the
dataset, the textures are sampled in a way that textures with more available samples are
more likely to be selected.

Because weighted sampling of textures is not directly supported by the used version of
Nuvidia Replicator, a method resembling a weighted sampling scheme is implemented. For
each texture category multiple materials are created and sampled uniformly. By varying
the number of materials for each category, the probability of a texture being selected
can be controlled. Uniform sampling from a set of materials for which the relationship
Nzt < NMpoise < Ncoco holds, will result in a distribution of textures that is close to
the desired weighted sampling scheme. Because the texture and COCO materials can
be treated similarly, they are grouped into one category. The distribution within the
texture category is controlled by sampling a subset of the available COCO textures, so the
relationship between texture and COCO files is nyeqt/ncoco = 1/5. The ratio between
the Perlin noise textures and the image texture category is set to npeise/Nimg = 2/3.
Resulting in a relationship of n¢eyt/Nnoise/ncoco ~ 1/1.5/5.

Figure 3.11 shows a cuboid with material textures from each of the used categories. From
left to right: noise, material textures, and a COCO image.
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Figure 3.11: A cuboid with different material textures.

3.4.2 Surface Material Randomization

Besides its texture, there are many other properties of the surface material that define the
appearance of an object. These include its surface roughness, reflectivity, and specularity.
In the context of simulation, material properties refer to parameters in the rendering
engine that define how the surface of a material interacts with light, such as how shiny,
rough, or metallic it appears. By randomizing the material properties of the objects of
interest, the goal is to make the covered state space in the recorded scenes more diverse
and increase the generalization ability of the trained model.

State of the Art

When it comes to randomizing material properties, most publications give no information
on whether randomization of material properties is used or the authors only mention
that they used a random selection of materials, without giving more details. This could
be due to the fact that the used simulators in the domain randomization literature, are
typically of lower fidelity. This often makes simulating complex surface material properties
impossible. It is argued that when randomizing the visual properties of the scene, high
accuracy rendering, like ray-tracing, is not required to achieve successful domain transfer.
We would argue however, that a more complex rendering system might be able to capture
a broader visual-state space and therefore lead to better generalization.

Implementation

In this thesis, the used Omniverse Replicator plugin, allows access to many properties
of the created materials in the scene. The following material properties are randomized
during data generation:

e Roughness: Defines how smooth or rough the surface of an object appears. A
roughness of 0 creates a very reflective, mirror-like surface. The higher the roughness
value of a material, the less reflective the surface will get.
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Figure 3.12: A sphere with different material properties. Left: Metallic, low roughness and
high specularity. Middle: Non-metallic, medium roughness, high specularity.
Right: Non-metallic, high roughness, low specularity.

e Specularity: The specularity property of a material defines how the light is reflected
from the surface. A specular value of 0 means that light is scattered in all directions,
while a value of 1 means that reflections are highly directional.

e Metallic: Defines the dielectric constant of a material. A value of 0 means that
the material is not conductive, while a value of 1 means that the material is
metallic. This property modifies the way light interacts with the surface of the
object. Metallic materials reflect light differently than non-metallic materials and
are rendered differently.

Figure 3.12 shows a sphere with different material properties. It can be seen, that different
values for roughness, specularity and the dielectric constant significantly influence the
appearance of the object.

3.4.3 Background Randomization

The background of a scene is one of the prime examples of an attribute that is not task
relevant and is not constant in most real world applications. Since the credo of domain
randomization is to randomize every aspect of the simulation that has no grounding in the
real world, randomization of the background is often used in the literature [10], [17], [56].

State of the Art

Randomization of the background can be found in most vision based domain randomization
publications. There are generally four types of background randomization techniques
found in the literature:

e Solid color backgrounds: The simplest form of background randomization is to use
a randomly selected solid color to fill the background plane [10], [28].

e Noise textures: Different noise textures, similar to the textures used for objects of
interest were also investigated as possible scene background [17], [56].



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

3 Sim-to-Real Transfer of Pick-and-Place 3.4 Domain Randomization 27

e Random images: The most widely used method for background randomization
is to use random real-world images from large-scale datasets, such as the COCO
dataset [50] or the NYU-depth dataset [57]. This has been used with great success
in many publications [11], [19], [49].

e Domain-specific images: In some cases, domain-specific images are used as back-
ground images. This can be reasonable in cases where the scene background can be
estimated beforehand, e.g. in an industrial workplace scenario. It has been shown
however, that this not necessarily leads to better transfer compared to random
images [11], [58].

Implementation

Due to the great success in previous work and the simplicity of the implementation,
random images from the COCO dataset are used as background images in this thesis.
The images are randomly scaled, shifted, and rotated during data generation to increase
the variety of the backgrounds. Additionally, the material properties, such as roughness
and specularity of the floor material are randomized. Figure 3.13 shows examples of
two backgrounds with different textures from the COCO dataset and different surface
properties.

Figure 3.13: Examples of backgrounds with different textures and material properties.
Left: high roughness, low specularity. Right: Low roughness, high specularity.

3.4.4 Lighting Randomization

The lighting conditions in a scene can have a significant impact on the appearance of
objects in the scene. Different lighting conditions can lead to different shadows, reflections,
and highlights on the objects. This can make generalizing to unseen scenes challenging.
Randomizing the lighting conditions in the scene is another widely used technique in
domain randomization literature [10], [12].

State of the Art

Previously lighting randomization has often been implemented by randomizing the number
of light sources, their position, intensity, and color [10], [12], [49]. The light sources are
mostly modeled as point lights and surface lights, which are simple to implement and
often the only light sources available in the used rendering engines. Lighting conditions
in the real world, however, can be much more complex than what can be modeled using
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Figure 3.14: A scene lit using a HDRI dome light. The image is used as a light source
and the reflections of the light sources are visible on the objects in the scene.

such basic light sources. Additionally, modern rendering engines are capable of simulating
much more complex lighting conditions without a significant increase in computation
time. Image-based lighting (IBL) is a popular method for simulating complex lighting
conditions, that has its roots in modern visual effects production and game design [59].
In an IBL system, 360 degree images of an environment are used to light scenes. The
images are typically High Dynamic Range images, that are captured in real world scenes.
Those images naturally capture various types of light sources, their position, intensity,
color, and direction, as well as the reflections of the light sources on the objects in
the scene. Figure 3.14 shows an example of a scene lit using an HDRI dome light.
This lighting technique has been used successfully for domain randomization in previous
publications [11], [60]. It seems to be a promising technique for domain randomization and
sim-to-real transfer since the lighting conditions resemble real-world lighting conditions
much more closely than a random arrangement of point-light sources. Figure 3.15 shows
a simple scene with different lighting conditions.

Implementation

To randomize lighting conditions the Dome Light feature of the Omniverse rendering
engine is used. It allows to use HDR images as light sources in the scene, that are simulated
as a dome in infinite distance around the scene.

For this thesis a set of 40 publicly available HDR images is used as light source textures.
Since the use case of the developed algorithm is indoors only, HDRI images of indoor
scenes are used. The used HDR images were obtained from Poly Haven [55] and HDRI
Skies [61]. During scene generation, the HDR images are randomly sampled and applied
to the dome light. Additionally, the intensity of the light source and the rotation of the
dome light are randomized.

3.4.5 Camera Randomization

The camera is the device that renders the scene s; into an observation o;. The parameters
of this mapping have a significant influence on the appearance of objects in the observation.
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(a) Scene with individual lights (b) Scene with HDR dome light

Figure 3.15: A simple scene using different lighting methods.

This mapping is determined by the camera position, orientation, and intrinsic camera
parameters.

The camera position and orientation are randomized to ensure the trained model is
independent of the viewpoint of the camera during evaluation. This follows from the
fact that viewpoint invariance is a key property of a vision model that shall be used in
real-world scenarios. The randomization of intrinsic camera parameters, such as focal
length, field of view, and aperture, is done to account for differences between the modeled
camera in simulation and the camera used for real-world data collection.

No camera noise is added during the data generation process. This is instead done for
each sample during the data augmentation during training.

State of the Art

Randomization of camera positions is a widely used technique in domain randomization
with visual observations [10], [11], [17], [24], [30], [49]. The camera position is usually
randomized by sampling a random position within a box or sphere in front of the workspace
and the camera is oriented at the workspace center.

Randomization of intrinsic camera parameters is less common in the literature. This is
likely because intrinsic camera parameters are usually assumed to be fixed and constant
between simulation and reality. Nevertheless, publications have shown that randomizing
intrinsic camera parameters can lead to better generalization to real-world data and
unseen camera types [10], [62].

Implementation

The camera randomizations are implemented as follows:

e Camera position: The camera position is randomly sampled within a box of config-
urable size, in front of the workspace. The camera orientation is calculated using a
direction vector that is directed to a position sampled uniformly around the center
of the workspace. This additional randomization of the look-at position is done
because during deployment in the real world, the camera may also not be aimed
directly at the center of the workspace. This is especially true for applications in
which the camera is mounted on a mobile robot, that moves through its environment.
While the workspace viewed from the robot system is fixed in front of the robot,
the viewpoint of the camera on the observed scene can vary significantly.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3 Sim-to-Real Transfer of Pick-and-Place 3.4 Domain Randomization 30

e Intrinsic camera parameters: Although the camera model used in simulation mimics
the camera used for data acquisition, a discrepancy between the real active-stereo
acquisition system and the modeled camera is to be expected. To account for these
differences, the intrinsic camera parameters are varied during data generation. The
following parameters are randomized to +10% of the original value used by the
provided model of the D435 camera:

— Focal length: The focal length of the camera lens.
— Focus distance: The distance between the focus plane and the camera.

— F stop: The ratio of the focal length to the diameter of the aperture. Influences
the depth of field.

— Aperture: The size of the aperture of the camera lens.

— Fisheye polynomial parameters: The parameters of the polynomial that describe
the fisheye distortion of the camera lens.

3.4.6 Distractor Objects

In many real-world scenarios, the objects of interest are not the only objects present in
the scene. In household environments, for example, there are often many objects that
are not relevant to the task at hand. Previous research has shown that if a model ought
to be resilient against unrelated objects in the scene, it must be trained with distractor
objects [10], [11], [30].

State of the Art

While the necessity of training with distractor objects, to enable resilience against unrelated
objects in the scene, is widely accepted, different types of distractor objects are used in
the literature:

o Basic geometric objects: The simplest form of distractor objects are basic geometric
shapes, such as cubes, spheres, and cylinders. Previous publications have shown,
that this simple types of distractor objects provide good transfer to real-world
settings [10], [11], [30].

o Random household objects: Other publications have used objects from the YCB
object dataset [63] as distractor objects. The YCB dataset contains a large variety
of household objects, such as cups, boxes, and toys. Altough this would be a good
fit for household scenarios, no performance benefit has been shown compared to
using random geometric shapes [11].

o Domain-specific distractor objects: For cases where the deployment domain is known
beforehand, domain-specific distractor objects can be used. It has been shown
however, that this also not necessarily leads to better transfer compared to random
shapes [11], [56].

Implementation

For incorporating distractor objects into the synthetic data generation process, we use
basic geometric shapes. We chose this simple method of adding distractor objects, because
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there are no additional 3D objects to be acquired and previous research has not shown
any performance benefit of using more complex distractor objects.

The distractor objects are randomly sampled from a set of basic geometric shapes, which
are provided as shape primitives in Omniverse Isaac Sim, such as cuboids, spheres,
cylinders, and toroids. To texturize the distractor objects, a random set of textures is
sampled from the COCO dataset, similar to the objects of interest. Because, in our case,
the texture of the object of interest is not relevant for the tasks to solve, the potential
overlap between the textures of the distractor objects and the object of interest should
not be a problem.

During each scene generation step, the size and position of the distractor objects are
randomized. The distractors are scattered on a plane, so that they do not overlap with
the task relevant objects, and also do not overlap with the area where the place action is
performed.

The size of the distractor objects is randomized between 0.05m to 0.25m. In the used
version of Omniverse Replicator, it is not possible to dynamically change the number of
distractor objects for each scene. As a workaround, the number of distractor objects is
fixed to 8 and the size and position of the plane on which they are placed is varied. The
size of the plane is randomized between 1 and 2.5 times the size of the workspace. The
z-position of the plane is randomized between —0.05m to 0.05 m. This creates scenes with
different visible heights of the distractor objects, as well as scenes where no distractor
objects are visible at all, because the plane is moved below the workspace. Figure 3.16
shows two empty scenes with distractor objects. The gray area is the captured workspace,
the scatter plane of the distractor objects is not visible.

Figure 3.16: An empty scene with distractor objects. The grey area is the captured
workspace.

Summary

In conclusion, the domain randomization techniques outlined in this chapter provide
ways to overcome different aspects of the sim-to-real gap. By systematically introducing
variability in different facets of the simulation, these methods should enable the trained
models to generalize effectively to real-world scenarios. The combination of texture,
material, lighting, background, and camera randomizations ensures coverage of a large
portion of the visual state space.
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3.5 Data Augmentation

Data augmentation describes methods that modify samples during training of algorithms,
to artificially increase the size of a given dataset. During training, the samples are modified
in a way that does not change the semantics of the sample but changes properties of the
sample that are not task relevant. For example, consider a training sample consisting
of an image of a cat and a label, that identifies the images as "cat”. By applying data
augmentation techniques to the image, such as flipping the image, adding random noise,
or changing the brightness, multiple variations of the same image can be created. The
label of the image, "cat’, remains unchanged, as the semantic meaning of the image is
still the same. Thereby, it enriches a smaller dataset with new labeled elements, created
from the existing ones, improving the networks robustness and generalization. Some
data augmentation techniques popular in computer vision tasks are color noise, rotation,
blurring, and many others. All of which do not alter the semantic label of the image. For
example, a dog is still a dog even if it is flipped horizontally or if only part of the dog is
visible in a crop.

Data Augmentation to Bridge the Sim-to-Real Gap

Data augmentation techniques can not only be used to improve the generalization of
general-purpose computer vision models but have also shown to be essential in bridging
the sim-to-real gap[25].

As discussed above, the goal of domain randomization is to facilitate generalization to
real-world data by varying the environment environment properties, that may vary during
a model’s deployment. Data augmentation can be seen as an extension of this concept
applied to each sample during model training, rather than during data generation. Just
like domain randomization, data augmentation techniques can be used to modify aspects
of the training data that are not constant in the real world. While domain randomization
modifies the mapping from a scene state s; to an observation o;, data augmentation
transforms an already rendered observation o; to a new observation o). Naturally, this
limits the applicability of data augmentation to the properties of the observations, which
can be altered after a scene has been rendered. For example, the color of the whole
observation can be changed, noise can be added, or the observation can be rotated, but
the position of individual objects or light sources in the observation cannot be altered
after rendering.

Figure 3.17 shows examples of popular data augmentation techniques, including the
addition of color noise, Gaussian blur, and cutouts.

Augmentation of Depth Data

In contrast to traditional computer vision models that often work with color images,
robotic perception often includes depth information. Depth is an essential component
for control and decision making in the robotic context, where spatial relationships are
crucial [64]. Depth data, acquired by real-world sensors, is often noisy and contains holes
where the depth measurement system failed to capture data, e.g. for transparent objects
or due to reflections. Synthetic depth data in comparison is generated using idealized
sensor models, is generally noise free and offers perfect capturing of the viewed area. This
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(a) Unaltered image (b) Image with Gaussian color noise

(¢) Image with random cutouts (d) Image with random color transfor-
mation

(e) Image with salt and pepper noise (f) Image with Gaussian blur

Figure 3.17: Image of a cat with various augmentations applied.

is a good example of the sim-to-real gap that can significantly hinder the performance of
models when transferring from synthetic depth data to real-world data.

Adding perturbations to simulated depth data can help to make it more similar to real-
world data and thereby improve transfer performance of trained models. Many publications
show that augmenting synthetic depth data with various forms of noise is essential to
the performance of models trained on synthetic data in the real world [24]-[26]. To
illustrate this point, Figure 3.18 shows an example of a real-world heightmap, computed
from a captured pointcloud and a heightmap from a simulated pointcloud, with and
without augmentations. It can be seen that the simulated heightmap(middle) is much
more uniform and lacks the noise and angular offset present in the real-world data(left).
The right image shows the same simulated heightmap with Gaussian noise and Perlin
noise added to the depth values, as well as a transformation around the x- and y-axis
applied. In addition to these noise based augmentations, Pashevich et al. [23] show that
applying traditional image augmentation techniques such as transformations, cutout, and
white noise to synthetic depth data can significantly improve real-world performance of
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.

L

(a) Real world data (b) Simulated data (c) Simulated data with aug-
mentations

Figure 3.18: Heightmaps generated from real-world and simulated pointclouds. For the
simulated data, the same pointcloud is shown, left is unaltered, whereas the
right has Gaussian noise, Perlin noise and a plane offset applied.

models. In this thesis, a combination of color and depth augmentations are applied to
expose the trained models to a diverse set of variations, improving their generalization
capabilities. The following sections provide a detailed description of all augmentation
techniques applied in this thesis. Some augmentations only modify one modality, like
Color Noise or Plane Offset, while others are applied to both modalities in conjunction or
separately. The following sections describe the augmentations applied in this thesis and
their implementation.

3.5.1 Color Noise

As one of the two augmentations already present in the original Transporter Networks
publication [9], color noise is applied to the training images. Zero-mean Gaussian noise is
added to the RGB channels of the input observations for each sample. Applying noise
during training can help to make the model more robust against noise in the real-world
data, caused by sensor noise or other physical imperfections.

The standard deviation of the noise 0,4, is configurable via the training configuration
json file. With the given sigma, one sample for each channel of each pixel is drawn from a
normal distribution with zero-mean and standard deviation o,4,. Figure 3.17b shows an
example of the Color Noise augmentation applied to an image.

The modified pixel intensities I,.4,, one for each channel, are calculated as follows:

Argb ~ N(Ov O-ggb)
Irgb = Irgb + Argb

3.5.2 Color Transformation

Color space transformations are a common augmentation technique in image-based deep
learning. In the context of sim-to-real transfer, the intuition is that these transformations
would make the model more robust to changes in lighting conditions and object color. For
this thesis the ColorJitter and RandomGrayscale augmentation modules from the publicly
available Torchvision package [65] are used. The input to this augmentation module is the
RGB image that is created from the top-down view of the input pointcloud, as described
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in Section 3.1.

The ColorJitter module applies random brightness, contrast, saturation, and hue variations
to the input image. The RandomGrayscale module converts the input image to grayscale
with a probability of pg,qy. An example of the ColorJitter augmentation is shown in
Figure 3.17d.

The following parameters can be configured for the color transformation augmentation.
The given values define the limits in which the corresponding factors are sampled from
a uniform distribution. For hue, the sampled value represents the change of hue on a
normalized scale, where 0.5 represents a rotation of 180° around the Hue, Saturation,
Value - HSV color circle.

e Brightness variation
e Contrast variation
e Saturation variation
e Hue variation

3.5.3 Gaussian Blur

Smoothing of images by convolution with a Gaussian filter kernel is a popular technique in
computer vision. In data augmentation pipelines, Gaussian blur can be used to simulate
the effect of out-of-focus camera images, which is a form of data degradation that may often
occur in real images. A study by Dodge and Karam [66] shows that many classification
networs are especially sensitive to blur and color noise.

In this thesis, the GaussianBlur augmentation module from the publicly available Torchvi-
sion package [65] is used. Smoothing is applied to the stacked observation image that
contains color, as well as depth channels. The color and depth information need to
be blurred in unison to avoid misalignment of the color and depth information. Since
Gaussian smoothing results in a loss of information, which can be especially problematic
with depth data, the standard deviation and kernel size of the Gaussian filter are kept
relatively small. Furthermore the application probability is set to below 50%, so that the
augmentation is not applied to every training sample.

It is also important to note that the Gaussian Blur augmentation is applied before
augmentations like Salt-and-Pepper noise, because smoothing the image after adding noise
would reduce the impact of noise to the image.

The parameters for the Gaussian Blur augmentation are:

o Kernel size: The kernel size of the Gaussian filter.

o Sigma: The standard deviation of the Gaussian filter. This value can either be set
as a constant or as a range. If given as a range, the actual value for each sample is
drawn from a uniform distribution in the range.

o Apply probability: The probability with which to apply the augmentation.

3.5.4 Salt-and-Pepper Noise

Salt-and-Pepper noise is a form of noise where the values of randomly selected pixels are
set to either the maximum or minimum value of the available range. The effectiveness of
Salt-and-Pepper noise in the sim-to-real context has been shown for color images [30] as
well as for depth images [23]. It is therefore added to the set of augmentation techniques
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in this thesis.

Since the color- and depth channels can be treated independently with this augmentation,
the parameters for the Salt-and-Pepper noise are also set independently for the color- and
depth channels.

The configurable parameters are: the probability of a pixel being set to the minimum or
maximum value pg,, the ratio of salt to pepper pixels 7,,, and the probability with which
to apply the augmentation pgppiy-

3.5.5 Cutouts

Cutouts are a form of data augmentation where the pixel-values in a region of the image
are set to a constant value. The technique has initially been used as a regularization
technique applied in feature layers of deep convolutional neural networks. Research has
shown that masking the network input can have an equal regularization effect and improve
generalization [67].

In the field of sim-to-real transfer research, Cutouts have been shown to have mixed results.
In the work of Pashevich et al. [23] Cutouts did improve the performance of models trained
on synthetic depth data in real world test data. While Horvath et al. [30] showed negative
effects of Cutouts on the model performance.

Because the evaluation data in this thesis is obtained using a stereo depth camera, where
occlusions and missing parts of the scene are common, cutouts are included in the set of
evaluated augmentation techniques.

The augmentation is implemented as follows.

e Between 2 and n rectangles are sampled.

e The size and aspect ratio of the rectangles are sampled uniformly from the given
range.

e The rectangles are placed in a random location in the workspace, parallel to the xy-
plane. Locations where the Cutout rectangle would overlap with the pick-and-place
positions are not considered valid.

« With a probability of p4.,, = 0.5 the points are cut out from the pointcloud and
removed. With a probability of 1 —pg,.., the rectangles are filled with a random color
and set to a random height between the minimum and maximum workspace-height.

Additionally, the apply probability pgpp, can be set to control the probability with which
the augmentation is applied. Previous research showed that cutouts have a far better
effect if they are not applied to every sample during training [67].

3.5.6 Depth Noise

Regardless of the technology used to capture depth data, real-world depth measurements
will have a significant amount of measurement noise and depth uncertainty. In the
sim-to-real literature, the consensus is that adding noise to simulated depth data is
essential for successful transfer to real-world data [24], [26]. The kind of noise varies
between publications, but they all show that training on noise-free depth data can greatly
hinder transfer performance.

o Mabhler et al. [24] use a combination of depth-proportional noise and Gaussian noise
to simulate measurement noise in depth data.
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o Thalhammer et al. [26] developed a sophisticated noise model, using a combination
of occlusion masks, Gaussian smoothing, depth-proportional noise, and Perlin noise.
They also show that only using Perlin noise already is a significant improvement
over noise-free depth data.

o Pashevich et al. [23] have found that a combination of augmentations including
white noise, salt noise, and depth scaling leads to the best performance in their
evaluation with real-world data.

o Hagelskjaer and Buch [25] use a empirically derived, distance dependent Gaussian
noise model and point dropouts to simulate noise in depth data.

In this thesis, a combination of the above methods is used to add noise to pointclouds
generated in simulation.

o Gaussian noise: Gaussian noise is added to the xyz-point locations in the pointcloud.
It is sampled from a normal distribution with zero mean and standard deviation

Odepth-

e Perlin noise: Perlin noise is added to the depth values of the pixels in the projected
depth image. The Perlin noise is generated using the Perlin-numpy python pack-
age [68]. The number of octaves for noise generation is fixed to 2 and the persistence
is set to 0.5. The number of periods for the Perlin noise generation is randomly
sampled to be 4, 8 or 10. These values are fixed because they must be compatible
with the desired output shape in this library. The only configurable parameters for
the Perlin noise is the scaling factor spe,s, which is multiplied with the amplitude
of the generated noise, as well as the application probability pgpp,. Perlin noise is
applied separately to the color and the depth channel.

3.5.7 Depth Scaling

Depth scaling is an augmentation technique, where the depth values in a height map
or depth image are multiplied by a random factor, close to 1. This can help to make
the trained model more robust to changes in the depth values, i.e. when the depth
sensor is moved further away from the object or when the object is moved closer to the
sensor. This augmentation has been shown to be a useful augmentation technique in the
sim-to-real setting with depth images [23]. In this thesis, the depth scaling augmentation
is applied to the values of the depth image, created by projecting the input pointcloud.
The multiplicative scaling factor is sampled uniformly from the range [1 — dscqie, 1 + Oscate) -

3.5.8 Plane Offset

The plane offset augmentation is a simple augmentation technique that rotates the input
pointcloud by a random amount around the x- and y-axis and adds a random z-offset to
all points. This augmentation is not found in the literature, but is added to account for
the fact that the real-world pointclouds are not perfectly aligned with the xy-plane, due
to imperfections in the pointcloud registration process. The transformation is applied
to all pointcloud points using a transformation matrix, that contains the rotation and
translation components. The rotation angles ¢, and 6, are sampled uniformly from the
range [—dangle; Oangle] and the z-offset is sampled uniformly from the range [—2maz; Zmaz-
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It is important to note that this augmentation changes the label of the input pointcloud,
since the objects of interest are moved in world coordinates, which is usually a problem in
data augmentation. In this case, however, the target labels are world-poses, which can be
transformed with the same transformation and thereby remain valid.

1 0 0 0

R _ 0 cos(f,) —sin(6;) 0
T 10 sin(;)  cos(fy) 0
0 0 0 1

[ cos(6,) 0 sin(6,) O]

R_| 0 1 0 0
Y |—sin(dy) 0 cos(f,) O
0 0 0 1

The combined transformation matrix 7" is obtained by multiplying R, and R, and adding
the translation component z,ffses:

cos(6y) 0 sin(6,) 0
sin(6;) sin(fy)  cos(6,) cos(f,)sin(f,) 0
—cos(0;)sin(0y) sin(f;) cos(b)cos(by) Zoffset

0 0 1

T, =

3.5.9 Pointcloud Downsampling

Pointcloud resolution can vary significantly between different sensors and between different
configurations of the same sensor. To be able to vary all important aspects of the training
data that may vary during deployment, pointcloud downsampling is added as an aug-
mentation technique. The downsampling is implemented using the random__downsample
function from the Open3D python package [47], that randomly removes points from the
input pointcloud, so that the resulting pointcloud has fewer points by a factor of rg;.
The downsampling factor, used for each training sample, is sampled uniformly between a
minimum and maximum downsampling factor. The maximum value is usually 1, which
means that no downsampling is applied.
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4 Experiments and Results

To evaluate the effectiveness of the methods developed in this thesis, two experiments are
designed and evaluated using real-world data. This chapter describes the experiments,
the metrics used to evaluate the performance of the networks, and the results of the
experiments.

4.1 Experiments

In household- and assistance robotics, the task of picking up and placing objects in
unknown environments is one of the most important tasks for robots to perform [2]. What
makes this especially challenging, is that environment conditions as well as the appearance
of the objects to pick can vary significantly, even within the same object category. With
this challenging environment in mind, we developed two tasks for evaluation. The focus
was on creating tasks that are of real-world significance, while requiring only one pick-
and-place step. We further focused on tasks, that do not require high levels of precision,
but rather require the robot to be able to generalize to new objects and environments. In
addition to the two novel tasks, the Block insertion task from the original Transporter
Networks publication was recreated in Nvidia Omniverse. This is to validate that the
applied changes to the networks and the training procedure do not negatively effect the
performance.

4.1.1 Block Insertion Task

This task is one of the evaluation tasks used in the original Transporter Networks
publication [9]. The goal of the task is for the network to predict the pick-and-place
poses that move an L-shaped block into a matching fixture on a virtual table. This task
was recreated in the simulation environment used in this thesis(Nvidia Isaac Sim) and
compared with the results of the original publication. For the recreation of the task, the
assets found in the Github repository of the original publication [37] are imported into
Nvidia Isaac Sim. The annotations for the pick-and-place poses are created using the
same logic as in the original publication. For this, the ground-truth pose of the block is
used to calculate the pick-pose by simply adding an offset to the geometrical center. The
place-pose is calculated by adding the same offset to the center of the fixture.

Figure 4.1 shows the block insertion task from the original publication side by side with
the recreated task in Nvidia Isaac Sim.

4.1.2 Shoe Sorting

With the goal of developing a task, that is of real world significance for robots at home,
we chose the task of sorting a pair of shoes. The task consists of a pair of shoes that are
placed in a random orientation in the workspace. The goal of the task is to pick up one of

39
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(a) Block insertion task from the original
publication, modeled in PyBullet [9].
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(b) Block insertion task recreated in Nvidia
Isaac Sim.

Figure 4.1: Comparison of the block insertion task from the original publication and the

recreated task in Nvidia Isaac Sim.

(a) Pick of the right shoe, at the rear center,

inline with the shoe

(b) Placement of the right shoe next to the left

shoe

Figure 4.2: Illustration of the shoe sorting task.
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the shoes and place it in a predefined location next to the other shoe. This provides a
relatively simple one-step task that can be used to validate the generalization abilities and
transfer performance of the trained networks. The task dataset was created using freely
available 3D models of shoes that are imported into the Nvidia Isaac Sim environment
and rescaled to be of uniform size.

To create deterministic task behavior, we decided that only the right shoe of the pair would
be picked up and placed in a predefined location next to the left shoe. The pick-location
on the shoe is defined as the rear-center of the shoe, with the pick-angle being in-line with
the shoe axis. This pose is chosen so that the shoe could be picked up using a two-finger
gripper. The placement is done so that the shoes are placed next to each other, in parallel,
with a distance d between the middle of the shoes. Figure 4.2 shows an illustration of the
shoe sorting task.

This task poses several challenges to the network:

e Dataset size: Since the dataset was self-curated and created from freely available
3D models, the dataset size is relatively small, containing only 20 models in the
training set.

e Generalization to unknown objects: The network has to generalize to new objects
that are not part of the training dataset. This is especially challenging, due to the
small dataset size.

e Imperfections of real-world data: Besides the generalization to unknown objects,
the task requires the networks to successfully differentiate between the left and
right shoe of the pair. Imperfections in the real-world depth data, like noise and
occlusions, can make this differentiation difficult.

Model Import and Preparation

For creation of the task dataset, a set of freely available 3D models of shoes was sourced
and downloaded from the internet. This was done manually, since no large-scale dataset
of high quality 3D models of shoes could be located. A mixture of different types of shoes
was selected, focusing mainly on sneakers, running shoes, and dress shoes. A combination
of 3D scans and 3D models is used to create the dataset. The models have been sourced
and downloaded from the following websites: Sketchfab [69], Fab [70], CGTrader [71]
and Scanned Objects by Google Research [72]. In total, 22 models are used to create the
training- and test-set. After the download, the meshes have been cleaned and aligned
using Meshlab [42]. The aligned models have then been imported into Nvidia Isaac Sim,
where they were rescaled to a unified size and a grasp point was manually annotated.

Dataset Generation

For creating datasets for this task, the set of available models is split into a training and a
test set, with 20 and 2 models respectively. The test set contains only two models, to keep
the training set as large as possible, since validation performance on the real world dataset
is the main focus of this thesis. The models are randomly scaled during dataset generation.
A new scale factor is sampled for each axis at every scene generation step. This leads to
randomized, non-uniform scaling of the models, which is intended to increase the variety
of shapes in the dataset. To generate the datasets, each pair of models is loaded into the
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Figure 4.3: Examples of rendered, randomized scenes for the training dataset of the Shoe
sorting task.

scene, the scale of the shoes is randomized, and the shoes are placed in a random position
and orientation in the workspace. The workspace is defined as a rectangular area with
size 1.00m x 0.75m at height O m.

The annotations for the dataset are created as follows: For the pick position, the position
of the manually annotated grasp point on the right shoe is recorded. For the place position,
the expected position of the grasp-point is calculated when the shoe is placed in the
desired location next to the stationary, left shoe. The distance d between the grasp points
of the shoes is set to d = 15.00 cm. The distance between the grasp points, instead of the
inner sides of the shoes was chosen, to make the distance more consistent across different
shoe models and scaling factors.

The final dataset contains a total of 6000 pick-and-place poses. 300 demonstrations for
each shoe model. The test dataset contains 50 demonstrations for each of the two shoe
models in the test set, resulting in a total of 100 demonstrations. For each scene in
the training dataset, five differently randomized scenes are rendered, resulting in a total
of 30000 rendered scenes in the training dataset. During each rendering step, various
randomizations, described in Section 3.4 are applied to the scene. For the test dataset, 10
scenes are rendered for each demonstration, resulting in a total of 1000 rendered scenes
in the test dataset. Figure 4.3 shows some examples of the rendered scenes used for the
training dataset of the Shoe sorting task.
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Parameter Selection for the Dataset Generation

As mentioned above, the shoe models are randomly scaled during dataset generation.
Initially, the range of the scale factors was set to a range that was assumed to result in a
realistic size range for the shoes. However, during the ablation study for the augmentations,
it was found that the network performance was not particularly good on the real-world
data.

Analysis as to why this is the case indicated that it might be due to the selected values
for the scale factors. The previously selected values for the scale factors lead to a large
distribution difference between the sizes present in the training dataset and the real world
sizes of the shoes. Based on the analysis, the scale factors were adjusted to a range that is
closer to the shoes used in the real world dataset. To illustrate this, Figure 4.4 shows the
histogram of the highest 100 z-values of each pointcloud for the real world pointclouds
and the two versions of the training dataset. Before analyzing the pointclouds, they were
downsampled to 2.00 cm voxel size and the highest 100 z-values were selected. This was
done to reduce the influence of noise in the real-world pointclouds and to focus on the
shoes.

The scale ranges for the two versions of the training dataset are given in Table 4.1. Looking
at the histograms, it can be seen that the second version of the training dataset is much
more evenly distributed and covers the range of the real-world dataset better than the
first version. Nevertheless, the distribution of the real-world dataset is still shifted to
larger values than the training dataset. This is likely due to the fact that the real-world
pointclouds are not perfectly aligned and are noisy observations.

Since the distribution shift was only discovered during the ablation study, a set of the
experiments was done using the original (Version 1) dataset, while later experiments were
done using the adjusted dataset (Version 2). Each ablation study, however, was done
using the same dataset version, so the results within one study still are comparable.

Table 4.1: Scale ranges for the shoe dataset

1
Dataset iteration Scale range

X vy Z
Version 1 20.00cm to 33.00cm 11.25cm to 17.25cm  4.75c¢m to 10.00 cm
Version 2 15.00cm to 33.00cm  8.25cm to 15.00cm  6.00cm to 12.80 cm

Validation dataset

To validate the simulation-to-reality performance for this task, a real-world validation
dataset with 4 different shoes was recorded. The types of shoes range from sneakers
to dress shoes, with different colors and sizes. The sizes of the used shoes range from
37-42 (EU). Figure 4.5 shows some example recordings of scenes used for the validation
dataset. The shoes were placed in a random position and orientation on the floor in
an area marked by a tape on the floor that had the same size as the workspace in the
simulation environment.
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Figure 4.4: Height histograms of the training datasets and the real-world dataset.
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Figure 4.5: Examples of recorded scenes for the real-world dataset of the Shoe sorting
task.

Figure 4.6: Example recording of a scene with distractor objects.
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Figure 4.7: Illustration of the box picking task

Distractors dataset

In real-world scenarios, especially in household environments, the objects of interest are
often surrounded by other objects. To evaluate the performance of the Transporter Agent
in such scenarios, we additionally train and evaluate with datasets that contain distractor
objects. The training dataset is generated the same way as before, just with the addition
of distractor objects, as described in Section 3.4.6. The validation dataset is a second
recorded dataset, using the same shoes as the previous Sort shoes dataset, but with
distractor objects added to the scene. Figure 4.6 shows an example of a scene from the
distractor dataset. Due to the recordings being separate, the poses in this distractor
validation set are not the same as in the original validation set. The distractor dataset
contains 20 scenes, with 4 different shoes and between 2 and 4 distractor objects per scene.
The distractor objects are randomly scattered in the workspace.

4.1.3 Box Picking

While the aforementioned shoe sorting task poses an interesting challenge, it requires to
simultaneously bridge the sim-to-real gap and generalize to unseen objects. This makes it
difficult to interpret the influence of individual interventions on network performance and
leads to a high variance in the results. In an attempt to select a second task, that does not
require generalization to unseen objects, we selected the simple box picking task. The task
consists of a box, with fixed size, that is placed in a random location and orientation in
the workspace. For this task, we only recorded pick poses, because the ablation studies are
only done for the pick pose networks. This was done, because the pick position and pick
angle networks are comparably simple networks and show better convergence properties
than the Transport network. The workspace for this task is the same as above.

Dataset Generation

To generate the dataset for the box picking task, a box of desired shape was created in
the simulation environment, instead of using existing 3D models. The box is placed in
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a random position and orientation in the workspace. The pick pose is annotated as the
center of the top face of the box, with the angle being perpendicular to the long side of
the box. An illustration of the pick configuration is given in Figure 4.7 The size of the
box is varied only slightly from the size of the boxes used for real-world data collection,
to ensure that the network generalizes to the real-world data. The size of the training
boxes is varied by +5% from the dimensions of the boxes used in the validation dataset.
The limits for the size of the training boxes are:

e Length: 13.30cm to 14.70 cm
e Width: 5.90cm to 6.50 cm
e Height: 7.00 cm to 7.80 cm

Because data generation for this task is comparably fast, the dataset was created with
1000 demonstrations and 5 different randomized scenes for each demonstration, resulting
in a total of 5000 rendered scenes in the training dataset. The test dataset consists of
100 demonstrations and 10 scenes for each demonstration, resulting in a total of 1000
rendered scenes in the test dataset.

Validation Dataset

To validate the trained networks on real-world data, a dataset was collected using two
tea-boxes of the same size but with different print and colors. The size of the boxes used
for validation is 14.00cm x 6.20cm x 7.40cm. During data collection the boxes were
placed in a random position and orientation on the floor in an area marked by a tape on
the floor that had the same size as the workspace in the simulation environment. For each
box, 20 scenes, were recorded, resulting in a total of 40 scenes in this dataset. A simple
circular marker was placed on the top-center of each box, to simplify dataset annotation
(described in Section 4.1.4). A picture of the boxes is shown in Figure 4.8.

4.1.4 Real World Data Collection

To evaluate the performance of the trained networks on real-world data, two datasets are
collected. The details of the data collection and the annotation process is described in the
following sections.

Pointcloud Recording

Data collection was done using a RealSense D435 active-stereo depth camera [73], mounted
on a table, facing downwards towards the workspace. Figure 4.9 shows the setup used for
real-world data collection. The camera was mounted at an approximate height of 1.00m
above the workspace and in a distance of 75.00 cm from the workspace. Between individual
captures, the position of the camera and its orientation are varied slightly from this initial
configuration to increase the variety of viewpoints. Adjustments are done in a way that
the workspace was always fully visible and approximately centered in the preview of the
rendered pointcloud. For capturing the pointclouds, the RealSense Viewer software[74]
was used. Besides preview and capture of the pointclouds, the software was also used to
configure the camera settings. The camera is set to a resolution of 848.00 px x 480.00 px.
All other configurations are set to the recommended values in the Preset high density,
provided by Intel on their GitHub repository [75]. In the integrated postprocessing
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Figure 4.8: Tea boxes used for real-world data collection

pipeline of RealSense Viewer, only a temporal filter with values alpha = 0.1 and delta = 11
was applied to reduce noise and smooth the pointclouds. For the Shoe sorting task, two
pointclouds are recorded for each scene, one for the pick pose and another with the second
shoe placed in the desired location. This was done to simplify the annotation of place
poses in the next step.

Postprocessing and Annotation

To generate a dataset from the recorded pointclouds, a semi-automatic annotation pipeline
was developed. The pipeline consists of the following steps. For the Boz-pick-up-task, all
steps mentioning a place pointcloud are omitted.

1. Registration
Using the Open3D library [47], the pointclouds are roughly cropped and aligned
to the zy-plane. The alignment is done using the Random Sample Consensus -
RANSAC algorithm [76] to find the ground plane and transform the pointclouds, so
that the ground plane is aligned with the xy-plane. Only the pick pointcloud is used
to find the alignment parameters. The same parameters are then applied to the
place pointcloud. The registration process is visualized in Figures 4.10a and 4.10b.

2. Workspace alignment
The aligned pointclouds are projected to a top-down color image, using a fixed
pixel size of 2.00mm. In an interactive Python script, a rectangle with the size
of the workspace is drawn as an overlay on the projected scene (Figure 4.10c).
Using manual input, the underlying pointcloud is then iteratively translated along
the x and y axis and rotated around the z axis, so that the marked workspace
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Figure 4.9: Setup for real-world pointcloud recording, consisting of a D435i camera
mounted to a table using an adjustable arm. For recording the RealSense
Viewer software was used.

in the recording is aligned with the overlay. The determined transformation is
then applied to the pick- and the place-pointcloud, so that the workspace origin is
approximately at (0,0,0) and the workspace is aligned in parallel to the = and y
axis. Additionally, the [terative Closest Points - ICP registration method [77] is
applied to fine-tune the alignment between the pointclouds of the pick scene and the
place scene. Figure 4.10d shows the pick and the place pointclouds centered around
the workspace, aligned with each other.

3. Annotation
For annotating the pick and place poses, the pointclouds are again projected to
a top-down color image and a height map for each scene. The color images and
heightmaps from the pick and the place scene are then visualized side by side.
Annotation is done by clicking on the point in the image, that corresponds to the
pick- or place-position. The position of the click is then visualized using a marker
at the clicked location in the color and the depth image. Since the pixel size for
the pointcloud-to-image transformation is known and the pointcloud was previously
centered at the workspace, the clicked location in the image can be transformed into
a 2D coordinate in the world coordinate system. To annotate the angles a line is
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(¢) Workspace alignment (d) Pick- and place-pointclouds aligned and
overlayed

Figure 4.10: Illustration of the pointcloud preprocessing pipeline.
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Figure 4.11: Screenshot of the built annotation tool.
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drawn from the chosen points in the image, that is then rotated in 5.00 deg steps,
until the desired pick or place angle is reached, using manual input. Figure 4.11
shows the annotation process for the shoe sorting task.

4. Dataset generation
Using the previously aligned pick-scene pointclouds and the annotations, a dataset
in the same format as the training data is generated. This way, it can be integrated
seamlessly into the training process for validation.

The whole process is configured and parameterized using a json configuration file, which
is passed to the scripts at each step. It contains all required file paths, the pixel size for
the pointcloud-to-image transformation and the size and location of the workspace in the
pointcloud.

4.2 Performance Metrics and Evaluation

Two different metrics are used to evaluate the observed performance in the ablation studies.
The first metric is the mean and standard deviation of the pick position or angle error.
The errors are calculated as the Euclidean distance or the shortest angle distance between
prediction and ground-truth label.

The mean error is calculated as the mean over multiple evaluations, done at 100 step
intervals. For each evaluation, 10 predictions are compared to the ground truth labels and
the mean of the errors is reported. The reported values therefore give an average over
multiple evaluations during one or more training runs.

The values are given in the format p 4+ o, where p is the mean error and o is the standard
deviation of the error. Since the variance of the validation error is relatively high between
individual evaluation steps, an additional metric is used to evaluate the performance of the
network. The second metric is the percentage of evaluations where the mean validation
error is below a given success-threshold, denoted as aSR. The success-thresholds are
the estimated upper limits for the pick position and angle errors, below which a pick is
considered successful. The used thresholds are 3.00 cm for the pick position and 10.00° for
the pick angle. This is more lenient than the thresholds used in the original Transporter
Networks publication [36], where the thresholds are 1.00 cm for the pick position and 5.00°
for the pick angle. They reported, however, that the chosen thresholds were too strict for
real-world experiments. Furthermore, the used RGB-D camera (Intel RealSense D435) is
not a high precision depth camera, as was used in the original publication.

The statistics are calculated from data of 3 training runs for each configuration. The first
n iterations are excluded from the evaluations of the mean and standard deviation values
to remove the influence of the initial convergence phase. Due to the different convergence
properties of the networks and the different complexities of the tasks, the number of
excluded iterations n is different for each network-task combination. The chosen number
is given at each evaluation. In all angle network evaluations, the input crop for the angle
prediction is done at the position of the ground truth pick-label. This is to isolate the
performance of the angle prediction network. Unless otherwise noted, all experiments
are done with a batch size of 4 and a learning rate of le=*. The test set is a simulation
dataset while the validation set is the real-world dataset.

The resolution of the images used for training and evaluation is 320 px x 240 px. With the



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

4 Experiments and Results 4.3 Block Insertion Task 53

workspace size of 1.00m x 0.75m, this results in a pixel size of 3.125 mm per pixel. The
used randomization and augmentation settings can be found in Table A.2 and Table B.1.

4.3 Block Insertion Task

Before using the modified networks for the Box picking and Shoe sorting task, the
networks were evaluated on the Block insertion task, from the original Transporter
Networks publication. This is done to verify that the modification applied to the networks
does not lead to differences in the performance of the networks.
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Figure 4.12: Results for the block insertion task using the original implementation and on

data from Omniverse, using the modified Transporter Agent. Plots show test
error for the different networks used in the Transporter Networks agent. The
plots show the mean error and the 75% confidence interval from 3 runs.

Figure 4.12 shows plots of the test errors for the pick position(Attention) network, the
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pick angle network and the Transport network, which predicts the place position and the
place angle. For both trainings, a learning rate of le* was used during training and
training was done for 900 steps. The analysis of the graphs reveals several important
findings. The modified implementation demonstrates performance comparable to the
original Transporter Networks implementation when using identical augmentation settings.
A notable observation is the relatively high variation in the test error, that is observable
in both implementations. In terms of convergence properties, both the attention and
pick-angle networks exhibit better characteristics compared to the Transport network.
The comparison also shows that utilizing a batch size of 4 can achieve a reduction in
both variance and mean values of test errors, though this comes at the cost of extended
training durations (which is not apparent in the graphical representations). For this
simulation-only task, the introduction of random variations to the crop position for angle
prediction and the transport network does not significantly impact the overall performance.

4.4 Augmentation Ablations

To determine the influence of each applied augmentation on the performance on real-world
data, an ablation study is performed for all augmentations. The ablations are evaluated
on the Box picking task as well as the Shoe sorting task with the Attention and the
pick-angle networks.

For the ablations, datasets with all randomizers activated during rendering are used. An
ablation study for the different randomizers is done in Section 4.8.

The parameters used for generating the dataset used for this ablation study are given in
Table B.1. For each ablation, one augmentation is disabled during training. Evaluation is
done every 100 steps, using 15 samples from the test dataset and the validation dataset
each.

4.4.1 Box Picking Task

The first evaluated task, is the task of picking up a rectangular box, as explained in
Section 4.1.1. Since the shape of the box is constant between the training and the
evaluation set from real-world data, the observed errors in the evaluation performance
can be attributed to the influence of the augmentations. For each experiment run, the
networks are trained on 100 pick-and-place samples for 5000 iterations. The training
for all of the runs used in the augmentation study took about 3 days on a single Nvidia
RTX-3060 GPU for the pick-position network. Whereas the training of the pick-angle
network took about 6 days on a single Nvidia RTX-2080 Ti GPU.

Pick Position

The results for the Pick-position(Attention) network on the Box picking task show that,
for this simple task, a mean error of approximately 1.00cm can be achieved with the
developed augmentation techniques. Given that the network is trained using a pixel-size
of 3.125 mm, this equals an average pixel error of below 3.00 px. This is a surprisingly
good result, considering that the dataset is manually annotated and the network is trained
exclusively on synthetic data. However, the validation error generally shows high variance.
For the All augmentations case for example, the mean error on the validation set is
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Table 4.2: Ablation study with one augmentation disabled in each experiment, using
the Attention network on the Box picking task. Trained for 5000 iterations
and evaluated every 100 iterations. The last 45 evaluations are used for the
statistics. aSR success limit: 3.00 cm. Measurements are given as mean =+ std.

Test Validation Test Validation Valid.

Experiment Error [m] Error [m] Loss Loss aSR [%]

All augmentations  0.044 +0.111 0.021 £0.034 2.56£235 9.954+3.07 884

No color aug. 0.045 £ 0.091 0.026 £0.062 2.84 £2.20 9.394+242 87.0
No color noise 0.053 £+ 0.102 0.025£0.0563 2.57£1.90 10.01+2.42 87.7
No cutouts 0.002 £ 0.000 0.009 £+ 0.002 1.624+0.50 10.19+£3.37 100.0

No depth scaling 0.051 £ 0.108 0.027£0.055 2.60£1.82 9.29+237 855
No downsampling  0.051 £ 0.112 0.026 £0.049 2.84+£276 9.76+2.75 87.0
No location noise ~ 0.002 £ 0.009 0.054 +£0.101 1.08£0.37 7.45+2.06 69.6

No Perlin noise 0.051 = 0.120 0.033£0.072 252+£2.18 10.30+£2.81 86.2
No plane offset 0.006 £ 0.021 0.227£0.174 2.72+£0.83 19.98+£6.95 13.8
No salt and pepper  0.045 % 0.092 0.042£0.084 2.56+£235 9.53+£280 79.7
No smoothing 0.016 £ 0.047 0.054 £0.098  2.53 £1.09 7.21 £2.17 732

2.1 cm with a standard deviation of 3.4cm. The results, presented in Table 4.2, show
that the Plane offset augmentation is the most critical for enabling successful transfer
from simulation to real-world data for this experiment. Disabling only this augmentation
leads to an increase in the mean validation error by a factor of 10 and a decrease in the
average success rate aSR by 75%. This can be attributed to the fact that, unlike the
simulated pointclouds, the real-world pointclouds are not perfectly aligned to the xy-plane.
Introducing similar random variations during training enables the network to cope with
this misalignment.

The Location noise augmentation technique, where random Gaussian noise is added to
the position of the individual points in the point cloud, also has a significant influence on
the performance on the real-world dataset. Not adding Location noise doubles the mean
error on the validation set and reduces the aSR by 18 %.

Surprisingly, disabling the Cutouts augmentation during training, leads to significantly
better performance on the test and the validation set. Resulting in an error of below
1.00cm and a aSR of 100 %. This improvement however, might not be due to the network
learning the shape of the object of interest, but rather learning to locate the only object
present in the scene. Because, as described in Section 3.5, the cutouts share the same
shape as the object of interest, and with a probability of 0.5 the points are set to a random
z-height and color. This might act as an especially strong distractor for the Box picking
task, where the object of interest is also a rectangular shape.

The following key points can be drawn from the results:

e Augmentations that modify depth channel properties have a significantly greater
impact on validation performance compared to color augmentations.

o Randomized rotations around the x- and y-axes during training are essential for the
network to handle misaligned point clouds in real-world recordings.

o Excluding the Location noise and Plane offset augmentations results in better
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Table 4.3: Ablation study with one augmentation disabled in each experiment, using the

Pick angle network on the Boz picking task. Trained for 5000 iterations and
evaluated every 100 iterations. The last 40 evaluations are used for calculating
the error and loss statistics. aSR success limit: 10.00°. Measurements are given
as mean =+ std.

Experiment Test Validation Test Validation Valid.
Error [°] Error [°] Loss Loss aSR [%)]
All augmentations 5.59 +6.19 7.71£5.41 0.50+0.24 1.194+0.35 72.4
No color aug. 4.17 +4.47 7.25+5.31 0.43+0.19 1.194+0.36 74.0
No color noise 4.19 +4.51 6.95 + 5.57 0.474+0.22 1.104+0.34 77.2
No cutouts 4.25 +4.96 7.26 £ 5.56 0.484+0.22 1.144+0.38 73.2
No depth scaling 4.16 + 4.81 8.66 + 6.54 0.46 £0.22 1.264+0.43 62.6
No downsampling 3.48 +4.28 7.28 £6.04 0.40£0.21 1.034+0.36 71.5
No location noise 3.10 + 3.89 12.18 £7.67 0.33 £0.24 1.20+0.34 46.3
No Perlin noise 4.33+4.72 7.07 £4.93 0.53+0.25 1.07+0.33 71.5
No plane offset 3.84 +£5.00 10.64 + 6.78 0.404+0.26 1.61+0.63 54.5
No salt and pepper 4.20 £ 4.53 7.86 & 5.61 0.48+0.26 1.1940.31 71.5
No smoothing 3.09 = 3.90 5.07+3.92 037+£0.14 0.89+0.32 86.2
No crop jitter 2.91 + 3.84 25.61 +11.15 0.34+£0.19 2.854+0.66 2.4

performance on the simulation test set but leads to higher errors on the real-world
validation set, indicating poorer transfer to real data.

e The Cutout augmentation seems to have a negative influence on the performance of
the network.

Pick Angle

The results for the pick-angle network are given in Table 4.3. It can be seen from the
results that, with the developed augmentation techniques, a mean error as low as 5.0°
can be achieved on the real-world validation set. Since the pick angle network has a
discrete output space, with bins of 10.0° each, the achieved mean error is below one bin.
However, what can also be seen, is that the standard deviation in relation to the mean of
the validation error is again very high. With all augmentations activated, the mean error
is 7.7° with a standard deviation of 5.4°.

Analyzing the influence of the individual augmentations shows that the Location noise
and the Plane offset augmentations are the most significant for good performance on the
validation set. This is in line with the results for the augmentations with the Pick position
network (Section 4.4.1). Also, in line with previous results is that, disabling augmentations
that modify the color properties of the training samples has no significant influence on the
performance of the network on the real-world validation set. By far the most significant
augmentation for the performance on the validation set is the introduction of Crop jitter.
This augmentation introduces random variations in the position where the crop for the
angle prediction is taken, during training. Disabling only this augmentation leads to an
increase in the mean validation error by a factor of 3 and reduces the average success rate
aSR by 70 %. This is most likely caused by the fact that the Pick position, which is used
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as the crop center, is manually annotated on the real-world dataset. Due to the manual
annotation process the labels and therefore the crop position is not as consistent as the
ground-truth crop position in the simulation dataset. By introducing variations in the
position where the crop for the angle prediction is taken, during training, the network
is able to cope with crop-positions that are not perfectly aligned on the ideal pick-point.
This will also be important when using the Attention network to predict the pick position,
instead of using the annotated labels, as this will introduce even more variance to the
crop position.

Interestingly, it can be seen that the Gaussian smoothing augmentation, reduces mean
and standard deviation of the validation error and significantly improves the aSR. This
is in contrast to the findings with the Attention network, where disabling the Gaussian
smoothing augmentation increased the mean and standard deviation of the validation
error. This might be due to the fact that the Gaussian smoothing augmentation smooths
the edges of the depth image, which could be more beneficial to predict the rotation of
the object than the position.

In summary, the following key points can be observed:

o Augmentations that modify the color properties of the training data seem to have
no significant influence on the performance of the network.

e The Location noise and Plane offset augmentations are again the most significant
for good transfer performance on the validation set.

e The addition of Crop jitter improves the performance of the network on real data
by a factor of 3.

o Contrary to the Attention network, removing the Gaussian smoothing augmentation
during training leads to better performance on the test and validation set.

4.4.2 Shoe Sorting Task

As a more complex task that involves generalization to unseen objects, the Shoe sorting
task is evaluated.

Pick position

The results for the Attention network on the Shoe sorting task are given in Table 4.4.
Looking at the mean error and a5 R values, it immediately becomes clear that the network
shows far worse performance than on the Box picking task. This partly can be attributed
to the fact that the correct pick-position on the shoes is much harder to detect than simply
the center of a rectangular box. It must be noted however that the ablation study for
the Attention network is done using Version I of the generated dataset. As explained in
Section 4.1.2; this dataset shows a relatively large difference in dimensions of the simulated
shoes to the real shoes in the validation dataset, leading to sub-optimal performance.
Comparing the validation error, validation loss and aSR values, to the results achieved
with Version 2 of the dataset the performance difference becomes evident. Using the All
augmentations settings as a comparison basis. The results for Version 2 of the dataset are
a mean error of 13.0 cm with a standard deviation of 6.6 cm and an aSR of 4.9 %. This is
almost half the mean error, achieved with Version I of the dataset.

Although the absolute errors on Version 1 of the validation dataset are larger than for
Version 2 of the dataset, the relative errors within this ablation study are still comparable.
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Table 4.4: Ablation study with one augmentation disabled in each experiment, using
the Attention network. Trained on the Sort shoes task (Dataset version 1).
Network trained for 6000 iterations, evaluated every 100 iterations. The last 40
evaluations are used for calculating the error and loss statistics. aSR success
limit: 3.00 cm. Measurements are given as mean =+ std.

Experiment Test Validation Test Validation Valid.
Error [m] Error [m] Loss Loss aSR [%)]
All augmentations  0.093 4+ 0.061 0.2174+0.092 3.50+0.57  8.81 +2.30 0.0
No color aug. 0.091 4+ 0.062 0.2174+0.084 3.59+0.69  9.66 + 2.00 0.4
No color noise 0.089 + 0.066 0.244 +£0.081 3.69+£0.73 10.28 +2.29 0.6
No cutouts 0.076 4+ 0.057 0.2424+0.101 3.464+0.70  9.80+1.98 0.8

No depth scaling 0.100 = 0.066 0.199 = 0.080 3.42 £ 0.50 7.951+1.47 04
No downsampling  0.098 + 0.060 0.180 £0.083 3.41+043 821 +1.48 0.8
No location noise ~ 0.049 + 0.043 0.440 +£0.106 3.11 £ 0.81 16.06 +4.00 0.0
No Perlin noise 0.097 + 0.058 0.217+£0.087 3.70£0.65 9.84 +2.03 0.4
No plane offset 0.058 +£0.047 0.359 £0.110 3.40+0.66 11.35+3.11 0.0
No salt and pepper  0.091 £ 0.062 0.230 =0.086  3.29 +0.41 8.10 £ 1.40 0.4
No smoothing 0.089 +£0.059 0.174 £ 0.070 3.544+0.57 8.80+1.31 0.4

When comparing the results for the different augmentations, it can be seen that, as before,
the augmentations that modify the spatial properties have a much larger influence on
the mean-error performance than the color augmentations. The largest influence on the
performance has been observed for the Location noise augmentation, which is in-line with
the previous results. By disabling this augmentation, the mean validation error increases
by a factor of 2. The second largest increase in the mean validation error is observed
when disabling the Plane offset augmentation, which also has had a significant impact in
the previous ablation studies.

Contrary to the results of the attention network on the Box picking task, the Gaussian
smoothing augmentation seems to have a negative influence on the performance of the
network on this task. Disabling the Cutout and Pointcloud downsampling augmentations
lead to a slight decrease in the mean validation error, but the observed changes are not
significant, given the high standard deviations.

To summarize the following key points can be observed:

e The color augmentations seem to have no significant impact on the performance of
the network on real-world data.

e The Location noise and Plane offset augmentations have the largest influence on
the real-world performance of the network.

e Although the Gaussian smoothing augmentation is only applied with a probability
of 0.5 in the augmentation configuration, removing it from the augmentation set
reduces the mean validation error and its standard deviation.
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Table 4.5: Ablation study with one augmentation disabled in each experiment, using

the Pick angle network. Trained on the Sort shoes task (Dataset version 2).
Network trained for 7000 iterations, evaluated every 100 iterations. The last 40
evaluations are used for calculating the error and loss statistics. aSR success
limit: 10.00°. Measurements are given as mean =+ std.

E . " Test Validation Test Validation Valid.
xperimen Error [°] Error [°] Loss Loss aSR [%)]
All augmentations 7.23 +4.72 9.49 £5.73 0.94+0.26 1.2840.26 60.6

20.29 £ 8.17 0.90 £0.30 1.61 +£0.28 6.5
20.73 £9.54 0.684+0.25 1.18+0.29 12.5
No downsampling 4.62 £4.24 21.06 £ 8.31 0.66 +£0.23 1.224+0.27 12.5
No location noise 5.92 +4.85 10.09 4= 4.54 0.77+0.21 1.244+0.17 44.4
No plane offset 4.31 +4.49 20.63+8.29 0.50 +0.17 1.44+0.31 6.9
No smoothing 7.23 + 5.46 9.12+6.13 0.92+0.30 1.11 £+£0.19 63.4

No crop jitter 5.38 +4.24
No depth scaling 5.94 + 5.46

Pick Angle

An augmentation ablation study is also done for the pick-angle network on the Shoe
sorting task. However, due to the long training time required for the pick-angle network,
the ablation study is only done for the augmentations, that showed the most significant
influence on the validation performance in the previous experiments(4.4.2). The evalu-
ated augmentations are: Location noise, Plane offset, Gaussian smoothing, Pointcloud
downsampling, Depth scaling and Crop jitter. The results of the ablation study are given
in Table 4.5.

This ablation study is performed using Version 2 of the dataset of the Shoe sorting task,
as explained in Section 4.1.2.

It can be seen from the results that the mean validation error and the average success
rate are still comparable to the results of the Box picking task(4.4.1). This is somewhat
unexpected, since the network needs to generalize to unseen objects.

Similar to the ablation study on the Box picking task, the removal of Crop jitter and
Plane offset lead to the largest decrease in average success rate. The effect of removing
the Location noise augmentation is less significant than in the previous ablation study,
but still leads to a decrease in the average success rate of 16 %. In-line with previous
results, the color augmentations have little influence on the performance of the network
on the real-world validation set. Contrary to the previous results however, removing the
Pointcloud downsampling augmentation, has strong negative effects on the performance
on the real-world validation set, reducing the aSR from 60% to 12%. The same can
be observed for the Depth scaling augmentation. While showing little effect on the Box
picking task, disabling this augmentation on the Shoe sorting task, leads to an increase in
the mean validation error by a factor of 2.

Another notable finding is that, again, the color augmentations seem to have little effect
on the validation performance of the network.
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Table 4.6: Ablation study of different learning rates and weight decay values. Experiments
done using the Attention network on the Sort shoes task (Dataset version 1).
Trained for 6000 iterations and evaluated every 100 iterations. The last 40
evaluations are used for calculating the statistics. aSR success limit: 3.00 cm.
Measurements are given as mean + std.

E . " Test Validation Test Validation Valid.
xpermmet Error [m] Error [m] Loss Loss aSR [%]
Ir:1 x 1074 wd:0 0.087 £0.063  0.194 +£0.095 3.344+0.46 7.75+1.32 0.4

Ir:1 x107* wd:1 x10-* 0.084 + 0.065 0.182 + 0.077 3.36+0.50 7.55 =+ 1.30 0.6
Ir:’5x107% wd:1 x 107%  0.088 +£0.057  0.194 +0.068 3.62+0.55 8.39+ 1.56 0.0
I8 x 1074 wd:1x 1074 0.117+0.082  0.196 +0.061 4.22+1.77 8.93+2.37 0.0

4.4.3 Summary

To summarize the results of the augmentation ablation studies, the following key points
can be observed:

o Adding Location noise to the pointcloud observation has a significant influence on
the performance on the real-world dataset.

e The Plane offset and Crop jitter augmentations are essential for the networks to
handle misaligned point clouds and variations in the predicted pick-position in the
real-world data.

e The augmentations that modify the color channel properties seem to have little to
no influence on the performance on the real-world dataset.

e The Gaussian smoothing augmentation generally seems to have a negative influence
on the performance of the networks.

4.5 Learning Rate and Batch Size

The changes to the network architecture and the training process, described in Section 3.2,
enable the use of batched training. The motivation behind this is to reduce the variance
of the error during training, as shown in [38].

Since changing the batch size influences the learning dynamics of the networks compared
to the original paper, adapting the learning rate might be beneficial. In this section,
the performance using different batch sizes and learning rates is analyzed. This analysis
is predominantly done on the Attention network, because doing the ablations on the
Pick-angle would take prohibitively long. Furthermore the Pick-angle network already
shows satisfactory performance on the Shoe sorting task, even with the default settings.
The learning rate and batch size ablations are only done on the Shoe sorting task, since
the results for the Attention network on the Box picking have shown to not generalize
well to the more interesting Shoe sorting task.
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Table 4.7: Ablation study of different batch sizes for the Attention network on the Sort
shoes task (Dataset version 2). Evaluated every 100 iterations in the range:
Batch size 1: 3000 — 10000, Batch size 4: 2000 — 5000. aSR success
limit: 3.00 cm. Measurements are given as mean =+ std.

E . ¢ Test Validation Test Validation Valid.
xperimen Error [m] Error [m] Loss Loss aSR [%]

Batch size 1 0.218 + 0.068 0.127 +0.062 4.90 £+ 0.46 5.57 = 0.53 1.1

Batch size 4 0.200 £+ 0.074 0.119 4+ 0.056 5.034+0.62 5.99 4+0.56 3.3

Table 4.8: Ablation study of different batch sizes for the Pick angle network on the Sort
shoes task (Dataset version 2). Evaluated iterations: Batch size 1: 3000 —
10000, Batch size 4: 2000 — 5000. aSR success limit: 10.00°. Measurements
are given as mean + std.

E . ¢ Test Validation Test Validation Valid.
xperimen Error [°] Error [°] Loss Loss aSR [%)]

Batch size 1 6.31 £ 5.01 2042+758 0.794+0.24 1.11 £+ 0.21 8.8

Batch size 4 7.88 £5.40 10.05 + 5.88 1.01+0.32 1.28+0.23 59.5

4.5.1 Learning Rate

For the learning rate ablation, the learning rate is varied between the default value of
1x10~% and 8x10~°. Additionally to altering the learning rate, the weight decay parameter
of the used AdamW optimizer is changed. Weight decay is a common regularization
technique that penalizes large weights in the network. This has been shown to be beneficial
for the generalization performance of neural networks [78]. The weight decay is set to a
value of 10™* when used.

Because this was one of the first ablations done, the ablation is done on Version 1 of
the dataset for the Shoe sorting task. The training is carried out for 6000 iterations,
excluding the first 2000 iterations in the evaluation. The results in Table 4.6 show that
higher learning rates do not lead to better performance on the validation set. However,
the addition of weight decay seems to have a positive effect on performance. Adding
weight decay decreases the mean validation error as well as the mean test- and validation
loss.

4.5.2 Batch Size

Since the change of the used batch size is partly motivated to decrease the variance of
the error during training, it is interesting to see if a difference could be observed between
a batch size of 4 and the default batch size of 1. The results of the batch size ablation
study are shown in Table 4.7 and Table 4.8. The batch size of 4 is used, because it is the
largest batch size that does not cause “out-of-memory” errors on the used GPU (Nvidia
RTX-3060). This ablation is evaluated on Version 2 of the dataset for the Shoe sorting
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Table 4.9: Evaluation of using Dropout layers with different dropout rates in the Attention
network. Trained on the Sort shoes task (Dataset version 2). Trained for
6000 iterations and evaluated every 100 iterations. The last 40 evaluations are
used for the statistics. aSR success limit: 3.00 cm. Measurements are given as
mean =+ std.

E . ¢ Test Validation Test Validation Valid.
xperimen Error [m] Error [m] Loss Loss aSR [%)]
No dropout 0.170 £0.078 0.132+0.063 4.03+0.57 6.92 4+ 0.89 4.9

Dropout rate 0.15  0.174 4+ 0.064 0.122 £0.062 4.01 £0.58 7.22+1.15 4.3
Dropout rate 0.3 0.175+0.064 0.109 & 0.050 3.85 £+ 0.52 7.58 +1.10 2.5
Dropout rate 0.6 0.183 £ 0.073 0.113+£0.044 4.00£0.58 7.57+1.10 1.1

task.

Because the amount of processed samples per step is different between the two batch sizes,
the range of evaluated iterations is adjusted accordingly.

The Pick-angle network shows a significant reduction in mean error and a 50% increase in
the average success rate a.S R when increasing the batch size from 1 to 4. The results for
the Attention network show a similar trend, but the observed changes are less significant.

4.6 Dropout

Especially when smaller training sets are used, dropout is a popular regularization
technique to reduce overfitting. Usually, dropout is used in cases where the network
shows overfitting on the training set versus the validation set in the same domain [43]. In
this case, we analyze the effects of dropout on the transfer performance of the network
from simulation to real-world data. For the dropout ablation study, Version 2 of the
Shoe sorting dataset is used, as explained in Section 4.1.2. The training is done for 6000
iterations, excluding the first 2000 iterations in the evaluation. The results of the dropout
ablation study are shown in Table 4.9. It can be seen that introducing dropout leads to a
slight decrease in the mean test and validation error, indeed indicating less overfitting to
the training set. However, when using dropout, the standard deviation of the validation
error also decreases. Although this would usually be a good thing, this decreases the a.SR.
In the given use-case, dropout is therefore not a suitable regularization technique and is
not used in the final system.

4.7 Augmentation Parameter Optimization

The augmentation ablation studies in 4.4 show that Location noise and Plane offset are
the most significant augmentations for the transfer performance of the network. Therefore,
we investigate the influence of different parameterizations of these augmentations on the
performance of the network. For this parameter tuning, the amplitudes of the applied
augmentations are varied. The evaluation is done on Version 2 of the Shoe sorting dataset
with the Attention network. All other augmentations are kept constant, and only the
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Table 4.10: Ablation study of different standard deviations for the Location noise aug-
mentation. Experiments done using the Attention network, on the Sort shoes
task (Dataset version 2). Trained for 6000 iterations and evaluated every 100
iterations. The last 40 evaluations are used for calculating the statistics. aSR
success limit: 3.00 cm. Measurements are given as mean =+ std.

Experiment Test Validation Test Validation Valid.
Error [m] Error [m] Loss Loss aSR [%)]

o =0.0025 0.179 £ 0.071 0.210+£0.094 3.37 4= 0.58 10.70 £+ 2.26 0.0

o = 0.005 0.167 £ 0.067 0.139+0.059  3.47 +0.42 8.72 +1.28 2.5

o = 0.0075 0.180 £0.074  0.1204+0.062 4.01 £0.50 7.074+1.04 4.9

o =0.01 0.1834+0.070 0.115 4 0.052 4.50+045 6.294+0.67 1.2

o =0.0125 0.203 £ 0.068 0.118 2 0.049  5.24 +0.48 6.04 =0.59 2.5

parameters of the augmentation to be evaluated are changed. For the ablations, the
training is done for 6000 iterations, excluding the first 2000 iterations in the evaluation.

4.7.1 Gaussian Location Noise

Across all evaluations, the addition of Gaussian noise to the location of the points in
the pointcloud has shown to have a significant influence on the transfer performance on
real world data. Naturally, it is interesting to see how the amount of noise added to the
point positions influences the performance. For the ablation study, the standard deviation
of the Gaussian noise is varied between 2.5 mm and 12.5mm. A couple of interesting
relationships can be observed from the results, given in Table 4.10.

The higher the standard deviation of the Gaussian noise, the lower the mean error on
the validation set. The performance on the validation set is inversely related to the
performance on the test set. The highest average success rate is reached with a standard
deviation of 7.5mm. This is the value used for the augmentation ablation studies(4.4.2,
4.4.2) as well as for the final experiments.

4.7.2 Plane Offset

The Plane offset augmentation has shown to be essential for the trained networks to
able to cope with the registration errors and misalignment of real-world pointclouds.
The augmentation tilts the pointcloud by a random degree across the x- and y-axis. In
the initial augmentation study, a maximum offset of 7.50° was used. To see how the
maximum angle of the plane offset influences the performance, an ablation study is done
with maximum angles of 2.50°, 5.00°, 7.50° and 10.00°. The results of the ablation study
are given in Table 4.11. It can be seen that the increase of the angle variation from 2.50°
to 7.50°, decreases the mean validation error by 20.00 %. What is interesting to see is that
the highest average success rate is achieved with a maximum angle of 10.00°, although
the mean validation errors are very similar.
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Table 4.11: Ablation study of different maximum angles for the Plane offset augmentation.
Experiments done using the Attention network, on the Sort shoes task (Dataset
version 2). Trained for 6000 iterations and evaluated every 100 iterations.
The last 40 evaluations are used for calculating the statistics. aSR success
limit: 3.00 cm. Measurements are given as mean =+ std.

Experiment Test Validation Test Validation Valid.
Error [m] Error [m] Loss Loss aSR [%)]

a=+£25° 0.1924+0.075  0.131 +£0.055 4.47 4= 0.48 6.82+0.94 2.5

a = +5° 0.192 £ 0.074 0.121 £0.049 448 +£0.52 6.56 £0.70 2.5

a=+7.5° 0.1954+0.067 0.109 4= 0.051 4.51+0.40 6.414+0.77 3.7

o= +£10° 0.181 +£0.064 0.111+0.0564 4.53+0.52 6.25 + 0.75 6.2

4.8 Randomization Ablations

In this section, the influence of each of the randomization methods, described in Section 3.4,
on the performance of the networks is evaluated. We analyze the influence of randomization
of the camera position, the camera parameters, background textures, object textures, as
well as scene lighting conditions. The experiments are performed on Version 2 of the
Sort shoes dataset, the same as in the previous chapter, but with different observations
rendered from the same scenes. During training, an optimized set of augmentations is
applied to the observations. The settings of the augmentations are given in Table A.1.
The following augmentations are used:

o Applied to every sample: Color augmentation, Color noise, Plane offset, Location
noise, Crop jitter

o Applied with apply probability <50.00 %: Downsampling, Perlin noise, Salt-and-
pepper noise, Gaussian smoothing

The results of the ablation study for the randomization methods are shown in Table 4.12.
It can be seen that disabling individual randomization methods has generally less of an
effect than disabling important augmentations, such as Location noise, during training.
Even with no randomizations applied, the mean validation error increases only by 16.00 %.
It is especially interesting to see, that not randomizing the camera position has such little
impact on the results. Randomizing the camera position is reported to be one of the most
important randomizations for sim-to-real transfer in the literature [10], [11], [17], [24], [30],
[49]. The small effect of randomizing the camera position in this case could be explained
by the top-down projection of the pointclouds used in the Transporter Networks system.
This seems to be a key component for making the model largely viewpoint independent.
Another contributing factor could be the employed augmentations, like Plane offset that
potentially help compensate the missing variety in viewpoints by adding variety to the
pointclouds.
Another interesting observation is that randomizing the camera parameters seems to
have a negative effect on the performance on the real-world dataset. Disabling this
randomization, slightly improves the observed performance on the validation dataset.
Table 4.13 shows the results of the domain randomization ablation study for the Pick-
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Table 4.12: Ablation study with one, none, or all randomizations disabled in each experi-
ment, using the Attention network. Trained on the Sort shoes task (Dataset
version 2). Network trained for 6000 iterations and evaluated every 100 itera-
tions. The last 40 evaluations are used for the error and loss statistics. aSR
success limit: 3.00 cm. Measurements are given as mean =+ std.

Test Validation Test Validation Valid.

Experiment Error [m] Error [m)] Loss Loss aSR [%]

All randomizations 0.177 £+ 0.065 0.107 £0.054 3.98 4+ 0.44 6.31 +£0.78 6.5

No background 0.194 £ 0.071 0.108£0.052 4.124+0.51 6.27£0.81 5.3
No camera param. 0.193 £0.072  0.102 £0.056 4.114+0.47 6.28 +0.90 7.8
No camera positions 0.173 £ 0.066 0.117 £0.055 4.00 £0.42 6.22 +0.86 3.2
No light 0.179+£0.067  0.107+£0.059 4.084+0.44 6.10+£ 0.64 6.7
No textures 0.187 £ 0.070 0.109£0.052 4.114+0.48 6.19 £0.87 3.9

No randomizations 0.184 £ 0.072 0.127 +£0.060 4.22+0.50 6.80 £ 0.81 3.9

angle network. For the ablation study, the networks are trained for 3000 iterations and
evaluated every 100 iterations. The first 500 iterations are excluded from the evaluation
to remove the influence of the initial convergence phase.

It can be seen that the influence of the individual randomization methods is minimal.
In every evaluated case the mean error is below 10.00° and the aSR is above 98.00 %.
The lowest mean error is achieved with All randomizations activated. The results with
deactivated randomizations, are all very close and the difference is not significant, due to
the high standard deviation in relation to the mean value. Even with no randomization
activated, the network achieves a success rate of 100.00 %.

4.9 Final Pick-and-Place Results

For a final performance evaluation, the Attention network, the Pick-angle network and the
Transport network are trained using the best augmentation and randomization settings
found in the ablation studies. Each of the networks is trained separately and they are
combined into the final Tansporter Agent system for evaluation. This allows us to save
the weights at an optimal iteration for each network. For the evaluation, the weights for
each network are loaded and the error of the Transporter Agent is measured on the whole
validation dataset. As before, the training is done with a batch size of 4, a learning rate of
le~*, and a weight decay rate of le—4. Unlike before, the networks are validated using 20
samples from the validation dataset every 100 iterations, instead of only using 10 samples.
The smaller sample size during the ablation studies was chosen to reduce the overhead
of the evaluation and is now increased to get a more accurate estimate of the error. For
the data augmentation settings, the parameters are set to the optimal values found in
the augmentation studies. The parameters for randomization settings and augmentation
settings are given in Table B.1 and Table A.3.

It is important to note that the error of the pick-angle and the Transport network is
dependent on the performance of the Attention network. This is because the Attention
network is used to determine the position of the crop that is used as input in the pick-angle
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Table 4.13: Ablation study with one, none, or all randomizations disabled in each experi-
ment, using the Pick angle network. Trained on the Sort shoes task (Dataset
version 2). Trained for 3000 iterations and evaluated every 100 iterations.
The last 25 evaluations are used for the statistics. aSR success limit: 10.00°.
Measurements are given as mean + std.

Experiment Test Validation Test Validation Valid.
Error [°] Error [°] Loss Loss aSR [%)]
All randomizations 3.79+1.75 4.70+1.09 0.79+0.25 1.06 +0.17 100.0
No background 3.68 £1.91 6.17 +1.32 0.77+0.31 1.23£0.20 98.1
No camera param. 3.84 £ 1.75 4.85+1.09 0.77+£0.26 1.07£0.22 100.0
No camera positions 3.88 +1.96 4.96 +1.13 0.77+£0.26 1.06 £ 0.17 100.0
No light 3.65+1.84 5.42 £1.03 0.76 £0.26 1.12+0.12 100.0
No textures 3.46 £ 1.32 4.844+1.28 0.78+£0.25 1.084£0.13 100.0
No randomizations 3.88 +£1.69 6.70 £ 1.09 0.73 £0.19 1.53+0.27 100.0

and Transport networks.

The final evaluation is done on the whole validation dataset, instead of using only a subset.
The error reported for the final evaluation is therefore expected to be different from the
error reported in the ablation studies. Instead of the average success rate (aSR), the
success rate (SR) on the whole validation dataset is now reported. The conditions for a
successful grasp are the same as for the ablation studies. The conditions for successful
placing are chosen to be more lenient, because for the Sort shoes task, the spacing between
the shoes allows for a larger error in the place position and place angle. A successful grasp
is counted when the following conditions are met:

e The predicted pick position is within 3.00 cm of the ground-truth pick position.

e The predicted pick angle is within 10.00° of the ground-truth pick angle.

e The predicted place position is within 5.00 cm of the ground-truth place position.
e The predicted place angle is within 15.00° of the ground-truth place angle.

4.9.1 Box Picking Task

To evaluate the Box picking task, we use the recorded validation dataset, containing 20
scenes with one of the two tea-boxes each. The used boxes are shown in Figure 4.13. The
results for both boxes are nearly identical.

From the results of the evaluation, given in Table 4.14, it can be seen that the achieved
errors are very low. We achieve a mean pick position error of 6.00 mm and a mean pick
angle error of just 2.88°. Considering, we used a pixel size of 3.125 mm for all experiments,
the mean error for the pick position, across the whole dataset, is below 2 px. This error is
well within the margin of error of the manual pointcloud annotation.

4.9.2 Sort Shoes Task

Compared to the Box picking task, the Sort shoes task is more challenging. It requires the
networks to generalize to unseen objects and bridge the sim-to-real gap. This generalization
is especially challenging, because the training dataset is limited to only 20 different shoe
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(a) Model 1 (b) Model 2

Figure 4.13: The two tea boxes used for evaluation of the Box picking task.

Table 4.14: Evaluation results of the Attention- and Pick angle networks on the complete
Boz picking validation dataset. Evaluated on the best validation iteration of 3
training runs with 5000 steps. Limits for pick success are 3.00 cm and 10.00°.

Pick Position Pick Angle

Box Error [m] Error [°] SR Pick [%]

Model 1 0.007 £ 0.004 2.75 1+ 3.70 100.0

Model 2 0.006 £ 0.004 3.00 £ 3.67 100.0

Overall 0.006 £ 0.004 2.88 + 3.69 100.0
models.

For training the networks in this final evaluation study, the No Camera Parameters dataset
is used. The results of the randomization ablation study indicate a slight performance
benefit for this dataset compared to the All Randomizers dataset. During the evaluation,
it was found that the errors vary a lot between the different shoe models in the validation
dataset, shown in Figure 4.14. The results for the individual shoe models from the
validation dataset, along with the overall mean results, are presented in Tables 4.15-4.17.
Looking at the results, it can be seen that all networks show their best performance on
Model 2 and Model 4. The errors on these models are even comparable to the errors on
the tea-boxes. The mean pick position errors are 9mm and 6 mm respectively. While
the and the mean pick angle errors are 5.7° and 2.2° for both models. An estimated
pick-and-place success rate of 85 % is achieved on both of these shoe-models. The highest
error across all networks is observed on Model 3, resulting in a success rate of only 29 %.

(a) Model 1 (b) Model 2 (¢) Model 3 (d) Model 4

Figure 4.14: The four shoe models used for evaluation of the Shoe sorting task.
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What is also notable, is that the Transport network shows a higher error than the pick
networks. Especially the angle error is significantly higher. This is likely due to the fact,
that the Transport network is trained to jointly predict the place position and angle. This
is expected to be a more difficult problem to solve.

The overall success rate of the Transporter Agent across all shoe models is 68 %.

Table 4.15: Evaluation results of the Attention- and Pick angle-network, trained on the
No Camera param dataset, with optimized augmentations. Validated on the
whole Sort shoes validation dataset. Evaluated on the best validation iteration
of 3 training runs with 6000 steps. Limits for pick success are 3.00 cm and

10.00°.
Pick Position Pick Angle .
Shoe Error [m)] Error [°] SR Pick [%]
Model 1 0.113 +0.173 15.71 £ 24.56 71.4
Model 2 0.009 + 0.004 5.71 £1.75 85.7
Model 3 0.220 £ 0.248 27.86 + 36.34 o7.1
Model 4 0.006 £ 0.004 2.14 + 2.47 100.0
Overall 0.087 £ 0.175 12.86 £+ 24.14 78.6

Table 4.16: Evaluation results of the Transporter-network, trained on the No Camera
param dataset, with optimized augmentations. Validated on the whole Sort
shoes validation dataset. Evaluated using the best validation iteration of
3 training runs with 10000 steps. Limits for place success are 5.00 cm and

15.00°.
Place Position Place Angle
Shoe Error [m] Error [°] SR Place [%]
Model 1 0.055 £ 0.103 13.57 £25.17 85.7
Model 2 0.018 £+ 0.012 4.29 4+ 3.19 100.0
Model 3 0.370 £ 0.233 35.00 £+ 34.43 28.6
Model 4 0.064 £+ 0.125 15.71 £ 28.46 85.7
Overall 0.127 4+ 0.200 17.14 £ 28.01 75.0

Failure Modes

Figure 4.15 shows the most common failure modes of the Transporter Agent on the
validation dataset. It can be seen that the most common failures are caused by the agent
mistaking the left and right shoe. This most often results in the agent picking the wrong
shoe, and placing it besides the shoe that should actually be picked. The second most
common failure mode is the agent picking the correct shoe, but predicting the place
position next to the picked shoe.

All in all, the results and failure modes indicate that the Transporter Agent is able to pick



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4 Experiments and Results 4.9 Final Pick-and-Place Results 69

(a) Pick failure: Wrong shoe, otherwise successful pick.
Place predicted correctly, even with wrong pick.

(b) Place predicted to wrong shoe, otherwise would be
successful.

Figure 4.15: Examples of the most common failure modes on the validation dataset of
the Pick-and-place task. Green is the ground-truth, orange are the predicted
poses.
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Table 4.17: Success rates of the full Transporter Networks agent, trained on the No Camera
param dataset, with optimized augmentations. Validated on the whole Sort
shoes validation dataset. Evaluation is done using the same trained models
as above. Combined success is only counted if both the pick and place are
successful. Limits for pick success are 3.00 cm and 10.00°, for place success
5.00 cm and 15.00°.

Shoe SR Pick [%] SR Place [%)] SR Combined [%)]
Model 1 71.4 85.7 71.4
Model 2 85.7 100.0 85.7
Model 3 57.1 28.6 28.6
Model 4 100.0 85.7 85.7
Overall 78.6 75.0 67.9

and place shoes with a high success rate. The failures are more often caused by the agent
mistaking the left and right shoe, than by the agent failing to predict a suitable pick or
place location.

The results of this final evaluation study show that the sim-to-real transfer methods,
developed in this thesis, enable an agent trained only using simulated data to successfully
predict pick-and-place poses on real-world data. This further shows, that the extended
Transporter Networks agent is able to generalize well to unseen objects, even when the
training-dataset size is limited.

4.9.3 Distractor Objects

To evaluate the performance of the Transporter Agent in cluttered environments, we train
and evaluate the agent on datasets that contains distractor objects. We evaluate the
performance of both, the agent trained with distractor objects and the agent trained
without distractor objects, on both datasets. The results are given in Table 4.18. It can
be seen that the addition of distractor objects to the scenes leads to a significant decrease
of the overall success rate. Even when trained with distractor objects, the overall success
rate is only 55 % on the distractors validation set.

It is interesting to note, that, on the distractors dataset, the pick success rate of the
agent trained without distractor objects is only slighlty lower than on the no distractors
validation set. The pick success rate of the agent trained without distractors is even higher
than the pick success rate of the agent trained with distractor objects.

This lower pick success rate is also what limits the overall success rate of the agent trained
with distractor objects. The place success rate, when trained with distractor objects, is
the same as for the agent trained and evaluated without distractor objects, at 75.00 %.

4.9.4 Evaluation of Original Implementation

To validate our work against a baseline, we also evaluate the original implementation
of the Equivariant Transporter Networks [36]. The networks are trained using the No
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Table 4.18: Success rates of the Transporter Networks agent, trained with and without
distractor objects. Validated on a validation set with and without distractors.
Evaluated using the best validation iteration of 3 training runs (pick: 6000 steps,
place: 10000 steps). Combined success is counted if pick and place are success-
ful. Limits for pick success are 3.00 cm and 10.00°, for place success 5.00 cm

and 15.00°.
Training set Validation set SR Pick [%] SR Place [%] SR Combined [%)]
No distractors No distractors 78.6 75.0 67.9
With distractors No distractors 67.9 53.6 46.4
No distractors With distractors 65.0 55.0 50.0
With distractors With distractors 60.0 75.0 55.0

Randomizers dataset. The evaluation is done on a true baseline, as no additional data
augmentation or randomization is used.

The results, given in Table 4.19-4.21, show that without methods to bridge the sim-to-
real gap, the performance of the Transporter Agent is significantly worse. The overall
success rate is only 10.7%. It must however be noted, that the pick pose predictions
are still surprisingly accurate, with a mean pick success rate of 57.1%. This indicates
good generalization capabilities of the Attention and Pick-angle networks. The Transport
network, however, shows a very low success rate of only 21.4 %. It is interesting to note,
that the shoe Model 3, now shows the best performance, with a place success rate of
42.9 %. This is in contrast to the results of the extended Transporter Agent, where Model
3 had the lowest performance.

The results of the original implementation show that the methods developed in this thesis
are necessary to achieve successful sim-to-real transfer.

Table 4.19: Evaluation results of the unmodified Attention- and Pick angle-network.
Trained without augmentations and without domain randomization. Eval-
uated using the best validation iteration of 3 training runs of 10000 steps.
Batchsize: 1. Shoe-sorting validation dataset. Limits for pick success are
3.00 cm and 10.00°.

Pick Position Pick Angle

Shoe Error [m] Error [°] SR Pick [%]
Model 1 0.125 +0.171 15.71 + 24.56 71.4
Model 2 0.189 £ 0.214 28.57 £ 28.37 57.1
Model 3 0.179 £ 0.215 15.00 + 30.71 42.9
Model 4 0.158 £ 0.187 26.43 + 30.67 57.1
Overall 0.160 £ 0.200 21.43 £29.33 57.1
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Table 4.20: Evaluation results of the unmodified Transporter-network. Trained without
augmentations and without domain randomization. Evaluated using the best
validation iteration of 3 training runs of 14000 steps. Batchsize: 1. Shoe-
sorting validation dataset. Limits for place success are 5.00 cm and 15.00°.

Place Position Place Angle

Shoe Error [m] Error [°] SR Place [%)]
Model 1 0.296 £ 0.183 36.43 £ 16.63 0.0
Model 2 0.214 £0.128 40.71 £+ 24.26 14.3
Model 3 0.167 + 0.159 40.00 £ 32.40 42.9
Model 4 0.215 4+ 0.196 34.29 £ 23.36 28.6
Overall 0.223 £0.175 37.86 £24.94 214

Table 4.21: Evaluation results of the complete, default Transporter Networks-agent.
Trained without augmentations and without domain randomization. Evalu-
ated using the best validation iteration of 3 training runs of 10000 steps(pick)
and 12000 steps(place). Shoe-sorting validation dataset. Limits for pick suc-
cess are 3.00 cm and 10.00°. Limits for place success are 5.00 cm and 15.00°.
Combined success is only counted if both pick and place are successful.

Shoe SR Pick [%] SR Place [%)] SR Combined [%)]
Model 1 71.4 0.0 0.0
Model 2 57.1 14.3 14.3
Model 3 42.9 42.9 14.3
Model 4 57.1 28.6 14.3
Overall 60.7 21.4 10.7
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5 Discussion

In this chapter, the findings and their relation to previous research are discussed and the
limitations of this study are highlighted.

5.1 Sim-to-Real Transfer with Transporter Networks

To the best of our knowledge, this is the first work that uses a Transporter Network
architecture in a sim-to-real transfer setting. Although previous work, did use the
Transporter Networks architecture on real-world data, the training data was then also
recorded in the real-world [9], [36], so no domain gap had to be overcome. The results,
presented in Section 4.9, show that the Transporter Networks architecture is able to
successfully bridge the sim-to-real gap. We showed successful generalization to new objects
and scenes, even when trained with a comparatively small synthetic dataset.

5.1.1 Generalization to Unseen Viewpoints

From the results of the domain randomization ablation study, it can be seen that the
top-down projection mechanism employed in the Transporter Network architecture is
very effective. The projection of the pointclouds to a top-down view, in conjunction with
applying random transformations to the input pointclouds, enables the model to become
largely viewpoint invariant. Even when recording all training samples from a fixed camera
position, the model successfully transfers to unseen camera positions in the validation
data. It can further be seen that randomizing camera parameters, such as the focal length
or distortion parameters, has a negative effect on the performance, indicating that an
approximated model of the used camera is sufficient for good transfer performance.

5.1.2 Batched Training

The main change to the original Transporter Networks architecture is the introduction of
batched training and parallel data preprocessing. As shown in Section 4.5.2, especially the
pick angle prediction network benefits from the introduction of batched training. Due to
the high memory requirements during gradients calculation of the Equivariant networks
used in the architecture, the batch size is limited to 4. Tests with larger batch sizes on a
GPU with more memory could potentially lead to further performance improvements.
The introduction of parallel data preprocessing, when used with batched training, allows
for a significant speedup of the training process.

5.1.3 Distractor Objects

Especially in household environments, clutter and objects unrelated to the task at hand are
often present. The results show, that especially the pick pose prediction system struggles
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with the presence of distractor objects. Even when trained with distractor objects, the pick
pose prediction is significantly worse when distractor objects are present in the validation
data. This is a significant limitation for real-world application of the trained models.

5.2 Sim-to-Real Transfer of RGB-Pointclouds

In previous work in the field of domain randomization, often either color information
or depth information is used [10], [25]. In this thesis, we use both modalities with the
Transporter Networks architecture. The results indicate that, for the selected range
of tasks, where the visual appearance of the objects of interest are not important, the
networks rely mostly on depth information for pick- and place-pose prediction. In our case,
the addition of color randomizations or augmentations shows no significant benefit. This
is in stark contrast to other works that only used color images for training, where texture
randomizations and augmentations are shown to be crucial for sim-to-real transfer [10],
[28], [49]. This could potentially change, when the task is appearance dependent, e.g.,
when the model needs to learn to distinguish between different objects based on color or
texture information. In our experiments however, the appearance of the objects was not
important, as the model only needed to learn the spatial relations between the objects.
This indicates that if the task is appearance agnostic, the addition of color information to
the depth data for successful operation of Transporter Networks might not be necessary.
The results of the data augmentation ablation study show that augmenting the spatial
information is crucial for the performance of the model on real-world data. The addition
of random Gaussian noise to the depth data shows to be crucial for the performance of the
model on real-world data. Additionally, the results indicate that accounting for alignment
errors in the real-world data, by adding random axial rotations to the training data, is
beneficial for the performance of the model on real-world pointclouds.

5.3 Domain Randomization with Nvidia Omniverse

For synthetic data generation, the Nvidia Omniverse platform was used in this thesis.
Compared to other publications in the field of domain randomization research, that often
use low fidelity simulators[10], [12], [56], the Omniverse platform enables high-quality
rendering of scenes. Robotics and domain randomization extensions makes this platform
a powerful tool for generating synthetic data for sim-to-real transfer.

Despite that, for the tasks used in this thesis, the rendering quality was not required to
be very high, the platform is capable of generating high-quality images and pointclouds.
This could be beneficial for tasks where the visual appearance of the objects is important
or the objects of interest have material properties that are difficult to render, like very
reflective or translucent materials. Although the Omniverse platform offers a range of
beneficial features, it is still in an early stage of development. We experienced multiple
breaking changes to the API during the development of this thesis and experienced several
issues with the stability of the platform.

5.4 Limitations

The identified limitations of this work are discussed in the following.
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5.4.1 Dataset Size

As with all machine learning approaches, the size of the training dataset is also crucial for
the sim-to-real performance in a domain randomization context. Many works in the field
of domain randomization report that the size of the training dataset directly influences the
performance of the model on unseen data [28], [29]. Datasets in the domain randomization
literature often contain multiple thousands of samples for the objects of interest. In our
case, the training dataset is generated from only 20 individual 3D models.

It is unclear if the transfer performance is limited due to the small dataset size or due to
limitations in the augmentations and network capabilities.

5.4.2 Manual Annotation

The manual annotation of the pick and place pose for the validation dataset is done
using a top-down view of the scene. Because the annotation is done manually, by visually
approximating the desired pick and place pose, the annotation is likely not perfect. This
introduces an unknown error in the validation dataset.

5.4.3 Lack of Real-World Experiments

Due to time and resource constraints, the experiments and evaluations for this thesis were
conducted using an annotated validation dataset only. As explained above, the annotation
was done manually, which naturally introduces a small amount of error. Although we
expect, that the success rates on this dataset give a good indication of the performance
in real-world scenarios, it is unclear how well the calculated success rates translate to
real-world experiments. To evaluate the performance of the trained model, it would be
interesting to conduct experiments using a real robot.

5.4.4 Transfer to Other Tasks

The two tasks used in this thesis are chosen for their relative simplicity and relevance as a
common household assistance task. What both of these tasks have in common is that
they are not dependent on visual object properties like color or texture. The network
is explicitly trained to ignore the visual appearance of the objects and only learn the
spatial relations between them. It would be interesting to see how well the findings of this
thesis translate to other tasks where the visual appearance of the objects is important to
successfully solve the task.
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6 Conclusion and Future Work

In this thesis, we analyzed different state-of-the-art domain randomization and data
augmentation techniques for sim-to-real transfer of pick-and-place tasks. The Transporter
Network architecture [9] is used as the framework for the pick-and-place algorithm. This
is the first work that uses a Transporter Network architecture in a simulation-to-reality
transfer setting. Specifically, we used the FEquivariant Transporter Networks architec-
ture [36] that improves sample efficiency from the original paper and contains a network
for pick angle prediction. For this thesis, we extended the architecture with the following
improvements:

e Adapting the training to use batched computations, which allows for faster training
and better performance.

e Parallelization of data loading and sample augmentation in multiple threads.

e Enabling the use of RGB-Pointclouds as input data.

e Implementation of various new data augmentation techniques.

All training data for this thesis was generated using the Omniverse Isaac Sim simula-
tor. Compared to previous works in the field of domain randomization, this allows for
high-quality rendering of the training data, while simultaneously implementing a physics
simulation. For the synthetic data generation in this thesis, a Synthetic Data Generation
pipeline was developed, which allows for the generation of large datasets from imported
3D models, with a variety of randomizations. To evaluate the impact of different random-
ization and augmentation techniques on the simulation-to-reality transfer performance,
performance analysis and ablation studies were performed on two different tasks: Box
pick-up and Shoe sorting. For both tasks, a synthetic training dataset was generated
from freely available 3D models. To analyze the transfer performance we recorded and
annotated real-world pointclouds, using a developed annotation pipeline.

6.1 Findings

In this thesis, we found that the Transporter Networks architecture, is successfully able
to generalize to unseen objects, even from a comparatively small dataset. We further
developed a set of effective augmentations and randomizations that allowed the trained
network to generalize to real-world pointclouds while being trained exclusively from
synthetic data.

Extensive ablation studies on the developed tasks demonstrated that augmenting spatial
information is the most important factor for successful simulation-to-reality transfer,
when using RGB-pointclouds. Augmenting or randomizing color information does not
significantly influence the performance on real-world data.

This finding also translates the domain randomization ablation study, where the random-
ization of textures and lighting conditions has shown to have no significant effect on the
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performance of the model on real-world data.

The results of the ablation studies indicate that for tasks where the color and texture of
objects is not important for solving the task, the focus should be on augmenting spatial
information rather than color information. Especially the use of random Gaussian noise
to augment depth data shows to be crucial for the performance of the model on real-world
data. The employed mechanisms in the original publication [9] show to be effective tools
for generalization to unseen scenes and viewpoints.

In a final performance evaluation, each network employed in the Transporter Networks
system was individually trained and a training iteration with optimal performance was
used to measure the error on a real-world dataset. The minimal achieved error was
evaluated on the Shoe sorting task, where the network has to generalize to unseen objects
and simultaneously bridge the sim-to-real gap. For the pick operation, we achieved an
estimated success rate between 57.1 % and 100.0 % depending on the shoe model, with
an overall success rate of 78.6 %. For the place pose operation, we achieved an estimated
success rate between 28.6 % and 100.0 % depending on the shoe model, with an overall
success rate of 75.0%. The success rate for scenes where both, the pick- and place
operation, are successful, across all shoe models is 67.9 %.

Failure mode analysis shows that the most common failure mode is the agent mistaking
the left and right shoe, which results in the agent picking the wrong shoe and placing it
next to the shoe that should actually be picked. This indicates that the model is able to
learn the spatial relations between the objects and successfully transfers from simulation
to reality, but fails to distinguish between the left and right shoe.

6.2 Future Work

Since the achieved error is within a margin that, as we estimated, would allow at least
most of the grasps to be successful, it would be interesting to validate the estimated grasp
success rates on a real robot. Integrating the developed algorithm in a pick-and-place
pipeline and deploying it on a physical system.

Future work, could further train the network on a task with a larger dataset, to evaluate
if the performance found in this thesis is limited by the dataset size or by the capabilities
of the networks.

Furthermore we found that especially the pick pose prediction network struggles with
the presence of distractor objects. It should be investigated if the performance can be
improved by modifying the pick pose prediction network.

We would also recommend experimenting with employing the projection of pointclouds
into a top-down image of the scene, for algorithms and networks that would usually
be fed with RGB-D images directly. This mechanism shows to be greatly beneficial to
generalization to new viewpoints. Finally, we would recommend to further investigate the
use of the Nvidia Omniverse simulator, in conjunction with the developed randomization
pipeline and augmentation techniques, for other tasks and network architectures. Data
intensive deep learning applications in robotics, like Deep Reinforcement Learning or
Pose estimation could benefit from using the developed methods, for simulation to reality
transfer. The methods introduced in this thesis offer potential for future research in the
field of simulation to reality transfer and show promising results.
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A Augmentation Settings

Table A.1: Augmentation Settings used in the Randomization ablation studies.

Augmentation Parameter Value
Color Noise sigma 0.012
brightness +0.3
contrast +0.3
Color Augmentation saturation +0.3
hue +0.5
grayscale prob. 0.1
Location Noise sigma 0.0075m
tilt angle +10.00°
Plane Offset z-offset +0.05m
salt vs. pepper ratio 0.5
Color Salt-and-Pepper salt-and-pepper prob. 0.03
apply prob. 0.85
salt vs. pepper ratio 0.5
Depth Salt-and-Pepper salt-and-pepper prob. 0.04
apply prob. 0.85
Downsample Pointcloud downsampling factor  0.50 to 1.00
. . scale 0.03m
Depth Perlin Noise apply prob. 0.85
. . scale 0.03m
Color Perlin Noise apply prob. 0.85
Randomize Crop Position max. offset 10.00 px
sigma 0.10 to 1.50
Gaussian Blur kernel size 3.00 px to 5.00 px
apply prob. 0.3
78
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Table A.2: Augmentation Settings used in the Augmentation ablation studies.

Augmentation Parameter Value
Color Noise sigma 0.025
brightness +0.3
contrast +0.3
Color Augmentation saturation +0.3
hue +0.5
grayscale prob. 0.15
Location Noise sigma 0.0075m
max. dropouts 6
Dropout size 0.01m to 0.20m
apply prob. 0.33
tilt angle +7.50°
Plane Offset z-offset 40.03 m
) scale 0.75 to 1.25
Depth Scaling apply prob. 0.33
salt vs. pepper ratio 0.5
Color Salt-and-Pepper salt-and-pepper prob. 0.03
apply prob. 0.85
salt vs. pepper ratio 0.5
Depth Salt-and-Pepper salt-and-pepper prob. 0.04
apply prob. 0.85
Downsample Pointcloud downsampling factor  0.50 to 1.00
. . scale 0.04m
Depth Perlin Noise apply prob. 0.85
. . scale 0.04 m
Color Perlin Noise apply prob. 0.85
Randomize Crop Position max. offset 10.00 px
sigma 0.10 to 1.50
Gaussian Blur kernel size 3.00 px to 5.00 px
apply prob. 0.3
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Table A.3: Augmentation Settings used in the final experiments.

Augmentation Parameter Value
Color Noise sigma 0.012
brightness +0.3
contrast +0.3
Color Augmentation saturation +0.3
hue +0.5
grayscale prob. 0.1
Location Noise sigma 0.0075m
tilt angle +10.00°
Plane Offset z-offset +0.05m
salt vs. pepper ratio 0.5
Color Salt-and-Pepper salt-and-pepper prob. 0.03
apply prob. 0.85
salt vs. pepper ratio 0.5
Depth Salt-and-Pepper  salt-and-pepper prob. 0.04
apply prob. 0.85
Downsample Pointcloud downsampling factor  0.50 to 1.00
apply prob. 0.2
. . scale 0.03m
Depth Perlin Noise apply prob. 0.5
. . scale 0.03 m
Color Perlin Noise apply prob. 0.85




Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

B Randomization Settings

Table B.1: Randomization settings used for the experiments.

Randomizer Parameter Value/Range
Resolution 800 px x 600 px
Focal Length Deviation +20%
Focus Distance Deviation +20%
F-Stop Deviation +10%
Camera Horizontal Aperture Deviation +10%
Fisheye Poly Coeff Deviation +10%
Fisheye Dim Deviation +10%
Position (X) —0.25m to 0.25m
Position (Y) 0.50m to 1.25m
Position (Z) 0.80m to 1.50 m
Intensity 1000 to 3000
. Rotation (X) —20° to 20°
Domelight Rotation (Y) —20° to 20°
Rotation (Z) —170° to 170°
Roughness 0.30 to 1.00
. Specularity w04, 0: 0.1
Floor material Texture Scale X/Y 1,00 0.2
Texture Rotation 0.00° to 360.00°
Roughness 0.20 to 1.00
Specularity w: 0.2, 0: 0.1
Object material Texture Scale X/Y wu: 0.05, o: 0.075
Noise Scale X/Y p: 1,00 0.25
Metallic 0.00 to 1.00
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