
DIPLOMARBEIT

Tree Compression

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Nadja Azzouz
Matrikelnummer 00471382

ausgeführt am Institut für Diskrete Mathematik und Geometrie
der Fakultät für Mathematik und Geoinformation der Technischen Universität Wien

Betreuer: Ao. Univ. Prof. Dr. Bernhard Gittenberger

Wien, 14.05.2025
(Unterschrift Verfasserin) (Unterschrift Betreuer)

Contents

1 Introduction 1

1.1 Preliminaries on combinatorics . 4

1.2 Preliminaries on information theory 8

1.3 Cauchy-Euler differential equations 12

2 Minimal DAG compression 13

2.1 Computation effort of the minimal DAG 14

2.2 Compression rate for binary trees . 17

2.3 Compression rate for general trees 28

2.3.1 Simply generated trees . 29

2.3.2 Minimal DAG compression for Pólya and labeled trees 35

2.3.3 Minimal DAG compression for binary increasing trees 36

3 Grammar-based tree compression 37

3.1 TSLPs . 38

3.2 A universal grammar-based code for unlabeled binary trees 42

4 Entropy-based compression 51

4.1 Entropy of plane trees . 51

4.2 Entropy of increasing search trees . 52

4.3 Entropy of increasing trees . 58

4.4 Compression algorithm for m-ary search trees 64

4.5 Hypersuccinct compression for binary trees 68

A brief outlook on further developments 73

Bibliography . 75

1 Introduction

In computer science, data structures are crucial to store, represent, and process data
in ways that preserve critical information, such as relationships within the data. The
choice of data structure depends on the specific characteristics of the data and the
intended application, with different structures offering distinct advantages based on
how the data is perceived and utilized.
Among the most foundational and widely used data structures are trees, which
are particularly effective for hierarchically organizing sequential data. For instance,
trees are commonly used in file systems, where directories and subdirectories form a
hierarchical structure, enabling efficient storage and retrieval of files. The use of tree
data structures necessitates their compression to enable efficient processing while
they occupy main memory.
Trees come in various forms, including plane and non-plane, labeled and unlabeled,
as well as degree-restricted and unrestricted variants. This thesis focuses on the
major compactification methods for the class of rooted plane trees. All of those
considered share a common structure: a root node at the top from which a collection
of subtrees dangle. Each subtree, in turn, consists of its own root and a further
collection of subtrees. This recursive characterization of trees plays a fundamental
role in their combinatorial analysis, as we will see.
Tree data structures have proven to be more efficient in searching and returning
data compared to lists and arrays and offer the possibility of maintaining order
("locational logic") when compared to hash tables. In addition, they are flexible in
size and therefore easy to edit and navigate.
In order to further advance in performance and scalability, we need to optimize tree
compression such that three main aspects are targeted:

• minimizing memory overhead

• efficient support for tree operations

• preservation of structural order

The development and evaluation of tree compressions will be strongly based on
the underlying combinatorial structure of the trees at hand with auxiliary use

1

of probabilistic and asymptotic methods from information theory, which will be
elucidated in this work. The major compression methods in lossless data compression
for trees, as listed in [23], are:

• minimal DAG compression: The minimal DAG corresponding to a tree is
the directed acyclic graph with the fewest vertices among all DAGs created
by identifying subtree repeats and merging identical instances. This way of
reducing redundancy can be done in linear time, allowing for operations on the
compressed version to be conducted in logarithmic time. DAG compression
is one of the oldest tree compression methods, which dates back to early
studies in computer science. They were already established in the 1950s as
a means to reduce memory usage in structures with repeated elements [15].
DAG compression works well for fringe-dominated trees - those with many
repeated subtrees. However, the main disadvantage is that it does not make
use of repeated patterns within the tree structure. This shortcoming is avoided
in:

• top-tree compression: Introduced by Bille et al. [1] in 2015 this technique
gives an exponential improvement on compression when compared to DAG
minimization. Their compression algorithm works by splitting a tree into
clusters of which each becomes a representative meta-node. The meta-nodes
get then connected to another, symbolized by an edge, according to the parent-
child relationship of the respective subtrees in the original tree. This offers
a log0.19σ (n) worst-case compression ratio for a tree of size n labeled from an
alphabet of size σ. Additionally, navigation and a number of other operations
are supported in O(log n) time directly on the compressed representation.

• tree grammar compression: Another promising alternative to minimal DAG
compression which can perform exponentially better is given by generalizing
grammar compression from strings to trees. Unfortunately, it is NP-hard to
find a tree’s smallest grammar, even over a finite alphabet, leading to the
requirement of profitable heuristics, [5]. One of such is RePair which is not
applied to the tree directly but rather its string representation. The extended
version, TreeRePair, which is applied directly to trees, is not yet developed
enough to support navigation in sublinear time.

• succinct compression: Unlike the previously introduced compression al-
gorithms, succinct compression does not compress the structure of the tree.
Instead, this compression method aims to achieve optimal information-theoretic
limits in terms of storage space while still allowing efficient queries on the
compressed representation. Grammar-based and Top-DAGs compression typi-
cally achieve logarithmic query times in the Word-RAM model for supported

2

navigational queries. In contrast, some succinct compression methods achieve
constant query times, [33].

In this thesis we will focus on minimal DAG and entropy-based compression meth-
ods. We will also cover one example of a grammar-based compression code. At the
end, we also highlight a much more refined version of succinct compression called
hypersuccinct compression that was developed by Munro et al. [31] in 2021.
The main advantage this new compression offers, besides achieving different information-
theoretic optima on entropy, is that the hypersuccinct encoding is equipped with an
automated adaption of the encoding to a wide range of tree sources. Therefore, it
extends the information-theoretic idea of universal coding from strings to trees in a
revolutionary universal way for binary and plane tree sources.

We present a new universal
source code for distributions of
unlabeled binary and ordinal
trees that achieves optimal
compression to within lower
order terms for all tree sources
covered by existing universal
codes. At the same time, it
supports answering many
navigational queries on the
compressed representation in
constant time on the word-RAM;
this is not known to be possible
for any existing tree compression
method. The resulting data
structures, “hypersuccinct trees”,
hence combine the compression
achieved by the best known
universal codes with the
operation support of the best
succinct tree data structures.

Munro et al. [31]

3

1.1 Preliminaries on combinatorics

In order to determine the likelihood of a tree occurring — and therefore the amount
of information it shall carry — we need to know how many different trees there are
for each possible size. The main tool to derive this counting (or probability) sequence
(an)n∈N, which gives for each n the number of distinct trees in our structure of
size n, is the generating function. A generating function is a formal power series
whose coefficients correspond to the terms of the counting sequence. Coating the
counting sequence of interest in this way turns out to be advantageous: It enables us
to translate all kinds of combinations of tree structures such as addition, sequencing,
or intertwining trees according to a specific pattern directly into operations on their
generating functions. This, in turn, allows us to derive the counting sequence of
the newly constructed object more or less straightforwardly. The content of this
subsection contains a selection from [18].

Generating functions and models

Definition P1. A binary tree is a rooted plane tree in which each node has two
or zero successors. We call these internal and external nodes, respectively. The size
of a binary tree is the number of internal nodes. Note that a binary tree with n

internal nodes has n + 1 external nodes. For n = 0 there is a single binary tree
consisting of a root only considered as an external leaf. For n = 1 we have exactly
one tree as well with the root as an internal node and two leaves attached.

Remark P2. Let Z be the symbol for an internal node, and □ the symbol for an
external node. The class B of binary trees has a recursive characterization that yields
the functional equation of its generating function:

B = □+ Z × B × B =⇒ B(z) = 1 + zB(z)2 ⇐⇒ B(z) =
1−√

1− 4z

2z
.

Note that B(z) is analytic in the open disc |z| < 1
4 , since the function

√
1− x is

analytic for |x| < 1. The coefficients of the generating sequence are given by the
famous Catalan numbers

Bn =
1

n+ 1

�
2n

n

�
with the known asymptotics for the coefficients Bn ≈ 4n√

πn3
derived by Stirling’s

formula for n!. Furthermore we have the recurrence relation

B0 = 1, Bn =
2(2n− 1)

n+ 1
Bn−1, n ≥ 1 (1.1)

derived by

Bn =
(2n)!

(n+ 1)!n!
=⇒ Bn

Bn−1
=

2(2n− 1)

n+ 1
, n ≥ 1.

4

Definition P3. Let ε be the symbol for the empty tree. An incomplete binary
tree is a rooted plane tree where each node has no, a single left/right or two children.
The size is defined as the number of nodes. This uniquely corresponds to a binary
tree in which only internal nodes are considered. Let B̂ be the class of incomplete
binary trees. Then

B̂ = Z × (ε+ ε× B̂ + B̂ × ε+ B̂2) =⇒ B̂(z) =
1− 2z −√

1− 4z

2z
.

Definition P4. A Catalan tree is an unlabeled rooted plane tree in which each
node has zero or more successors. The size of a Catalan tree is the number of nodes
(including the root). The number of distinct Catalan trees of size n corresponds
to the (n− 1)-th Catalan number. This is due to the rotational correspondence, a
natural bijection between binary and Catalan trees. For n = 1, there is a single
Catalan tree consisting of a root only. For n = 2, there is a single Catalan tree
consisting of a root and one child node.
The recursive characterization and functional equation are given by

C = Z × Seq(C) =⇒ C(z) =
z

1− C(z)

where Seq(C) = {ϵ}+ C + C2 + C3 + . . . denotes a sequence of arbitrary length.

Constructions

Definition P5. Let t be a tree with n nodes. We call t a labeled tree if each
node vi, i = 1, n, of t carries a unique label from the set {1, . . . , n}. We call t an
m-labeled tree if the labels are not required to be unique for each node and belong
to the set {1, . . . ,m}.

Let A,B be unlabeled combinatorial structures, | · |A, | · |B measure their respective
object sizes, and A(z), B(z) the associated generating functions with coefficients
An, Bn. In addition, let Â, B̂ denote their labeled versions.

Definition P6. The cartesian product C = A×B forms ordered pairs (a, b) with
a ∈ A and b ∈ B of size |a|A+ |b|B where the coefficients and the generating function
of the product are given by

Cn =
n%

k=0

AkBn−k and C(z) = A(z) ·B(z)

Definition P7. Pointing: Let {ϵ1, . . . , ϵn} be a collection of n distinct objects of
size 0 (pointers). Then ΘA describes the structure in which in each object one atom
of size 1 is pointed at.

ΘA :=
%
n≥0

An × {ϵ1, . . . , ϵn} = z
∂

∂z
A(z) =⇒ ΘAn = nAn

5

Definition P8. The boxed product Ĉ = Â□ ⋆ B̂ forms ordered pairs (â, b̂) with
â ∈ Â and b̂ ∈ B̂ where the smallest label always lies in the first component â. The
exponential generating function (EGF) Ĉ(x) is then given by

Ĉ(x) =

� x

0

d

dt
Â(t)B̂(t) dt

whereas the coefficients are given by

Ĉn =

n%
k=0

�
n

k

�
(kÂk)B̂k

Lemma P9. (Combinatorial interpretation of Taylor’s formula.)
In accordance with the pointing definition above, the operator 1

k!
∂k

∂xk corresponds to
all variations of pointing at k distinct objects (disregarding order) marked by x and
replacing them with an object of size zero. Taylor’s formula

f(x+ y) =
%
k≥0

�
1

k!

∂k

∂xk
f(x)

�
yk (1.2)

can be combinatorially interpreted to give the bicolored version of a given structure
F (enumerated by f) by f(x+ y). Each object can be painted in x-color or y-color.
Taylor’s formula expresses that this is equivalent to choosing k objects from x and
repainting them to y.

Theorem P10. (Inclusion-Exclusion principle.)
Let A1, . . . , An be a collection of finite subsets of a set A. Then the number of
elements in the union of these sets are given by(((((

n'
i=1

Ai

(((((= %
∅≠I⊆{1,...,n}

(−1)|I|+1

((((((
�
j∈I

Aj

(((((((1.3)

The key idea to get the exact amount of numbers in the union by first overcounting,
then correcting the overcount, but deducting too much, correcting this and so on.

Theorem P11. (Lagrange Inversion Theorem.)
Let the formal power series y(z) =

&
n≥1 ynz

n be defined implicitly by the functional
equation

y(z) = z · f(y(z))

where f(u) =
&

k≥0 fku
k is a formal power series with f0 ̸= 0. Then the coefficients

yn of y(z) are given by

yn = [zn]y(z) =
1

n
[un−1](f(u))n for n ≥ 1.

Here, [zn]g(z) denotes the coefficient of zn in the series g(z).

6

Study of asymptotic behavior

For the asymptotic behavior of the coefficients of a generating function, the location
and type of so-called dominant singularities — i.e., the singularities on the circle of
convergence — are crucial. Below we present a selection of tools for analyzing such.

Lemma P12. (Cauchy’s coefficient formula.)
Let f(z) be analytic in a region Ω containing 0 and let γ be a simple loop around

0 in Ω that is positively oriented. Then, the coefficient [zn]f(z) admits the integral
representation

[zn]f(z) =
1

2πi

�
γ
f(z)

dz

zn+1
.

Proof. The proof is provided in [18] and relies on Cauchy’s integral formula. ■

Theorem P13. (Hankel’s formula for the Gamma function. , [18, p.745])
Let

� (0)
+∞ denote an integral along a contour starting at +∞ in the upper half-plane,

winding counterclockwise around the origin, and proceeding towards +∞ in the lower
half-plane. Then, for all s ∈ C,

1

Γ(s)
=

i

2π

� (0)

+∞
(−t)−se−t dt.

Theorem P14. (Transfer Theorem for Algebraic-Logarithmic Functions.,
[18, p.385])
Let α ∈ C \ Z≤0 and β ∈ R. Then the n-th coefficient of the function

f(z) = (1− z)α
�
1

z
log

1

1− z

�β

asymptotically admits the following expansion

[zn]f(z) ≡ n−α−1

Γ(−α)
logβ(n)

1 +
%
k≥1

Ck

log n


where Ck =

�
β
k

�
Γ(α) dk

dsk
1

Γ(s)

((((
s=a

.

Proof. The proof of this theorem can be found in [18, p. 385]. It is based on Cauchy’s
coefficient formula and the use of Hankel contours, applying Theorem P13. ■

Exactly the same technical sequence of the proof will be employed later in a lemma
to prove Theorem 2.8.

7

1.2 Preliminaries on information theory

The crucial role of information theory in deriving optimal tree compression is based
upon its qualitative and quantitative characterization on how much information
(code) we need on average to describe a certain event (in our case: tree). Shannon
entropy, for example, provides a fundamental lower bound for compression that
we aim to approximate with as little redundancy as possible. The central idea
in information theory states that the more likely an event is to occur, the less
information (in terms of storage space) it should require. For a more detailed
explanation of the concepts introduced in the first two sections, the reader is advised
to refer to [11], from which the following material originates. The subchapter on tree
sources tailors information-theoretic aspects to tree encoding, as introduced in [34].

Shannon entropy

Definition P15. Let X be a discrete random variable with probability distribution
PX = (pi)i∈N. We call

H(P) =
%
i∈N

pi log(
1

pi
) = −

%
i∈N

pi log(pi) (1.4)

the entropy of the distribution PX . For convenience we will refer to this as H(X),
the entropy of the random variable. Generally, the choice of logarithm base reflects
the size of the output alphabet used in the encoding. Throughout this work, all
concrete encoding schemes use binary representations. Consequently, all logarithms
are taken to base 2.

Remark P16. Note that H(X) ≥ 0, since the logarithm of a probability is non-
positive. Entropy quantifies the lower bound on the expected amount of information
that is required to describe an event considering all possible outcomes.

Definition P17. Let X,Y be two random variables with probability distributions
PX , PY . We define the entropy of the pair (X,Y) as

H(X,Y) =−
%
x

%
y

P(X = x, Y = y) log(P(X = x, Y = y))

=−
%
x

%
y

P(X = x)P(Y = y|X = x) log(P(X = x)P(Y = y|X = x))

=−
%
x

P(X = x) log(P(X = x)) (1.5)

−
%
x

P (X = x)
%
y

P(Y = y|X = x) log(P(Y = y|X = x))

=H(X) +H(Y |X). (1.6)

8

where H(Y |X = x) =
&

y P(Y = y|X = x) log(P(Y = y|X = x)) is called the
relative entropy of Y under X. If X and Y are independent we have

H(X,Y) = H(X) +H(Y) (1.7)

Remark P18. The joint and relative entropy for more than two random variables is
defined analogously. The entropy of a tuple of random variables measures how much
information is required to describe the joint occurrence of events from a collection
of random variables. Relative entropy indicates how much information is needed,
given that the states of some random variables are already known.

Encoding schemes

Definition P19. Let A∗ be the set of finite-length sequences from a finite set A,
called Alphabet. A source code C for a random variable X maps each x ∈ X , the
domain of X, to A∗. The expected length of a source code is given by%

x∈X
p(x)l(x)

where l(x) is the length of the codeword c(x). We call a code optimal if the average
number of code symbols per source symbol can get arbitrarily close to the entropy.
For our purposes X is a binary or plane tree source that will generate a tree according
to the respective probability distribution and A∗ will consist of all finite-length bit
sequences. Due to this, we can index the probabilities in a countable manner as
pi, i ∈ N.

Remark P20. A code is called prefix-free if no codeword is the prefix of another. A
prefix-free code is instantaneous, meaning that at any position in a message it is
clear — without looking at the following letters — whether a codeword ends there.
It is not hard to see that a code is instantaneous if and only if it is prefix-free. In
the case of a binary alphabet, this is further equivalent to the code originating from
a binary tree: The codewords ci are represented by the leaves in the corresponding
binary tree. The codeword corresponding to a leaf is obtained by tracing the path
from the root, recording left (0) and right (1) moves along the path, to the leaf. The
length of the codeword ci, called leaf length, is denoted by li.

Lemma P21. (Kraft’s inequality) A binary tree with leaf lengths l1, . . . , lm exists
if and only if

m%
i=1

2−li ≤ 1.

Equality holds if and only if the tree is complete.

9

Another important result from information theory at this point is that for every
uniquely decodable code — which merely requires the unique decomposition of a
message into codewords — there exists a prefix-free code with the same codeword
lengths:

Proof. Let M = c1c2 . . . ck be a message of length n where c1 is the initial codeword
of length l1 and N = c2 . . . ck the final segment of length n− l1. Because we require
unique decodability, the message M is determined by having identified the codewords
in N . Hence the number of messages of length n is given by

Mn =
%
li

Mn−li ≤ 2n, with M0 = 1

Thus in 0 ≤ z < 1
2

M(z) =
%
n≥0

Mnz
n = 1 +

%
n≥1

%
|li|≤n

Mn−liz
n = 1 +

%
li

%
n≥1

Mn−liz
n

= 1 +
%
li

%
n≥1

Mn−liz
n = 1 +M(z)

%
li

zli ⇐⇒
%
li

zli = 1− 1

M(z)
≤ 1

which holds true for z → 1
2 resulting in the Kraft’s inequality. ■

This justifies the restriction to prefix-free codes, which we will use in this section
when searching for an optimal compression code, rather than considering uniquely
decodable codes in general. The most prominent example of such an (asymptotically)
optimal code is the Huffman code:

Definition P22. Let X be a random variable that takes values in a finite set M

with a probability distribution P = (p1, . . . , pm). The Huffman tree is constructed
by:

1. If m = 1 then the tree consists only of the root. End.

2. Arrange the probabilities: p1 ≥ · · · ≥ pm.

3. Merge the smallest probabilities: p∗m−1 = pm−1 + pm.

4. Construct the optimal tree for P ∗ = (p1, . . . , pm−2, p
∗
m−1).

5. Replace leaf m− 1 with an internal node having leaves m− 1 and m.

The asymptotic optimality of the Huffman code relies on encoding entire blocks
of letters of the message at once. For blocks of size n that means constructing a
Huffman tree with mn leaves. The cost of this increases exponentially with n. Instead,
we could consider the entire message as a single block, assign it to an interval in
[0, 1], and convert it into a (bit-)code that, on average, achieves the entropy up two

10

two bits. The coding schemes that follow this procedure are known as arithmetic
coding.

Lemma P23. Let C be any uniquely decodable source code for a source X . Then,
the expected codeword length is lower-bounded by the Shannon entropy H(X).

Tree source encoding

Definition P24. Let T a set of trees with a specified size and Tn ⊆ T the subset
of trees of size n. We call (T ,P) a tree source if the random variables Tn, n ∈ N,
taking on a tree of size n together with the function P : T → [0, 1] satisfy%

t∈Tn
P[Tn = t] = 1, n ∈ N. (1.8)

Thus, P induces a probability distribution over each set Tn. In the following, we
will refer to T as a tree source itself, rather than the tuple (T ,P) and abbreviate
P(Tn = t) as P(t). If not declared otherwise P is set to be the function that gives a
uniform distribution.

Definition P25. Without loss of generality assume that the size of T is defined as
the number of nodes. A binary code (f, g) for a tree source T consists of tuples
(fn, gn) for each Tn ⊆ T , n ∈ N, where:

• fn : Tn → {0, 1}∗ is the encoding function, mapping the set Tn ⊆ T of all
possible trees with n nodes (the domain of the random variable Xn) to a set
of binary codewords

• gn : fn(Tn) → Tn is the decoding function, mapping each codeword back.

We call the code code lossless if for each n ∈ N the function fn is injective and gn

is the inverse of fn.

Definition P26. Given a binary code (f, g) on a tree source T , the nth order
average redundancy of the code with respect to the source, for each n, is defined
as

R (f, n,P) =
%

t∈Tn, P (t)>0

l (fn(t)) + log2P(Tn = t)

n
P(Tn = t)

and measures the expected number of bits by which the encoding exceeds the entropy.
We call (f, g) asymptotically optimal for the tree source T , if

lim
n→∞R (f, n,P) = 0.

Definition P27. A code for a family of tree sources (B,P)P∈P , where each P ∈ P
satisfies (1.8) is called universal if it is a lossless and asymptotically optimal code
for every source in the family.

11

1.3 Cauchy-Euler differential equations

In chapter 4.2 we will require background knowledge on solving Cauchy-Euler
differential, which is derived from [35, Chapter 4]. Let y(x) be the nth derivative of
the unknown function y(x). Then a Cauchy–Euler equation of order n has the form

anx
ny(n)(x) + an−1x

n−1y(n−1)(x) + · · ·+ a0y(x) = g(x) (1.9)

where a1, . . . , an are real constants and x ∈ R. The general solution for the homoge-
neous part of this ordinary linear differential equation with variable coefficients can
be found with the ansatz

y = xα

where α is the parameter to be resolved. Substituting this ansatz into (1.9) yields

(anα
n + an−1α

n−1 + . . .+ a0)x
α = 0

Thus, y = xα is a solution of (1.9) whenever α is a solution of the indicial equation

anα
n + an−1α

n−1 + . . .+ a0 = 0.

In the case of distinct roots α1, . . . , αn the homogeneous solution is given by

yh =
n%

k=1

ckx
αk .

The particular solution can be found by variation of constants as

yp(z) =
n%

i=1

xαi

� z

0
c′i(x) dx

where c′i(x), i = 1, . . . , n depends on the Wronskian determinants of the system and
can be solved using Cramer’s rule, which is a standard procedure.

12

2 Minimal DAG compression

Definition 2.1. The fringe subtree tv of a tree t is the subtree rooted at v,
containing v and all nodes that can be reached from v by traversing downward
edges.

Definition 2.2. The directed acyclic graph (DAG) representation of a tree is a
compressed version of the tree in which the nodes of the DAG correspond to meta-
nodes representing fringe subtrees of the original tree. We refer to the minimal
directed acyclic graph (minimal DAG) as the DAG representation in which each
occurring fringe subtree appearing in the tree is represented by a single meta-node,
and multiple occurrences of the same fringe subtree are merged into a single shared
instance. The minimality of a DAG is characterized by the smallest possible number
of nodes among all DAG representations. The minimal DAG of a tree is unique
up to graph isomorphisms, [12]. This compression significantly reduces the space
complexity while preserving the hierarchical structure of the original tree.

Figure 2.1: A binary tree (left) and its DAG representation (right)

13

2.1 Computation effort of the minimal DAG

An important consideration in evaluating tree compression algorithms is the compu-
tational effort required to construct the compressed representation. We present a
linear-time algorithm for constructing the minimal DAG of a labeled rooted plane
tree, inspired by the approach in [8]. The algorithm for the (labeled) unrooted plane
class was developed one year later by the same authors in [9]. In 2013, Flouri et al.
[20] generalized this to the class of non-plane, unrooted (labeled) trees.

Definition 2.3. The postfix notation of a labeled rooted plane tree is constructed
recursively by traversing each subtree from left to right, denoting occurring labels,
and visiting the root last.

Example 2.4. Consider the following tree:

A

B

D E

C

F

Its postfix notation is:

Postfix (T) = D E B F C A.

Note that the postfix notation can be obtained and inversed in Θ(n) time. This
representation forms the basis for the algorithm’s preprocessing stage. This algorithm
outputs the structure of each unique fringe subtree with the locations where each
instance occurs. From this, the minimal DAG of the tree can then be constructed
straightforwardly.

Preprocessing: Given is a labeled rooted plane tree t on n nodes in postfix notation.
We assume that each node label xi ∈ Σ, i = 1, . . . , n, sets the out-degree (number
of children) of that node. Let ϕ(xi) denote this out-degree. Additionally, the array
H, of length n, stores the height of each node given by the maximum number of
downward edges until a leaf node is reached.

Overview: The algorithm processes the tree bottom-up where the nodes are indexed
according to their position in the postfix notation. We initialize a hash table that
maps each subtree sequence to the nodes that they occur on. If a subtree sequence
is met twice, it gets added to the subtree repeat list R. The algorithm starts by
processing the leaf nodes.

14

For internal nodes, the algorithm uses a stack-based approach: it pops the children
of each node and knows when to stop, given its out-degree (number of children) by
ϕ. This nodes’ fringe subtree is stored in postfix notation and generated recursively
by concatenating its children subtree sequences and finally appending the current
node’s own label. The complete sequence is stored in the hash table F . If a sequence
appears more than once, it is marked as isomorphic. Two subtrees are isomorphic
if and only if their subtrees are structurally identical and carry the same labels at
corresponding places.
The dual output of R and F gives both the repeated subtrees and the identification
of where every subtree sequence appears. This is useful for applications where both
repeat detection and pattern analysis (or tree comparison) are desired.
The algorithm achieves an average time complexity of O(n) — assuming an efficient
hashing scheme F — operations like insertion and lookup take O(1) average time.
Computing each fringe subtree sequence from its children’s sequences takes time
O(k), where k is the out-degree. The algorithm processes each node once: leaves in
O(1) average time and internal nodes with k children in O(k) average time. The
total time is

&
li∈Leaves O(1) +

&
ni∈Internal O(ϕ(ni)). Since

&
ϕ(ni) = n − 1 for a

tree with n nodes, the total complexity is O(n) +O(n− 1) = O(n) on average.

Fringe subtree identification algorithm

In line 12 of Algorithm 2 we reverse the order of children popped from the stack to
obtain the original ordering in the tree.

Algorithm 1 GetSubtreeSequence
Require: postfix notation post(t) = x1x2 . . . xn, node index i, children array

Children, frequency table F

Ensure: sequence seq representing the subtree starting at i

1: seq ← ”” ▷ Initialize empty sequence
2: for j = 1 to ϕ(xi) do ▷ Process children left to right
3: c ← Children[j] ▷ j-th child of node i

4: s ← Frev[c]

5: seq ← seq + s ▷ Concatenate child sequence
6: end for
7: seq ← seq + xi ▷ Append root label last
8: return seq

15

Algorithm 2 Subtree Repeat Identifier
Require: tree t with n nodes in postfix notation post(t) = x1x2 . . . xn over alphabet

A = (Σ, ϕ), array H[1..n]

Ensure: Frequency table F , repeated subtrees R

1: F ← [∅], R ← ∅
2: stack ← ∅
3: for i = 1 to n do ▷ Build tree and identify subtrees
4: Children ← []

5: if H[i] = 0 then
6: F [xi] ← F [xi] ∪ {i}
7: if |F [xi]| ≥ 2 and xi /∈ R then
8: R ← R ∪ {xi} ▷ Add to repeats if frequency ≥ 2

9: end if
10: stack.push(i)

11: else ▷ Internal node
12: Children ← Reverse([stack.pop() for j = 1 to ϕ(xi)])

13: seq ← GetSubtreeSequence(post(t), i, Children)

14: F [seq] ← F [seq] ∪ {i}
15: if |F [seq]| ≥ 2 and seq /∈ R then
16: R ← R ∪ {seq}
17: end if
18: stack.push(i)

19: end if
20: end for
21: return F,R

The function Frev provides the fringe subtrees dangling from each node. Since the
leaf nodes have already been processed previously, the algorithm is well-defined.

Navigation and path queries

Buneman et al. [4] demonstrated efficient navigation and path queries on the DAG
representation without requiring full initial decompression. By reusing identical
subtrees, the XML document’s tree structure can be shrunk to less than 10% of the
original in practical cases. This allows them to navigate and run queries directly on
the compressed XML tree in logarithmic time.

16

2.2 Compression rate for binary trees

We compute the expected improvement in memory usage for binary trees using the
DAG representation as outlined in [19]. For this, our model assumes a uniformly
random probability distribution on B. Therefore a tree of size n is selected with
probability 1

Bn
.

Definition 2.5. Let tD denote the DAG representation of a binary tree t and |tD|
the size of it. Let

Dn :=
%
|t|=n

|tD| such that Dn =
Dn

Bn

gives the expected size of the compressed tree.

Theorem 2.6. [19]

Dn =
1

Bn

%
l≥1

%
k≥1

(−1)k−1

�
n− kl + 1

k

�
BlBn−kl

Proof. Since the (meta-)nodes in tD correspond to distinct fringe subtrees we can
calculate Dn by counting all DAGs that have a meta-node representing u ∈ B. This
way, instead of counting nodes per DAG, we sum up one for each DAG that contains
a certain fringe subtree as a meta-node. Let Au,n be the number of trees of size n in
which the subtree u occurs at least once. Then,

Dn =
%
u∈B

Au,n.

Translating this onto the relationship of the respective generating functions yields

D(z) =
%
u∈B

Au(z). (2.1)

In order not to overcount we need to carefully take into account multiple occurrences
of a subtree. Let u ∈ B be a fixed subtree that appears k-fold, k ∈ N, in t ∈ B. Let
v1, . . . , vk, k ∈ N, be the nodes that mark the occurrences of tvi = u for i = 1, . . . , k.
The idea is to look at the subtree t \ {u} where the subtree pattern u is removed
and the nodes vi are treated as leaves. Then we mark those leaves, add u to each of
them, resulting in the original tree t. By doing this to all trees that do not contain
the pattern u we create all trees containing u at least once and count them exactly
once for each respective size |t \ {u}|+ k|u|.
We will conduct this approach using Taylor’s formula (Lemma P9) and the inclusion-
exclusion principle (see Theorem P10).
The bivariate generating function of B with v marking external nodes is given by

B(z, v) =
%
n,l≥0

Bn,lv
lzn =

%
n≥0

Bn,n+1v
n+1zn = vB(zv) (2.2)

17

since Bn,l = Bn for l = n+ 1, 0 otherwise.
Marking k of those leaves by the pointing operation yields the bivariate generating
function

P (z, v) :=
1

k!

∂k

∂vk
[vB(zv)] =

1

k!

%
n≥0

(n+ 1)!

(n+ 1− k)!
Bnv

n+1−kzn.

The coefficients of the vertical generating function

P (z, 1) = Uk(z) =
%
n≥0

Un,kz
n, Un,k = 0 for k > n+ 1

now give the number of trees of size n with k distinct leaves marked. For a fixed
subtree u of size l we can further derive the generating function of all trees with an
(additional) k-fold appearance of u - attached to the marked nodes vi, i = 1, . . . , k -
according to our approach - by

zklP (z, 1) =
%
n≥0

Un,kz
n+kl. (2.3)

In order to calculate Au from (2.1) we use an instance of the inclusion-exclusion
principle: For t ∈ B let ωu[t] denote the number of occurrences of u in t. Furthermore,
set

αu[t] =

0, ωu[t] = 0,

1, ωu[t] ≥ 1.

Then

αu[t] =
%
k≥1

(−1)k−1

�
ωu[t]

k

�

since the sum is either empty in the first case or equal to 1 by the binomial theorem
in the second case. Now we see the direct application of the inclusion-exclusion
counting (1.3) in place. Since

Au(z) =
%
n≥0

zn
%

t∈B, |t|=n

αu[t] =
%
k≥1

(−1)k−1
%
t∈B

�
wu[t]

k

�
z|t|,

together with the fact that the last sum

%
t∈B

�
wu[t]

k

�
z|t| = zklP (z, 1)

by (2.3) because a tree t with wu[t] many occurrences of u in it corresponds to�
wu[t]

k

�

18

distinguished ways to produce a k-fold appearance of u on k different marked nodes.
Hence,

Au(z) =
%
k≥1

(−1)k−1zklP (z, 1) =
%
k≥1

(−1)k−1zkl
1

k!

�
∂k

∂vk
B(z, v)

� (((
v=1

. (2.4)

Set f(x) = xB(zx). By Taylor’s formula (1.2) with x = 1 (leaves) and y = wzl (u
trees, where w quantifies the additional occurrences of u) we get

f(1 + wzl) = vB(zv)
(((
v=1+wzl

=
%
k≥0

1

k!

�
∂k

∂vk
B(z, v)

� (((
v=1

(wzl)k.

If we set v = 1− zl we obtain

−vB(zv)
(((
v=1−zl

= B(z, 1) +Au(z).

by comparison with (2.4). This provides

Au(z) = B(z, 1)−B(z, 1− zl). (2.5)

Hence, by setting v = 1− zl in Taylor’s formula we remove all occurrences of u since
B(z, 1) is the generating function for all binary trees. This gives us the generating
function of binary trees not containing the subtree u as B(z, 1 − zl). Plugging in
the explicit formula for B(z) into (2.5), using (2.2), we obtain

Au(z) =
1

2z

�#
1− 4z + 4zl+1 −√

1− 4z
�
.

Notice that Au(z) depends only on the size of u. Thus, we substitute it into equation
(2.1), but sum up over all possible subtree sizes. To account for this variation, we
multiply Aul

(z) - the generating function for an arbitrary subtree ul of size l - by
Bl, the total number of subtrees of size l:

D(z) =
%
l≥0

1

2z
Bl

�#
1− 4z + 4zl+1 −√

1− 4z
�

(2.6)

Finally, we derive the coefficients

Dn = [zn]
%
l≥0

Aul
(z)Bl = [zn]

%
l≥0

Bl

%
k≥1

(−1)k−1
%
t∈B

�
wul

[t]

k

�
z|t|

=
%
l≥0

Bl

%
k≥1

(−1)k−1

�
n− kl + 1

k

�
Bn−kl.

where the last equality holds due to the fact that the the tree t \ {ukl } has n− kl+1

leaves on which the fringe subtree ul ∈ Bl can be rooted at and because there are
Bn−kl many possible configurations for the stripped tree t \ {ukl }. ■

19

Theorem 2.7. [19] The asymptotic expectation on the size of the DAG of a binary
tree with n nodes is given by

Dn = 2

$
log 4

π

n√
log n

�
1 +O

�
1

log n

��
.

In 2015, Bousquet-Mélou et al. [3] provided a complete proof for the asymptotic
behavior initially outlined in [19]. Their result was adapted with respect to the
expected number of edges of the minimal DAG for m-labeled binary trees. We will
now revisit this proof for the unlabeled case, modifying it to account for binary trees
according to our definition.

Theorem 2.8. [19] The generating function D(z) is analytic in the domain G
defined by |z| < 1

2 and z /∈

1
4 ,

1
2

. For z in the intersection of G and a sufficiently

small neighborhood of 1
4 , as z → 1

4 , one has

D(z) =
2
#

log 4/π#
(1− 4z) log(1− 4z)−1

+O
 1!

(1− 4z) log3(1− 4z)−1

 .

To prove Theorem 2.8, we first establish the following auxiliary lemmata:

Lemma 2.9. [3, p.42] Let y>0, and define

a(n, y) :=

n%
l=0

Bly
l (2.7)

For any c > 1
4 , there exists a neighborhood of c such that

a(n, y) = O((4y)nn−3/2)

uniformly in n and y in this neighborhood of c.

Proof. Let ϵ, δ > 0, ϵ < δ and y ∈ Uϵ(
1
4 + δ) ∩ R. Multiplying (2.7) by xn and

summing up over all n ∈ N gives the generating function of the numbers a(n, y) as

%
n≥0

a(n, y)xn =
%
n≥0

n%
l=0

Bly
lxn = B(xy)

1

1− x
=

1−√
1− 4xy

2xy(1− x)

implying

a(n, y) = [xn]
1−√

1− 4xy

2xy(1− x)
=

1

2y
− [xn]

1

2y

�√
1− 4xy

x(1− x)

�
.

With Cauchy’s coefficient formula (P12) we get the expression

[xn]

√
1− 4xy

x(1− x)
=

�
γ

√
1− 4xy

1− x

dx

xn+2
,

20

where γ is specified to counterclockwise encircle the origin, small enough so that it
does not cross the singularity of the integrand closest to the origin - the dominant
singularity- which is x(y) = 1

4y
−1.

To confirm that this indeed the dominant singularity, observe that |4y| > 1, for
this choice of y, and thus the point x(y) = 1

4y
−1 constitutes a branch point of the

multi-valued square root function. Substituting u = 4xy we obtain

(4y)n+1

2πi

�
γ

√
1− u

4y − u

du

un+2
.

We deform the contour integral to a Hankel contour integral and proceed like it is
done in [18, p. 382] and illustrated by Figure 2.2. First we extend the contour γ onto

Figure 2.2: keyhole contour(left) that eventually becomes a Hankel contour(right)

a keyhole contour, which is justified by Cauchy’s integral theorem. The integrand
asymptotically behaves like (un

√
1− u)−1 and thus vanishes along CR as the radius

R tends to infinity. We are left with the integrals along the arms C1 and Ĉ1 and
the integral along Hn that passes at a distance 1

n from the real half-line x ≥ 1.
Substituting u = 1 + t

n gives

[xn]

√
1− 4xy

x(1− x)
=

(4y)n+1

n
3
2 2πi

�
H

√−t

4y − 1− t/n

�
1 +

t

n

�−n−2

dt

where the Hankel contour H ≡ H(1) now winds around 0. Now we distinguish by
the size of ℜ(t):

1. ℜ(t) ≤ log(n)2: For n large enough the value of 4y−(1+t/n) in the denominator
of the integrand is uniformly lower bounded at some t0 on the contour H.
Furthermore, because of the asymptotic expansion�

1 +
t

n

�−n−2

= e−t− 2t
n
+ t2

2n
+ t2

n2− t3

3n2+... = e−t

�
1 +O

�
t2

n

��
(2.8)

and the assumption,

t ∈ O(log(n)2),

21

we can bound the remaining terms of the integrand by(((((√−t

�
1 +

t

n

�−n−2
(((((≤ cO

#
log(n)2

�
e−t0

�
1 +O

�
1

n

���
.

Thus the integral can be bounded by a constant K = K(n) for each n in this
case.

2. ℜ(t) ≥ log(n)2: Along the contour that passes the real half-line x ≥ 1 at a
distance 1 the minimum 1

n of |4y − 1 − t
n | is attained at t0 = n(4y − 1) + i.

Again by (2.8) we can bound the modulus of the integral by

Cne− log(n)2
�
H∩ℜ(t)≥log(n)2

(((((√t

�
1 +

t

n

�−2
(((((dt = o

�
exp

�− log(n)2
��

.

Putting it all together, this asymptotically gives

a(n, y) =
(4y)n+2

n
3
2 2πi

K. ■

Lemma 2.10. Let z be in the domain G specified in Theorem 2.8 and n ∈ N. The
function

F (n, z) =
1√

1− 4z

�
B(z)−

n%
l=0

Blz
l

�

admits for z in the intersection of G and a sufficiently small neighborhood of 1
4 , as

z → 1
4 , the asymptotic expansion

2(4z)n+1

√
π
√
n
√
1− 4z

�
1 +O

�
1

n

��
.

Proof. First we evaluate F (n, z) by its generating function:

%
n≥0

F (n, z)xn =
1√

1− 4z

B(z)−B(zx)

1− x

=
1√

1− 4z

1−√
1− 4z

2z(1− x)

1−√
1− 4zx

2zx(1− x)

=
1

2zx
√
1− 4z

−1 +
(1− x)

�
1 +

#
(1− 4z)(1− 4zx)

�
(1− x)(

√
1− 4z +

√
1− 4zx)


=

1

2zx
√
1− 4z

�
−1 +

1√
1− 4z +

√
1− 4zx

+
√
1− 4z − 1− 4z√

1− 4z +
√
1− 4zx

�
=

1

2zx
√
1− 4z

�
−1 +

√
1− 4z − 4z√

1− 4z +
√
1− 4zx

�
.

22

Therefore

F (n, z) = [xn]
1

2zx
√
1− 4z

4z√
1− 4z +

√
1− 4zx

=
2√

1− 4z
[xn]

1

x(
√
1− 4z +

√
1− 4zx)

.

Analogously to Lemma 2.9, we express this coefficient as a contour integral using
Cauchy’s coefficient formula and obtain the following Hankel integral:

[xn]
1

x(
√
1− 4z +

√
1− 4zx)

=
(4z)n+1

√
n2πi

�
H

1√−t+
#
n(1− 4z)

�
1 +

t

n

�−n−2

dt

Let z be sufficiently close to 1
4 so that we can disregard

#
n(1− 4z) in the de-

nominator. In the case where ℜ(t) ≤ log2 n, we use the asymptotic expansion
(2.8).Specifically, we take:�

1 +
t

n

�−n−2

= e−t

�
1− 2t

n
+O

�
t2

n

��
,

where the error term O
�
t2

n

�
is uniformly bounded for |t| ≤ log2 n.

Since t
n ≤ log2 n

n → 0, this expansion converges uniformly on the contour H. This
allows us to interchange integration and summation:

(4z)n+1

√
n2πi

�
H
(−t)−

1
2

�
1 +

t

n

�−n−2

dt

=
(4z)n+1

√
n2πi

��
H
(−t)−

1
2 e−t dt+

�
H
(−t)−

1
2 e−t

�
−2t

n

�
dt+

�
H
(−t)−

1
2 e−tO

�
t2

n

�
dt

�

=
(4z)n+1

√
nΓ

�
1
2

� �1− 2Γ
�
1
2

�
nΓ

�
3
2

� +O
�
1

n

��

=
(4z)n+1

√
nΓ

�
1
2

� �1 +O
�
1

n

��
,

where we used Theorem P13 to evaluate the integrals. Similarly, as in Lemma 2.9,
in the case where ℜ(t) ≥ log(n)2, the integral is negligible. Thus, with Γ(12) =

√
π,

we have

F (n, z) =
2(4z)n+1

√
π
√
n
√
1− 4z

�
1 +O

�
1

n

��
.

■

Proof of Theorem 2.8. Factoring out
√
1− 4z from (2.6) we get

D(z) =

√
1− 4z

2z

%
l≥0

Bl

�√
1 + ul +

ul
2

− ul
2

− 1
�

(2.9)

=
1√

1− 4z

%
l≥0

Blz
l +

√
1− 4z

2z

%
l≥0

Bl

�√
1 + ul − ul

2
− 1

�
(2.10)

23

where

ul =
4zl+1

1− 4z
and

%
l≥0

Blz
l = B(z).

Here, note that in the first summand
&

Blz
l = B(z), hence the first summand is a

product of functions that are analytic in G and thus negligible (exponentially small).
We employ the following inequalities, which are satisfied for every fixed z in the
domain G by the corresponding ul :(((√1 + ul − 1− ul

2

(((≤ |ul|2
2

(2.11)((√1 + ul − 1
((≤ (((#|ul|

(((. (2.12)

A proof is sketched in a subsequent remark. Using (2.11) we get absolute and uniform
convergence of the second sum of (2.10), for all z in a disk Uϵ(z0) around z0 ∈ G

sufficiently small so that it lies in G (thus not containing the singularity 1
4 of D(z)),

by %
l≥0

Bl

(((√1 + ul − ul
2

− 1
(((≤ 1

2

%
l≥0

Bl|ul|2 ≤ cϵ
2

%
l≥0

Blr
l
ϵ < ∞

since |ul|2 is uniformly bounded on this disk by its maximum at zϵ satisfying

|ul(zϵ)|2 = 16|zϵ|2
|1− 4zϵ|2 |zϵ|

2l < cϵr
l
ϵ, rϵ <

1

4
, cϵ ≡ const.

Now that we have established the analyticity of D(z) on G, we proceed by decom-
posing D(z) into partial sums and remainder terms, analyzing their asymptotic
behavior individually.
Let n ∈ N. Define

D1(n, z) :=

√
1− 4z

2z

n%
l=0

Bl

�√
1 + ul − 1

�
,

D2(n, z) :=

√
1− 4z

2z

%
l>n

Bl

�√
1 + ul − 1− ul

2

�
,

D3(n, z) :=
1√

1− 4z

�
B(z)−

n%
l=0

Blz
l

�
.

We have

D(z) = D1(n, z) +D2(n, z) +D3(n, z).

1. Establishing upper bounds for D1(n, z) and D2(n, z):
We start out by an upper bound for the modulus of D1(n, z). With the
definition of ul from (2.9) and its bound (2.12) we get

|D1(n, z)| ≤
#|1− 4z|

2|z|
n%

l=0

Bl

#
|ul| =

n%
l=0

Bl|z|
l−1
2 (2.13)

24

and use Lemma 2.9 with y =
#|z| sufficiently close to 1

4 . This results in

(2.13) = O(4n|z|n/2n−3/2).

We similarly upper-bound D2(n, z) with (2.11) by

|D2(n, z)| ≤ 4|z|2
|1− 4z| 32

%
l>n

Bl|z|2l. (2.14)

Now we use the recurrence relation (1.1) for the Catalan numbers to bound
Bl from above:

Bn+k = Bn

k
j=1

2(2(n+ j)− 1)

n+ j + 1
≤ Bn

k
j=1

�
4− 2

n+ j + 1

�
≤ 4kBn.

We continue in (2.14) by

≤ 4|z|2
|1− 4z| 32

%
l>n

Bn4
l−n|z|2l = 1

|1− 4z| 32
Bn

%
l>n

4l+1−n|z|2(l+1)

=
4−n

|1− 4z| 32
Bn

%
l>n

4l+1|z|2(l+1)

For z ∈ G∩Uϵ(
1
4) and ϵ > 0 sufficiently small the sum is uniformly bounded (in

n and z) by a small constant. Thus inserting this into (2.14) gives |D2(n, z)| =
O
�
4−n|1− 4z|− 3

2Bn

�
.

2. Employing an estimate on D3(n, z):
From Lemma 2.10 we have

D3(n, z) =
2(4z)n+1

√
π
√
n
√
1− 4z

�
1 +O

�
1

n

��

for z sufficiently close to 1
4 .

3. Determining the threshhold n(z):
Finally, we need to show that there exists a threshold n ≡ n(z) depending
on z ∈ G close to 1

4 , beyond which D3(n, z) becomes the main contributor to
D(z). That is, D1(n, z) and D2(n, z) are asymptotically negligible compared
to D3(n, z). This holds for

n =

�
log |1− 4z|

log |z|
�

25

since by this choice we have n → ∞ and |z|n = O(1 − 4z). Together with
(2.13), (2.14) and Bn ∼ 4n√

πn3
we obtain

D1(n, z) = O
�
4 log

3
2 (|z|)|1− 4z| 12

log
3
2 |1− 4z|

�
= O

�
log−

3
2 |1− 4z|

�

D2(n, z) = O
�

log
3
2 (|z|)

√
π log

3
2 (|1− 4z|)|1− 4z| 12

�

= O
�
|1− 4z|− 1

2 log−
3
2 (|1− 4z|)

�
which are both in o

�
(4z)n√
1−4z

√
n

�
for this choice of n. Plugging in n we finally

achieve the claimed asymptotic expansion:

D(z) ∼ D3(n, z) =
2
√
log 4√

π
√
1− 4z

#
log(1− 4z)−1

�
1 +O

�
1

log(1− 4z)−1

��
.

■

Remark 2.11. The proof of (2.11) and (2.12) is obtained by the observation that
the polynomial 1− 4z + 4zl+1 does not have a root contained in G, which is shown
by using Rouché’s theorem with the comparison function 1− 4z, which also has no
zeros in G. One can then deduce that ul does not take any value in (−∞,−1] since

1− 4z + 4zl+1

1− 4z
= 1 +

4zl+1

1− 4z
= 1 + ul

cannot vanish and also not become negative. Therefore, |√1 + ul + 1| ≥ 1 and thus
we can individually bound the left-hand sides of (2.11) and (2.12) from above by an
appropriate multiple of this.

In order to prove the expected size of the minimal DAG of a binary tree, we must
determine the asymptotic behavior of the coefficients of (2.6). We have already
seen in the proof of Theorem 2.8 that the asymptotic expansion of the generating
function near a singularity (singular expansion) is closely linked to estimating the
asymptotics of its coefficients.
Fortunately, in our case, both the generating function and the error term of the
main contributor in the singular expansion are algebraic-logarithmic functions with
isolated singularities. Hence, we can prove Theorem 2.7 using the analytic tools
provided in [18], Chapter VI.

Proof of Theorem 2.7. We have shown in Theorem 2.8 that the generating func-
tion of D(z) is analytic in the domain G, and as z tends to the dominant singularity
1
4 , given by

D(z) =
2
#

log 4/π!
(1− 4z) log 1

1−4z

+O
 1!

(1− 4z) log3 1
1−4z

 .

26

Define

K(z) :=
1!

1− 4z log 1
1−4z

Then K
�
z
4

�
is singular at 1. The nth coefficient of the function K

�
z
4

�
can be derived

with Lemma 2.12 below where α = β = −1
2 . Hence, it is given by

1√
nπ

√
log n

�
1 +O

�
1

log n

��
.

Similarily as to Theorem P14 one can show that in a sufficiently small neighbourhood
to its singularity 1 intersected with the domain Δ = {z((|z| < 1+ ϵ, | arg(z− 1)| > δ}
where ϵ > 0, π2 > δ > 0 the growth of the nth coefficient of a function in

O
�
(1− z)α logβ

�
1

1− z

��
is of order

O(n−α−1 logβ n),

see [18, p. 390]. This gives the growth order of the error terms to be in

O
�
n− 1

2 log−
3
2 n

�
.

Therefore, as z → 1
4 , we have derived the following asymptotics for the coefficients

of D(z):

Dn

4n
=

2
#

log 4/π√
nπ

√
log n

�
1 +O

�
1

log n

��
.

By applying the known asymptotics Bn ∼ 4n√
πn3

, we find

Dn =
Dn

Bn
=

2n
√
log 4√

π
√
log n

�
1 +O

�
1

log n

��
.

The justification for deducing an asymptotic estimate of the coefficients of D(z)

from the asymptotic analysis of the singular expansion at the dominant singularity
1
4 requires the so-called Transfer Theorem, found in [18, p. 393]. ■

Lemma 2.12. Let α ∈ R \ Z0 and β ∈ R. Then the nth coefficient of

(1− z)α logβ
�

1

1− z

�
is given by

n−1−α

Γ(−α)
logβ(n)

�
1 +O

�
1

log n

��
27

Proof. The instance of this Lemma is a special case of Theorem P14 where we
replace �

1

z
log

1

1− z

�β

by
�
log

1

1− z

�β

.

The Taylor expansion of z−1 at z = 1 yields

1

z
=

%
n≥0

(−1)n(z − 1)n = 1 +
%
n≥1

n%
k=0

�
n

k

�
(−1)kzk = 1 +

%
n≥1

(1− z)n = 1 +
1− z

z
.

Hence

(1− z)α logβ
�

1

1− z

��
1

z

�β

= (1− z)α logβ
�

1

1− z

��
1 +

z − 1

z

�β

= (1− z)α logβ
�

1

1− z

�
+O

�
(1− z)α+1 logβ

�
1

1− z

��
as z → 1 in the domain Δ = {z((|z| < 1+ ϵ, | arg(z−1)| > δ} where ϵ > 0, π2 > δ > 0.
Again, with [18, p. 390], the growth order of the coefficients of the error term is in

O
�
n−α−2 logβ n

�
Together with Theorem P14 we obtain the claim. ■

Remark 2.13. The statement of Theorem 2.7 is immediately extended to incomplete
binary trees and to m-labeled (incomplete) binary trees due to the bijective nature
mentioned in Section 1.1. In the last case, one has to adjust the asymptotics for the
coefficients Bn to Bn,m = mnBn and log(4m) instead of log(4); see [3]. The case of
labeled binary trees is more complex and will be covered in the next section.

Corollary 2.14. The compression rate of the minimal DAG compression for binary
trees on n nodes is asymptotically given by

2

$
log 4

π

1√
log n

≈ 1.3285
1√
log n

2.3 Compression rate for general trees

The next step is to analyze the compression performance of the minimal DAG for
rooted general trees. We will explicitly derive the compression rate for a family of
weighted, rooted trees that are a subclass of the family of simply generated trees,
introduced by [30]. In conclusion, the expected size of the minimal DAG for Polya
trees, increasing trees and labeled trees will be stated.

28

2.3.1 Simply generated trees

This class of rooted trees is defined by assigning different weights to trees according
to their branching behavior. It consists of labeled and unlabeled, plane or non-plane
trees that satisfy a certain functional equation. Instead of different node types
like internal and external nodes, each node is assigned a weight depending on its
out-degree and order of branches. The size of a tree is set as the number of nodes.
For example, the unlabeled binary trees from the previous section can be represented
in this model as the incomplete binary tree class consisting of the functional symbols
ϵ, ϵ × B̂, B̂ × ϵ and B̂2 of degrees 0, 1, 1 and 2 each assigned a weight of 1 given
by the functional equation I = z(1 + I)2 and hence uniformly distributed. Since
all simply generated trees are rooted, we exclude the root symbol in the functional
symbols and add it later. This subsection relies on the work from [19], [13] and [32].

Definition 2.15. Let F be a set of functional symbols where each symbol f ∈ F
has a predefined degree, deg(f) ≥ 0. Secondly, let (w[f])f∈F be the non-negative
weights associated to the functional symbols. Then the structure power series
associated to < F , w > is given by

φ(s) =
%
f∈F

w[f]sdeg(f) =
%
n≥0

φns
n.

Furthermore the generating function T (z) of a weighted class of trees T is given by

T (z) =
%
t∈T

w[t]z|t| =
%
n≥0

Wnz
n (2.15)

where the weights are canonically extended onto the trees as

w[t] =

n∈ nodes(t)

w[f [n]] and Wn =
%
|t|=n

w[t]. (2.16)

Here f [n] provides the functional symbol associated to the node n and w[∅] = 1, for
all f ∈ F with deg(f) = 0. In this model the trees are taken proportional to their
contribution to the structure measured by their weight. Hence, the random variable
Tn supported on Tn ⊂ T will take on a tree t with n nodes with probability

P(Tn = t) =
w[t]

Wn
.

Remark 2.16. For a weighted tree class T

T = Z ×
%
f∈F

w(f) · f
�
T deg(f)

�
This gives the functional equation of the generating function as

T (z) = zφ(T (z)).

29

This equation is the identifying classification for a tree to belong to the family of
"simply generated trees", as defined by Meir and Moon in [30]. Notice the dual
influence of the functional symbols, which manifests both in the recursive tree
description (outer) and directly on the trees itself (inner structure). Precisely, in
case of a labeled class the structure polynomial is given by

φ(s) =
%
f∈F

w[f]
sdeg(f)

(deg(f))!
.

Example 2.17.

• Catalan Trees: This class corresponds to unlabeled, plane rooted trees where
each node may have any number of children (out-degree k ≥ 0). The functional
symbols are {(·)k}k≥0, each with degree deg((·)k) = k and weight w[(·)k] = 1.
The structure polynomial is:

φ(s) =
%
k≥0

w[(·)k]sk =
%
k≥0

sk =
1

1− s
.

The generating function satisfies T (z) = zφ(T (z)) = z/(1− T (z)). The proba-
bility of a tree t with n nodes is P(Tn = t) = w[t]/Bn−1, and w[t] = 1, where
Bn−1 is the (n− 1)th Catalan number, the counting sequence for Catalan trees
on n nodes.

• Full d-ary Plane Trees: These are unlabeled, plane rooted trees where each
node has out-degree k with 0 ≤ k ≤ d, since we disregard external nodes. The
functional symbols are {1, (·)1, . . . , (·)d}, with deg((·)k) = k and w[(·)k] = �

d
k

�
to account for possibilities the k internal successors of a node can be positioned
at. The structure polynomial is:

φ(s) =
d%

k=0

w[(·)k]sk =
d%

k=0

�
d

k

�
sk = (1 + s)d.

Thus, T (z) = z(1 + T (z))d.

• Labeled Catalan trees: Assigning a distinct label out of {1, . . . , n} to each node
of a tree on n nodes results in n! possible labelings. Since we use an exponential
generating function for labeled structures we obtain the structure polynomial:

φ(s) =
%
n≥0

1

n!
sn =⇒ T (z) = zφ(T (z)) =

%
n≥1

(2n− 2)!

(n− 1)!

zn

n!

where Wn = (2n−2)!
(n−1)! = n!Bn−1.

• Cayley Trees: For the class of non-plane rooted labeled trees, called Cayley
trees, we obtain the same weights as for labeled Catalan trees. The structure

30

polynomial is:

φ(s) =
%
k≥0

sk

k!
= es,

leading to T (z) = zeT (z), the same functional equation as for labeled Catalan
trees.

• Counter example: Polya trees and increasing trees Polya trees are unlabeled
rooted non-plane trees that do not belong to the family of simply generated
trees. It was shown in [14] that the associated weights do not fulfill the non-
negativity condition. The class of increasing trees, in which the labels along
each branch must appear in increasing order, leads to functional equations
involving differential equations. As a result, these trees do not fall into the
category of simply generated families as well.

Lemma 2.18. [19] The generating function Au(z) from (2.1) is given by

Au(z) = T (z, φ(0))− T (z, φ(0)− w[u]z|u|−1) (2.17)

where T (z, v) = zv + zφ≥1(T (z, v)) and φ≥1(s) = φ(s)− φ(0).

Proof. Observe that

zφ(T (z)) = z(φ(0) + φ≥1(T (z)) = T (z, φ(0)) = T (z, v)

((((
v=φ(0)

and hence T (z, v) is the generalization to the bivariate generating function B(z, v)

where we take into account the different (weighted) leaf types. The result (2.5) for
the generating function Au(z), derived in Theorem 2.6 using the inclusion-exclusion
principle, can therefore be directly transferred here:

Au(z) = T (z, v)

((((
v=φ(0)

− T (z, v)

((((
v=φ(0)−w[u]z|u|−1

.

■

Theorem 2.19. [19] Let T be a tree class from the family of simply generated trees.
Let t ∈ T of size n be drawn at random from the weighted model specified on T . The
asymptotic expectation on the size of the DAG corresponding to t is given by

Dn =
Dn

Wn
.

We assume that the maximal out-degree of a node is d and there are r different node
types n1, . . . , nr with not necessarily distinct out-degrees o1, . . . , or. Then the total
weight Wn of all trees of size n from (2.15) is given by

Wn = sn
1

n

%
∥m∥=n

�
n

m0, . . . ,md

�
φm0
0 · · ·φmd

d

31

where sn = 1 or sn = n! for an unlabeled or labeled class respectively, m =

(m0, . . . ,md), l = (l1, . . . , lr) and

Dn = sn
%

k,m,l≥1
m=n−(l−1)k
∥m∥=m, ∥l∥=l

(−1)k−1

ml

�
m0

k

�
φ(0)k

�
m

m0, . . . ,md

��
l

l1, . . . , lr

�
φm0
0 · · ·φmd

d

�
w[n1]

l1 · · ·w[nr]
lr
�k

(2.18)

such that
&

i i ·mi = m− 1 and
&

i oi · li = l − 1.

Proof. The last restriction guarantees that the number of children is equal to the
number of edges on n nodes. This ensures that a rooted tree structure is given by
each selection. The weighted counting sequence can be directly derived using the
Lagrange Inversion Theorem P11:

Wn = sn[z
n]T (z) = sn

1

n
[sn−1](φ(s))n

= sn
1

n
[sn−1]

%
n0+···+nd=n

n1+2n2+···+dnd=n−1

�
n

n0, . . . , nd

�
φn0
0 φn1

1 · · ·φnd
d yn1+2n2+···+dnd .

To determine

Dn = [zn]
%
u∈T

Au(z)

we will use the result of Theorem 2.6 where we derived

Dn = sn[z
n]
%
l≥0

Ul

%
k≥1

(−1)k−1
%
t∈T

�
wul

[t]

k

�
z|t|

= sn
%
l≥0

%
k≥1

(−1)k−1U
(k)
l

%
t∈T , |t|=m
m=n−k(l−1)

�
wul

[t]

k

�
Wm. (2.19)

The unweighted number Ul of subtrees of size l and node profile (l1, . . . , lr), such
that l =

&
li, is given by

Ul1,...,lr =
sl

w[n0]l1 · · ·w[nr]lr
[vl11 , . . . , v

lr
r]T (z,v)

=
sl

l · w[n0]l1 · · ·w[nr]lr
[vl11 , . . . , v

lr
r][s

l−1]φ(s,v)l

=
sl
l

�
l

l1, . . . , lr

�
where v = v1, . . . , vr mark the different node types, so φ(s,v) =

&r
i=1w[ni]vis

oi .
Hence, the weighted number of a k-fold occurrence is

U
(k)
l = sl

1

l

%
l1+...+lr=l

o1l1+...+orlr=l−1

�
l

l1, . . . , lr

�
(w[n1]

l1 · · ·w[nr]
lr)k.

32

The choice of m = n − (l − 1)k accounts for the removal of k occurrences of the
subtree pattern u of size l. Since we are only considering u as a fringe subtree, each
removal leaves behind a leaf node. Therefore, we can only insert a k-fold occurrence
of u in �

m0

k

�
ways, where m0 denotes the number leaf nodes. Furthermore, we have to adjust the
weight by a factor of 1/φ(0)k, as each inserted occurrence of the subtree turns a leaf
of weight φ(0) into the subtree’s root node of weight 1. Putting this all together, for
fixed k and n we get%

t∈B

�
wu[t]

k

�
z|t| =

%
n≥0

%
m=n−(l−1)k
m=m0+...+md

1

φ(0)k

�
m0

k

�
Wm.

Substituting into (2.19) gives the result. ■

Remark 2.20. In [19, Theorem 4] it is stated that

Dn = CT
n√
log n

�
1 +O

�
1

log n

��
where the constant CT depends on the specified model. As Flajolet et al. pointed
out there, allowing for different weights on equal degree types of nodes leads to
the presence of rather complex multinomials in the respective generating functions.
Thus, the singularity analysis involves approximations via multivariate Gaussian
distributions. We will avoid this and instead establish the average compression rate
for a subclass of simply generated trees where we do not distinguish the branches
ordering. Furthermore we will only consider unlabeled trees, and discuss the deviating
result for the labeled version afterwards. In addition, the subclass of simply generated
trees studied in [32] set the weights φi, i ∈ N, to be integers where every occurring
fringe subtree t ∈ T has weight w[t] = 1. We refer to this subclass as T̂ . This
relaxation gives (2.16) as

w[t] =

k≥0

φmk
k .

Under certain restrictions the generating function T (z) has a dominant singularity
of square-root type and its coefficients therefore admit favorable asymptotics:

Theorem 2.21. [13, p.76] Let φ(s) =
&

n≥0 φns
n is the structure polynomial with

non-negative integer weights. Define R as the radius of convergence of φ(s), and
suppose there exists τ ∈ [0, R) such that τφ′(τ) = φ(τ). Let ρ = τ/φ(τ) = 1/φ′(τ)
and let d be the greatest common divisor of all degrees of non-zero weighted functional
symbols. Then, for n ≡ 1 (mod d), the total weight of trees of size n is asymptotically:

Wn = d

"
φ(τ)

2πφ′′(τ)
· ρ

−n

n3/2

�
1 +O

�
1

n

��
,

33

and Wn = 0 otherwise (if n ̸≡ 1 (mod d)).

Theorem 2.22. [32] Assume the conditions of the last theorem hold for the tree
class T̂ . Let b = 1/ρ and c =

#
φ(τ)/(2πφ′′(τ)), so that Wn ∼ cdn−3/2bn for n ≡ 1

(mod d). For a tree t chosen randomly from T̂n of size n ≡ 1 (mod d), the expected
size of its minimal DAG is asymptotically:

Dn =
2c

τ
· n#

logb n
+O

�
n

(log n)3/2

�
.

Proof. For simplicity, assume d = 1. We estimate Dn by considering the contribution
of fringe subtrees based on their size l. The total contribution of distinct fringe
subtrees of size at most logb n is given by:

%
l≤logb n

Wl ∼
%

l≤logb n

cl−3/2bl = O
�

n

(log n)3/2

�
.

This is negligible compared to the main term. Proceeding further, we cannot use
the inclusion-exclusion technique from before as the number of leaves is non-trivial
to compute. Instead, for larger fringe subtrees, where logb n < l ≤ n, we derive a
naive estimate that overcounts by including every occurrence of each subtree. Since
we want the asymptotic number of distinct subtrees we justify the correctness at
the end. From [13, Theorem 3.13] we know that the asymptotic expected number
of leaves Ln in a simply generated tree of size n that satisfies the requirements
of this theorem is found to be Ln = Ln, where L = ρ/τ = 1/(bτ). Thus, with
m = n− (l − 1) the total number of occurrences is asymptotically%

logb n<l≤n

WmLmWl ∼ c2L
%

logb n<l≤n

m−3/2bm ·m · l−3/2bl (2.20)

= O
 %

logb n<l≤n

l−3/2bn+1m−1/2

 . (2.21)

We will estimate the sum
&

logb n<l≤nWmLmWl further by splitting the summation:
Let

A =
%
l≥n/2

l−3/2bn+1m−1/2 and B = c2L
%
l<n/2

m−3/2bm ·m · l−3/2bl.

Then,

A = bn+1

n/2%
m=1

m−1/2(n−m+ 1)−3/2 ∼ bn+1n−3/22
#
n/2.

Thus, since bn+1 ∼ bn3/2Wn/c, the total contribution is O(bn+1n−1) = O(bWn
√
n),

yielding an expected contribution of O(
√
n).

34

On the other hand,

B = bn+1n−1/2

n/2%
l=⌊logb n⌋+1

l−3/2 ∼ bn+1n−1/2
�
2(logb n)

−1/2 +O(n−1/2)
�
.

Hence, our upper bound for Dn is asymptotically equal to

cLbWn · n
�
2(logb n)

−1/2 +O(n−1/2)
�
.

This gives the expected number of distinct fringe subtrees as

2c

τ

n#
logb n

�
1 +O

�#
logb n√
n

��
.

We now bound the correction terms in the Inclusion-Exclusion Theorem P10. Con-
sider pairs of identical fringe subtrees of size l. Such a pair is obtained from a tree of
size n− 2l + 2 with two leaves replaced by identical subtrees. The number of such
pairs is at most %

logb n<l<n/2

(n− 2l + 2)2Wn−2l+2Wl.

Again, using Wr ∼ cr−3/2br, this is bounded by%
logb n<l<n/2

(n− 2l + 2)1/2bn−2l+2 · cl−3/2bl ∼ cbnn1/2
%

l>logb n

l−3/2b−l.

Since
&

l>logb n
l−3/2b−l ∼ (logb n)

−3/2/(b− 1), this is

O
�

cbnn1/2

(logb n)
3/2

�
= O

�
Wnn

2

(log n)3/2

�
= O

�
n

(log n)3/2

�
,

which confirms that the overcounting is within the error term. Thus, the expected
number Dn of distinct fringe subtrees is

2c

τ
· n#

logb n
+O

�
n

(log n)3/2

�
as claimed. ■

2.3.2 Minimal DAG compression for Pólya and labeled trees

Section 6 of [32] generalizes the results for Pólya trees which are rooted non-plane trees
and labeled trees. For Pólya trees, which are not simply generated, the generating
function satisfies:

R(x) = x exp

� ∞%
m=1

1

m
R(xm)

�
.

35

The number of trees of size n is given by

[xn]R(x) = c · bn

n3/2

�
1 +O(n−1)

�
, c ≈ 0.439924, b ≈ 2.955765.

Theorem 2.22 holds, but a proof requires the use of bivariate generating functions
due to possible isomorphisms in the subtree attachment process.
For labeled trees, with weights w[f] = 1/[(deg(f))!], the average number of distinct
fringe subtrees is shown to be asymptotically equal to$

2

π
· n

√
log log n√
log n

.

2.3.3 Minimal DAG compression for binary increasing trees

In 2021, Bodini et al. [2] investigated the compression size for increasing trees which
are labeled trees where the labels of nodes along each path from the root increase.
The recursive characterization of rooted plane increasing trees is given via the boxed
product by

T i = Z□ ⋆ Set(T i).

Specifically, for plane rooted binary increasing trees, which model binary search
trees, this gives

Bi = Z□ ⋆ (1 + Bi)2 =⇒ Bi(z) =

� z

0
(1 +Bi(t))2dt

These trees do not belong to the class of simply generated trees because their
generating functions are defined by a non-linear autonomous differential equation.
It is also important to note that increasing trees are of logarithmic depth, whereas
simply generated trees typically have square-root depth. Bodini et al. [2] showed that
the average size of the minimal DAG for a random increasing and binary increasing
tree with n nodes is O(n/ lnn) with a lower bound of Ω(

√
n), and they conjecture it

is actually Θ(n/ lnn). For plane binary increasing trees, they noted that prior work
had already established a tighter result: the average size is Θ(n/ lnn).

36

3 Grammar-based tree compression

The minimal DAG compression for trees is based on the exploitation of repeated
fringe subtree patterns, where each fringe subtree consists of a node and all its
descendants. For trees with many repeated fringe subtrees, this method clearly
achieves high compression rates. If we relax the rigid structure of fringe subtrees by
allowing gaps within subtrees - such that small differences result in minor corrections
in the encodings - we can enhance the compression potential. This generalization is
realized by Tree Straight-Line Programs (TSLPs), which extend the concept of
Straight-Line Programs (SLPs) - originally developed for strings - to trees. Building
on this foundation, we will explore the implementation and implications of an
asymptotically optimal lossless compression code for a broad family of probabilistic
binary tree sources.

Tree grammars

A context-free tree grammar, as defined in [10], is a formal system used to generate
and describe trees. A tree grammar consists of an alphabet Σ (symbols called "ter-
minals" with associated degrees), a set of variables (non-terminals), and production
rules that define how trees are constructed. To illustrate this, consider the following
tree:

add

add

2 3

5

This tree represents the grammar expression add(add(2, 3), 5), where the alphabet
consists of add, which is a binary symbol, and 2, 3, and 5 which are constants. In our
example, the alphabet consists of all node labels. The non-terminals are placeholders
during the generation process, which can be replaced by other trees according to

37

the production rules. For this example, let us use non-terminals S,E (for "start"
and "expression"). The production rules specify how non-terminals can be rewritten
into trees composed of terminals (and other non-terminals). For our example, the
production rules are

S → add(E, 5),

E → add(2, 3).

Here, the first rule allows S to be replaced by a tree with add as the root and two
subtrees (E and 5), while the other rule replaces E with the node add and the
constants 2 and 3 as its children. To derive the tree shown above, we start with S

and apply the rules as follows:

E ⇒ add(E,E) ⇒ add(add(E,E), E) ⇒ add(add(2, 3), 5).

Each step replaces a non-terminal E until only terminals remain.

3.1 TSLPs

This subsection is based on [27] and introduces linear context-free tree grammars for
tree compression. If not otherwise specified the size of a tree is set as the number of
its nodes.

Definition 3.1. Let T be an Σ-labeled rooted plane tree class where Σ is a finite
alphabet. We call Σ a ranked terminal alphabet, if each element (terminal) σ ∈ Σ

sets the out-degree of a node labeled by this element, which we refer to as its rank,
denoted by rank(σ).

Definition 3.2. A Tree Straight-Line Program G over a ranked terminal
alphabet Σ is a quadruple (N,Σ, S, P), where

• N is a finite set of ranked non-terminals, disjoint from Σ,

• S ∈ N is the start non-terminal of rank 0,

• P is a finite set of production rules. Each rule is of the form A(x1, . . . , xn) → t,
where A ∈ N , has rank n, x1, . . . , xn are dummy variables and t is a tree over
Σ∪N ∪{x1, . . . , xn}. The TSLP is called linear if, for every rule, each dummy
variable xi (for 1 ≤ i ≤ n) appears exactly once in the structure of t.

• each non-terminal A ∈ N appears on the left-hand side of exactly one
production, and the reachability relation {(A,B) | A(x1, . . . , xn) → t ∈
P,B occurs in t} is acyclic.

38

The tree val(G) is obtained by starting with S and iteratively replacing each non-
terminal A(x1, . . . , xn) with the right-hand side t of its production rule, where we
substitute each dummy variable xi with the trees produced by other non-terminals
or terminals, until the entire tree contains only terminal symbols from Σ. The size
|G| is the total number of nodes in the right-hand sides of P , excluding non-terminal
nodes.

Remark 3.3. The last property guarantees that there are no cycles. For instance, if
we have
A1 → t1, t1 contains A2, A2 → t2, t2 contains A3, . . ., Ak → tk, tk contains A1,
then this results in an indefinite loop.

Example 3.4. We extend the tree grammar from the previous example. Consider
the TSLP G = ⟨N,Σ, S, P ⟩, where

• N = {S,Mul} (non-terminals, with Mul of rank 1),

• Σ = {add,mult, inv, 2, 3, 4} (add and mult: rank 2, inv: rank 1, 2, 3, 4: con-
stants),

• S is the start non-terminal,

• P consists of the productions:

S → add(Mul(2),Mul(inv(4))

Mul(x) → mult(3, x)

This TSLP generates the tree val(G) = add(mult(3, 2),mult(3, inv(4))) of size 8.

add

mult

3 2

mult

3 inv

4

As mentioned in the introduction, unfortunately, constructing minimal TSLPs is
computationally hard and there is no polynomial-time algorithm that produces the
smallest tree grammar to a given tree. The best-known approximation achieves a
bound analogous to the one established for string straight-line programs:

39

Theorem 3.5. [25] Given a tree t of size n with maximal rank r, a linear TSLP G
with val(G) = t of size

O

�
r · g + r · g · log

�
n

r · g
��

,

where g = opt(t) is the size of the smallest TLSP generating t, can be computed
O(n).

Sketch of a Proof: The algorithm iteratively applies three compression steps:

(1) Chain compression: Substitute maximal consecutive unary node patterns
al(x) = a(a(· · · a(x) · · ·)) with a new unary symbol al, and add the production
rule al(x) → al(x), in total adding productions of size O(k +

&
log(li − li−1))

per phase for k distinct chain lengths of patterns where a binary extension is
used expressing the chain lengths to reduce representation costs (e.g., a8(x) →
a4(a4(x))).

(2) Pair compression: Analogously, we merge all pairs a(b(x)) into a new unary
symbol, and add the associated production rule. A smart partition of the
occurring unary pairs maximizes replacements.

Remark : After the first two steps only isolated or no unary nodes at all are
left. Since branching nodes (rank larger than 1) and leaf nodes are unchanged
we remain with a relatively high number of leaves.

(3) Leaf compression: This step removes leaves by modifying nodes with leaf
children. For a node f(t1, . . . , tm) of rank m ≤ r with leaf children at positions
i1, . . . , ik, it introduces f ′ of rank m− k, with:

f ′(y1, . . . , ym−k) → f(t1, . . . , tm),

costing k + 1 ≤ r + 1 (non-parameter nodes). Per phase, O(|T |) nodes are
processed, costing O(r|T |), but typically O(|T |) leaves are removed (e.g., |T |/2
in a balanced tree).

Each step processes the tree within linear time complexity:

• Chain Compression: Identify and replace chains in O(n) time using a bottom-up
traversal.

• Pair Compression: For each node, check if it’s a 2-chain in constant time. Mark
and replace non-overlapping pairs in linear time.

• Leaf Compression: Traverse the tree, encoding each node’s children list (up to
r children) as a sequence of length O(r). Sort these sequences with Radix sort
in linear time.

40

Each step constructs new productions in a TSLP G, and the process is repeated
O(log n) times. After each phase it can be shown that the size of the tree reduces
by a constant number. Each phase takes O(ni) time, where ni is the current tree
size. It can be shown that ni ≤ αin, for a fixed α < 1 (see [25]). Taking this into
account, the total time is

O(log(n))%
i=0

O(ni) =

∞%
i=0

O(αin) = O
�
n

∞%
i=0

αi

�
= O

�
n · 1

1− α

�
= O(n).

When it comes to the representation costs, the idea is to introduce a credit scheme.
In this scheme, each occurrence of a letter in the minimal grammar is assigned a
fixed amount of credit, and when a compression operation is applied, the released
credit gives the representation cost with the new symbols. For chain compressions,
one shows that every chain pattern of the form al can be represented by a cost of
O(1 + log l), totaling in O(log n) costs by wisely accounting for powers. Since there
are at most g + (n0 + n1)r many such rules (where g is the size of the smallest
grammar and n0, n1 count occurrences of constant and unary symbols), the overall
cost for chain compression is O((g + (n0 + n1)r) log n). A similar (and in fact lower)
cost is incurred for the other compression steps (unary pair and leaf compression).
By known bounds relating G and the minimal grammar for the tree, this yields
O(gr+ g · r · log n). So far we did not take into account that the algorithm produces
a so-called reasonable grammar, for example trivial productions A → a, |a| = 1 do
not occur. Taking this into account one shows the claimed bound. ■

TSLPs compression outperform DAG compression in the case of random binary
trees and all other random trees with node-degree smaller than two:

Theorem 3.6. [27] For a binary tree t of size n with σ labels, a linear TSLP of
size O

�
n

logσ n

�
can be computed in linear time.

Sketch of a Proof: Decompose t into O
�

n
logσ n

�
clusters of size O(logσ n), each

replaced by a non-terminal. Compute the minimal DAG of these clusters (size
bounded by

√
n, using Catalan number estimates for binary trees), then combine

with a start production. The total size is O
�

n
logσ n

�
, achieved in O(n) time via

efficient DAG construction. ■

This competes with the Ω
�

n
logσ n

�
optimality bound on the minimal TSLP size

for uniformly random trees. To see that this bound is optimal take into account
that in order to uniquely identify (in lossless compression) a σ-labeled random tree
log(σn) = n log(σ) bits of information are necessary which leads to about n/ logσ n

productions. Essentially, the approach conducted by TSLPs reminds us of the
combinatorial strategy "divide and conquer", it divides into different compression

41

stages, conquers them with compact productions, and combines them through
substitution.

3.2 A universal grammar-based code for unlabeled bi-
nary trees

In this subsection, we explore the universal compressor for unlabeled plane binary
trees from [34], which was the first universal tree source code. In comparison to
the TSLPs we discussed previously, the compression technique employed aims for
more than efficiency, namely universality. This means we allow for a broad variety
of probability distributions on the binary tree sources. Unlike Huffman codes (which
we will work with later on) where a penalty for assuming a deviant probability
distribution is paid, in this way we can compress sources with pretty much unknown
probability distributions or, say, generation process. The goal is lossless compression,
meaning the original tree can be perfectly reconstructed from its encoded form. The
process consists of two main steps for encoding (φe) and two corresponding steps
for decoding (φd).

In the following we fix the tree source to be the set of (unlabeled) binary trees B
with a minimum of two leaves where the size is defined as the number of leaves. The
probability distribution P will be specified later on. Furthermore, let A = {0, 1} be
the set of all finite-length bit strings and l(x) specify the length of each x ∈ A∗.

Definition 3.7. Given a TSLP G, we say G forms a representation of t ∈ B if
removing the vertex labels of val(G) results in t.

Encoding Step 1: Constructing the tree grammar Gt

Given a binary tree t ∈ B, the first step is to transform t into a context-free grammar
Gt = (N,Σ, S, P). Since we want the size of val(G) to return the number of leaves,
internal node labels will carry non-terminals. We define N = {0, 1, . . . , F − 2} as
the set of non-terminal variables, each of rank 2, where F = F (t) is the number of
distinct fringe subtrees of t. Note that F ≥ 2 since we require the tree to have at
least two leaves. The alphabet Σ consists of a single variable L of rank 0 and the
start non-terminal is S = 0.

Before we set up the production rules, we establish a labeling on the internal nodes
consisting of non-terminals: The nodes of t are labeled in breadth-first order. The
root receives label 0, and each leaf is labeled L. Starting from the root, we label
its two children consecutively, then continue with the children of those nodes in
the next depth level and so on. Doing so, for each internal node v encountered
without a label, we check whether its fringe subtree tv matches the fringe subtree of
a previously labeled vertex v′. If so, v inherits the label ofv′. Otherwise, it receives

42

the smallest unused integer from {1, . . . , F − 2}. Each production rule

i → (i1, i2)

is then extracted from the labeled tree, where i is a non-terminal, that becomes the
root node label, and i1, i2 are the labels of its left and right children. Trivially, this
labeled tree is a representation of t. This slightly modifies the production rules of
the TSLP from Definition 3.2.

Encoding Step 2: Generating the codeword for each tree
For each Gt we create a binary codeword C(Gt) ∈ A∗ that sets φe(t). Define a
sequence S(t) = (a1, a2, . . . , a2F−2), where for each non-terminal i = 0, . . . , F − 2,
the pair (a2i+1, a2i+2) is the right-hand side of the production i → (a2i+1, a2i+2).
This sequence, together with the alphabet A(t) = {1, 2, . . . , F − 2} ∪ {L}, uniquely
identifies Gt. A second sequence, S1(t), results from S(t) by removing the first
appearance of each non-terminal. The codeword C(Gt) is then given by mapping
S(t) to A∗.

F = 2: The unique binary tree with two leaves gets mapped to "1".

F > 2: The codeword C(Gt) is the concatenation of four binary strings: B1, B2, B3

and B4.

– B1 is a binary string of length F − 1 consisting of F − 2 zeroes followed
by a one.

– B2 is a binary string of length 2F − 2 with exactly F − 2 ones. The
positions of the ones correspond to the first appearances of the members
of the set {1, 2, . . . , F − 2} in S(t).

– For each a ∈ A(t), let ka be the number of times a appears in S(t). B3

is a binary string of F − 1 alternate runs of ones and zeros, where the
lengths of the runs are k1, k2, . . . , kF−2, 1.

– Let S1(t) be the set of all permutations of S1(t), and let

M(t) = ⌈log2 (|S1(t)|)⌉.

If M(t) = 0, B4 is the empty string. Otherwise, list all members of S1(t)

in lexicographical order induced by the ordering of the alphabet A(t)

and assign each permutation an integer, according to the order, starting
from 0. B4 then becomes the M(t)-bit binary expansion of the integer
attributed to S1(t).

Hence, the binary strings carry the information of distinct fringe subtrees, initial
internal node label occurrences, frequency of symbols and the relative ordering of

43

symbols within their category. Note that

|S1(t)| = F !

kL!(k1 − 1)! · · · (kF−2)!

as S1 is of length F .

Example 3.8. Consider the following binary tree:

0

1

L L

1

L L

The production rules associated to the tree are

0 → (1, 1),

1 → (L,L).

The encoding process is:

• F = 3

• S(t) = (1, 1, L, L), S1(t) = (1, L, L), S2(t) = (1)

• f1 = 2, fL = 2

• M(t) = ⌈log2(3)⌉ = 2, S1(t) has index 0 in S1 = {(1, L, L), (L, 1, L), (L,L, 1)}

• B1 = 01, B2 = 1000, B3 = 110, B4 = 00

• Codeword: 01100011000

Lemma 3.9. The encoding map φe : B → A∗, which assigns to each binary tree t ∈ B
the codeword C(Gt), is prefix-free. Furthermore, the decoding map φd reconstructs
the original binary tree t ∈ T .

Proof. Let t ∈ B be a binary tree with F distinct fringe subtrees, and let C(Gt) =

B1B2B3B4 be its codeword as defined in Encoding Step 2. We prove that the code
is prefix-free by showing that Gt can be uniquely reconstructed from any binary
string a ∈ A∗ of which C(Gt) it is a prefix of.
First, consider the case F = 2. Since any other tree t′ ∈ B has F (t′) > 2 (implying
a codeword length greater than 1, starting with at least one 0 from B1), C(Gt) = 1

cannot be a prefix of C(Gt′).
Now assume F > 2. Due to the construction, B1 and B2 are immediately identified,
from which F (t), the alphabet A(t) and first appearances in S(t) are recovered.

44

Next, B3 and thus the frequencies of symbols (kL = (2F − 2)−&
ki) are discovered

since the number of alternating runs, F − 1, is known, and B3 ends with a single bit.
Convert the remaining B4 to an integer I, and find S1(t) as the I-th permutation of
{1k1−1, 2k2−1, . . . , (F − 2)kF−2−1, LkL} in lexicographical order. Reconstruct S(t) by
merging the information from S1(t) and A(t) according to B2’s one-positions.
From this we can construct the representation Gt of t. This implicitly gives φd(a). ■

Remark 3.10. The decoding map φd reconstructs t in two steps: first, it extracts F (t),
the alphabet A(t), and the first appearances from B1 and B2, then it identifies the
frequencies and permutation S1(t) from B3 and B4. Second, it merges S1(t) with A(t)

using the one-positions from B2 to recreate S(t), which enables the reconstruction
of Gt.

Lemma 3.11. Let t ∈ B and φe(t) be the binary encoding of t. Furthermore, let

pa =
ka
F
, a ∈ A

be the relative frequency of each symbol in S1(t) (defined previously) and p =

(p1, . . . , pL) its probability distribution. Then,

l(φe(t)) ≤ 5(F − 1) + FH(p).

Proof. For F = 2, t is the unique tree in B with two leaves, and l(φe(t)) = 1. The
right-hand side evaluates to 5(2−1)+2 ·0 = 5, since S1(t) = (L,L) has zero entropy,
so the inequality holds. Now assume F > 2. The codeword length is

l(φe(t)) = l(B1)+l(B2)+l(B3)+l(B4) = (F−1)+(2F−2)+l(B3)+⌈log2 (|S1(t)|)⌉.

Since B3 has F − 1 runs with total length smaller than 2F − 2 (as kL > 1), we
obtain the following bound:

l(φe(t)) ≤ 5(F − 1) + log2 (|S1(t)|) .

In order to bound the cardinality of the set S1 by the entropy, we assign to the
alphabet A the probability distribution p induced by the Encoding Step 1 φe(t).
Obtaining an element of S1 is then given by the probability

pF : =

a∈A

pkaa = exp

�%
a∈A

ka log2(pa)

�

= exp

�
F
%
a∈A

pa log2(pa)

�
= exp(−FH(p)).

This gives the total probability of obtaining a sequence S1 ∈ S1 as

pF (S1) = |S1| exp(−FH(p)) =⇒ |S1| ≤ exp(FH(p)).

Thus, log2 (|S1(t)|) ≤ FH(p) completes the proof. ■

45

Definition 3.12. Define D as the minimal DAG representation of t consisting of F
vertices, where the root vertex represents the tree t and there is a unique leaf vertex.
Then, the grammar G(D) consists of the non-terminals {0, 1, . . . , F − 2}, where the
root is assigned label 0, and internal vertices (those with out-degree 2) are labeled
in breadth-first order. The unique leaf vertex is labeled with the terminal symbol L,
and the corresponding productions are derived accordingly.

Lemma 3.13. For t ∈ B, Gt has the smallest number of variables, among all TSLPs
forming a representation of t, equal to F (t).

Proof. This is immediate from the fact that Gt corresponds to the minimal DAG.
Since the minimal DAG is unique up to isomorphism, any grammar with F (t)

variables forming a representation of t is isomorphic to Gt. ■

Optimality and universality for leaf-centric binary tree sources

We now investigate the conditions under which (φe, φd) is universal and asymptoti-
cally optimal (see Definitions P26 and P27) for leaf-centric binary tree sources. In
[34] they also show under which conditions (φe, φd) is universal for depth-centric
binary sources.

Definition 3.14. Let I = {(i, j) | i, j ≥ 1, n ≥ 2, i+ j = n} denote the set of pairs
of positive integers summing to n (where n will be the number of leaves in a binary
tree). Define the set of functions

Σ =

σ : N× N → [0, 1]

((((((
%

(i,j)∈I
σ(i, j) = 1

 ,

where each σ assigns a probability to pairs (i, j). For each σ ∈ Σ, we define a
leaf-centric binary source (B,Pσ), where B is the set of all binary trees with a
minimum of two leaves, and the probability of a tree t ∈ B is

Pσ(t) =

v

σ (|tvL |, |tvR |) ,

with the product taken over all internal nodes v of t. Here, vL and vR are the left
and right children of v, and |tvL | and |tvR | denote the number of leaves in the fringe
subtrees rooted at vL and vR, respectively. The function Pσ of the tree source is
well-defined, as by induction we have%

t∈Bn

Pσ(t) =
%
I

σ(i, j)
%
rL∈Bi

Pσ(rL)
%

rR∈Bj

Pσ(rR) = 1,

where r is the root and Bn = {t ∈ B | |t| = n} is the set of binary trees with n

leaves.

46

Remark 3.15. Consider a subset of leaf-centric binary tree sources, called the one-
dimensional leaf-centric binary tree sources (B,Pσ̂) where σ̂ ∈ Σ satisfies

σ̂(i, j) ̸= 0 if and only if (i, j) ∈ I ∩ {(1, n− 1), (n− 1, 1)}.

This tree source outputs trees in which each internal node must have at least one
child that is a leaf. Furthermore, we can construct an analogous model for binary
sequences, a one-dimensional binary sequence source, by distinguishing an infinite-
length bit sequence a∞ and assigning a positive probability only to sequences a ∈ A∗

where each bit in a is the opposite of the corresponding bit in a∞. Each tree t ∈ Bn

with Pσ̂(t) > 0 can be assigned to a binary string b ∈ A∗
n−1 by encoding the sequence

of left or right leaf choices at each internal node.
In [26] Kieffer showed that there cannot exist a universal code for such binary
sequence sources. Since the one-dimensional leaf-centric tree sources are isomorphic
to this family, they inherit this property: no universal code exists for (B,Pσ̂). In
consequence, also no universal code for the leaf centric binary tree sources exists.
Hence, we need to further restrict the family:

Theorem 3.16. The code (φe, φd) is a universal code for the family of leaf-centric
binary trees (B,Pσ) where σ ∈ Σ is subject to the constraint

sup

�
i+ j

min(i, j)
: i, j ≥ 1, σ(i, j) > 0

�
< ∞. (3.1)

Remark 3.17. We call this subclass of leaf-centric binary tree sources imbalanced-
bounded, since the condition (3.1) bounds the ratio of total leaves (i + j) to the
smaller subtree’s leaves (min(i, j)) at each internal node.

First, we need to establish a condition of asymptotic optimality over a family of tree
sources:

Lemma 3.18. Any lossless code (ψe, ψd) on B is asymptotically optimal for the
family (B,P)P∈P , if

lim sup
n∈N

R(ψe, n,P) ≤ 0, (3.2)

where R(ψe, n,P) is defined in P26.

Sketch of a Proof: Fix any probability inducing function P. By Kraft’s inequality,
there exists a distribution Q such that l(ψe(t)) ≥ − log2Q(t). With known methods
on estimating the divergence and "error costs" for assuming a deviant probability
distribution (employed in [34]) one can show that,

lim inf
n∈N

R(ψe, n,P) ≥ lim inf
n∈N

%
t∈Tn

|t|−1P(t) log2

�
P(t)

Q(t)

�
= 0. (3.3)

Hence, by Definition P26, the instances (3.2) and (3.3) imply asymptotic optimality.
■

47

Definition 3.19. Let Λ be the set of mappings λ : B ∪ {□} → (0, 1] satisfying

(a) λ(t) ≤ λ(tL)λ(tR), t ∈ B,

(b) 1 ≤ &
t∈Bn

λ(t) ≤ nK(λ) for some K(λ) > 0.

A source (B,P) has the Domination Property if some λ ∈ Λ satisfies P(t) ≤ λ(t)

for all t ∈ B.
Furthermore we say that the source has the Representation Ratio Negligibility
(RRN) Condition if

lim
n∈N

%
t∈Bn

r(t)P(t) = 0,

where r(t) = F/|t| ≤ 1 measures the information content (symbols in tree grammar)
per leaf.

Theorem 3.20. The code (φe, φd) is asymptotically optimal for any source (B,P)if
it satisfies the Domination Property and the RRN Condition.

Proof. First of all for each λ ∈ Λ and t ∈ B the inequality

l(φe(t) + log2(λ(t))

|t| ≤ Cλγ(r(t)),

holds, where

γ(x) =

−x
2 log2

�
x
2

�
, if x > 0,

0, if x = 0.

Due to space limitations and the nature of the applied methods, we omit the proof of
this, but it can be found in [34]. Since the source satisfies the Domination Property,
there exists a λ ∈ Λ such that

R(φe, n,P) ≤
%

t∈Bn,P(t)>0

l(φe(t) + log2(λ(t))

|t| P(t)

≤ Cλ

%
t∈Bn,P(t)>0

γ(r(t))P(t).

Since γ(x) is concave on [0, 1] we can apply Jensen’s inequality and further obtain

Cλ

%
t∈Bn,P(t)>0

γ(r(t))P(t) ≤ Cλγ

 %
t∈Bn,P(t)>0

r(t)P (t)


The proof is finished using the RRN Property and Lemma 3.18:

lim
n∈N

R(φe, n,P) ≤ lim
n∈N

Cλγ

 %
t∈Bn,P(t)>0

r(t)P(t)

 = 0. ■

48

Proof of Theorem 3.16. To prove this, we show that each source (B,Pσ) satisfies
the Domination Property and the RRN Condition.

Step 1: Domination Property
Let Cn = |Bn| be the (n− 1)th Catalan number. Define λ(□) = 1 and

λ(t) = max(C−1
|t| , Pσ(t))

for t ∈ B.

(a) For t ∈ B, let n = |t|, i = |tL|, j = |tR|, so i + j = n. Since C−1
n ≤ C−1

i C−1
j

by properties of the binomial coefficient, and Pσ(t) ≤ Pσ(tL)Pσ(tR), we have
λ(t) ≤ λ(tL)λ(tR).

(b)
&

t∈Bn
λ(t) ≤ &

n∈NC−1
n +

&
t∈Bn

Pσ(t) = 1+1 = 2 ≤ nK(λ) for some K(λ) ≥ 1

(e.g., K(λ) = 1 for n ≥ 2).

Since λ ∈ Λ and Pσ(t) ≤ λ(t), the Domination Property holds.

Step 2: RRN Condition
Let t ∈ Bn for an arbitrary n ≥ 2 with Pσ(t) > 0. Consider the truncated tree t′ of t
with F leaves and F distinct fringe subtrees. Such a t′ exists and can be constructed
by reducing the grammar that forms a representation of t to use each production
exactly once, leading to F − 1 internal nodes. Let L1, . . . , LF be the leaves of t′,
and vi the parent of Li, i = 1, . . . , F . Let S be the supremum from (3.1). Since
Pσ(t) > 0 we get

F%
i=1

|tvi |
|Li| ≤ S · F ≤ Sn.

Hence, %
i

|tvi | ≤ Sn.

Each vi has at most two leaf children, so the number of distinct vi’s is at least F/2.
Thus, there are at least ⌈F/2⌉ distinct subtrees f1, f2, . . . , fk (where k = ⌈F/2⌉)
with

&k
i=1 |fi| ≤ Sn.

Order all trees in B by size: t(1) ∈ B2, t(2), t(3) ∈ B3, etc., with mi = |t(i)|. Define

k(M) = max{k ≥ 1 : m1 + · · ·+mk ≤ M}, M ≥ 2.

Since Cn ∼ 4n/(n3/2√π) grows exponentially,

k(M)/M = O(1/ logM),

so limM→∞ k(M)/M = 0. Here, k(Sn) ≥ ⌈F/2⌉, so F/n ≤ 2k(Sn)/n.

49

Now, %
t∈Bn

r(t)Pσ(t) ≤
%
t∈Bn

2k(Sn)

n
Pσ(t) =

2k(Sn)

n

%
t∈Bn

Pσ(t) =
2k(Sn)

n
.

As n → ∞,
k(Sn)

Sn
→ 0,

so k(Sn)/n → 0. Thus, the RRN Property holds. ■

In 2022 Ganardi et al. [21] extended this universal grammar-based tree compression
for binary trees established by Kieffer et al. [34] to other binary tree sources and
improved performance bounds by also bounding the worst-case redundancy.

50

4 Entropy-based compression

Another approach to finding the optimal lossless tree compression is to align it with
the information-theoretic limit, the so-called entropy H(T) of the tree source T . In
this section we will establish the entropy H(T) for certain tree sources and develop
compression algorithms that achieve compression bounds in terms of that entropy.
Compressed representations were first classified by Jacobson in [24] according to the
amount of space required to encode a tree chosen uniformly at random from the
source T :

• Implicit: if it requires H(T) +O(1) bits of space.

• Succinct: if it requires H(T) + o(H(T)) bits of space.

• Compact: if it requires O(H(T)) bits of space.

These classifications are subject to the condition that operations and navigations
must remain efficient on the compressed version. Achieving implicit compression for
trees is challenging, as the order must be preserved. An example of an implicit data
structure would be a list, where the only additional required information besides the
data is its length, which clearly can be described with a constant amount of bits.
However, the compression algorithms presented in this thesis mostly lie between
implicit and succinct representations, where the support for efficient operational
queries is relaxed or left for further improvement.

4.1 Entropy of plane trees

For the models considered below, when calculating entropy, we assume a distribution
based on the standard probability model. Each tree source T generates a labeled
tree uniformly at random. We then erase the labels, effectively considering the
equivalence classes of trees under root-preserving permutations, and compute the
entropy of the unlabeled class. However, for each model, the resulting probability
distribution over the unlabeled trees is non-uniform. The following entropy results
for m-ary search trees and increasing trees originate from [22].

51

Remark 4.1. We will make use of the fact that an unlabeled tree t is uniquely
determined by the sizes k1, . . . , kl of all its l subtrees dangling from the root -
referred to as the root split - as well as by the subtrees t1, . . . , tl themselves. Hence

P(T = t) = P (RT = k)
l

j=1

P (Tj = tj)

where k = (k1, . . . , kl) and RT = (R1, . . . , Rl) denotes the random variable of the
root split for a random tree in T . This affects the entropy as follows, according to
(1.5):

H(T) = H(RT , T1, . . . , Tl) = H(RT) +H(T1, . . . , Tl|RT)

=H(RT) + l
%
k

H(T |#T = k)
%

∥k′∥=∥k∥−k

P
�
RT =

�
k,k′�� (4.1)

where k takes on every permissible subtree size value and k′ = (k2, . . . , kl) gives
the root split of the remaining subtrees when the first subtree size is fixed. The
equality holds because, first, the subtrees become independent of each other once
their respective sizes are fixed, and second, the distribution of one subtree is entirely
determined by its size. us
With regards to the encoding schemes operating on trees of size n we need to
establish the entropy rate:

Definition 4.2. Let Tn be the random variable that takes on a tree with n nodes
from the tree source T . The entropy rate associated to a tree source T is given by

H(T) = lim
n→∞

H(N1, . . . , Nn)

n
= lim

n→∞
H(Tn)

n

and returns the entropy per node.

4.2 Entropy of increasing search trees

Definition 4.3. An m-ary search tree, m ≥ 2, on n keys from a totally ordered
set like {1, . . . , n} is a rooted plane tree that is defined recursively as follows:

• If n = 0, the tree is empty.

• If 1 ≤ n ≤ m− 1, the tree consists only of a root, where all keys are stored in
the root.

• If n ≥ m, then m− 1 keys are selected as pivots and stored in the root. These
pivots divide the remaining n−m+ 1 keys into m subtrees M1, . . . ,Mm: If

52

the pivots are p1 < p2 < . . . < pm−1, then the subtrees consist, respectively,
of the following keys:

I1 := {pi | pi < p1}, I2 := {pi | p1 < pi < p2}, . . . , Im := {pi | pm−1 < pi}.
For each subtree Mi an m-ary search tree is then constructed recursively.

The standard probability model assumes that every permutation of the keys is
equally likely. Furthermore, the specification of the pivots here is deterministic. To
obtain the corresponding unlabeled m-ary search tree we remove the keys. As a
result, the unlabeled representatives are non-uniformly distributed. We will illustrate
this phenomenon for the next tree class in Figure 4.1.

Lemma 4.4. [22] Let n ∈ N and Sn be the random variable that takes on an
unlabeled m-ary search tree with n keys according to the mentioned non-uniform
probability distribution. Then the entropy of Sn is recursively given by

H(Sn) = log2

�
n

m− 1

�
+

m�
n

m−1

� n−m+1%
k=0

�
n− k − 1

m− 2

�
H(Sk), n ≥ m

and

H(Sn) = 0, n = 0, . . . ,m− 1.

Proof. For n = 0, . . . ,m− 1 the search tree is either empty or all keys get stored
in the node, so the entropy is obviously zero. For n ≥ m equation (4.1) becomes

H(Sn) = H(RSn) +m
n−m+1%
k=0

H(Sk)
%

∥k′∥=n−m+1−k

P
�
RSn =

�
i,k′�� (4.2)

The probability of the root split is

P (RSn) =
1�
n

m−1

� .
since the choice of the pivots fixes the subtree sizes. By plugging into the entropy
formula (1.4) of Section 3 we get

H (RSn) =
1�
n

m−1

� %
∥k∥=n−m+1

log2

�
n

m− 1

�

=
log

�
n

m−1

��
n

m−1

� %
∥k∥=n−m+1

1 = log2

�
n

m− 1

�
.

Having fixed the size of the first subtree and thereby determined the first pivot, we
are left to select the remaining m− 2 pivots. Thus,%

∥k′∥=n−m+1−k

P
�
RSn =

�
i,k′�� = �

n−k−1
m−2

��
n

m−1

� .

Substituting this into (4.2) gives the desired recursion. ■

53

The asymptotic solution of such a recurrence from Lemma 4.4 is well known and
was established in [17] and [6]:

Theorem 4.5. (Asymptotic Transfer Theorem)
Given the recurrence

an = bn +
m�
n

m−1

� n−m+1%
k=0

�
n− k − 1

m− 2

�
ak, n ≥ m (4.3)

with the initial condition an = bn(= 0), n = 0, . . . ,m− 1. If

bn = o(n) and K :=
%
n≥0

bn
(n+ 1)(n+ 2)

converges

then

an =
K

Hm − 1
n+ o(n)

where Hm denotes the m-th harmonic number.

The following lemma will be used in the proof of the Asymptotic Transfer Theorem:

Lemma 4.6. [17] Let

F (z) = (1− z)−α

� z

0
B(t)(1− t)α dt

where B(z) =
%
n≥0

bnz
n and α ∈ C. Then the coefficients have the asymptotics

[zn]F (z) ∼ nα−1(1 +O(n−1)

(k + 1)α−1(1 +O((k + 1)−1)

Proof. Define

C(z) =
%
n≥0

cnz
n = (1− z)−α

� z

0
B(t)(1− t)α dt.

Differentiating this leads to the differential equation

C ′(z) =
%
n≥0

(n+ 1)cn+1z
n = α

C(z)

1− z
+

B(z)

1− z
, C(0) = 0.

Which yields the following recurrence for the coefficients:

cn =
α

n

n−1%
k=0

ck +
1

n

n−1%
k=0

bk, n ≥ 1.

The recursion can be transformed into a first-order linear recurrence by applying
adjacent differences:

ncn − (n− 1)cn = αcn−1 + bn−1 =⇒ cn =
(α+ n− 1)cn−1 + bn−1

n
.

54

Unfolding the recurrence leads to

cn =

n−1%
k=0

bk
k + 1

n
j=k+2

�
1 +

α− 1

j

�
, n ≥ 0. (4.4)

Here,

n
j=k+2

�
j + α− 1

j

�
=

(k + 1)!

n!

(n+ α− 1)!

(k + α)!
=

Γ(k + 2)Γ(n+ α)

Γ(n+ 1)Γ(k + α+ 1)
.

which holds true for all α /∈ Z≤0. Now we make use of Stirling’s formula for factorials,
which also holds for complex numbers:

Γ(z + 1) = z! ∼ zze−z
√
2πz

�
1 +O �|z|−1

��
,

for− π + δ < arg z < π − δ, 0 < δ < π, as |z| → ∞. Recall that Stirling’s formula
for factorials in logarithmic form is given by

log n! =

�
n+

1

2

�
log n− n+

1

2
log(2π) +O(n−1).

Hence,

Γ(n+ 1 + α)

Γ(n+ 1)
= (n+ α) log(n+ α)− n log n− α+

1

2
(log(n+ α− log n)) +O(n−1)

= (n+ α) log
�
1 +

α

n

�
+ α log n− α+

1

2
log

�
1 +

α

n

�
+O(n−1)

= (n+ α)
�α
n
+O(n−2)

�
+ α log n− α+

α

2n
+O(n−2) +O(n−1)

= α log n+O(n−1).

This gives, for all α ∈ C,

Γ(n+ α)

Γ(n)
= nα−1

�
1 +O(n−1)

�
and

Γ(k + 2)

Γ(k + α+ 1)
= (k + 1)α−1

�
1 +O �

(k + 1)−1
��

analogously. ■

Proof of the Asymptotic Transfer Theorem. [17]

1. The generating function A(z): We solve the non-elementary recursion using gen-
erating functions:

A(z) :=
%
n≥0

anz
n and B(z) :=

%
n≥0

bnz
n.

55

In the following we will use the standard notation xk := x·(x−1) · · · (x−k+1) for the
falling factorials, while the rising factorials xk are defined analogously. Additionally,
we denote the m-th derivative of the function A(z) by A(m)(z).
Multiplying (4.3) by nm−1 simplifies the first fraction on the right-hand side by
canceling the denominator. Then we get

%
n≥m

ann
m−1zn−m+1 =

%
n≥m

bnn
m−1zn−m+1 +m!

%
n≥m

n−m+1%
k=0

�
n− k − 1

m− 2

�
ak zn−m+1

=⇒ A(m−1)(z) = B(m−1)(z) +m!
%
n≥0

n+1%
k=0(m)

�
n+m− k − 1

m− 2

�
ak zn+1

=⇒ A(m−1)(z) = B(m−1)(z) +m!
%
n≥0

n%
k=0(m)

�
m+ (n− k)− 2

m− 2

�
ak zn

=⇒ A(m−1)(z) = B(m−1)(z) +m!(1− z)−(m−1)A(z)

which is an Eulerian differential equation. Alternatively to [17], where they reduce
the problem step by step to one with constant coefficients, one can make the known
ansatz A(z) = (1− z)−α, see Section 1.3, and obtain

dm−1

dz

1

(1− z)α
=

m!

(1− z)(m−1)+α

which gives

(−1)m−2 (−α)m−1

(1− z)α+m−1
=

m!

(1− z)m−1+α
.

This further provides the indicial equation

φ(α) = αm−1 −m! = 0.

which has m−1 distinct, non-zero solutions α1, . . . , αm−1 since a solution αi satisfies

φ′(αi) =

m−2%
j=0

m!

αi + j
̸= 0, (4.5)

as proven in [29]. Hence the general homogeneous solution is given by the following
sum of linearly independent solutions:

m−1%
k=1

ck(1− z)−αk .

By the method of variation of constants, we find a particular solution. Adjusted to
the initial conditions, this yields the complete solution

A(z) =
m−1%
k=1

ck(1− z)−αk +
m−1%
k=1

(1− z)−αk

φ′(αk)

� z

0
B(m−1)(t)(1− t)αk+m−2 dt (4.6)

56

where φ(α) = αm−1 −m!. The coefficients ck are given by a linear combination of
the first m terms b0, . . . , bm−1 and vanish due to the initial conditions. Repeated
partial integration of (4.6), using the initial conditions and denoting B(z) as the
generating function starting at index n = m, gives

A(z) =
m−2%
l=1

B(l)(1− z)l
m−1%
k=1

1

φ′(αk)
+

m−1%
k=1

(1− z)−αk

φ′(αk)
(αj + 1)m−2

� z

0
B′(t)(1− t)αk dt

=
m−1%
k=1

(1− z)−αk

φ′(αk)

φ(αj) +m!

αj

� z

0
B′(t)(1− t)αk dt.

= m!B(z)

m−1%
k=1

1

φ′(αk)αk
+m!

m−1%
k=1

(1− z)−αk

φ′(αk)

� z

0
B(t)(1− t)αk−1 dt

= B(z) +m!
m−1%
k=1

(1− z)−αk

φ′(αk)

� z

0
B(t)(1− t)αk−1 dt

where we used the following identities of the indicial polynomial

m−1%
k=1

1

φ′(αk)
= 0 and

m−1%
k=1

1

αkφ′(αk)
=

1

m!

derived in [29].

2. We proceed by showing that

[zn] (1− z)−αi

� z

0
B(t)(1− t)αidt = o(n), ∀i ∈ {2, . . . ,m− 1}.

Lemma 4.6 provides us with an asymptotics for the coefficients. Another result of
[29] is that the roots of φ are α1 = 2 and α2, . . . , αm−1 have real part no larger than
2. Thus, nαi , i = 2, . . . ,m− 1 will be of smaller magnitude than nα1 = n2. Since for
all ϵ > 0 it holds n1−ϵ = o(n) we can further estimate (4.4) by

cn = O
�

n−1%
k=0

bk
k + 1

�
n

k + 1

�ℜ(α)−1
�

= O
�
nℜ(α)−1

n−1%
k=0

(k + 1)−ℜ(α)

�
= o (n) .

3. Putting everything together:
For α = 2 the coefficients in (4.4) are of the simple form

n−1%
k=0

bk
k + 1

n
j=k+2

�
j + 1

j

�
= (n+ 1)

n−1%
k=0

bk
(k + 1)(k + 2)

= n
n−1%
k=m

bk
(k + 1)(k + 2)

+ o(n).

57

Summarizing the results so far, we have

[zn]A(z) = [zn] B(z) + n ·m!
1

φ′(2)

n−1%
k=0

bk
(k + 1)(k + 2)

+ o(n)

We evaluate φ′(2) by plugging λ = 2 into (4.5) and obtain:

φ′(2) = m!
m%
j=2

1

j
= m!(Hm − 1).

Finally, with the convergence assumption of the series over bn we get the desired
asymptotic estimate for the coefficients an:

an =
n

Hm − 1

∞%
k=0

bk
(k + 1)(k + 2)

+ o(n). ■

Corollary 4.7. The entropy rate of the unlabeled m-ary search tree is given by

hu = lim
n→∞

H(Sn)

n
=

1

Hm − 1

%
k≥m

log
�

k
m−1

�
(k + 1)(k + 2)

Proof. The result is immediately derived from the Asymptotic Transfer Theorem
by applying it to

an = H(Sn) and bn =

0, n < m− 1

log
�

n
m−1

�
, n ≥ m− 1

noticing that

log

�
n

m− 1

�
∼ m log n = o(n)

and

%
n≥0

bn
(n+ 1)(n+ 2)

= Θ

 %
n≥1

log n

n2

 < ∞.

■

4.3 Entropy of increasing trees

Definition 4.8. A d-ary plane tree is a rooted plane tree in which each internal
node has exactly d children. In this section we calculate the entropy of random
unlabeled d-ary plane increasing trees, as done in [22], generated according to
the following model:

• The generation begins with a single external node (leaf).

58

• The first step in the growth process is to replace this external node with an
internal node that carries the minimal label and has d leaf children.

• Then, with probability 1/d, one of these d external nodes is selected and
replaced by an internal node labeled with the next higher label that has d

leaves.

• In each subsequent step, one of the external nodes (chosen with equal proba-
bility) is replaced by an internal node carrying the subsequent label with d

external children.

The standard probability model assumes that each d-ary plane increasing tree of
n nodes is produced with uniform probability. The corresponding unlabeled d-ary
representative is obtained by removing the node labels inducing the mentioned
non-uniform distribution.

Figure 4.1: Two examples of equivalence classes established on the 2-ary plane
increasing trees and their unlabeled representative; this also visualizes the arisen
non-uniform distribution on the unlabeled class.

Lemma 4.9. The family D of d-ary increasing plane trees has the recursive charac-
terization

D = {ϵ}+
�
Z□ ⋆Dd

�
59

which gives the nonlinear integral equation for the exponential generating function

D(z) = 1 +

� z

0
D(z)d dt, D(0) = 1.

The coefficients are then given by

dn = n! · [zn]D(z) = (−1)n(d− 1)n
Γ(2− d

d−1)

Γ(2− d
d−1 − n)

.

Proof. The derivative of the integral equation for the exponential generating func-
tion gives

D′(z) = D(z)d.

This is solved by separation of variables, which gives

D(z) = (1− (d− 1)z)−
1

d−1 .

Using the binomial theorem we can evaluate the coefficients:

dn = n![zn]D(z) = n![zn]
%
n≥0

(−1)n(d− 1)n
�− 1

d−1

n

�
zn

= n!(−1)n(d− 1)n
�− 1

d−1

n

�
= (−1)n(d− 1)n

�
− 1

d− 1

�n

= (−1)n(d− 1)n
Γ
�

1
1−d + 1

�
Γ
�

1
1−d − n+ 1

�
= (−1)n(d− 1)n

Γ
�
2− d

d−1

�
Γ
�
2− d

d−1 − n
� . ■

Lemma 4.10. Let n ∈ N and Dn be the random variable supported on the unlabeled
d-ary increasing trees with n nodes Dn. The entropy of the root split H(RDn) is
trivially zero for n = 0, 1 and for n ≥ 2 recursively given by

H(RDn) = log2

�
n
dn
n!

�
− d

n−1%
k=0

pn,k log2

�
dk
k!

�
.

where the dn are the coefficients derived in Lemma 4.9 and

pn,k =
%

∥k′∥=n−1−k

P(RDn = (k,k′)).

Proof. Let k = (k1, . . . , kd).The probability of the root split is

P (RDn = k) =

�
n− 1

k1, . . . , kd

�
dk1 . . . dkd

dn
. (4.7)

60

Analogously to (4.1) we derive the following after plugging into the entropy formula:

H (RDn) = −d
n−1%
k=0

log2 P(RDn = k)pn,k.

Observe that since k is chosen out of {0, . . . , n− 1} we have

P(RDn = k) =
1

n

dk
k!

n!

dn
.

Hence,

H (RDn) = −d

n−1%
k=0

�
log2

�
dk
k!

�
− log2

�
n
dn
n!

��
pn,k.

Observe that
&n−1

k=0 pn,k = 1
d because it expresses the probability of choosing one of

the d trees to have exactly k nodes. ■

Lemma 4.11. Let n ∈ N and Dn be supported on the tree source of unlabeled d-ary
increasing trees, d ≥ 2. Then the entropy of Dn is recursively given by

H(Dn) = H (RDn) + d

n%
k=0

H(Dk)pn,k (4.8)

where pn,k is defined in the previous lemma and given explicitly by

pn,k =
(α− 1)

n
· n!
k!

· Γ(k + α− 1)

Γ(n+ α− 1)
, with α =

d

d− 1
. (4.9)

Proof. The recurrence for the entropy is given by (4.1). From (4.7) we get

pn,k =

�
n− 1

k

�
dk
dn

%
k2+...+kd=n−1−k

�
n− 1− k

k2, . . . , kd

�
dk2 · · · dkd .

From Lemma 4.9 we know the generating function of the d-ary increasing trees I(z)

and since %
k2+...+kd=n−1−k

�
n− 1− k

k2, . . . , kd

�
dk2 · · · dkd =

1

(n− 1− k)!

	
zn−1−k

�
D(z)d−1

=
1

(n− 1− k)!

	
zn−1−k

�
(1− (d− 1)z)−1 = (d− 1)n−1−k

we have

pn,k =
(n− 1)!

k!

dk
dn

(d− 1)n−1−k.

Plugging in the coefficients we derived in Lemma 4.9 yields

pn,k =
(n− 1)!

k!
(−1)k−nΓ(2− α− n)

Γ(2− α− k)
(d− 1)−1

= (−1)k−nα− 1

n

n!

k!

Γ(2− α− n)

Γ(2− α− k)
.

61

With the reflection formula for the Gamma function

Γ(z − n) =
(−1)nπ

Γ(n+ 1− z) sin(πz)

we arrive at the desired result. ■

Theorem 4.12. The entropy recurrence of Lemma 4.11 admits the exact solution

H(Dn) = H (RDn) + α(n+ α− 1)
n−1%
k=0

H (RDk
)

(k + α− 1)(k + α)
.

The entropy rate hd of the unlabeled d-ary plane increasing trees is therefore

hd = α
n−1%
k=0

H (RDk
)

(k + α− 1)(k + α)

Proof. The recurrence can be solved using the standard technique of finite differences
for linear recurrences, along with well-known factorial and Gamma function identities.
Since the entropy of a random variable is upper bounded by the logarithm of the
cardinality of its image, we have

H(RDn) ≤ log2(n
d) = o(n),

which implies that it is asymptotically negligible. Therefore, the entropy rate follows
as a corollary of the exact solution. ■

The results derived for the unlabeled d-ary plane increasing trees can be generalized
to the broader class of unlabeled degree-unconstrained plane increasing
trees, as shown in [22], with a probability distribution induced by the following
generation:

• The generation begins with a single internal node carrying the smallest label.

• Then a child internal node is attached carrying the next highest label.

• The (n+1)th node, carrying the next highest label is attached to each previous
node with probability 1/n.

Each tree generated by this process then becomes unlabeled again. Notice the
absence of leaves.

Lemma 4.13. The family U of degree unrestricted increasing plane trees has the
recursive characterization

U =
�Z□ ⋆ Seq≥0(U)

�
62

which gives the nonlinear integral equation for the exponential generating function

U(z) =

� z

0

1

1− U(z)
dt, U(0) = 0.

The coefficients are then given by

un = n! · [zn]U(z) = (2n− 3)!! =
n!

n2n−1

�
2n− 2

n− 1

�
.

Proof. The derivative of the integral equation for the exponential generating func-
tion gives

U ′(z) =
1

1− U(z)
.

This is solved using the method of separation of variables, yielding

U(z) = 1−√
1− 2z.

Again, using the binomial theorem, we evaluate the coefficients:

un = n![zn]U(z) = n![zn] 1−
%
n≥0

�1
2

n

�
(−1)n2nzn

= n![zn] −
%
n≥1

(−1)2n(2n)!

(1− 2n)(n!)24n
2nzn

= n![zn]
%
n≥1

(−1)2n+2(2n− 2)!

n((n− 1)!)22n−1
zn

=
1

n2n−1

�
2n− 2

n− 1

�
= (2n− 3)!! ■

The entropy rate for the unlabeled degree-unconstrained plane increasing trees U
can be derived from the results for the d-ary family straightforwardly:

1. The entropy recurrence analogue to (4.8) for Sn is given by

H(Sn) =

n−1%
d=1

H
�
RSn,d

�
P(Rn = d) +

n−1%
d=1

d

n−d%
k=1

H(Sk)qn,k,d (4.10)

where Rn is the random variable representing the root out-degree, that can
take on values from {1, . . . , n − 1}, for a tree t ∈ Sn with n nodes and
RSn,d

: Sn,d → {1, . . . , n− d}d is the root split random variable, that assumes
a d-fold root split.

2. An explicit formula for qn,k,d, analogous to (4.9), can be derived in a similar
way. The same applies to the recurrence relation for the root split.

3. The recurrence (4.10) can be solved explicitly in the same way the recurrence
for the d-ary case was solved.

63

4. The entropy rate hu for the unlabeled degree-unconstrained plane increasing
trees is given by

hu =
1

2

∞%
k=2

&k−1
d=1 H

�
RSn,d

�
P(Rn = d)

(k − 1
2)(k + 1

2)

4.4 Compression algorithm for m-ary search trees

We adapt the arithmetic-coding based algorithm for d-ary unlabeled increasing trees
([22, Alg. 1]) to m-ary unlabeled increasing search trees. In doing so, we define a
total order on the set of unlabeled m-ary search trees and compute the necessary
probabilities for arithmetic coding.

Numerically computed entropy rate of the m-ary search tree

The entropy rate hu of an m-ary search tree, as defined earlier, represents the average
amount of information needed (per node) to describe a tree of S for large tree sizes.
It is well known that in an m-ary search tree the number of nodes N is a random
variable related to the number of keys n by E[N] ∼ φmn, [22]. Table 4.1 presents
the numerically approximated entropy rate hu, defined earlier, and the normalized
ratio hu/φm for m = 2, 3, 4, 15, where φm is given by φm = (2Hm − 2)−1.

m hu hu/φm

2 1.736 1.736
3 1.5 2.501
4 1.356 2.939
15 0.888 4.119

Table 4.1: Values of hu and hu/φm for m = 2, 3, 4, 15

As m increases, φm becomes smaller, resulting in larger values of hu/φm. The
decreasing entropy rate for larger values of m is intuitive since more keys are stored
in the nodes which reduces the structural uncertainty relative to the size.

Total Ordering on Unlabeled m-ary increasing Search Trees

For a given number of keys n, we define a total order on the set Sn of unlabeled
m-ary search trees with n keys. It compares trees first by their root split and then
by their subtree root splits in a left-to-right order. Each tree s ∈ Sn has a root with
up to m subtrees. The total order is defined recursively as follows:

64

• For two trees s1, s2 ∈ Sn with root subtree sizes (l1, l2, . . . , lm) and (k1, k2, . . . , km),
respectively, s1 < s2 if:

– (l1, l2, . . . , lm) < (k1, k2, . . . , km) in lexicographic order, or

– (l1, l2, . . . , lm) = (k1, k2, . . . , km), and the first subtree of s1 is smaller
than the first subtree of s2 (recursively), or

– (l1, l2, . . . , lm) = (k1, k2, . . . , km), the first subtrees are equal, and the
second subtree of s1 < the second subtree of s2, and so on, up to the
m-th subtree.

• For n = 0 (empty tree) or 1 ≤ n < m (root-only tree), there is a single tree,
so the order is trivial.

Next, we map each subtree to a unique sub-interval of [0, 1), based on the total order,
using arithmetic coding, a well-known coding scheme in lossless data compression in
information theory mentioned in Section 3 that encodes complete messages (trees
here) instead of components of messages. Each unlabeled m-ary increasing search
tree on n keys gets mapped to a unique subinterval [a, a + p] ⊆ [0, 1], where a

represents the relative position of the tree in the total order. The length of the
subinterval p represents the probability that the random variable Sn, specified earlier,
emits the tree.

The latter, p, is computed recursively, using the previously established recurrence

P(Sn = s) = P(RUn = k)

m
l=1

P(Sn,l = sl), P(RUn = k) =
1�

n
m

�− 1
.

The relative position of a tree s ∈ Sn is computed as P(Sn < s) recursively.

65

Algorithm 3 Unlabeled m-ary Search Tree Compression
1: function CompressMTree(s ∈ Sn)
2: [a, b) ← Explore(root of s, [0, 1))
3: return first ⌈− log2(b− a)⌉+ 1 bits of (a+ b)/2

4: end function
5: function Explore(v ∈ s, [l, r) ⊆ [0, 1))
6: visited(v) ← true
7: n ← number of keys in subtree rooted at v

8: if n < m then
9: return [l, r) ▷ Leaf or root-only node, no split

10: end if
11: (l1, . . . , lm) ← sizes of subtrees of v
12: a ← l + (r − l) · CalculateIntervalBegin(n, l1, . . . , lm)

13: p ← (r − l) · CalculateSplitProbability(n, l1, . . . , lm)

14: Inew ← [a, a+ p)

15: for all u descendant of v do
16: if not visited(u) then
17: Inew ← Explore(u, Inew)

18: end if
19: end for
20: return Inew

21: end function
22: function CalculateSplitProbability(n, k1, . . . , km)
23: if n < m then
24: return 1
25: end if
26: if k1 + · · ·+ km ̸= n−m+ 1 then
27: return 0
28: end if
29: return

1�
n

m−1

�
30: end function
31: function CalculateIntervalBegin(n, j1, . . . , jm)
32: if n < m then
33: return 0
34: end if
35: return

%
(k1,...,km)<(j1,...,jm)
k1+···+km=n−m+1

1�
n

m−1

�∗
36: end function

66

Running Time

The algorithm performs a depth-first traversal of the tree, visiting each node once.
Let N be the number of nodes in the tree.

• For each node, Explore calls CalculateSplitProbability and
CalculateIntervalBegin once.

• CalculateSplitProbability: Clearly O(1).

• CalculateIntervalBegin: Naively, the expression marked with * sums over
all (k1, . . . , km) < (l1, . . . , lm) with k1 + · · · + km = n − m + 1, leading to
O(nm−1) time per call for computing all admissible integer partitions. Instead,
we simplify:

%
(k1,...,km)<(j1,...,jm)
k1+···+km=n−m+1

1 =
m%
i=1

ji−1%
ki=0

%
ki+1+···+km=n−m+1−�i−1

l=1 jl−ki

1

where we now subsequently compute the admissible tuples by moving up the
positions in the ordering. Note that for a fixed i, k1, . . . , ki−1 equal j1, . . . , ji−1

otherwise the lexicographic order would not differ at position i. The inner-most
sum is given by (stars and bars):�

n−m+ 1−&i−1
l=1 jl − ki + (m− i)− 1

m− i− 1

�
=

�
n−&i−1

l=1 jl − ki − i

m− i− 1

�
,

except for the boundary case where i = m and this sum equals 1. This reduces
time complexity to O(m2n) = O(n).

• Total Complexity: The overall time complexity therefore sums up to O(n2)

since there are O(n) calls to each of the two functions.

Entropy

The code length is ⌈− log2 P(s)⌉+ 1, which is at most 2 bits above − log2 P(s). The
expected code length is:

−
%

P(Sn = s) (⌈− log2(P(Sn = s)⌉+ 1)

≤ −
%

P(Sn = s) (log2(P(Sn = s) + 2) = H(Sn) + 2

This shows that the compression is optimal within a constant number of bits of the
entropy.

67

4.5 Hypersuccinct compression for binary trees

In this section, we explore the hypersuccinct tree compression developed in [31] for
random unlabeled binary tree sources. The compression method partitions the tree
into micro-trees, which are efficiently stored in a lookup table by encoding them using
a Huffman code and optimizing the lookup process through the "Four-Russians trick".
The authors ironically call this the “Four Russians and One American” technique.
The partitioning algorithm, developed in [16], and the Huffman code automatically
adapt to the given tree source, making a manual tailoring of the compression scheme
to specific tree sources obsolete. Moreover, constant-time query support on the
word-RAM model is guaranteed by this succinct data structure. Although we will
not cover them here, the hypersuccinct encoding has been shown in [31] to be
optimal and universal for a variety of fixed-size sources, including uniformly random
Motzkin trees, AVL trees, and random binary search trees.

We denote with H the hypersuccinct source code H : T → {0, 1}∗ which maps each
tree t of n nodes from the tree source T = B̂ ∪ {ϵ} of uniformly random incomplete
binary trees (where we allow the empty tree) to a finite-length bit sequence.

Compression Steps

Step 1: Construction of the micro-trees

In the first step, we partition the nodes of a binary tree t ∈ Tn into m = Θ(n/ log n)

node-disjoint micro-trees σ1, . . . , σm, each containing at most µ = ⌈14 log2(n)⌉ nodes
using the Farzan-Munro algorithm ([16], where it is listed in detail). To summarize
the procedure: process a tree t bottom-up and declare a subtree (containing all
descendants of a node up to placeholder nodes) starting at a node v ∈ t as a
micro-tree if it contains a minimum of µ/2 nodes. The micro subtree is then stored
in a separate set Σµ, and replaced in t by a single placeholder node v′ with a size
value equal to the size of this fringe subtree. The parent micro subtree does not
contain this node v′, but is rather connected to it via a single edge. The algorithm
recursively applies the same process to the contracted tree. The recursion continues
until the entire tree is partitioned into micro-trees. The binary tree with m nodes,
where all micro-trees of t are represented by placeholder nodes, is called its top-tier
Yt.

Each micro-tree shares at most three edges with other micro-trees: one to a parent,
one to a left-child, and one to a right-child micro-tree.

68

Step 2: Huffman Encoding of the micro-trees

The Huffman code C : Σµ → {0, 1}∗ is generated according to Definition P22 with
the probabilities p being the empirical occurrence probabilities of the micro-trees.
To manage the overhead of encoding rare micro-trees - which get assigned longer
lengths according to the principles of Huffman coding - a truncation technique is
applied.

Definition 4.14. The balanced parentheses encoding (BPE) represents a tree
as a sequence of opening and closing parentheses. For binary trees t: BP : B → {(,)}∗,
is inductively defined as follows:

• BP(t) = ε, if t is the empty tree.

• BP(t) = (BP(tl)) BP(tr), otherwise.

Here, ε denotes the empty string, tl represents the left subtree, and tr represents the
right subtree of t. The balanced parenthesis encoding of a binary tree t obviously
has length 2|t|.

Lemma 4.15. [31, p. 30] Let c(σ) ∈ C be the codeword for σ ∈ Σµ in the Huffman
code, n = |σ|. Define L = 2n+ 2⌊log2(n+ 1)⌋+ 1, and let a micro-tree σ be rare
if |c(σ)| ≥ L. Let b(·) and u(·) denote the binary and unary extension functions,
respectively. The truncated Huffman code Ĉ : Σµ → {0, 1}∗ is defined as

Ĉ(σ) =

0 · u(b(n+ 1)) · b(n+ 1) · BP(σ), σ is rare,

1 · c(σ), otherwise,

where · denotes string concatenation. Then, Ĉ is uniquely decodable and prefix-free.
The length of a code for m micro-trees, (Ĉ(σi))

m
i=1, is no larger than |(C(σi))

m
i=1|+m

and restricts the codeword lengths of a rare micro-tree to L+ 1.

Proof. The unary and binary extensions are necessary for unique decodability
because BP(σ), with length 2n, varies with σ. Using only 0·BP(σ) for rare micro-trees
would lead to ambiguity. The binary extension b(n+1), a string of ⌊log2(n+1)⌋+1

bits, encodes n + 1, allowing the decoder to compute the length of BP(σ). Since
the length of b(n + 1) also varies with σ, the unary extension u(b(n + 1)), a
string of ⌊log2(n + 1)⌋ zeros (followed by a 1), encodes this length, ensuring the
decoder can locate the start of b(n + 1) and subsequently BP(σ). In the other
case, since C is a Huffman code, which is uniquely decodable and prefix-free, Ĉ
is as well. In the first case, where σ is rare, the codeword length is truncated to
1 + ⌊log2(n+ 1)⌋+ (⌊log2(n+ 1)⌋+ 1) + 2n = L+ 1. ■

69

Remark 4.16. Encoding n + 1 instead of n in the binary expansion follows the
convention in the case where the tree might be empty. The technique of encoding a
natural number as a concatenation of its unary and binary expansion is known as
Elias encoding.

Step 3: Encoding the micro-trees top-tier Y

The ordering of micro-trees is recovered by the depth-first ordered BPE of Y , together
with the encodings Ĉ(σi) for all micro-trees σi listed in a matching depth-first order.
This ensures that the decoder can reconstruct the hierarchical structure of t. To
fully recover the parent-child relationships between different micro-trees we need to
transmit the positions of the edges in a parent micro-tree that connect to its left
and right child micro-trees, if such children exist. Since each micro-tree can have at
most two children and consists of at most µ nodes, we require 2(⌊log2(µ+ 1)⌋+ 1)

bits (depth-first order) per micro-tree to encode this information.

In total, the hypersuccinct encoding H(t) of a tree t consists of the concatenation
of the tree and top-tier sizes n and m (in Elias code), followed by the BPE of Y , a
list of all codewords in Ĉ together with their corresponding micro-tree translations
(in Elias code concatenated with its BPE), and finally the sequence of ordered
micro-tree codes and child occurrence information.

Theorem 4.17. [31, 16] Consider a binary tree t ∈ Tn, partitioned into m =

Θ(n/ log n) node-disjoint micro-trees σ1, . . . , σm, each containing at most µ =

⌈14 log2 n⌉ nodes as in Step 1. Let Σµ denote the set of all possible micro-trees
with up to µ nodes, and define the truncated Huffman code Ĉ : Σµ → {0, 1}∗ as
in step 2. Then, there exists a data structure occupying o(n) additional bits that
supports a variety of queries in constant-time, and the size of the encoding satisfies:

|H(t)| ≤ 2n+O
�
n log log n

log n

�
.

Proof. We first compute the size of H(t), starting with the sizes n and m. Encoding
n in Elias code takes 2⌊log2 n⌋ + 1 bits, and since m = Θ(n/ log n), encoding
both requires at most 2 log2 n+O(1), which is O(log2 n). The BPE of Y requires
2m = Θ(n/ log n) bits.

Next, we address the size of the micro-tree codebook. We can find a much tighter
upper bound for the number of micro-trees in Σµ than Θ(n/ log n) if we take into
account an upper bound for the counting sequence Cn of binary trees, Cn ≤ 4n:

|Σµ| ≤
µ%

s=0

Cs ≤
µ%

s=0

4s =
4µ+1 − 1

4− 1
<

4

3
· 4 1

4
log2 n+1 ∈ O(

√
n).

70

By Lemma 4.15 we can bound the size of each codeword by 2µ+ 2 log2(µ+ 1) + 2 ∈
O(µ) = O(log n). Hence we need O(

√
n log n) bits in space to list all codewords for

the micro-trees in Σµ. The translation, the encoding of the micro-trees, takes the
same amount. Hence, we have O(

√
n log n) bits in total.

For the micro-tree code sequence Ĉ(σ1), . . . , Ĉ(σm) (in depth-first order), we know
by Lemma 4.15 that the code length is restricted to

m%
i=1

|C(σi)|+Θ(n/ log n).

The entropy of random binary trees is approximated by using their counting sequence,
the Catalan numbers Cn, together with Stirling’s approximation for factorials, and
is given by

H(Tn) =
%
t∈Tn

P(Tn = t) log2

�
1

P(Tn = t)

�
= log2(Cn)

= log2

�
1

n+ 1

�
2n

n

��
∼ 2n− 2 log2(n) +O(1).

due to a high amount of cancellations. By the optimality of the Huffman code we
can easily upper bound the micro-tree encoding by

m%
i=1

|C(σi)| ≤ 2n+O
�
n log log n

log n

�
.

A strict justification, in all details, for this requires the definition of empirical
entropy and extensive, but standard, information-theoretic arguments, which can
be found in [31, p.32]. The final step requires 2(⌊log2(µ + 1)⌋ + 1) bits to en-
code the positions of edges to its children. This is O(log log n) bits per micro-
tree, so the total is m · O(log log n) = Θ(n/ log n) · O(log log n) = O

�
n log logn

logn

�
.

Since O(log n), O(
√
n log n), O (n/ log n) ∈ O

�
n log logn

logn

�
, we have established the

claimed bound.

In Section 4 of [16] a lookup table that enables constant-time for intra micro-tree
queries is constructed using dictionaries for root connections and a pointer network
for parent-child edges, both contributing o(n) bits. So all that is left to show, is
that we can map an index i ∈ {1, . . . ,m} to BP(σi) in constant time. This involves
storing the mapping i '→ Ĉ(σi) as a standard variable-cell array that allows constant
time mapping [31, p.25] and takes

&m
i=1 |Ĉ(σi)|+O(n log log n/ log n) bits (already

included). Secondly, we need the codebook lookup for Ĉ(σi) '→ BP(σi), which takes
O(

√
n P (log n)) bits due to the length restriction of Ĉ, where P (log(n)) is some

polynomial in log(n). Since all time-complexity statements assume the word-RAM
model with word size Θ(log n) the mapping of these bit strings fits within a constant
number of words. ■

71

Remark 4.18. Together with the lookup table occupying o(n) additional bits, the
hypersuccinct encoding scheme is turned into a succinct data structure with constant
time queries on a variety of navigational operations, listed in [31, Table 1], including
parent, child, depth, ancestor and many more. The balanced parenthesis encoding
which uses 2n bits is an optimal compressed representation for binary and plane
trees since log(Cn) ∼ 2n. The compression techniques used for the binary tree source
are also used for the hypersuccinct encoding of the other plane trees in [31]. The
universality comes from the fact that the Huffman code adapts to the frequencies of
micro-trees of the specific tree being compressed independent of its source and that
the Farzan-Munro algorithm is by design universal, as well as the other compounds.

72

A brief outlook on further developments

In this thesis, we have explored several important tree compression methods, such
as DAG compression, tree grammars, and entropy based compression methods for a
variety of tree classes. However, not all major compression forms were covered in
detail. One compression method we left out, developed by Bille et al. in 2015 [1]
and later improved by Hübschle-Schneider and Raman in their revisited work [23],
is top tree compression.
This method expanded on DAG compression, as mentioned in the introduction. A
labeled tree t of size n is transformed into a new tree t′, called top tree, where
tree pattern repeats (connected subgraphs identical in structure and labels) form
clusters. This transformed tree is then compressed into a top DAG using classical
DAG compression. It is then shown that this representation supports navigational
queries in O(log n) time. The size of the top DAG found by Billie was O

�
n

log0.19σ n

�
,

where σ is the alphabet size. This was improved by Hübschle-Schneider and Raman
to O

�
n

logσ n · log logσ n
�

which reduces the gap to the optimal information-theoretic

lower bound of Ω
�

n
logσ n

�
to O(log logσ n).

This improvement stems from its exploitation of tree pattern repetitions, which
DAG compression overlooks. Additionally, Bille et al. proved that the size of the
resulting top tree DAG is — for any tree — at most a logarithmic factor larger than
that of its minimal DAG.

Another example is TreeRePair, introduced by Lohrey et al. in 2013 [28]. This
tree grammar, that was not covered in the tree grammar section of this thesis,
demonstrated good compression ratios on XML document trees. Building on the
RePair algorithm for string compression, TreeRePair constructs TSLPs in linear
time, achieving compression by iteratively replacing the most frequent digrams (pairs
of a parent node label, a child index, and a child node label) with new non-terminals.
While its navigational performance is slower than common succinct compressions
the biggest advantage of TreeRePair is its ability to produce one of the smallest
known queryable memory representation of plane trees for tree grammars.

73

The hypersuccinct encoding scheme we briefly covered at the end was even further
improved, with a particular focus on AVL trees trees, by the work of [7]. The
hypersuccinct paper established a universal tree source code for optimal compressed
tree data structures while supporting a wide range of operations in constant time.
However, it imposed stringent conditions, including the "tamed source" requirement,
which imposes non-trivial restrictions on the fringe subtrees. In [7], Chizewer et
al. were able to relax this constraint by one condition, introducing the concept of
"weakly tame" tree classes. They also gave a new succinct encoding for these weakly
tame classes, which eliminates the need for the pointers to "parent-child edges" used
in the hypersuccinct framework, simplifying the data structure, while maintaining
constant-time queries in the same word-RAM model.

For AVL trees specifically, [7] rigorously derives the asymptotic for the counting
sequence, which has been conjectured in the 1980s (this conjectured number was
used in [31]), and thereby derives the information-theoretic lower bound required
for encoding this tree source, a log-linearity constant of approximately 0.938 bits
per node, with methods of analytic combinatorics.

74

Bibliography

[1] Philip Bille et al. “Tree Compression with Top Trees”. In: Information and
Computation 243 (2015), pp. 166–177. doi: 10.1016/j.ic.2014.12.012.

[2] Olivier Bodini et al. “Compaction for Two Models of Logarithmic-Depth Trees:
Analysis and Experiments”. In: Random Structures & Algorithms 61.1 (2022),
pp. 31–61. doi: 10.1002/rsa.21056.

[3] Mireille Bousquet-Mélou et al. “XML Compression via Directed Acyclic
Graphs”. In: Theory of Computing Systems 57.4 (2015), pp. 1322–1371.

[4] Peter Buneman, Martin Grohe, and Christoph Koch. “Path Queries on Com-
pressed XML”. English. In: Proceedings of the 29th Conference on Very Large
Data Bases. 2003, pp. 141–152.

[5] Kim Casel et al. “On the Complexity of Grammar-Based Compression over
Fixed Alphabets”. In: Leibniz International Proceedings in Informatics (LIPIcs).
Vol. 55. 2016, p. 122. doi: 10.4230/LIPIcs.ICALP.2016.122.

[6] Hsiu-Hung Chern and Hsien-Kuei Hwang. “Phase Changes in Random m-ary
Search Trees and Generalized Quicksort”. In: Random Structures & Algorithms
19.3-4 (2001). Analysis of Algorithms (Krynica Morska, 2000), pp. 316–358.
doi: 10.1002/rsa.1008.

[7] Jeremy Chizewer et al. “Enumeration and Succinct Encoding of AVL Trees”. In:
35th International Conference on Probabilistic, Combinatorial and Asymptotic
Methods for the Analysis of Algorithms (AofA 2024). Ed. by Cécile Mailler
and Sebastian Wild. Vol. 302. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, 2024, 2:1–2:12. isbn: 978-3-95977-329-4. doi: 10.4230/LIPIcs.AofA.
2024.2. url: https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.AofA.2024.2.

[8] Michalis Christou et al. “Computing All Subtree Repeats in Ordered Ranked
Trees”. In: String Processing and Information Retrieval, 18th International
Symposium, SPIRE 2011, Pisa, Italy, October 17-21, 2011. Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 338–343. doi: 10.1007/978-
3-642-24583-1_33.

75

https://doi.org/10.1016/j.ic.2014.12.012
https://doi.org/10.1002/rsa.21056
https://doi.org/10.4230/LIPIcs.ICALP.2016.122
https://doi.org/10.1002/rsa.1008
https://doi.org/10.4230/LIPIcs.AofA.2024.2
https://doi.org/10.4230/LIPIcs.AofA.2024.2
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.2
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.2
https://doi.org/10.1007/978-3-642-24583-1_33
https://doi.org/10.1007/978-3-642-24583-1_33

[9] Michalis Christou et al. “Computing All Subtree Repeats in Ordered Trees”.
In: Information Processing Letters 112.24 (2012), pp. 958–962. doi: 10.1016/
j.ipl.2012.09.017.

[10] Hubert Comon et al. Tree Automata Techniques and Applications. Available
at HAL: https://hal.archives-ouvertes.fr/hal-03367725. 2008.

[11] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. 2nd.
Wiley-Interscience, 2006. isbn: 978-0-471-24195-9.

[12] P. J. Downey, R. Sethi, and R. E. Tarjan. “Variations on the common subex-
pression problem”. In: Journal of the ACM 27 (4 1980), pp. 758–771. doi:
10.1145/322217.322228.

[13] Michael Drmota. Random Trees: An Interplay Between Combinatorics and
Probability. 1st. Springer Vienna, 2009. doi: 10.1007/978-3-211-75357-6.

[14] Michael Drmota and Bernhard Gittenberger. “The Shape of Unlabeled Rooted
Random Trees”. In: European Journal of Combinatorics 31.8 (2010), pp. 2028–
2063. doi: 10.1016/j.ejc.2010.06.018.

[15] A. P. Ershov. “On Programming of Arithmetic Operations”. In: Communica-
tions of the ACM 1.8 (1958), pp. 3–9.

[16] Arash Farzan and J. Munro. “A Uniform Paradigm to Succinctly Encode
Various Families of Trees”. In: Algorithmica 68 (Jan. 2014). doi: 10.1007/
s00453-012-9664-0.

[17] James Allen Fill and Nevin Kapur. “Transfer Theorems and Asymptotic
Distributional Results for m-ary Search Trees”. In: Random Structures &
Algorithms 26.4 (July 2005), pp. 359–391. doi: 10.1002/rsa.v26:4.

[18] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge
University Press, 2009.

[19] Philippe Flajolet, Paola Sipala, and Jean-Marc Steyaert. “Analytic Varia-
tions on the Common Subexpression Problem”. In: Automata, Languages and
Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 220–
234.

[20] Tomáš Flouri et al. “An Optimal Algorithm for Computing All Subtree Repeats
in Trees”. In: Combinatorial Algorithms, 24th International Workshop, IWOCA
2013, Rouen, France, July 10-12, 2013, Revised Selected Papers. Vol. 8288.
Lecture Notes in Computer Science. Heidelberg: Springer, 2013, pp. 269–282.
doi: 10.1007/978-3-319-03898-8_24.

[21] Moses Ganardi et al. “Universal Tree Source Coding Using Grammar-Based
Compression”. In: IEEE Transactions on Information Theory 65.10 (2019),
pp. 6399–6413. doi: 10.1109/TIT.2019.2919829.

76

https://doi.org/10.1016/j.ipl.2012.09.017
https://doi.org/10.1016/j.ipl.2012.09.017
https://hal.archives-ouvertes.fr/hal-03367725
https://doi.org/10.1145/322217.322228
https://doi.org/10.1007/978-3-211-75357-6
https://doi.org/10.1016/j.ejc.2010.06.018
https://doi.org/10.1007/s00453-012-9664-0
https://doi.org/10.1007/s00453-012-9664-0
https://doi.org/10.1002/rsa.v26:4
https://doi.org/10.1007/978-3-319-03898-8_24
https://doi.org/10.1109/TIT.2019.2919829

[22] Zbigniew Gołębiewski, Andrzej Magner, and Wojciech Szpankowski. “Entropy
and Optimal Compression of Some General Plane Trees”. In: ACM Transactions
on Algorithms (TALG) 15.1 (2018), pp. 1–23. doi: 10.1145/3282485.

[23] Lorenz Hübschle-Schneider and Rajeev Raman. “Tree Compression with Top
Trees Revisited”. In: International Symposium on Experimental Algorithms.
Springer. 2015, pp. 15–27.

[24] Guy Joseph Jacobson. Succinct static data structures. Carnegie Mellon Uni-
versity, 1988.

[25] A. Jeż and M. Lohrey. “Approximation of Smallest Linear Tree Grammars”.
In: Proceedings of STACS 2014. Vol. 25. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2014, pp. 445–457. doi: 10.4230/LIPIcs.STACS.
2014.445.

[26] J.C. Kieffer. “A unified approach to weak universal source coding”. In: In-
formation Theory, IEEE Transactions on 24 (Dec. 1978), pp. 674–682. doi:
10.1109/TIT.1978.1055960.

[27] Markus Lohrey. “Grammar-Based Tree Compression”. In: Proceedings of the
International Conference on Developments in Language Theory. Vol. 9168.
2015, pp. 46–57. doi: 10.1007/978-3-319-21500-6_5.

[28] Markus Lohrey, Sebastian Maneth, and Roy Mennicke. “XML tree structure
compression using RePair”. In: Information Systems 38 (Nov. 2013), pp. 1150–
1167. doi: 10.1016/j.is.2013.06.006.

[29] H. M. Mahmoud. Evolution of Random Search Trees. A Wiley-Interscience
Publication. New York: John Wiley & Sons Inc., 1992.

[30] A. Meir and J. W. Moon. “On the Altitude of Nodes in Random Trees”. In:
Canadian Journal of Mathematics 30.5 (1978), pp. 997–1015. doi: 10.4153/
CJM-1978-073-8.

[31] J. Ian Munro et al. “Hypersuccinct Trees – New universal tree source codes
for optimal compressed tree data structures and range minima”. In: 29th
Annual European Symposium on Algorithms (ESA 2021). Vol. 204. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 70:1–70:18. doi: 10.4230/
LIPIcs.ESA.2021.70. url: https://arxiv.org/abs/2104.13457.

[32] Dimbinaina Ralaivaosaona and Stephan Wagner. “Repeated Fringe Subtrees in
Random Rooted Trees”. In: Proceedings of the Twelfth Workshop on Analytic
Algorithmics and Combinatorics (ANALCO 2015). SIAM, 2015, pp. 78–88.
doi: 10.1137/1.9781611973761.

77

https://doi.org/10.1145/3282485
https://doi.org/10.4230/LIPIcs.STACS.2014.445
https://doi.org/10.4230/LIPIcs.STACS.2014.445
https://doi.org/10.1109/TIT.1978.1055960
https://doi.org/10.1007/978-3-319-21500-6_5
https://doi.org/10.1016/j.is.2013.06.006
https://doi.org/10.4153/CJM-1978-073-8
https://doi.org/10.4153/CJM-1978-073-8
https://doi.org/10.4230/LIPIcs.ESA.2021.70
https://doi.org/10.4230/LIPIcs.ESA.2021.70
https://arxiv.org/abs/2104.13457
https://doi.org/10.1137/1.9781611973761

[33] Rajeev Raman and S. Srinivasa Rao. “Succinct Representations of Ordinal
Trees”. In: Space-Efficient Data Structures, Streams, and Algorithms: Papers
in Honor of J. Ian Munro on the Occasion of His 66th Birthday. Ed. by
Andrej Brodnik et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 319–332. isbn: 978-3-642-40273-9. doi: 10.1007/978-3-642-40273-9_20.

[34] Jie Zhang, En-hui Yang, and John C. Kieffer. “A Universal Grammar-Based
Code for Lossless Compression of Binary Trees”. In: IEEE Transactions on
Information Theory 60.3 (2014), pp. 1373–1386. doi: 10.1109/TIT.2013.
2295392.

[35] D. G. Zill and M. R. Cullen. Differential Equations with Boundary-Value
Problems. 5th. Belmont: Brooks Cole, 2001.

78

https://doi.org/10.1007/978-3-642-40273-9_20
https://doi.org/10.1109/TIT.2013.2295392
https://doi.org/10.1109/TIT.2013.2295392

	Introduction
	Preliminaries on combinatorics
	Preliminaries on information theory
	Cauchy-Euler differential equations

	Minimal DAG compression
	Computation effort of the minimal DAG
	Compression rate for binary trees
	Compression rate for general trees
	Simply generated trees
	Minimal DAG compression for Pólya and labeled trees
	Minimal DAG compression for binary increasing trees

	Grammar-based tree compression
	TSLPs
	A universal grammar-based code for unlabeled binary trees

	Entropy-based compression
	Entropy of plane trees
	Entropy of increasing search trees
	Entropy of increasing trees
	Compression algorithm for m-ary search trees
	Hypersuccinct compression for binary trees
	A brief outlook on further developments
	Bibliography

