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Kurzfassung

Mit dem zunehmenden Einfluss der sozialen Medien wird es immer wichtiger, die Rich-
tigkeit von Online-Informationen zu gewährleisten. Die automatisierte Überprüfung
von Fakten umfasst mehrere Stufen, darunter die Erkennung von Behauptungen, die
Priorisierung, das Abrufen von Beweisen, die Vorhersage des Wahrheitsgehalts und die
Generierung von Erklärungen. Eine wichtige, aber oft übersehene Komponente ist das
Abrufen von bereits geprüften Behauptungen, was zur Bekämpfung von Fehlinformatio-
nen beiträgt, indem neue Behauptungen mit bestehenden Faktenprüfungen abgeglichen
werden.

In dieser Arbeit entwickeln wir ein mehrsprachiges und sprachübergreifendes System zur
Abfrage von faktengeprüften Behauptungen, das auf einer hybriden Abfrage-Pipeline ba-
siert, die lexikalische und dichte Abfragemodelle kombiniert. Wir evaluieren systematisch
verschiedene Retrieval- und Reranking-Strategien und zeigen, dass hybride Ensembles
Effizienz und Effektivität effektiv ausbalancieren und einzelne Retriever übertreffen.
Während Reranking das sprachübergreifende Retrieval signifikant verbessert, bleibt
seine Wirkung in einsprachigen Umgebungen begrenzt, was die Effektivität eines gut
konzipierten Ensembles gegenüber immer komplexeren Ranking-Ebenen unterstreicht.

Darüber hinaus analysieren wir die Auswirkungen von Vorverarbeitungsschritten, verglei-
chen Modelle in Bezug auf Abrufleistung, Ausführungszeit, Anzahl der Parameter und
Speicherverbrauch und führen eine Fehleranalyse durch, um die wichtigsten Einschrän-
kungen zu ermitteln. Schließlich diskutieren wir mögliche Verbesserungen und zukünftige
Forschungsrichtungen, um die Suche nach mehrsprachigen Faktenchecks zu verbessern.

Unser Ansatz wurde bei SemEval-2025 Task 7 angewandt, wo wir Ergebnisse und
Erkenntnisse aus unserer Teilnahme präsentieren.
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Abstract

With the growing influence of social media, ensuring the accuracy of online information
has become increasingly important. Automated fact-checking involves multiple stages,
including claim detection, prioritization, retrieval of evidence, veracity prediction, and
explanation generation. A crucial yet often overlooked component is retrieving previously
fact-checked claims, which helps combat misinformation by matching new claims with
existing fact-checks.

In this work, we develop a multilingual and crosslingual fact-checked claim retrieval system
based on a hybrid retrieval pipeline that combines lexical and dense retrieval models. We
systematically evaluate different retrieval and reranking strategies, demonstrating that
hybrid ensembles effectively balance efficiency and effectiveness, outperforming individual
retrievers. While reranking significantly enhances crosslingual retrieval, its impact in
monolingual settings remains limited, highlighting the effectiveness of well-designed
ensembling over increasing complex ranking layers.

Additionally, we analyze the impact of preprocessing steps, compare models in terms
of retrieval performance, execution time, number of parameters and memory usage,
and conduct an error analysis to identify key limitations. Finally, we discuss potential
improvements and future research directions to enhance multilingual fact-check retrieval.

Our approach was applied to SemEval-2025 Task 7, where we present results and insights
gained from our participation.
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CHAPTER 1
Introduction

Social media has revolutionized how information is consumed and shared, providing
instant access to news and a wide range of perspectives. Unlike traditional media, where
content is filtered through editorial standards, social media allows anyone to publish and
share information, often without verification. As a result, the spread of misinformation
has accelerated, making it increasingly difficult to distinguish between true and misleading
claims. Misinformation is more than just a source of confusion; it has the ability to
shape public opinion and deepen political divides. Its impact can be seen in real-world
events [HBMC24], from public health crises fueled by false claims to election interference
driven by misleading narratives.

Traditional fact-checking, by journalists and expert organizations, has long been used
to combat misinformation. Although reliable, this manual approach is slow and labour-
intensive, and lacks the scalability to keep up with the speed and volume of online
information. Adding to the challenge, misinformation is frequently reformated and
reshared on different platforms, often altered in wording, format, length, or even lan-
guage, making detection and verification even more difficult. This is an even bigger
issue in low-resource languages, where fact-checking efforts may be limited or less accessi-
ble [BBVEF+24, KLPRM21].

To address these challenges, automated fact-checking systems have appeared as a promis-
ing solution, using advances in natural language processing and information retrieval
to detect and verify claims efficiently. A key component of these systems is previously
fact-checked claim retrieval (PFCR) [PSM+23]— a process that matches new claims with
fact-checks that have already been verified. This step is crucial for preventing the spread
of recurring misinformation, reducing the need for redundant fact-checking efforts, and
ensuring that users quickly access verified information [PZ24].

In this thesis, we present our system, which employs a hybrid retriever-reranker architec-
ture for verified claim retrieval. Our approach focuses on zero-shot retrieval [SLG+24,
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1. Introduction

TRR+21], avoiding model training or fine-tuning to ensure applicability across diverse
topics, languages, and platforms. By utilizing out-of-the-box pre-trained models, our
system delivers competitive performance while minimizing resource demands and de-
velopment overhead. This strategy highlights the viability of pre-trained models as
effective tools for multilingual and crosslingual fact-checking tasks, demonstrating their
ability to generalize without task-specific adaptations. Further, we analyze the impact
of preprocessing, compare retrieval efficiency across different model configurations, and
conduct error analysis to identify key limitations.

We participated in SemEval-2025 Shared Task 71 which tackles the challenge of mul-
tilingual and crosslingual PFCR. The task is divided into two subtasks: monolingual
and crosslingual retrieval. In the monolingual subtask, the search space is restricted to
fact-checked claims in the same language as the query claim. In contrast, the crosslingual
subtask allows retrieval across multiple languages, enabling fact-checks in one or more
languages to be retrieved for a query in a different language. The monolingual subtask
includes data for English, German, French, Arabic, Spanish, Portuguese, Malay, and
Thai, with Polish and Turkish added to the test set.

1.1 Research Questions
This thesis answers the following research questions ("RQs"):

• RQ1: Which preprocessing and data augmentation techniques (such as translation,
stop-word removal, stemming, and spell-correction) most effectively enhance the perfor-
mance of BM25 for monolingual claim retrieval, and how do these techniques impact
different types of retrieval errors, such as false positives and false negatives?

• RQ2: How do translation-based approaches for crosslingual retrieval compare to
multilingual models in terms of S@102, execution time and memory usage?

• RQ3: Which retriever-reranker combinations yield the most consistent performance
for monolingual claim retrieval in terms of S@10 across languages?

1.2 Structure of the Thesis
This thesis is structured as follows:

• Chapter 2 provides background on natural language processing (NLP) and infor-
mation retrieval (IR) and offers an overview of the retrieval and the fact-checking
pipelines.

1https://disai.eu/semeval-2025/
2Success-at-k is a metric that evaluates whether at least one relevant document appears within the

top k retrieved results.

2
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1.2. Structure of the Thesis

• Chapter 3 describes the fact-checking datasets and gives an overview of the related
work.

• Chapter 4 describes the used datasets, evaluation measures and the experiment
details.

• Chapter 5 explains the key modules of our system.

• Chapter 6 analyses the results of the monolingual subtask.

• Chapter 7 analyses the results of the crosslingual subtask.

• Chapter 8 sums up the conclusions and possible future research directions.
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CHAPTER 2
Background

In this chapter, we provide background of the key concepts from the domains of natural
language processing and information retrieval necessary for understanding the methods
and approaches explored in our work.

2.1 Natural Language Processing
Natural Language Processing (NLP) is a subfield of computer science and artificial
intelligence (AI) that focuses on enabling computers to process, understand, and generate
natural language.

The roots of NLP can be traced back to the 1950s, when Alan Turing published "Comput-
ing Machinery and Intelligence" [TUR50], in which he proposed the now-famous "Turing
Test." While the Turing Test remains an important philosophical benchmark, modern
NLP systems are evaluated using more practical metrics, such as accuracy in translation,
question-answering, and language modeling tasks.

Between the 1950s and the early 1990s symbolic NLP was the main approach for solving
NLP tasks [Jon94]. The main premise of symbolic NLP is that a computer can emulate
natural language understanding if we provide it with a set of rules and it applies those
rules to the data it confronts.

By the 1980s and 1990s, the development of machine learning algorithms led to a shift in
NLP from rule-based systems to statistical methods. This transformation was driven
by the increasing availability of large text datasets and increased computational power,
which enabled data-driven models to outperform manually designed linguistic rules.

In the 2000s, Artificial Neural Networks(ANNs) [WC03], inspired by the structure of the
human brain, became the foundation of deep learning advancements in NLP. Sequence-
based models like Recurrent Neural Networks (RNNs) [She20] and Long Short-Term
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2. Background

Memory (LSTM) [HS97] networks became widely used for language modelling, machine
translation, and speech recognition. Despite their success, RNNs had a limitation in
capturing long-range dependencies in text.

In the early 2010s, word embeddings such as Word2Vec [MCCD13], GloVe [PSM14], and
fastText [BGJM16] were introduced. These methods represent words as dense vectors in
continuous vector spaces, capturing semantic relationships and contextual meaning more
effectively than previous frequency-based approaches.

By the late 2010s, transformer-based models revolutionised NLP. Starting with Google’s
Bidirectional encoder representations from transformers (BERT) [DCLT18], and followed
by models like GPT (Generative Pre-trained Transformer) [BMR+20] and T5 (Text-
to-Text Transfer Transformer) [RSR+19]. These architectures introduced self-attention
mechanisms, setting new standards in tasks like machine translation, text summarization,
and conversational AI. Since then, transformers have become the foundation of modern
NLP, surpassing older statistical and rule-based methods in both accuracy and efficiency.

2.2 Information Retrieval and the Retrieval Pipeline

Information retrieval (IR) [MRS08] is a field of computer science and information science
that focuses on identifying and retrieving relevant information from large collections of
unstructured or semi-structured data. The goal of IR is to efficiently provide users with
the most relevant results (documents, resources) based on their queries. As multiple
documents may be relevant, they are often ranked according to their relevance score to
the user’s query.

The term "information retrieval" was first introduced in the 1950s [Moo52], when auto-
mated retrieval systems were developed to replace manual indexing.

The earliest IR systems from the 1950s and 1960s relied on Boolean retrieval models, where
documents were retrieved based on exact keyword matches. In the 1960s, IBM developed
the Storage and Information Retrieval System (STAIRS) [SL65], which introduced key
IR concepts such as the vector space model and term weighting.

By the 1970s and 1980s, probabilistic retrieval models emerged, leading to the development
of models like BM25 [RWJ+94], which remains a strong baseline for modern IR tasks.
These probabilistic models improved upon earlier approaches by incorporating term
frequency and document length into relevance calculations, making retrieval more robust.

In the 1990s, the rise of the World Wide Web led to the development of early search
engines that helped users navigate through the expanding online information space.
Web search engines needed to rank documents efficiently, leading to the development
of link-analysis-based methods such as PageRank. Unlike traditional IR models, which
relied on term frequency, PageRank [BP98] introduced the concept of authority ranking,
using hyperlink structures to assess a webpage’s importance.

6



2.2. Information Retrieval and the Retrieval Pipeline

Since the 2000s, IR has evolved significantly, driven by advancements in machine learning
and NLP. Traditional term-based retrieval models, such as BM25, have been augmented
with neural ranking models that leverage deep learning to improve document relevance
estimation. The introduction of deep learning models enabled vector-based retrieval using
dense representations rather than sparse keyword-based methods. Transformer-based
models such as BERT [DCLT19] revolutionized retrieval by allowing contextualized word
embeddings, significantly improving query understanding and document ranking. Neural
IR methods, including dense retrieval models, replaced traditional sparse models by
leveraging pre-trained embeddings to retrieve semantically relevant documents.

In the context of this thesis, we are retrieving fact-checked claims from a large collection
(corpus). The queries used in this work are the claims extracted from social media posts.
To determine the relevance between the queries (posts) and the documents (fact-checked
claims), we calculate a similarity score between every query-document (claim - fact-check)
combination in the corpus. In the ideal case, the most relevant documents have the
highest similarity score for a given query.

Modern information retrieval systems commonly adopt a retriever-reranker architecture,
which combines both lexical and semantic retrieval models to efficiently find and prioritize
relevant documents. This two-stage approach ensures a balance between speed, recall,
and ranking precision by first retrieving a broad set of candidate documents and then
refining their ranking through a more computationally intensive process [KZL+20].

2.2.1 Retrieval Stage
The retrieval stage is responsible for retrieving an initial candidate set of documents that
are most relevant to the user’s query. Typically, retrieval models return the top-k results,
where k varies depending on the system’s constraints and goals. This step prioritizes
speed and recall, ensuring that no potentially relevant documents are missed [CFG+21].

Retrieval models can be broadly classified into two categories:

1. Lexical Retrieval (Sparse Representations)

2. Semantic Retrieval (Dense Representations)

Lexical Retrieval

Traditional text retrieval systems rely on exact term matching between queries and
documents. The ranking of retrieved documents is typically based on the frequency
of query terms within a document, as well as their inverse document frequency (for
models like TF-IDF and BM25), without considering term order, semantics, or contextual
relationships. These systems work well for retrieving information when the exact wording
of the query matches the document’s content but struggle in cases where meaning is
conveyed differently.

7



2. Background

Term-based retrieval systems face several challenges, including polysemy (words with
multiple meanings), synonymy (different words with the same meaning), and lexical gaps
(cases where a query and relevant documents use different vocabulary). These limitations
can lead to incomplete or inaccurate retrieval.

Among the traditional IR methods, TF-IDF (Term Frequency-Inverse Document Fre-
quency) [SJ88] and BM25 (Best Matching 25) [RWJ+94] are widely used due to their
effectiveness in ranking documents based on term importance and document relevance.

TF-IDF is a statistical measure used to evaluate the importance of a word within a
document relative to a larger corpus. It balances term frequency (TF) — how often a
word appears in a document — with inverse document frequency (IDF) — how rare a
word is across all documents. Words that appear frequently in a single document but
rarely in others have a higher importance, allowing relevant documents to be ranked
higher.

TF-IDF(t, d) = TF(t, d) × IDF(t)

where:

• t is the term (word),

• d is the document,

• TF(t, d) is the term frequency, representing how often term t appears in document
d,

• IDF(t) is the inverse document frequency, reducing the weight of common words.

Term Frequency (TF) is given by:

TF(t, d) = ft,d∑︁
t′∈d ft′,d

where:

• ft,d is the number of times term t appears in document d,

• and the denominator normalizes it by the total count of all terms t′ in d.

Inverse Document Frequency (IDF) is calculated as:

IDF(t) = log
(︃

N

1 + DF(t)

)︃
where:

8



2.2. Information Retrieval and the Retrieval Pipeline

• N is the total number of documents in the corpus,

• DF(t) is the number of documents containing term t. The "+1" in the denominator
prevents division by zero.

BM25 is a ranking function built upon TF-IDF. It improves TF-IDF by introducing a
saturation function and document length normalization. Unlike term frequency scoring,
BM25 accounts for repeated occurrences of a term, preventing long documents from being
unfairly favoured. It also includes a parameter (b) that controls the weight assigned to
term frequency and document length. BM25 is one of the most effective and widely used
retrieval models and is often used as a baseline in modern IR research, in our approach,
we use BM25 as a lexical retriever.

BM25(d, q) =
∑︂
t∈q

IDF(t) · ft,d · (k1 + 1)
ft,d + k1 · (1 − b + b · |d|

avgdl)

where:

• q is the query containing multiple terms t,

• d is the document,

• ft,d is the frequency of term t in document d,

• k1 is a hyperparameter controlling term frequency scaling (typically set between
1.2 and 2.0),

• b is a hyperparameter controlling document length normalization (typically set to
0.75),

• |d| is the length of document d (word count),

• avgdl is the average document length in the corpus.

The Inverse Document Frequency (IDF) component in BM25 is defined as:

IDF(t) = log
(︃

N − DF(t) + 0.5
DF(t) + 0.5 + 1

)︃
where:

• N is the total number of documents in the corpus,

• DF(t) is the number of documents containing term t. The "+0.5" term prevents
extreme values for rare words.

9



2. Background

Semantic Retrieval

Advances in neural networks and pre-trained language models have enabled a shift from
traditional term-based retrieval to semantic retrieval, also known as dense retrieval.
Unlike term-based methods that rely on exact word matching, semantic retrieval captures
the meaning of queries and documents using dense vector representations. This allows
for more flexible and accurate retrieval, as it can match conceptually similar text even if
the exact words differ, overcoming synonymy, polysemy, and lexical variation [DCLT19].

The retrieval process consists of two main steps:

1. Encoding

Encoding is the foundation of semantic retrieval, transforming raw text into struc-
tured numerical representations that enable efficient and meaningful comparisons
between queries and documents. The quality of these representations directly
impacts retrieval performance, as it determines how well the system captures
relationships between queries and documents.

Traditional encoding methods, such as one-hot and multi-hot encoding, rely on
high-dimensional sparse vectors that lack the ability to model semantic similarities.
These approaches treat words as independent entities, failing to capture contextual
relationships or meanings.

In contrast, modern embedding techniques generate low-dimensional dense rep-
resentations that preserve semantic information while improving computational
efficiency. These embeddings are produced using pre-trained language models,
which map semantically related words and phrases closer together in a continuous
vector space. This allows retrieval systems to go beyond simple keyword matching,
enabling more accurate and context-aware results. As embeddings are lower in
dimensionality in comparison to traditional methods, they allow for faster similarity
computations, reduce the memory footprint and computational cost.

There are two primary encoding architectures used in dense retrieval:

• Bi-Encoders independently encode queries and documents into fixed-size
dense vectors using a shared encoder [LMR+24]. These embeddings are then
compared using a similarity function. By precomputing and storing document
embeddings, bi-encoders enable efficient large-scale retrieval. However, because
queries and documents are encoded separately, they struggle to capture fine-
grained interactions between them.

• Cross-Encoders process query-document pairs together, allowing them to
capture rich, context-specific interactions. Unlike bi-encoders, cross-encoders
do not precompute embeddings — each document must be encoded together
with the query at runtime, resulting in significantly higher computational
costs.
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2.2. Information Retrieval and the Retrieval Pipeline

The choice of the encoding architecture influences the efficiency and effectiveness
of semantic retrieval, balancing between computational speed and accuracy during
the retrieval.

2. Similarity Search

The next step in the retrieval process is identifying the documents whose embeddings
are the most similar to the query embedding. To measure this similarity, we use
cosine similarity, which is well-suited for text-based retrieval tasks:

Cosine similarity measures the cosine of the angle between two vectors. It is
defined as:

CosineSimilarity(A, B) = A · B

∥A∥∥B∥
where A and B are the embedding vectors of the query and document. Cosine
similarity ranges from -1 (completely opposite) to 1 (identical), with 0 indicating
orthogonal (unrelated) vectors [LPS16].

The choice of similarity measure depends on the embedding model and the nature of
the retrieval task. Cosine similarity is generally preferred for text-based embeddings,
as it emphasizes the directionality of vectors, which aligns best with semantic
similarity. In the PFCR task, our goal is to rank fact-checked claims based on
their semantic closeness to the query. Since cosine similarity focuses on vector
orientation rather than magnitude, it ensures that the embedding space effectively
captures semantic relationships, making it well-suited for this retrieval task.

Alternative similarity functions, such as the dot product (which considers magnitude)
and Euclidean distance (which measures absolute distance), are less suited for our
task. The dot product is more useful when magnitude carries meaning, and
Euclidean distance is commonly used in clustering rather than retrieval.

For clarity we note that similarity functions are used with lexical models and bi-
encoder-based semantic models. In contrast, cross-encoders generate a single scalar
value (a relevance score), eliminating the need for a separate similarity function.

While lexical retrieval is computationally efficient and interpretable, it can suffer from
vocabulary mismatches and synonym gaps [KZL+20]. On the other hand, semantic
retrieval improves query understanding but may require computationally expensive
models and large storage for dense vectors [CFG+21].

First-stage retrieval is designed to be fast and efficient, as it operates over a massive
corpus. However, it does not always rank the most relevant documents at the top,
especially in cases of ambiguous queries or noisy text. This limitation is addressed
by the reranking stage, which refines the ranking by incorporating deeper semantic
understanding [KZL+20].

11
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2.2.2 Reranking Stage
The reranking stage refines the initially retrieved documents by assigning more precise
relevance scores, therefore improving ranking accuracy and retrieval precision. Unlike the
first-stage retrieval, which prioritizes efficiency in retrieving a broad set of relevant candi-
dates, reranking employs more sophisticated models, typically the previously described
semantic cross-encoder retrievers, to evaluate the contextual and semantic similarity be-
tween queries and documents [YNL21, BBVEF+24]. These models offer deeper semantic
understanding compared to first-stage retrievers, allowing for more accurate ranking and
better identification of the truly relevant documents.

Due to their computational cost, rerankers cannot efficiently process large volumes
of documents. To maintain a balance between efficiency and effectiveness, reranking
is applied only to the top candidates retrieved in the first stage. This ensures that
computational resources are allocated to the most promising candidates, maximizing
ranking precision without significantly impacting performance.

By combining a fast first-stage retrieval with a high-precision reranking model, the
retriever-reranker pipeline provides an effective, scalable solution for modern information
retrieval tasks [CLMS23, CFG+21].

2.2.3 Ensembler
An ensembler combines retrieval results from multiple models (retrievers or rerankers),
taking advantage of the strength of each, such as precise word matching, English-specific
retrieval, or multilingual semantic understanding. It is a valuable component for retrieval
tasks as it allows the integration of diverse retrieval strategies tailored for specific
languages and dataset characteristics. The central component of an ensembler is its
aggregation function, which determines how the results from the individual models are
combined:

• Reciprocal Rank Fusion (RRF) [CCB09] aggregates the rankings assigning a
score to each document d based on the reciprocal value of its rank between different
retriever models:

Rscore(d) =
∑︂
r∈R

1
k + rankr(d)

where R is the set of retrievers, rankr(d) is the rank of document d assigned by the
retriever r, and k is a constant added to prevent division by zero.

• Majority Voting ranks fact-checks based on their frequency in the top 10 results
across multiple retrieval models. Given a set of N retrievers, each retrieving a
ranked list of fact-checks, the final score for a fact-check d is computed as:

S(d) =
N∑︂

i=1
⊮(d ∈ Ri)
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where Ri represents the top 10 results retrieved by the i-th model, and ⊮(d ∈ Ri)
is an indicator function that equals 1 if d appears in Ri, otherwise 0.
This method prioritizes documents retrieved by multiple models, assuming consensus
indicates higher relevance. However, it may be ineffective when retrievers have low
overlap in their top results, as relevant fact-checks appearing in only a few models
may be underrepresented.

• Exponential Decay Weighting exponentially penalizes lower-ranked documents:

S(d) = w · e−λ·rank(d)

where w is a weight factor and λ controls the decay rate. This method favours
documents ranked highly by at least one retriever but can overlook relevant lower-
ranked documents.

2.3 Fact-Checking
Fact-checking is the process of verifying the accuracy of claims, statements, or information
to determine whether they are true, false, misleading, or lacking context. It is commonly
applied in journalism, politics, social media, and scientific discourse to fight misinformation
and disinformation [VR14].

Traditionally, fact-checking has long been a manual process, relying on experts (journalists,
researchers, or fact-checking organizations) to verify claims by referencing them with
credible sources such as official documents, or expert opinions. While this approach
is thorough, it is also time-consuming and unable to keep up with the rapid spread of
information. The delay in verification allows the spread of false narratives, shaping public
opinion and creating opportunities for manipulation [SMY+25].

Fact-checkers typically follow a structured process consisting of identifying check-worthy
claims, gathering evidence, determining the veracity of the claim, and providing expla-
nations for their findings. The manual approach has been the standard for ensuring
accuracy, but its lack of scalability has created a demand for automated solutions.

2.3.1 Automated Fact-Checking
With the growing volume of online misinformation, automated fact-checking has emerged
as a promising solution to scale verification efforts supporting human fact-checkers by
reducing the time and effort required for verification.

A survey on monolingual, multilingual and crosslingual research [PZ24] discusses the
different subtasks of an automated fact-checking pipeline. They state that the pipeline is
composed of five components [NCH+21, BBVEF+24]:

• Claim Detection identifies statements that are check-worthy, such as social media
posts or news articles. This step filters out irrelevant content and focuses on statements
that have factual implications.
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• Claim Prioritization ranks the detected claims based on factors such as potential
impact, speed of spread, potential harm, or public interest. This ensures that fact-checkers
allocate resources efficiently to address the most impactful misinformation.

• Retrieval of Evidence searches for supporting evidence. This step provides the
necessary context to assess the truthfulness of a claim.

• Veracity Prediction classifies claims based on the retrieved evidence, determining
whether they are true, false, partially true, or require further context.

• Generation of Explanation produces a human-readable justification for the classifi-
cation, explaining why the veracity is assigned to the claim. This can include summarizing
retrieved evidence, highlighting contradictions, or providing contextual information.

The pipeline is shown in Figure 2.1.

Figure 2.1: Fact-checking pipeline (created by author)

Apart from these five major components, there is an additional component in charge
of retrieving previously fact-checked claims. This component identifies pairs of texts
with similar claims to be addressed with the same fact check. Grouping similar claims
across different languages can help prioritize efforts and expand their reach, combating
misinformation more effectively.

This task is referred to as verified claim retrieval [BCEN+20] or claim matching [KGGH21a].
Other names for this task are also used in the literature, such as previously fact-checked
claim retrieval (PFCR) [PSM+23] or fact-checked claim detection [SBDSMN20]. For
consistency, we will refer to this task as PFCR throughout the thesis.

In this thesis, we are focusing on this component of the automated fact-checking pipeline.
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One could argue that the limitation of this task is the assumption of the existence
of a corresponding fact-checked article for a given claim. However, it is important to
remember that PFCR is an additional component that aims to create a shortcut in the
fact-checking pipeline in case the same, perhaps reformulated, claim reappears online
after it has been verified. If such a claim does not exist, then, the pipeline would continue
with the retrieval of evidence.
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CHAPTER 3
Related Work

In this chapter, we give an overview of available fact-checking datasets and retrieval
approaches that influenced this work.

3.1 Fact-Checking Datasets

Several datasets have been developed to support the task of PFCR, each different in
methodology, language coverage, and data construction.

The CheckThat! 2020 [BEN+20] and CheckThat! 2021 [NDSME+21] datasets contain
manually filtered pairs of English and Arabic tweets alongside fact-checks. CheckThat!
2021 extends this by incorporating manually constructed fact-checking data from political
debates. Another dataset, CrowdChecked [HCK+22], collects URLs of verified fact-
checking articles shared on Twitter and retrieves all tweets referencing those URLs.
However, due to its collection process, this dataset includes a high level of noise, requiring
additional filtering to refine relevant matches.

Kazemi et al. (2021) [KGGH21b] created a dataset from several million chat messages
in multiple languages (English, Bengali, Hindi, Malayalam, Tamil) and around 150,000
fact-checks. They released two annotated datasets — one for claim detection and another
for claim similarity. The claim similarity dataset consists of 2,343 pairs of social media
messages and fact-checks, categorized on a four-point similarity scale. However, only
about 250 pairs were confirmed as positive, as only "Very Similar" pairs were considered
valid matches.

Vo and Lee (2019) [VL19] created a dataset that combines images with text, consisting
of tweet-reply pairs where fact-checkers responded to original tweets with fact-checked
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articles from Snopes1 and PolitiFact2. This dataset is exclusively in English. The dataset
was later refined in [VL20] by retaining only tweets that contained both text and images.

Table 3.1 provides a comparative overview of these datasets, illustrating their scope
in terms of claim volume, fact-checks, and language coverage. While CrowdChecked
and Vo and Lee (2019), contain a large number of claims, they are limited to English.
CheckThat! 2021 and Kazemi et al. (2021) include multilingual data but cover few
languages or contain a limited number of validated claim - fact-check pairs.

Despite these efforts, there was still a significant gap in datasets that support large-scale,
multilingual, and crosslingual PFCR. To address this, the MultiClaim dataset [PSM+23]
was developed. The new dataset contains 205,751 fact-checks in 39 languages and 28,092
social media posts in 27 languages. With the help of professional fact-checkers, 31,305
pairs of posts and corresponding fact-checks were gathered out of which 4,212 pairs
are crosslingual, meaning that the languages of post and fact-check are different. Its
linguistic diversity and large dataset size make it a valuable benchmark for evaluating both
monolingual and crosslingual PFCR. The dataset is described in detail in Section 4.1.1.

Input claims Fact-checked claims Pairs Languages
MultiClaim 28,092 205,751 31,305 27/39

CheckThat! 2020 1,197 10,375 2,002 1
CheckThat! 2021 2,928 43,414 3,244 2
CrowdChecked 316,564 10,340 332,660 1

Kazemi et al. (2021) NA 150,000 258 5
Vo and Lee (2019) 64,110 73,203 73,203 1

Table 3.1: Comparison of PFCR datasets

As shown in Table 3.1, MultiClaim stands out as the dataset with the highest number
of verified fact-checked claims and the broadest multilingual coverage. While it has
fewer input claims and claim - fact-check pairs than CrowdChecked and Vo and Lee
(2019), those datasets are both limited to English. We use this dataset to evaluate
our approaches, as it enables a robust assessment of both monolingual and crosslingual
retrieval models.

3.2 Preprocessing for Lexical Retrieval
In this section, we highlight the key works that explore the impact of the different
preprocessing steps on the effectiveness of lexical retrieval models, such as BM25.

Previous research has evaluated BM25’s performance in monolingual settings. In [AOS24],
the authors systematically assessed various preprocessing techniques to determine their
impact on BM25 in Arabic information retrieval systems. Their findings indicated

1snopes.com
2politifact.com
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that stemming significantly improved performance, normalization had a positive effect,
while stop-word removal alone led to a decline in retrieval effectiveness. However,
combining certain preprocessing methods, such as normalization with stemming or stop-
word removal, yielded notable improvements, highlighting the importance of tailored
preprocessing strategies.

In [HKMY20], they reviewed twelve studies on preprocessing for text classification using
a bag-of-words representation and extended this research by evaluating all possible
preprocessing combinations. This work systematically assessed various preprocessing
combinations and found that stop-word removal was the only single technique that
consistently improved accuracy across multiple datasets. For some datasets, combining
preprocessing methods, such as lowercase conversion and spelling correction, yielded the
best results. The study examined datasets primarily in English, but also in Czech and
Turkish, reinforcing the importance of dataset-specific preprocessing choices.

Building on prior research, we conclude that enhancing the performance of lexical
retrievers and constructing an effective retrieval pipeline requires a systematic evaluation
of individual steps and their combinations. In contrast to previous work, our work
investigates the impact of various preprocessing strategies on the performance of BM25
in monolingual claim retrieval across multiple languages, including English, German,
French, Spanish, Portuguese, Arabic, Malay, and Thai.

3.3 Fact-Checked Claim Retrieval Approaches
In this section, we review key works and methodologies in the field of fact-checking, along
with related approaches that contribute to our approach.

3.3.1 Evolution of Fact-Checking Approaches
Fact-checking as a task was first introduced in the "Fact Checking: Task definition and
dataset construction" [VR14] paper in 2014. The authors define it as the assessment of
the truthfulness of a claim, emphasizing its importance both in journalism, where it is a
time-consuming process and for ordinary people to assess the truthfulness of the growing
amount of data they consume.

The authors explore two baseline approaches to fact-checking. The first treats it as a
classification task, where statements are labeled with verdicts and used to train supervised
models. However, they argue this approach is unlikely to succeed, as statements often
lack the necessary knowledge and temporal or spatial context for accurate classification.
The second approach focuses on matching new statements to those already fact-checked
by journalists, reframing the task as a semantic similarity problem. This method uses
existing fact-checks to assess the truthfulness of new claims.

In 2012, SemEval introduced a pilot task on semantic textual similarity (STS) [ACDGA12],
where word overlap was used as the baseline. Most participating teams improved the
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baseline by incorporating lemmatization and Part-of-Speech (PoS) tagging. In the
following year, approaches had expanded to include parsing, word sense disambiguation,
semantic role labeling, time and date resolution, lexical substitution, string similarity,
and textual entailment [ACD+13]. Over the next few years, additional techniques such
as Latent Semantic Analysis (LSA) [Fol96] and WordNet [Mil95] were introduced, often
combined within ensemble models [ABC+14, ABC+15].

From 2016, STS methods began integrating deep learning with traditional NLP pipelines
[ABC+16]. Long Short-Term Memory (LSTM) networks and Deep Structured Semantic
Models (DSSMs) were combined with feature-engineered models like Random Forest
(RF), Gradient Boosting (GB), and XGBoost (XGB), using n-gram overlap features to
enhance performance [CDA+17].

Since 2018, PFCR has relied on traditional information retrieval methods like BM25 and
embedding-based models. Reranking was used to improve retrieval performance by com-
bining multiple retrieval methods while balancing computational efficiency [SBDSMN20].

Starting in 2020, PFCR became a key task in CLEF’s CheckThat! challenge [BEN+20],
where participating teams mostly used fine-tuned BERT variants and Support Vec-
tor Machines (SVMs) [NME+21a]. By 2022, systems started to employ a two-stage
retrieval pipeline: first retrieving documents with BM25 or a similar sparse retrieval
method, then reranking them using neural models such as sentence-BERT or T5-based
rerankers [BCnEN+20, NMA+22]. Fine-tuned transformer models such as Sentence-
BERT, ST5, and GPT-Neo were commonly used, with some systems also exploring data
augmentation to further improve retrieval performance.

A more recent approach [VL20] has experimented with using images alongside text
to enhance retrieval accuracy. Some papers improve retrieval by summarizing fact-
checking articles or extracting key sentences. Bhatnagar et al. (2022) [BKC22] explored
summarization of long fact-checks, while Sheng et al. (2021) [SCZ+21] focused on
selecting the most relevant evidence sentences.

3.3.2 Our Approach: Hybrid Retrieval and Reranking for PFCR
Building upon the mentioned fact-checking approaches, we propose a hybrid retrieval
framework that integrates lexical and semantic models with an ensembler-based retrieval-
reranking pipeline.

Unlike prior studies that rely on either lexical or dense retrievers followed by a single
reranker, our approach introduces:

• Retriever Ensembling – A combination of multiple retrievers to enhance recall and
retrieval robustness.

• Reranker Ensembling – A set of rerankers that refine retrieved results by leveraging
their strengths to enhance precision.
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By integrating retriever and reranker ensembling, our framework balances lexical and
semantic models, in a scalable and robust solution for multilingual and crosslingual
PFCR.

3.4 SemEval 2025 Task 7
This thesis is inspired by our participation in SemEval-2025 Task 7: Multilingual and
Crosslingual Fact-Checked Claim Retrieval, which addresses the challenge of efficiently
identifying previously fact-checked claims across multiple languages.

The task is divided into two subtasks:

• Monolingual retrieval, where fact-checks are retrieved in the same language as the
given claim.

• Crosslingual retrieval, where fact-checks may be in a different language than the claim.

We participated in both monolingual and crosslingual subtasks. We discuss our shared
task results in Section 7.4.

Systems were evaluated using S@k metric, which measures the proportion of claims for
which at least one relevant fact-check appears within the top-k retrieved results.

The use of any external data apart from the provided dataset to prepare the submission
was not allowed in the shared task. However, using pre-trained language models and
data augmentation of the dataset was allowed.

This thesis builds upon the research done within the shared task, further exploring hybrid
retrieval strategies, ensembling, and reranking techniques to enhance fact-check retrieval
efficiency and robustness.
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CHAPTER 4
Experiment Setup

To address our research questions, we designed and evaluated a series of experiments,
testing different configurations of retrieval models, rerankers, and ensemble strategies.
Our goal was to determine the most effective approach for multilingual and crosslingual
previously fact-checked claim retrieval. This section details the used datasets, evaluation
measures for each research question and the implementation details.

4.1 Datasets

4.1.1 MultiClaim Dataset

The MultiClaim dataset [PSM+23] is a large-scale multilingual dataset designed for
PFCR, addressing the need for multilingual and crosslingual fact-checking. It was created
to overcome the lack of datasets that extend beyond English and support retrieval in
multiple languages.

MultiClaim contains fact-checks and social media posts for monolingual and crosslingual
retrieval. The dataset includes 205,751 fact-checks in 39 languages and 28,092 social
media posts in 27 languages.

Fact-checks were collected from the Google Fact Check Explorer1, with additional inputs
from major fact-checking sources (e.g., Snopes2). In total, fact-checks were collected from
142 organisations, where each entry includes the claim, title, publication date, and URL.
While full article texts are not included, each fact-check provides a one-sentence summary
of the information being verified. Social media posts were gathered from Facebook3,

1https://toolbox.google.com/factcheck/explorer
2https://www.snopes.com/
3https://www.facebook.com/

23

https://toolbox.google.com/factcheck/explorer
https://www.snopes.com/
https://www.facebook.com/


4. Experiment Setup

Instagram4, and former Twitter5, resulting in a total of 28,092 posts across 27 languages.
The dataset includes 31,305 aligned post–fact-check pairs, where each post is linked
to at least one relevant fact-check. 26,774 pairs are monolingual (post and fact-check
in the same language), while 4,212 are crosslingual (post and fact-check in different
languages) [PSM+23].

Languages and Distribution

MultiClaim provides monolingual data for ten languages: English, German, French,
Spanish, Portuguese, Arabic, Malay, Thai, Polish, and Turkish, with the last two included
only in the test set. While English accounts for the largest portion of the dataset with
85,814 fact-checks, the remaining languages contribute significantly to the multilingual
diversity of the collection. Specifically, Portuguese includes 21,569 fact-checks, followed
by Arabic (14,201), Spanish (14,082), Malay (8,424), Turkish (6,676), German (4,996),
Polish (4,430), and French (4,355) [PSM+23]. Thai, while included in the monolingual
evaluation, has a smaller volume of data with only 382 fact-checks.

Despite the dominance of English, MultiClaim ensures broad representation across
both high- and low-resource languages, supporting robust multilingual and crosslingual
retrieval research, making it one of the most comprehensive resources for fact-checking in
a multilingual context.

Dataset Structure

For each fact-check, the dataset provides:

• ID: A unique identification of the fact-check.

• Claim: The summary statement being fact-checked, its English translation, identi-
fied languages, and their respective percentages.

• Title: The original title, English translation of the title, identified languages, and
their respective percentages.

• Publication Date & Source (instances): Metadata indicating when and where
the fact-check was published, including timestamps and URLs.

An example of a fact-check entry from the dataset is provided in Table 4.1.

For each social media post, the dataset includes:

• ID: A unique identification of the post.
4https://www.instagram.com/
5https://www.twitter.com/
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fact_check_id 18

claim

La filarmónica de París toca el Bolero de Ravel en
una plataforma sobre el Sena por el levantamiento de
la cuarentena,
The Paris Philharmonic plays Ravel’s Bolero on a platform
over the Seine for the lifting of the quarantine,
(’spa’, 1.0)

instances

1594243500.0,
https://factual.afp.com/el-video-de-una-orquesta-tocando
-el-bolero-de-ravel-sobre-el-sena-en-paris-es-de-2017
#367fc73ea7c0c5812887632bc66ff2f5

title

El video de una orquesta tocando el Bolero de Ravel sobre
el Sena, en París, es de 2017,
The video of an orchestra playing Ravel’s Bolero on the
Seine, in Paris, is from 2017,
(’eng’, 1.0)

Table 4.1: An example of a fact-check’s data structure from the MultiClaim dataset

• Text content: The text written by the user, the English translation of the text,
identified languages, and their respective percentages.

• OCR (optical character recognition): transcripts of images attached to the post (if
any), their English translations, identified languages, and their respective percent-
ages.

• Publication Date & Source (instances): Metadata indicating the timestamp
and social media platform where the post was published.

• Verdict: The conclusion regarding the veracity of the post, where the possible
verdicts are:

– False information: The claim made in the post is incorrect based on the
verified sources.

– Partly false information: The post contains a mix of accurate and inaccurate
details, potentially misleading the readers.

– Missing context: The post is not necessarily false, but it lacks the context for
proper interpretation.

– Altered photo/video: The post includes manipulated or edited visual content
that misrepresents the truth.

• Publication Date & Source (instances): Metadata indicating when and where
it was published, including timestamps and URLs.
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post_id 3057
instances 1654553532.0, fb
ocr []
verdicts False Information

text

#2022 - 9€ - Kulturreisen? Die #Sylter waren jedenfalls
begeistert von den Touristen! :) :),
#2022 - 9€ - cultural trips? In any case, the #Sylter were
enthusiastic about the tourists! :) :),
(’deu’, 1.0)

Table 4.2: An example of a post’s data structure from the MultiClaim dataset

An example of a post entry from the dataset is provided in Table 4.2.

Mappings between fact-checks and posts are provided in a separate file, linking each post
to one or more fact-checks that verify or refute the claim.

An example of a post - fact-check mapping entry from the dataset is provided in Table 4.3.

fact_check_id 968
post_id 27280

Table 4.3: An example of a post - fact-check mapping from the MultiClaim dataset

Dataset Preprocessing

The dataset preprocessing include the following steps:

• Removing Noisy Fact-checks and Posts: Fact-checks that had no claim or
where the claim was shorter than 10 characters were removed, as well as the texts
or OCR transcripts that were shorter than 25 characters or had more than 50%
non-alphabetical characters.

• Translation: Fact-checks and posts were translated into English to enable translation-
based retrieval alongside multilingual approaches.

• Deduplication: Redundant fact-checks and posts were filtered out.

The dataset is divided into three stages: training, development, and testing. Each
stage includes three datasets: fact-checks, social media posts, and their corresponding
mappings.

4.1.2 CheckThat! 2021 Dataset
To further evaluate our approach, we evaluate the pipeline on the CheckThat! 2021
dataset for subtask 2A. It consists of two main components: verified claims (referred to
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as vclaims) and social media posts or tweets (referred to as iclaims). The dataset
includes 2,928 claims, 43,414 fact-checks and 3,244 mappings between them in English
and Arabic. This dataset contains only monolingual mapping and will be used during
the evaluation of the monolingual subtask.

Dataset Structure

Each vclaim represents a previously fact-checked claim and is used for verifying new
input claims from social media. Verified claims are provided in the following format:

• vclaim_id: A unique identifier for the verified claim.

• vclaim: The text of the verified claim.

• title: The title of the article providing justification for the claim’s veracity label.

An example of a fact-check claim entry from the dataset is provided in Table 4.4.

vclaim_id vclaim-sno-mom-tear-gas-photo

vclaim A photograph of a migrant mother and her children fleeing
a tear gas attack near a border crossing was staged.

title Was the ‘Illegal Alien Mom with Kids’ Photograph Staged?

Table 4.4: An example of a fact-check claim data structure from the CheckThat! 2021
dataset

Input claims represent the social media content that needs to be verified. In subtask 2A,
input claims are tweets, provided in a tab-separated file with the following columns:

• tweet_id or iclaim_id: A unique identifier for each tweet.

• tweet_text or iclaim: The content of the tweet or input claim.

An example of a post entry from the dataset is provided in Table 4.5.

iclaim_id tweet-sno-298

iclaim

#FakeNews Media all share same photo of “women & kids
gassed”. Perpetrators of invasion instantly become victims
in new #FakeNews narrative. Congratulations, you’ve been
#Hoaxed! pic.twitter.com/ISkExrlc2T — #WalkAway
Mexican J.Lo. (@jetrotter) November 26, 2018

Table 4.5: An example of a post’s data structure from the CheckThat! 2021 dataset

Mappings between input claims and verified claims are provided in a separate tab-
separated file. Each row has the following structure:
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iclaim_id 0 vclaim_id 1

• iclaim_id: Identifier of the input claim (tweet).

• 0: A constant field to comply with the requested (TREC) format.

• vclaim_id: Identifier of the verified claim that supports or refutes the tweet.

• relevance: Indicates a relevant (positive) match between the input claim and the
verified claim. Only relevant (relevance=1) mappings were listed in the file. All
unlisted pairs are considered non-relevant by default.

During the preprocessing, we remove the "0" and "relevance" columns to match the format
of mappings from the MultiClaim dataset.

An example of a post - fact-check mapping entry from the dataset is provided in Table 4.6.

iclaim_id tweet-sno-298
vclaim_id vclaim-sno-mom-tear-gas-photo

Table 4.6: An example of a post - fact-check mapping from the CheckThat! 2021 dataset

4.2 Evaluation Measures
To assess the effectiveness of retrieval models, we use standard retrieval evaluation metrics
that measure how well the retrieved documents (fact-checks) align with the relevant
ground-truth references. The following metrics are used in our evaluation:

4.2.1 Success-at-k (S@k)
Success-at-k (S@k) [Voo05] evaluates whether at least one relevant document appears
within the top k retrieved results. It is a binary metric, assigning a value of 1 if any
relevant fact-check is found within the top k, and 0 otherwise. The final score is the
average over all the queries:

S@k = 1
N

N∑︂
i=1

⊮(∃d ∈ Dk
i : d ∈ Ri)

where:

• N is the total number of queries,

• Dk
i is the set of top-k retrieved documents for query i,

• Ri is the set of relevant documents for query i,
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• ⊮(·) is an indicator function that returns 1 if at least one relevant document is
found within the top-k results, and 0 otherwise.

Throughout this research, we base the evaluation on the S@k metric, as it is practical in
real-world contexts, such as PFCR. S@10 provides a binary indication of whether users
are likely to find a relevant document (fact-check) within the top 10 results, without
having to scan through many retrieved results. A retrieval is considered successful if
any relevant document appears within the top 10 results. This is crucial when achieving
a perfect ranking order is challenging, and the priority is simply retrieving relevant
documents. S@10 is an important metric for determining whether relevant results are
accessible, however, the addition of rank-sensitive metrics provides deeper insights into
retrieval effectiveness.

4.2.2 Mean Reciprocal Rank (MRR)
Mean Reciprocal Rank (MRR) measures the rank position of the first relevant document
in the retrieved list. If the first relevant document appears at rank ri, the reciprocal rank
is 1

ri
, and MRR is the average over all queries:

MRR = 1
N

N∑︂
i=1

1
ri

where:

• N is the total number of queries,

• ri is the rank of the first relevant document for query i (if no relevant document is
retrieved, 1

ri
is set to 0).

Higher MRR values indicate that relevant fact-checks tend to appear earlier in the
retrieved list.

4.2.3 Precision-at-k (P@k)
Precision-at-k (P@k) measures the proportion of retrieved documents within the top k
results that are actually relevant. It evaluates the system’s ability to return relevant
fact-checks while minimizing irrelevant ones:

P@k = 1
N

N∑︂
i=1

|Dk
i ∩ Ri|
|Dk

i |

where:
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• N is the total number of queries,

• Dk
i is the set of top-k retrieved documents for query i,

• Ri is the set of relevant documents for query i.

A higher P@k score indicates that a greater proportion of the retrieved fact-checks are
relevant.

4.2.4 Recall-at-k (R@k)
Recall-at-k (R@k) measures the fraction of relevant documents that appear within the top
k retrieved results. It evaluates how comprehensive the retrieval system is in retrieving
relevant documents:

R@k = 1
N

N∑︂
i=1

|Dk
i ∩ Ri|
|Ri|

where:

• N is the total number of queries,

• Dk
i is the set of top-k retrieved documents for query i,

• Ri is the set of relevant documents for query i.

A higher R@k score indicates the retrieval system captures more relevant fact-checks
within the top-k results.

4.2.5 Comparison of Measures
To assess the effectiveness of retrieval models in the PFCR task, we use evaluation
measures, where each provides a different perspective on retrieval performance:

• S@k is important in PFCR, where retrieving at least one verified fact-check that
matches the claim can be sufficient for fact-checking. However, it does not consider
the ranking quality within the top k, which is not a problem when k is reasonably
low (e.g. k=10). However, S@k also overlooks cases where multiple relevant
fact-checks exist, making it a less precise measure of overall retrieval effectiveness.
Despite this, it remains useful in practical fact-checking scenarios where finding
any relevant fact-check is a priority.

• MRR emphasizes the quality of the ranking by rewarding models that rank relevant
fact-checks higher. However, it only considers the first relevant fact-check, ignoring
cases where multiple fact-checks may provide valuable information.
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• P@k focuses on retrieval accuracy, ensuring the retrieved results are relevant.
However, since the number of relevant fact-checks is often lower than the number
of retrieved ones, P@k values tend to be low, making it less informative compared
to other metrics. Additionally, P@k does not account for missed relevant claims,
limiting its effectiveness in overall retrieval performance evaluation.

• R@k focuses on retrieval completeness, ensuring that as many relevant fact-checks
as possible are retrieved. In PFCR, higher recall ensures that more relevant fact-
checks are retrieved, helping to cover different aspects of the claim. However, R@k
only considers whether relevant fact-checks appear within the top k results but
does not account for their ranking order. A system could have high recall but still
rank irrelevant fact-checks higher than relevant ones, reducing practical usefulness.

4.2.6 Evaluation Measures per RQs

To answer RQ1 (impact of preprocessing and retrieval errors), we evaluate performance
using:

• P@10

• R@10

• S@10

• MRR

For RQ2 (efficiency comparison between multilingual and translation-based retrieval), we
assess:

• S@10 to compare retrieval effectiveness.

• Execution time (seconds per query) to measure execution time.

• Number of model parameters indicating model size.

• Memory usage (MB) capturing RAM/VRAM consumption.

To address RQ3 (effectiveness of retriever-reranker configurations), we use:

• S@10 to evaluate the ranking quality across different retrieval pipelines.
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4.3 Implementation Details
As a starting point for model selection and benchmarking, we referred to the Massive
Text Embedding Benchmark (MTEB)6, which provides an evaluation of text embedding
models across diverse retrieval and ranking tasks.

We implemented the following retrieval models:

• BM25: A traditional sparse retrieval baseline using the BM25Okapi implementation
from the rank-bm25 Python library7. This served as a reference point for comparing
performance against neural models.

• Bi-encoder: A dense retrieval model where queries and documents are encoded
independently. We used AutoModel from Hugging Face’s transformers library8 to
load pre-trained models.

• Cross-encoder: A reranking model where the query-document pair is jointly encoded
to compute relevance scores. This was implemented using the SentenceTransformer
library9.

4.4 Computation and Efficiency
Given the large size of the retriever and reranker models, we enabled mixed precision
during inference to improve computational efficiency, reduce GPU memory consumption,
and accelerate processing.

All the experiments were conducted on NVIDIA GeForce GTX 1080 Ti and NVIDIA
TITAN RTX GPUs.

6https://huggingface.co/spaces/mteb/leaderboard
7https://pypi.org/project/rank-bm25/
8https://huggingface.co/transformers
9https://sbert.net/
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CHAPTER 5
System Overview

This section presents the system architecture shown in Figure 5.1, outlining the key
components of the pipeline:

(1) Data preprocessing module (Section 5.1),

(2) Retrieval-ensemble module (Section 5.2),

(3) Reranking-ensemble module (Section 5.3),

(4) Evaluation module (Section 5.4).

Given a collection of fact-checks, our system retrieves the top k most relevant fact-checks
for a given claim. In this context, relevant fact-checks are the ones addressing the same
statement as the given claim.

5.1 Data Preprocessing Module
The data preprocessing module prepares claims and fact-checks for downstream retrieval
and reranking. For lexical models, preprocessing focuses on cleaning and normalizing
the text, while for semantic models, the text is enriched with additional contextual
descriptions.

5.1.1 Preprocessing for Lexical Retrieval
This component applies text cleaning and normalization to improve the effectiveness
of lexical retrieval models. We systematically evaluate translation, stop-word removal,
stemming, lemmatization, and spell correction to determine their impact on retrieval
accuracy.
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5. System Overview

Figure 5.1: System architecture overview

In addition to optimizing retrieval performance, we analyze how preprocessing affects
retrieval errors, such as false positives and false negatives. Our evaluation spans multiple
languages (English, German, French, Spanish, Portuguese, Arabic, Malay, and Thai),
offering insights into effective preprocessing strategies for multilingual fact-checking.

Baseline Evaluation

As previously noted, BM25 is widely adopted as a strong baseline in modern information
retrieval research, making it a natural choice for our lexical retriever. We begin by evalu-
ating BM25’s retrieval performance using S@10 scores on both the original-language text
and its English-translated version without applying any preprocessing. This comparison
aims to assess whether translations can mitigate the linguistic noise often present in
social media content, such as the use of multiple languages within a post, inconsistent
spelling, and hashtags, which can hinder lexical retrieval.

The original text achieved an average S@10 of 0.5171, while the translated text performed
better, reaching 0.5569. The difference between the performance of the English and the
original version suggests that the translation can enhance retrieval performance due to
improved linguistic consistency and alignment with fact-checking sources.

This initial analysis provides a baseline to measure the impact of individual preprocessing
steps. We continue with the pipeline development based on the better-performing English
baseline.

Preprocessing Pipeline Development

Building on the baseline results, we iteratively refined the preprocessing pipeline to reduce
noise, improve normalization, and enhance retrieval robustness. Table 5.2 compares S@10
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scores for different preprocessing steps using the English-translated text. We first assess
the impact of text cleaning and lemmatization, as these steps improve text consistency
and reduce vocabulary sparsity. The cleaned and lemmatized text then serves as the base
for evaluating additional preprocessing techniques, including emoji handling and date
normalization. This stepwise approach allows us to isolate the effect of each step and
measure its influence on retrieval performance. Finally, we create the full preprocessing
pipeline, combining all steps that demonstrated improvements.

Code Preprocessing Step

C Text Cleaning
L Lemmatization
S Stemming
TE Translated Emoji
RE Removed Emoji
D Normalized Dates
N Removed Digits
SC Spelling Correction

Table 5.1: Legend of preprocessing components used in Table 5.2 and Table 5.3. The
columns of the tables correspond to a cumulative combination of these steps.

The pipeline consists of:

1. Text Cleaning & Normalization

• Case normalization, whitespace standardization, removal of URLs, HTML
entities, stop-words and punctuation, Unicode normalization and reducing
multiple consecutive characters minimized the noise and contributed to lexical
matching.

2. Lemmatization

• By converting words to their base lemma forms, we mitigate issues related to
inflected word variations that would otherwise be treated as separate terms,
leading to retrieval mismatches.

• For English, we used WordNetLemmatizer1, while for other languages, we
employed Simplemma2.

3. Emoji Handling
1https://www.nltk.org/_modules/nltk/stem/wordnet.html
2https://github.com/adbar/simplemma
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Language N
on

e

C C
+

L

C
+

L+
R

E

C
+

L+
D

Fu
ll

(C
+

L+
R

E+
D

)

Arabic (ara) 0.7076 0.7091 0.7103 0.7212 0.7633 0.8388

German (deu) 0.4403 0.6300 0.6775 0.6892 0.6136 0.7494

English (eng) 0.4128 0.6125 0.6288 0.6300 0.6379 0.6906

French (fra) 0.5883 0.6464 0.6521 0.6862 0.7067 0.8152

Malay (msa) 0.5185 0.6725 0.6806 0.6862 0.6959 0.7173

Portuguese (por) 0.6070 0.7925 0.8086 0.8054 0.7312 0.8284

Spanish (spa) 0.5585 0.7974 0.8164 0.8222 0.7325 0.8177

Thai (tha) 0.2738 0.4351 0.7986 0.8021 0.8479 0.9163

Average 0.5133 0.6619 0.7216 0.7328 0.7161 0.7967

Table 5.2: S@10 scores across languages using BM25 on English-translated texts with
varying preprocessing steps. Abbreviations refer to cumulative combinations of prepro-
cessing components as defined in the legend.

• Given that BM25 does not effectively handle emojis, we experimented with
two strategies:

– Transcribing emojis into the original language.
– Removing emojis entirely.

• The results in Table 5.2 show that removing emojis improved retrieval effec-
tiveness, as emojis often introduced noise.

4. Date Normalization

• Since dates and numbers contribute little in lexical retrieval methods, we
tested:

– Normalizing dates to a standard format (month day, year e.g. February
12, 2025) .

– Removing digits entirely to reduce sparsity.
• Results in Table 5.2 show that date normalization improved retrieval perfor-

mance in comparison to the (C+L) version, in Arabic, English, French, Malay
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Language C
+

S

C
+

L+
T

E

C
+

L+
N

Fu
ll+

SC

Arabic (ara) 0.6272 0.7001 0.7633 0.8148

German (deu) 0.4943 0.6815 0.5925 0.7073

English (eng) 0.4755 0.6292 0.5574 0.6446

French (fra) 0.5919 0.6939 0.7049 0.7955

Malay (msa) 0.5305 0.6842 0.6589 0.6920

Portuguese (por) 0.6699 0.7913 0.7271 0.7958

Spanish (spa) 0.5730 0.8136 0.7304 0.7970

Thai (tha) 0.4688 0.7697 0.8479 0.8935

Average 0.5539 0.7204 0.6978 0.7676

Table 5.3: S@10 scores across languages using BM25 on English-translated texts with
preprocessing steps that were evaluated but not included in the final pipeline. Abbrevia-
tions refer to cumulative combinations of preprocessing components as defined in the
legend.

and Thai by making temporal references more comparable. Removing the
digits decreased the performance of the retriever, as shown in Table 5.3.

5. Final Preprocessing Pipeline

• After evaluating individual steps, we combined the most effective ones into a
final preprocessing pipeline. We evaluated the pipeline with both the original
and English-translated texts, with a stronger focus on the translated text as
it showed stronger performance.

• The final pipeline includes:
– Translation
– Text cleaning
– Emoji removal
– Date normalization
– Lemmatization

In addition to the steps mentioned above, we explored several other promising prepro-
cessing techniques. While they did not lead to performance improvements, we include
them here for completeness. The results refer to Table 5.3.
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• Stemming

– We evaluated stemming, which reduces inflected words to their root form by
removing prefixes and suffixes.

– Stemming was implemented using NLTK’s SnowballStemmer3 and malaya4

for Malay.
– Compared to lemmatization, stemming led to a decrease in retrieval perfor-

mance. This decline in performance may be due to overly aggressive reductions,
producing words that are not actual dictionary terms, causing reduced lexical
matching as some stemmed words no longer align well with fact-checked claims,
negatively impacting retrieval effectiveness.

• Digit Removal

– Removing digits decreased the performance in most languages, suggesting that
numbers alone were not major sources of retrieval errors.

• Impact of Spelling Correction

– We tested adding spelling correction before lemmatising on the English-
translated version, as an additional preprocessing step.

– Spelling correction was implemented using the TextBlob library5, which ap-
plies a probabilistic word-level correction based on term frequency in large
English corpora. It operates on each word independently without contex-
tual understanding, therefore, the suggested replacements may not always be
semantically accurate.

– The performance decreased possibly due to:
∗ Overcorrection of noisy text, causing unintended semantic shifts.
∗ Word-level correction implementation, causing semantic shifts.
∗ Modification of fact-check-related terms, making them harder to match.

Findings and Implications

We compare the performance of BM25 with and without preprocessing based on P@k,
R@k, S@k, and MRR metrics, and show the results in Table 5.4.

Our experiments demonstrate that careful preprocessing can significantly enhance BM25’s
fact-check retrieval performance. The average S@10 score increased from 0.5171 to
0.7229 for the original-language training data and from 0.5569 to 0.7967 for the English-
translated version after applying the full preprocessing pipeline. The results demonstrate
the importance of task-specific preprocessing for lexical retrieval models in multilingual

3https://www.nltk.org/api/nltk.stem.SnowballStemmer.html
4https://malaya.readthedocs.io/en/stable/_modules/malaya/stem.html
5https://textblob.readthedocs.io/en/dev/
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settings. Translation, in particular, helps reduce linguistic noise commonly found in social
media content, such as the use of multiple languages within a single post, slang, irregular
capitalization, non-standard abbreviations (e.g., "lol" for "laugh out loud"), and hashtags
(e.g., #Throwback). Addressing these issues through translation and preprocessing allows
for more accurate and reliable retrieval, overcoming barriers that typically complicate
lexical searches.

Additionally, we compare our S@10 results with those reported in the MultiClaim dataset
paper [PSM+23]. While their reported scores vary, they indicate S@10 values of 0.61 and
0.78 for the English-translated version, and 0.48 and 0.62 for the original-language version
(see Tables 2 and 9 in their paper). Our approach achieves 0.7229 on the original-language
data and 0.7967 on the English-translated data, both of which surpass the reported
baselines, highlighting the effectiveness of our preprocessing and retrieval strategy.

Language P@10 R@10 S@10 MRR

No Preprocessing

Arabic (ara) 0.0630 0.6243 0.7376 0.4924
German (deu) 0.0340 0.2646 0.4403 0.2080
English (eng) 0.0274 0.2276 0.4128 0.1526
French (fra) 0.0404 0.3910 0.5883 0.3236
Malay (msa) 0.0244 0.2288 0.5185 0.1328
Portuguese (por) 0.0302 0.2474 0.6070 0.1799
Spanish (spa) 0.0285 0.2578 0.5585 0.1989
Thai (tha) 0.0422 0.4215 0.2738 0.3259
Average 0.0363 0.3339 0.5171 0.2518

Full Preprocessing

Arabic (ara) 0.0846 0.8388 0.8388 0.6495
German (deu) 0.0895 0.7264 0.7494 0.5165
English (eng) 0.0807 0.6665 0.6906 0.4320
French (fra) 0.0843 0.8120 0.8152 0.6931
Malay (msa) 0.0764 0.7057 0.7173 0.4051
Portuguese (por) 0.1009 0.8035 0.8284 0.5660
Spanish (spa) 0.0891 0.8104 0.8177 0.6478
Thai (tha) 0.0916 0.9163 0.9163 0.7821
Average 0.0871 0.7855 0.7967 0.5865

MultiClaim Paper NA NA 0.61 0.78

Table 5.4: Evaluation metrics comparison for BM25 monolingual retrieval using English-
translated text

Addressing RQ1: The preprocessing pipeline that most effectively enhanced the per-
formance of BM25 for monolingual claim retrieval consists of translation, text cleaning
(URLs, HTML entities, stop-words and punctuation removal, Unicode and case normal-
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ization, reducing multiple consecutive characters, whitespace standardization), emoji
removal, date normalization and lemmatization.

Based on the data in Table 5.4, we observe a reduction in both false negatives (through
a higher R@10) and false positives (in increased P@10) across all languages. Without
any preprocessing, R@10 was 0.3339 while after the preprocessing it increased to 0.7855,
proving that less relevant fact-checks were missed. R@10 is a very indicative measure as
we aim to minimize the number of missed fact-checks. P@10 increased from 0.0363 to
0.0871, indicating that fewer irrelevant results (false positives) are included in the top-
ranked documents. However, in PFCR, the number of false positives is not as indicative
as the number of false negatives, as it measures the number of accurate predictions in
the top 10 retrieved documents, while there are only one or two correct fact-checks per
claim, therefore, the score is always low. MRR and S@10 increase significantly after
preprocessing, as correct fact checks appear earlier in the ranked list and more often
within the top 10 results, providing an evaluation measure most relevant for real-world
PFCR settings.

5.1.2 Contextual Enrichment for Semantic Models
Unlike lexical retrieval, semantic models process natural language as-is. However, enrich-
ing claims and fact-checks with structured descriptions serves as context, helping the
model better understand the underlying relationship between a claim and a fact-check.

We optimized the input formatting, finding that explicitly defining fact-check claims and
posts improved retrieval accuracy, enhancing the model’s ability to understand contextual
relationships between elements. The original text of fact-checks and posts remained
unchanged. We evaluated the following three formats:

1. Concatinating attributes without descriptions:

• Posts:
claim title claim

• Fact Checks:
ocr text instances verdict

2. Prefixing attributes:

• Posts:
claim: claim title: title instances: claim

• Fact Checks:
ocr: ocr text: text instances: instances

3. Contextual guidance:
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• Posts:

The following claim was posted: OCR+text, posted on date. The
content is labeled as: verdict.

• Fact Checks:

This is a fact-checked claim: claim, with the title title posted on date.

Table 5.5 compares the average S@100 of E5 and BGE models with the three input
formats. Simpler formats, such as concatenating attributes without descriptions and
prefixing attributes with their names only, both led to lower retrieval accuracy, likely
due to the lack of contextual guidance.

Model/Setting No Descriptions Prefixing Contextual Guidance

E5 0.9440 0.9555 0.9586
BGE 0.9471 0.9531 0.9537

Table 5.5: Average S@100 scores for E5 and BGE models using the different input formats
on the English-translated version

5.2 Retrieval-Ensemble Module
The retrieval-ensemble module retrieves the top k relevant fact-checks for a given claim
as an ensemble of lexical and semantic retrievers. We select a set of retrievers that
complement each other’s strengths which are then leveraged by the ensembler.

5.2.1 Retrievers

Our system utilizes a combination of lexical and dense retrieval models to retrieve relevant
fact-checks efficiently and accurately. We employ:

• Lexical (Sparse) Retriever: BM25 term-based model that retrieves fact-checks based
on word overlap with the claim.

• Bi-Encoder (Dense) Retriever: A neural model that independently encodes claims
and fact-checks into a shared embedding space, allowing retrieval based on semantic
similarity.

• Cross-Encoder (Dense) Retriever: A more complex model that jointly encodes
claims and fact-checks, capturing deeper contextual relationships for improved
retrieval.
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Selection of Dense Retrievers

We selected the following pre-trained models as encoders in the retrieval stage based on
their zero-shot S@k performance on the training set:

• multilingual − E5 − large − instruct (E5) as a cross-encoder,

• bge − multilingual − gemma2 (BGE) as a bi-encoder

Table 5.6 compares all the evaluated models. Experiments were conducted using both the
original-language texts and their English translations, with the original versions having
consistently better results. The best-performing model, E5, achieves an average S@100
score of 0.9330 while the second-best model, BGE, achieves a similar performance with
an S@100 score of 0.9293. We prioritize E5 and BGE for further tuning and evaluation.

For evaluation of the retriever models, we report S@100 scores (k = 100) rather than
S@10, as the retrieval stage is responsible for producing a larger candidate set of fact-
checks, which are then refined. Thus, the performance on a broader set is more indicative
of the retrieval effectiveness at this stage.

Model Avg S@100 Model size (params)
Multilingual-E5-Large-Instruct 0.9330 560M
BGE-Multilingual-Gemma2 0.9293 9.24B
NV-Embed-v2 0.9201 7.85B
GTR-T5-XL 0.9019 1.24B
BGE-M3 0.8731 568M
MiniLM-L6-v2 0.7947 22.7M
stella_en_1.5B_v5 0.5288 1.54B
XLM-RoBERTa-Large 0.1467 561M

Table 5.6: Retriever model comparison (S@100) without any preprocessing, using original
language

5.2.2 Ensembler

The retriever ensembler aggregates retrieval results from multiple models. It is designed
to balance the strengths of sparse and dense retrieval, ensuring that the lexical model
provides high-precision results for explicit claim matches while semantic models capture
implicit relationships and conceptual similarities.

The addition of an ensembler enhances retrieval robustness, particularly in multilingual
retrieval, where different retrieval models may perform better depending on the language
and dataset characteristics.
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Aggregation Function

To effectively combine the results of multiple retrievers, we explored various aggregation
strategies, such as majority voting, exponential decay weighting, and RRF, and evaluated
them in both monolingual and crosslingual settings. Among these methods, RRF delivered
the highest performance and was selected for our pipeline. As shown in Table 5.7, the
ensembler using RRF achieved the best average S@100 score in both settings, highlighting
its effectiveness in prioritizing relevant fact-checks. Its superior performance comes from
its ability to effectively prioritize highly ranked fact-checks from diverse retrieval models
while reducing the impact of lower-ranked ones.

Setting Aggregation Function S@100

Monolingual Majority Voting 0.9649
Monolingual Exponential Decay Weighting 0.9674
Monolingual RRF 0.9720

Crosslingual Majority Voting 0.8813
Crosslingual Exponential Decay Weighting 0.8897
Crosslingual RRF 0.8967

Table 5.7: Comparison of ensembler aggregation functions for monolingual and crosslingual
settings

Retrieval Set Size

To determine the optimal number of fact-checks retrieved per claim in the first-stage
retrieval, we evaluated the ensembler’s S@k performance across different retrieval set
sizes (k = 50, 100, 200, 300, 400) in the monolingual setting. We observed that increasing
k initially improves the ensembler’s performance until it stabilizes. This indicates that
a larger retrieval set enhances performance up to a certain threshold, beyond which
additional increases yield no further gains.

The robustness of the ensembler at higher k values can be attributed to the RRF
aggregation method, which ensures that highly ranked fact-checks from any model remain
prioritized, while lower-ranked ones have minimal impact.

Based on these findings, we set k=300 for our monolingual experiments, as increasing the
retrieval set size beyond this point does not improve performance. Table 5.8 illustrates
the ensembler’s performance across different retrieval set sizes, showing that S@k plateaus
at k=300.

Following the monolingual retrieval experiments, we assessed the impact of retrieval set
size on the ensembler’s S@100 performance in the crosslingual setting. As shown in
Table 5.8, increasing k improved performance, but the gains diminished beyond k = 300,
where S@100 stabilized (0.8967 at k=300 vs. 0.8970 at k=400).
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This plateau confirms that while expanding the retrieval set increases the likelihood
of retrieving relevant fact-checks, the marginal benefits become insignificant beyond
a certain threshold. The ensembler’s stability at larger k values further supports the
effectiveness of the RRF aggregation method in maintaining ranking robustness.
Based on these findings, we set k=300 for our crosslingual retrieval experiments, as it
maximizes performance without causing unnecessary computational overhead.

Setting Retrieval Set Size (k) S@k

Monolingual 50 0.9693
Monolingual 100 0.9679
Monolingual 200 0.9715
Monolingual 300 0.9720
Monolingual 400 0.9720

Crosslingual 50 0.8914
Crosslingual 100 0.8947
Crosslingual 200 0.8954
Crosslingual 300 0.8967
Crosslingual 400 0.8970

Table 5.8: Comparison of ensembler performance (S@k) across different retrieval set sizes
(k) in monolingual and crosslingual settings

Ensemble Weighting

We explored ensemble weighting strategies to optimize retrieval performance. The results
in Table 5.9 show that reducing BM25’s weight while maintaining higher weights for
semantic models in the monolingual setting leads to improved retrieval effectiveness.
Specifically, assigning a weight of 0.5 to BM25 and 1.0 to both E5 and BGE achieves the
highest average S@100 score of 0.9720, slightly outperforming the equal-weighted (1.0, 1.0,
1.0) ensemble, which scored 0.9718. This suggests that BM25 contributes positively but
should not be weighted equally with the semantic models, which are better at capturing
the relationships between queries and fact-checks.
Further reducing BM25’s weight to 0.25 (0.25 BM25 + 1.0 E5 + 1.0 BGE) resulted in a
slight performance drop with S@100 of 0.9711, indicating that BM25 still provides useful
lexical matching and should not be completely minimized.
Interestingly, increasing the weight of E5 to 2.0 (0.5 BM25 + 2.0 E5 + 1.0 BGE) or BGE
to 2.0 (0.5 BM25 + 1.0 E5 + 2.0 BGE) led to slightly lower performance (0.9701 and
0.9694, respectively), suggesting that the ensemble benefits from the strengths of each
semantic model, rather than favouring one over the other.
These results confirm that semantic retrieval methods have a dominant role in improving
retrieval effectiveness, while BM25 remains beneficial but requires weighting to achieve
optimal performance.
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BM25 E5 BGE ARA DEU ENG FRA MSA POR SPA THA AVG

1.0 1.0 1.0 0.9726 0.9742 0.9497 0.9731 0.9805 0.9632 0.9651 0.9962 0.9718
0.5 1.0 1.0 0.9708 0.9742 0.9509 0.9722 0.9825 0.9632 0.9662 0.9962 0.9720
0.25 1.0 1.0 0.9691 0.9742 0.9513 0.9722 0.9805 0.9608 0.9641 0.9962 0.9711
0.5 2.0 1.0 0.9657 0.9649 0.9521 0.9722 0.9825 0.9616 0.9655 0.9962 0.9701
0.5 1.0 2.0 0.9657 0.9719 0.9477 0.9749 0.9766 0.9592 0.9631 0.9962 0.9694

Table 5.9: Ensembler performance comparison on S@100 based on different ensemble
weighting schemes in the monolingual setting

We evaluated ensemble weighting strategies for crosslingual retrieval. As shown in
Table 5.10, reducing BM25’s weight while maintaining higher weights for semantic models
improved performance, consistent with monolingual results. The best configuration
(S@100 = 0.8967) assigns BM25 a weight of 0.5, with E5 and BGE set to 1.0, outperforming
the equal-weighted (1.0, 1.0, 1.0) setup.

Further reducing BM25’s weight to 0.25 led to a slight drop in performance (S@100 =
0.8940), confirming its role in capturing lexical matches. As in the monolingual setting,
increasing the weight of E5 or BGE does not improve performance, suggesting that a
balanced contribution from both semantic models is crucial.

We adopted the same (0.5 BM25 + 1.0 E5 + 1.0 BGE) configuration for crosslingual
retrieval, as it offered the best balance between lexical and semantic retrieval.

BM25 E5 BGE S@100

1.0 1.0 1.0 0.8947
0.5 1.0 1.0 0.8967
0.25 1.0 1.0 0.8940
0.5 2.0 1.0 0.8856
0.5 1.0 2.0 0.8947

Table 5.10: Comparison of ensemble weighting schemes on S@100 performance in the
crosslingual setting

5.3 Reranking-Ensemble Module

In this stage, each reranker within the reranking-ensemble module independently reranks
the fact-checks retrieved by the retrieval-ensemble module. The outputs of the rerankers
are then passed to the ensembler, which aggregates these reranked results to determine
the final top 10 fact-checks per claim.
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5.3.1 Rerankers
The reranking module refines the initial retrieval results by reordering the top k fact-checks
to identify the most relevant subset.

For reranking, we use pre-trained cross-encoder models, which jointly encode both
the query and the candidate documents (fact-checks), allowing for more context-aware
relevance scoring. These models can capture more fine-grained interactions and, there-
fore, improve the ranking accuracy. However, cross-encoders are computationally more
expensive and feasible when we have a smaller pool of candidates.

Selection of Rerankers

The selection of rerankers was guided by their performance in zero-shot reranking tasks,
specifically on the retriever-ensembler’s top 100 retrieved fact-checks. To inform our
decision, we used the MTEB (Massive Text Embedding Benchmark)6 as a starting
reference point and evaluated the leading reranker models on this benchmark. We then
narrowed down our choices based on models that offered strong performance on the
MTEB while also considering our GPU resource constraints.

The following three were selected for their combination of high performance on the MTEB
leaderboard and their computational feasibility under our setup:

• gte − Qwen2 − 7B − instruct (QWEN2)

• NV − Embed − v2 (NV)

• GritLM − 7B (GRITLM)

5.3.2 Ensembler
The ensembler combines the outputs of multiple rerankers to produce a more accurate
and reliable final ranking. Combining models with different strengths mitigates individual
biases and enhances the overall ranking robustness.

Depending on the model’s fine-tuning setting, some rerankers are optimized for multilin-
gual retrieval, while others perform better in English settings. Certain models excel at
detecting negation, identifying inconsistencies or handling specific topics. We use the
ensembler to integrate these complementary capabilities and improve the system’s overall
effectiveness.

Aggregation Function

As with the retrievers, we evaluated different aggregation functions for reranker ensembling.
Table 5.11 shows the performance of majority voting, exponential decay weighting, and

6https://huggingface.co/spaces/mteb/leaderboard
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RRF. Among them, RRF again performed best, achieving an average S@10 of 0.9202 in
the monolingual setting. This confirms that RRF is well-suited for combining reranker
outputs, as it effectively prioritizes highly ranked documents while minimizing the
influence of poorly ranked ones.

Aggregation Function Avg S@10

Majority Voting 0.9075
Exponential Decay Weighting 0.9066

RRF 0.9202

Table 5.11: Ensembler performance comparison based on the different aggregation
functions in the monolingual setting (S@100)

Ensemble Weighting

For the rerankers, we adopt an equal weighting scheme, as all three models demonstrated
competitive and complementary performance during evaluation. For the individual
reranker performance scores, refer to Table 6.3 in the results chapter. To prevent
overfitting to specific domains or language patterns, we refrain from assigning differential
weights. Instead, we assign equal weight to each reranker in the ensemble, ensuring
robustness across diverse claim types and languages while effectively leveraging the
strengths of each model.

Pipeline Overview

In the first stage, the retriever ensembler aggregates the top 300 results from multiple
retrievers (BM25, E5, BGE) into a top 100 candidate set.

In the second stage, the reranking ensemble module refines the selection using cross-
encoder rerankers (NV, GRITLM, QWEN). Each reranker processes the top 100 fact-
checks and returns its top 50 reranked results, which are then aggregated by a final
ensembler to produce the top 10 ranked fact-checks.

The described pipeline is depicted in Figure 5.1.

5.4 Evaluation Module
To assess the effectiveness of the retrieval pipeline, the evaluation module measures how
well retrieved fact-checks align with ground-truth references using the described retrieval
evaluation metrics.
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CHAPTER 6
Monolingual Results and Analysis

We present an evaluation of the retrieval and reranking components of the proposed
fact-checking pipeline in a monolingual setting. We explore the effectiveness of retrieval
ensembles and assess reranking performance and their contribution to overall pipeline
effectiveness.

6.1 Retrieval-Ensemble Analysis
Model size vs. Retrieval performance

We analyze the relationship between model sizes and retrieval performances of the chosen
retrievers from Table 5.6.

The best-performing model, E5, achieves an average S@100 score of 0.9330 while being
relatively small in size (560M parameters) compared to other competitive models. In
contrast, the second-best model, BGE, achieves a similar performance with an S@100
score of 0.9293, but at a substantially larger scale, with 9.24B parameters — over 16
times the size of E5. This shows that larger models do not necessarily guarantee better
retrieval performance, especially in zero-shot settings.

Other models further confirm this observation. NV-Embed-v2 performs well with an
S@100 of 0.9201 but is also a large model (7.85B parameters). Meanwhile, GTR-T5-XL
achieves a high score of 0.9019 with 1.24B parameters, showing a balance between size
and performance. BGE-M3, a smaller variant with 568M parameters, lags behind its
larger counterpart (BGE-Gemma2) with an S@100 of 0.8731, despite being of comparable
size to the E5 model.

These results show that model architecture, training objectives, and multilingual capabil-
ities likely play a more significant role in retrieval effectiveness than model size alone.
The efficiency and performance balance of E5 suggests that, for this task, well-optimized
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mid-sized models can outperform or perform equally well as far larger models, making
them suitable for practical applications, especially in resource-constrained environments.

6.1.1 Ensembler
In the retrieval-ensemble module, we first retrieve a set of top 300 candidate fact checks
using each retriever model (E5, BGE, and BM25), and then an ensembler aggregates
those predictions into top 100.

Ensemble Performance

Table 6.1 compares the performances of individual retrievers and ensemble configurations.
The results show that dense retrievers (E5, BGE) consistently outperform the lexical
BM25 in all languages, highlighting the effectiveness of semantic models. However, the
ensemble methods that combine BM25 with dense retrievers (e.g., E5 + BM25, E5 +
BGE + BM25) show further performance gains, achieving the highest average S@100
scores of 0.9720. Combining these approaches makes the most out of their complementary
strengths, leading to more robust and accurate retrieval.

Model k ARA DEU ENG FRA MSA POR SPA THA AVG

E5 300 0.9691 0.9672 0.9580 0.9758 0.9844 0.9763 0.9719 1.0000 0.9752
BM25 300 0.9451 0.8946 0.8768 0.9345 0.9142 0.9289 0.9334 0.9886 0.9270
BGE 300 0.9657 0.9742 0.9481 0.9776 0.9649 0.9534 0.9627 1.0000 0.9683

E5 + BM25 100 0.9657 0.9344 0.9386 0.9677 0.9766 0.9575 0.9600 0.9924 0.9616
BGE + BM25 100 0.9537 0.9625 0.9358 0.9686 0.9571 0.9551 0.9558 0.9962 0.9606
E5 + BGE 100 0.9639 0.9719 0.9488 0.9722 0.9805 0.9583 0.9634 0.9962 0.9694
E5 + BM25 + BGE 100 0.9691 0.9742 0.9509 0.9722 0.9844 0.9633 0.9658 0.9962 0.9720

Table 6.1: Retrieval performance (S@k) using original-language text across models and
ensembles on the training set

Retriever Ensemble Performance

We assess the module’s effectiveness as a standalone component instead of as an intermedi-
ate step in the pipeline using S@10. Table 6.2 presents a performance comparison between
our retrieval-ensemble module and the best-performing baseline model (GTR-T5-Large)
from the Multiclaim dataset paper [PSM+23], which achieves an average S@10 of 0.82.
Our retrieval-ensemble outperforms the baseline across all languages, reaching an average
S@10 of 0.9237.

6.2 Retriever-Reranker Analysis
We evaluated the retriever-reranker pipeline, a two-stage retrieval approach that aims to
refine the initial retrieval results for improved fact-check retrieval.
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Model k ARA DEU ENG FRA MSA POR SPA THA AVG

Baseline Model (GTR-T5-Large) 10 0.86 0.69 0.77 0.86 0.82 0.80 0.84 0.90 0.82
Retriever Ensembler (E5 + BM25 + BGE) 10 0.9280 0.8923 0.8784 0.9408 0.9279 0.9158 0.9296 0.9772 0.9237

Table 6.2: Retrieval-ensemble performance (S@10) using original-language text on the
training set

Model k ARA DEU ENG FRA MSA POR SPA THA AVG

NV 50 0.9503 0.9438 0.9386 0.9596 0.9591 0.9379 0.9472 0.9734 0.9512
NV (EN) 50 0.9588 0.9297 0.9386 0.9596 0.9493 0.9297 0.9444 0.9886 0.9498
NV (TRANSL) 50 0.9451 0.9438 0.9386 0.9614 0.9669 0.9395 0.9317 0.9544 0.9477

GRITLM 50 0.9468 0.9485 0.9394 0.9650 0.9630 0.9379 0.9548 0.9772 0.9541
GRITLM (EN) 50 0.9571 0.9204 0.9394 0.9659 0.9571 0.9453 0.9517 0.9886 0.9532
GRITLM (TRANSL) 50 0.9485 0.9321 0.9394 0.9650 0.9649 0.9404 0.9527 0.9316 0.9468

QWEN 50 0.9451 0.9485 0.9235 0.9534 0.9630 0.9436 0.9448 0.9734 0.9494
QWEN (EN) 50 0.9503 0.9110 0.9235 0.9453 0.9376 0.9093 0.9247 0.9810 0.9353
QWEN (TRANSL) 50 0.9430 0.9321 0.9235 0.9459 0.9643 0.9411 0.9421 0.9710 0.9454

Baseline Model (GTR-T5-Large) 10 0.86 0.69 0.77 0.86 0.82 0.80 0.84 0.90 0.82

QWEN + GRITLM 10 0.9177 0.8478 0.8792 0.9318 0.9181 0.9101 0.9196 0.9316 0.9070
QWEN + NV 10 0.9262 0.8501 0.8803 0.9309 0.9045 0.9003 0.9058 0.9316 0.9037
NV + GRITLM 10 0.9091 0.8618 0.8942 0.9363 0.9103 0.9028 0.9247 0.9087 0.9060
QWEN + GRITLM + NV 10 0.9297 0.8735 0.8938 0.9444 0.9181 0.9142 0.9261 0.9620 0.9202

Table 6.3: Reranking performance on the training set. EN refers to experiments using the
English version of the data, while TRANSL refers to the original language with injected
task instructions and descriptions translated into the language of origin. The best scores
per language are in bold.

Evaluation Setup

We evaluated models in three settings to examine the impact of language representation
and instruction translation:

1. Using the original language.

2. Using the provided English translation (EN).

3. Using the original version, with also translating the injected task descriptions and
instructions into the respective language (TRANSL).

The idea behind the third setting was to investigate whether injecting task descriptions
and instructions translated to the original language can improve the quality of the
retrieval. In the first setting, instructions and task descriptions are injected in English
regardless of the language.
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Reranker Performance

Table 6.3 presents the S@50 and S@10 scores for individual rerankers and their ensembles
across languages.

GRITLM achieves the highest average S@50 score (0.9541) when using original-language
inputs, closely followed by NV (0.9512) and QWEN (0.9494).

Across individual language performances, Thai consistently achieves the highest scores
(0.9886 with NV EN), likely due to the smaller size of its fact-check corpus. German and
English, on the other hand, show greater variability in performance, which can be due to
larger datasets and more diverse linguistic patterns.

Performance in English-translated versions (EN) shows mixed results in all languages.
Arabic (ARA) and Thai (THA) benefit the most from translation, as they achieve their
best results using the English translation with all three models. Both achieved their
highest S@50 scores (0.9588 and 0.9886) with NV EN. Translation into English can
normalize morphologically rich languages, improving retrieval for models trained on
English-heavy corpora.

German (DEU) and Spanish (SPA) experience performance drops in the EN setting,
as translating into English can also remove important linguistic features or introduce
translation errors. This highlights that for high-resource languages, preserving the original
text often leads to more reliable fact-check retrieval.

Injecting task instructions in the original language (TRANSL) shows mixed results.
Malay (MSA) shows a noticeable improvement (0.9669 NV TRANSL) compared to the
original (0.9591 NV), while other languages, such as Thai (THA), show performance
drops. This suggests that translation quality and the nature of the underlying language
structure may impact the effectiveness of this approach.

To ensure consistency, we used the on-average best-performing setup across languages.
However, language-specific tuning could further enhance retrieval, as languages respond
differently to translation and formatting.

Reranker Ensemble Performance

Ensembling multiple rerankers enhances their individual performance, leading to more
effective rankings. The ensemble incorporating all three models (QWEN + GRITLM
+ NV) achieves the highest average S@10 score of 0.9202, consistently surpassing pair-
wise combinations (e.g., QWEN + GRITLM: 0.9070) indicating that diverse reranker
combinations result in more robust rankings. Furthermore, the ensemble significantly
outperforms the baseline (0.9202 vs. 0.82). The results are presented in Table 6.3.

Effectiveness of Reranking

Despite the expected advantages of reranking, our results indicate that the retriever-
reranker pipeline delivers only marginal improvements in Arabic, English, and French,
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6.3. Pipeline Evaluation on CheckThat! 2021 Dataset

failing to consistently outperform retriever-ensemble approach. Our results demonstrate
that hybrid retrieval strategies — combining lexical and dense models — are both
more effective and computationally efficient than stacking increasingly complex neural
architectures. The limited improvements from reranking suggest that retrieval bottlenecks
cannot always be resolved through additional processing, reinforcing the importance
of well-designed ensembling over the reliance on increasingly complex models. This
highlights that retrieval performance can be optimized efficiently without excessive
computational overhead.

Model ARA DEU ENG FRA MSA POR SPA THA AVG

Retriever Ensembler (E5 + BM25 + BGE) 0.9280 0.8923 0.8784 0.9408 0.9279 0.9158 0.9296 0.9772 0.9237
Reranker Ensembler (QWEN + GRITLM + NV) 0.9297 0.8735 0.8938 0.9444 0.9181 0.9142 0.9261 0.9620 0.9202

Table 6.4: Comparison of the retrieval-ensemble and the full retriever-reranker pipelines
(S@10)

Table 6.4 compares the performances of the retrieval-ensemble and the full retriever-
reranker pipeline.

Addressing RQ3: Among all retriever-reranker configurations, the most consistent
performance is achieved with a pipeline that combines E5, BM25, and BGE as retrievers
with QWEN, GRITLM, and NV as rerankers achieving an average S@10 of 0.9202
while maintaining high and stable performance without significant drops in any of the
languages.

Interestingly, however, the retrieval-ensemble setup that integrates E5, BM25, and BGE
without rerankers yields the highest monolingual retrieval performance, reaching an
average S@10 of 0.9237.

6.3 Pipeline Evaluation on CheckThat! 2021 Dataset
To assess the effectiveness of the constructed monolingual PFCR pipeline, we conduct
an evaluation using the CheckThat! 2021 Task 2A dataset. This benchmark allows us
to measure how well the pipeline retrieves relevant fact-checks for social media claims
in English and Arabic. We compare the performance of two configurations (retriever-
ensembler and retriever-reranker) against the official results reported on the CheckThat!
2021 Task 2A leaderboard.

6.3.1 Performance on English Data
Table 6.5 compares our retriever ensembler and retriever reranker setups with the top 3
submissions on the English development set.

Team Aschern used TF-IDF, fine-tuned pre-trained sentence-level BERT, and the re-
ranking LambdaMART model. Team DIPS used Sentence-BERT embeddings for all
claims and then computed the cosine similarity for each input tweet - verified claim pair.
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Team MAP@5 MAP@1 MAP@3 MAP@10 MAP_All MRR P@3 P@5 P@10 S@10
Aschern 0.941 0.932 0.941 0.941 0.943 0.940 0.318 0.191 0.095 NA
DIPS 0.936 0.927 0.935 0.937 0.937 0.935 0.315 0.190 0.096 NA
TIB-VA 0.902 0.857 0.900 0.902 0.903 0.901 0.318 0.192 0.096 NA
Retriever Ensembler 0.754 0.686 0.738 0.763 0.766 0.766 0.2674 0.175 0.094 0.936
Retriever Reranker 0.900 0.870 0.896 0.902 0.902 0.902 0.309 0.189 0.096 0.956

Table 6.5: Our results vs. top 3 submissions on the CheckThat! 2021 Task 2A leaderboard
on the development set using English data. Best values per column are shown in bold.

The prediction was made by passing a sorted list of cosine similarities to a neural network
[NME+21b]. As for Team TIB-VA, no system description paper has been published, so
the details of their implementation remain unavailable.

Our retriever reranker pipeline delivers competitive results in MAP@k and MRR but falls
slightly behind the top teams, while our retriever ensembler demonstrates strong retrieval
effectiveness (S@10=0.936), ensuring that relevant fact-checks are retrieved. However, its
lower MAP and MRR scores indicate that it does not always rank them optimally.

The primary difference between our approach and the top-performing systems is that our
models are used in their pre-trained state, whereas the leading solutions are fine-tuned for
PFCR. While fine-tuning provides a performance advantage, it also demands additional
computational resources and development overhead. In contrast, our results demonstrate
that pre-trained models can still achieve strong retrieval performance, offering a more
scalable solution for real-world fact-checking applications.

6.3.2 Performance on Arabic Data
Team MAP@5 MAP@1 MAP@3 MAP@10 MAP_All MRR P@3 P@5 P@10 S@10

TIB-VA 0.815 0.722 0.812 0.816 0.821 0.833 0.341 0.207 0.105 NA
bigIR 0.819 0.710 0.816 0.821 0.822 0.832 0.345 0.209 0.106 NA

Retriever Ensembler 0.795 0.713 0.786 0.802 0.804 0.804 0.2917 0.183 0.097 0.969
Retriever Reranker 0.885 0.803 0.881 0.886 0.886 0.886 0.323 0.197 0.099 0.992

Table 6.6: Our results vs. top 2 submissions on the CheckThat! 2021 Task 2A leaderboard
on the development set using Arabic data. Best values per column are shown in bold.

Table 6.6 compares our retriever ensembler and retriever reranker setups with the top 2
submissions on the Arabic development set.

Team bigIR fine-tuned AraBERT [ABH20] by adding two neural network layers on top
of it to predict the relevance for a given tweet–VerClaim pair. The fine-tuned model was
used to re-rank the candidate claims based on the predicted relevance scores [NME+21b].

Our retriever reranker pipeline achieves the highest performance in MAP@k and MRR,
indicating that our system is more precise at ranking relevant fact-checks than the other
approaches. However, it does not achieve the best performance in P@k. This suggests
that while our method is effective at ranking relevant documents, it retrieves fewer top-k
relevant documents compared to other teams. Even though our retriever ensembler shows
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a high S@10 score of 0.969, it performs worse in comparison to the other approaches.
This could be because the retriever ensembler prioritizes recall over precision, ensuring
that relevant fact-checks are included in the retrieved set but not necessarily ranked
optimally. This trade-off highlights the difference between retriever-ensembling and
retriever-reranking - the retriever-ensembler increases the likelihood of retrieving the
relevant fact-checks, while the reranker ensures that the most relevant results appear at
the top.

6.3.3 Performance Comparison between the Languages
Our retriever reranker pipeline outperforms the top-ranked systems in Arabic, while
fine-tuned solutions achieve higher performance in English.

This is likely due to the pre-training bias toward English. Many state-of-the-art retrieval
and reranking models are trained on large-scale English corpora, benefiting fine-tuned
English models. In contrast, fewer Arabic resources are available, making fine-tuned
models less effective. Our approach uses multilingual pre-trained models, which were
pre-trained on Arabic data, explaining why our retriever reranker pipeline achieves
state-of-the-art results in Arabic, even without fine-tuning.

6.4 Error Case Study Analysis
To conduct an error analysis and identify key failure points of our framework for the
monolingual retrieval, we examined two types of errors;

• Cases where individual retrievers failed but the ensembler successfully retrieved the
correct fact-check, and

• Cases where both the individual retrievers and the ensembler failed to retrieve the
correct fact-check.

We give an example of the first-case error with the following claim:

The following claim was posted: This is what real leadership looks like. The Ukrainian
President on the ground. The US offered to evacuate him, but he chose to stay in Ukraine,
posted on 2022-07-11.
The content is labeled as: False information.

The correct fact-check is:

This is a fact-checked claim: Ukrainian President Volodymyr Zelensky on battlefield in
2022, with the title Photo of Ukrainian President Zelensky in military gear was taken in
2021 — before Russian invasion posted on 2022-03-03.

None of the individual retrieval models included this fact-check in their top 10 predictions.
Instead, they retrieved fact-checks covering related but distinct narratives, such as
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Zelensky’s whereabouts, misleading battlefield images, and claims about him fleeing
Kyiv. Even though these fact-checks are contextually relevant, they do not directly
address the specific claim. However, the ensembler successfully retrieved the correct
fact-check using the strengths of multiple retrieval methods. This suggests that while
individual models recognized its relevance, they did not prioritize it effectively. This
highlights the advantage of hybrid approaches that combine lexical precision with semantic
understanding, ensuring that fact-checks capturing both keyword overlap and conceptual
similarity are ranked more effectively.

For the second type of error, where the ensembler also fails, we consider the following
claim:

The following claim was posted: 5 10 Amy Cutshall-Benson 4 hrs Like • .. I have tried to
share this 3 times and Facebook won’t let me... if anybody can see this pls comment 4G st
Comment Write a comment... 65% 4:30 AM : 3 Comments Send posted on 2020-11-06.
The content is labeled as: Missing context.

The true fact-checks are:

This is a fact-checked claim: Map shows 2020 election results, with the title Election
results map spreading on social media is from 2016, not 2020 posted on 10-11-2020.

This is a fact-checked claim: Old US election map misleads on voting trend in 2020
election, does not show Electoral College, with the title Old US election map misleads on
voting trend in 2020 election posted on 2020-11-11.

The retrieved fact-checks are about Facebook allegedly banning or limiting post sharing,
including claims about censorship, suppression of conservative news, and restrictions on
sharing election-related content. Some retrieved fact-checks do mention an electoral map
but do not match the intended verification. The challenge arises because the claim is
labeled "Missing context" and does not explicitly reference election results, making it
difficult for retrieval models to establish the correct connection.

These examples show key limitations in retrieval; related but incorrect fact-checks may
be prioritized when claims are ambiguous, and implicit connections between claims
and fact-checks can be difficult to capture. Even as ensembling improves performance,
retrieval effectiveness remains sensitive to claim formulation and ambiguity.

6.5 Monolingual Results Summary
This chapter evaluated the effectiveness of a fact-checking pipeline in a monolingual setting.
The retrieval-ensemble analysis shows that smaller, optimized models like E5 (560M
parameters) outperform larger models, with E5 + BM25 + BGE achieving the highest
performance. The retriever-reranker pipeline, tested on both original and translated
tasks, shows that a hybrid approach with lexical and dense models is not only more

56



6.5. Monolingual Results Summary

efficient but also more effective than complex reranking architectures. While reranking
enhances retrieval performance for languages like Arabic, English, and French, retrieval-
ensemble methods generally outperform the retriever-reranker pipeline, suggesting that
well-designed ensembling is more efficient than relying on increasingly complex models.
On the CheckThat! 2021 dataset, the retriever-reranker setup surpassed the retrieval
ensemble in English and Arabic, though both approaches were outperformed by fine-tuned
models. In conclusion, combining mid-sized models like E5 with retrieval ensembles
delivers strong results for fact-check retrieval tasks, with room for further enhancement
through fine-tuning.
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CHAPTER 7
Crosslingual Results and Analysis

In this chapter, we evaluate the retrieval performance of the crosslingual subtask by
comparing the retrieval-ensemble and retriever-reranker configurations. We analyze
the effectiveness of individual models, ensemble methods, and the two configurations,
considering both translation-based and multilingual approaches.

7.1 Crosslingual Data Example
In this section, we illustrate an example of crosslingual data, where a claim made in one
language is linked to a fact-check in another. To maintain consistency, we apply the same
input formatting described earlier for crosslingual cases as well.

For example, the following claim was originally posted in Arabic:

The following claim was posted:
$�  %�

���� %����
�
� �# #�� �"�� %�

��� �"�� %��� !�
�����	��� ��	�� ��
�� �
� ��#� �����

posted on 2020-12-04. The content is labeled as: False information.

Its English translation is as follows:

The following claim was posted: Three patients escaped from the quarantine in Cheniot,
then what happened is in front of you posted on 2020-12-04. The content is labeled as:
False information.

The claim is linked to the following fact-checked statement, which was originally published
in English:

This is a fact-checked claim: Pakistani forces apprehend COVID-19 quarantine escapees
with the title This video has circulated in reports about Pakistani police and security forces
conducting a training drill at a quarantine centre posted on 2020-16-04.
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This example illustrates a scenario where the claim is posted in Arabic, while the fact-
check is available in English. This highlights the challenges of crosslingual retrieval, as
models must bridge the linguistic gap to correctly associate claims with fact-checks in
different languages.

7.2 Retrieval-Ensemble Analysis
We evaluated the performance of individual retrievers and their ensemble for crosslingual
retrieval, considering both original-language and English-translated versions. In Table 7.1,
we report S@300 scores of the retrievers as the ensembler operates over the top 300
retrieved candidates.

Consistent with monolingual findings, dense retrievers (E5, BGE) outperform BM25,
demonstrating the advantages of semantic retrieval. BGE (original) achieves the highest
individual performance (S@300 = 0.9257), while E5 benefits from translation, improving
from 0.8623 (original) to 0.8963 (English). BM25 is evaluated only in English due to its
reliance on lexical overlap.

Based on our findings above, we aggregate the top 300 predictions from BM25, E5, and
BGE using RRF with a weighting scheme of (0.5 BM25 + 1.0 E5 + 1.0 BGE). The
ensembler then selects the top 100 candidates for further reranking.

Our best ensembler configuration (BM25 english + E5 english + BGE original), composed
of the models in their best-performing settings, achieves S@100 of 0.9094 and S@10 of
0.7572. The S@100 score reflects the performance of the intermediate step within the
pipeline, which is then passed to the rerankers. In contrast, the S@10 score highlights the
module’s effectiveness as a standalone component. The combination of E5 (english) and
BGE (original) balances translated and original representations, enhancing crosslingual
retrieval. These results confirm that combining lexical and semantic retrieval enhances
crosslingual PFCR and demonstrates that a well-weighted ensemble improves retrieval
effectiveness.

Table 7.1 summarizes the results of retrievers and the ensemble.

Model Language Version k S@k

BM25 English 300 0.7884

E5 Original 300 0.8623
English 300 0.8963

BGE Original 300 0.9257
English 300 0.9054

Ensembler BM25 (orig) + E5 (eng) + BGE (orig) 100 0.9094
10 0.7572

Table 7.1: Performance comparison of retrievers for crosslingual retrieval (S@k)
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7.3 Retriever-Reranker Analysis

This section compares the performance of selected rerankers for the crosslingual retrieval
task, assessing both the original-language and English-translated versions. We evaluated
reranking effectiveness using S@50 as the ensembler performs aggregation on the reranker’s
top 50 candidates. Finally, we show the performance of the full pipeline using S@10.
Table 7.2 presents the results.

Model Language Version k S@k

NV Original 50 0.8290
English 50 0.8749

QWEN Original 50 0.8471
English 50 0.8612

GRITLM Original 50 0.8682
English 50 0.8799

Ensembler NV (eng) + QWEN (eng) + GRITLM (orig) 10 0.7951

Table 7.2: Performance comparison of individual rerankers and ensembler configurations
(S@k)

English-translated versions generally improve performance, with all three rerankers
showing higher S@50 scores compared to their original-language counterparts, indicating
that translation reduces linguistic variability and makes ranking more consistent across
different languages.

Among individual rerankers, GRITLM achieved the highest scores across both original
and translated versions, outperforming NV and QWEN. This suggests that GRITLM is
better at capturing fine-grained semantic relationships between claims and fact-checks.
NV performed well with the English version, achieving S@50 of 0.8749, while QWEN is
slightly behind in both settings, with S@50 of 0.8612 and 0.8471 in English and original
versions, respectively.

After evaluating all model and version combinations, the best performance was achieved
with the ensembler configuration that combined NV (English), QWEN (English) and
GRITLM (original), reaching an S@10 of 0.7951. This demonstrates the effectiveness of
hybrid ensembling, showing that combining diverse rerankers enhances ranking robustness
beyond what individual models can achieve. Interestingly, the inclusion of an original-
language model suggests that translation is not always the optimal solution: language-
specific nuances provide valuable ranking signals that contribute to improved retrieval
accuracy.
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Effectiveness of Reranking

In contrast to our findings in monolingual retrieval, our results for crosslingual retrieval
indicate that reranking provides an improvement over the retriever-ensemble approach.
As shown in Table 7.3, the reranker ensembler (QWEN + GRITLM + NV) achieves a
significantly higher S@10 score (0.7951) compared to the retriever ensembler (E5 + BM25
+ BGE) at 0.7572. This suggests that in crosslingual settings, retrieval bottlenecks are
more effectively addressed through reranking, likely due to the complexities of language
transfer and semantic alignment across different languages. The effectiveness of the
reranking step highlights its role in refining retrieved candidates, making it a crucial
component in improving performance for crosslingual retrieval tasks.

Model S@10

Retriever Ensembler (E5 + BM25 + BGE) 0.7572
Reranker Ensembler (QWEN + GRITLM + NV) 0.7951

Table 7.3: Comparison of retriever ensembler and the full retriever-reranker pipelines
(S@10)

Execution Time and Memory Usage

To address RQ2, we compare the S@10 scores, execution time, and memory usage of
models used for crosslingual retrieval, evaluating both multilingual and translation-based
(English) approaches. This comparison allows us to assess whether mapping all content
into a single language embedding space (via translation) enhances retrieval performance
while losing nuances of the original language, or whether using a shared multilingual
embedding space yields better results.

Evaluation was conducted on the whole corpus using both the retriever and reranker
models in isolation, enabling a controlled comparison of their effectiveness and efficiency
in each setting.

We define execution time as the average time required to retrieve the top 10 documents
for a query, while memory usage is measured in terms of RAM/VRAM consumption and
model size (number of parameters). Table 7.4 presents a comparative analysis of these
factors. Since the same underlying models process both English and multilingual inputs,
their execution time and memory footprint remain consistent across both settings.

Addressing RQ2:
Since both approaches (translation-based and multilingual) rely on the same underlying
models, execution time and memory usage remain unchanged. This means that the
choice between them should be based on their retrieval performance, measured by S@10.

In terms of efficiency, the E5 model offers the fastest execution time (0.08s), making it
well-suited for real-time retrieval, whereas cross-encoders such as NV and GRITLM are
significantly slower, exceeding 1 second per query.
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Model Time (s) N Parameters Memory (MB) S@10 (English) S@10 (Original)

E5 0.08 560M 3964 0.6918 0.5962
BGE 0.39 9.24B 19566 0.7267 0.7409
NV 1.28 7.85B 36104 0.7582 0.6311
QWEN 0.40 7.61B 31871 0.6925 0.6673
GRITLM 1.23 7.24B 31920 0.7653 0.7304

Table 7.4: Comparison of S@10, execution time, model size, and memory usage for
retrieval and reranking models.

Memory usage varies, with BGE maintaining relative efficiency despite its 9.24B parame-
ters, while models like NV and QWEN consume over 30GB of memory, making them
computationally expensive.

Regarding retrieval effectiveness, GRITLM achieves the highest S@10 scores, 0.7653 in
English, 0.7304 in the original language. BGE also performs well (0.7267 in English,
0.7409 in the original language) while being considerably faster, making it a balanced
choice for both speed and accuracy. NV, despite achieving a strong performance in
English (0.7582), shows a drop in the original language (0.6311), suggesting potential
language biases during training.

These results suggest that translation-based approaches are preferred when using bi-
encoders like BGE, which provide a balance between efficiency and accuracy, while
GRITLM and NV offer higher retrieval precision but with a substantial computational
cost.

While in our setting, translation-based retrieval improved ranking accuracy without
increasing computational costs, it is important to consider the real-world feasibility of
translation. In this work, translations were provided within the dataset, but in real-
world applications, translation introduces an additional processing step that could affect
efficiency. This highlights the need to weigh the accuracy of the retrieval against the
potential overhead when choosing between multilingual and translation-based retrieval
strategies.

7.4 SemEval 2025 Task 7 Submission Results
We present the results achieved during our participation in the SemEval 2025 Task 7.

During the shared task, the organizers first released the "train" and "dev" dataset to tune
the models, but the final evaluation was done on the "test" set.

Table 7.5 compares our test set performance with the organizer’s best-performing model
used as a baseline and the best-performing model on the leaderboard. Our approach
outperformed the organizer’s baseline in both monolingual (S@10: 0.93 vs. 0.84) and
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crosslingual retrieval (S@10: 0.75 vs. 0.59). The top leaderboard model achieved 0.96
and 0.86, respectively.

For the monolingual submission, we selected the best-performing setup per language,
choosing between retrieval-ensemble and retriever-reranker configurations. We used
the retriever- ensemble for Arabic, Malay, German, Thai and Turkish, and the full
retriever-reranker pipeline for English, French, Spanish, Portuguese and Polish. For the
crosslingual subtask, we used the retrieval-ensemble setup instead of the retrieval-reranker
setup due to insufficient time for further evaluation.

Task Baseline Best Our Score
Monolingual 0.84 ± 0.01 0.96 0.93
Crosslingual 0.59 ± 0.05 0.86 0.75

Table 7.5: Test set performance comparison (S@10)
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CHAPTER 8
Conclusion

We summarize the key contributions and limitations and outline potential directions for
future research.

8.1 Contributions
In this thesis, we explored the task of multilingual and crosslingual previously fact-checked
claim retrieval, addressing the challenge of efficiently retrieving relevant fact-checks across
different languages.
To answer RQ1, we designed a pipeline above that enhanced the performance of BM25
for monolingual claim retrieval, and confirmed that a well-designed preprocessing pipeline
enhances lexical retrieval by reducing both false negatives and false positives. The average
S@10 score increased to 0.7229 for the original-language training data and to 0.7967 for
the English-translated version.
To address RQ2, we compared retrieval performances for original-language and English-
translated versions for crosslingual retrieval. Translated versions often achieved higher
S@10 scores, however, as both approaches use the same models, the execution time and
memory footprint remained unchanged. In real-world deployment, one would need to
consider translation overhead.
For RQ3, we examined the system’s robustness across multiple languages. The retriever-
reranker setup, with E5, BM25, and BGE as retrievers and QWEN, GRITLM and NV
as rerankers, delivered the most consistent monolingual retrieval performance achieving
an average S@10 of 0.9202. However, the retrieval-ensemble setup that integrates E5,
BM25, and BGE without rerankers yielded the highest monolingual retrieval performance,
reaching an average S@10 of 0.9237.
The main conclusions of this work were that in the monolingual setting of PFCR, reranking
provides only marginal improvements over hybrid retriever ensembling, suggesting that
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ensemble-based retrieval alone is effective in balancing accuracy and efficiency. This
highlights the strength of combining lexical and dense retrievers rather than relying
on additional reranking steps. On the other hand, for the crosslingual setting, the
retriever-reranker configuration proved to be the most effective approach. The additional
reranking step played a more significant role in refining retrieval, likely due to the
increased variability in language structure and translation-induced noise.

Our work was conducted within the scope of the SemEval-2025 Shared Task 7 Lab,
where we submitted a paper titled: "ipezoTU at SemEval-2025 Task 7: Hybrid Ensemble
Retrieval for Multilingual Fact-Checking: Balancing Efficiency and Accuracy" [PHS25],
which is currently under review.

The complete codebase developed for this thesis is publicly available on GitHub1.

8.2 Limitations
Although our approach demonstrates strong retrieval effectiveness, several limitations
must be acknowledged.

MultiClaim Dataset Creation Limitations. The authors of the MultiClaim dataset
state that the dataset was processed using third-party AI services for machine translation
to English and language detection. Both of those introduce additional sources of noise,
potentially impacting retrieval accuracy and crosslingual alignment. Additionally, the
presence of non-textual claims, which rely on visual information (e.g., images, videos, or
memes) to convey misinformation, remains a significant challenge for retrieval performance
as optical character recognition (OCR) tools often introduce noise and errors.

Computational Constraints. Our retrieval-reranking pipeline employs large-scale
neural models (e.g., BGE, GRITLM, and QWEN), which demand significant GPU
resources for inference. While these models show high retrieval accuracy, further improve-
ments could be achieved by utilizing higher-precision computations or processing larger
batches. However, these enhancements were constrained by resource limitations.

Existance of Previously Fact-Checked Claim. The developed pipeline relies on the
availability of previously fact-checked claims. However, this approach faces limitations
when such claims are not available and relies heavily on manual fact-checkers for validation.

Real World Application. Due to the reliance on pre-trained models, retrieval effective-
ness may vary across unseen domains and evolving misinformation trends. Additionally,
real-time fact-checking requires efficient query processing, yet some models have high

1https://github.com/ivapezo/Multilingual-and-Crosslingual-Fact-Checked-Claim-Retrieval/
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8.3. Future Work

computational costs, making large-scale deployment challenging. Finally, language cover-
age remains a constraint, as retrieval effectiveness may decline in low-resource languages
with fewer resources.

Trust in AI. Public trust in AI-driven fact-checking remains a challenge, as users may
be sceptical of automated systems, particularly when explanations are lacking or errors
occur. LLMs can introduce biases, hallucinate, or struggle with nuanced claims, raising
concerns about their reliability in fact verification. Additionally, growing opposition
to fact-checking efforts, due to political polarization and distrust in media, has led to
resistance against automated fact-checking systems. These trends highlight the need
for transparency, interpretability, and validation methods to build user confidence in
AI-assisted verification [LWV24].

8.3 Future Work
Potential directions for future research include the following:

1. Enhancing retrieval with k-shot learning and domain-specific fine-tuning. Integrat-
ing k-shot retrieval could improve generalization to unseen claims with limited
labeled examples, enabling the system to adapt with minimal supervision. Ad-
ditionally, fine-tuning retrieval models on fact-checking datasets could optimize
performance, ensuring stronger alignment with the requirements of fact verification.

2. Adapting retrieval strategies based on language properties and claim complexity.
Since languages differ in morphology, syntax, and availability of resources, retrieval
strategies could be tailored accordingly. Additionally, claims vary in complexity

— some are straightforward paraphrases, while others require deeper contextual
understanding. Dynamic retrieval approaches that adjust based on language struc-
ture and claim complexity could enhance both efficiency and accuracy, particularly
in low-resource settings.

3. Improving ranking quality through claim entailment verification. Incorporating an
entailment verification step into the ranking process could help determine whether
retrieved fact-checks support or contradict a claim. This refinement would mitigate
irrelevant results, ensuring that retrieved evidence is not only topically relevant but
also semantically aligned with the claim.

4. Integrating newer architectures and evolving large language models. As LLMs
continue to advance, integrating state-of-the-art models with improved contextual
reasoning and multilingual capabilities could enhance retrieval and reranking. Ad-
ditionally, exploring alternative retrieval architectures such as retrieval-augmented
generation (RAG) could further optimize performance.

5. Evaluation of the framework on additional datasets to further validate its general-
izability.
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By addressing these aspects, future work can further improve fact-check retrieval, making
it more efficient and adaptable across diverse languages and claim types.
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Overview of Generative AI Tools
Used

In this thesis, Grammarly [Gra25] and ChatGPT [Ope25] (versions 3 and 4), were only
used to help with grammatical structure and improve sentence clarity.

Generally, the following prompt template was employed to refine sentences that required
improvement:

Please rewrite this sentence to improve its clarity: {sentence}.

Once the chatbot suggested a refinement, the sentence was manually adjusted to fit
the context. Furthermore, ChatGPT was used to assist with refining equations and
formatting tables in LaTeX.

Additionally, DeepL [Tra25] was used for assistance with translating the abstract to
German.
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