
Few Shot Semantic Segmentation
on the Fly

Using Low-Rank Adaptation in Visual Foundation
Models

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Martin Miesbauer, BSc
Matrikelnummer 11901956

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Doctor Pedro Hermosilla Casajus

Wien, 5. Mai 2025
Martin Miesbauer Pedro Hermosilla Casajus

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Few Shot Semantic Segmentation
on the Fly

Using Low-Rank Adaptation in Visual Foundation
Models

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Martin Miesbauer, BSc
Registration Number 11901956

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Doctor Pedro Hermosilla Casajus

Vienna, May 5, 2025
Martin Miesbauer Pedro Hermosilla Casajus

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Martin Miesbauer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 5. Mai 2025
Martin Miesbauer

v

Danksagung

Ich danke meiner Familie, die mir das Studium ermöglicht haben. Meinen Freunden, die
mir die Zeit erträglich gemacht haben, besonders Larissa für das kostenlose Essen.

vii

Acknowledgements

Calculations were performed using supercomputer resources provided by the Vienna
Scientific Cluster (VSC).

ix

Kurzfassung

Few-Shot Semantic Segmentation (FSS) ist eine Aufgabe in der Computervision, bei der
neue Objektklassen mit nur wenigen Beispielen segmentiert werden. Dabei wird jeder
Pixel als Vorder- oder Hintergrund markiert. Diese herausfordernde, aber entscheidende
Aufgabe ist besonders in Bereichen interessant, in denen keine großen Datensätze zur
Verfügung stehen. Diese Diplomarbeit untersucht den Einsatz von Low-Rank Adaptation
(LoRA), einer Technik aus Sprachmodellen, um große Visual Foundation Models (VFMs),
insbesondere DINOv2, an eine neue Klasse anzupassen.

Wir implementieren eine FSS-Pipeline, in der ein binärer Segmentierer mit den seg-
mentierten Beispielen trainiert wird. Dabei werden Matrizen mit niedrigem Rang in
ausgewählte Schichten von DINOv2 injiziert und trainiert, anstatt die bestehenden Para-
meter von DINOv2 zu verändern. Für die Segmentierung verwenden wir eine einfache
lineare Abbildung.

Wir führen Experimente auf drei etablierten FSS Benchmarks, PASCAL-5i, COCO-20i

und FSS-1000, durch und analysieren sowohl quantitative Metriken, wie mIoU und
FB-IoU, als auch die qualitative Segmentierungsqualität. Die Ergebnisse zeigen, dass
wir viele bestehende Modelle, insbesondere hinsichtlich der Generalisierungsfähigkeit
übertreffen konnten. Zwar konnten wir nicht alle State-of-the-Art-Modelle schlagen, aber
insbesondere beim Benchmark FSS-1000 sind wir sehr nahe gekommen.

Eine Ablationsstudie zeigt, dass nur wenige Transformationen mit LoRA-Matrizen vom
Rang 2 angepasst werden müssen, um die besten Ergebnisse zu erzielen.

Diese Arbeit zeigt, dass LoRA eine effektive Strategie ist, um VFMs an neue Segmentie-
rungsaufgaben anzupassen und somit Few-Shot Learning auch in ressourcenbeschränkten
Umgebungen zu ermöglichen.

xi

Abstract

Few-Shot Semantic Segmentation (FSS) aims to segment novel object classes using only
a handful of labeled examples, a challenging yet critical task in domains where large-scale
annotated datasets are unavailable. This thesis explores the application of Low-Rank
Adaptation (LoRA) to enable efficient FSS using large-scale Visual Foundation Models
(VFMs), in particular DINOv2.

We propose an FSS pipeline in which a binary segmenter is trained using the labeled
examples. We inject trainable low-rank matrices into selected layers of DINOv2 and
train these layers instead of the existing parameters. We use a simple linear pixel-wise
classification head.

We perform extensive experiments on three established FSS benchmarks, PASCAL-5i,
COCO-20i and FSS-1000, evaluating the quantitative metrics mIoU and FB-IoU, as
well as the qualitative segmentation performance. Our results outperform many existing
models, particularly in terms of generalization, although we did not outperform all
state-of-the-art models, but came close in the FSS-1000 benchmark.

We present an ablation study which shows that only a few transformations need to be
adapted using rank 2 low-rank matrices to achieve the best results.

This work demonstrates that LoRA provides an effective strategy for adapting VFMs
to new segmentation tasks, enabling easy few-shot learning in resource-constrained
environments.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Research Problem . 3
1.3 Research Objectives . 3
1.4 Structure of the Thesis . 4

2 Background 5
2.1 Definition of Few-Shot Semantic Segmentation 5
2.2 Benchmarks and Evaluation Metrics 5
2.3 Few Shot Semantic Segmentation Models 6
2.4 DINOv2 . 9
2.5 Low-Rank Adaptation . 10
2.6 Regularization Methods . 12
2.7 Hyper-parameter Tuning . 13

3 Our Few-Shot Segmenter 15
3.1 Segmentation Module . 15
3.2 Few-Shot Semantic Segmentation Pipeline 16
3.3 Training Strategy . 16
3.4 Implementation . 16

4 Experiments and Results 19
4.1 Dataset Preparation . 19
4.2 Experimental Setup . 20
4.3 Quantitative Results . 23
4.4 Qualitative Results . 28

5 Discussion 37

xv

5.1 Main findings . 37
5.2 Strengths and Limitations . 37
5.3 Research Questions . 38

6 Conclusion and Future Work 41
6.1 Conclusion . 41
6.2 Future Work . 41

Overview of Generative AI Tools Used 43

List of Figures 45

List of Tables 47

Acronyms 49

Bibliography 51

Appendix 61
Benchmark Classes . 61

CHAPTER 1
Introduction

1.1 Motivation
Semantic image segmentation (SiS) is a computer vision task that consists of assigning a
class label to each individual pixel in an image. It has many different use cases, including
detection of road signs in driver assistance systems [MBLAGJ+07] and detection of brain
tumors [XZF25]. An example of a semantic segmentation result is shown in Figure 1.1.

Traditionally, SiS models, like all other computer vision tasks, have relied on a separate
feature extraction step. This consisted mainly of applying hand-crafted algorithms, such
as edge detection, corner detection, and threshold segmentation. The difficulty with this
approach is that there are a huge number of feature extraction algorithms to choose from.
Selecting the right features must be performed by a human expert. These features can
then be used as input in a simple model [OCC+20].

Figure 1.1: Example of a semantically segmented image (Figure from [JYL20])

1

1. Introduction

Figure 1.2: An example of an FSS task

In the last decade, almost all state-of-the-art (SOTA) methods for SiS have used deep
learning (DL). In this technique, the feature extraction step is incorporated into the
model. These models typically have many layers and trainable parameters that are
learned by using images and their pixel-wise class labels as training data [HZG20].

DL methods for SiS have their own limitations. They require massive labeled datasets for
training. These datasets can be time consuming and expensive to produce. For example,
creating the MS COCO dataset [LMB+14] took over 70,000 worker hours. For some
specific domains, such as healthcare and agriculture, large-scale labeled data is scarce or
unavailable due to privacy concerns, high annotation costs, or domain-specific expertise
requirements [CM24]. Humans, on the other hand, can learn new concepts with just
a few examples [CLR+23]. This has inspired a related computer vision task Few-Shot
Semantic Segmentation (FSS). The main goal here is to develop models that can learn to
segment novel object classes from only a handful of labeled examples. This could reduce
the need for large labeled datasets for model training. An example of an FSS task is
shown in Figure 1.2. Here, the five labeled examples of an elephant with the label form
the support set, which is used by the model to learn the segmentation of the query image
on the right.

SOTA models for FSS, such as SegGPT [WZC+23], DACM [XLZ22], or GF-SAM
[ZGJ+24], still require large amounts of labeled training data. This makes scaling the
models quite challenging, as there is always some human factor involved in labeling the
images, even if large amounts of images are available for the specific domains. This raises
the question: Can we develop a more efficient approach that enables FSS with minimal
labeled data?

2

1.2. Research Problem

1.2 Research Problem
In many existing solutions for FSS, training is time consuming, while inference remains
fast. This is ideal when we have large amounts of data for both training and inference.
This thesis addresses the dependency on large-scale labeled datasets by investigating how
to adapt pre-trained Visual Foundation Models (VFMs) using Low-Rank Adaptation
(LoRA) to effectively segment images with just five labeled support examples.

The central challenge is to determine if LoRA can provide a parameter-efficient fine-
tuning strategy that maintains competitive segmentation performance while reducing
the computational and storage requirements compared to full fine-tuning. LoRA injects
trainable low-rank matrices into the model and only changes their parameters during
fine-tuning. This technique has proven beneficial in the domain of large language models
(LLMs) [HSW+22].

1.3 Research Objectives
The main objective of this thesis is to develop and validate a LoRA-based fine-tuning
approach for VFMs to enable efficient and effective FSS using only a few labeled examples.

Specifically, we want to answer the following research questions:

1. What are the highest mean Intersection over Union (mIoU) and foreground-
background IoU (FB-IoU) scores we can achieve in established FSS benchmarks
using LoRA in VFMs? How does this compare to a baseline and SOTA models?

2. How much memory and computational savings does LoRA in VFMs provide
compared to full fine-tuning?

3. What is the optimal configuration for LoRA in VFMs?

4. How does transferring learned knowledge from one benchmark to another affect
performance, and how does it compare to SOTA models?

We have the following goals for this thesis:

• Ensure a competitive accuracy, aiming for segmentation results within 1% of SOTA
models.

• Demonstrate the benefit of using LoRA, aiming for at least a 1% improvement over
the baseline.

• Ensure parameter-efficient fine-tuning, aiming for at least a 50% reduction in
memory and computation time compared to full fine-tuning.

3

1. Introduction

By achieving these objectives, we hope to demonstrate that LoRA can significantly reduce
the amount of labeled data required for FSS, making it more accessible to domains with
limited data availability.

1.4 Structure of the Thesis
Chapter 2 provides an overview of the background for this thesis. It includes related
work for FSS, including the definition of the task, existing models, benchmarks, and
evaluation metrics. It also covers VFMs, and an overview of LoRA. Since we have very
limited training data, we also cover techniques for regularization to avoid overfitting
and hyper-parameter tuning. Chapter 3 will cover our FSS implementation, and our
training and adaptation strategy. Chapter 4 contains the experimental setup and the
results of these experiments. In addition, we perform an ablation study on the LoRA
configurations and a qualitative analysis of the resulting segmentation masks. We also
present the changes in the DINOv2 results caused by LoRA. Chapter 5 discusses the main
findings, their strengths and limitations, and directly answers the research questions. In
Chapter 6 we conclude the thesis by summarizing its main contributions and providing a
direction for further research.

4

CHAPTER 2
Background

2.1 Definition of Few-Shot Semantic Segmentation
The task of FSS was first introduced by Shaban et al. in 2017 [SBL+17]. We refine the
original formulation for better clarity. Let the support set be defined as S = {(Ii

S , M i
S)}k

i=1,
where each pair consists of a support image Ii

S ∈ [0, 255]3×hi×wi and its corresponding
binary segmentation mask M i

S ∈ {0, 1}hi×wi . Each mask represents the pixels belonging
to a common novel class, i.e. all masks in the support set refer to the same semantic
category. Given this support set S and a query image Iq ∈ [0, 255]3×h×w, the goal of FSS
is to learn a model f(Iq, S) that predicts a binary mask M̂ q ∈ {0, 1}h×w, that segments
the same class as annotated in the support set. Typically, k is a small number, (most
commonly k = 1 and k = 5), reflecting the few-shot setting. The tuple (S, Iq, Mq), where
Mq is the true segmentation mask of Iq, is called an episode.

2.2 Benchmarks and Evaluation Metrics
Several benchmarks have been proposed since the inception of FSS. Shaban et al. [SBL+17]
introduced Pascal-5i, the first widely used benchmark. It was created using images and
annotations from PASCALVOC 2012 [EVGW+] and extended annotations from SDS
[HAGM14]. It contains 20 different semantic classes divided into 4 folds.

A more challenging benchmark is COCO-20i by Nguyen and Todorovic [NT19] based
on the MSCOCO [LMB+14] dataset. It contains images that contain one or more of 80
different classes. The classes are again divided into 4 folds to ensure testing on unseen
classes.

The FSS-1000 benchmark by Li et al. [LWC+20] contains 1000 different classes, divided
into 760 classes for training and 240 classes for testing. They created the dataset from
scratch to ensure a diverse set of different classes.

5

2. Background

A complete list of all classes in each fold can be found in Appendix 6.2.

All benchmarks typically use the mIoU metric, while some models also report the FB-IoU
metric [CLR+23]. The mIoU metric can be calculated as

mIoU = 1
C

C∑︂
c=1

IoUc, (2.1)

where IoUc is the ratio of true positive classified pixels for class c to the number of false
positive classified pixels plus false negative classified pixels. The FB-IoU metric ignores
the different classes and calculates the mean IoU of the foreground and background
classes. This calculation can be written as

FB-IoU = 1
2

2∑︂
c=1

IoUc. (2.2)

2.3 Few Shot Semantic Segmentation Models
There have been many different approaches to solving the FSS problem. We will
only highlight the major contributions that were either once SOTA or are currently
best performing models. These models are roughly ordered by the publication date of
the corresponding paper. Most approaches use a backend, which is a learned feature
extractor applied directly to the image. This can reduce the resolution and increase the
dimensionality of the image. The output of the backend is referred to as the embedding
of the image in the feature space. The backend can be trained directly on the data, or it
can be pre-trained on some other dataset. In this context, training refers to adjusting
the model weights using a set of training episodes, while inference refers to applying the
model to testing episodes.

The first FSS model, One-Shot Learning for Semantic Segmentation (OSLSM), was
introduced by Shaban et al. in 2017 [SBL+17]. They formulate the task as a two-branch
network. The first branch generates classifier parameters from the support image-mask
pairs, and the second branch applies these parameters to segment the target object in a
query image.

The main idea of Similarity Guidance Network for One-Shot Semantic Segmentation (SG-
One) by Zhang et al. [ZWYH20] was to leverage the pixel-wise similarities between the
support and the query images. They still use a two-stage design, but incorporate shared
weights. The Guidance Branch first uses several convolution layers, then it averages the
values of all pixels where the desired object is present. This step is called Masked Average
Pooling (MAP). This vector represents the target object in the support images and is
multiplied with the query image to compute the cosine similarity. The Query Branch
applies 3 × 3 convolution layers and multiplies the similarity matrix computed in the first

6

2.3. Few Shot Semantic Segmentation Models

step with the result. Models that use a vector representing the target class are sometimes
called to as prototypical networks.

Class-Agnostic Segmentation Network (CANet) by Zhang et al. [ZLL+19] proposes two
new ideas. First, they create a dense comparison between the support and query images.
To do this, they apply a ResNet [HZRS16] with shared weights to the query and support
images. Then the MAP is computed for the support images, this vector gets then
up-sampled and concatenated to the output of the query image. The output is then fed
through an iterative optimization module. Here, the predicted masks are refined step by
step. Zhang et al. [ZXQ21] showed that CANet and other models can be optimized using
Self-Guided and Cross-Guided Learning (SCL). These improve the vector representing
the object by using the provided support mask as a guide and comparing it with a
predicted support mask.

Prototype Alignment Network (PANet) by Wang et al. [WLZ+19] uses a simple model
with an interesting training approach. They implement a basic prototype network with a
backbone, MAP and cosine similarity. They then switch the roles of the support and
query sets and use the predicted masks of the query image get used as an input to predict
the original query masks. This aligns the support and query prototypes.

Feature Weighting and Boosting (FWB) by Nguyen and Todorovic [TZS+22] contributes
two novel ideas to the field of FSS. First, the features calculated by the backend are
weighted according to their relevance in the support masks. The second contribution
consists of multiple vector representations of the object, which are gradually improved
during testing. For each of these representations, the accuracy on the support masks is
calculated, and a weighted average is used as the final prediction for the query set.

Yang et al. introduced Local Transformation Module (LTM). Here, they use a transformer
to obtain weights from the support images and masks. These weights are then spatially
applied to the output of the query image.

Zhang et al. proposed Cycle-Consistent Transformer (CyCTR). This method uses trans-
former blocks to aggregate information from the support images into the query image.
They introduce a special kind of attention using cycle-consistency.

Part-aware Prototype Network (PPNet) by Liu et al. [LZZH20] was the first model
that tried to decompose the prototypes into several different prototypes. Each of these
prototypes can be aware of different parts of the object. In addition, they use unlabeled
data to enrich these prototypes.

Prior Guided Feature Enrichment Network (PFENet) by Liu et al. [TZS+22] uses training-
free priors by calculating the correlation between the representations of the query image
and masked support images. These priors are then used in addition to the original
representations of the query image in the final classification.

Region Proportion Regularized Inference (RePRI) by Boudiaf et al. [BKM+21] optimizes
a new loss instead of the traditional cross-entropy loss.

7

2. Background

Mining Latent Classes (MLC) by Yang et al. [YZQ+21] re-annotates the training images
in a first step, by using classes not present in the original masks.

Hypercorrelation Squeeze Network (HSNet) by Min et al. [MKC21] uses the correlation
of the features at different levels between each pixel of the query image features and the
masked support images features. These 4D tensors of pixel-wise correlations are then
iteratively squeezed into segmentation masks. Moon et al. [MSZ+22] improved HSNet
and other models by modifying the masked support images. HSNet masks the features of
the support image, but there may be more information at the edges. Therefore, Hybrid
Masking (HM) takes the features of the masked support image if the pixel is inactive in
the masked feature image.

Johnander et al. proposed Dense Gaussian Process Network (DGPNet) [JEF+22], which
uses a Gaussian approach. They estimate the probability distribution of the support
masks given the support images, derive a function between the support images and the
support masks, and apply this mask to the query image.

Hong et al. [HCN+22] approach FSS with Volumetric Aggregation with Transformers
(VAT). They reformulate the FSS task as a semantic correspondence task, where the goal
is to find corresponding points in semantically similar images.

Dense Cross-query-and-support Attention weighted Mask Aggregation (DCAMA) by
Shi et al. [SWZ+22] treats each pixel in the query image as a token and calculates the
pixel-wise correlation with all support pixels. The query pixels are then labeled according
to the average of the support pixels, weighted with how similar they are.

Xiong et al. [XLZ22] propose Doubly Deformable Aggregation of Covariance Matrices
(DCAM). They use Gaussian processes to obtain covariance matrices from the pixels of
the query image to the pixels of the support images. These are then passed through a
transformer to obtain the segmentation mask.

Zhang et al. [ZSYC22] propose Feature-Proxy Transformer (FPTrans). They revive
a classical approach that combines a complicated backend feature extractor with a
simple linear classifier. First, they generate class-aware prompts from the support images
representing the foreground and several background objects. They then use these prompts,
the support images, and the query image as input to a transformer. Proxies are calculated
from the output of the support images and used as the weights in a classification head
on the output of the query image.

Painter by Wang et al. [WWC+23] is a general-purpose model that can be used in
various different computer vision tasks, including FSS. They reformulate all tasks as an
image inpainting problem, where each pixel of the image is recolored according to some
properties depending on the task. During training, they used training images and the
corresponding inpainted image as an input and had the model reproduce masked patches
of the inpainted image. During inference, both the support image and the query image
are passed through the transformer. The support masks are treated as existing patches
of the inpainting and the query mask is treated as missing. The task of FSS is then to

8

2.4. DINOv2

guess the missing patches of the query mask. They further improved upon this concept
by proposing segment everything with a generalist Painter (SegGPT) a generalist model
capable of only segmentation tasks [WZC+23]. They further improved upon Painter by
using a random coloring scheme.

Liu et al. proposed Matcher [LZL+24]. This training-free approach uses a powerful image
encoder DINOv2 [ODM+23] to encode the masked support images and query image. It
then calculates a similarity matrix between the features to identify similar patches in
the images. Points with high similarity scores are used as an input for SAM [KMR+23],
a foundation model in the field of SiS whose predictions are aggregated for the final
prediction.

Prior Guided Mask Assemble Network (PGMA-Net) by Chen et al. [CMZ+24] uses the
multi-modal Foundation Model (FM) CLIP [RKH+21] to extract features at different
fidelity levels. Then the class specific features are transformed into a class agnostic prior
in the form of a probability map. In addition, the pixel to pixel correlation is calculated
with an Affinity Extractor. These two results are then assembled into different masks,
which are then decoded to obtain the final prediction.

Zhang et al. propose Graph-based Few-shot Segment Anything Semantically (GF-SAM)
[ZGJ+24]. They again use the DINOv2 backbone, calculate the pixel-wise correlation
between query and support images, they divide the correlation matrix into a part
containing the object and a part containing the background based on the support
mask. They then algorithmically select prompt points in the query image based on the
similarities to the support images. These points are then used to generate masks with
SAM [KMR+23]. They then cluster the masks based on which points they contain, and
take the union over the masks of each point in the clusters. In a third step, false positives
are minimized by first calculating the ratio of positive to negative pixels in the mask
obtained from the prompt point. Another way to reduce false positives is to consider
self-consistency. The model assesses the similarity between the sample points and the
features of the corresponding masks. Finally, the masks of the points that pass both
tests are merged to form the final prediction.

The SOTA models have become very complex recently, which makes using them as a
stepping stone for new advancements more difficult.

2.4 DINOv2
DINOv2 [ODM+23] is a family of large VFMs consisting of up to 1 billion parameters.
The term FM was first introduced by Bommasani et al. [BHA+21] and refers to a class of
models trained on broad data that can be adapted to a variety of different downstream
tasks, by using some or all layers of the FM as a backbone and implementing a custom
head for the specific task. During training, the backbone is usually frozen, and only the
head is adapted. FMs are widely used for Natural Language Processing (NLP), the most
prominent examples are BERT [DCLT19], LLAMA [TLI+23], and GPT-3 [BMR+20].

9

2. Background

FMs are typically trained using self-supervised learning, a method that reduces the need
for labeled examples. These models benefit from their large size and can have billions
to trillions of parameters. For example, the successor to GPT-3, GPT-4 [OAA+24] is
rumored to have about 1.8 trillion parameters[AYF+24], although the exact number is
unknown.

DINOv2 was implemented using the Vision Transformer (ViT) architecture [DBK+21] and
trained from scratch using self-supervised learning. A simple overview of this architecture
is shown in Figure 2.1. The image is divided into patches of size 14 × 14 (instead of the
typical 16 × 16 for ViT), these patches as well as an additional learnable class token are
then embedded into a larger feature space by a linear transformation. The embeddings
are then passed through n transformer blocks represented by the dashed outline in the
figure. The most important part of the transformer blocks is the Multi-head attention
layer. An overview of this layer is shown in Figure 2.2. The same input is transformed
into the query, key, and value matrices via linear transformations, which we will refer to
as the Q/K/V-transformations respectively. At the end of the layer, the intermediate
vectors (called Context Vectors in Figure 2.2) get concatenated and transformed to the
output vector (called Context Vector in Figure 2.2) via a linear transformation. We will
refer to this transformation as the O-transformation, to be able to distinguish it from the
other linear transformations in the attention layer. The Scaled Dot-Product Attention is
a function with no learnable parameters. It is defined as

Attention(Q,K,V) := softmax
(︄

QKT

√
d

)︄
V,

where d is the dimension of the feature space.

The largest DINOv2 model ViT-g/14 was trained using a combination of multiple loss
functions. The image-level objective consists of gaining a vector representing the whole
image (Rep<class> in Figure 2.1). This was improved by sampling two different crops
from the same image and aligning the outputs. The patch-level objective consists of
gaining vectors representing each patch of the image. This was achieved by masking
random patches in images and aligning the output with the output to the full image.
The model was then frozen, and smaller models were trained using knowledge distillation
[HVD15], meaning that the smaller student-model attempts to replicate the output of
the larger teacher-model.

2.5 Low-Rank Adaptation
LoRA, originally developed for LLMs by Hu et al. [HSW+22], is a technique to reduce
the number of trainable parameters in a model for tuning to a specific task, while
maintaining accuracy comparable to full fine-tuning. It consists of injecting trainable
low-rank matrices of rank r into some or all parameter matrices of the model. Figure
2.3 shows the data flow. With x ∈ Rd, W ∈ Rd×d, we have WA ∈ Rr×d and WB ∈ Rd×r.

10

2.5. Low-Rank Adaptation

Figure 2.1: Overview on the ViT architecture (Figure from [Com24])

Figure 2.2: Schematic of a typical attention layer used in Transformer models (Figure
from [Com25])

11

2. Background

Figure 2.3: Schematic Decomposition in low rank matrices

During training the outputs h are calculated as follows

h = W · x + (WB · WA) · x,

where W is frozen. During inference, we can calculate a new weight as follows

W = W + WB · WA

and use it as usual, which does not add any computation time.

2.6 Regularization Methods
Since we want to adapt DINOv2 directly, we have to work with many parameters. Even
though the use of LoRA drastically reduces the number of parameters, we still have
thousands of trainable parameters (see Table 4.3). Due to the nature of the FSS task,
we only have a few support images per episode. This drastically increases the risk of
overfitting, i.e. the model performs much better on the training set than on the test
set. Therefore, we need regularization techniques to combat this. There are a some
conflicting definitions of regularization, we will use the generous definition of Kukačka et
al. [KGC17] “Regularization is any supplementary technique that aims at making the
model generalize better, i.e. produce better results on the test set”.

Weight decay is a way to penalize large parameters in the model. This is done by adding
a quadratic cost function to the loss function. D’Angelo et al. [DAAVF24] have shown
the effects of weight decay for Deep Learning models.

Another regularization technique is dropout [SHK+14]. During training, the parameters
of the hidden layers are randomly set to zero with a fixed probability. Liu et al. have
shown that dropout can even reduce underfitting in certain scenarios [LXJ+23].

12

2.7. Hyper-parameter Tuning

Another technique, typically used when the data is scarce, is data augmentation [MM22].
There are many different ways to augment the input data. This can be done by manually
specifying image transformations or by using automated methods. One such automated
method is RandAugment [CZSL20]. This randomly applies one or multiple random
augmentations from a pool of different augmentations with an adjustable strength. They
have shown comparable improvements to more complicated augmentation strategies with
little impact on performance.

Another technique to improve learning ability is a stochastic gradient descent, which
adjusts the parameters of the model after a batch of examples. This often finds better
solutions than adjusting the parameters after every example or after all examples [KLY18].

2.7 Hyper-parameter Tuning
Since we need to fit large models quickly and have few labeled examples, there are
certain hyper-parameters that drastically affect the accuracy of our model. These hyper-
parameters exist in all DL models, but since we include many different regularization
methods, the number of hyper-parameters increases dramatically.

Hyper-parameters are any parameters in a machine learning (ML) model that cannot
directly be estimated from the training data by gradient descent. They must be set
before the ML model is trained. To increase the performance of the ML model, many
different combinations of hyper-parameters must be explored. This is time consuming and
computationally expensive [YS20]. The simplest technique is Babysitting. This method
is 100% manual tuning and requires a mixture of experience, guesswork, and analysis
of previous results. This becomes infeasible with a large number of hyper-parameters.
Another simple technique is grid search. It is an exhaustive search of the hyper-parameter
space in a given grid. It will find an optimum in the grid, but also becomes infeasible with
a large number of hyper-parameters. A more efficient way for hyper-parameter tuning was
introduced by Bergstra and Bengio [BB12]. In this technique, a fixed number of hyper-
parameter combinations are sampled from the search space and evaluated. They showed
that this approach can lead to similar results with a drastically reduced computation
time. An improvement to random sampling is to use Bayesian optimization methods.
Here, the loss value of previous searches is used to select the next hyper-parameters to
try. A commonly used method is the tree-structured Parzen estimator [Wat23]. This
method has won several hyperparameter optimization competitions and can be used
inside of frameworks like Optuna [ASY+19].

13

CHAPTER 3
Our Few-Shot Segmenter

3.1 Segmentation Module
The core of our Few-Shot Segmenter is our segmentation module. An overview of this is
shown in Figure 3.1.

The first step in the segmentation module is to upsample the input image. This tries to
counteract the aggressive downsampling performed by the DINOv2 model in the next
step, by increasing the resolution by a certain factor. This also has the disadvantage of
increasing the inference time of DINOv2, and it’s memory usage. Therefore, there is a
tradeoff between an increased resolution of the embeddings and fast inference. By setting
the up-sampling factor to one, this step can be disabled.

Figure 3.1: Overview of our segmentation module. Note that the first up-sample step is
optional.

15

3. Our Few-Shot Segmenter

Next, the upsampled image is passed through the DINOv2 visual foundation model,
discussed further in Section 2.4, to obtain an embedding of the input image in the
feature space. We then apply a linear transformation to the embeddings with an output
dimension of two, which is then gets upsampled back to the original resolution of the
input image. We now have a channel dimension of two. We interpret these as values for
the foreground and the background of the image. The binary segmentation mask is then
calculated as the argmax of these two channels during inference.

3.2 Few-Shot Semantic Segmentation Pipeline
The main role of our FSS pipeline is to train a segmentation module for the given FSS
episode (S, Iq). We treat the support set S as our training set and train our segmentation
module only on these images. First, we freeze the DINOv2 model and train the linear
layer for a few epochs. Then, we inject LoRA layers into certain transformations of
the attention layers in DINOv2 and train them in addition to the head again for a few
epochs. To increase the ability to generalize to the query image, we perform random
augmentation of the training set during all epochs and do not use all training samples
for each epoch.

3.3 Training Strategy
Since all training of the model parameters is done at inference time, we only use the
training data to optimize the hyper-parameters of the model using an automated hyper-
parameter tuning approach. First, we find the optimal hyper-parameters for the first
step of the segmentation pipeline according to the mIoU score on 100 training episodes.
To optimize the hyper-parameters for the second stage we iterate over r values of 1, 2, 4, 8
and layer options Q-Transformation, Q- and V -Transformation and all Transformation
layers in the attention layers of DINOv2 for LoRA adaptation of DINOv2. For each
of these iterations, we again find the rest of the hyper-parameters using automated
hyper-parameter tuning.

During testing, we select the hyper-parameters and LoRA configuration that performed
best according to the mIoU score on the training set to use for the inference during
testing.

3.4 Implementation
Everything was implemented with Python 3.11.3. The model was implemented with
PyTorch 2.6. Image augmentation was performed using Kornia 0.8 done with the
RandomAugment method. We chose Kornia, because it makes it easy to augment the
images and masks simultaniously, ensuring that the same geometric augmentation is
applied to both. The first upsampling in the segmentation module was implemented

16

3.4. Implementation

with a simple nearest-neighbor upsampling method. The upsampling for the foreground-
background values was performed using bilinear interpolation to get smoother masks.
Automated hyper-parameter tuning was performed using the tree-structured Parzen
estimator [Wat23] in Optuna 4.2.1. Our source code, the training and the testing scripts
can be accessed at https://github.com/miesbauerm/FSSLoRA. As the weights
are only trained at inference time, we do not provide them, although the hyper-parameters
can be found in our repository.

17

https://github.com/miesbauerm/FSSLoRA

CHAPTER 4
Experiments and Results

4.1 Dataset Preparation
We perform our experiments for FSS on three established benchmarks to enable easier
comparison with other methods and models.

4.1.1 PASCAL-5i

We followed the original description by Shaban et al. [SBL+17] to create the PASCAL-5i

dataset. We obtained the images and annotations from PASCALVOC 2012 [EVGW+]
and additional annotations from SDS [HAGM14]. We removed all images included in
the PASCALVOC 2012 validation set from the SDS training set, as there is some overlap.
For each fold i = 0, . . . , 3 we use the classes in the corresponding column of Table 1 in the
Appendix as the test label-set Ltest and the remaining classes as the training label-set
Ltrain. The masks in PASCALVOC 2012 and SDS can contain several different classes.
These are stored as categorical values in matrix form.

We create a training set D1
train by selecting all image-mask pairs from the PASCALVOC

2012 and SDS training sets that contain at least one pixel in the semantic mask from the
label-set Ltrain. We remove all pixels in the masks that do not belong to Ltrain and treat
them as background. We create D1

test in a similar way, but select only image-mask pairs
from the PASCALVOC 2012 validation set. To get the final training set Dtrain, we sample
100 episodes in the following way: First, we uniformly sample an image-mask (Iq, Mq)
pair from D1

train. Then we uniformly sample a class l ∈ Ltrain from the classes present in
Mq and use it to create a binary mask Mq(l). We then sample 5 support images from
D1

train \ {Iq, Mq} with class l present in the mask. We purposefully restrict the number
of episodes in our training set to ensure that we can perform the hyper-parameter tuning
in reasonable time. To obtain the benchmark Dtest we follow the same procedure as

19

4. Experiments and Results

above, selecting only images from the PASCALVOC 2012 validation set, but sample 1000
episodes from D1

test, to make our results comparable to previous models.

4.1.2 COCO-20i

The benchmark COCO-20i by Nguyen et al. [NT19] is created in a very similar way as
PASCAL-5i. The base segmentation data used here comes from the MSCOCO [LMB+14]
dataset. This contains 80 different classes, divided into 4 different folds, shown in Table
2 in the Appendix. The masks of different objects may overlap in the MSCOCO dataset,
but we only look at individual classes. For each fold i = 0, . . . , 3 we again use the classes
in the corresponding column of Table 2 as the test label-set Ltest and the remaining
classes as the training label-set Ltrain.

We create the training set D1
train by selecting all images from the MSCOCO training set

that have a non-empty mask for a class in Ltrain. Masks for classes in Ltest are removed.
Similarily, the test set D1

test is formed by selecting all images from the MSCOCO validation
set that have at least one non-empty mask for classes in Ltest. Again, we remove masks
for classes in Ltrain. To get Dtrain and Dtest we follow the exact same steps as for the
creation of PASCAL-5i.

4.1.3 FSS-1000
The FSS-1000 benchmark defined by Li et al. [LWC+20] consists of 1000 different classes.
It contains 10 image-mask pairs per class and has to be downloaded from the Google
Drive folder of the developers. The train-test split of the classes is fixed and includes 240
classes in the test set. We had to manually add one mask the original creators seem to
have overlooked. We did not find any other paper which pointed out this error, but this
minor modification to the dataset should not change the interpretation of the results.
Figure 4.1 shows our mask. There are also some images which do not have a resolution
of 224 × 224, but these are rescaled when the benchmark is created. The images show
exactly one object and are balanced.

To create the episodes for Dtrain, we uniformly sampled 100 classes from the classes not
included in Ltest. For each class, we sampled 6 images without replacement from the
images belonging to the class, and selected one randomly as the query image. The other
5 images form the support set. To create Dtest, we used each image belonging to a class
in Ltest once as a query image and sampled 5 support images without replacement from
the remaining 9 images belonging to that class.

4.2 Experimental Setup
All experiments in this chapter were performed on a half node of the Vienna Scientific
Cluster (VSC). The processor used was an AMD 7713 with an NVIDIA A100 GPU and
256 GB of RAM. For the backbone, we chose the smallest model in the DINOv2 family,
ViT-S/14.

20

4.2. Experimental Setup

(a) image (b) mask

Figure 4.1: Peregine falcon with missing mask and our mask

name type min max log
lr float 1e-5 1 true
weight_decay float 1e-3 100 true
dropout float 0 0.5 false
n_epochs int 1 10 false
mini_batch_size int 1 5 false
augment_number int 0 13 false
augment_strength int 1 29 false

Table 4.1: Hyper-parameter options for the first training stage. “lr” and “weight_decay”
are the learning rate and weight decay for the AdamW optimizer used to train our
segmenter for each episode. “dropout” is the dropout probability for the image embeddings
provided by DINOv2. “n_epochs” represents the number of epochs for the initial training.
During each epoch, we select only “mini_batch_size” support images and augment
them with “augment_number” of different random augmentations. If the number of
augmentations is 0 then no augmentation is performed. “augment_strength” sets the
strength of the augmentations.

4.2.1 Main tests

We performed the following steps for each fold of PASCAL-5i and COCO-20i and for the
single FSS-1000 fold: We first used a tree-structured Parzen estimator [Wat23] to select
the hyper-parameter combination from the options shown in Table 4.1 that gives the
best mIoU performance on Dtrain. We stopped this optimization process after 100 runs.

We then took the hyper-parameters from the best run and used them to pre-train the
linear layer in our segmentation module for the second step. We manually tested all
r-values of 1,2,4, and 8, as well as and Q, QK and QKV O transformations to adapt with

21

4. Experiments and Results

name type min max log
lr float 1e-6 1e-3 true
weight_decay float 1e-3 100 true
dropout float 0 0.5 false
n_epochs int 1 10 false
mini_batch_size int 1 5 false
augment_number int 0 13 false
augment_strength int 1 29 false

Table 4.2: Hyper-parameter options for the second training stage

transformations
q qv qkvo

r 1 10,001 19,217 37,649
2 19,217 37,649 74,513
3 37,649 74,513 148,241
4 74,513 148,241 295,697

Table 4.3: Number of learnable parameters depending on LoRA configuration

LoRA. These options were inspired by the original LoRA paper [HSW+22]. We applied
LoRA layers based on these settings and again used a tree-structured Parzen estimator
to optimize the hyper-parameters seen in Table 4.2 and two other parameters, namely
“lora_alpha” a modifier of the learning rate for the LoRA layers only, and “lora_dropout”
with float values from 0.1 to 10 and 0 to 0.9 respectively, in 50 runs. The number of
trainable parameters is shown in Table 4.3. Note that the linear layer in the segmentation
head has 770 trainable parameters and the DINOv2 model ViTS-14 has over 22 million
trainable parameters.

We then selected the LoRA configuration with the best mIoU score on Dtrain and the
automatically optimized hyper-parameters and performed the FSS task on the Dtest
dataset and calculated the mIoU and FB-IoU metrics.

For the PASCAL-5i and COCO-20i benchmarks, we could not perform upsampling on the
input images in the first step of the segmentation module due to performance restraints.
For FSS-1000 we kept the upsampling factor at 1 for training and increased it to 2 and 3
for testing.

4.2.2 Baseline Comparison
To see the effect of the LoRA adaptation, we compared it to two baselines. The first
baseline freezes the DINOv2 backbone and only adapts the linear layer to the given FSS
task. To do this, we take the optimal configurations from step 1 of the training process
for each benchmark and fold. We then calculate the mIoU and FB-IoU scores for Dtest.

The second baseline is the fully fine-tuned adaptation. For this, we again used a tree-

22

4.3. Quantitative Results

structured Parzen estimator to find the optimal hyper-parameters for fully fine-tuning
the entire model using the hyper-parameter options seen in Table 4.2 in 20 runs. This
enables us to get a comparison to using LoRA. Again, we did this for all benchmarks
and folds and calculated the mIoU and FB-IoU scores on the Dtest set.

4.2.3 Computational Effort
We also tested the computation time and performance on a consumer machine with an
Intel i7-8700k CPU, an NVIDIA RTX 2070 GPU, and 32 GB of RAM. We selected the
optimized hyper-parameters and ran 100 FSS episodes for each benchmark and fold. We
recorded the maximum amount of VRAM and time taken for each problem and averaged
the results.

4.2.4 Domain Shift
An important question for FSS is how well the model adapts to novel classes in new
domains. To answer this question, we use the hyper-parameters from the Dtrain sets of
the PASCAL-5i and apply them to the FSS-1000 Dtest set. We performed the FSS task
on the test set with no and with two times upsampling. Due to computational limitations,
we did not try other domain shifts or higher upsampling factors.

Due to the lack of comparison data, we decided to repeat this experiment with other
models. The best model for the FSS-1000 for which we had access to the training weights
was VAT [HCN+22]. We took their PASCAL-5i weights and applied them directly to
the FSS-1000 test set.

4.2.5 Ablation Study
In this part, we want to find out how the LoRA configurations affect the FSS accuracy.
For each of the LoRA configurations tried in Section 4.2.1 we took the optimized hyper-
parameter configurations and performed the FSS task on the Dtest dataset of the FSS-1000
benchmark. We record the mIoU and FB-IoU metrics. We repeat these tests at no image
upsampling and two times image upsampling. Due to computational limitations, we did
not perform this ablation study on the PASCAL-5i and COCO-20i benchmarks, nor did
we try higher upsampling factors.

4.3 Quantitative Results

4.3.1 Main Results
Table 4.4 shows our results on the 5-shot PASCAL-5i benchmark. In addition, all results
of the models described in Section 2.3 are also shown. For each model, we took the best
performing version according to the average score. Where available, we have used the
values for tests on the original image size, to make the comparison more fair.

23

4. Experiments and Results

Model mIoU% FB-IoU%
Fold-1 Fold-2 Fold-3 Fold-4 Avg. Fold-1 Fold-2 Fold-3 Fold-4 Avg.

OSLSM 35.9 58.1 42.7 39.1 43.9 - - - - -
SG-One 41.9 58.9 48.6 39.4 47.1 - - - - -
CANet 55.5 67.8 51.9 53.2 57.1 74.2 80.3 57.0 66.8 69.6
SCL (CANet) 59.5 68.5 54.9 53.7 59.2 - - - - 70.7
PANet 51.8 64.6 59.8 46.5 55.7 - - - - 70.7
FWB 54.84 67.38 62.16 55.30 59.92 - - - - -
LTM 57.9 69.8 56.9 57.5 60.6 - - - - 74.6
CyCTR 69.3 73.5 63.8 63.5 67.5 - - - - 75.4
PPNet 60.25 70.00 69.41 60.72 65.10 - - - - -
PFENet 63.1 70.7 55.8 57.9 61.9 - - - - 73.9
RePRI 64.5 70.8 71.7 60.3 66.8 - - - - -
MLC 66.2 75.4 72.0 63.4 69.3 - - - - -
HSNet 71.8 74.4 67.0 68.3 70.4 - - - - 80.6
HM (HSNet) 72.2 73.3 64.0 67.9 69.3 - - - - 79.7
DGPNet - - - - 75.5 - - - - -
VAT 73.3 75.2 68.4 69.5 71.6 - - - - 82.0
DCAMA 75.7 77.1 72.2 74.8 74.9 - - - - 82.9
DCAM 72.7 75.3 68.3 69.2 71.4 - - - - 81.5
FPTrans 76.7 79.0 81.0 75.1 78.0 - - - - -
SegGPT* - - - - 89.8 - - - - -
PGMA-Net† 77.7 82.7 76.9 77.0 78.6 - - - - 86.9
GF-SAM - - - - 82.6 - - - - -

Ours 67.3 75.5 80.0 76.9 74.9 84.4 86.6 89.3 86.9 86.8

Table 4.4: Results on the PASCAL-5i benchmark, the best model in each column is
highlighted in bold. Models where not each fold was reported individually are indicated
by a “-”. Models marked with ∗ were trained on the test categories. Models marked with
a † down-sampled the images and did not use their original size.

We are in the upper third of results, being the second best model for two of the folds for
which detailed results were reported. Our average FB-IoU score is just 0.1 percentage
points lower than the best model which reported this score. SegGPT included the novel
testing classes in their training data, which defeats the purpose of FSS. Excluding this,
we are the fourth best model for PASCAL-5i in our comparison.

Our results for the 5-shot COCO-20i benchmark are shown in Table 4.5. In addition, all
results for the models described in Section 2.3 are also shown. For each of the models, we
have taken the best performing model according to the average score. Where available,
we have used the values for tests on the original image size.

We did not perform well on this benchmark. There seem to be only two worse models in
terms of our mIoU score. The FB-IoU score looks a bit better for us, here our score is
just a bit worse than the SOTA models.

Table 4.6 shows our results on the 5-shot FSS-1000 benchmark. It also shows all results
of the models described in Section 2.3. For each of the models, we have taken the best

24

4.3. Quantitative Results

Model mIoU% FB-IoU%
Fold-1 Fold-2 Fold-3 Fold-4 Avg. Fold-1 Fold-2 Fold-3 Fold-4 Avg.

FWB 19.13 21.46 23.93 30.08 23.65 - - - - -
CyCTR 41.1 48.9 45.2 47.0 45.6 - - - - -
PPNet 48.88 31.36 36.02 30.64 36.73 - - - - -
PFENet 38.5 38.6 38.2 34.3 37.4 51.5 65.6 65.7 64.7 61.9
RePRI 38.5 46.2 40.4 43.6 42.1 - - - - -
MLC 57.8 47.1 37.8 37.6 45.1 - - - - -
HSNet 45.9 53.0 51.8 47.1 49.5 - - - - 72.4
HM (HSNet) 46.5 55.2 51.8 48.9 50.6 - - - - 72.9
DGPNet - - - - 57.9 - - - - -
VAT 44.1 51.1 50.2 46.1 47.9 - - - - 72.4
DCAMA 55.4 60.3 59.9 57.5 58.3 - - - - 76.9
DCAM 44.6 52.0 49.2 46.4 48.1 - - - - 71.6
FPTrans 54.2 62.5 61.3 57.6 58.9 - - - - -
SegGPT* - - - - 67.9 - - - - -
Matcher - - - - 60.7 - - - - -
PGMA-Net† 55.9 65.9 63.4 61.9 61.8 - - - - 79.4
GF-SAM - - - - 66.8 - - - - -

Ours 37.7 43.9 38.7 27.2 36.9 66.2 70.4 69.4 60.7 66.7

Table 4.5: Results on the 5-shot COCO-20i benchmark, the best model in each column is
highlighted in bold. Models where not each fold was reported individually are indicated
by a “-”. Models marked with ∗ were trained on the test categories. Models marked with
a † downsampled the images and did not use their original size.

Model mIoU% FB-IoU%
HSNet 86.5 88.5

HM (HSNet) 88.0 88.5
VAT 90.6 -

DCAMA 90.4 94.1
DCAM 91.7 -
Painter 62.3 -
SegGPT 89.3 -
Matcher 89.6 -
GF-SAM 88.9 -
Ours (1x) 84.5 90.5
Ours (2x) 87.4 92.4
Ours (3x) 88.1 92.7

Table 4.6: Results of the FSS-1000 benchmark. The best results in bold. The parenthesis
for our model indicate image up-sampling factor

25

4. Experiments and Results

Tuning mIoU% FB-IoU%
Fold-1 Fold-2 Fold-3 Fold-4 Avg Fold-1 Fold-2 Fold-3 Fold-4 Avg

No 48.6 63.1 68.7 58.4 59.7 70.6 78.6 77.8 75.8 75.7
Full 48.3 67.3 70.8 60.7 61.8 71.3 82.3 78.8 77.7 77.5
LoRA 67.3 75.5 80.0 76.9 74.9 84.4 86.6 89.3 86.9 86.8

Table 4.7: Comparison of our model to the baselines for PASCAL-5i benchmark

Tuning mIoU% FB-IoU%
Fold-1 Fold-2 Fold-3 Fold-4 Avg Fold-1 Fold-2 Fold-3 Fold-4 Avg

No 40.7 41.6 36.3 36.6 38.8 66.3 66.4 68.1 68.4 67.3
Full 38.1 44.7 37.6 33.1 38.4 65.3 69.4 68.9 66.1 67.4
LoRA 37.7 43.9 38.7 27.2 36.9 66.2 70.4 69.4 60.7 66.7

Table 4.8: Comparison of our model to the baselines for COCO-20i benchmark

Tuning mIoU% FB-IoU%
No 77.2 86.1
Full 80.6 88.2
LoRA 84.5 90.5

Table 4.9: Comparison of our model to the baselines for FSS-1000 benchmark. No
up-sampling was used for these values

performing variant according to the average score. We have used the values for testing
on the original image size, where available. We notice that the models are all quite close
to each other in terms of their scores. At first there is a huge three percentage point
increase in the score with the image upsampling, this effect decreases when going from
2 times upsampling to 3 times upsampling, but still seems to improve the mIoU and
FB-IoU scores. We achieved the second best reported FB-IoU score of the compared
models.

4.3.2 Baseline Comparison
Table 4.7 shows our model and the comparison with the baselines for the PASCAL-5i

benchmark. We notice a rather large improvement when we adapt the model using LoRA
instead of full fine-tuning. This effect can be seen in every fold for both metrics. It is
more drastic for the mIoU score.

Table 4.8 shows the comparison of our model with the baselines for the COCO-20i

benchmark. For this benchmark, adapting the model using LoRA seems to actually
decrease the performance compared to freezing the backbone. Full fine-tuning resulted in
stagnant performance.

Table 4.9 shows the results for the FSS-1000 benchmark. Again, we see an improvement
when the backbone is adapted using LoRA and full fine-tuning compared to freezing it.
LoRA adaptation led to a higher accuracy compared to the full fine-tuning.

26

4.3. Quantitative Results

Tuning Time per query max memory usage
Fold-1 Fold-2 Fold-3 Fold-4 Avg Fold-1 Fold-2 Fold-3 Fold-4 max

No 0.76s 0.79s 0.91s 1.67s 1.03s 160MB 176MB 173MB 202MB 202MB
Full 1.64s 2.75s 4.04s 4.43s 3.22s 745MB 1.48GB 2.79GB 3.40GB 3.40GB
LoRA 2.16s 2.12s 2.05s 3.22s 2.39s 1.22GB 986MB 1.19GB 2.97GB 2.97GB

Table 4.10: Computational effort for the PASCAL-5i benchmark

Tuning Time per query max memory usage
Fold-1 Fold-2 Fold-3 Fold-4 Avg Fold-1 Fold-2 Fold-3 Fold-4 max

No 0.79s 1.93s 1.54s 2.50s 1.69s 203MB 234MB 224MB 240MB 240MB
Full 2.57s 5.50s 3.54s 3.38s 3.75s 2.30GB 5.81GB 2.37GB 3.30GB 5.81GB
LoRA 2.75s 5.72s 2.61s 8.48s 4.89s 683MB 2.29GB 1.54GB 2.96GB 2.96GB

Table 4.11: Computational effort for the COCO-20i benchmark

Tuning Time per query max memory usage
No 1.36 s 110.69 MB
Full 2.35 s 671.06 MB
LoRA 1.88 s 398.61 MB

Table 4.12: Computational effort for FSS-1000

We see that LoRA led to a good performance on the PASCAL-5i and FSS-1000 bench-
marks. It did not prove useful for the COCO-20i benchmark.

4.3.3 Computational Effort
Table 4.10 shows the computational effort for each episode of the PASCAL-5i benchmark.
The time is averaged, and the memory usage is the maximum of all episodes tested. We
can see that the time and memory change depending on the fold. The time for the LoRA
adaptation is between 2 and 3.2 seconds, the full fine-tuning takes longer on average with
times between 1.6 and 4.4 seconds. The baseline is quite fast, with an average of 1 second
per episode. This time includes training the segmentation module for the first time for a
novel class. Successive segmentation tasks should be orders of magnitude faster. Memory
usage stays below 4 GB, which means we can do this adaptation on normal consumer
hardware.

Table 4.11 shows the computational effort for the COCO-20i benchmark. Again, we
averaged the time of 100 episodes and took the maximum amount of memory used by the
model. The time per episode is slightly higher than for the PASCAL-5i benchmark, but
still under 10 seconds in every case. Fold-4 seems to be an outlier for LoRA adaptation.
Full fine-tuning had the largest memory requirement, but it was still under 6 GB.

Table 4.12 shows the computational effort for the FSS-1000 benchmark. This time the
average times are closer together. The maximum memory consumption is less than 1 GB.
This could be due to the small image size of 224 × 224 pixels per image.

27

4. Experiments and Results

Model mIoU% FB-IoU%
Fold-1 Fold-2 Fold-3 Fold-4 Fold-1 Fold-2 Fold-3 Fold-4

Ours (1x) 84.9 84.0 86.9 83.0 91.2 90.6 92.3 89.9
Ours (2x) 88.93 87.58 90.05 86.40 93.56 92.58 94.09 91.80
VAT (Resnet 101) 85.0 82.6 83.2 82.1 90.1 88.4 89.0 88.0

Table 4.13: Results of FSS-1000 benchmark using PASCAL-5i hyper-parameters

Although we probably cannot compete with other models on inference time, we still
achieve usable times and memory usage.

4.3.4 Domain Shift
In the last section we showed that the inference time is still usefully fast for most cases.
In this subsection we want to analyze if we need to retrain for new domains or if we
can reuse the hyper-parameters from another domain. This would mean no additional
training time for new domains.

Table 4.13 shows our results on the FSS-1000 benchmark when using the hyper-parameters
from the PASCAL-5i training sets. We improve over VAT in all folds, indicating that
our method is more robust to domain shifts. The hyper-parameters from Fold-3 even
outperformed the 3 times up-sampled model with hyper-parameters from the FSS-1000
training set. SegGPT did not use the FSS-1000 benchmark for its training, although
they used not only the PASCAL-5i benchmark, but also the COCO-20i benchmark and
additional training data, making the comparison not entirely fair. They achieved a
mIoU score of 89.3. We are able to achieve a higher score by using the third fold of the
PASCAL-5i benchmark.

4.3.5 Ablation Study
Figure 4.2 shows the effect of different LoRA configurations on the FSS-1000 benchmark
results with no upsampling of the input images in the segmentation module. The same
can be seen in Figure 4.3 with 2 times upsampling. Both results show that only adjusting
the Q-transformation using LoRA seems to lead to the best results. It seems that a
rank of r = 1 is not sufficient, but after that the rank seems to have little effect on the
resulting score. We note that we again obtained a higher score than in the main results,
when selecting the highest value from the 2 times up-sampled ablation study.

4.4 Qualitative Results

4.4.1 Predicted Masks
Figure 4.4 shows some examples of the predicted masks of the PASCAL-5i benchmark.
The five support images are shown on the left, with their masks overlaid in yellow. The

28

4.4. Qualitative Results

(a) mIoU (b) FB-IoU

Figure 4.2: Ablation study of the effect of LoRA configurations on the FSS-1000 bench-
mark results using no up-sampling

(a) mIoU (b) FB-IoU

Figure 4.3: Ablation study of the effect of LoRA configurations on the FSS-1000 bench-
mark results using 2 times up-sampling

29

4. Experiments and Results

(a) Segmentation of Person

(b) Segmentation of Chair

(c) Segmentation of Airplane

(d) Segmentation of Car

(e) Segmentation of Bicycle

(f) Segmentation of Chair

Figure 4.4: Qualitative Examples of PASCAL-5i Segmentations

30

4.4. Qualitative Results

right side shows first the ground truth, then the mask of the baseline without any fine-
tuning. The second image from the right shows the predicted mask with full fine-tuning
of the DINOv2 backbone and the rightmost image the results of our model using LoRA.

The first example shown in Figure 4.4a shows that our model successfully stopped
including parts of the chairs in the segmentation mask. The full fine-tune seemed to learn
to segment the person better, but also included more parts of the chair. Our approach
refined the person segmentation and removed the chair. The second example shown in
Figure 4.4b shows the segmentation of Chair. Here we were only able to segment the
chairs using LoRA. The baseline and the full fine-tune were not able to detect the chairs
at all. The third example shown in Figure 4.4c shows another successful improvement.
Here the full fine-tune managed to refine the edges of the airplane, but removed the
landing gear. Our approach managed to add the landing gear back in.

The next examples show a few problems with our approach. The segmentation of the car
shown in Figure 4.4d shows that our approach struggles with small objects. Neither our
model with LoRA nor the baselines were able to detect the small cars in the background.
The segmentation of the bicycle shown in Figure 4.4e shows that the full fine-tune
successfully managed to exclude the graffiti from the segmentation mask and LoRA
was just able to refine the outlines of the bike, but falsely included parts of the graffiti.
The last example shown in Figure 4.4f shows the segmentation of a chair. Here LoRA
managed to detect the chair in the background, which the baselines did not, but it also
falsely includes the dog and large parts of the ground in the segmentation mask.

Figure 4.5 shows some examples of the masks we predicted using our model with LoRA
and the baselines of the COCO-20i benchmark. The first example shown in Figure 4.5a
depicts the segmentation results of persons. Our model is able to accurately detect people,
but it falsely includes the skateboard and is fuzzy around the edges of the objects. The
second example shown in Figure 4.5b depicts the segmentation results of a pc mouse. It
shows that our model struggles with small objects, but it reduces false positives compared
to the baseline and full fine-tuning. The third example shown in Figure 4.5c depicts
the segmentation of a pc keyboard. Our approach using LoRA improved upon the
baselines by both reducing the number of false positives compared to the baseline and
the number of false negatives compared to full fine-tuning. In Figure 4.5d an example of
the segmentation results for a toilet is shown. Our model was not able to improve on the
full fine-tuning in this case. The fully fine-tuned model clearly detected the toilet, but
falsely excluded the tools and the piece of cloth. Some ceramic fixture on the wall was
also included. This might suggest that our model lacks the geometric understanding of
the object and does not seem to know that the toilet is behind the tools. It is unclear to
us what happened in the example shown in Figure 4.5e. Here the goal was to segment
the cup behind the cat. Our model learned to segment the cat instead of the cup. This
behavior is noticeable to a small degree in the results of the simple baseline, but here the
cup was also part of the segmentation mask. The full fine-tune managed to remove the
cat, but also parts of the cup. This episode seems quite difficult to segment, in four of
the five support images the cup is very small and in the background. The cups in the

31

4. Experiments and Results

(a) Segmentation of Person

(b) Segmentation of Mouse

(c) Segmentation of Keyboard

(d) Segmentation of Toilet

(e) Segmentation of Cup

Figure 4.5: Qualitative Examples of COCO-10i Segmentations

support set are opaque and the cup in the query image is translucent.

Figure 4.6 shows examples of masks for the FSS-1000 benchmark without upsampling
the input images. It worked very well for the fully fine-tuned and our LoRA model on
the Osprey. Only the edges are a bit fuzzy. The toaster was a different type than all
the toasters in the support set, but it still seemed to recognize the toaster. The bread
was mostly excluded by the LoRA model. We would still rate this as successful, as it is
unclear whether the bread should be included or not.

Figure 4.7 shows examples of masks for the FSS-1000 benchmark with two times upsam-
pling of the input images. The first example of the onion segmentation looks really good.
The edges look smoother compared to no up-sampling. The chicken example shows that
LoRA seems to be able to sharpen the edges a bit compared to the baseline and full

32

4.4. Qualitative Results

(a) Segmentation of Osprey

(b) Segementation of Toaster

Figure 4.6: Qualitative Examples of FSS-1000 segmentations with no up-sampling

(a) Segmentation of Onion

(b) Segementation of Chicken

Figure 4.7: Qualitative Examples of FSS-1000 segmentations with two times up-sampling

fine-tuning. All approaches were able to achieve good results.

We do well with large objects that are clearly in the foreground. We manage to improve
the edges of detected objects in many cases, but still have some issues with them. We do
not seem to be able to detect very small objects.

4.4.2 Embedding Adaptation
We also looked at the change in the embeddings due to the use of LoRA. Inspired by
the DINOv2 paper [ODM+23], we visualized the first three PCA components of the
embeddings before and after LoRA. Each component is assigned to a different color
channel, and the PCA decomposition was calculated using all images in each figure.

Figure 4.8 shows the changes in the embeddings for Toaster for the FSS-1000 benchmark
without upsampling. We can see a little more coherence in the embeddings for Support 4
after the adaptation. For the other embeddings, this effect is less, but still noticeable
for Support 2. We do not see any drastic color change, therefore the models parameters
have only changed slightly.

Figure 4.9 shows the same for the onion in the FSS-1000 benchmark with two times

33

4. Experiments and Results

Figure 4.8: Adaption of the Embeddings for Toaster in FSS-1000 without up-sampling

Figure 4.9: Adaption of the Embeddings for Onion in FSS-1000 with two times up-
sampling

34

4.4. Qualitative Results

Figure 4.10: Adaption of the Embeddings for Chicken in FSS-1000 with two times
up-sampling

upsampling. Again, we see a homogenization of the embeddings. This effect is best seen
in Support 2 and Support 4, but also in the Query Image and Support 1.

Figure 4.10 shows the change in the embeddings for the chicken in the FSS-1000 benchmark
using two times up-sampling for the input images. We can see that the background
changed colors quite drastically, going from blue to green. We can also see that the legs
of the chickens have different colors than their bodies. The change in the background
may make it easier to distinguish the chicken legs from the background.

In most cases, the changes in the embeddings due to LoRA were small and seemed
to mostly increase the internal consistency of the classes. We noticed fewer differently
colored pixels in the object masks.

35

CHAPTER 5
Discussion

5.1 Main findings

The main finding of this thesis is that LoRA is a viable way to achieve effective FSS
using large-scale VFMs, such as DINOv2, with a drastically reduced number of trainable
parameters, making it possible to store hundreds to thousands of model variations for
faster inference in the future. For two of the three tested benchmarks tested, PASCAL-5i

and FSS-1000, we have shown that our LoRA approach improved upon our baselines and
reached scores within a few percentage points for the individual folds in comparison to
SOTA models. We have good FB-IoU values, but cannot compare them to most SOTA
models, as this metric is not always reported.

We showed that transforming only one layer of the attention module leads to better
performance than improving all layers, and a low rank seems to be sufficient to improve
the performance.

We showed that FSS performance can be improved for low-resolution images by upsam-
pling them before applying the model.

5.2 Strengths and Limitations

5.2.1 Strengths

One of the key strengths of our approach is the parameter efficiency. LoRA has reduced
the number of trainable parameters by up to 1000 times compared to full fine-tuning,
while maintaining or improving performance. This typically translates into faster training,
and less overfitting.

37

5. Discussion

Another major strength is the generalizability of our pipeline. We were able to use
the hyper-parameter from one domain in another and had no noticeable effect on the
segmentation accuracy.

We can share only the LoRA layers and the head using under 1 MB of space, making
future segmentation tasks of the same class faster, as the pipeline is very lightweight
for the performance we achieve. We can also run this model on mid-range consumer
hardware.

5.2.2 Limitations
A major limitation of our approach is the patch-based architecture of DINOv2. The
backbone embeds a 14 × 14 patch of pixels into a single feature vector. This results in
an inability to segment small objects and to detect precise object boundaries. This may
have caused the relatively poor performance on the COCO-20i benchmark compared to
SOTA models.

We have also noticed that different classes were falsely included in the segmentation
masks, when they are not present in the support set. Examples of this are shown in
Figures 4.5e and 4.4f.

Another limitation is a high initial inference latency during the first adaptation to a
novel class. For a few classes 2 to 4 seconds of inference time is not much, but this could
add up in the case of many different novel classes. We suspect that this will not be a
major issue in real-world scenarios.

5.3 Research Questions
Here we return back to the research questions listed in Section 1.3.

1. We achieved an average mIoU score of 74.9 for PASCAL-5i, 36.9 for COCO-20i, and
88.1 for FSS-1000. The FB-IoU scores were higher with 86.8 for PASCAL-5i, 66.7
for COCO-20i, and 92.7 for FSS-1000. The scores for PASCAL-5i and FSS-1000
are comparable to traditional SOTA models, but in the case of PASCAL-5i cannot
quite keep up with generalist models like GF-SAM and SegGPT.

2. We did not observe drastic savings in memory usage and computation time when
using LoRA compared to full fine-tuning. On average, we required about 15-50%
less memory than full fine-tuning. There was no clear trend to see for the inference
time.

3. We showed that tuning only the Q-transformation layer in the attention layers was
better than tuning more transformations. A rank as low as r = 2 was good enough,
although there was a small performance gain when using a rank of r = 8.

38

5.3. Research Questions

4. We were able to keep the metrics about the same when transferring the knowledge
gained on the PASCAL-5i training sets to the FSS-1000 test set. This was better
than doing the same for VAT, a SOTA model for the FSS-1000 benchmark.

39

CHAPTER 6
Conclusion and Future Work

6.1 Conclusion
In this thesis, we explored the application of Low-Rank Adaptation (LoRA) to Few-Shot
Semantic Segmentation (FSS) using the large-scale Visual Foundation Model (VFM)
DINOv2. We proposed a segmentation pipeline that uses five labeled support images to
train a binary segmenter for a novel class, essentially enabling FSS “on the fly”.

The main contributions of this thesis include:

• A novel integration of LoRA into DINOv2 attention layers, allowing fast and
parameter-efficient fine-tuning.

• A simple FSS pipeline that can be easily expanded with more complex classification
heads.

• Comprehensive benchmarking on PASCAL-5i, COCO-20i and FSS-1000, with
competitive results, especially in terms of FB-IoU and domain shift performance,
for PASCAL-5i and FSS-1000.

Our experiments showed that LoRA can match or exceed full fine-tuning in terms of
accuracy, while reducing memory usage slightly. These results demonstrate the potential
of LoRA to improve VFMs for few-shot applications.

6.2 Future Work
While our results are promising, there is still lots of room for improvement. We were
only able to experiment with the smallest member of the DINOv2 family. With more

41

6. Conclusion and Future Work

computation power, we could try to use larger models and see if they are able to increase
the performance even further.

Upsampling the input images was a quick way to deal with the patch size of DINOv2.
Further research could be done into different ways to improve the feature resolution for
DINOv2. Methods like JBU [KCLU07] or frameworks like FeatUp by Fu et al. [FHB+24]
and HR-DINOv2 by Docherty et al. [DVC24] should be explored in further research to
unlock the full power of VFMs.

We have also noticed that we were able to achieve a higher performance in the ablation
study than with the selected LoRA configuration. This suggests that some other methods
to choose the LoRA configurations, like choosing additional episodes from the training
set as a validation set, should be experimented with.

A fourth point of improvement could be the inclusion of different negative examples that
do not depict the class in the support set. These images could be taken randomly or
with the help of a classifier from the training set. We expect that this would reduce the
number of false positives in the segmentation masks.

With these improvements, we suspect that we could surpass the performance of SOTA
models for some FSS benchmarks.

42

Overview of Generative AI Tools
Used

We used GitHub Copilot as a smart auto-completion tool for implementing our code.
ChatGPT was used for help with the structure of the thesis and summarizing the main
points. We still corrected every sentence and copied no whole passages from the output.

We used DeepL Write and LanguageTool for proofreading the thesis for grammar mistakes
and typos.

43

List of Figures

1.1 Example of a semantically segmented image (Figure from [JYL20]) 1
1.2 An example of an FSS task . 2

2.1 Overview on the ViT architecture (Figure from [Com24]) 11
2.2 Schematic of a typical attention layer used in Transformer models (Figure

from [Com25]) . 11
2.3 Schematic Decomposition in low rank matrices 12

3.1 Overview of our segmentation module. Note that the first up-sample step is
optional. 15

4.1 Peregine falcon with missing mask and our mask 21
4.2 Ablation study of the effect of LoRA configurations on the FSS-1000 bench-

mark results using no up-sampling . 29
4.3 Ablation study of the effect of LoRA configurations on the FSS-1000 bench-

mark results using 2 times up-sampling 29
4.4 Qualitative Examples of PASCAL-5i Segmentations 30
4.5 Qualitative Examples of COCO-10i Segmentations 32
4.6 Qualitative Examples of FSS-1000 segmentations with no up-sampling . . 33
4.7 Qualitative Examples of FSS-1000 segmentations with two times up-sampling 33
4.8 Adaption of the Embeddings for Toaster in FSS-1000 without up-sampling 34
4.9 Adaption of the Embeddings for Onion in FSS-1000 with two times up-sampling 34
4.10 Adaption of the Embeddings for Chicken in FSS-1000 with two times up-

sampling . 35

45

List of Tables

4.1 Hyper-parameter options for the first training stage. “lr” and “weight_decay”
are the learning rate and weight decay for the AdamW optimizer used to
train our segmenter for each episode. “dropout” is the dropout probability
for the image embeddings provided by DINOv2. “n_epochs” represents the
number of epochs for the initial training. During each epoch, we select only
“mini_batch_size” support images and augment them with “augment_number”
of different random augmentations. If the number of augmentations is 0 then
no augmentation is performed. “augment_strength” sets the strength of the
augmentations. 21

4.2 Hyper-parameter options for the second training stage 22
4.3 Number of learnable parameters depending on LoRA configuration 22
4.4 Results on the PASCAL-5i benchmark, the best model in each column is

highlighted in bold. Models where not each fold was reported individually are
indicated by a “-”. Models marked with ∗ were trained on the test categories.
Models marked with a † down-sampled the images and did not use their
original size. 24

4.5 Results on the 5-shot COCO-20i benchmark, the best model in each column is
highlighted in bold. Models where not each fold was reported individually are
indicated by a “-”. Models marked with ∗ were trained on the test categories.
Models marked with a † downsampled the images and did not use their original
size. 25

4.6 Results of the FSS-1000 benchmark. The best results in bold. The parenthesis
for our model indicate image up-sampling factor 25

4.7 Comparison of our model to the baselines for PASCAL-5i benchmark . . 26
4.8 Comparison of our model to the baselines for COCO-20i benchmark . . . 26
4.9 Comparison of our model to the baselines for FSS-1000 benchmark. No

up-sampling was used for these values . 26
4.10 Computational effort for the PASCAL-5i benchmark 27
4.11 Computational effort for the COCO-20i benchmark 27
4.12 Computational effort for FSS-1000 . 27
4.13 Results of FSS-1000 benchmark using PASCAL-5i hyper-parameters . . . 28

1 Classes for PASCAL-5i . 61
2 Classes for COCO-20i . 62

47

3 Test classes for FSS-1000 . 63
4 Train classes for FSS-1000 (1/4) . 64
5 Train classes for FSS-1000 (2/4) . 65
6 Train classes for FSS-1000 (3/4) . 66
7 Train classes for FSS-1000 (4/4) . 67

48

Acronyms

CANet Class-Agnostic Segmentation Network. 7, 24

CyCTR Cycle-Consistent Transformer. 7, 24, 25

DCAM Doubly Deformable Aggregation of Covariance Matrices. 8, 24, 25

DCAMA Dense Cross-query-and-support Attention weighted Mask Aggregation. 8, 24,
25

DGPNet Dense Gaussian Process Network. 8, 24, 25

DL deep learning. 2, 13

FB-IoU foreground-background IoU. 3, 6, 22–26, 28, 29, 37, 38, 41

FM Foundation Model. 9, 10

FPTrans Feature-Proxy Transformer. 8, 24, 25

FSS Few-Shot Semantic Segmentation. 2–8, 12, 16, 19, 22–24, 37, 41, 42, 45

FWB Feature Weighting and Boosting. 7, 24, 25

GF-SAM Graph-based Few-shot Segment Anything Semantically. 9, 24, 25, 38

HM Hybrid Masking. 8, 24, 25

HSNet Hypercorrelation Squeeze Network. 8, 24, 25

LLM large language model. 3, 10

LoRA Low-Rank Adaptation. 3, 4, 10, 12, 16, 22, 23, 26–29, 31–33, 35, 37, 38, 41, 42,
45, 47

LTM Local Transformation Module. 7, 24

MAP Masked Average Pooling. 6, 7

49

mIoU mean Intersection over Union. 3, 6, 16, 21–26, 28, 29, 38

ML machine learning. 13

MLC Mining Latent Classes. 8, 24, 25

NLP Natural Language Processing. 9

OSLSM One-Shot Learning for Semantic Segmentation. 6, 24

PANet Prototype Alignment Network. 7, 24

PFENet Prior Guided Feature Enrichment Network. 7, 24, 25

PGMA-Net Prior Guided Mask Assemble Network. 9, 24, 25

PPNet Part-aware Prototype Network. 7, 24, 25

RePRI Region Proportion Regularized Inference. 7, 24, 25

SCL Self-Guided and Cross-Guided Learning. 7, 24

SegGPT segment everything with a generalist Painter. 9, 24, 25, 28, 38

SG-One Similarity Guidance Network for One-Shot Semantic Segmentation. 6, 24

SiS semantic image segmentation. 1, 2, 9

SOTA state-of-the-art. 2, 3, 6, 9, 24, 37–39, 42

VAT Volumetric Aggregation with Transformers. 8, 23–25, 28, 39

VFM Visual Foundation Model. 3, 4, 9, 37, 41, 42

ViT Vision Transformer. 10, 11, 20, 22, 45

VSC Vienna Scientific Cluster. 20

50

Bibliography

[ASY+19] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’19, page
2623–2631, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[AYF+24] Asma Ben Abacha, Wen-wai Yim, Yujuan Fu, Zhaoyi Sun, Meliha
Yetisgen, Fei Xia, and Thomas Lin. MEDEC: A benchmark for medical
error detection and correction in clinical notes. arXiv:2412.19260, 2024.

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. J. Mach. Learn. Res., 13(null):281–305, February 2012.

[BHA+21] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran
Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine
Bosselut, Emma Brunskill, Erik Brynjolfsson, S. Buch, Dallas Card,
Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen A.
Creel, Jared Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya,
Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh,
Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E. Gillespie, Karan Goel,
Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas F. Icard, Saahil Jain, Dan Jurafsky, Pratyusha
Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, O. Khat-
tab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,
Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec,
Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik,
Christopher D. Manning, Suvir P. Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Benjamin
Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, J. F.
Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park,
Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan,
Robert Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo

51

Ruiz, Jack Ryan, Christopher R’e, Dorsa Sadigh, Shiori Sagawa, Keshav
Santhanam, Andy Shih, Krishna Parasuram Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William
Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro
Yasunaga, Jiaxuan You, Matei A. Zaharia, Michael Zhang, Tianyi Zhang,
Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang.
On the opportunities and risks of foundation models. ArXiv, 2021.

[BKM+21] Malik Boudiaf, Hoel Kervadec, Ziko Imtiaz Masud, Pablo Piantanida,
Ismail Ben Ayed, and Jose Dolz. Few-shot segmentation without meta-
learning: A good transductive inference is all you need? In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13974–13983, 2021.

[BMR+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In Proceedings of
the 34th International Conference on Neural Information Processing
Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[CLR+23] Zhaobin Chang, Yonggang Lu, Xingcheng Ran, Xiong Gao, and Xiangwen
Wang. Few-shot semantic segmentation: a review on recent approaches.
Neural Computing and Applications, 35(25):18251–18275, July 2023.

[CM24] Nico Catalano and Matteo Matteucci. Few shot semantic segmenta-
tion: a review of methodologies, benchmarks, and open challenges.
arXiv:2304.05832, 2024.

[CMZ+24] Shuai Chen, Fanman Meng, Runtong Zhang, Heqian Qiu, Hongliang
Li, Qingbo Wu, and Linfeng Xu. Visual and textual prior guided mask
assemble for few-shot segmentation and beyond. IEEE Trans. Multim.,
26:7197–7209, 2024.

[Com24] Wikimedia Commons. File:vision transformer.svg — wikimedia commons,
the free media repository, 2024. [Online; accessed 11-April-2025].

[Com25] Wikimedia Commons. File:multiheaded attention, block diagram.png —
wikimedia commons, the free media repository, 2025. [Online; accessed
24-March-2025].

52

[CZSL20] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Ran-
daugment: Practical automated data augmentation with a reduced search
space. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 3008–3017, 2020.

[DAAVF24] Francesco D' Angelo, Maksym Andriushchenko, Aditya Varre, and Nico-
las Flammarion. Why do we need weight decay in modern deep learning?
In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tom-
czak, and C. Zhang, editors, Advances in Neural Information Processing
Systems, volume 37, pages 23191–23223. Curran Associates, Inc., 2024.

[DBK+21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for im-
age recognition at scale. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language un-
derstanding. In Jill Burstein, Christy Doran, and Thamar Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

[DVC24] Ronan Docherty, Antonis Vamvakeros, and Samuel J. Cooper. Upsam-
pling dinov2 features for unsupervised vision tasks and weakly supervised
materials segmentation. CoRR, abs/2410.19836, 2024.

[EVGW+] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[FHB+24] Stephanie Fu, Mark Hamilton, Laura E. Brandt, Axel Feldmann, Zhou-
tong Zhang, and William T. Freeman. Featup: A model-agnostic frame-
work for features at any resolution. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net, 2024.

[HAGM14] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik.
Simultaneous detection and segmentation. In David Fleet, Tomas Pajdla,
Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV
2014, pages 297–312, Cham, 2014. Springer International Publishing.

53

[HCN+22] Sunghwan Hong, Seokju Cho, Jisu Nam, Stephen Lin, and Seungryong
Kim. Cost aggregation with 4d convolutional swin transformer for few-
shot segmentation. In European Conference on Computer Vision, pages
108–126. Springer, 2022.

[HSW+22] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation
of large language models. In International Conference on Learning
Representations, 2022.

[HVD15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the
knowledge in a neural network. CoRR, abs/1503.02531, 2015.

[HZG20] Shijie Hao, Yuan Zhou, and Yanrong Guo. A brief survey on semantic
segmentation with deep learning. Neurocomputing, 406:302–321, 2020.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[JEF+22] Joakim Johnander, Johan Edstedt, Michael Felsberg, Fahad Shahbaz
Khan, and Martin Danelljan. Dense gaussian processes for few-shot
segmentation. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Gio-
vanni Maria Farinella, and Tal Hassner, editors, Computer Vision –
ECCV 2022, pages 217–234, Cham, 2022. Springer Nature Switzerland.

[JYL20] Xiao Jiang, Haibin Yu, and Shuaishuai Lv. An image segmentation
algorithm based on a local region conditional random field model. In-
ternational Journal of Communications, Network and System Sciences,
13(09):139–159, 2020.

[KCLU07] Johannes Kopf, Michael F. Cohen, Dani Lischinski, and Matt Uyttendaele.
Joint bilateral upsampling. ACM Trans. Graph., 26(3):96–es, July 2007.

[KGC17] Jan Kukacka, Vladimir Golkov, and Daniel Cremers. Regularization for
deep learning: A taxonomy. CoRR, abs/1710.10686, 2017.

[KLY18] Robert Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view:
When does SGD escape local minima? In Jennifer G. Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 2703–2712. PMLR, 2018.

[KMR+23] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland,
Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg,
Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything. In

54

2023 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 3992–4003, 2023.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco:
Common objects in context. In David Fleet, Tomas Pajdla, Bernt Schiele,
and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages
740–755, Cham, 2014. Springer International Publishing.

[LWC+20] Xiang Li, Tianhan Wei, Yau Pun Chen, Yu-Wing Tai, and Chi-Keung
Tang. Fss-1000: A 1000-class dataset for few-shot segmentation. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2020.

[LXJ+23] Zhuang Liu, Zhiqiu Xu, Joseph Jin, Zhiqiang Shen, and Trevor Darrell.
Dropout reduces underfitting. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett, editors, Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages
22233–22248. PMLR, 23–29 Jul 2023.

[LZL+24] Yang Liu, Muzhi Zhu, Hengtao Li, Hao Chen, Xinlong Wang, and
Chunhua Shen. Matcher: Segment anything with one shot using all-
purpose feature matching. In The Twelfth International Conference on
Learning Representations, 2024.

[LZZH20] Yongfei Liu, Xiangyi Zhang, Songyang Zhang, and Xuming He. Part-
aware prototype network for few-shot semantic segmentation. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors,
Computer Vision – ECCV 2020, pages 142–158, Cham, 2020. Springer
International Publishing.

[MBLAGJ+07] Saturnino Maldonado-Bascon, Sergio Lafuente-Arroyo, Pedro Gil-
Jimenez, Hilario Gomez-Moreno, and Francisco Lopez-Ferreras. Road-
sign detection and recognition based on support vector machines. IEEE
Transactions on Intelligent Transportation Systems, 8(2):264–278, 2007.

[MKC21] Juhong Min, Dahyun Kang, and Minsu Cho. Hypercorrelation squeeze
for few-shot segmenation. In 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 6921–6932, 2021.

[MM22] Alhassan Mumuni and Fuseini Mumuni. Data augmentation: A compre-
hensive survey of modern approaches. Array, 16:100258, 2022.

[MSZ+22] Seonghyeon Moon, Samuel S. Sohn, Honglu Zhou, Sejong Yoon, Vladimir
Pavlovic, Muhammad Haris Khan, and Mubbasir Kapadia. Hm: Hybrid
masking for few-shot segmentation. In Shai Avidan, Gabriel Brostow,

55

Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner, editors,
Computer Vision – ECCV 2022, pages 506–523, Cham, 2022. Springer
Nature Switzerland.

[NT19] Khoi Nguyen and Sinisa Todorovic. Feature weighting and boosting for
few-shot segmentation. In 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 622–631, 2019.

[OAA+24] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-
mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Al-
tenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad
Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-
Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles
Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che
Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen,
Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Do-
han, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna
Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman,
Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson,
Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan
Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey,
Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli
Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang,
Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie
Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar
Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick,
Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner,
Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew
Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim
Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Mar-
tin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok
Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin,
Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati,

56

Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen
O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos,
Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Bel-
bute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael,
Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power,
Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya
Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross,
Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh,
Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang
Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya
Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet,
Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry
Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben
Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda,
Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman,
Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin
Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang,
Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William
Zhuk, and Barret Zoph. Gpt-4 technical report. arXiv:2303.08774, 2024.

[OCC+20] Niall O’Mahony, Sean Campbell, Anderson Carvalho, Suman Harapana-
halli, Gustavo Velasco Hernandez, Lenka Krpalkova, Daniel Riordan,
and Joseph Walsh. Deep learning vs. traditional computer vision. In
Kohei Arai and Supriya Kapoor, editors, Advances in Computer Vision,
pages 128–144, Cham, 2020. Springer International Publishing.

[ODM+23] Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc
Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco
Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao Huang, Hu Xu, Vasu
Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien
Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2:
Learning robust visual features without supervision. arXiv:2304.07193,
2023.

[RKH+21] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,

57

Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 8748–8763. PMLR, 18–24 Jul 2021.

[SBL+17] Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, and Byron Boots.
One-shot learning for semantic segmentation. In Gabriel Brostow Tae-
Kyun Kim, Stefanos Zafeiriou and Krystian Mikolajczyk, editors, Pro-
ceedings of the British Machine Vision Conference (BMVC), pages 167.1–
167.13. BMVA Press, September 2017.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, January 2014.

[SWZ+22] Xinyu Shi, Dong Wei, Yu Zhang, Donghuan Lu, Munan Ning, Jiashun
Chen, Kai Ma, and Yefeng Zheng. Dense cross-query-and-support at-
tention weighted mask aggregation for few-shot segmentation. In Shai
Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella,
and Tal Hassner, editors, Computer Vision – ECCV 2022, pages 151–168,
Cham, 2022. Springer Nature Switzerland.

[TLI+23] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

[TZS+22] Zhuotao Tian, Hengshuang Zhao, Michelle Shu, Zhicheng Yang, Ruiyu
Li, and Jiaya Jia. Prior guided feature enrichment network for few-shot
segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(2):1050–1065, 2022.

[Wat23] Shuhei Watanabe. Tree-structured parzen estimator: Understanding its
algorithm components and their roles for better empirical performance.
CoRR, abs/2304.11127, 2023.

[WLZ+19] Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou, and Jiashi
Feng. Panet: Few-shot image semantic segmentation with prototype
alignment. In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 9196–9205, 2019.

[WWC+23] Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen, and Tiejun Huang.
Images speak in images: A generalist painter for in-context visual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6830–6839, June 2023.

58

[WZC+23] Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen,
and Tiejun Huang. Seggpt: Towards segmenting everything in context. In
2023 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 1130–1140, 2023.

[XLZ22] Zhitong Xiong, Haopeng Li, and Xiao Xiang Zhu. Doubly deformable
aggregation of covariance matrices for few-shot segmentation. In Shai
Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella,
and Tal Hassner, editors, Computer Vision – ECCV 2022, pages 133–150,
Cham, 2022. Springer Nature Switzerland.

[XZF25] Leyi Xiao, Baoxian Zhou, and Chaodong Fan. Automatic brain MRI
tumors segmentation based on deep fusion of weak edge and context
features. Artificial Intelligence Review, 58(154), 3 2025.

[YS20] Li Yang and Abdallah Shami. On hyperparameter optimization of
machine learning algorithms: Theory and practice. Neurocomputing,
415:295–316, 2020.

[YZQ+21] Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, and Yang Gao. Mining latent
classes for few-shot segmentation. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 8701–8710, 2021.

[ZGJ+24] Anqi Zhang, Guangyu Gao, Jianbo Jiao, Chi Harold Liu, and Yunchao
Wei. Bridge the points: Graph-based few-shot segment anything seman-
tically. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang, editors, Advances in Neural Information
Processing Systems, volume 37, pages 33232–33261. Curran Associates,
Inc., 2024.

[ZLL+19] Chi Zhang, Guosheng Lin, Fayao Liu, Rui Yao, and Chunhua Shen.
Canet: Class-agnostic segmentation networks with iterative refinement
and attentive few-shot learning. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5212–5221,
2019.

[ZSYC22] Jian-Wei Zhang, Yifan Sun, Yi Yang, and Wei Chen. Feature-proxy
transformer for few-shot segmentation. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[ZWYH20] Xiaolin Zhang, Yunchao Wei, Yi Yang, and Thomas S. Huang. Sg-one:
Similarity guidance network for one-shot semantic segmentation. IEEE
Transactions on Cybernetics, 50(9):3855–3865, 2020.

[ZXQ21] Bingfeng Zhang, Jimin Xiao, and Terry Qin. Self-guided and cross-guided
learning for few-shot segmentation. In 2021 IEEE/CVF Conference on

59

Computer Vision and Pattern Recognition (CVPR), pages 8308–8317,
2021.

60

Appendix

Benchmark Classes
The different classes for each fold in the PASCAL-5i can be seen in Table 1. In Table
2 the different classes for the COCO-20i benchmark can be seen. The classes used in
training for the FSS-1000 benchmark can be seen in Tables 4, 5, 6, and 7 and the classes
used for testing in Table 3.

fold
PASCAL-200 PASCAL-201 PASCAL-202 PASCAL-203

aeroplane bus diningtable potted plant
bicycle car dog sheep

bird cat horse sofa
boat chair motorbike train

bottle cow person tv/monitor

Table 1: Classes for PASCAL-5i

61

fold
COCO-200 COCO-201 COCO-202 COCO-203

Person Bicycle Car Motorcycle
Airplane Bus Train Truck

Boat T. light Fire H. Stop
Park meter Bench Bird Cat

Dog Horse Sheep Cow
Elephant Bear Zebra Giraffe
Backpack Umbrella Handbag Tie
Suitcase Frisbee Skis Snowboard

Sports ball Kite B. bat B. glove
Skateboard Surfboard T. racket Bottle

W. glass Cup Fork Knife
Spoon Bowl Banana Apple

Sandwich Orange Broccoli Carrot
Hot dog Pizza Donut Cake
Chair Couch P. plant Bed

D. table Toilet TV Laptop
Mouse Remote Keyboard Cellphone

Microwave Oven Toaster Sink
Fridge Book Clock Vase

Scissors Teddy Hairdryer Toothbrush

Table 2: Classes for COCO-20i

62

bus hotel_slipper burj_al reflex_camera abe’s_flyingfish
oiltank_car doormat fish_eagle barber_shaver motorbike
feather_clothes wandering_albatross rice_cooker delta_wing fish
nintendo_switch bustard diver minicooper cathedrale_paris
big_ben combination_lock villa_savoye american_alligator gym_ball
andean_condor leggings pyramid_cube jet_aircraft meatloaf
reel swan osprey crt_screen microscope
rubber_eraser arrow monkey mitten spiderman
parthenon bat chess_king sulphur_butterfly quail_egg
oriole iron_man wooden_boat anise steering_wheel
groenendael dwarf_beans pteropus chalk_brush bloodhound
moon english_foxhound boxing_gloves peregine_falcon pyraminx
cicada screw shower_curtain tredmill bulb
bell_pepper lemur_catta doughnut twin_tower astronaut
nintendo_3ds fennel_bulb indri captain_america_shield kunai
broom iphone earphone1 flying_squirrel onion
vinyl sydney_opera_house oyster harmonica egg
breast_pump guitar potato_chips tunnel cuckoo
rubick_cube plastic_bag phonograph net_surface_shoes goldfinch
ipad mite_predator coffee_mug golden_plover f1_racing
lapwing nintendo_gba pizza rally_car drilling_platform
cd fly magpie_bird leaf_fan little_blue_heron
carriage moist_proof_pad flying_snakes dart_target warehouse_tray
nintendo_wiiu chiffon_cake bath_ball manatee cloud
marimba eagle ruler soymilk_machine sled
seagull glider_flyingfish doublebus transport_helicopter window_screen
truss_bridge wasp snowman poached_egg strawberry
spinach earphone2 downy_pitch taj_mahal rocking_chair
cablestayed_bridge sealion banana_boat pheasant stone_lion
electronic_stove fox iguana rugby_ball hang_glider
water_buffalo lotus paper_plane missile flamingo
american_chamelon kart chinese_knot cabbage_butterfly key
church tiltrotor helicopter french_fries water_heater
snow_leopard goblet fan snowplow leafhopper
pspgo black_bear quail condor chandelier
hair_razor white_wolf toaster pidan pyramid
chicken_leg letter_opener apple_icon porcupine chicken
stingray warplane windmill bamboo_slip wig
flying_geckos stonechat haddock australian_terrier hover_board
siamang canton_tower santa_sledge arch_bridge curlew
sushi beet_root accordion leaf_egg stealth_aircraft
stork bucket hawk chess_queen ocarina
knife whippet cantilever_bridge may_bug wagtail
leather_shoes wheelchair shumai speedboat vacuum_cup
chess_knight pumpkin_pie wooden_spoon bamboo_dragonfly ganeva_chair
soap clearwing_flyingfish pencil_sharpener1 cricket photocopier
nintendo_sp samarra_mosque clam charge_battery flying_frog
ferrari911 polo_shirt echidna coin tower_pisa

Table 3: Test classes for FSS-1000

63

abacus ab_wheel acorn ac_ground ac_wall
adhensive_tape adidas_logo1 adidas_logo2 afghan_hound african_crocodile
african_elephant african_grey agama aircraft_carrier airedale
airliner airship air_strip albatross almond
ambulance american_staffordshire anemone_fish angora apple
apron arabian_camel arctic_fox armadillo armour
artichoke ashtray assult_rifle aubergine avocado
baboon baby backpack badger bagel
balance_beam balance_weight bald_eagle balloon ballpoint
banana band-aid banded_gecko banjo barbell
barometer baseball baseball_bat baseball_player basketball
basset bassoon bathtub battery beacon
beagle beaker beam_bridge bear beaver
bedlington_terrier bee beer_bottle beer_glass bee_eater
bee_house bell besom bighorn_sheep birdhouse
bison bittern black_grouse black_stork black_swan
blenheim_spaniel blossom_card bluetick boa_constrictor bolete
bolotie bomb border_terrier boston_bull bottle_cap
bouzouki bowtie box_turtle bra bracelet
bradypod brain_coral brambling brasscica briard
brick brick_card brick_tea briefcase broccoli
brown_bear brush_pen buckingham_palace buckler bulbul_bird
bullet_train bushtit butterfly cabbage cableways
cactus cactus_ball cairn calculator camel
camomile candle cannon canoe can_opener
capuchin carambola carbonara cardoon carousel
carp carrot carton car_mirror car_wheel
cassette cauliflower ceiling_fan celery cello
chainsaw chalk cheese cheese_burger cheetah
cherry chess_bishop chest chickadee_bird chicken_wings
chicory chihuahua children_slide chimpanzee chinese_date
chopsticks christmas_stocking cigar cigarette cleaver
cn_tower cocacola cocktail_shaker coconut coffeepot
coffin coho collar colubus comb
common_newt computer_mouse conch consomme conversion_plug
convertible conveyor corn cornet cornmeal
cosmetic_brush cottontail coucal cougar cowboy_hat
coyote cpu crab cradle crane
crash_helmet crayon cream crepe cricketball
cristo_redentor crocodile croissant croquet_ball cucumber
cumquat cup cushion daisy dandie_dinmont
dart dhole diamond diaper digital_clock
digital_watch dingo dinosaur dishwasher donkey
dough dowitcher dragonfly drake drum
drumstick dugong dumbbell dutch_oven earplug
eel eft_newt eggnog egg_tart egret
egyptian_cat electric_fan electronic_toothbrush eletrical_switch english_setter
envelope equestrian_helmet esport_chair espresso espresso_maker
excavator face_powder feeder ferret fig
file_cabinet fire_balloon fire_engine fire_hydrant fire_screen
flat-coated_retriever flatworm flowerpot flute flying_disc
folding_chair fork forklift fountain fox_squirrel
french_ball frog frying_pan fur_coat garbage_can
garbage_truck garfish garlic gas_pump gas_tank
gazelle gecko german_pointer giant_panda giant_schnauzer
gibbon ginger gliding_lizard globe golden_retriever
goldfish golfcart golf_ball goose gorilla

Table 4: Train classes for FSS-1000 (1/4)64

gourd grasshopper great_wall green_mamba grey_fox
grey_whale guacamole guinea_pig gypsy_moth gyromitra
hair_drier hami_melon hammer hammerhead_shark hamster
handcuff handkerchief handshower hard_disk hare
harp hartebeest harvester har_gow hatchet
hawthorn head_cabbage hen_of_the_woods hippo hock
hook hornbill hornet hotdog housefinch
howler_monkey hummingbird hyena ibex iceberg
icecream ice_lolly igloo impala indian_cobra
indian_elephant ipod ironing_board jacamar jackfruit
jacko_lantern jay_bird jellyfish jinrikisha jordan_logo
joystick kangaroo kappa_logo kazoo keyboard
killer_whale kinguin kitchen_knife kite kit_fox
koala kobe_logo kremlin kwanyin lacewing
ladder ladle ladybug ladyfinger lady_slipper
lampshade langur laptop lark lawn_mower
leatherback_turtle leeks lemon leopard lesser_panda
lettuce lhasa_apso lifeboat light_tube lion
lionfish lipstick litchi llama loafer
lobster loggerhead_turtle loguat lorikeet louvre_pyramid
lycaenid_butterfly lynx macaque macaw mailbox
mango manx maotai_bottle maraca mario
marmot marshmallow mashed_potato matchstick mcdonald_sign
mcdonald_uncle measuring_cup medical_kit meerkat melon_seed
memory_stick microphone microsd microwave military_vest
miniskirt mink modem monarch_butterfly mongoose
monitor monocycle mooli mooncake mortar
motarboard motor_scooter mountain_tent mount_fuji mouse
mouthpiece mud_turtle mule muscle_car mushroom
nagoya_castle nail_scissor narcissus necklace neck_brace
nematode night_snake nike_logo obelisk ocicat
oil_filter okra olive one-armed_bandit orang
orange oscilloscope ostrich otter owl
ox paddle paint_brush panda panpipe
panther papaya paper_crane paper_towel parachute
parakeet parasol parking_meter parrots parsnip
partridge pastry pate pavilion pea
peach peanut pear peashooter peacock
pedestal_fan pelican pen_holder pencil penguin
persimmon phalanger pharaoh_hound philippine_eagle phoenicopterus
phone_case photo_album pickelhaube pig pigeon
pikachu pillow pineapple pine_nut ping_pong
pink_dolphin pinwheel pipe pizza pliers
plum pocket_watch polecat pole_house police_van
police_vest pomeranian popsicle porcupine porgy
portrait portuguese_man_of_war potted_plant pouch pound_cake
powder_cake power_bank power_strip prawn pretzel
printer prison_uniform pterodactyl ptarmigan pudding
pug pumpkin punching_bag purse quail
quilt rabbit raccoon racer_snake racket
radar radiated_tortoise radio radish raft
ragdoll rail_fence railway ram ramen
raspberry rat rattlesnake razor_clam red_cliff
red_panda red_slipper redstart refrigerator remote_control

Table 5: Train classes for FSS-1000 (2/4)

65

rhinoceros rice rice_ball rice_cooker rifle
ring ringneck_snake river_otter road_roller robe
robin robot rock_beauty rocking_chair roller
rolling_pin roman_helmet rose roti rough_collie
rowboat rubber_eraser rubber_tree rugby_ball ruler
safety_belt safety_hat sailboat salad salamander
salmon salt_shaker sandal sandwich sardine
sari saw_blade saxophone scallion scarf
school_bus scissors scorpion scottish_deerhound scottish_fold
screwdriver scroll sculpture seagull seal
seaplane seashell sea_turtle sea_urchin sealyham_terrier
seastar selfie_stick semang_statue serpent serving_tray
sewing_machine shashlik shampoo shark sheep
sheet_music shelf shellfish shiitake shimeji
shining_fish ship shirt shopping_bag shopping_cart
shorts shovel shrimp siamese sickle
sidecar sidewinder signboard silkworm silver_fish
sink siren skate skewer ski
ski_goggles skillet skull_cap skunk skyscraper
sled sleeping_bag slipper sloth slug
smoking_pipe snail snake sneaker sneaker_sandal
sneezing_monkey snow_leopard snowball snowboard snowman
soap sock soda sofa softshell_turtle
solar_panel soldier_crab sombrero soup_spoon space_heater
space_shuttle sparrow spatula speaker spectacles
sphinx spider spider_monkey spinach sponge
spoon sports_car squid squirrel_monkey stage_curtain
stainless_cup stamp stapler star_fruit starfish
steak steam_locomotive steering_wheel stethoscope stingray
stinkbug stir_fried_noodle stirrup stockpot stone_lion
stool stop_sign stork strawberry striped_hyena
stupa submarine suitcase sundae sunflower
sunglasses sunhat sunrise supermario_hat sushi
swab swan sweatshirt sweet_pepper sweet_potato
sword swordfish syringe table_lamp table_tennis_bat
tachometer taco tadpole tambourine tank
tape_dispenser tape_measurer tapir tarantula tea_egg
tea_kettle teacup teapot teddy_bear telephone
telephone_booth television temple_of_heaven tench tennis_ball
tent teriyaki tern test_tube thimble
thorntail thread throne tibetan_mastiff tick
tie tiger tiger_cat tiger_shark tights
toad toast toaster toilet toilet_paper
tomato toolbox tophat torii toro
tortoise totem_pole toucan towel toy
tractor traffic_cone traffic_light train train_station
tram trash_bin travel_bag tree_frog tripod
trombone trout truck trumpet trunk
tuba tube_coral tumeric tuna turban
turkey turnip turtle tusk tweezers
twin_tower umbrella umpire unicorn vacuum_cleaner

Table 6: Train classes for FSS-1000 (3/4)

66

valve van vase ventilation_fan video_projector
violin volcano volleyball vulture waffle
waffle_iron walking_stick wallaby walrus wardrobe
wasabi wasp water_bottle waterbuck waterfall
watermelon weasel weighing_scale welsh_corgi west_highland
whale wheat wheelchair whiskey_bottle white_radish
wild_boar wild_dog wildebeest wind_bell windmill
window_screen wine_glass wine_rack winter_melon wok
wolf wolverine wombat wood_apple woodpecker
woodwind wool wrecker wrench yak
yam yellow_hammer yellow_pepper yellowtail yoga_mat
yorkshire_terrier yoyo yucca zucchini zongzi

Table 7: Train classes for FSS-1000 (4/4)

67

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Research Problem
	Research Objectives
	Structure of the Thesis

	Background
	Definition of Few-Shot Semantic Segmentation
	Benchmarks and Evaluation Metrics
	Few Shot Semantic Segmentation Models
	DINOv2
	Low-Rank Adaptation
	Regularization Methods
	Hyper-parameter Tuning

	Our Few-Shot Segmenter
	Segmentation Module
	Few-Shot Semantic Segmentation Pipeline
	Training Strategy
	Implementation

	Experiments and Results
	Dataset Preparation
	Experimental Setup
	Quantitative Results
	Qualitative Results

	Discussion
	Main findings
	Strengths and Limitations
	Research Questions

	Conclusion and Future Work
	Conclusion
	Future Work

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	Acronyms
	Bibliography
	Appendix
	Benchmark Classes

