
Enabling Semantic-Aware Query
Evaluation in a Traditional

Database Framework

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Data Science

eingereicht von

Nicolas Bschor
Matrikelnummer 12132344

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Emanuel Sallinger
Mitwirkung: Dr. Eleonora Laurenza

Wien, 5. Mai 2025
Nicolas Bschor Emanuel Sallinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Enabling Semantic-Aware Query
Evaluation in a Traditional

Database Framework

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Data Science

by

Nicolas Bschor
Registration Number 12132344

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Emanuel Sallinger
Assistance: Dr. Eleonora Laurenza

Vienna, May 5, 2025
Nicolas Bschor Emanuel Sallinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Nicolas Bschor

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 5. Mai 2025
Nicolas Bschor

v

Kurzfassung

Relationale Datenbankverwaltungssysteme (RDBMS) spielen, dank ihrer Fähigkeit Daten
effizient zu organisieren, speichern und abzurufen, eine große Rolle in der Datenverar-
beitung. Sie beruhen auf strengen Regeln und exakten Übereinstimmungssemantiken.
Dies stellt einen Widerspruch zu natürlichen Daten und menschlich generierten Texten
dar, da diese oft Unreinheiten, Inkonsistenzen oder semantische Vielfältigkeit aufweisen.
Die Anfrage für ein ’Auto’ an ein RDBMS würde ’Automobil’ nicht finden, obwohl
beide Begriffe das selbe beschreiben. Diese semantischen Unstimmigkeiten führen oft zu
unvollständigen oder ungenauen Ergebnissen.

Große Sprachmodelle (LLMs) und vortrainierte Transformermodelle (PTMs) haben sich
als besonders effektiv in der Verarbeitung verrauschter Daten erwiesen. Daher binden
wir LLMs und PTMs direkt in die Evaluation der Abfrage ein, um die Limitierungen
traditioneller RDBMS bei verrauschten Daten zu überwinden.

Der Ansatz baut auf dem Volcano Modell auf, einem weit verbreiteten Konzept zur
Ausführung von Abfragen. Bei Volcano werden verschiedene Operatoren zu Abfrageplänen
zusammengesetzt. Basierend auf klassischen Operatoren wie Scan, Project (Map),
Select, Join und Aggregate, entwickeln wir neue Operatoren, die von den strikten
Regeln traditioneller RDBMS abweichen und durch die Einbindung von PLMs und LLMs,
semantische Schlussfolgerungen ermöglichen. Durch die Volcano Schnittstelle können
diese neuen Operatoren beliebig in Abfragepläne eingebaut werden. Das erlaubt, zu filtern,
zu gruppieren und zu aggregieren basierend auf semantischer statt strikter Gleichheit.

Wir evaluieren unseren Ansatz mit fünf Datensätzen aus verschiedenen Bereichen wie
E-Commerce, Musik und Biologie. Dadurch zeigen wir die Generalisierungsfähigkeit und
die hohe Effektivität der Operatoren bei Aufgaben wie Entitäten-Abgleich, semantischem
Filtern und semantischer Aggregation. Wir analysieren, welchen Einfluss verschiedene
Sprachmodelle und Implementierungsstrategien auf die Qualität und den Durchsatz
der Ergebnisse haben. Zudem zeigen wir, dass durch die Kombination von PLMs und
LLMs in einem Operator, eine höhere Verarbeitungsgeschwindigkeit bei gleichbleibender
Ergebnisqualität erzielt werden kann als bei der Nutzung einzelner Strategien.

vii

Abstract

Relational Database Management Systems (RDBMS) play a crucial role in data processing
due to their ability to organize, store, and retrieve data efficiently. They rely on strict rules
and exact-match semantics which often clash with the noisy, inconsistent, or semantically
diverse real-world data, particularly natural language texts. For instance, a traditional
RDBMS cannot retrieve a ’automobil’ when querying for a ’car’ even though both terms
describe similar concepts. These semantic mismatches often results in incomplete or
inaccurate query results.

Large Language Models (LLMs) and Pretrained Transformer Models (PTMs) have shown
high effectiveness on handling the noise occurring in natural language. Therefore, to
overcome these limitations of traditional RDBMS, we incorporate LLMs and PTMs
directly into the query execution pipeline of a traditional database framework.

Building upon the Volcano Model, a widely adopted concept for database query execution
where operators are assembled to execution plans, we propose new operators. They are
based on traditional operators such as Scan, Project (Map), Select, Join and
Aggregate and enable semantic inference capabilities by leveraging PLMs and LLMs.
Through the Volcano interface, they can be integrated at any stage of a relational algebra
execution plan, enabling approximate filtering, joining, and grouping based on semantic
similarity rather than strict equality.

We evaluate our approach on five real-world datasets from various domains such as music,
e-commerce, and biology, demonstrating the operators’ generalization capabilities and
high effectiveness in tasks such as data integration, semantic filtering, and semantic
aggregation. We analyze the influence of different LLMs and implementation strategies
on the result quality and the system’s throughput. We show that the combination of
PTMs and LLMs allows the operators to generate results comparable to those which use
PLMs or LLMs alone, while achieving a higher throughput.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 3
1.3 Methodology . 4
1.4 Main Contributions . 5
1.5 Overview . 6

2 Theoretical Foundations and Related Work 7
2.1 Volcano Model . 7
2.2 LLM-Enhanced-Reasoning . 9
2.3 Entity Matching . 10
2.4 Information Retrieval and Semantic Search 14
2.5 Clustering . 15

3 System Design and Architecture 17
3.1 System Design . 17
3.2 Implementation . 27

4 Evaluation 31
4.1 Data Integration . 32
4.2 Semantic Filtering . 41
4.3 Noise-Aware / Semantic-Grouping . 45

5 Discussion 53

6 Conclusion and Future Work 57
6.1 Conclusion . 57
6.2 Future Work . 58

xi

Overview of Generative AI Tools Used 61

List of Figures 63

List of Tables 65

List of Algorithms 67

Bibliography 69

CHAPTER 1
Introduction

In today’s world, databases play a crucial role in most domains such as healthcare,
finance, manufacturing, and artificial intelligence applications [SO24, Bhu25]. Over the
last decades, Relational Database Management System (RDBMS) such as PostgreSQL1

or MySQL2 were developed to store, manage, and retrieve information efficiently. The
underlying query execution framework is optimized for performance, including throughput
and scalability [SO24]. Such framework ensures deterministic and explainable results
through rigid definitions. This means that they rely on a strict schema and exact-match
semantics (e.g. applied in hash-joins [ME92]) for query execution [ZYZD16].

In contrast, real-world data is often heterogeneous or incomplete [LP22]. Particularly
unstructured data like natural language text is inherently prone to producing non-
standardized content, commonly referred to as noise [ASLS21]. For instance, the term ’car’
may be expressed as ’automobile’ in English or ’voiture’ in French. Consequently, users
querying a database for ’car’ may fail to retrieve the desired records because traditional
databases enforce strict rules to search exclusively for ’car’. This rigidity leads to subopti-
mal recall and is a substantial limitation of traditional database architectures. Although
workarounds such as full-text search (WHERE name LIKE ’auto%’) [CRC+19] or query
rewriting using synonyms (WHERE name = ’car’ → WHERE name = ’car’ OR
’automobile’) [MKK19] exist, they lack flexibility, since they are bound to explicit
rules [LM24].

Recent advancements in artificial intelligence, specifically in Pre-Trained Transformer
Models (PTMs) and Large Language Models (LLMs), offer solutions to these limitations.
Both LLMs and PTMs are trained on large-scale textual corpora to transform and generate
texts. PTMs demonstrate advanced capabilities in semantic similarity assessment and

1https://www.postgresql.org/
2https://www.mysql.com/

1

https://www.postgresql.org/
https://www.mysql.com/

1. Introduction

contextual representation learning [CLL22], while LLMs show advanced abilities in
understanding, generation, and inference over natural language texts [LST24].

Due to these capabilities of LLMs and PTMs, there are a variety of approaches to
combine both with a traditional database. These methods extend the RDBMS (e.g. the
PostgreSQL extension pgai3) or operate entirely detached from the database itself (e.g.
Chat-DB [HFD+23]). In contrast, this thesis aims to directly integrate PTMs and LLMs
into a database framework with the objective to relax the rigid constraints typically
imposed by traditional RDBMS. This enables advanced semantic filtering, joining, and
grouping operations that can handle the naturally occurring noise in real-world data.
Resulting in a more intuitive, user-centric interaction with databases, where terminology
inconsistencies such as ’car’, ’automobile’, and ’voiture’ do not hinder the quality of the
results.

Our proposed solution introduces novel query execution operators that fit into a traditional
database framework and directly utilize PTMs for semantic text embeddings and LLMs
for inference. We show how established operators have to be altered in order to support
such semantic components, while maintaining efficient execution.

1.1 Problem Statement
Traditional database query evaluation relies on strict equality (or inequality) conditions
for operations such as filtering, joining, and grouping [SXY+21, ME92, ZJC+23].
However, real-world data often contains incompleteness, inconsistencies, or variations
[ASLS21]. This noise can lead to insufficient results. It is particularly problematic in cases
where entity names, textual attributes, or categorical values exhibit minor discrepancies
due to abbreviations, typographical errors, or semantic differences.

Consider the relational algebra query illustrated in the Figure 1.1. A Cars relation lists
vehicle models along with their manufacturers and a description, while a Manufacturer
relation provides names and other non-relevant columns. The query first filters the
Cars table to retrieve all ’sports cars’. The result of the filtering process is then merged
with the Manufacturer relation where the car’s manufacturer matches the name in the
Manufacturer relation. The outcome is then grouped by the manufacturer’s name and
the cars are counted. Hence, the query seeks to count the number of sports cars produced
by each manufacturer. Unfortunately, this query faces noise-related challenges:

1. Filtering: The selection condition σc.description=’Sports Car’ attempts to retrieve
only sports cars from the Cars relation. However, textual variations such as
’sport compact car’ versus ’sports car’ prevent exact matches, leading to potential
misclassifications or exclusion of relevant records.

2. Joining: The join condition ▷◁p.manufacturer=m.name needs to associate product
manufacturers with the appropriate manufacturer entity. However, discrepancies

3https://github.com/timescale/pgai

2

https://github.com/timescale/pgai

1.2. Research Questions

such as ’Toyota Motor’ (in Car) and ’toyota’ (in Manufacturer) introduce ambiguity,
making traditional joins (e.g. hash-joins) ineffective.

3. Grouping: The final aggregation step Γm.name;count(c.name) seeks to count cars per
manufacturer. Here, the manufacturer names are not normalized or semantically
aligned. For instance, ’toyota’ and ’toyota north america’ refer to the same company
using different textual representations. This leads to fragmented groups, yielding
incorrect counts.

These challenges highlight the limitations of traditional databases in handling noisy data.
This thesis aims to develop a novel semantic-aware query evaluation system that fits in a
traditional database framework. We introduce new operators that accommodate semantic
similarity and approximate matching, thereby enabling a more meaningful data retrieval.
By incorporating semantic reasoning into database operations such as filtering, joining,
and grouping, which traditionally rely on exact constraints, the proposed system aims
to improve the completeness of database queries in noisy and semantically ambiguous
environments.

Name Manufacturer Description
GR Yaris Toyota Motor sport compact car
GR Supra Toyota Corp. sports car

bZ4X Toyota electric compact SUV

Cars c
Name ...
toyota ...

toyota north america ...
nissan motor corp. ...

Manufacturer m

Figure 1.1: Example Query on Noisy Data to Count Sport Cars by all Sport Cars
producing Manufacturers

1.2 Research Questions
In this section, we address the research questions discussed throughout this thesis:

3

1. Introduction

1. RQ1: Which modifications to the traditional database operators Scan, Project
(Map) π, Select σ, Join ▷◁ and Aggregate Γ are required to integrate se-
mantic components such as LLMs and PTMs, to enable reasoning over noisy data
while maintaining a high throughput?

2. RQ2: How do different semantic reasoning strategies (PTM-based, LLM-based,
and hybrid approaches) and component selection (different model sizes and hyper-
parameters) in a database framework influence the precision, recall, and F1 scores
when processing noisy data?

3. RQ3: How do different semantic reasoning strategies and component choices in a
database framework affect the system’s throughput for varying data volumes?

4. RQ4: What is the relationship between throughput and query accuracy (precision,
recall, and F1) in a database framework that utilizes LLMs or PTMs as semantic
reasoners?

1.3 Methodology
To address the problem statement in Section 1.1, we begin with a comprehensive literature
review of database architectures and state-of-the-art systems for LLM-enhanced reasoning,
Information Retrieval (IR), Entity Matching (EM), and clustering. Based on the gathered
knowledge, we conceptualize a semantic-aware query evaluation system, offering solutions
to the challenges of semantic ambiguity and data inconsistency. According to the
developed architecture, we implement the new system and populate it with data, which
we use to conduct an extensive evaluation. In the following, we discuss this methodology
in detail.

To create such a system, we conceptualize and implement new operators according to
the Volcano model [Gra94]. The base concepts of the operators Scan, Project (Map)
π, Select σ, Hash-Join ▷◁, and Hash-Aggregation Γ [Gra93, KLK+18, ME92,
ZJC+23] serve as a foundation for new operators. We integrate PTMs and LLMs directly
in the operators’ evaluation procedure to enable semantic reasoning over noisy data and
create a more user-centered query execution. Furthermore, we design the operators to
maintain a reasonable throughput, as performance considerations are crucial for the
development of RDBMS [PK01].

We enhance the Scan and Project (Map) π operator with a standard semantic search
functionality using Sentence-BERT embeddings [WA22] to search for relevant relations
or columns. The rest of the operator’s logic remains unchanged from the traditional
procedure. In this way, the user can retrieve desired information without explicitly
knowing the entire database schema.

For Select σ, we introduce a new criterion, the Semantic-Equal ≈τ , which performs
a similarity assessment between two predicates. It first checks if the cosine similarity
between the PTM embeddings of both predicates is above a user-defined threshold

4

1.4. Main Contributions

τ [RG19a]. Then, it validates potential matches by prompting an LLM (zero-shot)
[KGR+22], enabling more flexible filtering beyond exact matches.

We create the novel Similarity-Join ▷◁ based on the Hash-Join ▷◁ [ME92] proce-
dure. Instead of matching two records using exact equality, the operator matches records
using their PTM embedding closeness and an LLM validation. The procedure starts by
building a vector index [DGD+24] from the PTM embeddings for the join attributes of
the right relation. After indexing all records, the operator iterates over the left relation,
embeds the join attributes and performs a range query to find candidate matches. An
appended LLM validation confirms true matches using zero-shot strategies.

We alter the Hash-Aggregation Γ [ZJC+23] procedure to create the Semantic-
Aggregation Γ operator. All records are embedded using a PTM and then clustered
using algorithms like KMeans [C+21], Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [EKSX96] and Hierarchical Density-Based Spatial Clustering
of Applications with Noise (HDBSCAN) [MHA17]. This allows grouping records with
semantically similar but textually different keys.

We implement the entire system in the Python4 language, using PostgreSQL as the
underlying database. We utilize the Sentence-BERT model all-mpnet-base-v25 for
embeddings creation and FAISS [DGD+24] for efficient vector search. The evaluation of
the system includes three tasks: semantic joins, semantic filtering, and semantic/noise-
aware grouping. Each task is evaluated on two out of five different noisy datasets
from domains such as music, e-commerce, and biology. We test the system using
different strategies for embedding (record-wise vs column-wise) and similarity assess-
ment (threshold-only, LLM-only, or combined). Furthermore, we compare two ver-
sions of LLaMA (Llama-3.2-3B-Instruct6 and Meta-Llama-3-8B-Instruct7)
[TLI+23] for semantic validation. To assess the quality of the results we select the metrics
precision, recall, F1, and BLEU1 score for semantic joins/ filtering and the Adjusted
Rand Score for semantic/ noise-aware grouping. Furthermore, we collect the throughput
to determine the system’s performance.

1.4 Main Contributions
The main contribution of this work addresses how to relax the rigid exact-match semantics
of traditional databases by including LLMs and PTMs into the widely adopted Volcano
framework. Therefore, we propose strategies for including semantic reasoning approaches
directly into operators described by Volcano. We show how this methodology enables
RDBMS to handle noisy, heterogeneous, and semantically diverse real-world data. Despite
the long inference time of LLMs [ZNH+24], we show how to maintain an efficient evaluation

4https://www.python.org/
5https://huggingface.co/sentence-transformers/all-mpnet-base-v2
6https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
7https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

5

https://www.python.org/
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

1. Introduction

through the combination of strategies utilizing PTMs and LLMs. Particularly, our main
contributions include:

• Conceptualization of Semantic-Aware Database Operators
As the query evaluation in Volcano is carried out by relation algebra operators, we
design and implement new operators for Scan, Project (Map) π, Select σ,
Join ▷◁ and Aggregation Γ, which utilize PTMs and LLMs to enable semantic
reasoning directly within the database.

• Development of Efficient Semantic Reasoning Strategies in Operators
As the inference time of semantic reasoners such as PTMs and LLMs is higher
compared to symbolic reasoning strategies of traditional databases, we develop and
compare different methods utilizing PTMs, LLMs and combined approaches to
reduce inference time while maintaining equally qualitative results. We implement
approaches for efficiency improvements using vector-indexes.

• Extensive Evaluation Across Multiple Tasks and Datasets
As such a database does not yet exist, we developed an extensive evaluation
framework on common tasks such as data integration, semantic filtering, and
semantic grouping using various datasets from different domains. We analyze the
trade-offs between accuracy and efficiency depending on the user-defined threshold
τ and the selected reasoning strategies.

We provide novel approaches to include semantic components such as LLMs and PTMs
directly in the database. We show that the extensible design of Volcano allows for
novel operators, enabling RDBMS to perform semantically meaningful inference while
preserving efficiency. Furthermore, these new operators interact seamlessly with other
operators, including symbolic-only ones.

1.5 Overview
In Chapter 2 we provide state-of-the-art methods for LLM-enhanced reasoning, EM, IR
and clustering. We also provide the theoretical foundation necessary for building the
semantic-aware query evaluation framework. Chapter 3 provides detailed information
about the concepts of the new operators, which support PTMs and LLMs for semantic
reasoning and similarity assessment. Furthermore, we give insights into the implementa-
tion. In Chapter 4, we evaluate the results on tasks such as data integration, semantic
filtering and aggregation on real-world datasets, followed by a discussion in Chapter 5.
In Chapter 6, we summarize our results and outline directions for future work.

6

CHAPTER 2
Theoretical Foundations and

Related Work

In this chapter, we establish the theoretical foundations and state-of-the-art methodologies
required for the development of a semantic-aware query evaluation system. First, we
introduce the Volcano (Section 2.1) model, which serves as the underlying framework.
Subsequently, we survey recent advancements in LLM-enhanced-reasoning (Section 2.2),
EM (Section 2.3), IR (Section 2.4), and clustering techniques (Section 2.5).

In the context of the relational model, the terms row, record, and tuple are often used
interchangeably [Cod90]. All three refer to a single entry in a table, representing a collec-
tion of related data values. For example, consider the tuple (’GR Yaris’, ’Toyota
Motor’ , ’sport compact car’). Given a database schema such as Cars(Name:
STRING, Manufacturer: STRING, Description: STRING), this tuple can
be interpreted as a record by assigning each value to its corresponding attribute,
yielding the record {Name: ’GR Yaris’, Manufacturer: ’Toyota Motor’,
Description: ’sport compact car’}. For clarity and simplicity, we consis-
tently use the term record to refer to such entries throughout this work.

2.1 Volcano Model
The Volcano [Gra94] model is a framework for parallel query evaluation in databases,
adopted by common RDBMS like PostgreSQL [SBZS17]. In Volcano, a query is evaluated
by generating an execution plan of relational algebra operators. Every operator creates
or receives records from its child operator and passes them to its parent operator or
finally the user. This results in a tree-like structure, e.g. Figure 2.1. The operators are
implemented as an iterator using a open-next-close protocol. The open() function
initializes the iterator, e.g. loading the relation or initializing a hash table, while close()

7

2. Theoretical Foundations and Related Work

closes and resets all initialized objects. In the next() function, the operator performs
an instructed operation and returns the record to its parent operator.

Select Scan

Join

Scan

Project

Figure 2.1: Sample Volcano Execution Plan

We focus on the five operators Scan, Select σ, Project (Map) π, Join ▷◁, and
Aggregation Γ. Due to the extendable nature of Volcano, this list is not exhaustive.
However, these five operators are essential for query execution and covered by literature
[KLK+18]. Note that we will only focus on the functionality of the operator, since
implementations vary among methods and systems. Furthermore, for operators located
at the leaves of the evaluation plan, we use the term relation to refer to the actual data in
the database. For subsequent operators, we use the term relation to refer to the output
generated by its previous operator(s).

• Scan R
The Scan operator is located at the leaves of a query evaluation plan and therefore
has no child operator. It iterates over a relation R of the database and returns the
records in the next() function. [Gra93]

• Select σcondition(R)
The Select operator has one child operator and is used to filter data. When the
next() function is called, it calls its child operator’s next() function to retrieve a
new record until a certain condition holds. This record is then returned. [Gra93]

• Project (Map) πa1,...an(R)
The Project (Map) operator, transforms a record by applying mapping functions
[KLK+18]. Such functions may rename or remove the record’s elements (columns),
apply data transformations (x ← 2x), or add new elements (brutto ← netto + tax)
to the record. When next() is triggered, it retrieves a record from its child
operator, applies the mappings and returns the transformed record.

• Join (L) ▷◁p (R)
There are different types of Join operators such as Semi-Join ▷ or Outer-Join

8

2.2. LLM-Enhanced-Reasoning

▷◁ [ME92]. However, due to the scope of this thesis, we focus on the Inner-Join
▷◁ operator only.
Inner-Join ▷◁ has two child operators and merges their records if a condition p
holds. There are different implementations for the Join operator with a varying
application. The most basic join operator is Nested-Loop-Join. It iterates
over both relations in a nested loop. Therefore, it is able to evaluate most join
conditions such as range queries (A.x > B.x) or inequality (A.x ≠ B.x). Hence, it
is highly flexible but very inefficient with a complexity of O(n2), due to the nested
loop. [ME92]
Higher-performing algorithms such as Hash-Join or Sort-Merge-Join operate
within a lower complexity class, however they have some limitations. Here, we focus
on Hash-Join, since it provides a foundation for the joining strategy Chapter 3.
The Hash-Join operator only supports joins on equality and requires a hashable
join attribute. Its complexity class, in an ideal scenario with no collisions in the
hash table, is O(n + m), making it highly efficient. First, the operator iterates over
the left relation and builds a hash-table on the target attribute. Then, for every
element in the right relation, it searches for join partners in the hash table and
returns the matches. [Gra93, ME92]

• Aggregation Γg1,...,gn;f1(a1),...,fm(am)(R)
The Aggregation operator groups all records obtained from the child operator
on n grouping attributes and applies an aggregation function on m other attributes.
For instance Γcity;count(order_id)→num_orders,sum(price)→sum_price(Orders) groups all
orders from the same cities, counts the ’order_id’ and sums all prices together. The
keys and aggregated attributes are passed to the parent operator as a new record
(e.g. {city: ’Vienna’, num_orders: 15, sum_price: 100C}).
As for the Join operator, implementations of the Aggregation operator separate
into hash-based and sort-based approaches [MSL+15] [Gra93]. Again, we focus
on the hash-based method. Here, the operator iterates over all records from its
child operator and inserts them into a hash table using the grouping attributes
(g1, ..., gn) as key. Then, it iterates over all keys in the hash table and applies the
aggregation functions f1, ..., fm on the elements in the hash bucket. The combined
record (g1, ..., gn, f1(...), ..., fm(...)) is then returned. The aggregation function fi

may sum all values, find the minimum/ maximum or string-concatenate all values.
[ZJC+23]

2.2 LLM-Enhanced-Reasoning
With the emergence of LLMs, several studies have attempted to utilize the semantic
understanding of LLMs by including them in the reasoning process [TZL+23]. In the
context of logic-based knowledge representation and reasoning, soft Chase [BBB+24]
leverages LLMs in the classic Chase procedure. Regular Chase incrementally applies

9

2. Theoretical Foundations and Related Work

logic-based rules, e.g. from a knowledge graph, to infer new facts until a fixpoint is
reached. Soft Chase extends this algorithm by identifying and verifying bindings for logic
rules from natural language texts using LLMs. Other approaches like ChatDB [HFD+23]
allow for multi-hop reasoning in classic RDBMS by creating a chain of Structured Query
Language (SQL) queries. Thus, ChatDB utilizes traditional databases as a symbolic
memory for the LLM.

Furthermore, LLMs can be used to enhance the user-to-database interactions. SQL-PaLM
[SAM+23] offers a framework to create SQL queries from natural language using a LLM.
The significance of this task, especially in the presence of noisy data, is demonstrated by
the existence of the BIRD benchmark [LHQ+23]. It offers a large collection of text-to-SQL
pairs on dirty data. The pairs consist of a natural language text and a working SQL
query.

Another field which takes advantage of LLMs is IR which we define in detail in Section
2.4. For IR, documents are ranked according to a user query [WHT+24]. To enhance
the results, a task called query expansion can be performed, where new search terms
are appended to the original query. Here, LLMs can be employed to generate such new
terms [JZQ+23].

The PostgreSQL extension pgai allows the user to call LLMs and PTMs directly using
SQL. This enables semantic search on texts [BBH16] and provides Retrieval-Augmented
Generation (RAG) [LPP+20] functionality directly in the database.

2.3 Entity Matching

The core task of semantic joins and semantic filtering is EM (or Record Linkage). EM
determines whether two data representations refer to the same real-world entity [LLS+21].
Such a task may find the same movie based on the descriptions, match company pairs
from two different datasets or, in case of the Abt-Buy1 dataset, match the same product
from two different JSON representations. Examples of two matching records are

{ "id": 25318, "name": "Terk XM Outdoor Home Antenna - Grey
Finish - XM6", "description": "Terk XM Outdoor ...", "price":
"$80.00" }

from Abt and

{ "id": 202049393, "name": "Audiovox XM6 Outdoor Home Antenna
- XM-6", "description": null, "manufacturer": "Terk
Technologies", "price": null }

from Buy.

1https://dbs.uni-leipzig.de/research/projects/benchmark-datasets-for-entity-resolution

10

https://dbs.uni-leipzig.de/research/projects/benchmark-datasets-for-entity-resolution

2.3. Entity Matching

Since the first statistical models have been developed in 1969 by I. P. Fellegi and A. B.
Sunter [FS69], various approaches, utilizing both symbolic and sub-symbolic reasoning
strategies, have emerged [IK20, LLS+21].

Some methods such as DITTO [LLS+20] require a training step to fine-tune a PTM using
labeled data. However, in a database environment, such training data is not available,
because a database request doesn’t involve labeling data [HSH+07]. Thus, we focus on
methods where an entity match can be inferred directly without any prior training.

Furthermore, considering future implementation in a database context, we identified two
different approaches for EM which can be employed: Threshold-Based and Few-/Zero-
Shot-Prompting.

2.3.1 Threshold-Based
A deep threshold-based approach is employed by Relation-Aware Entity Matching Using
Sentence-BERT: REMS [ZHLL22]. Figure 2.2 depicts the REMS pipeline for the example
Abt-Buy entries. The process begins with serializing the records to a string representation
by adding relation information between the attributes. For instance, the Abt record
would generate a string such as:

’Terk XM Outdoor Home Antenna - Grey Finish - XM6 [described with] Terk XM Outdoor
Home Antenna . . . [costs] $80.00’

The next step in REMS is a rule-based blocking phase which filters obvious mismatches
to create a set of candidates. These candidate strings are then embedded to fixed-size
vectors va⃗ and vb⃗ using SBERT-Networks [RG19a] with shared parameters (Siamese
SBERT-Networks). The SBERT-Networks internally embed the strings into a list of
vectors and apply a mean pooling. Both entities are considered a match if the cosine
similarity (Equation 2.1) of the resulting vectors va⃗ and vb⃗ exceeds a predefined threshold.

cosine_similarity(va⃗, vb⃗) = va⃗ · vb⃗

∥va⃗∥ · ∥vb⃗∥ (2.1)

The REMS procedure requires labeled training data to fine-tune a pre-trained SBERT
model and determine the perfect threshold. However, to overcome the fine-tuning
requirement, general-purpose pre-trained SBERT models such as all-mpnet-base-v2
can be employed. The threshold remains a hyperparameter which must be set by the
user.

The Siamese-SBERT architecture is preferred to be employed in a database, because
it doesn’t require entangling both records. For BERT-based EM frameworks such as
DITTO [LLS+20] or EMBA [ZSH24], the transformer’s input is structured as ’[CLS]
Recorda [SEP] Recordb [SEP]’. Hence, to join data, the cross product of all potential
candidates has to be constructed. On the contrary, for REMS both records are embedded
separately. This is beneficial in a database context, as it allows for pre-computation

11

2. Theoretical Foundations and Related Work

of embedding vectors and therefore, a reduction of runtime by using specialized data
structures which are optimized for range queries of vectors [RG19a]. So, when a join is
invoked, the computationally expensive embedding task is already completed.

B

name desc manufacturer price

Audiovox XM6 Outdoor Home... / Terk Technologies... /

A

name description price

Terk XM... Terk XM Outdoor Home Antenna... $80.00

'Terk XM ... [described by] Terk XM
Outdoor Home Antenna ... [costs] $80.00'

Mean Pooling

'Audiovox XM6 Outdoor Home... [described by] / [manufactured
by] Terk Technologies [costs] /'

BERTBERT

Mean Pooling

Cosine Similiarity

TextTextSiamese SBERT-Networks

Figure 2.2: REMS Pipeline

2.3.2 Few- /Zero-Shot-Prompting
In zero- or few-shot EM, both entities are converted to a string and integrated into a
prompt which serves as input for a generative LLM. In a zero-shot-prompting approach,
both records are serialized and then inserted into a base prompt. Such base prompt can
be general or domain-specific [PSB24]. A general base prompt may look like:

Do the following two records refer to the same real-world entry?
Record A: . . .
Record B: . . .
Answer with "yes" and "no" only!.

A domain specific prompt contains more context:

Do the following two product entries refer to the same product?
Product A: . . .
Product B: . . .
Answer with "yes" and "no" only!.

Figure 2.3 demonstrates the zero-shot-procedure for a general prompt.

The few-shot-prompting approach requires some demonstrations, which consist of both
positive and negative examples [PSB24]. These demonstrations serve as guidance for the

12

2.3. Entity Matching

model. Figure 2.4 illustrates the prompt assembly for two demonstrations. The records
highlighted in green serve as the positive examples, while the red ones serve as negative
examples. The last row represents the test record. These six records, result in the prompt
in the gray box. The green sections of the prompt are derived from the positive examples,
and the red sections from the negative examples.

The number of demonstrations can vary, however, it requires significantly less training
data as for fine-tuning a PTM. Six to ten demonstrations are sufficient to achieve good
results. The demonstrations can be obtained through random sampling, searching for
related records, or hand picking records with the goal to create a diverse dataset [PSB24].

B

name description manufacturer price

EZXS88W Linksys EtherFast 8-Port 10... LINKSYS /

A

name description price

Linksys EtherFast ... Linksys EtherFast 8-Port 10... $44.00

Do the following two records refer to the same real-world entry?
Record A: `Linksys EtherFast ..., Linksys EtherFast 8-Port 10..., $44.00`
Record B: `EZXS88W, Linksys EtherFast 8-Port 10..., LINKSYS`

LLM

Figure 2.3: Example Zero-Shot-Prompting EM

A

name description price

Linksys EtherFast10... Linksys EtherFast10 100 5-... $29.00

Linksys Wireless-G... Linksys Wireless-G Ethernet... $89.00

Linksys EtherFast ... Linksys EtherFast 8-Port 10... $44.00

B

name description manufacturer price

EZXS55W Linksys 5 x 10 100 Base-... LINKSYS $29.00

EG005W Linksys Instant Gigabit... LINKSYS /

EZXS88W Linksys EtherFast 8-Port 10... LINKSYS /

Task: Do the following two records refer to the same real-world entry?
Record A: `Linksys EtherFast10..., Linksys EtherFast10 100 5-..., $29.00`
Record B: `EZXS55W, Linksys 5 x 10 100 Base-... LINKSYS, $29.00`
Answer: yes

Task: Do the following two records refer to the same real-world entry?
Record A: `Linksys Wireless-G..., Linksys Wireless-G Ethernet..., $89.00`
Record B: `EG005W, Linksys Instant Gigabit..., LINKSYS`
Answer: no

Task: Do the following two records refer to the same real-world entry?
Record A: `Linksys EtherFast ..., Linksys EtherFast 8-Port 10..., $44.00`
Record B: `EZXS88W, Linksys EtherFast 8-Port 10..., LINKSYS`

LLM

Figure 2.4: Example Few-Shot-Prompting EM

13

2. Theoretical Foundations and Related Work

2.4 Information Retrieval and Semantic Search
The core task of IR is obtaining relevant information to a user’s query from large
collections of unstructured data. Therefore, the IR system returns the top-k elements of
a sorted ranked list, where all items are assigned with a relevance score. These items,
commonly referred to as documents, can have a versatile format. A common example for
IR systems are web search engines, where a query is matched to a website [WHT+24].

In the context of a database, a relation’s records can be seen as the documents. Therefore,
IR tasks are required in two situations. The first one describes the classical IR task of find-
ing certain records based on the unstructured user input (σdescription≈’Car Movie’(Movies)).
The second situation involves finding potential join candidates. These records can be
directly yielded as the joined records, or be used as potential join pairs in the blocking
stage for EM (Section 2.3).

IR is an important and long-existing problem in computer science. It was first mentioned
by Calvin N. Mooers in 1951 [Moo51]. Therefore, different approaches have emerged to
solve this issue. Traditional approaches such as the vector space model [SWY75] and
the probability model [RZ09] take advantage of exact string matches. Unfortunately,
these methods are only able to handle ambiguity to a limited extent and do not have
a deep semantic understanding. Hence, recent methodologies append Neural Ranking
Models to traditional approaches, which have shown to outperform symbolic-only methods
[WHT+24].

IR systems utilizing Neural Ranking Models start by pre-processing the user’s query e.g.
through query expansion, where related search terms are appended to the query. The
altered query is then used to find candidate documents from a set of indexed documents,
using unsupervised ranking methods such as BM25 or TF-IDF. Both the processed query
and the previously identified documents are passed into a Neural Ranking Component,
which uses deep neural networks, such as BERT or GPT to generate a relevance score
for the document according to the user’s query. A list, sorted by the relevance score is
then returned by the IR system. The unsupervised ranking step is used to reduce the
amount of candidates that have to be passed into the Neural Ranking Component, which
is computationally quite expensive. [TCDH21]

Implementations of the Neural Ranking Component divide into two strategies:
representation-focused models and interaction-focused models. For representation-focused
models, both the document D and the query Q are embedded using neural networks
NND and NNQ, where NND is used to create the document embedding d⃗ and NNQ for
the query embedding q⃗. Both embeddings are then passed into a scoring function M(u⃗, v⃗)
to create a relevance score. If NND and NNQ are siamese networks, e.g. SBERT models,
a vector similarity function such as the cosine similarity can be used as scoring function
M . [TCDH21]

Interaction-focused models exploit the dependencies of the query and the document.
They create an interaction output from a query-document-pair F (d, q). This interaction

14

2.5. Clustering

Query Q

Document D NND

NNQ

Dense VectorNeural Embedder

Relevance Score

Figure 2.5: Representation Focused Model Architecture

output is then passed into a scoring function M . Such interaction output can be obtained
through various techniques, one being a cosine similarity matrix from embeddings of all
query and document tokens.[TCDH21]

2.5 Clustering
As a common database task is the aggregation of data based on the equality of their
attributes (Aggregation Γ), we discuss methods to group data based on the similarity
of their attributes. Clustering algorithms are unsupervised machine learning techniques
and play a crucial role in data mining [RM05]. Common clustering algorithms include
KMeans [C+21], DBSCAN [EKSX96], and HDBSCAN [MHA17].

KMeans [C+21] requires the hyperparameter k, which determines the number of clusters.
The algorithm starts by creating k random cluster centroids. Every data point is then
assigned to the cluster with the closest centroid. After all data points are assigned, the
new centroid is calculated as the mean of the cluster points. This process is repeated until
convergence is achieved, i.e., the clusters no longer change or a maximum of iterations is
reached.

DBSCAN [EKSX96] detects clusters of varying shapes and sizes by considering the
density of points with regard to the distance ϵ and the minimum number of points for
a dense region minPts. To do so, it starts by selecting an arbitrary data point and
retrieves all data points within a distance of ϵ. If the number of data points is greater
than minPts, the algorithm assigns these points to the same cluster. For all new data
points, all unclustered points in range ϵ are fetched and marked. This process is repeated
until all points in recursive range are found. Then, the algorithm continues with the
next unclustered data point and repeats these steps. If a point does not meet the density
requirement of minPts, it is marked as noise.

HDBSCAN [MHA17] is designed to reduce DBSCAN’s sensitivity to parameter tuning.
Therefore, it runs DBSCAN for varying ranges of ϵ, building a cluster hierarchy and
combines the results to identify clusters with the highest stability. This approach enables
HDBSCAN to detect clusters with varying densities.

15

2. Theoretical Foundations and Related Work

Since a low minimum cluster size requirement minPts usually leads to an over-fragmentation
in dense areas, a combination of HDBSCAN and DBSCAN can be utilized. This approach
also requires the distance parameter ϵ [MB20].

16

CHAPTER 3
System Design and Architecture

As stated in Chapter 2, there are various methods to combine PTMs and LLMs with a
database. Most architectures operate independently of the database itself. For instance,
ChatDB [HFD+23] modifies the database using INSERT, UPDATE and DELETE operations
generated through LLMs [HFD+23]. These decoupled methods work well for generaliza-
tion among different RDBMS, because SQL is mostly standardized. Furthermore, it can
provide the user with a reasoning chain, e.g. a list of INSERT.

However, this separation of the semantic reasoner and the RDBMS reduces the efficiency,
because data has to be exchanged between the two systems. Including LLMs and PTMs
directly in the operator execution reduces this overhead. Furthermore, inclusion enables
the possibility for further efficiency improvements by creating index structures over
semantic embeddings directly in the database.

To embed LLMs and PTMs directly in the database framework, we create semantic-
aware counterparts of the Volcano operators Scan, Project (map) π, Select σ,
Inner-Join ▷◁, Aggregation Γ. In Section 3.1, we conceptualize the operators and
examine their functionality. Section 3.2 provides detailed information about the employed
implementation strategies.

3.1 System Design

In this section, we present the conceptual design of semantic-aware database operators.
We illustrate how the functionality of traditional Volcano operators is altered to create
new operators that incorporate semantic reasoning by integrating LLMs and PTMs. This
enables semantic, noise-tolerant query evaluation, while preserving compatibility with
other operators through adherence to the open-next-close interface.

17

3. System Design and Architecture

3.1.1 Scan

As discussed in Chapter 2, the Scan operator returns the records of a database relation.
Consequently, it does not inherently benefit from incorporating LLMs or PTMs during
the iteration over the relation. However, the users may not always have the full overview
over all relations, hence some guidance is beneficial. For instance, the relation may be
called ’Automobiles’ while the user wants to retrieve all ’Cars’. Therefore, to enhance the
usability of the database system, we support semantic search functionality for identifying
the target relation.

To find the desired relation, the operator generates embeddings for all available relations
and ranks them based on cosine similarity to the embedding of the user-provided relation
name. The names of the top-ranked relations are then validated by an LLM according to
the user input. The first relation that passes this validation is selected for scanning.

Algorithm 3.1 depicts the open-next-close procedure for the Scan operator. Both
next() and close() remain unchanged from the original Volcano implementation
[Gra93]. The open function implements the default semantic search procedure using
cosine similarity assessment with SBERT embeddings [WA22] to search for the desired
database relation. The operator first embeds the relation name defined by the user. Then,
it embeds all available relations and calculates the cosine similarity. After sorting the
relations according to similarity, it iterates over the list, beginning with the most similar
relation. If the LLM validation passes, the operator opens the corresponding relation.

3.1.2 Project (Map) π

The Project (Map) π operator performs a mapping of records. Some common use
cases are the reduction to columns of interest, renaming columns, or merging columns
using techniques such as summation (c ← a + b). Here, the user has to define the desired
columns in the mapping functions. As for Select, we enhance this process through a
semantic search of the columns.

3.1.3 Select σ

The Select σ operator requires a child operator and a criterion p. Algorithm 3.2
describes the general functionality as described by Volcano [Gra93]. In the open() and
close() functions, it executes the respective functions from its input operator. The
next() function iterates over the operator’s child operator until the current record
passes the criteria or the input is exhausted. The inclusion of a semantic component
(LLM/ PTM) is implemented within the criteria.

The classic criterion is a conjunction or disjunction of predicates. These predicates usually
follow an attribute-operator-value structure, where the operator describes a
mathematical operator such as =, >, <, . . . and attribute/value are literals or
columns. For instance, the relational algebra expression in Equation 3.1 searches for

18

3.1. System Design

Algorithm 3.1: Scan
Require: PTM, LLM, DB, name

1 Function Open():
2 nameEmbedding ← PTM.embed(name)
3 similarityScores ← []
4 for i ∈ 1, 2, . . . , |DB.relations| do
5 R ← DB.relationsi

6 relationEmbedding ← PTM.embed(R.name)
7 sim ← cosine_similarity(nameEmbedding, relationEmbedding)
8 similarityScoresi ← (sim , R)
9 end

10 similarityScores ← sortBySimilarity(similarityScores)
11 for similarity, R ∈ similarityScores do
12 if LLM.validate(R.name, name) then
13 Scan.R ← R
14 Scan.R.open()
15 return
16 end
17 end
18 Function Next():
19 return Scan.R.next()
20 Function Close():
21 Scan.R.close()

products with a rating of 5.0 and a price lower than 50 or lower than average price within
its category.

σrating=5.0∧(price<50∨price<category_average_price))(Products) (3.1)

To extend this operator with semantic understanding, we introduce the novel criteria
Semantic-Equal x ≈τ y, described by Algorithm 3.3. The input x and y are defined
as single values or records. If the inputs are records or non-string values, they have to be
serialized into strings. Then, both inputs are embedded into two vectors using a PTM. If
the cosine similarity is below the threshold τ , the algorithm considers both records to be
unequal. Then a zero-shot validation step is applied that utilizes a LLM to determine if
the records are semantically equal. The result of this validation is returned in the final
step. Through the consecutive steps, this method avoids an expensive validation through
an LLM if the PTM similarity assessment already fails.

To include criteria if two elements are semantically unequal, the Semantic-Equal
criteria can be negated ¬(x ≈τ y). For semantic range queries (< or >), the usage of
PTM embeddings can’t be employed, because the cosine similarity can only measure

19

3. System Design and Architecture

the angular similarity. Therefore, only the zero-shot validation can be used, where the
operator prompts the LLM if one element is greater (or less) than the other.

Algorithm 3.2: Select
Require: Operator Op, criteria p

1 Function Open():
2 Op.open()
3 Function Next():
4 t ← Op.next()
5 while ¬p(t) do
6 t ← Op.next()
7 end
8 return t
9 Function Close():

10 Op.close()

Algorithm 3.3: Semantic-Equal
Require: PTM, LLM
Input: input left x, input right y, threshold τ
Output: x ≈τ y

1 x ← serialize(x)
2 y ← serialize(y)
3 x ← PTM.embed(x)
4 y ← PTM.embed(y)
5 if cosineSimilarity(x, y) < τ then
6 return False
7 end
8 if ¬ LLM.validate(x, y) then
9 return False

10 end
11 return True

3.1.4 Similar-Join ▷◁

As covered in section 2.1, there are many different types and implementations of joins.
The simplest implementation of joins is a nested-loop join, defined as σp(R×L) [NLK17].
Therefore, a naive Similar-Join can be implemented by building the cartesian product
followed by a Select, utilizing the previously defined Semantic-Equal on the result:
σx≈τ y(L×R). However, the high computational complexity associated with the cartesian
product (O(|L| × |R|)) should be avoided to save computational resources and increase
the throughput.

20

3.1. System Design

To tackle the efficiency issue, we propose an alternative approach, the
Similar-Join ▷◁≈τ . This operator joins all records from the left relation with all
records from the right relation where the embeddings cosine similarities are above a
threshold τ and they pass a validation through a LLM. It derives from Hash-Join
and takes advantage of the recent research in efficient similarity search through index
structures [DGD+24], by replacing the exact matches of the hashed join attributes (point
search) with a range query on index structures filled with the embeddings of a PTM.
To execute the Similar-Join ▷◁≈τ , the operator inserts the entire right relation into
a vector index and for every element in the left relation, a range query with threshold
τ is performed to determine all candidates. The operator then validates all candidates,
leveraging zero-shot strategies using an LLM. If the validation succeeds, the merged
record is then returned.
Figure 3.1 illustrates the process in which all elements from relation R are already
embedded as dense vectors and inserted into the vector index (circles in the vector index).
The figure depicts the state in which a range query is performed using the embedding
of the first record in the relation L. The red circle portrays the range query for the
threshold τ with the embedding as the circle center. This results in three records (green,
orange and blue circle) from the right relation as potential join candidates. As one can
observe, the embeddings of the records ‘Toyota Motor in Toyota, Japan‘ and ‘nissan
motor corp. in yokohama, kanagawa, japan‘ are close, however they do not refer to the
same company. Therefore, a validation step is applied to filter these records.

Vector Index

Name Address
toyota torrance, california, united states

hp palo alto
nissan motor corp. yokohama, kanagawa, japan

hewlett-packard palo alto, CA, US
toyota north america plano, texas, united states
ford motor company dearborn, michigan, US

Name Address
Toyota Motor Toyota, Japan

HP Palo Alto- California

RangeR

L

Figure 3.1: Demonstration of the Similar-Join ▷◁≈τ

Algorithm 3.4 demonstrates the integration of this operator into the Volcano framework.
The open() function iterates over the entire right relation and extracts the join values
from the records. The key values are then serialized. A possible serialization for the

21

3. System Design and Architecture

record {"Name": "Toyota Motor", "Address": "Toyota, Japan", "industry": "Automotive"}
with the key ’Name’ & ’Address’ is ’Name: Toyota Motor, Address: Toyota, Japan’.
Then, the operator embeds the serialized key and inserts the embedding into a vector
index together with the corresponding record.

The next() function searches for the next join pair, as long as the left relation is not
exhausted. To achieve this, the operator iterates over the left relation and performs the
same serialization and embedding steps as for the right relation. Then, it performs a
range query on the vector index using the threshold τ . The result includes all potential
join candidates from the right relation, which are stored by the operator for a later
next() call. The operator then starts with the second validation phase by fetching the
next potential join candidate. If the candidate passes a validation through a LLM, the
operator merges both records and returns it to its parent operator. When no candidate
pair passes the validation or the candidate list is exhausted, the operator fetches a next
record from the left relation and repeats all previous steps.

For a later next() call, the operator first checks if the list of potential join candidates is
exhausted. If not, the operator continues by fetching the next right-relation record from
the candidate list, otherwise it continues with the next record from the left relation.

22

3.1. System Design

Algorithm 3.4: Similar-Join
Require: LLM, PTM, serialization, vectorIndex
Input: Left Relation L, Right Relation R, join_attributes jr, jl, threshold τ

1 Function Open():
2 R.open()
3 vectorIndex.init()
4 while r ← R.next() do
5 rightKeyV alues ← r.get(jr)
6 rightSerialized ← serialization(rightKeyV alues)
7 rightEmbed ← PTM.embed(rightSerialized)
8 vectorIndex.insert(rightEmbed, r)
9 end

10 R.close()
11 L.open()
12 Join.currentLeftRecord ← null
13 Join.joinCandidates ← []
14 Function Next():
15 while true do
16 if ¬ Join.currentLeftRecord then
17 Join.currentLeftRecord ← L.next()
18 if ¬Join.currentLeftRecord then
19 return null
20 end
21 lKeyV alues ← l.get(jl)
22 lSerialized ← serialization(lKeyV alues)
23 emb ← PTM.embed(lSerialized)
24 Join.joinCandidates ← vectorIndex.rangeQuery(emb, τ)
25 end
26 while currentRightRecord ← Join.joinCandidates.next() do
27 if LLM.validate(Join.currentLeftRecord, currentRightRecord)

then
28 return Join.currentLeftRecord + currentRightRecord
29 end
30 end
31 Join.currentLeftRecord ← null
32 Join.joinCandidates ← []
33 end
34 Function Close():
35 L.close()

23

3. System Design and Architecture

3.1.5 Semantic-Aggregation Γ
To create a Semantic-Aggregation Γ≈τ operator, the same issues have to be solved
as for the Similar-Join operator. Both approaches, sort-based and hash-based,
produce undesired results for semantically equal but lexically unequal data. If unequal
key attributes are aggregated in a hash table or sorted, the aggregation on semantical
equality will fail, because of the lexical differences. For instance, the terms ‘hp‘ and
‘hewlett-packard‘ describe the same company, however, they would appear in different
positions on a sorted list or in different buckets of the hash-table.

However, as for Similar-Join, this problem can be solved by replacing the point
search with an approximate search for the embeddings of PTMs. Unfortunately, there
are no reference embeddings to apply a range query, as in Similar-Join. Hence, the
Semantic-Aggregation Γ≈τ operator solves this issue by clustering the embeddings.

To perform the semantic aggregation, the operator embeds all key attributes of the
relation’s records and performs a clustering step. When this finishes, the operator iterates
over the clusters and applies the aggregation functions (SUM, COUNT, . . .) on all the
records in the cluster.

To illustrate this method, we use the same relation as in Section 3.1.4. In this example,
the serialized key (’Name’ + ’Address’) is embedded to a dense vector (Figure 3.2).
This vector is used as input for a clustering algorithm. Here, we use K-Means, however,
other clustering algorithms like DBSCAN or HDBSCAN are suitable. For a K = 2, the
algorithm finds two clusters representing car brands and IT companies. By tuning the
hyperparameter k, or selecting another clustering algorithm, the results differ. Clustering
the embeddings using DBSCAN results in Figure 3.3, where the clusters relate to actual
companies.

In the traditional Hash-Aggregation, all elements for the exact same key are collected,
hence one unique key exists and the values can be set as columns in the record. In case
of the Semantic-Aggregation Γ≈τ , this is not possible anymore, because multiple
values for a key are possible. Instead of grouping the exact same values, the operator
groups similar ones. For instance, in Figure 3.3, the data is grouped by ’name’ and ’address’
as key. A sample cluster contains the two elements: {’name’: ’hp’, ’address’:
’palo alto’} and {’name’: ’hewlett-packard’, ’address’: ’palo
alto, CA, US’}. Hence, two different key values exist for the same group: ’hp, palo
alto’ and ’hewlett-packard, palo alto, CA, US’. So, if the operator needs to yield a key
value, it requires a dedicated aggregation function. Such aggregation function may sample
one specific value, return the comma-separated values as a string, or utilize an LLM to
create a summary from all elements.

24

3.1. System Design

Name Address
toyota torrance, california, united states

hp palo alto
nissan motor corp. yokohama, kanagawa, japan

hewlett-packard palo alto, CA, US
toyota north america plano, texas, united states
ford motor company dearborn, michigan, US

Vector Index

Figure 3.2: Semantic-Aggregation Γ≈τ using K-Means

Name Address
toyota torrance, california, united states

hp palo alto
nissan motor corp. yokohama, kanagawa, japan

hewlett-packard palo alto, CA, US
toyota north america plano, texas, united states
ford motor company dearborn, michigan, US

Vector Index

Figure 3.3: Semantic-Aggregation Γ≈τ using DBSCAN

We demonstrate how the Semantic-Aggregation Γ≈τ aligns with the Volcano model
in Algorithm 3.5. In the open() function, the operator iterates over the entire input
relation. For each record, the operator serializes the key values. The serialized keys are
then embedded using a PTM. After the entire relation is processed, the operator performs
a clustering process with the embeddings as input. When the clustering algorithm
terminates, the operator retrieves all groups (clusters).

The next() function iterates over all clusters and applies the aggregation functions for
all elements within the group. Then, the operator merges the results of the functions to
a new record and passes them to its parent operator.

25

3. System Design and Architecture

Algorithm 3.5: Semantic-Aggregation
Require: PTM, serialization, clustering
Input: Relation R, Group By Attributes g, Aggregation Functions f

1 Function Open():
2 R.open()
3 c ← clustering.init()
4 while r ← R.next() do
5 groupByKeys ← r.get(g)
6 serializedGroupByKeys ← serialization(groupByKeys)
7 emb ← PTM.embed(serializedGroupByKeys)
8 c.insert(emb, r)
9 end

10 R.close()
11 Aggregation.clusters ← c.getCluster()
12 Function Next():
13 cluster ← Aggregation.clusters.next()
14 result ← {}
15 for fi ∈ f do
16 resultfi.name ← fi(cluster.elements)
17 end
18 return result

19 Function Close():
20 Aggregation.clusters.close()

26

3.2. Implementation

3.2 Implementation

We implemented the system using the Python language. The PostgreSQL database serves
as the base. All operators are implemented as Iterator Classes1. To fit the Volcano model,
all operators implement the open() and close() functions. The next() function is
implemented in the built-in __next__() function of the Python Iterator.

To create embeddings, we utilize the all-mpnet-base-v2 pre-trained Sentence Trans-
formers from the SBERT project2 [RG19b, RG20]. To store and query the embeddings,
we employ the FAISS library [DGD+24]. For text generation and semantic validation we
use Llama-3.2-3B-Instruct and Meta-Llama-3-8B-Instruct [TLI+23].

In the following sections, we examine the specific implementation details for Select
σ (Section 3.2.1), Similar-Join ▷◁ (Section 3.2.2), and Semantic-Aggregation
Γ≈τ (Section 3.2.3). We provide information regarding the prompts used for zero-shot
validation using LLMs, as well as the employed embedding and similarity assessment
strategies.

3.2.1 Select σ

As we expect the inference time of LLMs to be higher than the creation of embeddings
using a PTM, the operator first checks whether the cosine similarity of the embeddings
is above the threshold τ . If it succeeds, it continues with the LLM validation. Thus, the
computationally expensive LLM operation is not executed in every case.

We select a serialization function that removes the key attributes from the records and
concatenates the values using comma-separation to create more natural embeddings
and inputs for the zero-shot validation. A query σname,address≈’Car Brand’ would seri-
alize the input for the record {"Name": "toyota", "Address": "torrance,
california, united states"} to ’toyota, torrance, california, united states’.

For the zero-shot input, we chose ’You are a validator. Respond with "no" and "yes"
only!’ as the system prompt and ’Does "<left>" describes "<right>"?’ as the template
for both inputs. Some previous tests showed, that only system prompting yields reliable
responses that exclusively use ’yes’ and ’no’ for both LLaMA models. So, the input
for the LLM, using the previous example, is ’Does "toyota, torrance, california, united
states" describes "Car Brand"?’.

3.2.2 Similar-Join ▷◁

For the implementation of the Similar-Join ▷◁≈τ , we focus on two aspects: the embedding
methods and how the operator performs the zero-shot entity matching.

1https://docs.python.org/3/glossary.html#term-iterator
2https://sbert.net/

27

https://docs.python.org/3/glossary.html#term-iterator
https://sbert.net/

3. System Design and Architecture

We have implemented three different methods for this operator. The first one only utilizes
the embeddings, the second method creates the cartesian product and utilizes only LLMs
and the third version employs the described combined approach.

Embedding Methods

To compare the embeddings, we have implemented two different methods: record- and
column-wise. For a record-wise comparison, the operator compares one embedding
for the entire record. This embedding can be obtained through serializing and em-
bedding the complete record or mean pooling the embeddings for all join values. We
chose the same serialization strategy as for Semantic-Equal in Section 3.2.1, where
the record’s elements are converted to strings merged using comma separation. So,
the record {’name’: ’hp’, ’address’: ’palo alto’} can be embedded as
emb(′hp, palo alto′) or MEAN(emb(′hp′), emb(′palo alto′)), both resulting in an equal
sized vector. This comparison method pools the record and therefore only allows to
compare
R ▷◁(r1,r2,...rx)≈(l1,l2,...ly) L. An advantage of this method is that it doesn’t require to
compare the exact same amount of columns.

However, queries like L ▷◁(l1≈r1)∧(l2≈r2)∨(l3≈r3) R require a column-level comparison.
Therefore, we also included column-wise comparison. In this method, the embeddings of
the columns are directly compared and if the average cosine similarity MEAN(cos(r1, r1),
cos(r2, r2), . . .) is below the threshold, both records are considered as a match. To avoid
the overlapping of attributes and to keep the vector indexes as small as possible, the
operator creates a separate vector index for all join attributes. So, in the open()
function, all key columns are embedded separately and inserted in their respective vector
index. The entire procedure to build the vector index is illustrated in Algorithm 3.6.
In the next() function, to find possible candidates for a fixed left record from the left
relation, the operator performs a range query on the vector indexes using the column
embeddings of the record. If any column embedding of a right-record t is located within
the range τ , the record is collected in a set. Then, the operator uses the average cosine
similarity across all column embeddings for the join assessment. We depict the procedure
in Algorithm 3.7.

Algorithm 3.6: Column-Wise Embedding Comparison for Vector Indexes
Creation

Require: PTM
Input: Record r, Vector Indexes v, Join Attributes jl, jr

1 for i ∈ {1, 2, . . . |JoinAttributes|} do
2 embeddingsi ← PTM.embed(r.get(jr,i))
3 vi.add(embeddingsi, r)
4 end

28

3.2. Implementation

Algorithm 3.7: Column-Wise Embedding Comparison to retrieve Join Candi-
dates

Require: PTM
Input: Record l, Vector Indexes v, Join Attributes jl, jr

1 embeddings ← []
2 candidates ← {}
3 for i ∈ {1, 2, . . . |JoinAttributes|} do
4 embeddingsi ← PTM.embed(l.get(jl,i))
5 candidates.put(vi.rangeQuery(embeddingsi, τ))
6 end
7 for r ∈ candidates do
8 cosine_similarities ← []
9 for i ∈ {1, 2, . . .} do

10 cosine_similaritiesi ←
cosine_similarity(embeddigsi, PTM.embed(r.jr,i))

11 end
12 if average(cosine_similarities) < τ then
13 candidates.remove(r)
14 end
15 end

Zero-Shot Entity Matching

As stated for zero-shot EM in Section 2.3.2, the operator instructs an LLM to decide
whether two records are semantically equal. Hence, the operator must create a prompt
that is passed to a LLM. The LLM’s answer must be a boolean value that the operator
can use for further assessment. Therefore, the response must be understood by a symbolic
reasoner. We utilize the same system prompt ’You are an object-matcher. Check if the
two tuples A and B refer to the same real world entity. If so, answer with "yes", if not,
answer with "no" only!’

To generate the actual prompt, the operator fills the template: ’A is <a>\nB is ’.
A sample prompt for the records
{"Name": "toyota", "Address": "torrance, california, united
states", "industry": "automotive"}
and
{"Name": "Toyota Motor", "Address": "Toyota, Japan",
"industry": "Automotive"}
would be:
A is toyota, torrance, california, united states, automotive
B is Toyota Motor, Toyota, Japan, Automotive

29

3. System Design and Architecture

3.2.3 Semantic Aggregation Γ
For the implementation of the Semantic-Aggregation Γ≈τ operator, we focus on
the feature creation and the clustering algorithms.

Features Creation

As for the Similar-Join ▷◁≈τ , we have implemented two methods to create input
features for the clustering algorithm: record- and column-wise embeddings. The record-
wise embeddings create input features by pooling the entire record, either through
embedding the serialized record, or averaging all the column embeddings. The creation
of column-wise embeddings differs, because there are no reference records to compare
it with. To create column-wise embeddings, the operator concatenates the embeddings
for all key column values ([emb(g1), emb(g2), . . . , emb(gn)]) to a single vector of shape
sizeEmbedding · numberColumns.

Both embedding methods produce vectors of high dimensionality. The
all-mpnet-base-v2 SBERT model embeds text to a vector of 768 dimensions. Thus,
the input for the clustering algorithm is at least the size of a single embedding. Usually,
search and cluster algorithms, which work well for low dimensions, but become less effective
when the dimensionality increases. This is due to the fact that the distances in high
dimensions become almost equal, a phenomenon known as ’The curse of dimensionality’
[KE11]. Therefore, we added an optional dimensionality reduction step utilizing the
UMAP library3 [MHM20].

Clustering

To group the data, we employ the clustering implementations provided by the scikit-learn
library4 [PVG+11]. The library supports numerous clustering algorithms, with a unified
interface. Hence, with minor tweaks, all of those clustering algorithms can be included
in the noise-aware query evaluation framework. For comparison, we selected the three
methods KMeans, DBSCAN and HDBSCAN, because KMeans and DBSCAN are two of
the most popular clustering algorithms [CZL+24], while HDBSCAN has demonstrated
strong performance in text clustering, particularly in combination with UMAP [AM21].

3https://umap-learn.readthedocs.io/en/latest/
4https://scikit-learn.org/stable/

30

https://umap-learn.readthedocs.io/en/latest/
https://scikit-learn.org/stable/

CHAPTER 4
Evaluation

To evaluate the system, we created different scenarios, in which such a semantic-aware
system can be employed: data integration (Section 4.1), semantic filtering (Section
4.2) and semantic/ noise-aware grouping (Section 4.3). For every task, we describe
the datasets, the employed metrics, and present the results.

For the data integration task, we join two noisy datasets. Hence, this scenario evaluates
how effectively the Similar-Join ▷◁≈τ operator can find matching records. The
semantic filtering task involves filtering noisy records based on semantics. We use this
task to evaluate the Semantic-Equal ≈τ of the Select σ operator. Lastly, we
evaluate the Semantic-Aggregation Γ≈τ operator by solving the semantic/ noise-
aware grouping task. In this task, the system has to group noisy data to consolidate all
duplicates or records belonging to the same category.

Since databases are usually applied in various domains, we evaluate the generalization
of the system using two different datasets for every task. We create an execution plan
for each dataset that solves the respective task, which we execute in the system. We
measure the quality of the results based on the ground truth provided by the dataset.
Furthermore, we measure the runtime and number of processed records to determine
the throughput (Equation 4.1). For comparison, we vary parameters such as the models
used, thresholds, embedding-, serialization- and clustering-methods.

Throughput = |Input Records|
Execution Time (4.1)

All experiments and evaluations were conducted on Google Colab1, utilizing Python
3.11.11 as the primary development environment. The hardware configuration included
53GB of RAM and a L4 GPU with 22.5GB of VRAM, providing hardware acceleration
for computational tasks.

1https://colab.research.google.com/

31

https://colab.research.google.com/

4. Evaluation

4.1 Data Integration
This task is about matching the entries of two different relations with different represen-
tations. We select the iTunes-Amazon and Abt-Buy Deep-Matching Datasets [MLR+18].
Both datasets contain two separate relations and a matching table. We compute how
close the result of the Similar-Join ▷◁≈τ operator is to the matching table.

The iTunes-Amazon dataset contains songs collected from the iTunes and Amazon stores.
The full dataset contains 6908 songs from iTunes and 55922 songs from Amazon. A
labeled dataset contains 539 candidates. We reduced the input to the 132 true matches
resulting in 128 iTunes and 132 Amazon songs. This step was necessary because the
original dataset contains matching songs, that are not declared as matches. Hence,
Similar-Join ▷◁≈τ would correctly yield these matches, however, since they are not
present in the matching table, they are counted as false positives.

A sample record from the iTunes table is
{’sno’: 6105, ’album_name’: ’born to die - the paradise
edition’, ’artist_name’: ’lana del rey’, ’released’:
’13-Nov-12’, ’song_name’: ’yayo’ time: ’5:21’}.
The correct match from the Amazon dataset is the record
{’sno’: 7984, ’album_name’: ’born to die - the paradise
edition [explicit]’, ’name’: ’lana del rey’, ’released’:
’November 13, 2012’, ’song_name’: ’yayo’, ’time’: ’3:57’}.
As semantically relevant columns, we select ’album_name’, ’artist_name’, ’released’,
’song_name’ and ’time’. Consequently, we define the data integration execution plan as:

(iTunes l) ▷◁album_name,artist_name,released,song_name,time (Amazon r)

For the Abt-Buy dataset, the task is to match products obtained from the online retailers
Abt.com and Buy.com. The dataset contains 1081 (Abt) and 1092 (Buy) entries with
1097 matches, which we reduced to a 100 × 100 subset with 100 matches. This reduction
is necessary due to computational issues, which we discuss in Chapter 5.

Two matching sample records are
{’idAbt’: 38477, ’name’: ’Linksys EtherFast 8-Port ...’,
’description’: ’Linksys EtherFast 8-Port ...’,
’price’: ’$44.00’}
and
{’idBuy’: 10011646, ’name’: ’Linksys EtherFast EZXS88W
Ethernet Switch ...’, ’description’: ’Linksys EtherFast
8-Port...’, ’manufacturer’: ’LINKSYS’, ’price’: null}.
So, we join both relations on ’name’, ’description’ and ’price’. Leading to the execution
plan:

(Abt l) ▷◁name,description,price (Buy r)

32

4.1. Data Integration

For comparison, we employ seven different strategies:

1. Zero-Shot: Considering the LLM answer only

2. Thresh (Col): Considering the cosine similarities of PTM embeddings only,
where each join column pair is compared separately

3. Thresh (Rec, Full): Considering the cosine similarities of PTM embeddings
only, where the record is pooled by serializing the entire record to a string

4. Thresh (Rec, Field): Considering the cosine similarities of PTM embeddings
only, where the record is pooled by averaging the embeddings of all fields

5. Combi (Col): Considering both the cosine similarities of PTM embeddings and
the LLM answer, by blocking potential pairs generated using Thresh (Col) and
subsequently filtering using Zero-Shot

6. Combi (Rec, Full): Considering both the cosine similarities of PTM embed-
dings and the LLM answer, by blocking potential pairs generated using Thresh
(Rec, Full) and subsequently filtering using Zero-Shot

7. Combi (Rec, Field): Considering both the cosine similarities of PTM embed-
dings and the LLM answer, by blocking potential pairs generated using Thresh
(Rec, Field) and subsequently filtering using Zero-Shot

We investigate how the choice of LLMs and threshold values influences the effectiveness
and efficiency of the data integration task. Therefore, we test the strategies using the
two different LLaMA-3 (3B & 8B) LLMs and thresholds ranging between τ = 0.1 and
τ = 0.9. A τ = 0 would yield the cartesian product, while a τ = 1 would perform an
inefficient Hash-Join.

4.1.1 Metrics
The query result is converted to a result set R, which we compare with the ground truth
set G provided by the matching table. We can determine the true positives TP = R ∩ G,
the false positives FPs = R \ G and the false negatives FNs = G \ R. Using these sets,
we can calculate the following metrics:

1. Recall |T P |
|T P |+|F N | : How many of the expected matches are present in the result set?

2. Precision |T P |
|T P |+|F P | : How many of the resulting records are actual matches?

3. F1 score 2·Precision·Recall
Precision+Recall : Harmonic mean of precision and recall

33

4. Evaluation

Furthermore, we calculate the BLEU1 score. It assesses how well the words and phrases in
the evaluated text match the reference text. In our scenario, the BLEU1 score measures
how well the integrated dataset represents the ground truth dataset. We calculate the
BLEU1 scores by tokenizing both the serialized ground truth records G and the serialized
result records R. Afterward, we compute the BLEU1 score between each entity in the
G and each entity in R and collect the maximum for every g ∈ G. The overall BLEU1
score is defined as the average over G (Equation 4.2) [PBGF22].

BLEU1(G, R) = 1
|G|

∑︂
g∈G

max
r∈R

BLEU1(g, r) (4.2)

Note that the BLEU1 metric is coupled to the recall. If the recall is 1, there is always an
identical record present in the result set, resulting in the existence of BLEU1(x, x) = 1
for any element in the ground truth. So, if the recall is 1, then BLEU1(G, R) = 1.

4.1.2 Results
First, we investigate which methods work best for the iTunes-Amazon dataset. For
all thresholds, we compare the results with the highest F1 scores for LLaMA3.3 3B
(Figure 4.1) and LLaMA3 8B (Figure 4.2). Since the threshold-based approaches are not
influenced by the choice of the LLM, they resulted in identical scores for both models.
Figure 4.1 shows that for the smaller LLaMA model, threshold-based approaches perform
better (in terms of F1) compared to zero-shot-based approaches. Furthermore, they have
a much higher throughput and therefore a significantly lower inference time. On our
machine, the Zero-Shot approach takes 774s, while the Thresh (Col) takes 2.6s. The
best performing combination approaches are able to achieve the same values for F1 and
BLEU1 as Zero-Shot while also being faster (e.g. Combi (Col) takes 12s).

The larger LLaMA model (Figure 4.2) outperforms the smaller model in terms of
F1 and BLEU1. It achieves a BLEU1 of 0.98 for Zero-Shot and Combi (Rec,
Field). All methods utilizing LLMs outperform Thresh (Rec, Full) and Thresh
(Rec, Field) in both F1 and BLEU1. Combi (Rec, Full) as the combination
of Zero-Shot and Thresh (Rec, Full), even surpasses the performance of both
methods it is composed of. However, one can observe that F1 performance of Thresh
(Col) exceeds all other methods. So, in this scenario, the threshold-based approach is
both faster and has a higher F1 score compared to the LLM based approaches, which
makes it preferable in this case.

It is also worth noting that the optimal threshold differs for all serialization and embedding
strategies within one class of methods. The optimal threshold for Thresh (Rec,
Field) is τ = 0.3 and τ = 0.8 for Thresh (Col). It also differs between the
same serialization and embedding strategies across the two classes of methods. For
Thresh (Rec, Full) the optimal τ is 0.9 while it is 0.8 for Combi (Rec, Full).
Furthermore, both Figure 4.1 and 4.2 show that the record-wise comparison with field

34

4.1. Data Integration

serialization has a much lower optimal threshold compared to the other strategies for
both threshold-only and the combined-approach. This indicates that the mean pooling
dilutes the embeddings, which also results in lower BLEU1 and F1 scores.

Thresh
(= 0.3)

(Rec, Field)

Thresh
(= 0.9)

(Rec, Full)

Thresh
(= 0.8)

(Col)

Combi
(= 0.2)

(Rec, Field)

Combi
(= 0.8)

(Rec, Full)

Combi
(= 0.7)

(Col)

Zero-Shot

Method

0.0

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
 S

c
o
re

F1

BLEU1

Throughput

102

103

104

T
h
ro

u
g
h
p
u
t

(#
E
le

m
e
n
ts

 /
 S

e
c
o
n
d
)

Figure 4.1: Overall Evaluation Results iTunesAmazon Dataset using LLaMA 3B

35

4. Evaluation

Thresh
(= 0.3)

(Rec, Field)

Thresh
(= 0.9)

(Rec, Full)

Thresh
(= 0.8)

(Col)

Combi
(= 0.2)

(Rec, Field)

Combi
(= 0.9)

(Rec, Full)

Combi
(= 0.8)

(Col)

Zero-Shot

Method

0.0

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
 S

c
o
re

F1

BLEU1

Throughput

101

102

103

104

T
h
ro

u
g
h
p
u
t

(#
E
le

m
e
n
ts

 /
 S

e
c
o
n
d
)

Figure 4.2: Overall Evaluation Results iTunesAmazon Dataset using LLaMA 8B

As Thresh (Col) achieves the best performance on F1, it is worth investigating the
relationship between the threshold and the precision, recall and F1 scores. Figure 4.3
depicts the metric results and the number of true positives, false positives and false
negatives for another test run where we employ the Thresh (Col) method using 100
evenly distributed values for the threshold τ between 0.5 and 1.0. One can observe
that for τ ∈ [0.1, 0.74], the recall is 1.0, meaning that the number of true positives is at
its maximum. However, for these thresholds the system yields a high number of false
positives, resulting in low precision and, therefore, a low F1 score. For τ > 0.92 the
false positive rate drops to 0.0, which results in a precision of 1.0. This comes at the
cost of the number of true positives which steadily declines for higher τ falling to 0 for
τ > 0.96. Hence, the selection of τ strongly influences the outcome of the execution plan.
A lower threshold increases the number of records in the result set and therefore increases
the recall score. A threshold of 0.0 will always yield the cartesian product and force a
recall of 1.0 and a precision of 0.0. A higher threshold will optimize precision. For τ = 1
only exact string matches will occur in the result set (the same result as a Hash-Join).
Because no equal records exist in this dataset, the operator cannot infer any matches, so
the precision drops to 0.0.

36

4.1. Data Integration

0.5 0.6 0.7 0.8 0.9 1.0

Threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o
re

Precision, Recall, and F1 Score vs Threshold

Metric

Precision

Recall

F1

0.5 0.6 0.7 0.8 0.9 1.0

Threshold

0

200

400

600

800

1000

S
c
o
re

True Positives, False Positives, False Negatives vs Threshold

Number of

True Positives

False Positives

False Negatives

Figure 4.3: Relationship between Precision, Recall, F1 and the Threshold Hyperparameter
for Thresh (Col) on the iTunes-Amazon dataset

37

4. Evaluation

Another important aspect is the relationship between zero-shot-, threshold-based and
combination approaches with regard to the threshold τ . Since Combi (Rec, Full)
achieved a higher F1 than Zero-Shot and Thresh (Rec, Full), we investigate the
causes of this phenomenon in Figure 4.4. The bars depict the F1 scores for Combi (Rec,
Full) with τ = 0.8, 0.9, 1.0 and Zero-Shot (τ = 0). The orange and green line depict
the recall and precision of Thresh (Rec, Full) for the respective threshold. One
can observe, for a recall of 1.0, the combination approach yields the exact same F1 score
as Zero-Shot. This is because when the recall of Thresh (Rec, Full) is 1.0, the
ground truth G is a subset of the result set R (G ⊆ R). Since the combination approach
filters the outcome of the threshold approach, which contains all records in G in this
case, the result set of the combined approach contains the same true positives as the
Zero-Shot approach, resulting in an equal recall value. The F1 score may vary if the
threshold-based approach filters records which are false positives in Zero-Shot. In
Figure 4.4 for τ = 0.8, the threshold-based approach does not filter out more false positives
than Zero-Shot, therefore the scores are identical. Nonetheless, the threshold-based
approach serves as a blocking stage, which removes clear mismatches. As indicated with
the red line, the amount of elements that are yielded by the threshold-based approach is
reduced for higher τ . This reduces the number of comparisons that have to be computed
by the LLM in the combined approach, resulting in a slightly better runtime compared
to Zero-Shot. For τ = 0.9, Thresh (Rec, Full), the operator filters some of the
true positives, therefore the recall is below 1. However, it also reduces false positives
which are inferred by Zero-Shot. This results in an increase of the F1 score and a
much higher throughput.

The results for the AbtBuy datasets differ for LLaMA 3B (Figure 4.5) and LLaMA 8B
(Figure 4.6). As for the iTunes-Amazon dataset, a threshold-based approach performs best
compared to the results of LLaMA 3B. In contrast, the LLaMA 8B model outperforms
all threshold-based approaches with a maximum F1 of 0.93 and a BLEU1 of 0.95. While
Combi (Rec, Field) and Combi (Col, Field) require a threshold of τ = 0.2 to
achieve the same performance of Zero-Shot, Combi (Rec, Full) requires τ = 0.7,
this applies for both models. As the relationship between the threshold-based and the
combined approach in Figure 4.7 shows, higher thresholds lead to fewer input for the
LLM in the combined approach. So, a τ = 0.7 significantly reduces LLM calls and,
therefore a much higher throughput.

38

4.1. Data Integration

Zero-Shot Combi (Rec, Full)
= 0.8

Combi (Rec, Full)
= 0.9

Combi (Rec, Full)
= 1.0

threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o
re

101

102

103

104

th
ro

u
g
h
p
u
t

Precision

F1

Recall

Throughput

Recall
Threshold-Based

Precision
Threshold-Based

% of Elements
Threshold-Based

Figure 4.4: Relationship of the threshold-based Thresh (Rec, Full) & zero-shot-
approach (Zero-Shot) and the combination Combi (Rec, Full) for iTunes-Amazon
Dataset using LLaMA 8B

Thresh
(= 0.4)

(Rec, Field)

Thresh
(= 0.8)

(Rec, Full)

Thresh
(= 0.6)

(Col)

Combi
(= 0.2)

(Rec, Field)

Combi
(= 0.7)

(Rec, Full)

Combi
(= 0.2)

(Col)

Zero-Shot

Method

0.0

0.2

0.4

0.6

0.8

M
e
tr

ic
 S

c
o
re

F1

BLEU1

Throughput

102

103

T
h
ro

u
g
h
p
u
t

(#
E
le

m
e
n
ts

 /
 S

e
c
o
n
d
)

Figure 4.5: Overall Evaluation Results AbtBuy Dataset for LLaMA 3B

39

4. Evaluation

Thresh
(= 0.4)

(Rec, Field)

Thresh
(= 0.8)

(Rec, Full)

Thresh
(= 0.6)

(Col)

Combi
(= 0.2)

(Rec, Field)

Combi
(= 0.7)

(Rec, Full)

Combi
(= 0.2)

(Col)

Zero-Shot

Method

0.0

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
 S

c
o
re

F1

BLEU1

Throughput

101

102

103

T
h
ro

u
g
h
p
u
t

(#
E
le

m
e
n
ts

 /
 S

e
c
o
n
d
)

Figure 4.6: Overall Evaluation Results AbtBuy Dataset for LLaMA 8B

Zero-Shot 0.5 0.6 0.7 0.8 0.9 1.0

threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
c
o
re

101

102

103

th
ro

u
g
h
p
u
t

Precision

F1

Recall

Throughput

Recall
Threshold-Based

Precision
Threshold-Based

% of Elements
Threshold-Based

Figure 4.7: Results of the Combination Approach for AbtBuy Dataset using LLaMA 8B
in Comparison with the Recall of the Threshold-Only Approach and the Throughput

40

4.2. Semantic Filtering

4.2 Semantic Filtering

In this task, we test how efficiently and effectively the system can find records based on
a user’s search query. We use the Product Classification and Clustering [Akr20] and the
Zoo [For90] dataset. Product Classification and Clustering contains 35311 product titles,
cluster, and category labels. A sample record is
{’product_title’: ’samsung galaxy s9 lilac purple 6.2 128gb 4g
unlocked sim free’, ’cluster_label’: ’Samsung Galaxy S9+
128GB’, ’category_label’: ’Mobile Phones’}.
The category labels describe the broad category, while the cluster label is more fine-
grained. The Zoo dataset consists of animals with a name, indicator attributes such as
’hair’, ’feathers’, ’eggs’, ’milk’ . . . and the classification variable, containing values such
as ’Mammal’, ’Bird’ and ’Reptile’. We transform the indicator attributes to a string
representation. For instance, we transform the boolean values in the ’hair’ column to
’has hair’ and ’has no hair’. A sample record would be
{’name’: ’bear’, ’hair’: ’has hair’, ’feathers’: ’has no
feathers’, ..., ’class’: ’Mammal’ }.

To simulate the user queries, we iterate over the unique cluster classes and formulate an
execution plan that filters for the fixed cluster class. For the Zoo dataset, such execution
plan may be σ(name,hair,feathers,...,catsize)≈′Mammal′(Zoo). Since the Product Classification
and Clustering dataset contains a ’cluster_label’ and a ’category_label’, we test both
levels of abstraction. Therefore, two sample queries are:

σproduct≈′Samsung Galaxy S9+ 128GB′(Products)

and
σproduct≈′Mobile Phones′(Products)

4.2.1 Metrics

To create a ground truth, we add the ID of every record and the respective class to the
set G. For the Zoo dataset an element of G would be {’name’: ’bear’, ’class’:
’Mammal’}.

We compare the ground truth G with the result set R. To create R, we add every
record from the query result to a set, together with the selected class. So, if bear
appears in the result of σ(name,hair,feathers,...catsize)≈′Mammal′(Zoo), {’name’: ’bear’,
’class’: ’Mammal’} would be added to R.

As in Section 4.1, we calculate precision, recall, F1 and the throughput for a threshold-
based, a zero-shot and a combined approach. Furthermore, we investigate the influence
of the two different LLaMA models on all metrics. Finally, we explore how the level of
abstraction influences the effectiveness of the operator.

41

4. Evaluation

4.2.2 Results
Figure 4.8 shows the evaluation results for the Zoo dataset. The threshold-based approach
performs best in terms of throughput. This method yields a high recall, however the
precision is the worst across all methods. Therefore, this method achieves the worst F1
score. The zero-shot and combined approaches for both LLaMA models achieve similar
scores. However, the larger LLaMA model achieves a higher F1 score in general, because
both precision and recall are high, while the smaller model yields lower recall.

Thresh
(= 0.4)

Zero-Shot
LLaMA 3B

Combi
(= 0.1)
LLaMA 3B

Zero-Shot
LLaMA 8B

Combi
(= 0.2)

LLaMA 8B

Method

0.0

0.2

0.4

0.6

0.8

M
e
tr

ic
 S

c
o
re

10

20

30

40

50

60

70

T
h
ro

u
g
h
p
u
t

(#
E
le

m
e
n
ts

 /
 S

e
c
o
n
d
)

Precision

F1

Recall

Throughput

Figure 4.8: Comparison of Precision, Recall and F1 for the Highest F1 Scores across all
Methods and Models for the Zoo Dataset

One can observe that the throughput for Zero-Shot LLaMA 3B of 20 records per
second is higher compared to the combined approach Combi LLaMA 3B with 17 records
per second. We further investigate this phenomenon in Figure 4.9. The brown line
represents the number of records (TPs and FPs) that are yielded by the threshold-
approach. The gray line depicts the throughput for the zero-shot and the combined
approach for the respective threshold. One can observe that zero-shot achieves a higher
throughput than the combined approach for thresholds τ ≤ 0.4, while for higher τ the
combined approach is faster. Since the LLM inference is more expensive than creating
and comparing embeddings, first filtering the records using embeddings and afterwards
applying an LLM, improves performance only if a sufficient amount of records are filtered.
If most of the records are passed to the LLM, as for τ ≤ 0.4 in Figure 4.9, the runtime
costs of creating embeddings and the LLM inference time just adds together. This results

42

4.2. Semantic Filtering

in a higher runtime compared to the zero-shot-only approach.

Zero-Shot 0.1 0.2 0.3 0.4 0.5 0.6

Threshold (Combined-Approach)

0

100

200

300

400

500

600

700

#
R

e
s
u
lt

 R
e
c
o
rd

s
 (

T
h
re

s
h
o
ld

)

20

30

40

50

60

70

T
h
ro

u
g
h

p
u
t

(#
E
le

m
e
n
ts

 /
 S

e
c
o
n
d
)

Throughput

#Result Records (Threshold)

Figure 4.9: Comparison of the Throughput of the Combined Approach with the number
of records (TP+FP) in the Threshold-Only Approach for the Zoo Dataset

Figure 4.10 shows the evaluation results for the broad categories of the Product Classifi-
cation and Clustering dataset. The zero-shot and combined approaches produce equal F1
scores for both models. The smaller model also produces equal values for precision and
recall, while for the larger model, there is a higher variance between the values. As for
the Zoo dataset in Figure 4.8, the smaller LLaMA model produces higher precision and
lower recall scores compared to the larger one. Again, this results in higher F1 scores
for the larger LLaMA model, with a maximum F1 of 0.61 for LLaMA 3B and 0.73 for
LLaMA 8B. The threshold method performs in between both models regarding the F1
score. One can observe that the combined approaches have higher throughput compared
to the zero-shot ones.

In Figure 4.10, we compare the results for the fine-grained classes. As for the broad
category, LLaMA 3B shows the least effectiveness on the F1 score (0.64), while the
PTM-only approach scores 0.8. Here, the differences between both LLaMA models is
very high, where both Zero-Shot (8B) and Combi are able to score F1 scores of 0.9.
In this case, the combined-approach increases the throughput by leveraging the two
stage filtering step. Also there is a slight increase of precision from 0.98 to 1.0 using the
combined methods.

43

4. Evaluation

Thresh
(= 0.3)

Zero-Shot
LLaMA 3B

Combi
(= 0.1)
LLaMA 3B

Zero-Shot
LLaMA 8B

Combi
(= 0.2)

LLaMA 8B

Method

0.0

0.2

0.4

0.6

0.8

M
e
tr

ic
 S

c
o
re

10

20

30

40

50

60

70

80

T
h
ro

u
g
h
p
u
t

(#
E
le

m
e
n
ts

 /
 S

e
c
o
n
d
)

Precision

F1

Recall

Throughput

Figure 4.10: Highest F1 Scores for the Product Classification and Clustering Dataset
(Broad Category)

Thresh
(= 0.6)

Zero-Shot
LLaMA 3B

Combi
(= 0.5)
LLaMA 3B

Zero-Shot
LLaMA 8B

Combi
(= 0.2)

LLaMA 8B

Method

0.0

0.2

0.4

0.6

0.8

1.0

M
e
tr

ic
 S

c
o
re

10

20

30

40

50

60

70

80

T
h
ro

u
g
h
p
u
t

(#
E
le

m
e
n
ts

 /
 S

e
c
o
n
d
)

Precision

F1

Recall

Throughput

Figure 4.11: Highest F1 Scores for the Product Classification and Clustering Dataset
(Fine-Grained Category)

44

4.3. Noise-Aware / Semantic-Grouping

We compare the F1 scores and threshold for the fine-grained and the broad categories
in Figure 4.12. One can obtain two main observations. First, the usage of fine-grained
categories will increase the result’s F1 score and secondly, it requires lower thresholds τ
for the broader category. This phenomenon can be explained by examining examples
from the broad and fine-grained categories. For the query term ’Samsung Galaxy S9+
128GB’, there is a higher textual overlap to ’samsung galaxy s9 lilac purple 6.2 128gb
4g unlocked sim free’, compared to the only conceptual overlap with ’Mobile Phones’.
Hence, the embeddings’ cosine similarity is higher for the fine-grained category and thus,
higher threshold with higher precision can be used.

Thresh Zero-Shot

LLaMA 3B

Combi

LLaMA 3B

Zero-Shot

LLaMA 8B

Combi

LLaMA 8B

Method

0.0

0.2

0.4

0.6

0.8

F
1

= 0.3

= 0.1

= 0.2

= 0.6

= 0.5

= 0.2
Abstraction Level

Broad

Fine Grained

Figure 4.12: Comparison of highest F1 Scores for Product Filtering using Broad and
Fine Grained Categories for the Product Classification and Clustering Dataset

4.3 Noise-Aware / Semantic-Grouping
We evaluate the noise-aware grouping task using the MusicBrainz20K dataset. This
dataset contains 10, 000 unique songs from the MusicBrainz database. The songs are
modified using the DaPo data generator, which duplicates the data and adds noise. This
results in a total of 19, 375 noisy entries [HPWR17]. The task is to group duplicate songs.
We reduced the entries to relevant columns. The final columns include ’TID’, the unique
identifier, ’CID’, which indicates the cluster affiliation, ’CTID’ as a unique identifier
within the cluster and data columns such as the ’title’, ’artist’ or ’length’. Two sample
song entries that represent the same song are:
{’TID’: 1748, ’CID’: 3592, ’CTID’: 3, ’number’: ’b’, ’title’:
’Brothers and Sisters’, ’length’: 289000, ’artist’:

45

4. Evaluation

’Coldplay’, ’album’: ’Trouble’, ’year’: 1990, ’language’:
’English’}
and
{’TID’: 6905, ’CID’: 3592, ’CTID’: 1, ’number’: ’B’, ’title’:
’Brothers and Sisters - Trouble’, ’length’: 4.817, ’artist’:
’Coldplay’, ’album’: null, ’year’: ’54617017MB-01’,
’language’: ’English’ }.

We define the execution plan as:

Γnumber, title, length, artist, album, year, language; SET_AGG(TID)(MusicBrainz)

This will return records, where every record represents one group, containing sets with
the IDs of the records belonging to that group. For the previous example, the set is
{1748, 6905}.

Next to the noise-aware grouping, we also evaluate semantic grouping using the Product
Classification and Clustering dataset, which we defined in Section 4.2. We use the
following execution plan to group products based on their broad or fine-grained category:

Γproduct; SET_AGG(product)(Products)

We investigate how the selection of clustering algorithms and dimensionality reduction
impacts the throughput and the effectiveness. We select DBSCAN, HDBSCAN, and
KMeans. For KMeans, we chose k, the number of final clusters, to be exactly the number
of classes, so the algorithm has a chance to find the correct clusters. We evaluate how
the selection of ϵ, the minimal required similarity to other data points, affects the results
of DBSCAN and HDBSCAN. For HDBSCAN, we test both the standalone version with
ϵ = 0 and the combined implementation for ϵ > 0.

Note that in a real-world application, the number of classes is usually unknown, hence
such selection of k for KMeans cannot be applied.

4.3.1 Metric
To evaluate both grouping tasks, we assign unique cluster labels for all buckets. Thus, if
a result record from the MusicBrainz20K query contains the IDs 1748 and 6905, they
are assigned a unique label. Using the ground truth, we calculate the Adjusted Rand
Score (ARS) [CR23] to determine how accurately the system grouped the data into the
desired buckets. The Rand Score (RS) measures the similarity between two clusterings by
comparing all sample pairs. So, as the name indicates, the ARS adjusts the RS with an
expected RS RSExpected, where both clusterings are entirely random (Equation 4.3). If
the ARS is close to one indicates a good clustering, while an ARS close to zero indicates
a random group assignment.

46

4.3. Noise-Aware / Semantic-Grouping

ARS = RS − RSExpected

max(RS) − RSExpected
(4.3)

For MusicBrainz20K an ARS = 1 means that all duplicate songs end up in the same
group. For the Product Classification and Clustering, such a score can be achieved when
e.g., all ’Mobile Phones’ or ’Samsung Galaxies’ (depending on the level of abstraction)
are grouped together.

4.3.2 Results
The Product Clustering Dataset contains two levels of abstraction: broad and fine-grained
categories. First, we investigate the influence of the minimal cosine similarity ϵ on the
ARS for DBSCAN and HDBSCAN on both levels. Figure 4.13 depicts the ARS (top)
and the amount of predicted classes (bottom) for values of ϵ between 0.0 and 0.4. We
depict the results for HDBSCAN on the left and for DBSCAN on the right side of the
figure. The orange lines illustrate the results for the broad category and the blue line
for the fine-grained. The figure shows that for higher ϵ, the number of clusters declines,
because higher ϵ allow for lower-density areas to be considered as a cluster. As a result,
for a certain ϵ all data points are clustered into the same group. This results in an ARS
score close to 0. Furthermore, there are two distinct peaks where the ARS reaches its
maximum for both levels of abstraction. For both HDBSCAN and DBSCAN, an optimal
ϵ value is at approximately 0.09 for the fine-grained and approximately 0.15 for the broad
category. As for semantic filtering, the fine-grained category was able to produce results
of a higher quality, especially for DBSCAN.

Using the optimal ϵ from the hyperparameter estimation in Figure 4.13, we test how
the different clustering algorithms perform for n samples of the data. We illustrate the
results in Figure 4.14 for the broad category. KMeans overall performs best resulting in
an ARS of 0.63. Furthermore, the usage of KMeans results in consistent ARS above 0.53
on the full dataset. HDBSCAN achieves the second best ARS of 0.52. For n > 10.000,
HDBSCAN produces stable results, while DBSCAN’s performances steadily decreases for
higher n. On the entire dataset (n = 35311) DBSCAN achieves an ARS of 0.14. That
means that the assigned groups are close to a random assignment. One can observe that
the throughput of KMeans overall increases for larger data volume, while the throughput
of DBSCAN and HDBSCAN reduces for higher n.

47

4. Evaluation

0.0 0.1 0.2 0.3 0.4

0.2

0.4

0.6
A

d
ju

s
te

d
 R

a
n
d
 S

c
o
re

HDBSCAN

Broad

Fine Grained

0.0 0.1 0.2 0.3 0.4

0.2

0.4

0.6

DBSCAN

Broad

Fine Grained

0.0 0.1 0.2 0.3 0.4

Distance

0

20

40

60

N
u
m

b
e
r

o
f

P
re

d
ic

te
d
 C

lu
s
te

rs

Category

Broad

Fine Grained

0.0 0.1 0.2 0.3 0.4

Distance

0

50

100

150
Category

Broad

Fine Grained

Figure 4.13: Influence of ϵ on the ARS and the Number of Clusters for the Broad and
the Fine-Grained Category of the Product Classification and Clustering Dataset

0 5000 10000 15000 20000 25000 30000 35000

0.1

0.2

0.3

0.4

0.5

0.6

A
d
ju

s
te

d
 R

a
n
d
 S

c
o
re

HDBSCAN

DBSCAN

KMeans

0 5000 10000 15000 20000 25000 30000 35000

Records

280

300

320

340

T
h
ro

u
g
h
p
u
t

HDBSCAN

DBSCAN

KMeans

Figure 4.14: Influence of the Data Volume on the ARS and Throughput for the Product
Classification and Clustering Dataset

48

4.3. Noise-Aware / Semantic-Grouping

In Figure 4.15, we investigate why DBSCAN fails for higher n. The figure depicts a 2D
projection of the embeddings. The colors indicate the predicted class affiliation. One can
observe that for the small subset (left sub-figure), the classes are easily distinguishable
making it ideal for a density based cluster algorithm. However, a higher number of
records (right sub-figure), the data points are distributed in a big data cloud. The
extreme density hinders the algorithm to distinguish clusters. Hence, DBSCAN assigns
the same class for most of the records.

We discovered a similar behavior for both DBSCAN and HDBSCAN on the fine-grained
dataset. Due to the highly dense areas and numerous clusters (35311 different classes),
the algorithms are not able to provide meaningful grouping for any ϵ.

Figure 4.15: Visualization of the Data Distributions for the Embeddings from the Product
Classification and Clustering Dataset using a subset of 100 records and the full dataset

Continuing with the MusicBrainz20K dataset, which we use to evaluate what influence
the serialization method and the dimensionality reduction have on the ARS and the
throughput. We performed the same hyperparameter estimation as for the product
dataset, resulting in KMeans(k = |UniqueSongs|), DBSCAN(ϵ = 0.1) and HDBSCAN(ϵ =
0.0).

As covered in Section 3.2.3, we differentiate between full- and field serialization. For
the full serialization, the entire record is converted to a string and then passed to the
PTM, while for field serialization, every column is converted to a string and the resulting
vectors are merged to a large vector. As the SBERT model embeds strings into vectors

49

4. Evaluation

of size 768, and we select 5 columns for grouping, this full serialization method creates
an input vector of size 768 and 768 · 5 = 3840 for field serialization.

In Figure 4.16, we plot the ARS (top sub-figures) and the throughput (bottom sub-
figures) for different dimensions (x-axis). Thus, a dimension of 2 shows the results for
a high dimensionality reduction, while for a dimension of 768 at the full serialization,
no reduction is involved. The left sub-figures depict the results for the full serialization,
while the right sub-figures show the results for the field serialization. The colors indicate
the algorithm used.

HDBSCAN and KMeans overall achieve the highest ARS for no dimensionality reduction
on the full serialization. DBSCAN has the lowest metric values for all dimensions and
serialization methods. HDBSCAN achieves a maximum ARS score of 0.87 and 0.82 for
KMeans. The figure shows that except for a dimensionality of two, the full serialization
achieves higher scores for ARS compared to the field serialization. For all dimensionality
reductions, the ARS is close to zero for all clustering algorithms when field serialization
is applied. Regarding the throughput shown in the bottom sub-figures, one can observe
that with higher dimensions, the throughput decreases for HDBSCAN and KMeans for
both serializations. HDBSCAN achieves a throughput of approximately 80 records per
second for 2 dimensions and field serialization, while for the non-reduced embeddings
(dimensionality of 768), it results in a throughput of 20. The throughput of DBSCAN
remains comparably stable at approximately 80 records per second for full serialization
and 74 for field serialization. When comparing the throughputs for both serialization
methods, it shows that the values for the field serialization are generally lower for the
respective clustering method and dimension. Overall, for the MusicBrainz20K dataset,
full serialization is generally preferable for both effectiveness and efficiency. DBSCAN
is the least effective algorithm for this dataset, while KMeans and HDBSCAN achieve
comparable results.

50

4.3. Noise-Aware / Semantic-Grouping

2 10 50 100 ... 768

0.0

0.2

0.4

0.6

0.8

A
d
ju

s
te

d
 R

a
n
d
 S

c
o
re

Full Serialization

cluster

KMeans

DBSCAN

HDBSCAN

2 10 50 100 ... 3840

0.0

0.2

0.4

0.6

0.8

Field Serialization

KMeans

DBSCAN

HDBSCAN

2 10 50 100 ... 768

Dimension

0

10

20

30

40

50

60

70

80

90

T
h
ro

u
g
h
p
u
t

cluster

KMeans

DBSCAN

HDBSCAN

2 10 50 100 ... 3840

Dimension

0

10

20

30

40

50

60

70

80

90

cluster

KMeans

DBSCAN

HDBSCAN

Figure 4.16: Comparison of Cluster Algorithms and Serialization Methods to Group
Duplicate Songs from the MusicBrainz20K Dataset

51

CHAPTER 5
Discussion

Employing PTMs and LLMs in a database framework can have a huge benefit for tasks
that require semantic understanding of text. Traditional techniques where the metric
relies on lexical similarity may work for some cases like blocking in entity matching
(SPARKLY, utilizing TF-IDF vectors is able to score a recall of 0.992 on the AbtBuy
dataset [PGD23]). However, such methods fail when semantic understanding is required.
In tasks such as semantic filtering, these traditional methods are not able to find records
such as ’Samsung Galaxy S8+ 64GB’ when querying for ’Mobile Phones’, because there
is no explicit textual overlap. Our system, utilizing semantic reasoners, is able to find the
desired records for such queries. However, we show that textual overlap also increases
the quality of the results for the semantic-aware system. Unfortunately, these semantic
capabilities come at the cost of runtime and add additional effort to users by requiring
them to tune a parameter.

The evaluation demonstrates that both the quality of results and system efficiency are
highly dependent on the selected methods. For semantic-filtering and data integration,
we employ threshold-based, zero-shot-based, and a combined approach. While zero-shot
approaches using LLMs yield superior F1 scores due to increased precision, they come at
a significant computational cost, especially when the amount of parameters increases.
Threshold-based approaches, on the other hand, offer a highly efficient alternative with
tunable precision and recall through setting the threshold. The combined approach
emerges as the best trade-off between effectiveness and efficiency. If the threshold τ
is chosen in a way that the pure threshold-based method will score a precision of 1.0,
meaning that all correct records are found, the combined approach will always produce
as good results as the zero-shot approach while drastically reducing execution time. In
some cases, the combined approach is able to achieve an even better F1 score compared
to the zero-shot-approach, because some of the LLM-inferred false positives are filtered
by the threshold-based-approach, increasing the precision and therefore the F1.

53

5. Discussion

However, there is no universal parameter setting that guarantees optimal results across
all datasets, query types and methods. The ideal parameters vary depending on factors
such as method, data, query objectives, and semantic granularity. For instance, the
iTunesAmazon achieves best results with a column wise comparison of the embeddings,
while for AbtBuy, the usage of full-record-wise embeddings performs better. This freedom
of parameters gives users better control over the results, but makes the generation of
results less intuitive.
The parameter τ emerges as the most significant hyperparameter. Generally, a lower
threshold τ for semantic-filtering and data integration increases the recall by allowing
more candidate matches, whereas a higher τ favors precision by filtering out potentially
noisy results. For instance, in the data integration task for the AbtBuy dataset, the
combined approach using full, record-wise embeddings requires a threshold of τ = 0.7 for
optimal results, while the threshold-only approach with the same embedding methods
requires τ = 0.8. The semantic-filtering and semantic-grouping tasks on the roduct
Classification and Clustering dataset, exemplifies which influence semantic granularity
has on the optimal thresholds. Filtering and grouping for the fine-grained category
requires higher thresholds compared to the broad category. This behavior is attributed
to the fact that narrow categories have closer embeddings, whereas broader categories
exhibit more variance.
As τ has a huge influence on the outcome of Similar-Join ▷◁≈τ and Semantic-
Equal ≈τ , the clustering algorithm and the hyperparameter k and ϵ are equally impor-
tant for Semantic-Aggregation Γ≈τ . The evaluation demonstrates that DBSCAN
doesn’t outperform a random assignment for larger datasets. HDBSCAN and KMeans
reliably achieve better results, however again at the cost of a higher runtime. We also
show that dimensionality reduction has no positive effect on the effectiveness, as the ARS
always worsens with greater reduction. KMeans requires the parameter k, the expected
number of groups, which is usually unknown for generic database requests. Therefore,
HDBSCAN is more applicable in most situations, since it automatically determines
patterns and doesn’t necessarily require any hyperparameter.
Another quite important factor is the choice of the generative language models and the
amount of parameters. Despite testing with relatively small LLaMA models (3B and 8B
parameters), the system demonstrates reasonably strong effectiveness. We show, that for
higher parameters the quality of results also increases, suggesting that even larger models,
such as LLaMA 70B or 405B, could further enhance results. However, the computational
demands of LLM-based methods remain a major limitation. Even with an 8B parameter
model, executing a zero-shot join on the full AbtBuy dataset of 1081 × 1092 entries would
take 1081 · 1092 · 0.08s = 94436s which is approximately one day and two hours, making
it impractical for real-world database operations. This underscores the necessity of the
combined approach, where a threshold-based blocking stage significantly reduces the
number of required LLM operations. Furthermore, it highlights the necessity of vector
index structures which further reduces the overall execution time.
Furthermore, hardware requirements limit the accessibility of LLM-based methods.

54

Unlike lightweight databases such as SQLite1, which operate efficiently on low-end
hardware, LLM-enhanced query execution requires GPUs for reasonable throughput
[Sag24]. This dependency creates barriers for users with limited computing resources.
However, the grouping and threshold-based approaches leverage PTMs only, which
requires significantly less powerful hardware to achieve comparably good results, making
them a good compromise.

Overall, the system can be employed in versatile situations. Due to the generalization
powers of the PTMs and LLMs the system has no domain in which the performance
significantly varies. We show, that such a system can have a positive effect on tasks
involving semantic text understanding, mostly at the cost of runtime.

1https://www.sqlite.org/

55

https://www.sqlite.org/

CHAPTER 6
Conclusion and Future Work

This chapter summarizes the results of the thesis and discusses potential directions for fu-
ture improvements. The complete source code of the developed semantic-aware query eval-
uation system is available at https://github.com/HackerBschor/SemanticQueryEvaluation.

6.1 Conclusion
This thesis presented a novel system that integrates semantic reasoning via LLMs and
PTMs directly into query execution operators of a traditional database framework,
addressing fundamental limitations of traditional RDBMS when confronted with noisy or
semantic ambiguous data. These novel operators allow users to filter, select and group
data based on semantic equivalence rather than exact matches. The main contributions
include:

• Design and Implementation of Semantic-Aware Database Operators
We provide detailed design instructions for developing new semantic-aware operators
within the Volcano framework and also demonstrate their practical feasibility
through implementation. The proposed operators for Scan, Project (Map) π,
Select σ, Join ▷◁, and Aggregation Γ enable semantic reasoning through
utilization of SBERT models for semantic embeddings and LLaMA models for
zero-shot validation.

• Efficient Integration Strategies for Semantic Reasoning
We have designed and implemented multiple embedding and comparing strategies
for database records including field or full serialization and record-wise or column-
wise comparison. Each method has different advantages depending on the operator
and the data. This offers flexible trade-offs between the effectiveness and the
computational efficiency of the query.

57

https://github.com/HackerBschor/SemanticQueryEvaluation

6. Conclusion and Future Work

The proposed two-stage validation pipeline combines the fast cosine similarity
assessment via index structures of SBERT embeddings with the precise LLaMA-
based zero-shot validation. This demonstrates high quality results, while minimizing
inference costs.

• Extensive Evaluation Across Multiple Tasks and Datasets
The selected tasks: semantic joins, semantic filtering, and semantic/noise-aware
grouping, effectively evaluate the operators’ performance on queries over noisy
data. Our system performs well with a maximal F1 score of ≥ 0.8 on the joining
and filtering tasks for all datasets under certain hyperparameter settings. For
the semantic/noise-aware grouping task, the result quality varies with a maximal
ARS of 0.6 for the Product Classification and Clustering dataset and 0.9 for
MusicBrainz20K.

Through the dedicated operator design, the system provides users with high quality
results in a reasonable amount of time. Moreover, we demonstrate how these strategies
can be tailored to specific user needs or hardware constraints. As the current development
in natural language processing makes progress rapidly, we expect that such a system will
become more efficient and effective in the future. Hence, the reasoning will require less
powerful hardware for higher quality results.

As the novel operators fit perfectly into existing database frameworks, current state-of-
the-art RDBMS can simply extend the new operators, enabling semantic reasoning if
needed. Therefore, in the future, querying both structured and unstructured data is not
limited by rigid syntax but becomes more human-centric, context-aware, and semantically
meaningful.

6.2 Future Work
Since scalability in data volume is one of the biggest limitations of the system, the
next step is to increase performance through parallel execution and the implementation
of modern databases methods. As our system already implements the Volcano model,
an inherently parallel model, our next goal is to parallelize the operators. Further
improvements may include data-centric code generation or vectorization as they are the
primary branches of modern databases [KLK+18]. Since batch processing is commonly
used in most deep learning applications, we identify vectorization as the more promising
approach, as it directly aligns with this paradigm.

Despite the fact that LLMs are the primary bottleneck for efficiency, we must not neglect
the runtime of the embeddings generation. One major advantage of using Sentence
Transformers is that they allow independent generation of embeddings for comparison.
While for the zero-shot inference in the data integration task, two records must be
serialized and merged into one string, methods utilizing Sentence Transformers can create
the embeddings separately. Both embeddings are only required during the comparison step.

58

6.2. Future Work

Hence, the system can invoke the embedding generation at record insertion, improving
the performance later for query evaluation. This would also enable the pre-computation
of index structures, further increasing the performance. Extensions such as pgai already
implemented a similar behavior for PostgreSQL.

Another way to improve efficiency is the usage of other, more traditional approaches to
solve the discussed tasks which don’t require deep neural models. Such methods include
TF-IDF Vectorization [MR23] or Fuzzy-String-Matching using the Levenshtein distance
[PA21]. Hence, the next step is to create stand-alone operators utilizing traditional
methods and using these methods in the blocking stage of the Similar-Join ▷◁
operator.

The current threshold-based approaches require the user to set different parameters. As
mentioned before, this reduces reduces intuition, which works contrary to the idea to
enable a more human-centered interaction with databases. Therefore, a further step is
to use LLMs for hyperparameter tuning, where an LLM evaluates results on a small
subset for pre-defined parameters. So users can just execute the query without any
human parameter-tuning involved. However, to give users more control over the outcome,
we thought of allowing them to tune an intuitive parameter, which then influences the
hyperparameter τ / ϵ of the operator. Such a parameter may be an option such as
’prioritize precision’ or ’prioritize recall’, depending on the user’s needs.

59

Overview of Generative AI Tools
Used

We’ve used ChatGPT-4o during the conceptualizing phase to suggest ideas. Further-
more, we’ve used the model for rephrasing and typo correction purposes.

61

List of Figures

1.1 Example Query on Noisy Data to Count Sport Cars by all Sport Cars pro-
ducing Manufacturers . 3

2.1 Sample Volcano Execution Plan . 8
2.2 REMS Pipeline . 12
2.3 Example Zero-Shot-Prompting EM . 13
2.4 Example Few-Shot-Prompting EM . 13
2.5 Representation Focused Model Architecture 15

3.1 Demonstration of the Similar-Join ▷◁≈τ 21
3.2 Semantic-Aggregation Γ≈τ using K-Means 25
3.3 Semantic-Aggregation Γ≈τ using DBSCAN 25

4.1 Overall Evaluation Results iTunesAmazon Dataset using LLaMA 3B . . . 35
4.2 Overall Evaluation Results iTunesAmazon Dataset using LLaMA 8B . . . 36
4.3 Relationship between Precision, Recall, F1 and the Threshold Hyperparameter

for Thresh (Col) on the iTunes-Amazon dataset 37
4.4 Relationship of the threshold-based Thresh (Rec, Full) & zero-shot-

approach (Zero-Shot) and the combination Combi (Rec, Full) for
iTunes-Amazon Dataset using LLaMA 8B 39

4.5 Overall Evaluation Results AbtBuy Dataset for LLaMA 3B 39
4.6 Overall Evaluation Results AbtBuy Dataset for LLaMA 8B 40
4.7 Results of the Combination Approach for AbtBuy Dataset using LLaMA 8B

in Comparison with the Recall of the Threshold-Only Approach and the
Throughput . 40

4.8 Comparison of Precision, Recall and F1 for the Highest F1 Scores across all
Methods and Models for the Zoo Dataset 42

4.9 Comparison of the Throughput of the Combined Approach with the number
of records (TP+FP) in the Threshold-Only Approach for the Zoo Dataset 43

4.10 Highest F1 Scores for the Product Classification and Clustering Dataset (Broad
Category) . 44

4.11 Highest F1 Scores for the Product Classification and Clustering Dataset
(Fine-Grained Category) . 44

63

4.12 Comparison of highest F1 Scores for Product Filtering using Broad and Fine
Grained Categories for the Product Classification and Clustering Dataset 45

4.13 Influence of ϵ on the ARS and the Number of Clusters for the Broad and the
Fine-Grained Category of the Product Classification and Clustering Dataset 48

4.14 Influence of the Data Volume on the ARS and Throughput for the Product
Classification and Clustering Dataset . 48

4.15 Visualization of the Data Distributions for the Embeddings from the Product
Classification and Clustering Dataset using a subset of 100 records and the
full dataset . 49

4.16 Comparison of Cluster Algorithms and Serialization Methods to Group Dupli-
cate Songs from the MusicBrainz20K Dataset 51

64

List of Tables

65

List of Algorithms

3.1 Scan . 19

3.2 Select . 20

3.3 Semantic-Equal . 20

3.4 Similar-Join . 23

3.5 Semantic-Aggregation . 26

3.6 Column-Wise Embedding Comparison for Vector Indexes Creation . . 28

3.7 Column-Wise Embedding Comparison to retrieve Join Candidates . . . 29

67

Bibliography

[Akr20] Leonidas Akritidis. Product Classification and Clustering. UCI Machine
Learning Repository, 2020. DOI: https://doi.org/10.24432/C5M91Z.

[AM21] Muhammad Sidik Asyaky and Rila Mandala. Improving the performance
of hdbscan on short text clustering by using word embedding and umap.
In 2021 8th International Conference on Advanced Informatics: Concepts,
Theory and Applications (ICAICTA), pages 1–6, 2021.

[ASLS21] Khetam Al Sharou, Zhenhao Li, and Lucia Specia. Towards a better under-
standing of noise in natural language processing. In Ruslan Mitkov and Galia
Angelova, editors, Proceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP 2021), pages 53–62, Held
Online, September 2021. INCOMA Ltd.

[BBB+24] Teodoro Baldazzi, Davide Benedetto, Luigi Bellomarini, Emanuel Sallinger,
and Adriano Vlad. Softening ontological reasoning with large language
models, 2024.

[BBH16] Hannah Bast, Björn Buchhold, and Elmar Haussmann. Semantic search
on text and knowledge bases. Foundations and Trends® in Information
Retrieval, 10:119–271, 01 2016.

[Bhu25] Santosh Bhupathi. Role of databases in genai applications, 2025.

[C+21] Bao Chong et al. K-means clustering algorithm: a brief review. Academic
Journal of Computing & Information Science, 4(5):37–40, 2021.

[CLL22] Silvia Casola, Ivano Lauriola, and Alberto Lavelli. Pre-trained transformers:
an empirical comparison. Machine Learning with Applications, 9:100334,
2022.

[Cod90] E. F. Codd. The relational model for database management: version 2.
Addison-Wesley Longman Publishing Co., Inc., USA, 1990.

[CR23] José E. Chacón and Ana I. Rastrojo. Minimum adjusted rand index for two
clusterings of a given size. Advances in Data Analysis and Classification,
17(1):125–133, Mar 2023.

69

[CRC+19] B. Sri Sai Krishna Chaitanya, D. Ajay Kumar Reddy, B. Pavan Sai Eshwar
Chandra, A. Bala Krishna, and Remya R. K. Menon. Full-text search
using database index. In 2019 5th International Conference On Computing,
Communication, Control And Automation (ICCUBEA), pages 1–5, 2019.

[CZL+24] Dongdong Cheng, Cheng Zhang, Ya Li, Shuyin Xia, Guoyin Wang, Jinlong
Huang, Sulan Zhang, and Jiang Xie. Gb-dbscan: A fast granular-ball based
dbscan clustering algorithm. Information Sciences, 674:120731, 2024.

[DGD+24] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely
Szilvasy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé
Jégou. The faiss library. arXiv preprint arXiv:2401.08281, 2024.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, page 226–231. AAAI Press, 1996.

[For90] Richard Forsyth. Zoo. UCI Machine Learning Repository, 1990. DOI:
https://doi.org/10.24432/C5R59V.

[FS69] Ivan P Fellegi and Alan B Sunter. A theory for record linkage. Journal of
the American statistical association, 64(328):1183–1210, 1969.

[Gra93] Goetz Graefe. Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2):73–169, June 1993.

[Gra94] G. Graefe. Volcano - an extensible and parallel query evaluation system.
IEEE Trans. on Knowl. and Data Eng., 6(1):120–135, February 1994.

[HFD+23] Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang
Zhao. Chatdb: Augmenting llms with databases as their symbolic memory,
2023.

[HPWR17] Kai Hildebrandt, Fabian Panse, Niklas Wilcke, and Norbert Ritter. Large-
scale data pollution with apache spark. IEEE Transactions on Big Data,
6(2):396–411, 2017.

[HSH+07] Joseph M Hellerstein, Michael Stonebraker, James Hamilton, et al. Ar-
chitecture of a database system. Foundations and Trends® in Databases,
1(2):141–259, 2007.

[IK20] Eleni Ilkou and Maria Koutraki. Symbolic vs sub-symbolic ai methods:
Friends or enemies? In CIKM (Workshops), volume 2699, 2020.

[JZQ+23] Rolf Jagerman, Honglei Zhuang, Zhen Qin, Xuanhui Wang, and Michael
Bendersky. Query expansion by prompting large language models. arXiv
preprint arXiv:2305.03653, 2023.

70

[KE11] Nikolaos Kouiroukidis and Georgios Evangelidis. The effects of dimensionality
curse in high dimensional knn search. In 2011 15th Panhellenic Conference
on Informatics, pages 41–45, 2011.

[KGR+22] Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and
Yusuke Iwasawa. Large language models are zero-shot reasoners. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 22199–22213.
Curran Associates, Inc., 2022.

[KLK+18] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew
Pavlo, and Peter Boncz. Everything you always wanted to know about
compiled and vectorized queries but were afraid to ask. Proc. VLDB Endow.,
11(13):2209–2222, September 2018.

[LHQ+23] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin
Wang, Bowen Qin, Ruiying Geng, Nan Huo, et al. Can llm already serve as a
database interface? a big bench for large-scale database grounded text-to-sqls.
Advances in Neural Information Processing Systems, 36:42330–42357, 2023.

[LLS+20] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew
Tan. Deep entity matching with pre-trained language models. arXiv preprint
arXiv:2004.00584, 2020.

[LLS+21] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, Jin Wang, Wataru Hirota, and
Wang-Chiew Tan. Deep entity matching: Challenges and opportunities. J.
Data and Information Quality, 13(1), January 2021.

[LM24] Jie Liu and Barzan Mozafari. Query rewriting via large language models,
2024.

[LP22] Fang Liu and Demosthenes Panagiotakos. Real-world data: a brief review
of the methods, applications, challenges and opportunities. BMC Medical
Research Methodology, 22(1):287, Nov 2022.

[LPP+20] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive
nlp tasks. Advances in neural information processing systems, 33:9459–9474,
2020.

[LST24] Michael Li, Jianping Sun, and Xianming Tan. Evaluating the effectiveness
of large language models in abstract screening: a comparative analysis.
Systematic reviews, 13(1):219, 2024.

[MB20] Claudia Malzer and Marcus Baum. A hybrid approach to hierarchical density-
based cluster selection. In 2020 IEEE international conference on multisensor

71

fusion and integration for intelligent systems (MFI), pages 223–228. IEEE,
2020.

[ME92] Priti Mishra and Margaret H Eich. Join processing in relational databases.
ACM Computing Surveys (CSUR), 24(1):63–113, 1992.

[MHA17] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density
based clustering. Journal of Open Source Software, 2(11):205, 2017.

[MHM20] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold
approximation and projection for dimension reduction, 2020.

[MKK19] Aritra Mandal, Ishita K Khan, and Prathyusha Senthil Kumar. Query
rewriting using automatic synonym extraction for e-commerce search. In
eCOM@ SIGIR, 2019.

[MLR+18] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghaven-
dra. Deep learning for entity matching: A design space exploration. In
Proceedings of the 2018 international conference on management of data,
pages 19–34, 2018.

[Moo51] C.N. Mooers. Making Information Retrieval Pay. Zator technical bulletin.
Zator Company, 1951.

[MR23] Mohannad T Mohammed and Omar Fitian Rashid. Document retrieval using
term term frequency inverse sentence frequency weighting scheme. Indonesian
Journal of Electrical Engineering and Computer Science, 31(3):1478–1485,
2023.

[MSL+15] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz
Färber. Cache-efficient aggregation: Hashing is sorting. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15, page 1123–1136, New York, NY, USA, 2015. Association for
Computing Machinery.

[NLK17] Thomas Neumann, Viktor Leis, and Alfons Kemper. The complete story of
joins (inhyper). In Datenbanksysteme für Business, Technologie und Web
(BTW 2017), pages 31–50. Gesellschaft für Informatik, Bonn, 2017.

[PA21] Malgorzata Pikies and Junade Ali. Analysis and safety engineering of fuzzy
string matching algorithms. ISA transactions, 113:1–8, 2021.

[PBGF22] Matteo Paganelli, Francesco Del Buono, Francesco Guerra, and Nicola Ferro.
Evaluating the integration of datasets. In Proceedings of the 37th ACM/SI-
GAPP Symposium on Applied Computing, pages 347–356, 2022.

72

[PGD23] Derek Paulsen, Yash Govind, and AnHai Doan. Sparkly: A simple yet
surprisingly strong tf/idf blocker for entity matching. Proceedings of the
VLDB Endowment, 16(6):1507–1519, 2023.

[PK01] Gerald Post and Albert Kagan. Database management systems: design
considerations and attribute facilities. Journal of Systems and Software,
56(2):183–193, 2001.

[PSB24] Ralph Peeters, Aaron Steiner, and Christian Bizer. Entity matching using
large language models, 2024.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[RG19a] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Association for Computational
Linguistics, 11 2019.

[RG19b] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Association for Computational
Linguistics, 11 2019.

[RG20] Nils Reimers and Iryna Gurevych. Making monolingual sentence embeddings
multilingual using knowledge distillation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 11 2020.

[RM05] Lior Rokach and Oded Maimon. Clustering methods. Data mining and
knowledge discovery handbook, pages 321–352, 2005.

[RZ09] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance frame-
work: Bm25 and beyond. Found. Trends Inf. Retr., 3(4):333–389, April
2009.

[Sag24] Sriramaraju Sagi. Advancing ai: Enhancing large language model performance
through gpu optimization techniques. International Journal of Science and
Research (IJSR), 13, 03 2024.

[SAM+23] Ruoxi Sun, Sercan Ö Arik, Alex Muzio, Lesly Miculicich, Satya Gundabathula,
Pengcheng Yin, Hanjun Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,
et al. Sql-palm: Improved large language model adaptation for text-to-sql
(extended). arXiv preprint arXiv:2306.00739, 2023.

73

[SBZS17] E Yu Sharygin, RA Buchatskiy, RA Zhuykov, and AR Sher. Query compila-
tion in postgresql by specialization of the dbms source code. Programming
and Computer Software, 43:353–365, 2017.

[SO24] Sanket Salunke and Abdelkader Ouda. A performance benchmark for the
postgresql and mysql databases. Future Internet, 16:382, 10 2024.

[SWY75] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic
indexing. Commun. ACM, 18(11):613–620, November 1975.

[SXY+21] Xuan Sun, Chun Jason Xue, Jinghuan Yu, Tei-Wei Kuo, and Xue Liu.
Accelerating data filtering for database using fpga. Journal of Systems
Architecture, 114:101908, 2021.

[TCDH21] Mohamed Trabelsi, Zhiyu Chen, Brian D. Davison, and Jeff Heflin. Neu-
ral ranking models for document retrieval. Information Retrieval Journal,
24(6):400–444, October 2021.

[TLI+23] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave,
and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

[TZL+23] Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng, Song-Chun Zhu, Yitao
Liang, and Muhan Zhang. Large language models are in-context semantic
reasoners rather than symbolic reasoners, 2023.

[WA22] Hannah S Walsh and Sequoia R Andrade. Semantic search with sentence-
bert for design information retrieval. In International Design Engineering
Technical Conferences and Computers and Information in Engineering Con-
ference, volume 86212, page V002T02A066. American Society of Mechanical
Engineers, 2022.

[WHT+24] Jiajia Wang, Jimmy X. Huang, Xinhui Tu, Junmei Wang, Angela J. Huang,
Md Tahmid Rahman Laskar, and Amran Bhuiyan. Utilizing bert for infor-
mation retrieval: Survey, applications, resources, and challenges, 2024.

[ZHLL22] Huchen Zhou, Wenfeng Huang, Mohan Li, and Yulin Lai. Relation-aware
entity matching using sentence-bert. Computers, Materials & Continua,
71(1), 2022.

[ZJC+23] Hui Zhang, Dexing Jia, Lei Chen, Xiongru Wang, Shuai Wang, and Rui Li.
Acceleration and implementation of database aggregation query based on
fpga. In 2023 China Automation Congress (CAC), pages 817–822, 2023.

74

[ZNH+24] Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li,
Yuming Lou, Luning Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao
Dai, Xiao-Ping Zhang, Yuhan Dong, and Yu Wang. A survey on efficient
inference for large language models, 2024.

[ZSH24] Jing Zhang, Huan Sun, and Joyce C Ho. Emba: Entity matching using
multi-task learning of bert with attention-over-attention. In EDBT, pages
281–293, 2024.

[ZYZD16] Rashid Zafar, Eiad Yafi, Megat F. Zuhairi, and Hassan Dao. Big data: The
nosql and rdbms review. In 2016 International Conference on Information
and Communication Technology (ICICTM), pages 120–126, 2016.

75

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Research Questions
	Methodology
	Main Contributions
	Overview

	Theoretical Foundations and Related Work
	Volcano Model
	LLM-Enhanced-Reasoning
	Entity Matching
	Information Retrieval and Semantic Search
	Clustering

	System Design and Architecture
	System Design
	Implementation

	Evaluation
	Data Integration
	Semantic Filtering
	Noise-Aware / Semantic-Grouping

	Discussion
	Conclusion and Future Work
	Conclusion
	Future Work

	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

