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Kurzfassung

Novel View Synthesis (NVS) ist ein reges Forschungsfeld mit dem Ziel, ungesehene Bilder
einer Szene aus einer begrenzten Anzahl von Ursprungsbildern zu generieren. Dazu gibt
es verschiedene Ansätze. Die relativ neue Methode des 3D Gaussian Splatting (GS) ist ein
besonders vielversprechender Lösungsansatz, der visuelle Qualität mit schnellem Render-
ing kombiniert. Ein Problem besteht darin, dass die Heuristik, welche GS-Modelle erstellt,
stark von der Modellgröße abhängig ist, um die geometrische Beschaffenheit der Szene
originalgetreu einzufangen. Diese Arbeit untersucht GS-Optimierungsverfahren, um kom-
paktere Modelle zu erstellen. Es werden sechs bestehende Optimierungsverfahren erweitert,
indem eine Begrenzungsstrategie eingeführt wird, die strikte Größenbeschränkungen er-
laubt. Eine Evaluation der sechs Methoden sowie des ursprünglichen Verfahrens wurde
durchgeführt. Subjektive und objektive Qualitätsmetriken sowie Verhaltensindikatoren
während des Trainings werden analysiert. Drei der sieben getesteten Methoden führen
zu signifikant verbesserten Ergebnissen im Vergleich zum Ursprungsverfahren. Quantita-
tive und qualitative Indikatoren zeigen, dass 3D Gaussian Splatting as Markov Chain
Monte Carlo (3DGS MCMC) von Kheradmand et al. Modelle mit minimalen Fehlern
und hohem Detailgrad erstellt, selbst unter starker Beschränkung der Modellgröße. Eine
gemeinsame Analyse subjektiver und objektiver Qualitätsmetriken zeigt zudem, dass
objektive Metriken nur dann mit der wahrgenommenen Qualität übereinstimmen, wenn
die Kamerapfade des Datensatzes mit den Kameraperspektiven der Studienteilnehmenden
übereinstimmen.
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Abstract

Novel View Synthesis (NVS) is an active field of research with the aim of generating
unseen views of a scene given a limited set of initial images. There are a number of
different approaches for tackling this problem. The relatively novel approach of 3D
Gaussian Splatting (GS) has garnered immense interest as of late. Its popularity stems
from the fact that it combines visual fidelity with great real-time rendering performance.
The problem is that the heuristic solution that creates the GS models relies on very large
models in order to accurately approximate the scene geometry. The aim of this work is
to identify and compare approaches, which focus on creating compact GS models. Six
existing methods were extended with a capping strategy that allows for improvements
even under strict size constraints. A comparative evaluation of the six optimization
techniques and the original procedure was conducted. The evaluation combines subjective
user-study results with objective quality metrics and an analysis of model behavior during
training. Three of the seven tested approaches significantly outperform the baseline under
constrained conditions. Based on quantitative and qualitative indicators 3D Gaussian
Splatting as Markov Chain Monte Carlo (3DGS MCMC) by Kheradmand et al. [KRS+24]
yields models with the least errors and best detail resolution under strict size constraints.
A joint analysis of subjective and objective measures was conducted. It indicates that
objective measures tend to correspond to perceived quality only when dataset camera
paths are aligned with views experienced by study participants.
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CHAPTER 1
Introduction

Early NVS approaches date back to the 1990s [Fau94, SVDV96, SGHS98, LH96, GGSC96].
The goal is to generate unseen images of a scene from new viewpoints based on a limited
set of reference views. These approaches achieve 3D visualization in an unconventional
way. Instead of relying on geometric primitives in order to model the scene content, they
use the structure of captured images to derive new views.
Early work includes the approach by Laveau and Faugeras, where new views are generated
by interpolating between existing ones [Fau94]. Not much later, Levoy and Hanrahan use
a four-dimensional function that describes the light passing through a scene. They call the
process of using this function to create new images Light Field Rendering [LH96]. Recently,
an astonishingly similar method has breathed new life into this area of research. Neural
Radiance Fields (NeRF) [MST+20] uses a 5-dimensional function to describe the radiance
in a scene. As the name suggests, the method uses a neural network. NeRF leverages
the strength of machine learning in order to optimize the network based on the reference
images. The technique represents a possible departure from traditional 3D rendering
approaches. The problem is that, in comparison to conventional rasterization methods,
the rendering is extremely slow and expensive. So what if we could combine the strengths
of rasterization with those of machine learning? This is where Gaussian Splatting (GS)
[KKLD23] comes in. GS models the objects in a scene using a set of geometric primitives.
The primitives are often referred to as Splats or Gaussians. Gaussians are placed in the
scene by using an iterative machine learning scheme, very similar to that of NeRF. This
yields visually impressive results while maintaining acceptable performance on modern
systems [KKLD23].
In the original release of GS, Kerbl et al. [KKLD23] propose a heuristic solution in
order to fit the 3D representation based on the reference images. They call this solution
Densification. As the name suggests, Densification increases the number of primitives as
the iterations progress. They find that this strategy enables fine-grained detail and also
reduces visual artifacts.
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1. Introduction

More primitives also increase the size of the GS model. Large 3D models are problematic,
especially when there is an inverse relationship between model compactness and visual
fidelity. The research community is actively addressing this problem, as evidenced by the
numerous papers published on the subject. These solutions are diverse in their approaches.
Some revise the optimization procedure [HBZN24, KRS+24, BPK24], others focus on
pruning unimportant primitives [FW24, GGS23], and some employ smart compression
schemes in order to reduce the model size [CWL+24, NSW24, YYX+24].

The abundance of research regarding GS shows that there are plenty of different ways in
which the method can be modified and extended. This work will focus on the refinement
of the optimization procedure. Gaussians can be placed in the scene arbitrarily. New
densification techniques result in very different models [YCH+23, KRS+24, YSG24,
LLD+24, CLY+24, FW24]. But which of the proposed approaches handles the placement
the best? Previous work often focuses on models that are fully converged and have
maximal detail [YCH+23, YSG24, LLD+24, CLY+24, ZZX+24]. It is rare to see a
comparison based on constraied model size [KRS+24]. This clearly biases previous results
towards optimization techniques that benefit from a large model size. But what if that
doesn’t tell us the whole story? What if some techniques only shine in scenarios in which
compactness matters?

The goal of this work is to identify and compare techniques that are likely to perform well,
when the number of Gaussians is limited. To this end, a review of the literature, followed
by a comparative evaluation, is conducted. Rather than comparing static renders or
videos, users will have the ability to see, interact with, and compare the models. This
means that the evaluation will yield more insight into what the actual outcome of an
optimization technique looks like. The aim of the evaluation is to answer the research
question "Which optimization procedure delivers the best visual fidelity when the number
of splats is constrained?". Training multiple models based on different sets of reference
images also results in objective indicators of visual quality. These are indicators that
can be used to determine model quality without having to involve real users. In order to
understand the relationship between the objective indicators and user perception, the
quality measures will be analyzed jointly. This will answer the question Do objective and
subjective image quality assessment measures align across different techniques and model
size restrictions?

In order to make informed comparisons, model size budgets are established. Multiple
diverse reference image sets, also referred to as scenes, are chosen as training data. Based
on the size budgets, scenes, and optimization techniques, models are trained. To display
the models, a custom evaluation tool is implemented. The tool is designed based on the
evaluation approach prevalent in the literature and is available over the web. The visual
quality of the presented models is computed and interpreted in a comprehensive data
analysis. Subjective and objective indicators are contrasted to determine how well the
guiding mathematical principles actually align with perceived visual fidelity. Based on
the insights, a number of recommendations for future techniques as well as evaluation
procedures are given.
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1.1. Contributions

1.1 Contributions
This research will shine a light on the potential of different GS optimization techniques.
The contributions to the current state of the research are as follows:

• A ranking of the chosen optimization techniques.

• Concise insights about the behavior, strengths, and weaknesses of the optimization
techniques in different circumstances. The insights are presented to contextualize
the overall rankings.

• A correlation analysis between the user judgments and the objective quality mea-
sures. This is presented to showcase the difference between the perception of
interactive 3D models and objective metrics.

• Multiple extensions to state-of-the-art optimization procedures to constrain model
size while enabling progressive optimization.

1.2 Structure of the Thesis
In this section, the structure of the thesis is explained. Chapter 2 details the relevant
literature and theoretical background. Firstly, the topic of NVS is expanded upon. The
goal is to give a sense of the scientific context in which GS is situated. Afterwards,
different NVS approaches are explained. These include Structure-from-Motion (SfM),
Point-based Splatting, and NeRF. Finally, the section will move on to an in-depth
explanation of GS and its accompanying literature. The purpose of the section will be to
give a general sense of the capabilities of GS, but also inform the reader about research
regarding GS model compactness. Lastly, the science of Image Quality Assessment (IQA)
will be outlined as it relates to the development and evaluation of NVS techniques.

In Chapter 3, the methodology used to answer the research question will be laid out. The
first section justifies the approach based on other work in the field. Next, the framework
of this study is outlined. Then the densification methods, which were chosen as the focus
of this evaluation, are presented. Reasons for their inclusion, as well as exclusion criteria,
are given. The last two sections describe the training setup and the implementation
details of the software components.

Chapter 4 presents the results in detail. The chapter is broken up into the different data
sources that serve as indicators for model behavior. Firstly, the subjective user study
results are laid out. Afterwards, the objective quality metrics are presented. Then a
joint analysis of the two different quality indicators is conducted to come to an overall
conclusion. The chapter is concluded with a discussion of the model behavior during
training.

Chapter 5 deals with discussing and interpreting the results. In order to understand
the abstract statistics presented in Chapter 4, actual renders of the models will be

3



1. Introduction

discussed. This gives context as to what structures are actually experienced by study
participants and what informed their ratings. Afterwards, the limitations of the study
will be presented.

Chapter 6 summarizes the results. It provides reflection about the work and the success
of the project. Recommendations and possible future research directions are given.
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CHAPTER 2
Related Work

This chapter provides an overview of work relevant to this study. It starts with the
evolution of NVS and its connection to Multi-View Stereo (MVS). Afterwards, different
scene representation techniques are examined, leading to an in-depth discussion of GS,
its extensions, and methods for creating more compact GS models. Then IQA techniques
and their role in evaluating NVS models are reviewed. Finally, some studies similar to
this one are presented.

2.1 The Evolution of View Synthesis

The research problem of NVS deals with generating images of a scene from previously
unseen viewpoints [Sch99]. There are a number of different approaches to tackle this
problem. This section will explore some of these techniques and show how GS and its
competitors evolved. A brief review of the emergence of these approaches will be given,
to explain the basic ideas and mechanics of NVS solutions.

2.1.1 Early Approaches

Before the 2000s, the field of Image-based Rendering (IBR) received much attention
[Kan98]. Scharstein [Sch99] describes IBR as a group of techniques that leverage infor-
mation contained in images to render novel views. They require camera parameters to be
known ahead of time. He states that IBR is closely linked to Stereo Vision, which deals
with inferring the scene content, particularly the depth of each pixel, from images. Depth
information is used by many IBR techniques to inform the creation of novel views [Sch99].
The field distinguishes itself from NVS by its scale and requirements. The number of
images is most often limited to only two [Kan98].
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2. Related Work

The following paragraphs will present a few of the early IBR approaches. This will serve
as valuable context for how modern NVS developed and which components are still
relevant today.

Geometric Approaches Some early IBR techniques forgo an explicit scene repre-
sentation and only use the information contained in reference images [Kan98]. These
geometric approaches leverage existing relations between the images to cleverly interpolate
between them [Fau94, SVDV96]. Laveau and Faugeras [Fau94] propose an approach that
generates unseen views based on as few as two images of a scene. It uses the properties
of epipolar geometry to reproject the existing image information into a new view. Their
approach is inherently limited, as it assumes epipolar properties to be known beforehand.
The novel camera positions cannot be chosen freely, as they must match view constraints
imposed by the original images.

Depth-based Approaches Depth images contain the distance to the camera for
each pixel. When an image with depth information is present, it can be used as a
3D representation enabling reprojecting the image from different viewpoints. Shade
et al. [SGHS98] introduced the so-called Layered Depth Images (LDI). These extend
simple depth images by introducing multiple depth and color values per pixel and can be
constructed using a set of depth images. They are essentially a pixel-based 3D model of
a scene and can be rendered using a Splatting approach.

Light Field Rendering Proposed by Adelson and Bergen [LM91], the plenoptic
function describes the light passing through a scene. The function’s name is derived from
the words plenus, which means full or complete, and optic, referring to its purpose of
describing the behavior of light.

P : (x, y, z, θ, φ, λ) → p (2.1)

Equation 2.1 shows the plenoptic function assigning an intensity of light p to every
position (x, y, z), light ray direction (θ, φ), and wavelength λ [LM91]. An image can be
seen as an expression of the plenoptic function. It represents the light captured at the
camera’s position. The rays hitting the camera lens are represented as pixels, storing the
light information in the red, green, and blue channels.

The approaches of Light Field Rendering by Levoy and Hanrahan [LH96], as well as the
Lumigraph by Gortler et al. [GGSC96], use this functional representation of light for the
generation of new images. For these approaches to work, all cameras must lie on a plane,
facing the same direction. This grid of images allows for a special parametrization of the
plenoptic function. The methods resample and interpolate the previously captured light
rays to render new views.

Accurate camera poses and properties are a strict prerequisite for most IBR approaches.
This imposes a severe challenge to the applicability of IBR techniques. Fortunately, a
promising solution for this problem was just over the horizon.
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2.1. The Evolution of View Synthesis

Figure 2.1: High-level overview of the SfM pipeline

2.1.2 Structure-from-Motion
SfM is related to Stereo Vision. In contrast to Stereo Vision, SfM is not reliant on
calibrated cameras. Given a set of images taken from arbitrary viewpoints in a scene, it
provides a solution to jointly estimate the camera poses. Figure 2.1 shows an abstract
overview of the SfM pipeline.

The SfM Pipeline

Brown and Lowe’s [BL05] work serves as a great example of a typical SfM pipeline.
Using sets of images, they can extract accurate 3D representations of the scene contents.
An essential building block of their technique is the Scale Invariant Feature Transform
(SIFT) [Low04]. Given an image, SIFT extracts a set of characteristic keypoints. These
points come with feature vectors that serve as descriptors. Descriptors aren’t unique to a
keypoint, but they encapsulate its characteristics, such as orientation and local image
topography.

Brown and Lowe [BL05] then use the keypoints to establish relationships between the
images. They argue that views with related keypoints are likely similar in terms of
camera parameters. This enables the so-called feature matching step, in which images
with common points are determined. Afterwards, images are sequentially integrated
into the 3D representation of the scene. This process is called image matching or image
registration. By registering new images, the relative camera parameters can be estimated
using triangulation. This includes both the camera positions and the 3D coordinates of
the keypoints.

Figure 2.2 shows example images with keypoints that were matched across different views.
It can be seen that the points outline the shape of three-dimensional objects in the scene.

As a final step, Brown and Lowe’s pipeline [BL05] uses bundle adjustment to refine
the camera parameters and 3D points. Bundle adjustment works by minimizing the
reprojection error, which can be seen in equation 2.2.

e =
∑︂
i∈I

∑︂
j∈X(i)

f(kij − pij)2 (2.2)
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2. Related Work

Figure 2.2: Matched keypoints in image space ("bicycle" scene from Mip-NeRF 360
[BMV+22])

The function describes the total error, that is, the difference between each initial keypoint
kij and its reprojected 3D counterpart pij in image space. In this formula, f(x) is some
robust error function, while I is the set of all images and X(i) is the set of points that
can be projected into image i. By optimizing the reprojection of points into image space
over all registered views, the robustness and accuracy of Brown and Lowe’s [BL05] SfM
pipeline is increased. It results in a 3D point cloud approximating the scene geometry
and calibrated cameras for each of the reference images. The error is minimized using
Levenberg-Marquardt [Lev44].

The Emergence of COLMAP

An example of using SfM at scale is that by Snavely et al. [SSS06]. It comes in the form
of their well-known Photo Tourism project, which virtualizes popular tourist destinations
using photos found on the internet. Building on top of the work by Brown and Lowe,
they estimate camera positions and sparse point-cloud representations of the scene. Their
system allows users to interactively switch between different images. It uses image
morphing to allow smooth camera transitions between the different viewpoints. The
Photo Tourism project served as a basis for the release of Bundler. It is one of the earlier
open-source SfM software packages [Sna25].

The open-source SfM scene later saw the arrival of Schönberger et al.’s COLMAP [SF16].
It provides major gains in terms of robustness, accuracy, and scalability. The software
does not completely reinvent SfM pipelines, but instead enhances the pipeline across all
of its various components. The improvements include the following:

• Enriching the feature matching with a geometric verification strategy, which stabi-
lizes the initial 3D model.

• Improving image registration via a next-best-view selection that maximizes robust-
ness.

• Increasing the performance and robustness of 3D point triangulation.

8



2.1. The Evolution of View Synthesis

Figure 2.3: Screenshot of a sparse COLMAP point cloud with calibrated cameras based
on the Mip-NeRF 360 "bicycle" scene [BMV+22].

• An iterative bundle adjustment scheme that runs throughout the image registration
process, which mitigates accumulated errors.

COLMAP represented a major step forward for general-purpose SfM pipelines [SF16].
The software serves as an important initialization step for many modern NVS approaches
[FLK+23]. Figure 2.3 shows a sparse point cloud created by COLMAP, which can be
used as an input to train a NeRF or GS model.

COLMAP Extensions

In recent years, further extensions of COLMAP have been proposed. DeTone et al.
[DMR18] devise a neural alternative to the SIFT keypoint extractor. Their approach,
called SuperPoint, leverages a Convolutional Neural Network (CNN) to identify keypoints
and create descriptors. In comparison to other state-of-the-art methods, SuperPoint
results in denser keypoint samples and more correct matches across different images.

Sun et al. [SSW+21] propose a feature matching approach that involves using a vision
transformer model [DBK+21]. Their technique processes image pairs in unison. The
images are fed to a CNN, followed by self-attention and finally a cross-attention layer.
This results in a keypoint estimation that is conditioned on both images together. Their
architecture enables the detection of keypoints in low-texture regions, which is challenging
for conventional feature matchers.

There is also increased interest to alleviate the dependency of NVS methods on COLMAP.
Lin et al. [LMTL21] integrate Bundle Adjustment into NeRF, which jointly learns a
3D representation of a scene, while refining imperfect or even registering completely
unknown cameras. Fu et al. [FLK+23] leverage the point cloud nature of Gaussian Splat
Models as well as the continuity in video sequences to completely forgo the dependency
on pre-calibrated cameras.

9



2. Related Work

COLMAP remains an essential component of most NVS approaches. This means that an
understanding of its functionality is core to understanding how downstream applications
behave.

2.1.3 Neural Radiance Fields
NeRF was introduced by Mildenhall et al. [MST+20] and represents a continuation
of plenoptic approaches like light fields. In comparison to the plenoptic function from
equation 2.1, NeRF relies on a simplified function to represent the light passing through
space. This formula can be seen in equation 2.3.

FΘ : (x, y, z, θ, φ) → (r, g, b, σ) (2.3)

The function F is parameterized by Θ. It maps 3D points (x, y, z) and viewing directions
(θ, φ) to r, g, b colors and a volume density σ. This means that the function defines how
a point in space looks, when viewing it from a given direction. The formulation allows
for the same point to look differently from different viewing angles. This is intended to
allow for view-dependent effects like reflections. The volume density σ describes a point’s
opacity. This allows for a volume of space to be fully or partially transparent[MST+20].

NeRF Training

The novelty of NeRF stems from the fact that it combines the emerging field of Neural
Rendering with that of NVS. Neural Rendering is the practice of using Deep Learn-
ing Models to generate images or video [TFT+20]. NeRF’s plenoptic function FΘ is
implemented using a Deep Neural Network [MST+20].

Figure 2.4 shows the training process of NeRF. The most important part of the rendering
process is that it is differentiable. In simple terms, this means that creating an image
using NeRF is a two-way street. Rendered images depend on the weights of the network
Θ and in turn, gradients can be propagated from the output back to the weights. This
type of image synthesis is called a differentiable rendering algorithm [TFT+20].

To render an image, NeRF determines each pixels’ color, by casting a ray. For a given
ray, points are sampled from the MLP and accumulated to retrieve the final color
[MST+20]. The mathematical formulation of this volume integration process can be seen
in equation 2.4.

C(r) =
∫︂ tf

tn

T (t)σ(r(t))c(r(t), d)dt where T (t) = exp

(︃
−

∫︂ t

tn

σ(r(s))ds

)︃
(2.4)

The color of a ray C(r) is computed by integrating over the color distribution between
the near (tn) and far (tf ) bounds of the ray. At the heart of the formula lies the
color computation σ(r(t))c(r(t), d). In practice, these values are queried from the neural
network. The function r(t) = o+ td yields the current point along the ray. T (t) represents
the already accumulated opacity by previous sample points [MST+20].
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2.1. The Evolution of View Synthesis

Figure 2.4: NeRF Training Process overview: The figure depicts the ray-based training
process of NeRF. For a given training view, a subset of rays are selected. The color of
a ray is estimated using ray marching. The Multilayer Perceptron (MLP) is called for
a number of points along the ray. The color is accumulated and the loss is computed
based on the ray’s ground truth color.

The problem with NeRF lies in its reliance on ray marching and multiple neural network
calls per rendered pixel. This makes view synthesis prohibitively expensive [RSV+23,
CW24]. At the current moment in time, even cutting-edge hardware struggles with
providing an interactive experience when rendering NeRFs [KKLD23].

NeRF Extensions

The research community recognizes that the render cost is a limiting factor of NeRF,
which is illustrated by the many solutions have been proposed to tackle this problem
[TFT+20, LGL+21, HSM+21, DHR+24, YLT+21, RSV+23, WLW+23].

Yu et al. [YLT+21] completely forgo any Neural Network calls during render time. They
bake all of the NeRF’s information into an octree. In order to achieve view-dependent
effects, they use spherical harmonics coefficients. The resulting rendering pipeline is
compatible with modern graphics backends like WebGL.

Wu et al. [WLW+23] propose NeRDF, which is a form of knowledge distillation for
NeRFs. They train a network that predicts the radiance distributions along rays, based
on a teacher NeRF model. This means that each ray only requires a single network call.
This architecture yields an approximately 254 times speed-up.

Many spatial neural network approaches use secondary data structures to offload some
of the rendering cost [CLI+20, JSM+20, YFKT+21, TLY+21, MESK22]. While this
increases the rendering speed, it also leads to a larger memory footprint [MESK22].
Müller et al.’s [MESK22] Instant NGP uses a sparse multiresolution hash structure to
store learned spatial features. Their technique can be used to tackle different tasks like
Signed Distance Function (SDF), Neural Radiance Caching and NeRF. During rendering,
the features are queried from the hash table and are fed to a much shallower neural
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network than the one which is required by the original NeRF. This results in a significant
speed-up of the rendering process.

Another example of this paradigm is Hedman et al.’s [HSM+21] Sparse Neural Radiance
Grid (SNeRG). The method drastically reduces the render time, such that interactive
performance can be achieved on commodity hardware. They accomplish this by baking
the NeRF outputs into a sparse voxel grid. At render time, only a single network call
per ray is executed to account for view-dependent effects. Multiple strategies to reduce
the baked file size, like encouraging voxel-grid sparsity, smaller network outputs, and
compression, are utilized.

Reiser et al.’s [RSV+23] recently proposed Memory Efficient Radiance Fields (MERF)
shows that the memory footprint of large scenes can be reduced significantly without
having to sacrifice visual quality. Their method achieves real-time rendering performance
by building on top of SNeRG’s sparse voxel grids. A space contraction scheme and a
coarse-to-fine parametrization strategy further reduce the memory footprint.

MERF was then extended by Reiser et al.’s [RSV+23] in the form of Streamable MERFs
(SMERF). The method enables the capture of large scenes, by using a scene partitioning
scheme. It inherits the memory efficiency of MERF, while allowing for new scene content
to be continuously streamed in at render time. At the same time, the method retains the
real-time performance of SNeRG.

The current state-of-the-art of NeRF shows that the technique advances rapidly. Its
weaknesses are addressed effectively via ongoing research. This means that NeRF remains
competitive with GS. There is a large degree of "cross-pollination" going on between the
two areas of research. This will become increasingly apparent in the next section.

2.2 Gaussian Splatting
Naturally, the technology of GS [KKLD23] is at the heart of this thesis. This section will
review the different scientific and technical components of this NVS approach. First, a
short overview of how Gaussians evolved from point representations will be given. Then,
the model definition, rendering, and training paradigm are presented. The last two parts
of this section will focus on novel developments in the field and enhancements of the
approach.

2.2.1 From Points to Gaussians
GS can be seen as an extended form of point-cloud rendering. One of the earliest examples
of point-cloud rendering was proposed by Grossmann and Dally [GD98]. They refer to
the technique as Point Sample Rendering. To visualize the point samples, they select
a subsample of the surface points and display them as single pixels. They point out
the apparent weakness of this visualization technique, which is the visible gaps between
the points. To this end, the authors also describe the process of splatting. It is the
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Figure 2.5: A simple model consisting of 3 points. Each point is rendered using Elliptical
Weighted Average (EWA) [ZPvBG02] splatting, with unique Gaussian parameters. The
rings represent the outer boundary of the splat.

practice of mapping points to multiple pixels around their centers in screen space. Point
representations of this kind are often referred to as splats or sometimes as primitives.

The next step in the evolution of point-cloud rendering towards GS is introduced by
Zwicker et al. [ZPvBG02]. Their method, called Elliptical Weighted Average (EWA)
splatting, introduces the point parametrization and rendering technique that sits at the
base of GS. They parameterize points using anisotropic Gaussian normal distributions.
Their splatting approach, therefore, leads to smooth point representation, which implicitly
acts as a low-pass filter that reduces aliasing artifacts, while retaining visual fidelity.
Figure 2.5 shows an example point cloud that is rendered using EWA splatting. Each
point represents a 3D Gaussian distribution in space.

Before the arrival of GS, there was already research that introduced differentiable
renderers for point-based techniques [YSW+19, WGSJ20]. These renderers enable the
backpropagation of gradients from the rendered image to the point-cloud representation.
GS combines this Neural Rendering approach with the visual fidelity of EWA splatting
[KKLD23]. Figure 2.6 clearly shows that the anisotropic nature of the Gaussian splats is
able to create smooth transitions and fill gaps.

Kerbl et al.’s GS [KKLD23] can be rendered very efficiently using a typical rasterizer
architecture. This makes their method interoperable with most mesh-based rendering
frameworks. It is also the key to GSs’s rendering speed, which exceeds that of an
unoptimized NeRF model by a factor of over 1000.

2.2.2 Model Definition

Kerbl et al.’s GS [KKLD23] directly builds on top of SfM. Their approach requires both
the calibrated camera parameters as well as the sparse point cloud. Since the COLMAP
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Figure 2.6: Side-by-side view of a point-cloud model and a GS model. The point-cloud
model shows visible gaps and other artifacts.

points represent the scene’s surface geometry, Kerbl et al. use them as an initial point
cloud for the GS model.

GS [KKLD23] represents each splat with a three-dimensional normal distribution centered
around point µ.

G(p) = e− 1
2 (p−µ)T Σ−1(p−µ) (2.5)

Equation 2.5 denotes the intensity of the splat at point p = (xp, yp, zp). Furthermore,
the parametrization of each splat includes the opacity α. This value is multiplied with
the intensity during rendering, which enables the capture of semi-transparent surfaces.

Each GS [KKLD23] primitive defines a diffuse color r, g, b. The color information can
optionally be extended using spherical harmonics coefficients, a practice that was adapted
from baked NeRFs [YLT+21, YFKT+21].

Kerbl et al.’s [KKLD23] implementation allows for a variable degree of spherical harmonics
coefficients. This means that the amount of directional lighting information that can be
captured in the model is configurable. The number of spherical harmonics coefficients
based on the level l ∈ {0, 1, 2, 3} can be seen in equation 2.6.

nc = 3 · (l + 1)2 (2.6)

A spherical harmonics level of 0 means that only the diffuse color is represented [KKLD23].

The original GS release includes an option to export models as .ply files [Tur94]. Each
splat is written to the file with the following attributes [KKLD23]:

• 3 attributes for the center µ
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Figure 2.7: Exemplary image of a bounding box around an anisotropic Gaussian distri-
bution.

• 3 attributes for the normal

• 1 attribute for the opacity σ

• 3 attributes for the scale

• 4 attributes for the rotation

• 3 attributes for the diffuse color

• 0 to 45 attributes for the spherical harmonics

All of these values are represented using 32-bit floating-point numbers. The 3D covariance
Σ can be reconstituted from the three scale attributes and the rotation quaternion
[KKLD23]. The file size grows linearly with the number of splats. This linear growth
rate, combined with the long bit length of the attributes, means that models often result
in large file sizes.

2.2.3 Rendering
As previously mentioned, GS is compatible with conventional rasterizers. This is because
Kerbl et al. [KKLD23] represent each splat by four vertices and two triangles that
form a rectangle. During rendering, the three-dimensional covariance is projected into a
two-dimensional form based on the viewing transformation W . Equation 2.7 shows the
projection of the covariance.

Σ′ = JWΣW T JT (2.7)

J refers to the Jacobian of the affine approximation of the projective transformation.
Given the 2D covariance matrix, the vertices are projected such that the quad forms a
bounding box around the Gaussian.
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Figure 2.7 shows how the bounding box is formed. Each vertex position is multiplied
by ⌈3 · √︁

max(λ1, λ2)⌉, where λ1 and λ2 are the eigenvalues of the 2D covariance matrix
[KKLD23].

Gaussians are rendered back-to-front in a process also referred to as the Painter’s
Algorithm [NNS72]. Sorting and blending incur heavy costs during render time [KKLD23].

2.2.4 Training Paradigm
NVS deals with deriving novel views, based on a limited set of existing views of a scene.
When phrasing this problem in the terminology of machine learning, the known images
represent our training set.

Kerbl et al. [KKLD23] use an iterative scheme to train GS models. Each iteration
consists of picking an image and its associated camera parameters. During the forward
pass, the model generates a view based on the camera parameters. Then the loss between
the rendered output and the ground-truth image is computed. Equation 2.8 shows Kerbl
et al.’s [KKLD23] loss function.

L = (1 − λ)L1 + λLD−SSIM (2.8)

The standard L1 loss is combined with the Structural Similarity Index (SSIM) loss
function LD−SSIM . SSIM will be discussed further in section 2.3. For now, it is sufficient
to say that it is a loss function that aims to capture the representation of structural
image features. Kerbl et al. set λ to be 0.2 for their experiments [KKLD23].

GS models are initialized using the sparse point clouds that are created as an output
of the initial SfM pipeline. To capture finer detail and close gaps in the representation,
Kerbl et al. [KKLD23] developed an adaptive density control strategy, also referred to as
Densification, which is applied at regular intervals. This strategy has the following goals:

1. Populate unoccupied regions with splats to add geometric detail where it is missing.

2. Break apart splats that approximate the scene geometry too coarsely.

3. Remove Gaussians that are virtually transparent.

To achieve the first two goals, their optimization technique keeps track of the view-space
positional gradients of the splats. These represent regions that are likely not perfectly
reconstructed. If the magnitude of a splat’s positional gradient exceeds a threshold value,
it is selected for densification. What happens to a splat if it is selected depends on its
size [KKLD23]:

• Small splats are cloned. The newly created splat is moved in the direction of the
positional gradient. This increases the volume of space covered by the splat model.
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Figure 2.8: Examples of floaters in different datasets

• Large splats are split. Their scale is divided by a factor of 1.6 and they are evenly
distributed according to their initial probability density.

The decision whether to select, clone, or split is governed by different threshold values.
This densification heuristic is highly reliant on the choice of these hyperparameters
[KRS+24].

To remove unnecessary splats, Kerbl et al. [KKLD23] propose a mechanism called the
opacity reset. Every 3000 iterations, the opacity value of all splats is set close to 0. Their
rationale is that a splat which recovers its opacity quickly is likely to approximate the
actual scene geometry, while a Gaussian that stays transparent is likely unneeded. After
100 iterations, splats with an opacity value below a certain threshold are deleted.

A common problem for both GS and NeRF [WYZ+24, DHR+24] are so-called floaters.
These are regions with cloud-like artifacts. Figure 2.8 shows examples of floaters in
different GS models. The original GS implementation relies on a growing model size and
constant opacity resets to slowly chip away at these artifacts [KKLD23].

Figure 2.9 shows the growth curve of the number of splats over the training of the
truck scene from the Tanks and Temples dataset1. This is a typical development for
the default densification strategy. We can see that the number of splats generally rises
until the densification stops at 15K iterations. The number of splats does not increase
monotonically. Every 3K iterations, splats are removed by the opacity reset. It becomes
clear, however, that the model size increases over the training time. This increase in
model size, combined with the number of parameters per splat, can lead to large file
sizes. Lee et al. [LRS+24] state that most GS models trained on real-world scenes exceed
one gigabyte in storage size. They also assert that primitives are often redundant. A
motivating factor of their work is to alleviate this shortcoming of GS, which arises from
the reliance on large models to achieve visual fidelity.

1https://www.tanksandtemples.org/
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Figure 2.9: Development of the number of Gaussians while training on the Truck scene
of Tanks and Temples

2.2.5 Gaussian Splatting Extensions
It is safe to say that the introduction of GS garnered a lot of attention, not just from
computer vision researchers, but also within the larger 3D graphics community. The
area has seen many contributions in the form of research as well as open-source projects.
The following paragraphs will review some noteworthy contributions, which illustrate the
capabilities of GS.

Large-scale GS While compact model sizes are a hurdle to getting GS production-
ready, some research focuses on pushing the technology to create even larger scans. Kerbl
et al. [KMK+24] developed a space-partitioning scheme and a Level of Detail (LOD)
technique, which enables efficient training and rendering for large scenes. Liu et al.
[LLF+25] also use LOD as well as a divide-and-conquer optimization approach to train
city-scale models.

Combining GS with Meshes GS can be combined with mesh structures. Gaussian
Opacity Fields (GOF) leverages the implicit occupancy representation of GS models
as a framework for mesh reconstruction [YSG24]. Gaussian Frosting extends GS’s
capabilities by attaching splats to estimated mesh representations, enabling animation
[GL24]. Kocabas et al. [KCG+24] propose capturing individual humans from a short
monocular video stream. Their GS models are combined with the Skinned Multi-Person
Linear Model (SMPL) [LMR+15], which integrates the scans into a flexible human
animation framework.

Compact Data Representation One avenue for creating smaller models is to com-
press and quantize stored attributes. A number of techniques have been proposed that
leverage the inherent redundancy and 3D structure of splats to encode them in an efficient
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manner. Quantization and compression are used to reduce the file size dramatically
[LRS+24, CWL+24, YYX+24]. The Hash-grid Assisted Context for 3D GS Compression
by Chen et al. manages to achieve a 75-fold reduction in size when compared to the
original approach [CWL+24]. Some of the proposed compression methods rely on adjust-
ments made to the training pipeline to create optimal structures for their respective size
reduction schemes [CWL+24, LRS+24]. This reduces the applicability of these techniques
to the current landscape of GS models, which have been trained using a diverse array of
splatting pipelines.

Data Formats The open-source community has contributed efficient data formats for
splat models. Notable examples include the open-source release of Scaniverse’s [Sca24]
.spz file definition. Their approach leverages quantization in a clever way by prioritizing
attributes that have a larger impact on perceived quality. Another example comes in
the form of Mark Kellogg’s [Kel25] open-source 3DGS web viewer and accompanying
.ksplat file format. It enables dynamic streaming of the contents and displays the
results to the users, just as they arrive on the client. The format is also highly configurable.

2.2.6 Reformulated Gaussian Splatting
In section 2.2.2, a clear outline for the data format of GS models is presented. Compression
methods and new data formats modify the structure of the original format. Attributes are
sometimes changed in the way they are represented, but all formats refer to the original
set of properties. The following paragraphs describe GS approaches that break with this
pattern of data representation. They completely reinterpret GS and the optimization
pipeline to create different models and rendering procedures.

A less drastic derivation from the regular GS paradigm can be seen in Niedermayr et
al.’s [NSW24] work regarding compression. Their approach reduces the model size by
utilizing vector clustering on multiple attributes. Afterwards, they use k-bit quantization
and fine-tune the model using the quantized representation. This means that the model
is optimized based on the compression approach.

Lee et al.’s [LRS+24] work aims to drastically reduce the size of GS models. They use
vector quantization for the scale and rotation attributes. The codebook for the vector
quantization is learned during training, which means that it is optimized to fit the
reference images. Their approach also forgoes all of the spherical harmonics parameters
by using a grid-based neural field instead. This means that their color representation
depends on a neural network.

Lu et al.’s [LYX+23] Scaffold-GS represents a more pronounced departure from the
typical GS paradigm. They use a sparse voxel grid that holds a number of feature vectors.
Gaussians are then spawned during rendering based on the camera parameters and the
feature vectors. The splat parameters like mean, rotation, color, and so on are computed
on-the-fly using neural networks. This reduces the number of primitives drastically, as
Gaussians can adapt their appearance across different views.
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The presented approaches are only a small sample of the universe of methods that
reinterpret GS in their own way. These approaches are often very promising, but are hard
to integrate into existing GS pipelines and rendering systems due to their wildly different
requirements. This work will focus on approaches that conform to the original data
specification, since this makes comparisons between methods much more straightforward.

2.2.7 Densification Improvements
As mentioned earlier, primitives in GS models can often be redundant. The default
optimization procedure is not optimal, which means that an approach that makes smarter
decisions about splat placements is needed [CW24]. There have been numerous releases
that propose novel densification schemes. The following paragraphs will highlight some
of these approaches.

General Improvements The previously mentioned GOF by Yu et al. [YSG24]
redefines the splat-splitting criteria to reflect each splat’s true contribution to the final
render. This enhances the clarity in previously blurry regions.

Bulò et al. [BPK24] make several improvements to the original densification heuristic.
This includes a weighted splitting and cloning criterion to prioritize splats, which are
responsible for large errors. They also revise the opacity reset to be more gradual and
introduce a growth control strategy for the number of splats.

Anti-aliased Gaussian Splatting As GS models grow in detail and granularity, they
can suffer from aliasing, especially in distant views. Several strategies have been proposed
to mitigate these issues, including multi-scale splatting [YLCL24], analytic splatting
[LZH+24], and spatial-adaptive splatting [SZY+24].

Another technique that will become relevant later in this work is Yu et al.’s Mip-Splatting
[YCH+23]. Mip-Splatting leverages a 3D smoothing filter that adjusts the size of
Gaussians based on the maximum sampling rate, as well as a 2D Mip Filter to adjust for
oversmoothing. Their approach also includes the new splat-splitting criteria introduced
by GOF [YSG24], since it represents a general improvement on the splatting heuristic.

Pruning-based Approaches Fang and Wang [FW24] introduce a new splat-splitting
criterion to reduce blur by leveraging depth information and improving spatial distribution.
They also developed a pruning system that removes insignificant splats, producing more
compact models. Girish et al.’s EAGLES [GGS23] introduces a novel influence metric for
splat pruning, further refining model size by eliminating splats that don’t significantly
impact the final image.

Hybrid Approaches Niemeyer et al.’s RadSplat [NMR+24] uses NeRF as a prior to
optimize point selection in GS, combining the strengths of both techniques for better
performance and model size reduction. Similar work by Xiang et al. [XLL+24] uses SDFs
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to guide the GS optimization process. SDFs are a natural fit for improving the geometric
accuracy of models, since they are specifically designed to estimate surface structures
and occupancy.

Li et al.’s Geo-Gaussian [LLD+24] has a similar goal to the hybrid approaches. It
attempts to improve the splat placement by approximating the scene geometry more
closely. The approach revises the cloning and splitting procedure. Thin Gaussians are
used to approximate the surface geometry. Newly created Gaussians are then placed on
the tangent space of the original splat. The loss function is extended to improve the
placement of splats and encourage a smooth surface geometry in local neighborhoods.
This means that the technique does not rely on any other neural techniques or data
structures to achieve geometric accuracy.

Discovery-oriented Techniques Discovery-oriented approaches focus on uncovering
new geometric features of the scene. One such approach, called 3D Gaussian Splatting
as Markov Chain Monte Carlo (3DGS MCMC), is that of Kheradmand et al. [KRS+24].
They switch the traditional Stochastic Gradient Descent (SGD) over to Stochastic
Gradient Langevin Dynamics (SGLD) [WT11], which stabilizes the optimization. 3DGS
MCMC also utilizes a clever noise-injection strategy, which makes discovering under-
reconstructed geometry much more efficient.

Gaussian-Pro, proposed by Cheng et al. [CLY+24], combines the priorities of 3DGS
MCMC and Geo-Gaussian. It focuses on the discovery of under-reconstructed regions,
while also trying to place splats more faithfully to the actual scene geometry. Using
depth estimation and patch matching, pixels are reprojected back into the model, in areas
where geometric detail is lacking. A similar loss function to Geo-Gaussian is employed to
encourage neighboring splats to share normal information.

This section establishes the context for the techniques used in this study. It provides a
broad overview of GS, covering its core principles, mathematical formulation, rendering,
and training. Key extensions and reformulations that enhance GS are examined with a
focus on densification improvements aimed at compactness. This provides the basis for
understanding the comparative analysis presented in the following chapters.

2.3 Objective Image Quality Assessment
Digital images are often subject to distortions, which can occur during acquisition,
compression, transmission, processing, and reproduction [WB06a]. The science of IQA
deals with the identification and quantification of the resulting loss in visual quality
[WB06a]. IQA is a core part of NVS. The 3D representations are trained based on the
loss between the rendered image and the reference image. Here, the loss represents the
degradation in image quality, which is meant to guide the optimization [TTM+22]. This
section will present the goal of objective IQA, contrast it with subjective evaluation, and
introduce metrics relevant to this study.
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2.3.1 Taxonomy of IQA
Any visualization is ultimately meant to be viewed by humans. This means that an
IQA system aims to capture the image quality as it is perceived by potential viewers.
The most straightforward solution is to test a visualization in a study involving human
participants. Capturing image quality this way is called subjective IQA and is often
very costly and work-intensive. This problem is addressed by objective IQA. The field
proposes a number of computational models, which automatically grade an image’s visual
quality. These models are based on the science of the human visual system and ultimately
try to approximate the quality as it would be perceived by human beings [WB06a]. This
section will give an overview of objective IQA.

IQA metrics can be classified as either full-reference or no-reference methods. Full-
reference metrics consider both a pristine image and the generated images in unison to
determine a score. No-reference metrics base the score solely on the features that are
present within the generated image [MF21].

2.3.2 Relevant Quality Metrics
NVS can be seen as a form of supervised machine learning. The limited set of existing
views serves as the reference images. This is why full-reference IQA measures are especially
important for training techniques like GS. The following paragraphs will present relevant
objective IQA metrics.

Mean Squared Error The Mean Squared Error (MSE) error function is very prevalent
in machine learning . It does not specifically approximate any perceived qualities in the
image, but it is an essential part of loss functions employed in NVS approaches like NeRF
[MST+20]. Equation 2.9 shows the MSE for every pixel in P , based on the estimated
color value Ĉp and the real color Cp [WB09].

L2 = 1
|P |

∑︂
p∈P

||Ĉp − Cp||22 (2.9)

Some approaches, including GS, actually use the mean absolute error as part of their
loss function [KKLD23].

Peak Signal-to-Noise Ratio The Peak Signal-to-Noise Ratio (PSNR) expresses the
ratio between the power of a signal and the power of the corrupting noise. In the case of
IQA, the signal is the correctness of the generated image, while the error is the deviations
from the reference. Equation 2.10 shows that the PSNR is derived from the MSE and
does not add any new information. It simply rescales the error based on the dynamic
range L of the image [WB09].

PSNR = 20 · log10

(︃
L√

MSE

)︃
(2.10)
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Structural Similarity Index Measure Pixel-by-pixel errors are not analogous to
perceived visual quality. The SSIM applies a new philosophy to tackle this problem. The
central assumption is that the human visual system is especially adapted to recognize
structural information [WBSS04]. To compute the SSIM, the image is divided into
smaller patches. Each patch’s SSIM is determined and aggregated across the image.
Equation 2.11 shows the formula for computing the structural similarity index.

SSIM(x, y) = (2µxµy + C1) (2σxy + C2)(︂
µ2

x + µ2
y + C1

)︂ (︂
σ2

x + σ2
y + C2

)︂ (2.11)

The variables x and y refer to aligned patches taken from both the generated and the
reference image. Other components of the formula are defined as follows [WBSS04]:

• µx and µy reference the sample mean of the image, which expresses the local
intensities.

• σx and σy are the local intensity variance and are a measure of contrast.

• σxy is the covariance of the intensity and expresses structural similarity.

• C1 and C2 are very small constants that depend on the dynamic range. They are
used to stabilize the division.

The formula shows how the SSIM takes into account average local intensity, variance,
and similarity. By averaging the local windows across the entire image, a measure of
overall similarity is achieved.

Learned Perceptual Image Patch Similarity Learned Perceptual Image Patch
Similarity (LPIPS) was introduced by Zhang et al. [ZIE+18]. Its goals are similar to
SSIM, but it leverages a deep CNNs to determine the image quality, rather than a simple
function. The input images are passed to a pretrained CNN. Pixels aren’t compared
directly. The metric is based on the differences between the computed features at multiple
stages of the CNN. These differences are then weighted by learned perceptual weights,
which adjust the contribution of different layers. Finally, the computed distances across
all layers are averaged.

Blind/Referenceless Image Spatial Quality Evaluator Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) is a no-reference IQA metric introduced by Mittal
et al. [MMB12]. They show that it outperforms the full-reference counterparts PSNR
and SSIM, when approximating results from subjective IQA measurements. Their metric
quantifies image distortions by focusing on deviations from the statistical properties of
natural images. First, Mean-subtraction and Contrast Normalization (MSCN) is applied
to the image, which yields MSCN coefficients. Natural, synthetic, and corrupted images
tend to express different distributional patterns in their MSCN coefficients. Statistical
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features are extracted and passed to a Support Vector Regressor (SVR) to obtain a final
quality score. The original version of the SVR was trained on the LIVE IQA Database
[MMB12]. This means that BRISQUE can also be seen as a pretrained IQA metric
similar to LPIPS.

2.4 Subjective Image Quality Assssment
Subjective IQA aims to reliably retrieve quality scores from assessed items like images
[MF21]. Several methodologies are standardized by the official recommendations given
by the International Telecommunication Union (ITU)2. The ITU is a specialized agency
of the United Nations responsible for issues related to information and communication
technologies. It maintains a set of guidelines to inform researchers about how to conduct
user studies to determine image quality [IR12, IT08]. These guidelines offer a variety of
options for researchers when designing a subjective assessment. This section will give
an overview of possible assessment items, score computation, and previously conducted
studies in the field of NVS and Point-based Splatting.

2.4.1 Assessment Methodologies
Subjective assessment methodologies can be characterized by the following properties.
Does the methodology...

...focus on absolute ratings or relative rankings of the images?

...present the participant with a single, a pair, or multiple stimuli?

...present the participant with a reference image to enable comparisons to the
ground truth?

...use a continuous or a categorical variable to measure the user judgments?

These categories open up a diverse array of combinations. The most commonly used
methodologies are presented in the following list [POMZ+20]:

• Absolute Category Rating (ACR) for single stimuli

• Double Stimulus Impairment Scale (DSIS) for two stimuli

• Double Stimulus Quality Scale (DSCQS) for two stimuli

• Pairwise Comparison (PWC) for two stimuli
2https://www.itu.int/en/about/Pages/default.aspx
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Figure 2.10 shows examples for the different rating methods. Sometimes, the presentation
of stimuli will be interleaved with a gray screen lasting around three seconds. This
timeframe is also referred to as the Inter-Stimulus Interval (ISI) and is supposed to reset
the viewer’s visual system between stimuli [Bul14]. Each technique has different use cases
based on its strengths and weaknesses.

Absolute Category Rating ACR measures the overall quality of a stimulus. The
rating is recorded as a categorical variable. No reference to the presented image is provided.
This means that its quality is supposed to be judged in isolation. The technique is useful
for large-scale evaluations, when many single stimuli need to be evaluated relatively
quickly [IT08, IT13].

Double Stimulus Impairment Scale DSIS measures the perceived degradation of
an image in comparison to the ground truth. The rating is recorded as a categorical
variable. This technique involves a comparison, yet it measures absolute quality, since
the impairment is measured against a standard representing the ground-truth. This
technique is suited for scenarios when testing the robustness of a system, for example,
the quality of a compression algorithm or a transmission system [Bul14].

Double Stimulus Continuous Quality Scale This measurement technique presents
users with a very fine-grained rating scale. It also involves two stimuli that are presented
either back to back or next to each other. The technique enables users to express
preferences for one of the stimuli, even if the perceived quality difference might be small.
This makes the method great when researchers want to discriminate between two imaging
systems with similar outcomes [Bul14].

Pairwise Comparison This is another approach that examines the quality differences
between two stimuli. No reference is provided, only two distorted images. The rating
scale is much simpler than for the other methods. This is its greatest strength, since it
lowers the cognitive burden on participants. The method can also be used to discriminate
between the images when the relative quality difference isn’t too pronounced [POMZ+20].

2.4.2 Quality Score Computation
The previously presented rating techniques all yield quality scores that quantify the
viewers’ experience. ACR and DSCQS result in the so-called Mean Opinion Score (MOS).
The MOS is a rational number, which expresses the mean quality assessment given by
viewers. To this end, all judgments are mapped to an integer scale. Then the mean
rating can be computed.

MOS =
∑︁N

n=1 Rn

N
(2.12)

Equation 2.12 shows the relatively simple formula for this measure, where N is the
number of viewers and Rn is a rating mapped to a natural number [IT13].
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Figure 2.10: Example rating items for each of the different assessment methodologies
[POMZ+20, Bul14]

DSIS yields the Differential/Degraded Mean Opinion Score (DMOS). It functions almost
exactly like the MOS, but instead, it expresses the difference to the ground truth.

DMOS =
∑︁N

n=1 5 − Rn

N
(2.13)

Equation 2.13 shows how it is computed, for a five-point rating scale [IT08, IT13,
POMZ+20].

In comparison to the other methods, PWC leads to relative judgments. This means that
computing scores is not as straightforward. The just-objectionable-difference (JOD) score
is a numeric measurement of the quality, which can be derived from a set of preferences.
Suppose that each image that has been tested using PWC has an underlying true quality
score q = (q1, ..., qn) ∈ R. From the experiments, the n × n comparison matrix C can be
computed, where each element cij expresses how many times viewers preferred image i
over image j. The probability that image i is better than image j is expressed by p̂ij

[POM17].
p̂ij = cij

cij + cji
; i ̸= j (2.14)
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Given these probabilities, the underlying qualities can be modeled as a discriminal
process as laid out by L.L. Thurstone [Thu27]. This model makes the assumption that
the true quality scores are normally distributed. The discriminal process yields score
distances between the images, from which the JOD can be computed using least-squares
or maximum likelihood estimation [POM17].

A common way to compute the JOD includes mapping the distance of one JOD unit to
a 75% certainty in the expressed preferences. For example, if image i is one JOD unit
above image j, an average of 75% of all reviewers find image i objectionably better than
image j. Taking this further, a distance of two JOD units corresponds to 91% agreement
and a distance of three units to 98% agreement between reviewers [POM17].

2.4.3 Related Studies

Subjective assessment of NVS is a relatively young field [TAA24]. The following para-
graphs will present a number of studies that show similarities, which showcase the
common conventions that are evolving in this area.

Compression-related studies

Model size budgets can be set at different levels. Similarly, compression approaches also
reduce model size. In the case of lossy compression, this creates multiple size levels and
accompanying fidelity trade-offs. The following studies use subjective IQA to analyze
this relationship.

The first relevant study does not deal with NVS, but instead with point-cloud rendering.
Zerman et al. [ZGO+19] investigate compressed volumetric videos. Their study employs
both PWC and DSIS as assessment items. Comparison pairs are formed based on different
compression levels, in order to analyze the perceptual effect of compression. The study
presents the correlation between subjective and objective measures.

In the field of GS, there is the study by Yang et al. [YYX+24]. They devise a lossy, graph-
based compression approach for splat models and test it using a subjective assessment.
Compressed models are contrasted with the uncompressed reference counterpart using
DSIS. The study finds that more robust objective metrics are needed to quantify GS
model distortions.

A similar compression study is conducted by Xing et al. [XYY+24]. They compare
multiple NeRF approaches with different compression schemes across a number of datasets
and quality levels. DSIS is used to compare compressed and reference video sequences.

The three studies above show that DSIS is a common choice for studies that deal with
the assessment across different quality levels. All of the evaluations use rendered video
sequences as a representation technique, which are then rated by the participants.
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Model-related studies

The following paragraphs present a number of comparative evaluations concerning NeRF.
Their goal is to compare the visual fidelity of different approaches. These studies also have
to rely on pre-rendered videos, since many NeRF approaches cannot achieve real-time
performance [KKLD23].

Martin et al. [MRAQ24] use DSCQS as an assessment technique, while Liang et al.
[LWH+24] use PWC. Both of these works render videos based on the exact camera
path that is outlined by the reference data. The reasoning is that the rendered and the
reference video are displayed side by side for the comparative evaluation. If the camera
paths were to diverge, comparison would be much more cognitively taxing.

Tabassum et al. [TAA24] truly leverage the NVS capabilities of NeRF, by rendering and
presenting video sequences from unseen viewpoints. They use PWC as assessment items.
The findings indicate that the perceived quality of the same scene can be highly variable
across different camera paths. This indicates that the evaluation of novel viewpoints
highlights different aspects of a scene’s visual fidelity.

Summary

The presented studies show that in the field of subjective NVS assessment, both DSIS
and PWC are established options. Most presented works use rendered videos, based on
the camera path contained in the training data. This generally yields medium to high
correlations between subjective and objective quality indicators [LWH+24, MRAQ24,
XYY+24]. Tabassum et al. find a discrepancy between the metrics produced by the
different evaluation approaches [TAA24]. This shows that the perceived visual quality
can be highly variable when introducing unseen viewpoints [TAA24, QLC+24].
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CHAPTER 3
Methodology

The advancement of GS has been rapid, and many novel densification techniques have
been proposed. The aim of this work is to analyze which new techniques are particularly
promising. This chapter will start by introducing and justifying the evaluation approach.
Afterwards, the tested densification methods will be presented. Lastly, the implementation
of the evaluation will be described.

3.1 Methodological Justification
Novel optimization and densification procedures for GS models tend to fall into one of
three categories based on their goal:

1. Extensions that add new capabilities [KMK+24, LLF+25, GL24, KCG+24, FFS+24,
WYF+24]

2. Techniques that aim to increase visual fidelity [YSG24, KRS+24, ZZX+24, LLD+24,
CLY+24, BPK24]

3. Techniques that aim to create more compact models [FW24, GGS23, MGK+24,
LRS+24, LYX+23, VPS+24]

Methods in the first category are not immediately relevant to this work. The main
priority of these techniques lies in providing new features, rather than improving upon
the existing optimization process. This study deals with approaches that improve upon
GS, by tackling the problem of improper splat placement. Therefore, the focus will be
on the second and third categories.

All of the methods cited in the relevant categories quantify their performance gains only
in terms of objective quality metrics. This makes sense, since conducting a subjective
evaluation for every new technique would be very work-intensive.
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Figure 3.1: The first 8 observations from the "Truck" scene of the Tanks and Temples
dataset. Test observations are marked in red.

It is important to look at how these test statistics are computed in order to understand
why this approach might lead to faulty assumptions. Reference datasets, like Mip-NeRF
360 [BMV+22] or Tanks and Temples1, usually contain between 100 and 1100 images.
To create the default train and test splits, every 8th image is assigned to be a test
observation. The images are often retrieved from a high-resolution video captured by a
camera that traverses the scene.

Figure 3.1 clearly shows that train and test observations are rather similar. This is
because the video frames from which they were sampled are in close proximity. Add to
that the stable camera path in the video, and it is no wonder that the train and test
images don’t differ dramatically.

The reliance on similar train and test sets might yield an unrealistic impression of the
real-world performance. A more robust quality evaluation could be helpful to verify the
correctness of the objective indicators. Previous studies in this field (see section 2.4.3)
often relied on pre-rendered videos that follow the camera path of the training data.
Therefore, no completely novel viewpoints are presented. At best, the camera path
contains semi-novel views in the form of interpolations between training cameras. The
visual quality assessment of an NVS model is incomplete without showing it from a
diverse set of angles [TAA24]. Therefore, this study enables viewers to manipulate the
camera freely. Participants will be able to get a better sense of the scene’s visual quality
by exploring it according to their needs.

There is another shortcoming that occurs when new methods for efficient GS optimization
are presented. The techniques cited above all showcase their efficiency improvements based
on models with wildly varying sizes. This is problematic, since the actual efficiency gain
can’t be compared across techniques. Many of the models focus on uncontrolled model
size reductions, rather than creating models with specified size constraints. Kheradmand
et al. [KRS+24] use size constraints to show the efficiency of their densification solution
by employing clear size budgets. This shows that size constraints can be a useful tool for
evaluating optimization techniques with regard to compact models.

1https://www.tanksandtemples.org/
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Figure 3.2: Diagram of the methodology used to answer the research questions.

Given a selection of methods, size budgets, and appropriate training data, comparable
models can be created. A fundamental aspect of this work is that comparisons are made
between models with fixed scenes and size budgets. Given three scenes and three size
budgets, nine separate rankings are created, which are then aggregated to make overall
statements about the methods. A scene and size budget combination will from here on
out be referred to as a circumstance.

The approach of fixing both the scene and size budget has several advantages. These
comparisons ensure that differences in model performance are solely attributed to the
chosen splatting method, which enables fairer rankings. Additionally, cross-circumstance
analysis provides insights into method consistency and reliability. The next section will
show how this methodological concept can be used to answer the research questions.

3.2 Methodological Framework
There have already been a number of studies which dealt with the subjective evaluation
of NVS and splatting techniques (see 2.4.3). This study’s goal is novel, but its approach
is firmly rooted in previous research. The following paragraphs will present its design
and outline the reasoning behind it.

Overall Structure

Figure 3.2 shows the methodological approach as a diagram. The three central components
are the seven chosen densification methods (3.3), three size budgets (3.4.1), and three
datasets (3.4.2).

The Training Pipeline runs on the Vienna Scientific Cluster2. Each of the chosen
densification methods has an accompanying optimization algorithm. The source of
these implementations is outlined in appendix I. In order to run these distinct software

2https://vsc.ac.at/home/
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packages, each is embedded in its own specific runtime environment. Using the pipeline,
63 unique models are trained. During the optimization process, Training Statistics,
including performance curves, are created as a byproduct.

Afterward, the models are used in the evaluation. The evaluation compares models across
different techniques to establish which technique produces the best results. For each
comparison, the size and dataset variables are fixed in order to focus on the differences
caused by the optimization technique.

The Subjective Evaluation results in JOD scores, which can be used to answer research
objective one. JOD scores represent a relative ranking between the models. This can
be used to determine which of the models has the best image quality in the eyes of the
survey participants. The subjective evaluation is conducted using a visual application
described in section 3.5.2.

The Objective Evaluation results in SSIM, PSNR, LPIPS, and BRISQUE scores. They
are computed using the software component described in section 3.5.1.

Research objective two can be answered by looking at the subjective and objective metrics
jointly. The correlation between the different measures describes whether SSIM, PSNR,
and LPIPS are good approximations for the perceived quality. The training statistics are
also considered, to analyze the behavior during optimization.

Subjective Assessment Items

Section 2.4.3 shows that both DSIS and PWC are established approaches for the subjective
assessment of NVS methods. This study will utilize PWC. The assessment item entails a
simpler task, which makes it suitable for non-expert participants. During initial in-person
tests, it was found that a five-point rating scale led to occasional confusion. Due to
inter-person biases, rating scales like DSIS can lead to large variations in the rating
patterns. Simple comparative tests streamline this process and guarantee a ranked list
based on the comparisons [POM17].

Active Sampling

PWC has another advantage. It can be combined with adaptive sampling procedures to
reduce the number of comparisons that have to be made [POM17]. This study uses the
Active Sampling for Pairwise Comparisons (ASAP) approach proposed by Mikhailiuk
et al. [MWPO+21]. As the name suggests, ASAP is an active sampling approach that
can be used throughout the evaluation. After each comparison, their algorithm selects a
new comparison pair based on the maximum information gain regarding the JOD scores.
This approach increases the efficiency of the evaluation procedure.

Model Presentation

GS models encode the scene geometry explicitly and can be viewed from arbitrary
viewpoints. Participants are presented with a real-time visualization of the models and
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are able to manipulate the camera freely. The camera controls follow an orbital control
scheme that also allows for panning and transitioning the camera origin. GS rendering
also integrates seamlessly with traditional rasterization approaches. This will be used to
display the models in a web-based application. By presenting the evaluation in this way,
it becomes easier to reach more participants. It also demonstrates the capability of GS
to deliver great visual experiences across different devices.

3.3 Chosen Densification Methods
This study’s primary goal is to identify the best optimization procedures for constrained
model sizes. To this end, a number of densification procedures have been selected as
candidates for a comparative evaluation. This section presents the included methods,
the reasons for inclusion, and the implementation adjustments that had to be made.

3.3.1 Inclusion Criteria
To ensure that GS models are meaningfully comparable, they must be sufficiently similar
in structure. This study focuses specifically on analyzing efficient splat placement.
Accordingly, the selected methods must differ primarily in how they position splats.
Approaches that meet this criterion are discussed in Section 2.2.7.

While several techniques modify the rendering process or data representation (see Sec-
tion 2.2.6), including them would introduce additional variables that affect visual quality
beyond splat placement. To isolate the impact of splat positioning, this study only
considers methods that retain the original data format (see Section 2.2.2). This ensures
that splat placement remains the sole factor influencing model quality.

The second criterion requires that the code for the optimization process be both available
and functional. Faithfully reproducing densification procedures based solely on a paper
is impractical. Therefore, a working code release is essential to ensure the process can be
reliably replicated.

To recap, the criteria are:

1. The optimization procedure must support the original data format.

2. The code must be available and working.

3.3.2 Chosen Methods
The following paragraphs will present the chosen optimization procedures and the
reasoning behind their inclusion.

Default [KKLD23] The baseline for this analysis is the original approach as proposed
by Kerbl et al.. Its opacity reset strategy already provides a method to remove superfluous
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splats. By comparing its performance to more specialized densification techniques, it can
be determined whether the new approaches actually yield any visual improvements. This
method will also be referred to as the Default.

Mini-Splatting [FW24] Fang and Wang’s Mini-Splatting aims to drastically reduce
the model size of the trained models. Their approach introduces a new splitting pattern
that covers under-reconstructed regions, which is called Blur-Splitting. Furthermore,
a stochastic influence pruning approach removes splats that have a low impact on the
rendered images. There is also a model reinitialization step called Depth-Reinitialization.
It estimates depth values based on the current splat model and then selects new splats by
reprojecting randomly sampled image pixels back into 3D space. This process redistributes
splats across the entirety of the scene geometry. The method aggressively pursues the
removal of unneeded splats, discovering new geometry and distributing detail across the
scene. Therefore, it is a perfect fit for this study.

EAGLES [GGS23] Another technique that focuses on small models is Girish et al.’s
EAGLES. This method uses a progressive coarse-to-fine strategy that first aims to capture
larger aspects of the scene before moving on to fine details. It also employs influence
pruning to reduce the number of primitives in the scene. This technique has a different
focus than Mini-Splatting, as it employs a smoother and less disruptive training strategy.
It is therefore another valuable addition to this study.

MCMC [KRS+24] 3D Gaussian Splatting as Markov Chain Monte Carlo was intro-
duced by Kheradmand et al.. It bridges the gap between compactness and discovery.
On the one hand, it is one of the only optimization techniques that purposefully creates
models of restricted size, while on the other, enabling better discoverability through a
probabilistic optimization approach. It uses the same opacity reset technique for splat
removal as the default technique. This method represents an elegant way to frame GS
optimization, which is ideally suited for working under a size constraint. Throughout
this work, this technique will be referred to as MCMC.

Gaussian-Pro [CLY+24] Another promising discovery-oriented technique is Chen
et al.’s Gaussian-Pro. Their approach aims to discover new geometry and accurately
estimate properties like surface alignment. To this end, they employ a patch matching
technique and normal modeling. The approach has less of a focus on small model sizes,
but it has the potential to excel in this task. Its discovery mechanics can lead to a quicker
convergence and accurate modeling of the scene geometry. This could avoid local minima
and improve upon the default, which is why it was selected for this analysis.

Geo-Gaussian [LLD+24] Li et al.’s Geo-Gaussian’s sole focus lies on the faithful
representation of the scene geometry. It uses geometric constraints, a special loss function,
and a custom propagation approach. This is another technique that is not focused on
smaller models, but its mechanics could yield models that are more concise. It is similar
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to Gaussian-Pro, but fully commits to the idea of geometric consistency. This makes it
another useful addition.

Mip-Splatting [YCH+23] The last included approach is Yu et al.’s Mip-Splatting.
Their method has completely different priorities than the previously presented ones. It
utilizes a 3D smoothing filter and 2D Mip filter to prevent aliasing artifacts. These
mechanics have the effect that splats tend to fill up more space. In addition, the method
includes an updated splat-splitting criterion. The approach also does not focus on
small model sizes, but it leads to models that are well-defined in high-frequency areas,
without introducing small artifact-like splats. This leads to improvements when viewing
the models from novel camera positions and represents a general improvement of the
optimization pipeline. Its inclusion serves as a check if the focus on compact models
actually pays off when contrasting it with other quality advantages.

3.4 Training Setup
This section presents aspects essential for the training. This includes the size budgets for
the models, the selected datasets, and adjustments made to the training methods.

3.4.1 Size Budgets
The size budgets serve as the basis for the comparisons made between the different
models. In order to establish these parameters, inspiration is taken from factors that
negatively impact the adoption of GS.

There are two scenarios where model size restrictions are especially relevant. The first
occurs when training in a memory-limited environment. Training is not feasible if models
outgrow the imposed memory limit. The second scenario arises when considering web
applications. Without a bounded model size, the download times can become so long
that they negatively affect the user experience.

The first scenario is only relevant for users who want to train their own models. This is
most likely to be the case for researchers and developers. The second scenario is more
relevant as a limiting factor since it affects all users. This is why it is the focus of this
study.

Long load times, especially in interactive applications, can lead to frustration for the
users. This makes GS a less attractive option as a 3D representation technique. Therefore,
the budget parameters will be established in the context of a web application.

In order to formulate budgets, three questions have to be considered:

1. What are real-world internet speeds?

2. What are acceptable loading times for an interactive web application?
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Quantile Speed in Mbps
20% 17.80
50% 60.64
80% 159.75

Table 3.1: Internet speeds by quantile. Retrieved from RTR-Netztest on 2.12.2024.

3. How is the number of splats connected to the model size?

By answering all of these questions and considering them together, a relationship between
the number of splats and the impact on real-world load times can be established. The
following paragraphs will go over how these questions were answered and how the size
budgets were established.

Real-world Internet Speeds

There are a number of platforms that track internet speeds across different regions.
The Speedtest Global Index by Ookla presents a global leaderboard of countries by their
internet speeds3. In Austria, there is the Breitband-Atlas by the Bundesministerium für
Finanzen. This tool shows a fine-grained map of Austrian internet speeds, which are
resolved down to the level of neighborhoods4. While these reports are powerful, they are
not suitable for this analysis. This study requires information about how the access to
internet speed is distributed. Thankfully, there is a service that tracks real-world internet
speeds as they are experienced by users in Austria. This report is maintained by the
Austrian Regulatory Authority for Broadcasting and Telecommunications (RTR)5 and it
is called the RTR-Netztest6.

The data from the RTR-Netztest is broken down by internet service provider and quantile.
This allows a more fine-grained analysis of the experienced internet speed. Only speed
data from browsers were included in this analysis. The data was retrieved on the 2nd
of December 2024. In order to aggregate the data, it was averaged across the internet
service providers, taking the number of samples per provider into account. The final
speed estimates can be seen in table 3.1.

Acceptable Load Times

User satisfaction and retention are connected to Page Load Time (PLT). Estimating
a PLT that is perceived to be tolerable is non-trivial, since it depends on the context
and the specific user [KRBD17]. This means that the acceptable PLT is a distribution.
One of the largest studies of PLT was conducted by Akamai Technologies and SOASTA

3https://www.speedtest.net/global-index
4https://breitbandatlas.gv.at/
5https://www.rtr.at/rtr/wer_wir_sind/Organisation/Organisation.en.html
6https://www.netztest.at/en/Statistik
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[TS17], which are both private companies specialized in digital performance management.
They show that loading times between 1.8 and 2.7 seconds are ideal. These were the times
when the conversion rate, which is the percentage of customers who make a purchase, was
the highest. Other influences come from sites like Sketchfab7, PolyCam8, KIRI Engine9

or Luma AI 10. These sites already host 3D models, including GS variants. Many of the
models that are on display have much longer load times than three seconds.

Based on the research by Akamai and the experience with other 3D web platforms, the
maximum load time for this study was set to 3 seconds. GS models are able to load
progressively, which means that users will be able to interact with the model as soon as
they begin streaming in. The interactive experience minimizes user frustration. On the
other hand, the load time imposes a relatively strict constraint on the models. These
circumstances will yield insights into how well the optimization techniques can adapt.

Splat Count vs. Model Size

In order to impose a size limit, the relationship between model size and splat count has to
be established. For this work, the number of spherical harmonics will be limited to degree
0. This means that no directional colors will be included. The reason for this decision
is that splat models generally require a large number of splats to converge. Therefore,
more splats are prioritized over directional colors.

Given the number of attributes that a model includes, it is trivial to establish a relationship
between the number of splats and the final file size. Equation 3.1 shows how the file size
in megabytes can be computed, for a spherical harmonics level of 0.

m = n · 17 · 32 · 1
8 · 10−6 (3.1)

Where m is the file size in megabytes, n is the number of splats. It is clear that the file
size is linearly dependent on the number of splats. This formula does not account for the
file header, since its size is negligible.

The problem with the computation above is that it does not account for compression.
Files can be losslessly compressed using algorithms like DEFLATE [Deu96]. The files in
this study use the compression scheme that was outlined by Niedermayr et al. [NSW24].
They sort the splats using their Morton order and then employ the DEFLATE algorithm.

In order to model the relationship between the number of splats and the compressed file
size, a number of candidate splat models were analyzed. The original file sizes of the
models range from 30,000 bytes to 942 megabytes. The models were compressed and
their file sizes measured. Then, a linear model between the number of splats per model
and the compressed file size was computed. The outcome for this model can be seen in

7https://sketchfab.com/
8https://poly.cam/tools/gaussian-splatting
9https://www.kiriengine.app/

10https://lumalabs.ai/interactive-scenes
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Figure 3.3: Linear relationship between compressed model size and the number of splats

figure 3.3. The relationship is almost perfectly linear, which is also indicated by the R2

score of 99.99%.

Computing the Size Budgets

Now that the internet speeds, the acceptable load times, and the relationship between
model size and splat count have been established, the size budgets can be computed.
The relationship between the maximum wait time in seconds t and the number of splats
n is as follows:

mβ(n)
s

≤ t (3.2)

Where mθ(n) is the model describing the size in megabytes and s is the speed in megabytes
per second. This can be rewritten such that the budget size becomes explicit:

n ≤ t · s − β0
β1

(3.3)

Given this equation, the estimated linear relationship between the number of splats and
the model size, the maximum load time, and the internet speed, the maximum number
of splats can be computed. Each of the three quantiles in table 3.1 has its own splat
limit. In the case of the 20% quantile, the formula is as follows:

n ≤ 3 · 2.22 − 0.23625
5.459 · 10−5 = 117856 (3.4)
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Name Quantile Speed in Megabytes/s Number of Splats
Low 20% 2.22 117856
Medium 50% 7.58 412235
High 80% 19.97 1093135

Table 3.2: Final size budgets

The variables have been replaced with their respective values:

• t = 3 seconds

• s = 2.22 megabytes/second for the 20% quantile

• β0 = 0.23625 megabytes

• β1 = 5.459 · 10−5 megabytes/splat

• 117856 is the maximum number of splats for the 20% quantile

The maximum number of splats is then used as a hyperparameter for the optimization
procedures. Table 3.2 shows the final size budgets that were used for this study.

3.4.2 Dataset Selection
The choice of datasets was informed by the literature in the field. Over the past few years,
a number of datasets have become staples in NVS research. They appear frequently in
studies and serve as a standard for quality measurements. The captured images contained
in these datasets tend to be of good quality, and the COLMAP database is included.
This means that different approaches work with the same baseline.

Three scenes were picked from two different datasets. The datasets that were included
are Mip-NeRF 360 [BMV+22] and Tanks and Temples11. Both of these datasets have
become standards in the NVS community, since they are the baseline of a diverse array of
studies [KKLD23, FW24, GGS23, KRS+24, CLY+24, YSG24, CWL+24, YLX+24]. In
fact, most studies in the field use either one of these datasets at least once.

In order to pick a number of scenes for this study, the following aspects were considered:

1. The scene content

2. The number of images per scene

The aim was to achieve diversity in both of these aspects. This creates variations in the
circumstances, which yields a more interesting quality profile. Examples of the chosen

11https://www.tanksandtemples.org/
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Figure 3.4: Examples of the chosen scenes

datasets can be seen in figure 3.4.

Stump represents a scene with dense foliage and little to no reflections. It has the lowest
image count, coming in at 125 distinct views. Truck is a mix of foliage, solid surfaces,
and open sky. It contains diffuse and specular materials and has a slightly larger image
count of 251. Room has 311 images and is therefore the largest dataset. Its content,
however, is the smallest in terms of real-world scale. The scene shows a single room,
which is filled with different objects that have diverse material properties.

The three scenes represent a good mix of different content types. There is a natural outdoor
scene with dense foliage, a transitional scene with a mix of foliage and constructed surfaces,
and an indoor scene. This choice represents common scenarios for NVS applications.

Tanks and Temples contains scenes with even larger real-world scales and image counts.
These were not considered, since such a large amount of images can lead to problems
regarding the graphics card memory.

The image resolution was not a factor in the consideration. All optimization pipelines
automatically rescale images to a maximum width of 1600 pixels. The considered scenes
exceed this threshold. Therefore, the image resolution is essentially the same for all
scenes.

3.4.3 Training Adjustments
In order to create a sensible training setup for all of the optimization procedures, a
number of adjustments were made to their respective codebases and hyperparameters.
References to the modified code can be found in appendix I. This section will give a brief
description of the changes.

Maximum Number of Splats

All of the optimization procedures come with a hyperparameter that enables a splat limit.
The implementation of this hyperparameter is flawed. Instead of enforcing an upper
bound on the number of splats, it simply ceases all densification-related operations as
soon as the given threshold of splats is exceeded.
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This approach has two major drawbacks. Firstly, the splat count often ends up exceeding
the maximum limit. The densification operation that occurs just before the splat limit is
reached can add any number of splats. So a situation where the newly created splats and
the existing splats surpass the desired amount regularly occurs. The hyperparameter
doesn’t guarantee a size budget, rather it can be seen as a type of stopping criterion.

The second issue stems from the fact that the opacity reset, which is often the only
pruning operation, is also halted as soon as the splat limit is reached. This means that
superfluous splats cannot be removed.

Given these obvious limitations, the implementation of the hyperparameter has been
revised. The procedure is relatively simple. Each time the densification takes place, the
difference d between the current number of splats and the maximum cap is computed.
The clone and split procedures select splats based on their accumulated screen space
gradients. If the number of selected splats exceeds d, then only the Gaussians with the
top d gradients are actually used for the duplication.

Another effect of this method is that the pruning procedure runs every single densification
iteration. This means that low opacity splats are always removed even if the splat count
exceeds the limit. When unneeded splats are removed, new capacity for the creation
process is automatically allotted. Using this technique, the splat count threshold cannot
be exceeded, and pruning continues even if the cap is reached.

Mini-Splatting provides the only exception to the described paradigm. It introduces
another splitting procedure called Blur-Splitting. Here, splats that have a large con-
tribution to the rendered images are tracked and selected for splitting. This identifies
and splits blurry-looking Gaussians. In order to consider this mechanic, the approach
described above was modified slightly. The computation of the difference d remains.
A hyperparameter called λd ∈ [0, 1] is introduced. For a given densification step, the
maximum number of splats that are selected for blur splitting is ⌊λd · d⌋. After blur
splitting, d is recomputed to allow for the normal creation process to continue. This
allows for the maximum number of splats to be created in case the number of splats
eligible for Blur-Splitting is lower than ⌊λd · d⌋. In all of the experiments, λd was set to
0.2.

Model Initialization

GS models are initialized based on the sparse point cloud of the scene’s COLMAP scan.
In some cases, the number of COLMAP keypoints exceeds the size threshold. When this
occurs, the point cloud is randomly subsampled in order to conform to the maximum
number of splats. All methods use the same subsample for initialization.

Hyperparameters

In order to capture the intent and decisions made by the original authors of the respective
optimization procedures, hyperparameters are not changed unless absolutely necessary.
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The only warranted change was made to Mini-Splatting. To achieve the smallest models
possible, the authors stop the densification at 15K iterations. This is halfway through
the training process. In the context of this study, stopping the densification this early
is not needed. The size constraint is enforced by the splat budget and not by pruning.
Therefore, the densification was extended until 29K iterations.

Behavior Tracking

The idea behind this work is not just to understand which method works best, but also
how and why methods work. To this end, the optimization approaches’ logging was
extended to provide insight into the development of the splat count. At each iteration,
the number of created and deleted Gaussians is reported. The result of this logging
procedure is presented in section 4.4.

3.5 Implementation Details
Apart from the training adjustments, there are two more implementation-related aspects
of this work. Both the objective and subjective evaluation rely on software components.
The design of these components will be described in the following paragraphs.

3.5.1 Objective Evaluation
The evaluation requires the objective quality metrics for every scene, model, and size
combination. To compute these metrics, a dedicated software component was designed.
The algorithm that computes these metrics is outlined in appendix B.1. The goal of the
algorithm is relatively simple. Based on each of the datasets, the test set is loaded. Then,
the objective quality metrics are computed for each method and each size.

BRISQUE is a no-reference metric, which means that it does not rely on a ground-truth
reference image. It is computed for the test views as well as Np additional perturbed
poses, which are created per reference camera. Perturbed poses slightly modify the
original, by varying the camera center and rotation. For the conducted experiments, Np

was set to 5, camera locations were perturbed by sampling from a 3D normal distribution
with a standard deviation of 0.01 and camera rotations were completely random. This
strategy for computing the BRISQUE score is designed to give a better sense of scene
quality outside of the camera path, which is implicitly traced by the training set.

In comparison to the training pipelines, the evaluation renderer is built for efficiency.
Improvements come in the form of a more performant dataset loader and disabled
gradient computation. It also uses the gsplat[YLK+24] rendering backend because of
its increased computation speed. By selecting a common rendering framework for the
metrics computation, any latent effects on the image quality are minimized. This is an
important issue, since the different methods all use slightly modified rendering pipelines,
which can lead to slightly different metric results.
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Figure 3.5: Outline of user flow to complete evaluation

3.5.2 Subjective Evaluation
To make the subjective evaluation a seamless and smooth process, a dedicated evaluation
interface was developed. The interface handles all aspects of the evaluation, including
instructing the candidates on how to use it, presenting the assessment items, and collecting
the data. The tool is available over the internet12 via any modern browser and will be
supported for the upcoming year after the release of this work. The following paragraphs
will detail the design decisions for the interface and the architecture of the application.

Interface Design

The interface of the evaluation application presents viewers with everything they require
to participate. Its layout is structured to accommodate desktop devices and laptops.
The interface aims to guide the users’ exploration through the application and build
understanding. The user flow, as can be seen in figure 3.5, starts with a briefing pop-up,
leads to a tutorial, and then finally to the evaluation section. The tutorial provides a very
clear-cut assessment example that teaches the application’s functionality, such that the
learning experience does not interfere with the actual evaluation. After the participant
has rated six pairs of models, they are presented with a brief demographic survey.

Figure 3.6 shows the layout of the application when in the evaluation mode. The interface
presents the viewers with a fully interactive view of the 3D scene. Each evaluation step
presents a pair of 3D models, which share the scene they have been trained on and the
size constraint hyperparameter.

In the top left, general information, like the number of rated items and the currently
viewed model, is displayed. Participants can toggle between model A and B using the
space bar or the buttons in the lower right. At the top right, the camera controls are
explained. This prompt automatically minimizes when entering the evaluation section,
but can be expanded at any point should the need arise. The rating item can be found in
the lower right part of the screen. It presents the user with some redundant information
about which model is currently visible. This is to avoid situations where users might be
confused about which model they are viewing at the moment.

12https://gs-on-a-budget.firebaseapp.com/
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Figure 3.6: User interface elements of the evaluation application

The interface is structured so that important elements lie on the top-left to bottom-right
diagonal. This directs the attention to the model presented and the rating item. Auxiliary
information is presented on the top right as to not be too distracting. Users have full
control over the 3D position of the camera. When toggling between the two models, the
camera position is retained. This way, users can easily spot differences in the models,
which helps especially when trying to make out subtle differences.

The application is designed to leverage the intuitive nature of PWC. Its online accessibility
and easily explanatory nature help to reach as many participants as possible.

System Architecture

A major priority for the development was that the application would be easy and
fast to deploy. The application does not require complex functionality in the backend,
which is why a microservice architecture was chosen. For hosting, deployment, cloud
storage, and database services, the application relies on Firebase13. Figure 3.7 shows
a component diagram of the application. The following paragraphs will describe each
system component.

Frontend

The frontend implements the interface described previously as a single-page web applica-
tion. All 2D components are built using React14. The 3D viewer leverages three.js15

for the camera controls and scene management. The GS models are rendered using the
GS rendering integration for three.js, which is developed and maintained by Mark
Kellogg and members of the open-source community16.

13https://firebase.google.com/
14https://react.dev/
15https://threejs.org/
16https://github.com/mkkellogg/GaussianSplats3D
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Figure 3.7: Component diagram of the evaluation application

Figure 3.8: Entity relationship diagram of the evaluation software’s data model

Firestore Database

The Firestore database holds all relevant data for the evaluation. The different entities
and their attributes can be seen in figure 3.8. The pair entity defines a pair of models
that can be compared. It holds the model locations, some simple metadata, and camera
parameters for rendering. Ratings are stored using the rating entity. It refers back to
the pair, holds the preferred model, and some metadata. The data gathered by the user
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survey is stored in the userSurvey entity.

A relatively complex aspect of the application is the priority system. Its job is to balance
the number of ratings over all the scene and size combinations. The priority entity
acts like a cache, which manages a number of priorityEntry entities. These hold
information about how many ratings each scene and size combination has already received.

Priority Updates

Priority updates are essential for balanced evaluation results. The update functionality
is implemented by the update_priority cloud function. Three times per day, the
function recomputes the rating count grouped by scene and model size. It then writes
the result into the priority entity.

Next Pair Retrieval

Every time users have rated a pair, the frontend calls the get_next_pair function.
The function then picks the least rated scene and size combination based on the latest
priority entity, and computes the best next pair using ASAP (see 3.2). The new pair
is sent to the client, where it can then be displayed.

Cloud Storage

The cloud storage is where the GS models are stored. The frontend application can
simply create download links for the models if it knows the path to the storage bucket of
a specific model. The paths are stored in the pair entity.
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CHAPTER 4
Results

An aspect of this study is that it compares GS optimization methods in different circum-
stances. As previously outlined, the circumstances are characterized by the scene and
the model size constraint. Comparisons are based on the relative model performance
in a single circumstance. This analysis presents models both from the viewpoint of
singular and across multiple circumstances. This highlights situation-specific strengths
and weaknesses, but also shows general performance. The analysis is split into multiple
sections, each presenting an aspect of the gathered data.

4.1 Subjective Results
This section presents the results of the subjective evaluation. First, the overall sub-
jective ranking is presented, followed by the rankings per size budget. Then, the
cross-circumstance agreement is analyzed. Next, clusters of circumstances are formed
based on the agreement. Lastly, the reliability of the subjective evaluation is analyzed.
These results are key to answering the first research question, because the perceived
quality represents the gold standard for the evaluation of visual content [WB06b].

4.1.1 Overall Subjective Ranking
When evaluating the best option out of a lineup of possibilities, ranked lists are a great
way of presenting the results. One tool that will be used across this entire chapter is the
Borda count. This voting system allows for the aggregation of rankings across different
circumstances. Each model is assigned a score by adding the ranks it received. In the
context of this study, higher scores are better.

In order to get a sense of the variability, multiple versions of the data are created. JOD
is computed using the probabilistic model of Thurstone’s Case V. The ratings retrieved
with ASAP are relatively sparse. These factors make the score computation sensitive
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Figure 4.1: Overall subjective rankings aggregated by Borda count and 20-Fold Cross-
Validation, higher is better

to oversampling, which amplifies noise in the data and can lead to exploding scores.
Therefore, bootstrapping is unsuitable in this scenario. Instead, 20-Fold Cross-Validation
is used. Each fold yields its own Borda count, which is then visualized using violin plots.

Figure 4.1 shows the overall subjective ranking. The visualization presents a surprising
result. Mip-Splatting is ranked the highest, followed by MCMC and Mini-Splatting.
This could indicate that the general quality improvements introduced by Mip-Splatting
outweigh efficient splat placements.

Another interesting aspect is the pronounced last place of Geo-Gaussian. This is a very
clear indicator that the strategy resulted in identifiably worse results.

4.1.2 Rankings per Size Budget
The overall ranking provides only a partial picture. To better understand how each
method performs under different size constraints, it is useful to examine how the rankings
evolve as the size budget changes.

Figure 4.2 illustrates how the rankings shift across varying size budgets, highlighting
differences compared to the overall ranking. It becomes clear why Mip-Splatting is ranked
so highly. Across all of the size budgets, it is ranked relatively high, never falling below
third place. The most surprising result is the performance of EAGLES. Its rank increases
drastically as the size budget increases. MCMC and Default tend to fall off as the size
increases. Especially MCMC is ranked highly in the low and medium size budgets, but
falls off in the high size budget. Geo-Gaussian always occupies a spot in the bottom two
ranks. To view the rankings as violin plots, refer to figure C.1 in the appendix.

The results indicate something surprising. When considering the lowest size budget, De-
fault is the second-highest ranked method, which indicates that the original densification
scheme already outperforms most other models when considering strict size limitations.
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Figure 4.2: Evolution of subjective rankings aggregated using Borda count across size
budgets. Higher values indicate better rankings.

MCMC seems to be a straightforward improvement over the Default, as it is always
ranked higher. It is noteworthy that these techniques are highly related, since they both
use the exact same pruning strategy and MCMC only modifies the splat placement.

Other methods, like EAGLES, Mini-Splatting, and Gaussian-Pro, tend to perform better
when the size budget is larger. This indicates that these methods might not be the
best candidates for size-constrained optimization, as they rely on higher splat counts for
relative performance improvements.

4.1.3 Cross-Circumstance Rankings
The previous sections demonstrate that the rankings vary across different conditions.
This variation raises the question of how consistent the rankings are between these
circumstances. To investigate this, the rank correlation between each pair of conditions
is computed using the Spearman’s Rank Order Correlation Coefficient (SROCC) [Spe04].

SROCC was selected for this analysis because it does not assume linear relationships,
making it well-suited for comparing rankings. The results of the correlation analysis are
shown in the appendix in figure C.2. The figure presents a heatmap, where each cell
indicates the correlation between a pair of conditions.

With an SROCC of 0.097, the overall correlation is so close to 0 that it clearly indicates
a highly divergent ranking structure across the circumstances. This raises the question
of whether the Borda count ranks tell the whole story. It could be that the best method
actually turns out to be a very different one when looking at a subset of the data. In order
to find a fitting subset of the data, clusters of circumstances based on their correlation
were identified. The SROCC scores are hierarchically clustered using the Ward method
[WJ63]. The resulting clustering is presented in figure 4.3.
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Figure 4.3: Rank correlation based on JOD, clustered using the Ward method [WJ63]

When looking at the clustering results, there are two pronounced clusters and an outlier.
In the following paragraphs, these subsets will be referred to as described in the following
list:

1. Cluster Orange contains room-high, room-medium, and truck-high.

2. Cluster Green contains all circumstances in the stump scene, as well as truck-medium
and room-low.

3. Circumstance Blue, which is truck-low, appears to be an outlier.

Using these clustering results, new rankings can be established. By analyzing the ranking
within similar subsets, we can determine whether a different trend is present in the data.
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Figure 4.4: Borda count rankings for Cluster Orange

Figure 4.5: Borda count rankings for Cluster Green

Figure 4.6: JOD-based rankings for truck-low
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Figure 4.7: Rank consistency of JOD scores for 20-Fold Cross-Validation

The figures 4.4, 4.5, and 4.6 illustrate how diverse the rankings can be when considering
different clusters. Cluster Green’s ranking closely reflects the overall ranking shown in
figure 4.1. In contrast, the ranking for Cluster Orange is completely different. Here,
EAGLES is the unequivocal leader, while the suspected overall leaders, MCMC and
Mip-Splatting, are ranked among the lowest. The truck-low circumstance completely
breaks with previous trends, ranking Geo-Gaussian relatively highly and Mip-Splatting
as the lowest overall. It essentially presents us with a complete reversal of the trends
that can be found for the rest of the data.

4.1.4 Reliability
The subjective metrics represent an important part of the evaluation. They serve as the
basis for answering both research questions. Therefore, the reliability of the subjective
measures is of great importance.

An important aspect of the subjective scores is the resulting ranking. Reliable JOD
scores should be internally consistent. To assess reliability, the variability of the rankings
is investigated.

Figure 4.7 shows the rank consistency of every method across the different circumstances.
The figure was generated by splitting all of the ratings using 20-Fold Cross-Validation.
Each cell describes the percentage of folds in which a method received the same rank.
A cell with a value of 100% represents a method that received the same rank across all
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20 folds, while a cell with 40% represents a method that only had the same rank in a
maximum of 8 folds.

The median rank consistency is 95% with a standard deviation of 12.93%. These measures
indicate that the rankings derived from JOD are highly consistent. This suggests that
the computed scores are reliable.

4.1.5 Insights

To summarize this section, it helps to recall a number of the insights from the subjective
evaluation. The following list summarizes the most important findings:

• Mip-Splatting is the overall winner when considering the subjective evaluation, due
to its consistency.

• MCMC and Mini-Splatting are ranked closely behind Mip-Splatting.

• MCMC is the best performer in the low and medium size budgets.

• MCMC is a straight-up improvement over the Default, when aggregating scores
across the scenes.

• EAGLES is a strong contender for the high size budget.

• Geo-Gaussian is consistently ranked as the worst method.

• The rankings differ significantly across circumstances, indicated by the low SROCC
of 0.097.

• Within different subsets of the data, the rankings can be completely different.

• The within-circumstance rankings are highly consistent across 20-Fold Cross-
Validation, which indicates that the subjective scores are reliable.

4.2 Objective Results

The following sections will discuss the rankings of the techniques based on objective
indicators. These metrics stem from the software component described in section 3.5.1.
The exact values and aggregated rankings can be found in appendix D. First, the overall
ranking will be described, then the rankings per size budget will be presented. The
section will conclude with a discussion of the cross-circumstance rankings.
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Figure 4.8: Overall objective rankings aggregated by Borda count and Bootstrapping,
higher is better

4.2.1 Overall Objective Ranking

In order to give a robust estimate of the overall objective performance, Bootstrapping and
Borda count are used. In total, 100 Bootstrap samples are drawn from the metrics. For
each unique sample, circumstance, and metric type, a ranking is computed. Afterwards,
the Borda count is used as a voting mechanism to collect the rankings across all of the
circumstances, which leads to 100 Borda counts. Figure 4.8 shows the results as violin
plots. The plots give a sense of the variability and distribution of the aggregated measure.
This shows clearly that there is a degree of uncertainty in the global ranking.

The reference metrics show MCMC in a consistent leadership position. This indicates that
MCMC works well in fitting the model to the camera path traced by the dataset. The only
measure that does not rank MCMC as the highest is BRISQUE. As a no-reference metric
with perturbed camera poses, it presents another perspective on the visual quality outside
of the typical camera poses. BRISQUE instead elects the runner-up, Mini-Splatting, as
the overall winner. Mini-Splatting also closely follows MCMC’s performance according to
the LPIPS metric. Both of these facts indicate that Mini-Splatting is a strong contender
according to objective indicators. Default’s performance is noteworthy, since it takes third
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Figure 4.9: Development of objective rankings aggregated by Borda count across the size
budgets, higher is better

place in three out of four metrics. The overall worst method seems to be Geo-Gaussian.
Every single metric ranks it as the lowest performer.

4.2.2 Rankings per Size Budget

The overall ranking seems to favor MCMC, but how does the ranking look when drilling
down to the individual size budgets? Figure 4.9 shows the aggregated rankings for the
SSIM and PSNR metrics, as they develop with increasing model sizes. PSNR clearly
favors MCMC, while the SSIM shows a more complex pattern. Here, MCMC is located
at the top of the distribution, but its spot is contested by Mini-Splatting and Default.
The figures show many lines, which are located very close to each other, for the middle
of the leaderboard. This indicates that the metrics might not serve as an ideal basis for
discriminating between the methods.

The same plots for the LPIPS and BRISQUE measures can be found in the appendix in
figure D.1. It presents an inconclusive picture. Many of the methods are intermixed or
observe rapid jumps in their aggregated rankings, which indicates instability.

What becomes clear for the SSIM, PSNR, and LPIPS metrics, is that MCMC is consis-
tently one of the best performers. SSIM and LPIPS also present Mini-Splatting as the
leader for the low-size budget. Geo-Gaussian is consistently ranked as the worst method.

4.2.3 Cross-Circumstance Rankings

One problem that becomes immediately apparent when looking across individual circum-
stances is that the rankings differ wildly. Figure 4.10 shows some prominent examples
that vary both in terms of scene and budget size. In order to get a full picture of rank
correlation, a higher-level view is useful. Figure 4.11 and 4.12 show how complex the
correlation structure is when considering all circumstances and metrics. These plots
follow the same structure as the correlation analysis presented in the previous section.
The following paragraphs explore the data structure of the plots.
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Figure 4.10: Examples of highly discordant rankings in different circumstances

The average SROCC for SSIM, PSNR, and LPIPS ranges between 0.375 and 0.488. This
shows that there is some degree of ranking inconsistency for these measures. BRISQUE
has the lowest average SROCC at −0.078.

The most consistent group is made up of circumstances belonging to the stump scene.
For SSIM, LPIPS, and BRISQUE, all of the correlations with each other are above 0.9.
This indicates that methods behave consistently across size budgets for this dataset.

Both SSIM and LPIPS result in a block of circumstances that are highly correlated.
These include the room scene at the high and medium size budgets, as well as all of the
stump circumstances. In comparison, the PSNR metric seems rather noisy. BRISQUE
shows a tendency for higher within-scene correlations while having lower correlations
across scenes.

4.2.4 Insights
To summarize this section, it helps to recall a number of the insights that could be
gathered from the subjective evaluation. The following list summarizes the most important
findings:

• MCMC is often the leading method according to SSIM, PSNR, and LPIPS across
all size budgets.

• Mini-Splatting is a strong contender for the low-size budget, when considering the
SSIM and LPIPS metrics.

• Geo-Gaussian is consistently ranked as the worst method.

• There are indications that the BRISQUE strategy performs consistently within
circumstances of the same scene.
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Figure 4.11: High-level correlation analysis for training metrics
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Figure 4.12: High-level correlation analysis for additional metrics
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Figure 4.13: Correlation between objective measures and JOD based on 20-Fold Cross-
Validation

• Stump circumstances generally correlate highly with each other.

• Both the overall Borda count aggregate as well as the ranking per size budget show
a high degree of instability, indicating that the objective metrics are not an ideal
basis for discriminating between the methods.

4.3 Joint Analysis
The previous sections presented the results of the subjective and objective evaluations.
The subjective evaluation is based on the JOD scores, while the objective evaluation is
based on SSIM, PSNR, LPIPS, and BRISQUE. The goal of this section is to analyze
the relationship between these two evaluations. To this end, a correlation analysis is
performed. Afterwards, the specific insights from the subjective and objective evaluations
are contrasted.

4.3.1 Correlation Analysis
The objective quality measurement technique, involving test set PSNR and SSIM, aims
to approximate true perceptual quality. To determine whether this approach is effective,
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the objective and subjective measurements must be compared.

The SROCC was chosen as the correlation measure because the relationship between
metrics is unlikely to be linear. The overall correlation between objective and subjective
measures is very low, if not nonexistent. SSIM and JOD have an SROCC of 0.031,
while JOD and PSNR have 0.169. This suggests little to no relationship between these
different indicator types. To further investigate this issue, the correlation was computed
within each circumstance. Figure 4.13 shows the correlation structure observed across
circumstances for PSNR and SSIM.

Some circumstances show high correlations, while others exhibit low or even negative
correlations. The SROCC mostly exceeds 0.5 when considering the stump scene, as well
as the truck-low and truck-medium combinations. In these cases, the IQA strategies
work in tandem. The room dataset shows more problematic results, with correlations
even falling into the negative range.

The correlations for LPIPS and BRISQUE are presented in the appendix in figure E.1.
For these measures, lower correlations indicate a better fit, as both metrics quantify some
form of loss. The stump dataset also exhibits the best approximation performance. The
other circumstances are very noisy and do not replicate any patterns seen in PSNR and
SSIM.

To summarize the correlation analysis, some facets of the data display correlations similar
to those found in other studies [LWH+24, YYX+24, QLC+24], while others, especially
the room scene, show little or even negative correlation. This suggests that objective
and subjective measures can noticeably diverge for certain scenes. Both LPIPS and
BRISQUE generally performed worse at approximating the subjective measures.

4.3.2 Contrasting Insights
The metrics aren’t the only things that can be contrasted in the joint analysis. In order
to get a better understanding of the differences between the assessment methods, the
insights from the subjective and objective evaluations can be compared. The following
paragraphs highlight a number of aspects on which the two evaluations either align or
diverge.

Overall Winner The subjective evaluation ranks Mip-Splatting as the overall winner,
due to its consistency across different circumstances. MCMC leads across all objective
metrics (SSIM, PSNR, LPIPS), while Mip-Splatting mostly occupies a spot in the middle
of the leaderboard. MCMC is also ranked highly in the subjective evaluation, coming in
at second place overall and being the best performer in the lowest size budget.

Best Method for Low Size Budget The subjective evaluation ranks MCMC as
the best method for the low size budget, closely followed by the Default approach. The
objective evaluation ranks MCMC and Mini-Splatting as the best methods for the low
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size budget. This shows that MCMC is a strong contender for the low size budget in
both evaluations.

Best Method for High Size Budget The subjective evaluation ranks EAGLES as
the best method for the high size budget, while the objective evaluation ranks MCMC as
the best method. This shows an example of divergence between the two evaluations.

Overall Worst Method Both evaluations rank Geo-Gaussian as the worst method. It
is consistently outperformed by the other methods, regardless of the evaluation paradigm.

Cross-Circumstance Correlation The subjective evaluation shows a very low SROCC
of 0.097, indicating that the rankings differ significantly across circumstances. The ob-
jective evaluation shows a higher SROCC of 0.375 to 0.488. This means that there is
some consensus across the circumstances. In essence, this could mean that objective
measures are more consistent, while subjective measures are more sensitive to the specific
circumstances.

Rank Certainty The certainty of the rankings cannot be directly compared. The
subjective metrics has clear indicators for reliable rankings and seems to serve as a
consistent basis for discriminating between the methods. On the other hand, the objective
metrics show some degree of instability. In the end, this comparison cannot be drawn
directly. This is because the subjective metrics are based on a probabilistic process and
leverage Cross-Validation for many visualizations. All the while, the objective metrics
use bootstrapping to create a distribution of the rankings, which introduces more noise.
Contrasting the discriminatory power of different metrics is outside the scope of this
study.

4.4 Training Behavior
During the training process, a number of statistics are reported regularly. These measures
give insights into how the optimization techniques perform. The recorded metrics are
SSIM and PSNR for both the train and the test set. The train statistics are logged every
iteration, while a full run of the test set is conducted every 500 iterations. Because of its
heavy memory and performance costs during runtime, the LPIPS metric was excluded
from the logged metrics. When it comes to the densification behavior, the number of
created and deleted splats, as well as the current splat count, is reported in every iteration
when densification takes place.

Previous sections shed light on the performance of the different methods. But how is this
performance achieved? By looking at the training behavior, a better understanding of
what truly differentiates the methods can be achieved. The following section will analyze
how the performance curves develop during training. Then the densification behavior
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will be presented. Lastly, a broader summary of the diverging training behavior will be
given.

4.4.1 Performance Curves

During training, the model performance develops as the iterations progress. Figure 4.14
shows that the performance curves can vary drastically depending on the optimization
procedure. The following paragraphs will look at a number of summary statistics of these
curves.

Curve Smoothness

As can be seen in figure 4.14, the performance curves are not always smooth or monotonic.
There are clear valleys, which are caused by mechanics like pruning, depth reprojection,
and the opacity reset. The question arises, whether the methods distinguish themselves
by the smoothness of their curves.

In order to model the smoothness of the test performance curves, a 5th-degree polynomial
model was fit for each model, metric, and circumstance. The R2 of the model tells us
how well the relatively smooth approximation captures the ground truth. This therefore
serves as a measure of smoothness. A number of example visualizations of the fitted
models can be found in the appendix in figure G.1.

Figure 4.15 shows a bar plot of the R2 values. The average R2 value for each method is
marked above the bars as a percentage value. Most methods have a relatively smooth
curve, according to this technique. Mini-Splatting is the only outlier, which means that
the erratic changes that can be seen in figure 4.14 are a consistent feature of the method.
This means that Mini-Splatting’s optimization mechanisms have a noticeable effect on
the stability of its performance throughout the training process. It’s clear that it’s the
most erratic and unpredictable method, but its relative performance remains high, which
indicates that the method is able to recover from these instabilities.

Metric Correlation

Figure 4.14 shows that SSIM and PSNR are generally correlated, though there is
also an indication of some exceptions. SSIM and PSNR express different priorities
of the training process. A high correlation of the metrics tells us that pixel-level
and structural performance measures show similar variations. This means that the
optimization procedure manages to jointly represent larger scene elements, while also
improving on smaller details. This is generally a good sign, since both of these aspects
are important for improving the overall quality of the model.

Figure 4.16 shows the correlation between SSIM and PSNR for both the train and the
test set. The average correlation value for each method is marked above the bars as a
percentage value.
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4.4. Training Behavior

Figure 4.14: Performance curves during training
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4. Results

Figure 4.15: R2 of 5th-degree polynomial model as a measure of smoothness of SSIM
and PSNR curves

A low correlation is not necessarily a bad thing. Methods like EAGLES employ a coarse-
to-fine strategy, which specifically aims to capture larger scene elements before focusing
on details. This could explain why its correlation is the lowest out of all the methods.

The test set correlation is generally higher than the train set correlation. This is a good
sign, since it actually indicates a stabilizing effect when the model is evaluated on the
test set. This could be interpreted as a positive sign for generalization performance.

Loss of Performance

GS methods rarely use checkpoint mechanics. The reason for this is that checkpoints
would incur large storage requirements and long write operations. Therefore, the model
is simply exported at the end of the optimization procedure without any regard to the
best score throughout the training process. This can lead to situations where the final
model’s performance is worse than the best model achieved during the training.
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4.4. Training Behavior

Figure 4.16: Correlation between PSNR and SSIM during optimization process

Figure 4.17 shows the disparity between the best and the final value of the measured
metrics. It is important to note that the scale of the difference for both PSNR and SSIM
is relatively small. In rare cases, Mini-Splatting shows pronounced losses in both metrics.
This speaks to the fact that the method provides multiple relatively disruptive mechanics
in order to change the structure of the model. It is also important to note that these
cases only occur for models with the low size budget, which hints at the source of the
instability being the size constraint. The other differences seem unremarkable given the
scale of the data.

4.4.2 Densification Behavior
Each of the optimization methods has a unique densification behavior. It is characterized
by the splats that are deleted, created, and the splat count.

Figure 4.18 shows a clear example of the densification behavior of MCMC when running
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4. Results

Figure 4.17: Difference between best and final metrics as an indicator for lost performance

Figure 4.18: Densification continues despite the size limit being reached
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4.4. Training Behavior

Figure 4.19: Deletions make room for new splats despite the size budget

Figure 4.20: Test statistic increases even after the size budget is reached

on the truck dataset at the medium size constraint. The size budget is quickly reached,
but the densification does not stop. Instead, splats are constantly being created.
Figure 4.19 shows how deletions make room for new splats even if the size limit is reached.
The test set SSIM also increases despite the constraints imposed by the cap, as shown
in figure 4.20. This is congruent with the findings of Bulò et al. in their revision of
Densification [BPK24].

MCMC has a very smooth profile when it comes to cumulative deletions and creations.
They occur throughout the training process, but the rate of change progressively decreases.
Other techniques have different mechanisms that lead to more erratic changes. Mini-
Splatting, for example, employs multiple pruning stages. This leads to rapid jumps in
the number of splats, as can be seen in figure 4.21, which explains the valleys that can
be seen in the performance statistics.

The following sections will explore the densification behavior in more detail. Two types
of summary statistics will be presented, which will help to characterize the behavior of
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4. Results

Figure 4.21: Pruning stages drastically decrease the number of splats

the different methods.

Magnitude of Deletions and Creations

As described earlier, the optimization continues despite the size limit. One way the
methods distinguish themselves from each other is in how many deletions and creations
are made in total. Figure 4.22 shows that there are clear differences in these statistics
when comparing the different methods. The mean number of deletions and creations is
marked on top of the plot for each method.

There is a clear ordering of the methods when it comes to the characterized densification
activity. MCMC and Mini-Splatting are the leaders, while the default method actually
shows the lowest numbers. This indicates that the newly introduced mechanics in the
splatting heuristics lead to more variability in the splat composition.

Usage of Splat Budget

EAGLES is an optimization procedure that uses a more gradual pruning approach, which
can lead to a part of the available budget going unused. As can be seen in figure 4.23,
the number of splats sometimes slowly dwindles after 15K iterations. Despite this, the
performance metrics do not decrease.

To get a general sense of the splat budget’s usage during training, the area under the
curve for splat count was computed. The value was normalized by the respective budget.
Figure G.2 is presented in the appendix and shows the results of this calculation.

Models with a low size constraint have a higher usage. This is to be expected, since their
budget is more restrictive and therefore more likely to be filled. The visualization also
confirms the observation that could be made in figure 4.23. EAGLES has the lowest
overall usage, which indicates that its influence pruning strategy has a profound impact
on the number of splats.

The gradual pruning strategy of EAGLES leads to a significantly lower splat count
than is imposed by the size budget. Despite this, the performance seemingly does not
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4.4. Training Behavior

Figure 4.22: Densification behavior characterized by total number of creations and
deletions

Figure 4.23: Pruning stages drastically decrease the number of splats well below the
budget of 412235 primitives
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4. Results

Figure 4.24: PCA of the extended set of summary statistics

suffer. This shows the potential of pruning mechanisms in shrinking the model size. It
also indicates that the model could have benefited from a larger pool of splats, which
exceeds the imposed size budget. These candidate splats could then be pruned until the
desired model size is reached. The problem with this approach is that it is not entirely
deterministic, since pruning does not guarantee that a desired splat budget will eventually
be reached. This insight still opens up an interesting avenue for future research.

4.4.3 Training Statistics Summary
Using Principal Component Analysis (PCA), a number of the curve statistics can be
summarized to make general conclusions about the model training. The different summary
statistics are explained in the appendix in table G.1. Figure 4.24 presents the resulting
biplot of the first two principal components. The plot shows that the methods have
clear differences, even based on the relatively simple summary statistics. Especially
Mini-Splatting, MCMC, and Default are easily separable. EAGLES, Mip-Splatting,
Gaussian-Pro, and Geo-Gaussian are located in a diffuse cluster. The takeaway from
this visualization is that the adjusted methods show clear differences in their training
behavior compared to the baseline.

4.4.4 Insights
To conclude this section, a number of insights about the training statistics are formulated:

• Methods keep exchanging splats and improving performance, despite the introduc-
tion of budgets (see also [BPK24]).
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4.4. Training Behavior

• All methods show characteristic differences in their overall training behavior com-
pared to Default.

• Especially MCMC’s and Mini-Splatting’s overall training behavior is distinctive.

• Mini-Splatting’s pruning behavior can lead to irrecoverable losses in performance
in some circumstances.

• SSIM and PSNR correlation is high for MCMC, Default, and Geo-Gaussian, indi-
cating a balanced trade-off between structure and detail.

• EAGLES shows a slightly lower correlation between SSIM and PSNR in many
instances, hinting at its coarse-to-fine approach.

• In general, MCMC deletes and creates the most splats, despite having only the
opacity reset as a pruning mechanism.

71





CHAPTER 5
Discussion

5.1 Interpretation of Results

The data analysis yields a number of insights about the training and the rankings.
Section 4.4 shows that the methods behave differently from the Default heuristic. The
objective metrics generally favor MCMC, Mini-Splatting, and Default. A problem emerges
when looking at the correlations between different circumstances. Many rankings aren’t
highly correlated, which indicates that different circumstances favor different techniques.

The subjective metrics also paint a complex picture. At first glance, the Borda count
ranks Mip-Splatting, MCMC, and then Mini-Splatting as the best methods. When
considering the SROCC between circumstances, it becomes clear that there are highly
divergent rankings across the evaluation. The commonalities in rankings neither show
trends when looking only at a single size budget nor a single scene.

The potential for different rankings is also reflected when looking at the distribution
in figure 5.1. Mip-Splatting is a consistent measure. MCMC and EAGLES excel in
different circumstances, while showing occasional weak points. Mini-Splatting is a very
inconsistent measure. These tendencies are similar to the ones found by analyzing groups
based on ranking similarity, as done in section 4.1.

So, how can the first research question "Which optimization procedure delivers the best
visual fidelity when the number of splats is constrained?" be answered? To gain a better
understanding of how the rankings came to be, a closer look at the generated models is
essential. The following paragraphs will present some of the visual features of the models
and use this analysis to answer the first research question.
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5. Discussion

Figure 5.1: Overall rank distribution of the chosen methods

5.1.1 Qualitative Analysis
In order to present visual examples, a clear strategy is being followed. To analyze a
method’s performance and its stability, examples from both its best- and worst-ranked
models will be shown. Each example will also be contrasted with another model from the
same scene and size budget, which is either ranked higher or lower than the candidate
model. This replicates the experience study participants had and shows the range of a
technique’s output. The rankings are taken from the JOD scores that can be found in
the appendix in table C.1. All of the discussed renders are displayed in appendix F since
their inclusion here would take up too much space. All images will be referenced at the
point at which they are being discussed in the following paragraphs.

The subjective data analysis highlights four techniques that are of particular interest.
These techniques are Mip-Splatting, MCMC, EAGLES, and Mini-Splatting. Geo-Gaussian
will also be included in order to understand its position as the lowest-ranked technique.

The most consistent method in the subjective rankings is Mip-Splatting. Positively
ranked examples are characterized by enhanced detail in areas, which appear as weak
points in other methods’ splat models (F.1 and F.2). Despite its stability in almost all
circumstances, it also produced a model that is very blurry and plagued by artifacts,
while other models created much better results (F.3 and F.4).
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MCMC is one of the runner-ups after Mip-Splatting. Its potential lies in resolving
far-away detail (F.5 and F.5). It struggles in the room scene, where it produces noisier
surface representations (F.8). Overall, this method is very stable, when considering
qualitative examples. It is the model that generally shows the least amount of floating
artifacts (F.7).

EAGLES shows enhanced performance when it comes to distant details (F.9 and F.10).
These gains are, however, not guaranteed, as the relative performance can also struggle
in certain circumstances (F.11 and F.12). The method is characterized by its relative
stability regarding floating artifacts, though there are instances where it looses out to
MCMC (F.7).

Mini-Splatting performs especially well on the stump scene (F.11 and F.13). Here, the
resolution of distant details and dense foliage is unparalleled. The method also shows
problems, similar to MCMC. Surface representations can be noisy, which is especially
apparent in the room scene (F.14).

Geo-Gaussian is the lowest-ranked method in many of the circumstances. The reasons
for this are apparent when looking at many of the models. It struggles with blurry
regions and distant details (F.15). Some models have issues regarding high-frequency
artifacts (F.16) or larger floating artifacts (F.17). Despite these shortcomings, there is a
circumstance where Geo-Gaussian’s potential is highlighted. In the truck scene at the
lowest size constraint, the technique is ranked second. It performs exceptionally well in
distributing the splats along the geometric details of the scene (F.18).

The subjective analysis shows that there are trends regarding the technique’s performance.
When looking at the model’s actual output, it becomes apparent that there is always an
exception to these trends. This could be due to different reasons. Either the circumstances
are well-chosen and provide diverse challenges, or maybe GS optimization is simply a
noisy and turbulent process that does not always produce reliable results. In any case,
the answer to the first research question is that there are three leading methods: Mip-
Splatting, MCMC, and EAGLES. The performance varies by scene, size budget, and
most likely other latent factors. Overall, MCMC can be seen as the winner, due to its
stability and its subjective performance in the smallest size budget. The lowest size
constraint represents an extreme circumstance. MCMC’s ability to produce high-quality
models even under such strict limitations makes it a premier choice for GS on a budget.

5.1.2 Correlation Interpretation
Section 4.3 shows that the correlation between objective and subjective measures isn’t
always a given. What is surprising, is that some circumstances show relatively clear
correlations, while others show low or even negative ones.

The room scene has the lowest correlations across the board. Figure 5.2 shows an
annotated version of the COLMAP scan of the room scene. It becomes clear that the
cameras are clustered around two distinct points in space. They are located at opposite
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5. Discussion

Figure 5.2: Camera distribution of the room scene

ends of the room and are generally angled towards the other side. These camera locations
do not capture a full 360-degree camera path. This is in stark contrast to the COLMAP
scans of the truck and stump scenes, which can be viewed in the appendix in figures H.1
and H.2. They clearly show camera paths that revolve around a central point, which is
the object of interest.

The evaluation tool uses orbital camera controls, which enable the intuitive rotation
of the view around a central point in the scene. The most straightforward action is to
explore the scene using this rotational approach, as it is bound to the mouse movement.
This orbital control scheme mirrors the camera setup of the stump and truck scenes. The
cameras, which were used for the objective metrics, therefore "see" the same thing as
the survey participants. This would explain, why the two scenes with orbital COLMAP
camera locations generally have a positive correlation.

Research question two is "Do objective and subjective image quality assessment measures
align across different techniques and model size restrictions?". The findings indicate, that
subjective measures align with objective metrics, if the calibrated camera paths mirror
the camera positions experienced by participants. If this is not a given, viewers have to
base their preferences on other indicators, which means that the ratings are affected by
factors, that are likely not in view of test set cameras. Sadly, this research objective can’t
be answered with full confidence. More research into answering this question would be
needed, since this study’s scope is relatively small. That said, other research already shows
a strong correspondence between subjective and objective measures, when the viewing
direction cannot be manipulated by the participants [LWH+24, MRAQ24, XYY+24].
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5.2 Limitations
The primary limitation of this study is its relatively small scale. Only three datasets are
used in the evaluation. While the data was carefully selected to balance scene diversity,
it still restricts the generalizability of the findings. The room scene is a particular outlier,
where correlations between subjective and objective metrics were lower than expected.
The inclusion of the room scene might introduce some skewness in the global rankings.
This impacts the generalizability of the findings to some extent, which means that further
research is needed to confirm the results across a wider range of datasets.

Additionally, the study only relies on within-circumstance rankings, where comparisons
were fixed in terms of dataset and size. While this approach ensured fairness and
consistency, it also had the side effect of amplifying small perceptual differences, which
might be less relevant in a real-world setting. Despite this, the ranking approach was
still the best choice for the microservice-based architecture of the evaluation platform.
Cloud-function runtimes constrain the performance of sampling algorithms like ASAP,
which only function on larger-scale evaluations by running on dedicated hardware.

Another limitation stems from the study design. The evaluation was conducted with a
pool of mostly inexperienced users (see appendix A), meaning their perceptual judgments
may not align with those of domain experts. The evaluation was carried out remotely,
so there was no control over participants’ viewing environments. This includes factors
such as screen quality, ambient lighting, and display settings. These uncontrolled
variables introduce noise into the results and could partially explain inconsistencies in
user preferences.

Despite these constraints, the study still provides valuable insights into model ranking
under constrained budgets. It also accentuates model performance in a real-world setting.
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CHAPTER 6
Conclusion

6.1 Summary
This study investigated the visual fidelity of GS optimization methods under clear model
size constraints. Existing approaches primarily relied on a hard cap that abruptly halted
densification, which is a suboptimal approach for introducing model size restrictions. Six
novel extensions to existing methods are introduced, and implementations are provided
in appendix I. This contribution is significant and is similar to Bulò et al.’s Revising
Densification [BPK24].

A comparative evaluation using three datasets and three size budgets was conducted.
It contrasts objective metrics with subjective user preferences, gathered with a custom
evaluation tool. The results indicate that dataset viewing paths and camera controls need
to be aligned in order to retrieve meaningful correlations between subjective judgments
and objective quality metrics. This means that viewers should experience the same
perspectives as the camera path used during model generation and evaluation.

The best models are Mip-Splatting, EAGLES, and MCMC. Mip-Splatting consistently
achieves the high performances across all circumstances. It demonstrates good stability
and perceptual quality. EAGLES and MCMC also produced high-quality results, oc-
casionally outperforming Mip-Splatting in specific scenarios. The qualitative analysis
indicates that the two methods are also less artifact-prone than the others. MCMC’s
subjective performance for the low and medium size budgets is particularly noteworthy,
and it therefore presents the best choice for GS on a budget.

6.2 Reflection and Future Work
Promising improvements could be achieved by developing hybrid optimization techniques,
which leverage the strengths of different approaches. An example would be the extension
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of MCMC with EAGLES-style pruning, while incorporating a stochastic perspective to
avoid discarding important structural details. This could unlock special synergies, by
preserving splats that are important on a visual or structural level, while removing those
that are redundant or too far away from the scene’s view center. An avenue to explore
could also be to introduce an elimination pool, like in He et al.’s GVGEN [HCP+24].
This could stabilize pruning by reconsidering previously removed splats.

Mip-Splatting’s, or more precisely GOF’s splat splitting criterion, allows for refining
blurry regions. It represents a general extension that showed great promise in this study.
MCMC and EAGLES could be extended with this criterion, which could unlock even
better fidelity and quicker convergence.

Another possibility could be to adapt the optimization heuristic based on dataset-specific
characteristics. Geo-Gaussian and Gaussian-Pro assume clear object geometries. This is
not applicable in all scenes. Results on the stump dataset indicate that applying these
assumptions to more unstructured, organic environments is suboptimal. Future work
could enable the constraints only on scenes that actually contain structured geometric
details.

EAGLES showed great promise in the subjective evaluation. When analyzing its training
behavior, it becomes clear that the method creates significatly smaller models as is
enforced by the splat limit. It does this without losing performance. This indicates that
the method could benefit from a larger pool of splats, which could be pruned until the
desired model size is reached. This would have to be done in a deterministic way such
that the desired splat budget is actually reached and no geometric detail is lost. Maybe a
merging approach similar to Kerbl et al.’s hierarchical LOD [KMK+24] technique would
be a good fit for this task.

The evaluation approach used in this work could be extended and improved to address its
current limitations. Expanding the dataset variety, incorporating expert reviewers, and
controlled lab conditions could enhance the reliability of the subjective rankings. In order
to create better alignment between the cameras in the data and the views experienced
by participants, users could be shown pre-defined camera paths, followed by the ability
to take control and explore areas of interest.

New studies would benefit from cross-circumstance pairwise comparisons. Active sampling
techniques like ASAP could be used to maintain a manageable study size. Implementing
this effectively in a web-based setting was sadly not possible with the resources of this
study.

For me personally, this work represents a great learning experience. Experimenting with
different heuristic approaches provided deeper insights into how model parameters evolve
under different constraints. By actually seeing the techniques’ mechanics translate into
concrete 3D structures, I gained a better understanding of machine learning more broadly.
It’s very satisfying to see the abstract concepts described in the literature play out in
front of one’s eyes.
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APPENDIX A
Survey Demographic

A total of 64 people were part of the evaluation. The demographic form was placed
at the end of the evaluation, and only 33 participants made valid entries. This is not
an unintended consequence, as it was left to the user’s discretion whether they felt
comfortable sharing their personal information. The following paragraphs give a brief
overview of the gathered data. It is important to keep in mind that only a subset of the
entire population is represented.

The age range of the participants was between 12 and 61, with a median age of 27. An
overall distribution of the age can be seen in figure A.1. Most participants were male,
with only 24.2% female. Users are largely from STEM disciplines. The majority are Data

Figure A.1: Age range of the survey participants
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A. Survey Demographic

Figure A.2: Ratios of survey demographic

Scientists, Engineers, Biologists, and other IT-related professionals. 24.2% are students
and or belong to other uncategorized occupations. In the self-assessed experience level
with 3D software, the vast majority of people reported that they had intermediate or no
experience. Only three percent classified themselves as experts. Seven participants are
myopic, and none are colorblind. For a visualization of the demographics, view figure A.2.

The demographics are clearly skewed towards males, who are in some sort of STEM
discipline. Most participants aren’t 3D experts, which means that they are likely new to
the topic of IQA for 3D models. There is a low level of visual impairment in the study
group.
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B. Methodological Details

Algorithm B.1: The objective evaluation’s algorithm to compute the metrics
for every model, scene and size

Data: A set of datasets: {"truck", "room", "stump"}
A set of methods: {"default", "eagles", "gaussian-pro", "geo-gaussian", "mcmc",
"mini-splatting", "mip-splatting"}
A set of sizes: {"low", "medium", "high"}
Number of perturbations: Np

Result: A structured table of computed metrics
1 Disable gradient computation
2 Initialize an empty list records
3 foreach dataset in available datasets do
4 Load test split from dataset
5 Create Np new camera poses from existing cameras
6 foreach method in available methods do
7 foreach size in available sizes do
8 Load model corresponding to (method, size, dataset)
9 foreach view index in test split do

10 Retrieve camera pose, ground-truth image, alpha mask, and
intrinsic matrix

11 Compute background image
12 Blend ground-truth image with background
13 Render output image using the model
14 Compute PSNR, SSIM, and LPIPS metrics
15 Compute BRISQUE score
16 Initialize a record storing the computed metrics
17 foreach perturbed index in Np do
18 Retrieve perturbed camera pose
19 Render output image with perturbed camera pose
20 Compute BRISQUE score for perturbed image
21 Store BRISQUE score in the record
22 end
23 Append record to records

24 end
25 end
26 end
27 end
28 return records
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Figure C.1: Subjective rankings by size aggregated by Borda count using 20-Fold Cross-
Validation, higher is better
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Technique Count
Mip-Splatting 46
MCMC 43
Mini-Splatting 38
EAGLES 37
Gaussian-Pro 35
Default 34
Geo-Gaussian 19

Table C.2: Borda-count aggregation of JOD values as global ranking

Figure C.2: Rank-correlation based on JOD
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Figure D.1: Development of objective rankings aggregated by Borda count across the
size budgets, higher is better
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D. Additional Objective Results
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D. Additional Objective Results

Technique SSIM PSNR LPIPS BRISQUE
MCMC 54 56 51 33
Default 47 30 42 39
Mini-Splatting 45 41 49 40
Mip-Splatting 36 37 35 39
EAGLES 30 35 33 37
Gaussian-Pro 29 40 31 35
Geo-Gaussian 11 13 11 29

Table D.5: Borda-count aggregation for objective metrics
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APPENDIX E
Additional Joint Analysis

95



E. Additional Joint Analysis

Figure E.1: Correlation between objective measures and JOD based on 20-Fold Cross-
Validation, lower is better
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APPENDIX F
Qualitative Examples

Figure F.1: Mip-Splatting’s relative visual performance for the room scene and the low
size budget
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F. Qualitative Examples

Figure F.2: Mip-Splatting’s relative visual performance for the stump scene and the
medium size budget

Figure F.3: Mip-Splatting’s relative visual performance for the truck and the low size
budget
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Figure F.4: Mip-Splatting’s relative visual performance for the truck and the low size
budget

Figure F.5: MCMC’s relative visual performance for the truck and the medium size
budget
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F. Qualitative Examples

Figure F.6: MCMC’s relative visual performance for the truck and the medium size
budget

Figure F.7: MCMC’s relative visual performance for the stump scene and the low size
budget
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Figure F.8: MCMC’s relative visual performance for the room scene and the medium
size budget

Figure F.9: MCMC’s relative visual performance for the truck scene and the high size
budget
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F. Qualitative Examples

Figure F.10: EAGLES’s relative visual performance for the room scene and the medium
size budget

Figure F.11: EAGLES’s relative visual performance for the stump scene and the medium
size budget
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Figure F.12: EAGLES’s relative visual performance for the room scene and the low size
budget

Figure F.13: Mini-Splatting’s relative visual performance for the stump scene and the
high size budget
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F. Qualitative Examples

Figure F.14: Mini-Splatting’s relative visual performance for the room scene and the
medium size budget

Figure F.15: Geo-Gaussian’s relative visual performance for the stump scene and the
high size budget
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Figure F.16: Geo-Gaussian’s relative visual performance for the truck scene and the high
size budget

Figure F.17: Geo-Gaussian’s relative visual performance for the stump scene and the low
size budget

105



F. Qualitative Examples

Figure F.18: Geo-Gaussian’s relative visual performance for the truck scene and the low
size budget
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APPENDIX G
Additional Training Statistics
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G. Additional Training Statistics

Figure G.1: Examples of the trained 5th-degree polynomial models to meansure the
smoothness of curves
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Name Description

Poly-Model R2 Test
SSIM

A measure of the predictability of the Test SSIM. A 5th-
degree polynomial model is fitted to the SSIM curve. The
R2 represents how much of the variation in the SSIM is
explained by the smooth curve (see also G.1)

Entropy of Diff. Created A measure of the uncertainty of splat creations measured
by the entropy of differences [Nar14] in the created splat
time series. It represents the complexity of the time series
and how predictable its changes are.

Total Creations The absolute number of splat creations that occurred
throughout the training process.

Poly-Model RMSE Cre-
ated

Similar to the R2 measure regarding the SSIM. The RMSE
is used instead, in order to measure the magnitude of error,
rather than just the approximation by the smooth curve.

Test PSNR 2nd Deriva-
tive

A measure of smoothness of the test set PSNR curve. The
second derivative is approximated for every point in the time
series using the formula x′′

t = xt−1 − 2xt + xt+1. This value
is averaged across the timeseries. Lower values indicate a
smoother curve.

AUC Num. Gaussians A measure of the usage of the splat budget. The area under
the number of splats curve is estimated and normalized by
the total possible area given the splat budget.

Entropy of Diff. PSNR A measure of the uncertainty of the test PSNR. Similar to
the entropy of differences for the created curve.

Table G.1: Curve statistics used in the overall behavior summary
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G. Additional Training Statistics

Figure G.2: Area under the number of Gaussians curve
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APPENDIX H
COLMAP Scans

Figure H.1: Camera positions of the stump scene’s COLMAP scan
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H. COLMAP Scans

Figure H.2: Camera positions of the truck scene’s COLMAP scan
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APPENDIX I
Code

This chapter outlines the code that was produced to achieve the goals of this study. It
includes the adjusted optimization procedures, the evaluation tool, the data analysis, the
training analytics and the demographic analysis.

Optimization Procedures

The implementations of Default and MCMC are based on the gsplat framework. They
are implemented in the same repository, which can be found under the following link:
https://github.com/PaulErpen/gsplat-trainer. The other methods all have
their own repository, which were forked from the original code release:

• Mip-Splatting: https://github.com/PaulErpen/mip-splatting-cappe
d

• Mini-Splatting: https://github.com/PaulErpen/mini-splatting-cap
ped

• Geo-Gaussian: https://github.com/PaulErpen/GeoGaussian-capped

• Gaussian-Pro: https://github.com/PaulErpen/GaussianPro-capped

• EAGLES: https://github.com/PaulErpen/efficientgaussian-cap
ped

Evaluation Related The evaluation tool is comprised of the frontend-application, the
cloud functions and database management scripts. The source code can be found here:
https://github.com/PaulErpen/eval-viewer.

The training analytics code pulls the statistics from the logging interface that were created
during model optimization and visualizes them. It can be found under the following
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I. Code

link: https://github.com/PaulErpen/wandb-data-analysis. Its results are
displayed in section 4.4 and appendix G.

The demographic analysis is laid out in appendix A. Its visualizations and data are
sourced from the following repository: https://github.com/PaulErpen/user-d
ata-analysis.

The figures and tables presented in sections 4.2, 4.1 and 4.3 as well as appendices D, C
and E are created using the main data analysis codebase. It can be found under the
following link: https://github.com/PaulErpen/final-data-analysis.
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Overview of Generative AI Tools
Used

The spellchecking and grammar correction for this work was done with the help of
ChatGPT. OpenAI does not directly disclose which model is being used, but it is either
GPT-4o or GPT-4o Mini. The entire spellcheck and grammar correction was conducted
on the 23rd of March, 2025. Every single paragraph of this work was passed to the
chatbot with the following prompt pasted in front of the respective paragraph:

Correct spelling and grammar mistakes in the following excerpt from my thesis. This is a
LaTeX document, so treat it as a piece of code. Leave the phrasing and word choice as is,
if possible. Do not change any commands or indents.
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