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Kurzfassung

Die jüngsten Fortschritte im Bereich großer Sprachmodelle, Large Language Models
(LLMs), haben deren herausragende Fähigkeiten im Verstehen, Interpretieren und Gene-
rieren von Sprache eindrucksvoll unter Beweis gestellt. Beim Abfragen von Datenbanken
in domänenspezifische Sprachen wie der Structured Query Language (SQL), die speziell
für relationale Datenbanken entwickelt wurden, können Fehler auftreten, die durch Pro-
bleme wie Rauschen in den Daten, inkonsistente Formate oder fehlende Standardisierung
bedingt sind. LLMs bieten das Potenzial, diese Herausforderungen zu überwinden. In
dieser Arbeit werden mehrere Pipelines vorgeschlagen, die die Interpretationsfähigkeit
natürlicher Sprache durch LLMs nutzen, um den ursprünglichen Query zu modifizieren
und somit das Ergebnis zu verändern. Dies wird erreicht, indem die ursprüngliche Abfrage
angepasst und bei Bedarf zusätzliche Übersetzungstabellen integriert werden.

Zunächst entwerfen wir einen ersten Testdatensatz, der potenzielle Herausforderun-
gen exemplarisch darstellt und als Grundlage für nachfolgende Experimente dient. Die
Experimente werden mithilfe dieser Pipelines durchgeführt und demonstrieren deren
Leistungsfähigkeit im Umgang mit einer Vielzahl von SQL-Vergleichsoperatoren. Darüber
hinaus werden die vorgeschlagenen Methoden mit dem traditionellen Ansatz verglichen,
bei dem ausschließlich die ursprüngliche, unveränderte Abfrage ausgeführt wird. Dieser
Vergleich zeigt eine deutliche Verbesserung zentraler Leistungskennzahlen um bis zu 50%
zugunsten der entwickelten Pipeline.

Zudem identifizieren wir potenzielle Fehlerquellen und zeigen, dass Abweichungen von
korrekten Ergebnissen in mehreren Phasen der Pipeline auftreten können, insbesondere
beim semantischen Vergleich sowie bei der Modifikation der Abfragen. Abschließend
evaluieren wir den vorgeschlagenen Ansatz anhand zweier größerer Testdatensätze. Die
Ergebnisse belegen eine gute Leistung hinsichtlich dieser wichtigen Metriken. Darüber
hinaus werden die drei implementierten Ansätze—Zero-Shot Prompting, Embedding-Only
und Two-Step—miteinander verglichen, wobei sowohl Leistungsunterschiede als auch
potenzielle Zielkonflikte hinsichtlich Genauigkeit und Ausführungszeit herausgearbeitet
werden.

Schließlich fassen wir die zentralen Erkenntnisse dieser Arbeit zusammen und skizzieren
vielversprechende Ansätze für zukünftige Forschung in diesem Bereich.
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Abstract

Large Language Models (LLMs) have shown remarkable capabilities in understanding
and generating natural language. However, when querying databases in domain-specific
languages, such as the Structured Query Language (SQL), designed specifically for
relational databases, errors can arise due to issues such as noisy data, inconsistent
formats, or lack of standardization. LLMs have the potential to mitigate these challenges.
This work proposes several query evaluation pipelines that leverage the semantic strengths
of LLMs to modify query outputs to account for residual noise. This is accomplished by
modifying the original query and, when applicable, incorporating additional translation
tables to enhance accuracy.

First, we design an initial test dataset that exemplifies potential issues, which will serve as
a foundation for experimentation. Experiments are conducted using a LLM, showcasing
its capability across a range of SQL comparison operators. Additionally, these methods
are evaluated against the traditional baseline of executing the original, unmodified query,
revealing a strong improvement in key performance metrics.

We also identify potential sources of errors and show that deviations from correct results
can occur at various stages of the chosen pipeline, including the semantic comparison
and the modification of the queries. Finally, we evaluate the proposed approach on two
larger datasets. The results indicate good performance across key performance indica-
tors. Moreover, the evaluation compares the three implemented approaches—zero-shot
prompting, embedding-only, and two-step—and highlights their performance differences,
including potential trade-offs in terms of both key performance metrics and execution
efficiency.

In conclusion, we synthesize the key findings of this work and outline promising directions
for future research in the domain.
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CHAPTER 1
Introduction

1.1 Motivation

In many practical use cases, data gathered from diverse sources, such as web crawls,
may contain inconsistencies or noise [DBES09]. In the domain of Natural Language
Processing (NLP) some common noise includes misaligned sentences, misordered words,
wrong language, untranslated sentences and short segments [KK18]. Consequently, such
incomplete, inconsistent, or erroneous data contained in a database may result in queries
yielding unintended outcomes, even when the queries themselves are syntactically and
logically correct.

Let us consider the exemplary scenario in which an original user is querying a database
for all dogs in a potential column of animals.as shown in Table 1.1. However, in the
creation of the database, datasets from different sources could have been combined
together without accounting for different languages. Hence, a potential query written
in English and filtering for “dog” might miss all additional records written in another
language. Therefore, the resulting output might not be complete and not aligned with
user intent, who wanted to retrieve all records associated with a dog.

Table 1.1: Language Inconsistency in Category Column

animalname category owner_id
bill chien 1
diego chat 2
chris dog 3
juan perro 4
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1. Introduction

1.2 Problem Statement
Traditional database systems store structured information within predefined sachems,
enabling efficient querying and data retrieval. These systems operate according to
formalized rules and languages designed for database querying, such as the Structured
Query Language (SQL), ensuring deterministic and logically consistent results [KE09].
Consequently, when confronted with ambiguous or imprecise data, traditional databases
may return incomplete results or fail to retrieve relevant information, limiting their
adaptability in real-world applications [ZP97].

Additionally, Large Language Models (LLMs) have undergone significant progress in
recent years. LLMs are trained on massive datasets spanning different data formats,
learning to predict the next token in a sequence based on the context of preceding tokens.
Their ability to comprehend, interpret, and generate various forms of language is currently
influencing numerous fields in remarkable ways [MMN+24]. The output of a LLM is also
highly dependent on the input prompt, giving rise to the field of prompt engineering
[SSS+24].

In order to combine the strengths of symbolic systems and statistical learning models
such as LLMs, hybrid reasoning approaches have emerged, resulting in the field of
neurosymbolic AI [GL20].

1.2.1 Research Gap
LLMs have shown considerable strengths in natural language understanding, contextual
interpretation, and multilingual processing [MMN+24]. Despite these advances, their
potential in query processing, particularly for improving the correctness of query outputs
in cases of residual noise, such the example scenario outlined in the Section 1.1, remains
underexplored. Systems like Chat-DB [HFD+23] or Dater[YHY+23] enhance the rea-
soning capabilities of a LLM on a database by facilitating intermediate interactions via
queries to the database. However, to the best of our knowledge, there is no existing
pipeline that leverages a LLM in a neurosymbolic reasoning setting to resolve noise on a
data level. Such a neurosymbolic reasoner is illustrated in Figure 1.1. This a pipeline
would aim to match entities based on their semantic meaning, rather than relying on
traditional syntactic matching in SQL queries. This gap in the current research highlights
the opportunity to enhance SQL query processing by aligning user intent with more
accurate, semantically-informed data retrieval. This work aims to address the issue of
noise leverage both a LLM and SQL to design and implement such a pipeline for query
processing, addressing the gap in current research.

1.3 Research Questions
Based on the stated research gap we formulate the resulting research questions. In the
following, we refer to token cost as the number of tokens processed across all LLM inputs,
outputs, and function calls, which directly impacts computational cost and latency. We
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1.4. Main Contributions

Figure 1.1: Neurosymbolic Reasoner

refer to soft binding as a binding procedure designed for query answering, where variables
are bound based on their semantic meaning rather than strict syntactic matching, utilizing
a LLM. This contrasts with hard binding, where variables are only linked when there is
an exact, literal match. The relevant Key Performance Indicators examined in this work
are precision, recall and F1-score. Going on, the research questions guiding this thesis
are the following.

• Research Question 1: How do LLM-based softening techniques perform in terms
of relevant KPIs compared to approaches relying on strict binding?

• Research Question 2: What is the computational and token cost of the LLM-
integrated pipeline compared to a approach with strict binding and how does this
affect the query execution time?

• Research Question 3: How do these softening techniques perform for relevant
KPIs as well as computational cost when applied to pre-existing datasets for entity
matching and classification?

1.4 Main Contributions
The challenge addressed in this work is to leverage the semantic capabilities of a LLM to
return intended query results in the presence of imperfect or inconsistent data. This thesis
investigates LLM-powered query answering by integrating the semantic understanding
of LLM into SQL-based data retrieval. To achieve this, we develop a query processing
pipeline that builds on the parametric knowledge embedded within a LLM, enabling
robust handling of unstructured, ambiguous, or incomplete data during query execution.

3



1. Introduction

For this purpose, a binding procedure based on the concept of soft binding [BBB+24],
tailored for query answering, is designed, implemented, and evaluated. This procedure
utilizes a LLM to bind variables based on their semantic meaning, rather than syntactic
matching - resulting in the soft binding procedure of the pipeline.

The main contributions of the presented work are the following:

1. This thesis presents a method for translating predicate calculus expressions into
executable SQL queries, enabling noise-aware query processing over databases. The
proposed approach leverages the semantic capabilities of a LLM to address residual
noise and enhance the robustness of the query execution process.

2. A test dataset designed for development and evaluation, incorporating various
forms of residual noise. The performance of the pipeline is partly assessed using
this dataset.

3. A comprehensive analysis is conducted on two external datasets, considering pre-
cision, recall, F1-score, computational cost, and BLEU metrics to evaluate the
pipeline’s effectiveness.

1.5 Methodology
In this work, we adopt Design Science as the methodology to guide both the research
process and the development of artifacts, with the aim of addressing the identified problem
and achieving the outlined objectives.

1. Literature Review This chapter provides a literature review covering reasoning,
neurosymbolic integration of LLMs with Knowledge Graphs (KGs), LLM interac-
tion with structured data, prompting techniques, Text-to-SQL approaches, query
expansion, data integration, entity matching, and blocking techniques.

2. Pipeline Design In a next step, we discuss and implement a query processing
pipeline designed to mitigate the impact of data noise on query results in relational
databases. The pipeline employs a LLM to analyze database content, identify
noise sources, and refine query outputs. We create two different types of pipelines
tailored towards different use-cases.

3. Evaluation Going on, we outline initial considerations, the KPIs used and explain
the design of the initial test dataset. In a next step, we evaluate the effectiveness
of the pipeline leveraging a product classification and an entity matching dataset.

4. Limitations and Discussion Next, we address the limitations of the approach
and conduct the discussion.

5. Conclusion and Future Work In a final step, we draw the conclusion and also
suggests future directions of research.

4



1.6. Structure of the Thesis

1.6 Structure of the Thesis
The first chapter introduces the research topic, outlining its significance and objectives.
A comprehensive review of the state of the art follows in Chapter 2, examining existing
methodologies and relevant approaches in the field. Next, Chapter 3 explores the
implemented pipeline in detail, discussing its design and functionality. The creation of
a test dataset is the focus of Chapter 4, along with the identification of cases where
adjustments to the binding procedure are necessary. Additionally, this chapter evaluates
the implemented pipeline on the test dataset and two external datasets, assessing the
results through different metrics. Limitations of the chosen approaches are explored
in Chapter 5, accompanied by a critical discussion of the findings. Finally, Chapter 6
concludes the study by summarizing key insights and offering perspectives for future
research.

5





CHAPTER 2
Literature Review

The following chapter gives an overview of the related work to this thesis. First of all,
the field of reasoning is touched upon in Chapter 2.1. Chapter 2.2 discusses the different
neurosymbolic approaches of integrating LLMs with KGs. The interaction of a LLM with
structured data, Text-to-SQL approaches and prompting techniques are evaluated in
Chapter 2.3. Next, Chapter 2.4 focuses on query expansion, while Chapter 2.5 elaborates
on data integration, entity matching, and blocking.

2.1 Reasoning and Soft-Chase Algorithm
The development of Knowledge Graphs (KGs) is linked to the necessity of organizing
data and knowledge into a structured format. It was defined by Marchi et al. [MM74] in
1974 as “A mathematical structure with vertices as knowledge units connected by edges
that represent the prerequisite relation”.

Furthermore, it is possible to define rules inside of the KG. Often used in the context of
KGs are ontologies, which are defined by Studer et al. as a “formal, explicit specification
of a shared conceptualization” [SBF98]. They allow to organize the entities inside a KG
into different concepts with properties alongside explicitly defined rules. This structure
paves the road for reasoning with knowledge and generating new facts.

The combination of data D with definitions of a set of rules Σ in declarative language
like for example Vadalog [BSG18] in a KG results in a Knowledge Representation and
Reasoning (KRR) system [Bra88]. Their advantage is the ability to formally represent and
reason over both explicit data and implicit knowledge encoded in the rules. These systems
have been applied in various fields, for example in finance, in order to reason about
company takeovers [BBB+22] or in the field of Genomics Problems to understand the
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2. Literature Review

evolution of SARS-CoV-2 variants [ABBC22]. In rule-based languages such as Vadalog,
the application of logical rules is often operationalized using the chase algorithm. At its
core it enriches the database by applying a set of rules Σ to the available data D to enrich
the data. This process involves applying dependencies, such as functional dependencies
(FDs) or join dependencies (JDs), until a fix-point is reached[AHV95]. Due to the
advancement of Artificial Intelligence (AI) there have been a variety of neurosymbolic
systems, combining KRR systems with AI [GL20]. One area of research within this
context is the extension of the chase algorithm such as the Soft Chase 2.1 Algorithm
[BBB+24]. It introduces a neurosymbolic approach, combining the robustness of KRR
systems with the flexibility of LLMs to enhance the adaptability of ontological reasoning.
The innovation of the soft chase particular lies in the identification of bindings through
a LLM based on natural language input facts and their verification. In the Soft Chase
Algorithm 2.1, natural language statements are converted into potential mappings in line
6, which are subsequently validated in line 12. Thus, unstructured data and external
data can be incorporated into the processing pipeline without abandoning the reasoning
engine. Consequently, the result is more interpretable and is less prone to hallucinations
[XJK24, HYM+24], particularly in comparison to approaches that rely solely on the LLM
without the support of a structured reasoning component.

2.2 LLMs and Knowledge Graphs
Several methods exist for integrating LLMs with KGs. Generally three different ap-
proaches can be identified: KG-enhanced LLMs , where KGs can be used for pre-training
[SMH+20] or to inject knowledge [YZD+22], LLM-augmented KGs, [KPGM20], where a
LLM can be used to populate a KG, and Synergized LLMs and KGs, where KGs can be
used to inject knowledge as context to a LLM [DHX+22].

To improve the performance of a LLM or a Pretrained Language Model (PLM) on
domain-specific tasks, such as Question Answering (QA), it is essential to incorporate
structured knowledge. One common source of such knowledge is a KG. In LLMs the
deeper layers encode the local syntax and semantic meaning, while higher layers focus
more on the complex semantic relationships [TDP19, CKLM19]. Therefore, frequently
fine-tuning approaches are used to infuse domain-specific knowledge.

For QA based on text, a temporary KG can be constructed from the text, allowing
relevant facts to be retrieved for specific questions. This enables the construction of
information-rich prompts, mitigating the limitations of finite context windows in Large
Language Models (LLMs) [ANC+22]. The SKILL method [MDAJ22] enhances closed-
book QA by pre-training T5 [RSR+19] directly on knowledge graph triples, achieving
performance comparable to models trained on natural language sentences. Building on
the SKILL method, the KITLM framework [AGAB23] makes use of a T5-pretrained
model for multi-hop question answering using pre-existing triples from a KG. Also,
fine-tuning a LLM can be performed on a database leveraging the database itself, the
intensional definitions and the domain glossary [BBC+23]. By the help of an ontological

8



2.2. LLMs and Knowledge Graphs

Algorithm 2.1: Soft Chase Procedure
Input : D, Σ, G, model
Output : Σ(D)

1 σ(D) ← D
2 while VADALOG.hasNext() do
3 σ, i ← VADALOG.next();
4 imappings, attempts ← ∅, 0;
5 if LINEAR(σ) then
6 imappings ← model.bindLinear(σ, i);
7 end
8 else if JOIN(σ) then
9 imappings ← model.bindAndMatchJoin(σ, i);

10 end
11 while attempts < LIMIT do
12 feedback ← validate(imappings, model);
13 if feedback == "OK" then
14 break;
15 end
16 else
17 imappings, attempts ← ∅, attempts + 1;
18 if attempts < LIMIT then
19 imappings ← model.refineMappings(σ, i, feedback);
20 end
21 end
22 end
23 if imappings ̸= 0 then
24 i′.logic ← VADALOG.apply(σ, imappings);
25 i′.metadata ← storeMetadata(imappings);
26 i′.nl ← verbalize(i′, G);
27 if model.checkTermination(Σ(D), i′.nl) then
28 Σ(D) ← Σ(D) ∪ i′;
29 end
30 end
31 end
32 return Σ(D)

reasoner and applying the chase these inputs are combined to a verbalized plan leading to
question-response pairs, which are used to fine-tune the LLM. This procedure constituted
a minor improvement over the general purpose LLM.

Another approach to fine-tuning LLMs involves verbalizing ontologies into text and

9



2. Literature Review

training the model using a contrastive learning framework [RN24], which involves positive
and negative pairs of data. This method showed notable improvements in sentence
similarity tasks for domain-specific models, though gains were smaller for more advanced
LLMs.

There are also approaches leveraging a Graph Neural Network (GNN) [ZCH+20], which is
a neural network architecture designed to process graph-structured data. The QA-GNN
[YRB+21] constructs a joint graph through connecting the given query answering context
with the KG, using relevance scoring and then designing a GNN module for reasoning.
GreaseLM [ZBY+22] combines a LLM with information from a KG using a GNN, which
helps the model better handle complex language features like negation or uncertainty.

A structure reasoning skill can be embedded into the LLM by leveraging the framework
for Unifying Structure Reasoning [WWX+23], which uses a PLM. Through geometric
embedding-based methods, representations of entities and relations from text are con-
structed by mapping them to geometric shapes in a representation space. Then, during
pre-training, structure-aware language representations are learned and fine-tuned for
complex reasoning tasks.

However, there is evidence suggesting that a PLM lacks general deduction capabilities.
Yuan et al. [YHV+23] show that PLMs are prone to forgetting previously acquired knowl-
edge during fine-tuning and often fail to effectively capture the logic rules embedded in the
fine-tuning corpus. To overcome this limitation, a translation-based approach that lever-
ages existing solvers and tools constitutes a sound alternative. LOGIC-LM [PAWW23]
combines a LLM with the symbolic reasoner for the areas of Logic Programming, First-
order Logic, Constraint Optimization and SMT Solver. The query is transformed into the
target formalism, processed using an appropriate solver, and subsequently mapped back
to the original representation. The findings demonstrate that Logic-LM outperformed
standard LLMs and also the Chain-of-Thought (CoT)-reasoning[WWS+22].

2.3 Text-to-SQL, Prompting and LLM-Based Interaction
with Databases

In NLP, zero-shot learning refers to a model’s ability to perform tasks without receiving
any task-specific training examples. Instead, the model uses its pre-trained knowledge
to generalize and make predictions on unseen tasks or classes [KGR+22]. On the other
hand, few-shot learning involves providing the model with a limited number of examples
to guide task performance. These examples are typically presented within a prompt, a
structured input that includes natural language instructions and illustrative instances,
to contextualize the task for the model. There is evidence indicating that LLMs can
produce decent results relying exclusively on such few-shot demonstrations [BMR+20].

Text-to-SQL refers to the task of automatically translating natural language questions
into SQL queries, enabling non-technical users to retrieve information from relational

10



2.3. Text-to-SQL, Prompting and LLM-Based Interaction with Databases

databases without needing to know the SQL language. A common method relies on
encoder-decoder architectures, such as the Seq2Seq model[SVL14]. In these systems, the
natural language question and the table schema are encoded and used as input, while the
decoder generates the corresponding SQL query. Two notable examples include Seq2SQL
[ZXS17], which enhances the basic Seq2Seq model by incorporating reinforcement learning
or the approach developed by Iyer et al. [IKC+17] incorporating user feedback.

Additionally, there are sketch-based methods. These approaches in Text-to-SQL involve
decomposing SQL query generation into structured components, enabling more inter-
pretable and modular models. Two main contributions include SQLNet [XLS17], which
employs a dependency graph to predict SQL components, and IRNet[GZG+19], which
introduces an intermediate representation.

Further there are various approaches for integrating LLMs with databases, often leveraging
a Text-to-SQL methodology. For example, DIN-SQL [PR23] decomposes the SQL query
generation process into multiple sub-steps, with the results being combined in the final
step. This approach leverages techniques such as CoT prompting [WWS+22], which
guides the model through a series of reasoning steps using multiple prompts, and least-to-
most prompting [ZSH+22], where problems are broken down into smaller subproblems and
solved incrementally. TAPEX[LCG+21] uses a pre-training approach where the training is
based on SQL queries and their execution results. Furthermore, KB-BINDER [LMZ+23]
is a query answering framework over diverse datasets generating logical forms using a
LLM and then binding the entity and the relation. Nan et al. [NZZ+23] demonstrate the
effectiveness of different prompt design strategies and show that using both similar and
diverse prompts for demonstration leads to improved results. Going beyond the Text-to-
SQL approach is the Chain-of-Table approach [WZL+24], incorporating the structure of
the table inside the reasoning chain. Using CoT-Reasoning and 1-shot demonstration,
without finetuning, LLMs can match the performance of pre-trained architecture like
GraPPa [YWL+20] on datasets like WikiTableQuestions [Che22]. However, performance
is still not satisfactory and can’t substitute symbolic models. Moreover the performance
decreases for bigger table inputs. Furthermore, there is a hybrid approach like Dater
[YHY+23], where a LLM is used as a decomposer to generate relevant sub-tables and
intermediate SQL-queries, whose results are given to a LLM to generate the final answer.

There is the potential to automatically enhance the database with data inferred from the
LLM. OmniscientDB [UNB23] integrates LLMs within databases, allowing users to query
both explicit data and implicit parametric knowledge of the LLM using virtual tables.
These virtual tables are treated like regular tables, enabling all according operations.

A framework for QA with structured data is StructGPT [JZD+23]. It introduces an
integrated framework for QA for multiple types of structured data, namely KGs, tables
and databases. For a table, the pipeline consists in extracting the table names, their
columns and a relevant sub-tables. In a next step, the information is invoked and
linearized and finally a LLM generation step occurs. Furthermore, an implementation
like DB-GPT [XJS+23] includes a conversational agent that enables users to interact
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with the system through natural language, enabling intuitive and efficient access to data
analytics.

2.4 Query Expansion

Query expansion is a technique that enhances the query terms in a retrieval system
by incorporating similar terms frequently found in a set of relevant documents. This
process helps capture the user’s intent more accurately by adding relevant terms [CR12].
The initial query terms are expanded with the aim to improve the recall of the system
while not degrading the precision. Initially, Automatic query expansion (AQE) was
introduced by leveraging the concept of relevance and designing a Probabilistic Indexing
technique, which assigns a numerical estimate of relevance to each document with respect
to a given query, thereby enabling the ranking of documents based on their estimated
relevance[MK60].

A variety of approaches have been developed to implement query expansion. One such
approach involves the use of lexical knowledge bases, which are structured repositories of
semantically and lexically related terms constructed around a word [GEKM16]. In this
approach, the original query terms are expanded by incorporating lexically related terms
derived from the knowledge base[Voo94].

Relevance Feedback (RF) is an iterative process that refines search results by incorporating
user feedback on retrieved documents to dynamically expand the initial query. By
leveraging user feedback on retrieved documents, it iteratively improves the retrieval
process [Roc71]. The idea of RF can be expanded to Psuedo-Relevance Feedback (PRF)
to incorporate implicit feedback by the user by assuming that the top-ranked documents
are relevant [SB97].

As LLMs have advanced, they have been increasingly applied to query expansion tasks
by fine-tuning or modifying training procedures. Imani et al. [IVMS18] utilize a neural
classifier to predict the usefulness of candidate expansion terms based on word embeddings.
Similarly, Zhang et al.[ZHH+20] leverage BERT to select contextually relevant text chunks
from top-ranked documents for query expansion, thereby improving document re-ranking
performance. Furthermore, also fine-tuned, open-source LLMs can be leveraged for
query expansion without any training steps and therefore decreasing the resource need
[WBZ+21]. Going on, query expansion can be implemented making use of few-shot
demonstration or CoT on natural language queries investigating a variety of prompt
templates [JZQ+23], showing that LLM-based approach combined with CoT lead to
a superior result. Furthermore, Query2doc [WYW23] leverages a LLM to generate a
pseudo-document followed by a retrieval stage for query expansion. Another approach to
leveraging a general-purpose LLM via few-shot prompting for information retrieval, is
to use OpenAI’s GPT-2 to expand a given query by generating artificial texts for query
expansion [Cla21].
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2.5 Data Integration, Entity Matching and Blocking
Data integration addresses the challenge of combining data from multiple sources, which
may involve different formats and structures, into a standardized format. This process
ensures that disparate datasets can be queried and analyzed cohesively, as if they were
part of a single unified dataset [ZD07]. A main problem of this topic is the need for
labeled data along with a ground truth. Oftentimes these datasets have to be manually
curated by domain experts and are therefore subject to human error. A solution for
solving the problem of data generation is crowd sourcing, [VBD14] leveraging humans
to verify the equality of a subset. However, when leveraging crowd sourcing this can be
prone to errors due to unscientific labeling quality by potentially unexperienced humans
[DTWP18]. Another approach leverages Active Learning [BIPR12] by selecting relevant
pairs to improve recall while maintaining a precision threshold. However, it can be argued
that active learning alone does not provide sufficient comprehensive quality guarantees.
To address this, the Human and Machine Cooperation Framework (HUMO) [CCF+17]
divides the workload between machines and humans, offering the flexibility to enforce
both high precision and recall.

Entity matching is a research field that focuses on identifying and linking different data
representations that refer to the same real-world entity [CEP+21]. This task, commonly
performed in data integration, arises from the need to merge information from multiple
sources, accounting for potential duplicates and variations in representation. Possible
problems arise from poor data quality, the quadratic complexity of potential matches
and oftentimes the dependency on external human knowledge and interaction [BG21].

To tackle the quadratic complexity of potential matches, many blocking procedures have
been introduced to reduce computational cost. Traditional blocking [I. 69] partitions
records into blocks based on Blocking Key Values (BKVs), thereby reducing the number
of candidate record pairs by limiting comparisons to records within the same block.

The Sorted Neighborhood Indexing technique, first proposed in the mid-1990s [CG08],
involves sorting records based on a BKV and then sliding a fixed-size window over the
sorted list to generate candidate record pairs. The inverted index-based approach indexes
records using sorted BKVs and applies a sliding window over these keys to generate
candidate record pairs from the corresponding index lists [dVKCC11].

Beyond indexing techniques, various clustering techniques efficiently handle large, high-
dimensional datasets. These techniques leverage approximate distance measures to
create overlapping subsets, canopies. Then the exact distances are only calculated in the
respective canopy [MNU00] leveraging the Term Frequency-Inverse Document Frequency
(TF-IDF) cosine-similarity [SB88].

The TF-IDF cosine similarity between two documents A and B is given by:

cosine similarity(A, B) =
∑︁n

i=1 TF-IDFA,i · TF-IDFB,i√︂∑︁n
i=1 TF-IDF2

A,i ·
√︂∑︁n

i=1 TF-IDF2
B,i

(2.1)
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where TF-IDFA,i and TF-IDFB,i represent the TF-IDF values of term i in documents A
and B, respectively.

An alternative measure is the Jaccard similarity sJ between record rA and record rB,
based on the intersection and union of their token sets, which can be calculated as:

sJ(rA, rB) = |token(rA) ∩ token(rB)|
|token(rA) ∪ token(rB)| (2.2)

Cluster calculation can be performed using a threshold-based approach, where records
are assigned to a cluster based on a similarity measure and the selection of centroids
[CR02], as well as by a nearest-neighbor approach, which involves clustering records
based on their proximity to other records [CG08].

Additionally, research has explored the application of deep learning architectures for
blocking [TLT+21], utilizing a similarity-based pairing approach and calculating threshold-
based similarity in the final stages. This demonstrates the feasibility of incorporating these
strategies into the blocking process. DeepER [ETJ+18] utilizes a bidirectional Long Short-
Term Memory (LSTM), a neural network designed to learn sequential data, for generating
word embeddings and applies cosine similarity in each dimension. Another approach,
AutoBlock [ZWS+19], combines bidirectional LSTM and self-attention mechanisms for
efficient word representations and leverages Fast Nearest Neighbor Search to retrieve
potential candidates for blocking.

Rule-based entity matching [DRD+13, EIO+14] refers to matching and linking entities
from different datasets using pre-defined rules based on specific attributes or patterns,
such as exact or fuzzy matching. This approach can be advantageous for end-users
by potentially reducing execution time and conserving computational resources. These
rules can be synthesized using different logical structures. Entity matching rules can be
synthesized using a General Boolean Formula (GBF) rule structure [SME+17], which
applies logical operators to combine conditions for matching entities, or a Disjunctive
Normal Form (DNF) rule structure [WSSJ14], which organizes conditions into a series
of disjunctions and conjunctions to improve matching accuracy and flexibility. Another
more user-centric approach to develop rules is the application of TuneR [PGSV19], which
is a framework that leverages fine-tuning to optimize rule sets grounded in user input
criteria, hence decreasing user interaction.

Additionally, deep learning methods, including those based on LLMs, have been explored
for entity matching due to their strong semantic capabilities. There are fine-tuning
approaches like BERT [DCLT18], Sentence-BERT [RG19], Ditto [LLS+20], a meta-
learning approch like Rotom [MLW21] and transfer learning approach DADER [TFT+22]
and also PromptEM [WZC+22], leveraging prompt tuning for a low-resource environment.

Evaluations showed decent results for a variety of data cleaning and data integration
task leveraging few-shot prompting with the GPT-3-175B parameter model [NCO+22].
Additionally, BatchER [FHF+23] implements cost-effective batch prompting to reduce
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computational cost leveraging LLAMA2 and GPT-3.5-turbo. In terms of reducing
computational complexity the COMEM framework [WCL+24] extends entity matching
to input a multitude of candidates . Furthermore, LLMs can be fine-tuned for entity
matching, though the effectiveness varies across different models. It was demonstrated
that LaMA 3.1-3B improved performance while GPT-4o Mini exhibited a decline [SPB24].
Further, Peeters et al. [PB23] studied various prompt design strategies some of which
outperformed RoBERTa[LOG+19], which was fine-tuned on a sampled training set. In
addition, Peeters et al. [PSB23] showed that LLMs exhibit decent zero-shot performance,
which can match that of fine-tuned PLMs.

15





CHAPTER 3
Query Processing Pipeline

The following Chapter deals with designing the query processing pipeline. In Section 3.1
we describe the problems encountered, specifically regarding the availability of data.
Section 3.2 then introduces the concept of soft binding, a core component of the proposed
pipeline that leverages the semantic understanding of LLMs to redefine SQL comparison
operations. Section 3.3 describes the design considerations for the query pipeline, outlining
three distinct strategies. The next Section 3.4, details the architecture and implementation
of the proposed query processing pipeline. Section 3.5 details the process of operator
transformation to ensure correct integration of soft-bound entities into the final query
and introduces a duplicate elimination mechanism. Going on, Section 3.6 introduces the
concept of blocking. In a final step, Section 3.7 outlines the computational resources and
API limitations encountered during the development of the query processing pipeline.

3.1 Problem Description
Querying relational databases using SQL can produce incomplete or undesired results
due to residual noise in the data. This noise may stem from factors such as incorrect
schema alignment, insufficient data cleaning, or erroneous entries [KK18, RD00].

LLMs have demonstrated significant semantic understanding and reasoning capabilities
[KGR+22]. These capabilities offer the potential to analyze database contents, facilitating
the automatic identification and mitigation of potential sources of noise. Additionally,
they than provide the opportunity to refine query outputs to mitigate the impact of such
noise. The goal of this thesis is to develop a pipeline that accounts for residual noise
affecting query results, ensuring more complete and better-aligned data retrieval with
user intent.

In the SQL language, a variety of comparison operators are utilized, including “=”, “<”,
“”>, “>=”, “<=”, and “<>” [Pos25]. These operators are fundamental for comparing
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values and establishing relationships between them, primarily within WHERE clauses or
JOIN conditions, to filter or combine data based on specified criteria.

The core methodology of this research involves modifying the standard comparison
operations by introducing a novel approach referred to as soft binding. This concept,
developed in this thesis, redefines how SQL comparison operations evaluate to TRUE or
FALSE by leveraging the semantic capabilities of a LLM. Soft binding enhances traditional
entity matching techniques by utilizing all available SQL comparison operators, thereby
extending its applicability to a wider range of use cases while seamlessly integrating into
the SQL framework.

Potential residual noise can be exemplified by language inconsistencies, as shown in
Table 1.1.

For instance, the entities “chien” and “perro” can be compared to “dog” using the “=”
comparison operator. In this case the soft binding enables the matching of multiple
candidates, “chien” and “perro”, to a single real-world entity, the concept of a dog.
Hence for the scope of this query, the respective entities should be softly bound to the
real-world entity “dog”. This example highlights potential database inconsistencies. The
key inconsistencies that guided the development of this thesis are as follows:

• Handling String Representations of Numbers: If numerical values are repre-
sented as strings in the dataset, the soft binding mechanism should still function
as if all values were properly typed as numbers. For example, when querying for
values smaller than 12, the system should correctly identify both the numerical
values like for example “11” and also potential string representations like “ten” as
valid results.

• Inconsistent Data Formats: In cases where entries are represented inconsis-
tently, such as differing formats for dates or large numbers, the soft binding
mechanism should internally standardize these representations. For example, dates
like “18.04.1968” and “April 1986 on the day number 18” should be interpreted as
equivalent. This ensures that relevant data entries are accurately matched.

• JOIN Attribute Modification: When performing JOINs, the JOIN keys might
be represented differently across datasets. For example, the numerical value “1”
in one source may correspond to the string “one” in another. The soft binding
mechanism should account for such cases by treating numerically equivalent values
as equal.

• Multilingual Support: The soft binding should recognize multilingual variants.
For example, when querying for animal types, a search for “dog” should also
return entries labeled as “perro” in Spanish and “chien” in French, while excluding
unrelated terms such as “chat,” the French word for “cat.”
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3.2 Soft Binding

SQL utilizes a range of comparison operators [Pos25]. These operators are integral to the
functionality of WHERE and JOIN clauses, which are used to filter and combine data.
Within these clauses, arrays of values corresponding to specific columns are compared
against each other according to the defined operator. The records where the comparison
condition evaluates as true are included in the result set, while those that do not satisfy
the condition are excluded. These operators form the foundation of querying in SQL,
allowing for data retrieval and manipulation through comparisons.

The soft binding procedure redefines the evaluation criteria of comparison operators by
utilizing a LLM, enabling comparison outcomes to be determined based on semantic
similarity rather than syntactic equivalence or similarity. In order to achieve that, the
comparison operation is verbalized and fed to a LLM leveraging a zero-shot prompting
approach. In the process, all entities involved in the comparison are formatted into a
structured prompt string, in which the verbalized comparison operator serves as the
connective element between them. The LLM is then instructed to return a boolean
value indicating whether the statement is correct or incorrect. The verbalization of the
operators is facilitated through a mapping, which defines the semantic meaning of each
comparison operator. This mapping is provided in Table 3.1.

Comparison Operator Meaning
= has the same meaning as (also in another language)

or is the same as
< is smaller than

<= is smaller or equal compared with
> is bigger than

>= is bigger or equal compared with
!= has a different meaning than
<> has a different meaning than

Table 3.1: Semantic Meaning of Comparison Operators

Revisiting the multilingual example from Table 1.1, we can see how different prompts
are constructed based on a comparison operation. Let’s assume the initial comparison
operation is:

SELECT * FROM animalowner WHERE category = "dog"

For each row a distinct prompt is generated. In the prompt a f-string used. It is a
Python syntax feature that allows embedding variables or expressions directly within
a string using curly braces {}. The construction of the prompt follows the following
general format:
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prompt = f"{value1}" {comparison operator} "{value2}"

For the first row of the table, the resulting prompt would be:

"dog" has the same meaning as (also in another language)
or is the same as "chien"

The prompt is presented to the LLM using a zero-shot prompting methodology, wherein
the LLM is instructed to generate an accurate boolean value based on the provided input.
In this specific instance, the expected output is true, as the values correspond to the
same real-world entity. This evaluation process is repeated for each comparison operation.
Then, the values for which a true boolean value was returned are selected as the soft
bound entities. In the next step, a dictionary is created using the soft-bound values. The
hard-bound entity serves as the key, while its corresponding soft-bound entities form the
values. Each comparison operation generates a new dictionary, which is then added to a
list of dictionaries - the semantic list. A dictionary has the following structure:

{hard_value : soft_values}

In a final step the semantic list is incorporated to write the final query, a process which
is discussed in much detail in Section 3.3.

It is important to note that the interpretation of a comparison operator can be adjusted
based on the specific task at hand. For instance, when applying the pipeline to a
classification task, the “=” operator could be reformulated to “belongs to the category”
to better align with the task requirements. This flexibility allows for dynamic adaptation of
the comparison semantics, ensuring that the comparison logic aligns with the particular
context or domain of the problem being addressed, thus broadening the application
possibilities.

3.3 Design Considerations
The mechanism for the soft bound entities was already discussed in Section 3.2. In
order to develop a pipeline leveraging the soft binding to modify user output, various
approaches can be considered. The following discussion outlines three potential pipeline
implementations: a parameter re-implementation, a translation-based approach, and
the auxiliary table strategy. These approaches are further elaborated in the subsequent
sections.

3.3.1 Parameter Re-Implementation
As previously discussed, the SQL language utilizes a set of comparison operators to
compare values. One possible approach to implement the soft binding for these comparison
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operators is to create a custom querying language or even a new database engine. In this
new system, a soft binding version of each comparison operator would be introduced. This
would alter the standard behavior of these operators to leverage the semantic capabilities
of a LLM.

Other potential pipelines that leverage the SQL framework face challenges when altering
the behavior of comparison operators and handling soft-bound values. Once the com-
parison is executed, additional steps are required to modify the query to incorporate
the soft-bound values, ensuring they are accurately reflected in the final output. This
often involves rewriting or adding extra conditions to the query, which increases both
the complexity of the process and the potential for errors.

In contrast, the re-implementation of comparison operators to their soft-bound versions
removes the need for such intermediate steps. By integrating these modified operators
directly into the querying process, the database engine can automatically return the
correct results without the need for manual adjustments to the query.

However, a significant drawback is the lack of transparency in this approach. A user
receiving a result might struggle to understand its validity, potentially eroding trust
in the system. This lack of interpretability makes this approach of re-implementing
operators less attractive. In consequence, it could hinder system use and be ineffective for
data cleaning, as intermediate steps, such as displaying the final query before execution,
are not realizable.

3.3.2 Consequences
Due to the transparency issues within the scope of this thesis, a translation-based
approach and a auxiliary table strategy were adopted, both making use of SQL.
Instead of re-implementing the operators, the original SQL query is modified to return
also the soft bound entities. The following sections elaborate on the chosen approaches.

3.3.3 Translation-Based Approach
A possibility to leverage the SQL framework is to use a translation-based approach.
Instead of re-implementing the parameters themselves the query can be modified by the
possible extension with CASE and OR statements. For this approach the resulting SQL
query, if generated, is returned to the user, along with the database output.

In the case of the translation-based approach the SQL syntax is leveraged to include all
soft bound entities. In the scope of this thesis, possible WHERE statements along with
JOIN statements are analyzed. Soft bound entities are included via referencing them in
SQL itself. This process can be exemplified by the following example.

{dog : chien, perro }

with a general structure of
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{hard_value : soft_values}

We consider a scenario with noise in which soft-bound entities are inferred. Consequently,
to ensure that the correct records are retrieved, the standard JOIN operation must be
adapted toward these different representations.

Thus, an initial JOIN query:

JOIN table2 ON table1.column1 = table2.column2

can be modified to:

JOIN table2 ON table1.column1 = CASE table2.column2

WHEN ’soft_value’ THEN ’hard_value’

Similarly, the WHERE clause can be extended with additional OR statements. Revisiting
the example above, this would mean transforming the query from the original query:

WHERE animal.category = ’dog’

to the modified query:

WHERE animal.category = ’dog’ OR animal.category = ’perro’

OR animal.category = ’chien’

Overall in the translation-based approach, soft-bound entities are incorporated through
the use of CASE and OR statements. By examining the modified SQL queries users can
identify potential noise and subsequently remove it. Over time, through iterative querying
by individual users or user groups, this process can lead to substantial improvements
in data quality. Therefore, the proposed query pipeline can be considered a tool for
detecting residual noise and supporting a late-stage data cleaning process.

3.3.4 Auxiliary Table
Another possibility exists next to the translation-based approach. Instead of modifying
the original query itself via the extensions of CASE and OR statements, intermediate
tables can be defined. Similar to the OmniscientDB [UNB23], the database is extended
through the LLM’s parametric knowledge. The results, which consist of both hard-bound
and soft-bound values, are written into a separate table. This procedure applies to both
WHERE and JOIN statements, with the data being stored in the auxiliary table.
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Figure 3.1: Auxiliary Approach

The idea behind the auxiliary table can be seen in the Figure 3.1. The original color
column in the table vehicles is expressed as a color code instead of the natural language
description of the color itself.

Exemplary for this would be an example of filtering vehicles based on color. However,
the initial query not leveraging the color hex code, would not return any result, when
querying for the original color. Hence, the auxiliary table is created. The potential initial
query could be the following:

SELECT * FROM vehicles
INNER JOIN owners ON vehicles.owner_id = owners.id
WHERE vehicles.color = ’red’;

After the initial query is constructed and the soft-bound values inferred, the intermediate
table has to be constructed. In a final step,it is necessary to add an additional JOIN
with the auxiliary table in order to deliver the wanted result. Then the modified query
would be the following:

SELECT * FROM vehicles
INNER JOIN owners ON vehicles.owner_id = owners.id
INNER JOIN wherevehiclescolorred_table
ON wherevehiclescolorred_table.synonym = vehicles.color
WHERE wherevehiclescolorred_table.word = ’red’;

Also, it is to note that also the evaluation of the metrics becomes more complex as the
output has more columns due to the intermediary tables as the ground truth. More
columns are returned that are contained in the ground truth due to the auxiliary table.
Therefore, the evaluation had to be adjusted. Hence, an output row is regarded as correct
if the ground truth is a subset of the output row.

Finally, this has the advantage that the user can access the created table and therefore
can reasonably assess the quality of the LLM’s answer and potentially adjust the created
table. It further provides an implicit request for subsequent data cleaning steps that may
be necessary to ensure data quality.

To illustrate the differences between the translation-based and auxiliary table approaches,
Figure 3.2 presents the flowchart for the auxiliary method, while Figure 3.3 depicts the
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flowchart for the translation-based approach. The three key components namely the
user, the database and the pipeline, meaning the program, are displayed. A principal
distinction between the two approaches is the explicit write operation required by the
auxiliary table method, wherein intermediate results are written to the database. Hence,
an advantage of the auxiliary method is that it allows users to inspect and, if necessary,
modify the auxiliary table and possibly re-execute the final query.

3.4 Pipeline Design
In this section, we describe how the motivations and requirements outlined in Section 3.1
shape the design and implementation of the structured pipeline. Taking a predicate
calculus query as input, the pipeline generates a corresponding modified SQL query,
which is then executed on the database to produce the desired output. The modification
of the initial query involves multiple stages of query processing ensuring the soft bound
entities are incorporated in the output. The main steps of the pipeline can be seen in in
Figure 3.4. The key stages of the pipeline are as follows:

1. An initial SQL query is generated based on the predicate calculus expression
and the schema level information of the database by prompting the LLM. The
schema-level information, including the column name, data type, nullability, and
possible constraints, is retrieved for each table t. This is done by executing the
SQL Query 6.2. The context for each table is written to a file, in order to avoid
multiple querying for various runs. The output of such a context for a potential
table doctors could be for example:

The name of the table is doctors

Columns in the table doctors (in correct order):
id
name
patients_pd

Schema Information:
[('id', 'NO', 'integer', 'PRIMARY KEY'),
('name', 'YES', 'text', None),
('patients_pd', 'YES', 'text', None)]

2. A SQL parser checks the initial SQL query for the presence of at least one WHERE
clause and/or at least one JOIN clause. Steps 3–4 are executed if at least one JOIN
clause exists, whereas steps 5–6 are executed if at least one WHERE clause exists.
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3. For each JOIN condition, the two JOIN values as well as their unique values
are retrieved. Then the soft-binding procedure, which was explained in detail in
Section 3.2, returns a dictionary of semantically relevant terms and adds it to the
semantic list. The resulting semantic list may take the following form:

[ {hard_value1 : soft_values1},
{hard_value2 : soft_values2} ]

4. The LLM, using a few-shot prompting approach, combines the semantic list of the
JOIN with the original query. The approach is further discussed in Section 3.5.
Soft bound entities are included in the output via the query modification through
the LLM using either the auxiliary table or the translation-based approach.

5. The semantic list based on all WHERE conditions is created using the the soft
binding methodology explained in Section 3.2.

6. The final output query is generated using the semantic list from the previous step.
If the JOIN pipeline was used, its query output is incorporated. Otherwise, the
original SQL query is used instead. This process is driven by a LLM with few-shot
prompting to ensure accurate query generation.

7. The final query is executed on the database, and the result is returned along with
the modified query displayed to the end user.

Overall, every WHERE and JOIN operation is checked towards potential binding. If
no soft bindings are retrieved for a specific variable, the result is equivalent to the hard
binding and the condition is not modified.

The pipeline is implemented using the combined pipeline, which internally reference
the JOIN pipeline and the row calculus pipeline, which deals with WHERE clauses.
This means that the the steps 1-2 are managed by the combined pipeline, steps 3-4 are
managed by the JOIN pipeline and the steps 5-6 are dealt with by the row calculus
pipeline. The general structure of the combined pipeline is given by the 3.1 algorithm.

The pseudo code for the join_pipeline 6.2 and the row_calculus_pipeline 6.2 functions is
provided in the appendix for enhanced clarity and detailed step-by-step descriptions.

3.5 Operator Processing and Duplicate Elimination
Once a semantic list has been generated, it is essential to integrate it correctly into the
final modified query. This step is crucial for both the translation-based and auxiliary
table approaches to ensure that the selected entities are accurately incorporated into the
query output. For this, the pipeline is designed to transform the comparison operator
into the equality operator "=" in the final query.
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Algorithm 3.1: Combined Pipeline
Input : query
Output : output

1 total_retries ← 4
2 count ← 0
3 while count<total_retries do
4 tables ← get_relevant_tables(query)
5 if tables is not None then
6 break
7 end
8 else
9 count ← count + 1

10 end
11 end
12 context ← get_context(tables) Get schema level information
13 sql_query ← intial_query(query, context) Construct initial query
14 where_conditions, join_conditions ← analyze_sql_query(ql_query)
15 Look for WHERE and JOIN conditions
16 if join_conditions and where_conditions then
17 output_query ← join_pipeline(sql_query)
18 output ← row_calculus_pipeline(output_query)
19 end
20 else if where_conditions then
21 output ← row_calculus_pipeline(sql_query)
22 end
23 else if join_conditions then
24 output ← join_pipeline(sql_query)
25 end
26 else
27 output ← query_database(sql_query)
28 end
29 return output

For instance, the "!=" operator serves as the logical inverse of the "=" operator. Con-
sequently, the construction of the semantic list should produce the exact complement
of the entities returned by the "=" operator. This can be illustrated via the Table 1.1.
Consider the following initial query:

SELECT * FROM animalowner WHERE category != "dog"

In this case, the phrase comparing the two values would be "has a different meaning
than." Therefore, all elements that satisfy this condition should be selected. As a result,
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the ideal dictionary within the semantic list is defined as:

{dog : chat}

Consequently, the comparison operator must be transformed into the equality operator
"=" in the final query. This transformation applies to both the translation-based and
auxiliary table approaches. Furthermore, the conversion to the "=" comparison operator
is systematically performed for all comparison operations and is applicable within both
WHERE and JOIN clauses.

These modifications are executed during the SQL query adaptation process after the
semantic list has been inferred in the steps four and six in the pipeline explained in Sec-
tion 3.4. To facilitate this process, a few-shot prompting technique is employed. Although
LLMs have demonstrated strong zero-shot reasoning capabilities [KGR+22], a few-shot
approach can be more effective in task-specific scenarios, as it helps guide the LLM
toward appropriately adapting the output, in this case, the modified query [BMR+20].
The prompt includes manually constructed illustrative examples that demonstrate the
handling of each specific operator. Each example consists of an input, comprising the
original query and its corresponding semantic list, and an output in the form of the
modified query. This approach enables the LLM to effectively guide the appropriate
query modification for both processing pipelines.

Continuing, the pipeline approach addresses the issue of residual noise in the database
through either the translation-based method or the auxiliary table method. However,
when using soft binding, additional output rows may be generated, potentially leading to
duplicates. For instance, consider the following dictionary:

{ dog: chien, perro }

Assuming the output tuples are:

( bill, chien, 1 )

( bill, perro, 1 )

By examining the output along with the dictionary it can be abstracted that the output
is redundant. Hence in order to solve the redundancy problem, a function was defined to
remove output tuples that are identical. If any row can be created from another row by
substituting a value using the dictionary, then one of the rows has to be left out. The
binding process is inherently bidirectional, as it establishes relationships between keys
and values in both directions. Consequently, the reversed dictionary, which reflects this
inverse relationship, must also be considered, and is therefore created inside the process.
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The algorithm works by creating a reversed dictionary, where the values and keys are
interchanged. Subsequently, it generates all possible variants by substituting each key
with its corresponding values from both the original and the reversed dictionaries. During
the final step, each generated row is evaluated for duplication. If a duplicate is detected,
the row is discarded, otherwise it is added to the output.

The pseudo code can be seen in Algorithm 3.2.

Algorithm 3.2: Duplicate Row Removal with Synonyms (Direct and Reverse)
Input : rows, total_dic
Output : cleaned_rows

1 cleaned_rows ← [ ];
2 seen_rows ← [ ];
3 reverse_dic ← {};
4 foreach key k, synonyms syns in total_dic do
5 foreach synonym s in syns do
6 reverse_dic[s] ← k;
7 end
8 end
9 foreach row ∈ rows do

10 variants ← [ ];
11 foreach element e in row do
12 if e in in total_dic.keys() then
13 foreach synonym s of e in total_dic.keys() do
14 variant ← row with e replaced by s;
15 variants ← variants + variant;
16 end
17 end
18 if e in reverse_dic.keys() then
19 foreach key k in reverse_dic.keys() do
20 variant ← row with e replaced by k;
21 variants ← variants + variant;
22 end
23 end
24 end
25 if row or any row in variants is in seen_rows then
26 continue ; // Skip duplicates
27 end
28 cleaned_rows ← cleaned_rows + row;
29 seen_rows ← seen_rows + row + variants;
30 end
31 return cleaned_rows
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3.6 Blocking
As outlined in Chapter 2, blocking is a key technique for minimizing computational costs.
Given the high computational demand of utilizing the LLM for zero-shot comparisons
[ZWS+19], blocking helps conserve computational resources, reduce token usage, which
translates to monetary costs when using an API, and decrease execution time.

In information retrieval, potential candidates are often embedded, and similarity scores are
computed, such as with SBERT [XLS17], a modification of BERT, and cosine similarity
[VSAB+24]. For the "=" comparison operator, distinct entities are compared based on
their semantic meaning, hence achieving blocking. Initially, all potential candidates
are embedded, and cosine similarity is computed between the original entity and each
candidate. The cosine similarity between two terms A and B is calculated as:

cosine similarity(A, B) = A · B
|A||B| (3.1)

Candidates that surpass the manually input threshold proceed to the second stage, while
those below the threshold are excluded. In the second stage, zero-shot prompting is
employed to compare the entities. Finally, entities deemed equivalent are soft-bound in
the last step. The threshold for cosine similarity is determined during the evaluation
phase.

This two-step process is optional within the pipeline.Alternatively, we can employ the
embedding-only method, which utilizes only the first stage, or the zero-shot prompting
method, which operates without embeddings. Additionally, it is important to note that
blocking does not apply to the "<" and ">" comparison operators, as cosine similarity
is not a suitable measure for such comparisons. For the “!=“ and “<>” operators, the
process is inverted: entities below the threshold are included, rather than those exceeding
it, as is the case for the "=" operator.

Figure 3.5 illustrates the process and its various settings.

3.7 Computational Resources and API Limits
The PostgreSQL version used during development was 17.2. The system used was Ubuntu
24.04.1 LTS along with a AMD Ryzen™ 5 4600H with Radeon™ Graphics × 12 on par
with 16 GB of RAM. It is to mention that the LLM mentioned during the development
step was Gemini-1.5-Flash through Google API [Goo25a]. The rate limits [Goo25c]
during the development of the query pipeline were :

• 15 RPM (Request per minute)

• 1 million TPM (Tokens per minute)

• 1,500 RPD (Requests per day)
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Therefore, the development of the pipeline had to take the limitations of the API into
account as no computational resources could be accessed during the majority of the this
thesis, which allowed only for limited execution of the pipeline hence reducing evaluation
possibilities.
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CHAPTER 4
Evaluation

The following chapter presents a comprehensive evaluation process, encompassing multiple
analytical steps. To begin, key initial considerations are outlined in Section 4.1, providing
the foundation for the subsequent analysis. The discussion then shifts to the design of
the test dataset in Section 4.2, where the covered cases and their relevance are examined
in detail. Equally important is describing the necessary KPIs and measurements, which
are introduced and justified in Section 4.3. The gathered results, obtained from various
models and evaluation strategies, are then explored in Section 4.4, offering insights into
the effectiveness of different approaches. To conclude, the proposed method is put to the
test on two additional datasets in Section 4.5, verifying the validity and performance of
the approach.

4.1 Considerations for Evaluation and Dataset Limitations
A key challenge in evaluating the pipeline is the necessity for high-quality data. This
challenge is further exacerbated by the limited availability of suitable datasets that
feature noisy data paired with predicate calculus queries and their corresponding ground
truth. In the field of entity matching, some datasets have been curated, such as those
provided in DeepMatcher[MLR+18] or the WDC Products Dataset [PDB23].

However, many available datasets are tailored to specific use cases, such as entity matching,
as in the example above. In contrast, the implemented approach encompasses a broader
scope by incorporating multiple comparison operators beyond simple matching, which is
analogous to the “=” operator in SQL. Standard entity-matching datasets fail to account
for other SQL comparison operators. For instance, a statement such as “many > 1”
can potentially be interpreted as true, a relationship that can be abstracted by a LLM.
However, to our knowledge, such statements are not typically captured in traditional
entity-matching datasets. Furthermore, the user input in the proposed pipeline consists
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of a predicate calculus query, and to our knowledge no public datasets are available that
align with this input format for evaluation purposes.

This established the groundwork for evaluating the proposed approach using a manually
curated small-scale test dataset to demonstrate its effectiveness. Additionally, further
assessments were conducted on supplementary datasets, though these datasets only
capture a subset of the capabilities of the approach.

It is important to acknowledge the substantial hardware constraints and dependency
on API access, which significantly limited the scope of experimentation. Running a
LLM locally, particularly for generating structured output, frequently resulted in system
crashes due to hardware limitations. Moreover, the API’s restriction of 15 calls per
minute imposed severe constraints on the evaluation process, further restricting the extent
of the analysis.

4.2 Test Dataset Construction
The following subchapters present a categorized overview of the predicate calculus
queries created to test various semantic and structural challenges encountered in real-
world data. Each category addresses a specific type of complexity, such as multilingual
representations, inconsistent data formats, or ambiguous JOIN conditions. Within each
category, the corresponding predicate calculus queries are listed along with a description
of the particular challenge they aim to evaluate.

Since no publicly available datasets were suitable for this particular evaluation, a custom
dataset was developed.

Different Languages / Multilingual Support
This section states predicate calculus queries associated with multilingual data to test
the pipeline’s ability to provide multilingual support.

• ∃id ∃shares ∃name (shareowner1row(id, name, shares) ∧ animalowner1row(id, _,
’dog’))

The entity “dog” appears in the animalowner Table 2 in multiple languages: “chien”
in French and “perro” in Spanish. The predicate calculus query searches for owners
of “dog” and then performs a JOIN with the shareowner Table 1 based on the id
column.

• ∃id ∃shares ∃name(shareowner(id, name, shares) ∧ ¬animalowner(id, _, ’dog’))
The query retrieves owners of animals not labeled “dog” in the animalowner Table 2.
The only entry, which is not a dog, is “chat”, which is the French word for “cat”.
Also, a JOIN based on the id column is performed with the shareowner Table 1.
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• ∃ movies("The sky over Berlin",_,_)
This predicate calculus represents a filtering operation applied to the movies Table 20.
The title to filter for is a literal translation of the German title “Der Himmel über
Berlin” into English. However, the English title is not a direct syntactic translation
but conveys a different meaning. As a result, the LLM faces the challenge of
interpreting the movie’s context to ensure accurate retrieval. The correct result in
this case would be “Wings of Desire”.

Different Scales / Inconsistent Data Formats
This subsection highlights predicate calculus queries that address the challenges posed
by inconsistent data formats and varying scales, testing the pipeline’s ability to handle
different numerical representations and units effectively.

• ∃m ∃f ∃i (influencers(m, f) ∧ f > 500 ∧ followers(i, m, z))

This example uses the influencers Table 11 together with the followers Table 12. This
demonstrates the need to handle different representations of numerical quantities,
such as “1000 thousand” and “1 million” in the clicks column of the influencers
table. Moreover, instead of directly referencing the column names in the predicate
calculus query, some variables are used as arguments to test the system’s abstraction
capability.

• ∃item bakery_sales(item, _, _) ∧ oven_temperature(item, >200 °C)

This predicate calculus expression deals with the bakery_sales Table 18, which is
filtered in degrees Celsius, whereas the records are in degrees Fahrenheit. In the
next step, a JOIN occurs with the oven_temperature Table 19 based on the Item
column.

• ∃item bakery_sales(item, < 55, _) ∧ oven_temperature(item, _) This predicate
calculus expression queries the bakery_sales Table 18 for items with a quantity
less than 55. However, the quantities are listed in dozens rather than as individual
numbers in the Quantity column. The query then joins with the oven_temperature
Table 19 to retrieve the corresponding oven temperature for the same item.

• ∃item bakery_sales(item, > 90, _) ∧ oven_temperature(item, >180 °C)
This predicate calculus expression searches the bakery_sales Table 18 for items
where the quantity exceeds 90, though the quantities are recorded in dozens. The
query then performs a JOIN with the oven_temperature Table 19, filtering for items
with oven temperatures greater than 180°C. The system must correctly handle the
conversion of quantities from dozens to individual units, as well as convert the
oven temperatures from Fahrenheit, as recorded in the oven_temperature table, to
Celsius, as used in the query.
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Inconsistencies

• ∃id ∃name ∃patients_pd (doctors(id, name, patients_pd) ∧ patients_pd < 12)

This predicate calculus query operates on the ‘doctors‘ Table 5, where the pa-
tients_pd column sometimes contains numeric values as strings, such as “ten”, “11”.
This creates a mismatch in data types when trying to compare string representations
like “ten” or “11” with a numeric value like “12”.

• ∃id ∃patients_pd (doctors(id, ’Peter’, patients_pd) ∧ patients_pd < 12)

This query builds upon the previous one, but it specifically filters for the doctor
named “Peter” from the ‘doctors‘ Table 5. The patients_pd column still contains
string representations of numbers, so the challenge remains in handling those
correctly during the comparison operation.

• ∃id (tennis_players(id, _, ’January’) ∧ tournaments(id, name, price_money))

This query highlights inconsistent date formats in the born column of the ten-
nis_players Table 9. Some players’ birth dates are given as full dates like “20.02.2003”,
while others are listed only by month and year like “January 1986”.

JOIN Attribute Modification
This subsection explores predicate calculus queries that tackle the challenge of handling
inconsistencies in data, including string representations of numbers and varying date
formats, evaluating the system’s ability to process such irregularities effectively.

• ∃x ∃y ∃z (children_table(x, y) ∧ fathers(x, z))

In the children_table Table 13, the id attribute is expressed as a numerical value,
whereas in the fathers Table 14, the attribute is expressed as text.

• ∃id (children_table(id, ) ∧ fathers(id, _) ∧ mothers(id, _))

In this example, the children_table Table 13 and the mothers Table 15 use numerical
values for the id attribute, while the fathers Table 14 expresses the id attribute as
text.

• ∃id (children_table(id, >1) ∧ fathers(id, _))

In this case, the id attribute in the children_table Table 13 is a numerical value,
while in the fathers Table 14, the id attribute is expressed as text. Additionally,
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the children_table Table 13 contains the string “many” as a representation for a
number greater than one, complicating the comparison logic.

• ∃movie movies(movie, _, _) ∧ movies_personal(movie, _)

In this case, the movies Table 20 and movies_personal Table 22 express movie
titles in different languages: English in movies and German in movies_personal.
The system needs to handle these multilingual representations.

• ∃movie movies(movie, _, _) ∧ movies_personal(movie, >70%)

This query introduces the issue of different representations of movie ratings. While
the movies Table 20 uses a rating scale of 1 to 5, the movies_personal Table 22
provides ratings as percentages. The system must interpret the 70% filter in terms
of the 1-5 scale in the movies Table 20.

• ∃clicks influencers( _, clicks) ∧ publication_clicks(_, clicks)
The clicks attribute in the influencers Table 11 and publication_clicks Table 21 is
represented in various formats, including “1000 thousand,” “1 million,” and “106.”

• ∃d weather(d, city, temperature, rainfall) ∧ website_visits(d, page, visits)

This query demonstrates the challenge of joining the weather Table 17 and web-
site_visits Table 16, where dates are represented in different formats, such as “2023
10 26” and “2023 October 26”. The system must reconcile these different date
formats before performing the JOIN operation.

Uncategorizable
This predicate calculus query addresses an initial scenario to evaluate the ability of the
query processing pipeline to interpret and align the data appropriately across different
tables.

• ARTISTS(a„), ALBUMS(,a,"Reputation",2017),SONGS(,a2,song_name,),
ALBUMS(a2,a,)

In the artists Table 8, the artist information is not fully aligned with the albums
Table 7 and the songs Table 6.

4.3 Key Performance Indicators
For evaluation, the retrieved results are compared against the ground truth using KPIs
such as precision, recall, and F1-Score. These metrics are defined as follows:
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Precision = TP

TP + FP
(4.1)

Recall = TP

TP + FN
(4.2)

F1-Score = 2 × Precision × Recall
Precision + Recall (4.3)

• TP (True Positive): The number of correct positive predictions.

• FP (False Positive): The number of incorrect positive predictions.

• FN (False Negative): The number of incorrect negative predictions.

The query pipeline aims to improve recall, potentially at the cost of precision. This
is because the initial query, lacking context or complete information, might miss some
relevant records, resulting in a potentially lower recall score. The pipeline can infer
additional records, increasing recall, but there’s a risk of incorporating irrelevant or
inaccurate data, leading to lower precision. To balance these opposing goals, the F1-score
is used as a harmonic mean of precision and recall, providing a measure of the overall
performance.

Additionally the amount of used tokens is captured for every query. It is important to
note, that currently for Gemini models a token consists of roughly 4 characters, leading
to the fact that that 100 tokens are approximately 60-80 words [Goo25b]. Relevant for
this work are the following metrics:

• Total Calls: The total number of successful API requests for a given input query.

• Prompt Token Count: The number of tokens used in the request.

• Candidates Token Count: The number of tokens contained in the response(s).

• Total Token Count: The combined number of tokens in both the request and
response(s).

• Average Processing Time: The mean time taken to process a query.

Tracking input tokens is essential due to their limitations. Furthermore, monitoring
response tokens is important as comparing input and output token counts provides a
measure of how elaborate the LLM’s answers are. The total number of calls is a critical
metric, as it is subject to both per-minute and daily limits. Additionally, monitoring the
total calls provides a means to identify potentially redundant or unnecessary requests
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during development, enabling the optimization of the pipeline to minimize resource
consumption[Goo25d]. Additionally it is to note, that the relevance of the total number
of calls diminishes when the LLM is executed on local hardware, as it no longer depends on
API usage and associated rate limits. Finally, the average time constitutes an important
measure as this is the processing time faced by the end user.

4.4 Test Dataset Evaluation
Beyond the KPIs outlined in Section 4.3, additional evaluation tools are essential for
refining the pipeline. In the query modification process described in Section 3.4, multiple
intermediate steps are executed. To enable a thorough analysis, each predicate calculus
expression undergoes a complete execution, with all intermediate results systematically
stored. This allows for direct comparisons with potentially erroneous outputs, facilitating
the identification of the specific step responsible for inaccuracies.

Moreover, it is important to note that intermediate steps are assigned a None value if
they are not utilized during execution. This occurs, for instance, when a SQL query lacks
either a WHERE or JOIN condition, rendering certain steps unnecessary.

The intermediate steps are the following:

• initial_sql_query_join (Initial SQL query , if at least one JOIN present)

• semantic_list_join (Semantic list with soft bound entities for JOIN attributes)

• result_join (Modified query using the semantic list for the JOIN entities)

• initial_sql_query_where (Resulting query from JOIN or initial SQL query)

• semantic_list_where (Semantic list with soft bound entities for WHERE attributes)

• result_where (Output of modified WHERE query on database)

• output (Final output on database)

Due to the number of intermediate steps, some adjustments in the evaluation process
needed to be made when comparing SQL queries returned in the intermediate steps.
Executing the SQL query on the database and comparing the result with the expected
outcome is the most widely used approach in the evaluation. However, sometimes initial
SQL queries cannot be executed because of the data type of a respective column. For
example, a column that contains numbers might be stored as a string. Hence, potentially
using a comparing operator like “<” would be inappropriate since the type of the column
would be a string. An example would constitute the comparison “many > 1”. In such a
case, although the schema level information was incorporated, the initial SQL query is not
executable leading to an Error message. Therefore, comparing the two non-executable
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SQL queries regarding the output is not plausible as both queries are erroneous. The
other possibility, namely comparing syntactic equality, can be erroneous as two distinct
queries can have the same meaning semantically but employ different notations. Hence
as a solution, the error message is compared. A potential error message in this could be
"ERROR: operator does not exist: text < integer". If the error messages are equal for
two distinct SQL queries, it is therefore assumed this intermediate step is not erroneous.

This method allows for the visualization of the step at which errors occur, thereby helping
to identify and understand the bottlenecks in the pipeline. Additionally, the erroneous
intermediate steps were listed per category as described in Section 4.2, enabling a more
thorough analysis.

4.4.1 Intermediate Steps Evaluation
For each predicate calculus query of the manually curated test set, the run was conducted
three times. The following plots display the error counts for each step. Each respective
subplot deals with one category, while the lower-right plot shows the total error counts.
The x-axis represents the intermediate step at which the respective error occurs. The
title is a legend describing the encoding of the position of the x-axis to the name of
the intermediate step. At step 7, highlighted in blue, the output matches the defined
ground truth and is therefore correct. It is important to note that an intermediate step
is highlighted in red if it doesn’t match the intermediate step of the correct result. This,
however, does not mean that the results evaluate to zero in terms of precision, recall,
and F1-score. Instead, it indicates that the output differs from the ideal output, without
specifying the extent of the difference.

Figure 4.1 shows the error distribution for the Gemini-1.5-Flash version, while the
Figure 4.2 shows the error distribution leveraging Gemini-2.0-Flash. The results for
the Gemini-1.5-Flash version can be considered promising, as a relative majority of the
runs are entirely correct. However it is notable that the errors are distributed across
all categories indicating a variety of error sources. Especially high is the error count
for semantic_list_where and initial_sql_query_join highlighting the wide distribution
of the possible errors. Going on, for the Gemini-1.5-Flash version the correct results
strongly outweigh the incorrect results except for the category “Inconsistencies”. This
suggests that this particular LLM experiences challenges with inconsistencies and varying
scales, resulting in reduced performance. However, this does not imply that the results
are entirely incorrect, but rather that they fall short of ideal accuracy.

In comparison to the Gemini-1.5-Flash version the Gemini-2.0-Flash version in Figure 4.2
produces much better results. A majority of runs is successful. The application of
different LLMs using the same pipeline indicates strong performance differnce. Therefore,
it can be emphasized that deploying more powerful models is essential for achieving
optimal results.

The sources of errors are fairly widespread. No clear conclusions can be drawn about a
specific point of improvement due to the broad distribution of errors. Positions 1 and 5,
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Figure 4.1: Error Distribution for Test Set for Gemini-1.5
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Figure 4.2: Error Distribution for Test Set for Gemini-2.0
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can be singled out as a strong source of error for the Gemini-1.5-Flash version. However,
for the more advanced Gemini version, errors occur at nearly all intermediate stages
in lower numbers, but at comparable levels between the intermediate steps themselves.
Therefore, these deviations must be accepted as part of the pipeline’s design and cannot
be entirely eliminated.

4.4.2 Key Performance Indicator Results
Building on the observations of the Section 4.4.1 the KPIs are calculated for the three runs
for each predicate calculus expression. For that, the runs for both the Gemini-1.5-version
along with the Gemini-2.0-version are compared. The respective results are also compared
with the hard binding. The hard binding refers to the execution of the initial query
without adjusting the query for both the WHERE and JOIN statements. The KPIs
for soft binding for the Gemini-1.5-version are shown in Figure 4.5, while the KPIs for
the hard binding can be seen in Figure 4.6. Regarding the Gemini-2.0-version the KPIs
for the soft binding are displayed in Figure 4.3 and for the hard binding in Figure 4.4.
It is important to note that this comparison between soft binding and hard binding is
not entirely even. The dataset was deliberately designed to incorporate various forms of
noise, thereby posing significant challenges for the hard binding. The objective of this
comparison is to verify the superior performance of the soft binding method on datasets
characterized by a significant degree of noise.

The results indicate that the metrics for soft binding significantly outperform those for
hard binding. Specifically, for the Gemini-2.0-version, soft binding achieves a precision
greater than 0.7 and a recall of 0.68, yielding an F1-score of 0.69, which suggests a decent
balance between precision and recall. In contrast, hard binding, as anticipated, exhibits
considerably lower performance, with an average precision and recall of 0.18. Especially
the bad precision can be attributed to the nature of the hard binding procedure itself.
In some instances for the hard binding, th initial query is non-executable, often due to
data inconsistencies, such as when a numerical column is represented as text. Therefore,
relying solely on schema data for the initial query generation may result in erroneous
queries. Consequently, when no results are returned, all KPIs are assigned a value of zero,
which accounts for the relatively poor performance of hard binding, even for precision.

Furthermore, the performance difference between the models is substantial. The F1-
score utilizing the soft binding for the Gemini-1.5-version is 0.48, compared to 0.69 for
the Gemini-2.0-version. It is also noteworthy that for both models, the precision and
recall values are within 0.10 of each other, indicating a relatively balanced performance.
However, for the hard binding procedure, the metrics for the Gemini-1.5-version are
somewhat lower than those of the Gemini-2.0 version. This discrepancy can be attributed
to the fact that the hard binding procedure consists solely of the SQL generation step,
and notably lacks the generation of a semantic list.

In conclusion, the soft binding procedure yields promising results, with an F1-Score
just below 0.7 for the superior model. Additionally, the LLM-version demonstrates a
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Figure 4.3: Average Metrics for Gemini-
2.0-Flash for Soft Binding

Figure 4.4: Average Metrics for Gemini-
2.0-Flash for Hard Binding

Figure 4.5: Average Metrics for Gemini
1.5-Flash for Soft Binding

Figure 4.6: Average Metrics for Gemini
1.5-Flash for Hard Binding

significant impact on the metrics, emphasizing the importance of leveraging the more
advanced model whenever feasible.

4.4.3 Token Cost and Execution Time

The following Table 4.1 presents the average tokens and execution time for each query.
An analysis of the table reveals, as expected, that the hard binding procedure, which
relies solely on initial query generation, utilizes significantly fewer tokens and fewer calls.
Additionally, the average execution time is substantially shorter compared to the soft
binding procedure, as expected. While for the soft binding the different models show
similar token usage, it is noteworthy that the execution time for the more advanced
Gemini-2.0 model is lower than that of the Gemini-1.5 version. This observation suggests
that more advanced models can improve KPIs while also decreasing execution time.

It is to be noted, that the amount average tokens input values are much higher compared
to the output tokes. This can be explained as there are several few-shot prompts,
including examples.

46



4.5. External Dataset Evaluation

Table 4.1: Computational Cost

Config. Avg. Input Avg. Output Avg. Total Avg. Total Average
Tokens Tokens Tokens Calls Time

Gemini 2.0 + Soft 3533.77 608.21 4143.74 8.89 0.38
Gemini 2.0 + Hard 274.02 36.79 310.81 1.00 0.07
Gemini 1.5 + Soft 3384.19 477.47 861.67 8.26 0.46
Gemini 1.5 + Hard 268.07 39.93 308.00 1.00 0.09

4.5 External Dataset Evaluation

In this section, we discuss the evaluation process using external datasets. Subsection 4.5.1
addresses the challenges encountered during the evaluation design. Subsection 4.5.2
covers the additional metrics explored. Next, the evaluation of the JOIN operation
is presented in Subsection 4.5.3, followed by the evaluation of the WHERE clause in
Subsection 4.5.4.

4.5.1 Evaluation Challenges

Evaluating the proposed approach presents substantial hurdles. This evaluation process is
not straightforward, particularly given the current absence of datasets that truly capture
the nuances of residual noise we aim to address with predicate calculus expressions as
input. To the best of our knowledge, no existing resources fully encompass these specific
characteristics. Moreover, the inherent diversity of comparison operators applicable
within our pipeline introduces a significant evaluation challenge. However, the use of self-
constructed datasets alone is insufficient for a robust evaluation. Despite the drawbacks
presented, datasets related to similar tasks, such as entity matching or classification,
exist and can be adapted to assess the proposed approach. It is important to note that
such comparisons may not be entirely equitable, as many of these systems are specifically
trained for a singular task, whereas the proposed solution is a general-purpose SQL
framework designed to assist users in identifying and mitigating residual noise.

4.5.2 Metrics

For a rigorous evaluation, it is crucial to consider metrics beyond precision, recall, and
F1-score, as these do not fully capture semantic and structural similarities between model
outputs and the ground truth. To address this, the Bilingual Evaluation Understudy
(BLEU) metric [PRWZ01] is employed, which quantifies textual overlap based on n-gram
matching. By comparing outputs with ground truth, BLEU serves as an automated
approximation of human evaluation, providing a numerical estimate of textual similarity.
This enables a more refined assessment, particularly in scenarios where exact syntactic
matches are not required, but semantic consistency remains crucial. Consequently, a
correctly predicted output with a lower BLEU score demonstrates the pipeline’s capability
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to generate accurate predictions even when textual similarity is relatively low, highlighting
its robustness in handling variations in expression.

We compare database outputs. Therefore, a best-average BLEU score is calculated. It
can be calculated by taking the max BLEU score for each ground truth row to all of
the output row. In a final step, the BLEU score is averaged for all ground truth rows.
Additionally, the BLEU score depends on the the length of the n-grams. The formula for
this BLEU-score is:

Average Best BLEU = 1
m

m∑︂
i=1

max
j

(BLEU(Ci, Rj , n)) (4.4)

Where:

• m is the number of ground truth rows.

• Ci is the i-th ground truth row.

• Rj is the j-th output row.

• BLEU(Ci, Rj , n) is the BLEU score between ground truth row Ci and the output
row Rj considering an n-gram.

• The function maxj (BLEU(Ci, Rj , n)) yields the maximum BLEU score for each
ground truth row when compared against all output rows.

The concept of BLEU score for referring to tuples is primarily derived from Paganelli et
al. [PBGF22].

4.5.3 SQL JOIN Performance Evaluation
It was possible to make use of the following computational resources for conducting more
extensive experiments. The system used is running Ubuntu 24.04.2 LTS, with a hardware
configuration that includes a 13th Gen Intel(R) Core(TM) i7-13700K processor, 32 GB
of RAM, and an NVIDIA GeForce RTX 4070 GPU with 12 GB of VRAM. Additionally,
the LLM employed for computation is the Llama-3.2-3B model.

To rigorously evaluate the performance of the JOIN operation within the proposed pipeline,
we select an entity matching dataset. Specifically, the DBLP-ACM dataset [Rah25] is
chosen. It contains information about various articles published by the Association for
Computing Machinery (ACM), a major organization in the field of computer science.
The dataset consists of two separate files, namely “ACM.csv” and “DBLP2.csv”, which
provide details about the respective attributes. Additionally, a mapping file, “DBLP-
ACM_perfectMapping.csv”, links the corresponding matches. The dataset comprises the
following attributes:
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• id: The unique identifier of the paper, represented in various formats.

• title: The title of the research paper.

• authors: The list of authors who contributed to the paper.

• venue: The conference or journal where the paper was published.

• year: The year in which the paper was published.

Using the provided solution file “DBLP-ACM_perfectMapping.csv”, matches are identi-
fied through their respective identifiers. To facilitate comparison, all relevant columns,
title, authors, venue, and year, are concatenated. Due to computational constraints, a
subset of 100 matches is selected for evaluation. From the two dataset files, two separate
tables are created. A JOIN operation is then performed on the concatenated column
between these tables. Since each table contains 100 unique values, the process results in
a total of 10,000 comparisons. The ground truth consists of correctly matched entities.
The input is chosen to be an initial SQL query, which joins the two distinct tables based
on the aggregated column :

SELECT * FROM unique_right JOIN unique_left

ON unique_left.aggregate = unique_right.aggregate;

For this evaluation, the KPIS are precision, recall, and F1-score. Ideally, out of the 10,000
comparisons, only 100 should be correct matches, while the remaining 9,900 should be
true negatives.

The evaluation is conducted using the three approaches laid out in the previous chapter
in Section 3.6. First, the standard zero-shot prompting method is applied. Second, the
blocking procedure is incorporated, utilizing a two-step approach with threshold values
of 0.5, 0.625, 0.75, 0.875, 0.9, 0.95, 0.975 and 1.0. Lower thresholds are not considered,
as results do not significantly differ from the lowest selected value of 0.5. Third, an
approach relying solely on embeddings is evaluated. Additionally, the BLEU scores and
runtime performance are analyzed.

Figures 4.7 and 4.8 display the results obtained from the execution. The x-axis represents
the threshold, while the y-axis indicates the corresponding score. The solid lines, each
in a distinct color, correspond to either the embedding-only approach or the two-step
approach. In contrast, the dotted lines, which remain unaffected by the threshold,
represent the zero-shot approach.

Figure 4.7 displays the comparison of the embedding-only approach as well as the zero-
shot evaluation. Specifically, the results highlight the trade-off between precision and
recall across various threshold settings for the embedding-only method. As the threshold
increases, precision generally improves, while recall decreases. However, at a threshold
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Figure 4.7: Recall, Precision, and F1-Score for Embedding-Only and Zero-Shot Prompting

of 0.95, both precision and recall drop to zero, as the embedding stage filters out all
outputs at this level, effectively blocking all records. The highest observed F1-score
of approximately 0.5 for the embedding-only approach occurs at a threshold of 0.9.
Furthermore, for thresholds below 0.75, precision approaches zero due to the high number
of true negatives, which also diminishes the F1-score. Notably, for the embedding-only
method, a precision spike of approximately 0.8 can be observed at a threshold of 0.9.
This spike in precision is paired with a substantially lower decrease in recall, leading to a
higher F1-Score. For thresholds higher than 0.9, all metrics drop to 0, as no records can
pass due to the chosen threshold.

For the zero-shot prompting method, a F1-score of approximately 0.28 can be considered
satisfactory, particularly given the large number of comparisons involved. Notably, the
precision is slightly below 0.2, while recall is much higher. Furthermore, the highest
F1-Score was not achieved by zero-shot prompting but by the embedding-based approach.
In this case, the outcome underscores the effectiveness of leveraging embeddings in the
soft binding approach. In summary, the embedding-only method outperforms zero-shot
prompting for the tresholds 0.875 and 0.9. However, the performance is highly dependent
on the particular entities being compared. Additionally, accurately estimating an optimal
threshold remains challenging. Based on the observations in this study, a reasonable
range for the threshold appears to lie between 0.75 and 0.95.
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Figure 4.8: Recall, Precision, F1-Score for Two-Step and Zero-Shot Prompting

Figure 4.8 presents the results for the two-step model, which incorporates the use
of embeddings as a blocking stage followed by a zero-shot prompting approach. As
illustrated, the F1-Score for the two-step model is consistently higher than that of the
zero-shot prompting method except for thresholds above 0.95. Notably, for the two-step
model for a threshold of up to 0.9, the precision score rises sharply before decreasing
to zero at a threshold of 0.95. This indicates that while increasing the threshold can
improve precision, higher thresholds also risk filtering out nearly all output records.
Additionally, it is important to note that the two-step model achieves higher precision
than the zero-shot prompting approach, while recall can be lower. This can be attributed
to the more restrictive nature of the two-step model compared to the zero-shot prompting
method. Therefore, a trade-off is evident: higher precision is achieved by the two-step
model, whereas higher recall is generally attained, except for the threshold being below
0.75, by the zero-shot prompting method. The optimal threshold regarding the current
example for the two-step model appears to lie between 0.7 and 0.8. Overall for this
example, the two-step model outperforms zero-shot prompting in terms of the F1-score
for thresholds of up to 0.9.

An additional comparison considers execution time. Figure 4.9 shows the execution
times for the two-step model, the embedding-only approach, and the zero-shot prompting
method. The two-step model is significantly more computationally expensive than the
other two when the threshold is below 0.9. However, at higher threshold values, it blocks
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Figure 4.9: Execution Times for Embedding-Only, Two-Step and Zero-Shot Prompting

more candidate records, which reduces computation time. When all records are blocked
in the the first blocking step, the execution speed of the two-step model aligns with
that of the embedding-only model, as no candidates are passed towards the LLM for
zero-shot prompting. Notably, the zero-shot prompting method exhibits a computational
cost higher than the embedding-only model, placing it in the middle of the comparison.
For threshold values below 0.9, the execution time for two-step model is higher than that
of the zero-shot prompting method. In summary, the key observation is that increasing
the threshold value leads to a higher number of entities being blocked in the two-step
approach. Hence, execution time decreases, leading to computational cost savings. This
effect is particularly pronounced at higher threshold values, where the two-step approach
demonstrates significant savings compared to the zero-shot prompting technique, thereby
achieving one of the intended outcomes of this method.

Finally, the evaluation of BLEU scores serves as a key indicator of how closely the
predicted values align with the ground truth. The formula for the BLEU score used in
this study is given in Equation 4.4. A high recall should therefore be reflected in both
the BLEU1 and BLEU2 scores. As shown in Figure 4.10, for thresholds below 0.75, the
BLEU1 score consistently remains highest for the embedding-only model. For thresholds
below 0.6, the BLEU1 scores for the zero-shot and two-step models are comparable. The
BLEU1 score of the two-step model decreases rapidly starting from a threshold of 0.75.
At threshold values around 0.9, the two-step and embedding-only models converge, as the
embedding filtering process dominates. Overall, this indicates that leveraging prompting
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Figure 4.10: BlEU1 and BLEU2 Score for Embedding-Only, Two-Step and Zero-Shot
Prompting

in the two-step and zero-shot prompt approach yields more diverse results in terms of
text similarity as the BLEU metrics are consistently lower. Additionally, the BLEU2
score exhibits a similar trend to BLEU1, but within the range of 0.75 to 0.9, it remains
notably lower than the BLEU1 score.

In conclusion, threshold-based filtering demonstrates reasonable performance for the
JOIN operation. However, it is important to note that the two-step model yields inferior
results when compared to the embedding-only approach for certain thresholds. For this
example, although the two-step approach incurs a higher execution time, its performance
metrics are superior to those of the zero-shot prompting approach for a treshhold up to
0.9, achieving higher F1-scores with a maximum of 0.45. Whether this trade-off between
execution time and improved accuracy is acceptable ultimately depends on the specific
requirements and preferences of the user or application. Finally, a trade-off between
precision and recall was observed up to a threshold of 0.9 when comparing the two-step
model with the zero-shot model. Increasing the threshold was associated with a decrease
in recall, while precision either improved or plateaued. The selection of the optimal
threshold is ultimately at the discretion of the user.
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4.5.4 WHERE and WHERE NOT Evaluation
Additionally, the WHERE clause also was evaluated on a larger dataset. For this purpose,
we select a product classification dataset. This selection enables a thorough investigation
of the filtering operation using the WHERE clause. The dataset used for this experiment
is obtained from Kaggle [Moh25]. It contains data sourced from the online retailer
“JioMart”. The primary attributes relevant to this analysis are the items column and
the category column.

The task within the scope of this evaluation is to retrieve the category of each item listed
in the category items. The items column contains information such as the item “Venus
Vector Hi Speed Ceiling Fan V1200 (White)” belonging to the category “Electronics”.
The original dataset contains 162,313 rows along with 5 columns. Initially, there were 6
categories present, namely: “Groceries”, “Home & Kitchen”, “Fashion”, “Electronics”,
“Beauty”, and “Jewellery”. However, initial experimentation showed that the categories
“Home & Kitchen” and “Groceries” are quite ambiguous and are disproportionately
assigned to other categories. For this reason, along with the large size of the dataset, we
select a subset containing 1,000 rows in order to better evaluate and process the results.
The four remaining categories, “Fashion”, “Electronics”, “Beauty”, and “Jewellery”, are
equally distributed in the dataset. Based on the item names, the pipeline is tasked with
identifying the correct category. This evaluation is carried out across all four investigated
columns. Also, the verbal translation of the “=” operator was changed to “belongs to
the category”. The corresponding SQL query used is:

SELECT * FROM jio_smart

WHERE jio_smart.items = ’current_category’

Again we test the three methodologies of embedding-only, two-step and zero-shot prompt-
ing for various thresholds. This is performed for both the equality operator “=” and
the inequality operator “!=”. It is important to note that for the “!=“ operator, the
embedding comparison is inverted from “>“ to “<“ in order to account for negation.
Additionally, instruction prompts are used to better facilitate the process. For “=”, the
instruction prompt is: "You are a machine returning boolean values. Given the categories
“Fashion”, “Electronics”, “Beauty”, and “Jewellery’, each object belongs to exactly one.
Answer ’yes’ if an item belongs to the stated category, otherwise answer ’no’. Validate
the following statement using ’yes’ or ’no’ only!"

For “!=”, the instruction prompt is: "You are a machine returning boolean values. Given
the categories “Fashion”, “Electronics”, “Beauty”, and “Jewellery”, each object belongs
to exactly one. Answer ’yes’ if an item does *not* belong to the stated category, otherwise
answer ’no’. Validate the following statement using ’yes’ or ’no’ only!"

First, we compare the KPIs for the different methods between the embedding-only
approach and the zero-shot prompting approach. The corresponding figures, namely
Figure 4.11a and Figure 4.11b, present the KPIs in relation to the threshold values. It
can be observed that for the "WHERE" clause, as the threshold increases, the KPIs
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(a) WHERE: Embedding-Only and Zero-
Shot Prompting

(b) WHERE NOT: Embedding-Only and
Zero-Shot Prompting

Figure 4.11: Embedding-Only and Zero-Shot Prompting for Both WHERE and WHERE
NOT

generally decrease, whereas for the "WHERE NOT" condition, the KPIs rise. This
can be explained by the fact that, with increasing thresholds, the “WHERE” clause
blocks more candidates, whereas the “WHERE NOT” clause blocks fewer entities due
to the differing nature of the comparison. Notably, when comparing with the JOIN
evaluation, a smaller trade-off between precision and recall is observed. However, the
main trend is that the F1-score either remains constant or continuously decreases for
the “WHERE” clause, whereas it either increases or remains constant for the “WHERE
NOT” clause. For the “WHERE NOT” filtering condition, precision is relatively high for
higher thresholds, as nearly all instances pass through, resulting in a precision close to
0.75. However, the precision for the zero-shot prompting approach exceeds this value.
For the “WHERE NOT” condition, the F1-score is comparable for both approaches at
higher thresholds. This suggests that in this scenario applying a threshold does not
result in effective blocking for this operation. In contrast, for the "WHERE" filtering
condition, precision drops as the threshold increases. The same trend is observed in
Figure 4.11b. It is important to note that for the "WHERE NOT" condition, the logic is
reversed, meaning that higher thresholds block fewer entities. In summary, the overall
results indicate that the zero-shot prompting approach outperforms the embedding-only
phase for the "WHERE" condition and yields similar performance for the "WHERE NOT"
condition for this example.

The evaluation of the two-step model against the zero-shot prompting method reveals
notable differences in performance. As illustrated in Figure 4.12b, the KPIs for the
“WHERE NOT” condition are considerably lower for the two-step model compared to
the zero-shot prompting approach at lower threshold values. However, as the threshold
increases, the KPIs of the two-step model converge with those of the zero-shot prompting
method, with the threshold where they become closely aligned occurring at approximately
0.6.

Similarly, for the evaluation of the “WHERE” clause, shown in Figure 4.12a, the two-step
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model exhibits KPI values comparable to the zero-shot prompting method at lower
threshold values, up to around 0.4, where nearly no candidate records are blocked.
Beyond this point, as the threshold increases, the KPIs for the two-step model decrease
significantly.

The analysis for this reveals that, in terms of F1-score, the zero-shot prompting approach
either outperforms or is closely comparable to any method that employs threshold-based
filtering.

(a) WHERE: Two-Step and Zero-Shot
Prompting

(b) WHERE NOT: Two-Step and Zero-Shot
Prompting

Figure 4.12: Two-Step and Zero-Shot Prompting for Both WHERE and WHERE NOT

Figure 4.13 presents the execution times for the three methods—two-step, embedding-only,
and zero-shot prompting—under both filtering conditions: “WHERE” and “WHERE
NOT”.

For lower thresholds in the condition, respectively higher thresholds in the “WHERE
NOT” condition, the two-step model exhibits higher execution times compared to the
embedding-only and zero-shot prompting methods. As the blocking threshold increases,
respectively decreases for the “WHERE NOT” clause, as can be seen in Figure4.13b,
execution time decreases, eventually matching the embedding-only model at comparably
high thresholds, respectively comparably low thresholds for the “WHERE NOT” clause.

In this evaluation, the execution time of the two-step and embedding-only models
intersects at approximately 0.6 for the “WHERE” clause and slightly above 0.2 for the
“WHERE NOT” condition.
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(a) WHERE: Execution Time (b) WHERE NOT: Execution Times

Figure 4.13: Execution Times for WHERE and WHERE NOT

Overall, for the evaluation of the WHERE clause in this example, threshold-based
filtering is not practical. While recall is higher for the embedding-only approach than
in the zero-shot prompting approach for lower thresholds in the “WHERE” condition,
respectively higher thresholds in the “WHERE NOT” condition, precision was never
significantly better. Moreover, as shown in Figure 4.13a and Figure 4.13, execution time
in these cases is considerably higher than that of the zero-shot prompting approach.

Additionally, BLEU1 and BLEU2 scores offer valuable insights into the evaluation
process. The left Figure 4.14a displays these metrics for the “WHERE” clause across all
three methods, while the right Figure 4.14b illustrates the corresponding results for the
“WHERE NOT” clause, with respect to the threshold value. It is evident that the BLEU
scores for both the two-step approach and the embedding-only approach exhibit similar
trajectories for BLEU1 and BLEU2, highlighting the comparable performance between
these methods. As the threshold increases for the “WHERE” clause, or decreases for
the “WHERE NOT” clause, both BLEU1 and BLEU2 scores decline. This decline can
be attributed to a decrease in recall, leading to the exclusion of correct records, thus
reducing the overall BLEU scores. Of particular note, the zero-shot prompting approach
achieves a notably high BLEU1 score of approximately 0.9 for both clauses.

(a) WHERE: BLEU Metrics (b) Where not: BLEU metrics

Figure 4.14: WHERE and WHERE NOT: BLEU Metrics
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Overall, it can be stated that for both clauses, the pipeline produces good results in
terms of precision, recall, and F1-score. With results exceeding 0.8 for the F1-score, the
zero-shot prompting approach can be considered effective.

However, it is important to note that the embedding method does not appear to perform
well . Results comparable to the zero-shot prompting approach, which does not leverage
embeddings, in terms of KPIs can be observed for lower thresholds in the “WHERE” op-
eration or higher thresholds in the “WHERE NOT” clause. However, at these thresholds,
the execution time of the zero-shot prompting remains lower and is therefore superior.

Ultimately, for the "WHERE" and "WHERE NOT" clause for the following example,
threshold-based blocking is not recommended, while the zero-shot prompting approach
yields good results. Hence, it can be employed without the need to recommend a specific
threshold range.
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CHAPTER 5
Limitations and Discussion

In this chapter, we discuss the limitations of the thesis in Section 5.1 and perform the
discussion in Section 5.2.

5.1 Limitations
In this subsection, we discuss the inherent limitations of the chosen approach and also
the limitations associated with the evaluation.

In terms of limitations, it is important to highlight that both the auxiliary tables
Approach 3.3.4 and the translation-based Approach 3.3.3 leverage the SQL framework.
This has inherent advantages and also disadvantages. The advantage lies in SQL’s status
as a widely adopted querying language for relational databases [MMR23], underpinned
by its computational efficiency and extensive optimization techniques [RIKJ24]. However,
relying on the already existing SQL comparison operators means adjusting the query for
the translation-based approach or writing an intermediary table for the auxiliarty table
approach, complicating the initial query. This adds complexity to the original query and
can lead to errors if the rewriting is not done correctly.

The translation-based approach is quite impractical, when there are many deviations
from the original query. The additional statements expressed through OR and CASE
clauses for a small number of corrections are a good visual representation for the user.
However, in the case of highly noisy datasets, a substantial number of additional entities
must be incorporated. Hence, the total expression can become extremely long, potentially
leading to difficulty of comprehension for the end user, when trying to analyze the cause
of the errors. The expression may grow significantly in length, making it difficult to
analyze. This extended complexity can hinder the end user’s ability to identify the root
cause of errors when reviewing the query. For the current version of PostgreSQL there is
no defined limit for the input prompt [The25]. Despite that, it can’t be recommended to
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make use of this method for larger deviations between the hard and the soft binding.

The auxiliary table strategy simplifies SQL query adjustment by adding an intermediate
expression for each clause, requiring exactly one intermediate JOIN per modified clause.
However, this incorporates writing and modifying the database while querying. However,
in many real-world environments, users, especially developers, are often granted only
read-only or very limited privileges on the live database. This follows the Principle of
Least Privilege, which dictates that identities should only be permitted to perform the
smallest set of actions necessary to fulfill a specific task [SdLJ18]. Consequently, users are
often restricted from making modifications to production databases, thereby complicating
the implementation of this approach. However on the other hand, the user retains the
ability to access and modify the created table according to their preferences, should their
judgment differ from that of the LLM.

Additionally, more powerful LLMs could not be investigated. A valuable comparison
for evaluating extensive external datasets would have been to include results from a
different Llama version with a higher amount of parameters. However, the employed
machine lacked the capacity to load it and execute it. For instance, running a model
such as LLaMA 7B typically demands approximately 28 GB of GPU memory to operate
efficiently [Sam23]. Also, it is possible to leverage an API like for example with Gemini
like in Section 4.4.2, however there are substantial access and rate limits leading to
significant financial costs [Goo25d] when performing an extensive analysis. Furthermore,
the maximum JOIN size examined in this study was 100 × 100, primarily due to significant
hardware limitations and execution time constraints. For a more comprehensive analysis,
higher computational resources and extended access time could be utilized to increase
the scope of the work.

Furthermore, it is important to emphasize that the approach remains constrained by the
syntactic limitations of SQL. Despite these promising results, the approach is still prone
to various sources of error. These include inaccuracies in the initial query generation,
the creation of the semantic list, and the subsequent adjustment of the query. Since
these steps are highly interdependent, errors introduced at one stage may propagate
throughout the entire process, thereby increasing the overall likelihood of failure.

Finally, the total evaluation of the approach was only possible in the limited fashion
due to the lack of specific data. The evaluation was performed first on the manually
curated dataset along with an analysis of the error stage. The final evaluation was
performed on a entity matching and a classification dataset. However, the nature of
general purpose LLMs is far wider and more targeted evaluation could be performed
leveraging for example the “<” and “>” comparison operators on a bigger scale, provided
that test such data were available.
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5.2 Discussion
The proposed approach integrates the semantic capabilities of LLMs into SQL systems by
introducing multiple methods for softening bindings in both JOIN and WHERE evalua-
tions. A key challenge in this research domain is the lack of suitable benchmark datasets,
necessitating the creation of a small, task-specific dataset. Within the SQL framework,
two primary methods were proposed: the auxiliary approach and the translation-based
approach. The auxiliary method is generally more suitable when dealing with substantial
residual noise, as it provides flexibility in modifying the translation table and is reusable,
allowing the user to re-execute the relevant queries as needed. In contrast, the translation-
based approach is recommended only when residual noise is minimal. Additionally, the
auxiliary method offers users a clearer overview of modifications compared to directly
altering the initial query, enhancing interpretability and allowing the user to modify the
translation table after processing by the pipeline to incorporate manual judgments.

Furthermore, the proposed architecture demonstrates a significant improvement in KPIs
compared to hard binding, which solely relies on executing the initially generated query.
This finding highlights the potential of the approach, as the pipeline led to enhanced
results in terms of metrics. However, it is important to note that these methods are
computationally expensive, resulting in higher execution times, which must be carefully
considered in practical applications.

The final evaluation of the JOIN condition involved comparing three approaches: zero-
shot prompting, embedding-only, and two-step. The F1-score reached up to 0.5 for the
embedding-only method and a F1-score of up to around 0.45 for the two-step model. This
can be considered a strong outcome in such a sparse positive environment. The importance
of selecting an appropriate threshold was evident, with an optimal range identified between
0.75 and 0.95. Overall, incorporating a blocking stage reduced execution time for some
threshold ranges, namely for thresholds above the threshold above 0.9. While the two-step
method was computationally more expensive than the zero-shot approach, it resulted in
a higher F1-score inside a reasonable threshold range. The two-step model performed
better on precision, whereas in most cases the zero-shot prompting method had a higher
recall. Notably, the two-step method achieved significantly higher precision, albeit at the
cost of recall. Therefore, the choice of method depends on whether precision or recall is
prioritized for a given application.

The evaluation of the “WHERE” and “WHERE NOT” filtering operations highlights
the advantages of the zero-shot prompting approach over the two-step and embedding-
only methods. The zero-shot method consistently performed better in F1-score and in
terms of execution time. Also the zero-shot prompting results for the “WHERE NOT”
condition produced similar results compared to the "WHERE" condition, indicating a
strong generalization capability across various comparison operators. It is to mention
that the two-step model first blocking procedure did not produce better results in terms
of the F1-score, but was computationally more expensive. Execution time compared with
the two-step model was also lower for the zero-shot prompting approach, making it more
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efficient overall. In contrast, the embedding-only had a significantly worse precision than
the zero-shot prompting approach indicating to be an ineffective filtering mechanism.
Overall, the results indicate that threshold-based filtering is less effective, and zero-shot
prompting is the preferred method for WHERE clause filtering, providing both higher
accuracy and efficiency.

Hence, the implemented pipeline demonstrated satisfactory results, showcasing its po-
tential to extend beyond traditional SQL queries. The pipeline’s ability to semantically
interpret the meaning of comparison operators, particularly in the context of data with
residual noise, has been effectively demonstrated. However, it is important to consider
the resource intensity associated with invoking the LLM, which necessitates attention to
performance optimization.

The threshold-based filtering yielded favorable results for the JOIN evaluation, with an
optimal threshold range identified between 0.7 and 0.9. Although the peak F1-score of
around 0.5 was lower than that observed for the WHERE evaluation, the result remains
reasonable given the large number of comparisons and the significant proportion of true
negatives. In contrast, for the WHERE evaluation, the F1-score was substantially higher.
However, in this case, threshold-based filtering proved ineffective.

Moreover, it is crucial to note that the JOIN operation inherently involves more compar-
isons, as it requires comparing each row from one dataset with every row from another,
leading to a significant increase in the total number of comparisons. Consequently,
threshold-based filtering is more essential for JOIN filtering in comparison to WHERE
filtering. Furthermore, the results for the filtering operation demonstrate a respectable
F1-score. In conclusion, the pipeline has proven to be effective, offering a promising
approach for JOIN and categorization tasks.
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CHAPTER 6
Conclusion and Future Work

This final chapter deals with the conclusion of the entire thesis in Section 6.1 and describes
possible future work in Section 6.2.

6.1 Conclusion
The main contribution of this thesis was the development of a query processing pipeline
designed to address the issue of residual noise in the context of WHERE and JOIN
statements. To evaluate the proposed approach, a hand-crafted dataset was created,
accounting for various types of residual noise, including multilingual support, handling of
string representations of numbers, inconsistent data formats, and modifications of JOIN
attributes.

Experimental results demonstrated that the soft binding strategy consistently outper-
formed hard binding, with particularly notable improvements when using the Gemini-2.0-
Flash version, achieving an increased F1-score exceeding 50%. These findings highlight
the effectiveness of the proposed pipeline in dealing with residual noise.

Going further regarding execution considerations, a blocking procedure leveraging the
employed LLM was implemented, and its functionality and utility were thoroughly inves-
tigated. In the evaluation on the DBLP-ACM dataset [Rah25], the results demonstrated
the efficacy of utilizing embeddings and zero-shot prompting. Given the sparse-positive
nature of the dataset, achieving a F1 score exceeding 0.4 represents a notable success.
Moreover, the benefits of incorporating embeddings through the LLM became evident,
providing users with the ability to control the trade-off between recall and precision
when applying the embedding-only and two-step approaches, provided they stay within
a reasonable threshold range. As a general proposition, users can prioritize recall by
selecting a lower threshold or emphasize precision by setting a higher threshold. However,
it should be noted that this trade-off behavior is dependent on the specific characteristics
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of the dataset and may not consistently generalize across all types of data distributions.
This flexibility constitutes a powerful instrument for end-users, allowing them to adapt
the approach to their specific requirements and objectives.

Additionally, the evaluation of the categorization dataset [Moh25] highlighted the strong
classification capabilities of the employed LLM using zero-shot prompting, achieving
a F1-score close to 0.8 for the “WHERE” clause and a F1-score of slightly above 0.8
for the “WHERE NOT” clause. Notably, comparable F1-scores were obtained for both
“WHERE” and WHERE NOT” conditions, demonstrating the method’s applicability
across different types of comparison operators. These results further illustrate the model’s
ability to deliver strong classification performance without relying on pre-training or
few-shot prompting.

In conclusion, the developed query processing pipeline provides substantial utility for
end-users. It offers flexibility by allowing adjustments of threshold settings, the selection
of alternative LLMs, and the customization of textual descriptions for comparison
operators. This adaptability enables users to fine-tune the pipeline according to specific
task requirements, thereby enhancing its applicability across a range of practical scenarios.

6.2 Future Work
There are several promising directions to extend the research presented in this thesis.
One potential avenue is the re-implementation of query parameters directly within the
querying process itself, which would eliminate the need for dynamic adjustments of SQL
queries and streamline query generation. In the case of the re-implementation it would be
important to implement a predicate calculus layer, to translate from the initial predicate
calculus expression to a SQL query.

It could also be valuable to deploy the model in real user environments, allowing users
to evaluate helpfulness of the generated suggestions. Both explicit feedback like user
ratings and implicit feedback, such as user interactions or corrections, could be collected
and utilized to fine-tune the underlying LLM, enabling more task-specific modifications.
Furthermore, such deployment would allow for a comprehensive evaluation effectiveness
of the proposed pipeline in real-world scenarios.

Additionally, similar to DB-GPT [XJS+23], a multi-turn conversational agent could be
developed, enabling users to interact with the system iteratively rather than receiving
query suggestions in a single-shot manner. Such an agent would allow users to handle each
individual database operation step by step and request additional suggestions throughout
the whole query process. While this approach may increase the complexity of interaction,
it would also provide greater flexibility and enable the system to better support highly
tailored and complex use cases.

Another promising approach for future work involves integrating additional SQL opera-
tions, such as GROUP BY, COUNT, and other advanced operators. This would expand
the range of supported SQL queries, enhancing the system’s flexibility and applicability
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6.2. Future Work

across more complex analytical tasks. By incorporating these operations, the system
could better more complex query structures, ultimately improving user experience.

In conclusion, these proposed extensions offer significant opportunities to enhance the
practicality and performance of the system, ultimately leading to more intuitive user
interactions with databases in real-world applications.
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Overview of Generative AI Tools
Used

1. To help refine certain formulations in the thesis, the Writefull add-on for Overleaf
(https://www.writefull.com/writefull-for-overleaf) was used occasionally. Its use
was limited due to the daily limit on suggestions in the free version.

2. ChatGPT (version GPT-4) was also utilized in several instances to provide addi-
tional formulation suggestions.
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Appendix

This chapter presents supplementary material that complements the main body of this
work. Section Query for Schema-Level Data details the SQL query used to retrieve
schema-level data. Next, the Section Test Dataset lists all the tables of the test dataset.
Section Test Cases presents the corresponding queries along with their respective ground
truth. Finally, Section Pseudo Code includes additional pseudo code from the implemen-
tation.

Query for Schema-Level Data
The following SQL query is executed to retrieve the schema-level information regarding
a specific table t.

SELECT
c.column_name,
c.is_nullable,
c.data_type,
constraints.constraint_type

FROM
information_schema.columns c

LEFT JOIN (
SELECT

kcu.column_name,
tc.constraint_type

FROM
information_schema.table_constraints tc

JOIN
information_schema.key_column_usage kcu

ON
tc.constraint_name = kcu.constraint_name

WHERE
tc.table_name = '{t}'

) AS constraints
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ON c.column_name = constraints.column_name
WHERE

c.table_name = '{t}';

Test Dataset

This section shows all tables of the manually crafted test dataset.

Table 1: shareowner

id name shares
1 Pierre 20
2 Vladi 10
3 Diego 15
4 Marcel 11

Table 2: animalowner

animalname category owner_id
bill chien 1
diego chat 2
chris dog 3
juan perro 4

Table 3: shareowner1row

id name shares
1 Pierre 20

Table 4: animalowner1row

animalname category owner_id
bill chien 1

Table 5: doctors

id name patients_pd
2 Giovanni 11
3 Hans fourty
4 Lukas 44
1 Peter ten
5 Dr. Smith 150

Table 6: songs

id album_id song_name duration
1 1 Delicate 3:52
2 2 New Year’s Day 3:55

Table 7: albums

id artist_id album_name release_year
1 1 Reputation 2017
2 2 Reputation 2017

Table 8: artists

id name language
1 Taylor Swift English
2 Reputation Artist English
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Table 9: tennis_players

id name born
1 Juan 20.02.2003
2 Paul 18.04.1968
3 Xi January 1986
4 Michael 18.01.1997

Table 10: tournaments

winner
id name

price
money

in million
4 Berlin Open 4
3 Warsaw Open 3
2 Jakarta Open 1.5
3 Osaka Open 0.5

Table 11: influencers

media_name clicks
makeuptutorial 1000 thousand
outsideguy 50
surviver1000 1 million
princess one thousand

Table 12: followers

id following adult
1 surviver1000 True
3 makeuptutorial False
2 surviver1000 True
3 princess True

Table 13: children_table

id children
0 4
1 1
2 many
3 2

Table 14: fathers

id name
zero Gerhard
one Joachim
four Simon
two Dieter

Table 15: mothers

id name
1 Julia
2 Petra
3 Claudia
4 Lena

Table 16: website_visits

date page visits
2023 October 26 homepage 1000
2023 October 26 about 500
2023 October 27 homepage 1200
2023 October 27 contact 200
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Table 17: weather

date city temperature rainfall
2023 10 26 London 12 0
2023 10 26 New York 15 2
2023 10 27 London 10 5
2023 10 27 New York 13 1

Table 18: bakery_sales

Item Quantity Price

Croissants 5 dozen 12.00 per
dozen

Baguettes 8 dozen 10.00 per
dozen

Macarons 7 dozen 12.00 per
dozen

Pain au Chocolat 3 dozen 15.00 per
dozen

Table 19: oven_temperature

Item Temperature
Croissants 200 °F
Baguettes 400 °F
Macarons 350 °F
Pain au Chocolat 200 °F

Table 20: movies

Movie category rating
Raiders of the

Lost Arc action 4/5

The Shawshank
Redemption thriller 3/5

Wings of Desire fantasy 4/5
Amélie comedy 5/5

Table 21: clicks

publication clicks
17.01.2011 1000000
08.03.2016 500
22.11.2014 10^6
24.12.2022 1000

Table 22: movies_personal

Movie Personal rating
Die Flucht aus Shawshank 3/5
Der Himmel über Berlin 5/5
Die fabelhafte Welt der Amélie 4/5
Lola rennt 2/5
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Test Cases
This section presents the predicate calculus expression along with the ground truth used
in the initial evaluation.

Test Cases for Predicate Calculus to SQL Conversion
(a) Input: ∃id ∃name ∃patients_pd (doctors(id, name, patients_pd) ∧ patients_pd

< 12)
Output: {(2, ’Giovanni’, ’11’), (1, ’Peter’, ’ten’)}

(b) Input: ∃id ∃patients_pd (doctors(id, ’Peter’, patients_pd) ∧ patients_pd < 12)
Output: {(1, ’Peter’, ’ten’)}

(c) Input: ∃id ∃shares ∃name (shareowner1row(id, name, shares) ∧ animalowner1row(id,
_, ’dog’))
Output: {(1, ’Pierre’, 20, 1, ’bill’, ’chien’)}

(d) Input: ∃id ∃shares ∃name (shareowner(id, name, shares) ∧ animalowner(id, _,
’dog’))
Output: {(3, ’Diego’, 15, 3, ’chris’, ’dog’), (4, ’Marcel’, 11, 4, ’juan’, ’perro’), (1,
’Pierre’, 20, 1, ’bill’, ’chien’)}

(e) Input: ∃id ∃shares ∃name(shareowner(id, name, shares) ∧ ¬animalowner(id, _,
’dog’))
Output: {(2, ’Vladi’, 10, 2, ’diego’, ’chat’)}

(f) Input: ∃x ∃y ∃z (children_table(x, y) ∧ fathers(x, z))
Output: {(0, ’4’, ’zero’, ’Gerhard’), (1, ’1’, ’one’, ’Joachim’), (2, ’many’, ’two’,
’Dieter’)}

(g) Input: ∃id (children_table(id, _) ∧ fathers(id, _) ∧ mothers(id, _))
Output: {(1, ’1’, ’one’, ’Joachim’, 1, ’Julia’), (2, ’many’, ’two’, ’Dieter’, 2, ’Petra’)}

(h) Input: ∃id (tennis_players(id, _, ’January’) ∧ tournaments(id, name, price_money))
Output: {(4, ’Michael’, ’18.01.1997’, 4, ’Berlin Open’, 4.0), (3, ’Xi’, ’January
1986’, 3, ’Warsaw Open’, 3.0), (3, ’Xi’, ’January 1986’, 3, ’Osaka Open’, 0.5)}

(i) Input: ∃m ∃f ∃i (influencers(m, f) ∧ f > 500 ∧ followers(i, m, z))
Output: {(’surviver1000’, ’1 million’, 1, ’surviver1000’, True), (’makeuptuto-
rial’, ’1000 thousand’, 3, ’makeuptutorial’, False), (’surviver1000’, ’1 million’, 2,
’surviver1000’, True), (’princess’, ’one thousand’, 3, ’princess’, True)}

(j) Input: ∃id (children_table(id, >1) ∧ fathers(id, _))
Output: {(0, ’4’, ’zero’, ’Gerhard’), (2, ’many’, ’two’, ’Dieter’)}
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(k) Input: ARTISTS(a, _), ALBUMS(_, a, "Reputation", 2017), SONGS(_, a2,
song_name), ALBUMS(a2, a)
Output: {(1, 1, ’Reputation’, 2017, 1, ’Taylor Swift’, ’English’, 1, 1, ’Delicate’,
’3:52’), (2, 2, ’Reputation’, 2017, 2, ’Reputation Artist’, ’English’, 2, 2, ’New Year’s
Day’, ’3:55’)}

(l) Input: ∃d weather(d, city, temperature, rainfall) ∧ website_visits(d, page, visits)
Output: {(2023 10 26, ’London’, 12, 0, ’2023 October 26’, ’about’, 500), (2023
10 26, ’London’, 12, 0, ’2023 October 26’, ’homepage’, 1000), (2023 10 26, ’New
York’, 15, 2, ’2023 October 26’, ’about’, 500), (2023 10 26, ’New York’, 15, 2, ’2023
October 26’, ’homepage’, 1000), (2023 10 27, ’London’, 10, 5, ’2023 October 27’,
’contact’, 200), (2023 10 27, ’London’, 10, 5, ’2023 October 27’, ’homepage’, 1200),
(2023 10 27, ’New York’, 13, 1, ’2023 October 27’, ’contact’, 200), (2023 10 27, ’New
York’, 13, 1, ’2023 October 27’, ’homepage’, 1200)}

(m) Input: ∃item bakery_sales(item, _, _) ∧ oven_temperature(item, >200 °C)
Output: {(’Baguettes’, ’400 °F’, ’8 dozen’, ’10.00 per dozen’)}

(n) Input: ∃item bakery_sales(item, < 55, _) ∧ oven_temperature(item, _)
Output: {(’Pain au Chocolat’, ’3 dozen’, ’15.00 per dozen’, ’200 °F’)}

(o) Input: ∃item bakery_sales(item, > 90, _) ∧ oven_temperature(item, >180 °C)
Output: {(’Baguettes’, ’400 °F’, ’8 dozen’, ’10.00 per dozen’)}

(p) Input: ∃movie movies(movie, _, _) ∧ movies_personal(movie, _)
Output: {(’Wings of Desire’, ’fantasy’, ’4/5’, ’Der Himmel über Berlin’, ’5/5’),
(’Amélie’, ’comedy’, ’5/5’, ’Die fabelhafte Welt der Amélie’, ’4/5’), (’The Shawshank
Redemption’, ’thriller’, ’3/5’, ’Die Flucht aus Shawshank’, ’3/5’)}

(q) Input: ∃movie movies(movie, _, _) ∧ movies_personal(movie, >70%)
Output: {(’Wings of Desire’, ’fantasy’, ’4/5’, ’Der Himmel über Berlin’, ’5/5’),
(’Amélie’, ’comedy’, ’5/5’, ’Die fabelhafte Welt der Amélie’, ’4/5’)}

(r) Input: ∃ movies("The sky over Berlin", _, _)
Output: {(’Wings of Desire’, ’fantasy’, ’4/5’)}

(s) Input: ∃clicks influencers( _, clicks) ∧ publication_clicks( _, clicks)
Output: {(’princess’, ’one thousand’, ’24.12.2022’, ’1000’), (’makeuptutorial’,
’1000 thousand’, ’17.01.2011’, ’1000000’), (’surviver1000’, ’1 million’, ’17.01.2011’,
’1000000’)}
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Pseudo Code
In this section, we present the pseudo code for both the row calculus pipeline and the
join pipeline.

Row Calculus Pipeline
The following provides the pseudo code for the row calculus pipeline.

1
2 sql_query = INPUT #Get predicate

3
4 #Extract all WHERE comparisons (e.g. WHERE animal.category='dog') using a SQL parser and divide inot the different parts

5 conditions = extract_where_conditions_sqlparse(sql_query):

6 conditions= [] # List to fill with divided WHERE statments, divided into left part, right part and compariosn operator

7 for token in sqlparse(sql_query): # Iteration over all tokens in SQL query

8 if token is where.Clause and isinstance Comparison: # If is part of WHERE clause e.g. 'WHERE animal.category='dog''

9
10 # Use column to generate a SQL query e.g. 'animal.category' -> 'SELECT category FROM animal;'

11 token.left <- Convert_to_SQL(token.left)

12
13 # Append to conditions, structure: {('SELECT category FROM animal', "=",'WHERE animal.category='dog'', 'dog'),

(...)}↪→
14 conditions.append(token.left, token.comparison_operator, token, token.right)

15 return conditions #structure: {('SELECT category FROM animal', "=",'WHERE animal.category='dog'', 'dog'), (...)}

16
17 #Execute SQL queries inside conditions against the database

18 query_results = execute_queries_on_conditions(conditions):

19 for i in conditions: # For the whole conditions list {(...),(...),(...)}

20 for l in i: # Inside a comparison e.g. ('SELECT category FROM animal', "=",'WHERE animal.category='dog'', 'dog')

21 if l is SQL_query: # Check if the element is a SQL query

22 l = query_database(l) # Substitute SQL query with result from database of that query e.g 'SELECT category FROM

animal;' ---> ('chien','perro','chat','dog')↪→
23 return conditions #Structure is the following {(('chien','perro','chat','dog'), "=",'WHERE animal.category='dog'', 'dog'),

(...)}↪→
24
25
26 # Main Soft Binding Procedure using the LLM

27 semantic_list = compare_semantics_in_list(query_results):

28 semantic_list = [] #Initialize empty list for storing the bindings

29
30 #Iterate for each sublist e.g. (('chien','perro','chat','dog'), "=",'WHERE animal.category='dog'', 'dog')

31 for each sublist in query_results:

32
33 #Compare a list e.g. ('chien','perro','chat','dog') with the fixed binding e.g. 'dog'

34 temp_string, temp_list = separate_binding_and_list(sublist) #Generate the temp_string e.g 'dog' and the temp_list

e.g ('chien','perro','chat','dog')↪→
35
36 #Abstracts meaning of comparison operator in natural language

37 # e.g " A = B" ---> " A has the same semantic meaning as B"'

38 phrase = ask_LLM("Get semantic phrase for: " + sublist[1]) #sublist[1] contains comparison operator e.g. "=", "<",

">"↪→
39
40
41 soft_binding_list = [] #Construct a list of expressions to be included

42 prompt="" #Construct an initial prompt to feed LLM

43 for i in temp_list #Iterate over temp_list e.g.('chien','perro','chat','dog')

44 prompt += build_comparison_prompt(temp_string, i, phrase)

45 #Construct final prompt for each individual comparison e.g

46 ["Does 'dog' and 'chien' have the same meaning?",

47 "Does 'dog' and 'perro' have the same meaning?",

48 "Does 'dog' and 'chat' have the same meaning?",

49 "Does 'dog' and 'dog' have the same meaning?"]

50
51 #Return a boolean list e.g [True, True, False, True]

52 boolean_results = gemini_json(prompt, response_type = list[boolean])

53
54 #Append ('chien','dog','perro'). These are all the values where LLM said True.

55 soft_binding_list.append(temp_list if boolean_result is true)
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56
57 #Append (('chien','dog','perro'), 'WHERE animal.category='dog'') for final result_list

58 semantic_list.append(soft_binding_list, sublist.where_Clause)

59
60 return semantic_list

61
62 #Modified query Construction

63
64 #Construct the modified query based on the semantics list e.g "WHERE animal.category='dog'" --->

65 ---> "WHERE animal.category='dog' OR animal.category='perro' OR animal.category='chien'"

66 query = ask_LLM(f"Based on semantic list {semantic_list} and the intital query {sql_query} generate a new query")

67
68
69 result=query_database(query) #Query database to get result of the modified query

70 return result #Return the results of the query to the user

JOIN Pipeline
The following provides the pseudo code for the join pipeline.

1 query = INPUT #Get predicate calculus expression as input

2
3
4 #Extract all JOIN comparisons (e.g. JOIN animal.category=owner.animal) using a SQL parser and divide it into the different

parts↪→
5 join_conditions = extract_join_conditions_sqlparse(initial_sql_query):

6 join_conditions= [] # List to fill with divided JOIN statments, divided into left part, right part and compariosn

operator↪→
7 for token in sqlparse(sql_query): # Iteration over all tokens in SQL query

8 if isinstance(token, sqlparse.sql.Comparison): # If is part of a JOIN clause

9
10 left = str(token.left).strip() #Identiy attributes on left part of the JOIN condition

11 right = str(token.right).strip() #Identiy attributes on rigth part of the JOIN condition

12 operator = str(token.token_next(0)).strip # Identify comparison operator e.g. '=', '>', '<'

13
14 #List to mark the order of the different attributes

15 order = [copy.deepcopy(left), copy.deepcopy(right)]

16
17 # Use column to generate a SQL query e.g. 'animal.category' -> 'SELECT category FROM animal;'

18 left <- Convert_to_SQL(left)

19 right <- Convert_to_SQL(right)

20
21 # Append to conditions, structure: {('SELECT category FROM animal', "=",'JOIN animal.category=owner.animal'',

SELECT animal from owner), (...)}↪→
22 join_conditions.append([left, operator, token.normalized, right])

23 order_list.append(order) #[animal.category, owner.animal]

24 return join_conditions, order_list

25
26 #Execute SQL queries inside conditions against the database

27 new_list = execute_queries_on_conditions(join_conditions):

28 for i in join_conditions: # For the whole conditions list {(...),(...),(...)}

29 for l in i: # Inside a comparison e.g. ('SELECT category FROM animal', "=",'JOIN animal.category=owner.animal'',

'SELECT animal from owner')↪→
30 if l is SQL_query: # Check if the element is a SQL query

31 l = query_database(l) # Substitute SQL query with result from database of that query e.g 'SELECT category FROM

animal;' ---> ('chien','perro','chat','dog')↪→
32 return conditions #Structure is the following {(('chien','perro','chat','dog'), "=",'JOIN animal.category=owner.animal'',

('cat','snake', 'dog'))), (...)}↪→
33
34
35 # Main Soft Binding Procedure using the LLM

36 semantic_dic = compare_semantics_in_list(new_list):

37
38
39 dict_list = [] = [] #Initialize empty list for storing the bindings

40
41 #Iterate for each sublist e.g. ('chien','perro','chat','dog'), "=",'JOIN animal.category=owner.animal'', ('cat','snake',

'dog'))↪→

96



42 for each outer_list in new_list:

43
44 temp_list1 = outer_list[0] #Get left part

45 temp_list2 = outer_list[-1] #Get right part

46
47 #Check if a LLM comparison is necessary or not. It would not be necessary if the type of both columns is int or date

for example.↪→
48 necessary = gemini(f"Based on these list {temp_list1} and {temp_list2} and especially the type of lists, is there a

possbility for residual noise")↪→
49
50 #Only proceed if it is necessary

51 if necessary:

52 #Compare a list e.g. ('chien','perro','chat','dog') with the fixed binding e.g. 'dog'

53 temp_string, temp_list = separate_binding_and_list(sublist) #Generate the temp_string e.g 'dog' and the temp_list

e.g ('chien','perro','chat','dog')↪→
54
55 #Abstracts meaning of comparison operator in natural language

56 # e.g " A = B" ---> " A has the same semantic meaning as B"'

57 phrase = ask_LLM("Get semantic phrase for: " + sublist[1]) #sublist[1] contains comparison operator e.g. "=", "<",

">"↪→
58
59 for item in temp_list1:

60
61 #Create total prompt

62 total_prompt = f"Answer the following questions with True or False.\n"
63
64 for other_item in temp_list2:

65 #Add instances to the total prompt

66 total_prompt+= f"'{item_str}' {phrase} '{other_item_str}' \n"
67
68 #Add the instances which are relevant dic['dog']=['dog', 'chien', 'perro']

69 response = gemini_json(total_prompt, response_type=list[bool])

70 dict[item]= [temp_list2[i] for i, is_relevant in enumerate(response) if is_relevant]

71
72 #Append dictionary to total dictionary

73 dict_list.append(dict)

74
75
76 return dict_list

77
78 #Modified query Construction

79
80 #Construct the modified query based on the semantics list e.g "WHERE animal.category='dog'" --->

81 #---> "WHERE animal.category='dog' OR animal.category='perro' OR animal.category='chien'"

82 query = ask_LLM(f"Based on semantic dic {semantic_dic} and the intital query {sql_query} generate a new query")

83
84
85 result=query_database(query) #Query database to get result of the modified query

86 return result #Return the results of the query to the user
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