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Kurzfassung

In den letzten Jahren hat sich Reinforcement Learning als ein leistungsstarkes Werkzeug
zur Optimierung von Strategien in Brettspielen etabliert, das es Künstlichen Intelli-
genzsystemen ermöglicht, selbst die besten menschlichen Spieler herauszufordern. Diese
Arbeit untersucht die Anwendung von Reinforcement Learning zur Unterstützung der
Brettspielentwicklung, mit besonderem Fokus auf die Spiele „Noch mal!“ und dessen
Erweiterung „Noch mal so gut!“ sowie das eigens entwickelte Spiel „Simala“. Durch das
Training von Reinforcement Learning Agenten, die diese Spiele spielen, wird untersucht,
inwieweit Künstliche Intelligenz zur Regelbalancierung beitragen, Schwächen aufdecken
und das Spielverhalten optimieren kann.

Durch die Analyse von Spielabläufen, die von den Reinforcement-Learning-Agenten
generiert werden, bewertet die Arbeit, ob bestimmte Regeländerungen in der „Noch mal!“-
Reihe gerechtfertigt werden können, und untersucht die strategischen Auswirkungen neuer
Mechaniken, die in „Noch mal so gut!“ eingeführt wurden. Darüber hinaus wird erforscht,
wie Reinforcement Learning den Test- und Entwicklungsprozess eines neuen Spiels wie
„Simala“ beschleunigen kann, indem es optimale Regelkonfigurationen identifiziert und
die Dominanz einer einzelnen Strategie verhindert.

Die Ergebnisse zeigen, dass Reinforcement-Learning-Agenten effektiv gegen menschliche
Spieler konkurrieren können und dabei strategische Unterschiede und Schwächen in
den untersuchten Spielen aufdecken. Die Ergebnisse deuten darauf hin, dass Reinforce-
ment Learning nicht nur das Spieldesign verbessert, sondern auch einen datengestützten
Ansatz für iteratives Spieletesten bietet, der einen effizienteren und ausgewogeneren
Entwicklungsprozess ermöglicht. Insgesamt zeigt diese Arbeit das Potenzial von Reinfor-
cement Learning im Bereich des Künstlichen Intelligenz-unterstützten Spieldesigns und
verdeutlicht dessen Nutzen für die Entwicklung, das Testen und die Optimierung von
Brettspielen.
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Abstract

In recent years, Reinforcement Learning has emerged as a powerful tool for optimizing
strategies in board games, enabling Artificial Intelligence systems to challenge even
the most skilled human players. This thesis explores the application of Reinforcement
Learning to enhance board game development, with a particular focus on the games
“Noch mal!” and its extension “Noch mal so gut!”, as well as the custom game “Simala”.
By training Reinforcement Learning Agents to play these games, the thesis investigates
the potential of Artificial Intelligence to assist in rule balancing, identify weaknesses, and
optimize gameplay mechanics.

Through the analysis of gameplay data generated by the Reinforcement Learning Agents,
the study evaluates whether certain rule changes in the “Noch mal!” series can be
justified and assesses the strategic impact of new mechanics introduced in “Noch mal
so gut!”. Additionally, the thesis explores how Reinforcement Learning can accelerate
the testing and development of a new game like “Simala” by identifying optimal rule
configurations and preventing the dominance of any single strategy.

The results show that Reinforcement Learning Agents can compete effectively against
human players, uncovering strategic differences and weaknesses in the games analyzed.
The findings suggest that Reinforcement Learning not only enhances gameplay design
but also provides a data-driven approach to iterative game testing, allowing for a more
efficient and balanced game development process. Overall this thesis shows the potential
of Reinforcement Learning in the field of Artificial Intelligence-supported game design
and shows its benefits for the development, testing, and optimization of board games.
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CHAPTER 1
Introduction

In recent years, methods for solving board games have improved considerably thanks to
advances in hardware and new algorithms. While early computer systems were primarily
designed to correctly execute a game to the end, today’s goal has increasingly become
to outperform even human master players [Pla20]. A classic example of the use of
Reinforcement Learning (RL) in board games is the training of machines to play Chess,
Shogi (Japanese form of chess), or Go [SHS+18]. Machine Learning (ML), in particular
RL, is used specifically to develop optimal strategies for known games. As early as 1959,
Arthur Samuel formulated the idea that a machine “[...] can learn a better game of
checkers than the programmer himself can master” [Sam59]. This vision is still being
pursued in research today, with the aim of developing powerful game algorithms beyond
these classic titles, showing that RL is not limited to traditional abstract games but
is increasingly relevant for modern board games with richer rule sets and more varied
decision spaces [YBT+23, XCA19].
However, RL also opens up new possibilities beyond the mere optimization of playing
strength: It can be used not only to develop particularly strong players, but also to
analyze playing styles or even to support the development of new board games. One
notable example is the work of Paolini et al. [PMVI24], who not only trained a strong
agent for 7 Wonders Duel but also identified a significant first-player advantage, which
led to rule modifications that improved balance. Similarly, Hom and Marks [MH07]
investigated how rule variations affect balance in games like Tic-Tac-Toe and Reversi,
applying Genetic Algorithms to explore the design space. These approaches emphasize
that the goal of using Artificial Intelligence (AI) in games is not always to win, but to
understand and improve the game itself.
Nowadays, creating a board game is a challenging process. Initially, the game designer
must conceptualize the core idea of the game, followed by the development of its rules and
mechanics. Additionally, considerations regarding graphical representation and player
interaction must be addressed. However, the most challenging phase begins after this
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1. Introduction

initial development. At this stage, the game designer must ensure that all potential
edge cases are properly addressed, that the game is well-balanced, and that it remains
engaging and enjoyable for players. Achieving these goals requires rigorous playtesting.
This process is very time consuming, because multiple games have to be played and
feedback must be collected. After the first iteration of playing, the rules have to be
changed based on the feedback of the testers and the testing must start from the beginning.
All this has to been done till the developer considers the game to be good enough, which
is hugely influenced by their bias.
In the above example, the game developer has to rely on iterative testing and player
feedback which can be biased as well. Most likely, they have about 30 contestants play the
game over and over again while also collecting their opinions on which rules are not yet
balanced or which strategy should be weakened. Afterwards, they try to incorporate all
the feedback while also assessing which of the feedback is just, simply due to a particular
game situation and which is a general flaw in the game.

In the age of ML and AI, a natural question arises: Can this process be improved with
the help of a computer? What if a computer could test the game for the developer,
reducing their role to merely evaluating whether they like a particular outcome or not?
If the results are unsatisfactory, the developer could simply adjust the rules and let the
computer test the game again under the new conditions. This approach would not only be
faster but also more data-driven, as rule adjustments could be based on a much larger set
of gameplay data compared to traditional playtesting with human testers. Additionally,
by running a significantly higher number of simulations, the likelihood of identifying
unresolved edge cases increases.

However, the main challenge of this approach lies in ensuring that the computer un-
derstands and plays the game well. If the AIs were to make only random moves, the
generated data would be of little value to the developer, as no meaningful strategies could
be analyzed. Attempting to balance game rules based on such flawed data would be
both ineffective and frustrating. Furthermore, modifying the game based on the decisions
of a poorly performing AI could lead to unnecessary changes, potentially disrupting
a well-designed game simply because the AI failed to discover optimal strategies. To
explore this challenge further, we shall examine a concrete example.

Example 1.0.1 Suppose there is a game that you play on a 4 × 4 grid where you have to
try to get from the top left to the bottom right corner with as few moves as possible. The
rules are simple: you can only move one step at a time, either horizontally or vertically,
and you cannot move diagonally or step outside the boundaries of the grid. The player
with the fewest moves wins.

Imagine we only have a bad playing agent and we ourself do not know the best path, so
that we are forced to rely on the strategy of the computer. For example, the agent only
finds the red path in Figure 1.1 as the best path, the developer would maybe change
the game rules by adding an obstacle in the right upper corner, to make the game more
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1.1. Goal and Research Questions

difficult. Then, the computer has to adjust and maybe find another path like the blue
one, which is, again, clearly not the best one. If the developer still considers the game
not good enough, they would again adjust the rules based on the current path. This
process could be repeated until the game appears to meet the desired expectation.

Start

Goal

Start

Goal

Figure 1.1: An example of a rule change based on a non-optimal path.

As is apparent in this simple example, the new rule setting with the obstacle would not
have changed anything for a good player as can be seen in Figure 1.2. Since one of the
best paths would have been the green one, among others, the changes would not have
affected the gameplay.

Start

Goal

Start

Goal

Figure 1.2: An example of an optimal path, demonstrating that the rule change had no
impact on it.

In traditional board games, such examples are more difficult to identify. However, it
is clear that a computer must be a decent player in order to serve as a reliable game
tester for rule balancing. If a computer discovers the optimal strategy immediately, the
game developer might need to reconsider the rules entirely. This could even lead to a
fundamental change in the game’s objective, such as redefining the goal to: you have to
try to get from the top left to the bottom right corner with as many moves as possible.

1.1 Goal and Research Questions
The main aim of this thesis is to analyze the existing board games “Noch mal!” and
its extension “Noch mal so gut!”, designed by Inka and Markus Brand, from a game
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1. Introduction

development perspective. Specifically, we will investigate whether certain rule changes
introduced in the extension can be justified based on data generated by our Reinforcement
Learning Agent (RLA). Furthermore, we examine whether some of the new options in
“Noch mal so gut!” are inherently weaker than others by analyzing how frequently the
agent chooses them in competitive gameplay.

Additionally, an objective of this thesis is to explore how RL can accelerate the testing
process for a newly developed board game called “Simala”. Since “Simala” is still in
development, we will leverage insights from our RLA to refine the game’s rules, ensuring
a balanced win rate and preventing any single strategy from becoming dominant.

Research questions:

• How effectively can our RLAs compete against experienced human players in terms
of win rate in the games of “Noch mal!” and “Noch mal so gut!”?

• Which of the new options introduced in the extension “Noch mal so gut!” are used
more frequently by the agent and how does the strategy differ from the original
game “Noch mal!”?

• How does the win rate of the starting player and the diversity of the strategy of
the agent in the game “Simala” change if we modify the rules based on the data
of the trained RLA?

1.2 Challenges and Contributions
One of the key challenges is ensuring that the RLA is sufficiently skilled in order for its
data to be reliable during game analysis. From a developer’s perspective, a new game
should not exhibit a clearly dominant strategy early in its design process. To assess
the agent’s competence in existing games, we let it compete against various experienced
human players. For the undeveloped game “Simala”, we conduct direct playtesting
against the agent ourselves, mirroring the way a game developer evaluates a game by
competing against human testers. Ultimately, our observations confirm that suitably
trained agents perform well enough for their gameplay data to be used in analyzing and
refining the game.

Our contributions therefore are:

• We build and train RLAs for the games “Noch mal!” and “Noch mal so gut!” that
win more than 50% of their games against human players.

• We identify balance weaknesses in the games of “Noch mal!” and “Noch mal so
gut!”.

• We analyze the strategic differences between “Noch mal!” and its extension “Noch
mal so gut!” by examining the choices made by our RLAs.
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1.3. Structure of the Thesis

• We determine which of the new mechanics in “Noch mal so gut!” are actually
beneficial for winning and which are less impactful.

• We develop and train RLAs to test different rule sets for our custom board game
“Simala”, demonstrating how RL can be used as a tool in board game design.

• We use RL-driven insights to iteratively balance “Simala”, ensuring fair win rates
and diverse strategies.

• We provide a playable prototype of “Simala” that integrates findings from RL
experiments, serving as a case study for AI-assisted game design.

1.3 Structure of the Thesis
In Chapter 2 we explain the basics of ML and RL and also dive deeper into existing
research related to board games and rule balancing. After that, Chapter 3, is dedicated
to the games “Noch mal!” and “Noch mal so gut!” where we describe the models that
were built and also evaluate them. In Chapter 4, the game “Simala” is analyzed and all
the development steps taken with the help of RL are described. Chapter 5 concludes the
thesis by summarizing the key findings and proposing directions for future research.

5





CHAPTER 2
Preliminaries

In this chapter, we explore the fundamentals of RL and its connection to games. We
begin by defining key terms, introducing relevant research areas, and outlining the core
concepts essential for understanding the chapters that follow. Additionally, we present
an overview of various RL methods and discuss the reasons for choosing Q-Networks and
Deep Q-Networks (DQNs) as the focus of this thesis.

2.1 What is Reinforcement Learning?
The simple answer to this question is: the “normal” way of learning, by interacting with
the environment. If we think back to when we were toddlers, we can ask ourselves the
question: How did we learn to walk? It was not by reading tons of literature or asking
others how they do that, it was just “learning by doing”. A baby gets up at some point
and falls over. The next time it gets up, it will adjust a few things because it realizes that
it fell over. It will do this again and again until it can stand. Then it will take its first
steps and it will fall again, but each time it will learn to adapt to its surroundings and
find more balance for the next step until it can eventually walk. In a simplified way this
is RL. It is a way of learning by interacting. And we encounter this kind of learning quite
often in our lives. As [SB18] explains, we are very aware of how our environment reacts
to our actions and we try to influence what happens through our behavior, whether we
learn to drive a car or hold a conversation.

But to gain a deeper understanding of what RL truly entails, it can be helpful to first
explore ML, of which it is a subfield. Nowadays, ML can be divided into three main
areas based on [SB18]:

• supervised learning: A method of learning from a training set of labeled examples,
where each example is associated with a result provided by an informed external
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2. Preliminaries

supervisor. The idea is to take specific situations along with their corresponding
labels, and the system seeks to identify patterns in the data. This allows the system
to generalize its responses and determine the appropriate action for situations
that were not included in the presented training set. This is a very important
way of learning, but for our purposes not useful, because for games, which are not
developed yet, there is no given data.

• unsupervised leaning: A method of learning from a training set of unlabeled examples.
The main task for the system is to find structure or clusters in the collections of
unlabeled data to classify new data correctly. Again, this approach is not useful for
our purposes, because no data is given.

• reinforcement learning: A method of learning from interacting with the environment.
Based on a reward function the system learns which action is the best and tries
to find the actions which yield the most reward by trying them out. This is ideal
for not developed games, because the system can try these actions by playing the
game again and again to find the actions with the most reward in every situation.

The Figure 2.1 represents the learning loop of a RLA. As [Sew19] describes, the agent
gets a state St from the environment and takes the best possible action At at step t. This
action changes the state St to St+1 as illustrated in the figure. It also generates a reward
Rt, which is given to the agent. Then the agent again takes the action it deems best for
the given state St+1 and receives the reward Rt+1. This loop is repeated over and over
again and the agent tries to learn which action would be the best in the given situations,
factoring in both immediate and future rewards..

Figure 2.1: The agent environment interaction in RL by [SB18].

The task of the environment is to map different situation as well as possible for the RLA
and to give a reward or penalty based on the outcome of the action. It is important
to note that the reward depends on the action and the state, so that the situation is
relevant for the action that was taken. In the end, the agent will learn from tuples of the
form (St, At, Rt, St+1), known as state-action-reward-state tuples.
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2.1. What is Reinforcement Learning?

To provide a better understanding of these key terms, the following sections will explain
each of them in detail.

2.1.1 Reward
The reward is the crucial part of how the RLA learns to separate good actions from bad
actions. Since the agent always tries to make the action with the most expected reward,
the reward function must be well-balanced to teach it what to strive for. However, as
stated in [Sew19], the search for such a function is not trivial, as it requires considering
numerous factors that influence the agent’s learning and decision-making process.
The first problem to consider is that the reward may not always be realized immediately
in the situation. Some strategies need several specific actions in a row to get a big
reward. For games with points it is pretty simple to see that not every action which
yields the most points in a given turn also yields the most points in the long run. Maybe
in combination with the following three turns the total reward could be much higher.
To address this problem, we will later introduce the discount factor, which weights the
importance of future rewards.
Additional complexity for the reward function comes with probabilistic and uncertain
rewards. If the reward only comes with a certain probability, e.g., depending on a lucky
dice roll, it will be difficult to capture it in a function.
Another question is also how much actions in the past are responsible for a given reward
and how much this should be taken into account. If we can only get low rewards because
our actions in the past have put us in such a situation, how much should the current
actions be penalized?

One can handle all of these problems differently, but in the end [Sew19] comes up with
one of the biggest questions “How lager should the magnitude of the reward be?” If the
RLA takes a good action, should the reward be two or maybe ten times bigger than
for other actions? All of these decisions are relevant for the outcome of the final agent,
because by tweaking details, the behavior of the agent may change drastically.

In many games, reward functions typically fall into one of two main categories. The
first is an immediate reward, given instantly after an action is performed, often aligning
with the game’s predefined scoring system. This type of reward helps guide short-term
decision-making. The second is a delayed reward, which is only received at the end of the
game and often depends on the overall outcome, such as winning or achieving specific
objectives. This delayed reward provides a broader perspective on long-term strategy,
encouraging the agent to make decisions that may not yield immediate benefits but
contribute to ultimate success. Often they are combined as we see in the research of
[YBT+23].

2.1.2 State
The state is the situation the RLA gets before choosing an action. The idea is to include
everything that may affect the outcome of the scenario and could be measured. In a
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2. Preliminaries

simple way, it should be the best way of representing the current situation of the system.
Although there are many different possibilities and there are also many difficulties for
real world problems as described in [Sew19], it is usually straightforward for games. Most
of the time, the state in games simply describes the current situation, i.e., all information
that we as a player would have in a turn should be represented in the state. If there
is information in a game that only one player can know (for example, cards in hand),
this information is given to the other players only in abstract form (for example, the
number of cards). For example in the well known game Tic-Tac-Toe the state would
simply be the game board with the positions of all placed crosses and circles. For other
games like Ticket to Ride it is a bit more difficult as can be read in the paper of Yang et
al. [YBT+23], because much more information is taken into account here.

2.1.3 Action
The most important piece of the RLA is what it does and especially how it chooses a
given option. As we mentioned earlier, the agent always tries to maximize its reward
by taking an action based on the current state. Therefore, the term “policy” plays a
crucial part. The policy π is a function that associates states with actions. That means
it decides how the agents take actions. There are two kinds of policies:

• deterministic policy: It returns one action for every given state.

π : s ↦→ a

• stochastic policy: It returns probabilities of taking action a in state s.

π(a|s) = P (a|s)

The goal is to find the optimal policy π∗ so that for every state s it gives an action
a = π∗(s) that should be chosen and that leads to a win [Pla20].

Another important function for calculating the best action is the “value function”. There
are again two ways how a value function could look like according to [Sew19] and [Pla20].
The first is the state-value function V (s), which focuses on identifying which is the best
next state to be in. That means it tries to predict the value of every state without seeing
every state. This value is mostly a combination of all present but also all future rewards
of this state that can be associated with this state.
Secondly, there is the action-value function also called Q-function Q(s, a). It evaluates
pairs of state and action and determines the best action by calculating the value based
on the action and the state. It is important to notice the difference between that V (s) is
just a function of the state and Q(s, a) is a function of both action and state. For this
thesis we will use Q-Networks and DQNs, which got their name from this action-value
function.

An important challenge when taking actions is the dilemma between “exploring” and
“exploiting”. Consider Example 1.0.1 from Chapter 1: The RLA has learned that the red
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2.2. Markov Decision Processes and Bellman Equation

Figure 2.2: Selection of the optimal epsilon value for the problem [Sew19].

path is a good path because it consistently leads to the goal. If the agent never tries any
other path, it will always choose this one, as it appears to be the best way to obtain the
reward. This behavior is called “greedy” because it always selects the action with the
highest known reward probability. However, as seen in the example, it may sometimes
be beneficial to explore other options within the action space. By doing so, the agent
might discover alternative paths that are equally as good – or even better.
This dilemma is well known in RL and there are various solutions to it, as described in
[Pla20]. The most common one is the ϵ-greedy approach, where one mostly takes the
best (known) action except that with a probability ϵ one explores the action space, as
seen in Figure 2.2. If epsilon is 0.2, then in 80% of the cases the agent takes the best
option (exploit), but in 20% of the cases it decides to take a random action (explore). In
some cases it is also good to decrease ϵ over time, so that in the beginning of learning
the agent explores as much as it can and then tries to figure out which of these options
actually turns out to be the best one to use

2.2 Markov Decision Processes and Bellman Equation

Now that we know the basics of RL we can dive deeper into the Markov Decision Process
(MDP). A Markov decision problem is a problem where the next state only depends on
the current state and the action. This makes the calculations a lot easier, because we do
not have to think about the entire past of the process. This means

P (st+1|st, at, st−1, at−1, . . . , s0, a0) = P (st+1|st, at), (2.1)
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where t defines the time or turn, i.e., st+1 defines the next state that follows after the
action at in state st. As is apparent, the RL problems in the previous section can be
modeled as MDP. In board games, the terms “board position” and “move” are used,
whereas in the mathematical formalisms of MDP and RL, these concepts are referred to
as “state” and “action”, respectively, which we already discussed. According to [Pla20],
a MDP consists of the following five elements:

• Set of States S: The environment or system can be in one of several states.

• Set of Actions A: In each state, an agent can choose from a set of possible actions.

• Transition Probabilities P (st+1|st, at): The probabilities of transitioning from state
st to state st+1 when taking action at.

• Reward Function R(st, at, st+1): The rewards the agent receives for moving from
state st to st+1 when taking action at.

• Discount Factor γ: A value between 0 and 1 that determines how much less future
rewards are valued compared to immediate rewards.

As we can observe, there are numerous parallels to the concepts we have explored thus
far. Figure 2.3a illustrates the MDP tuple (S, A, P, R, γ) along with s′ as st+1 and π
demonstrating how the value can be computed. The root node at the top denotes the
state st as s, where the policy π enables the agent to choose from three possible actions
at as a. Each action, based on the transition probability distribution p, leads to one of
two possible successor states st+1 as s′, each associated with a reward rt as r. The value
of the root state is then determined through a backup procedure. Such a state space
can also easily be shown as a directed graph, as can be seen in Figure 2.3b for the well
known game Tic-Tac-Toe. In this game P = 1, because every action leads to a single
successor state st+1.
The discount factor γ in RL determines the importance of future rewards versus immediate
ones. A value close to 0 prioritizes short-term rewards, while a value close to 1 emphasizes
long-term rewards. Adjusting γ controls the trade-off between short-term and long-term
goals in an agent’s learning.

The goal of such a problem is to maximize the total sum of discounted rewards. As
stated by [Sew19], this involves finding a policy π that achieves this objective.
In other words, we want to find the optimal policy π∗ that maximizes the sum:

∞∑︂
t=0

γtR(st, at, st+1), (2.2)

where t represents the time, which corresponds to turns in a game.

There are a lot of methods, which try to solve such MDPs, but the most well known
is the Bellman Recursion. The Bellman Equation provides a recursive decomposition
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(a) A backup diagram with MDP tuple. (b) A game tree for Tic-Tac-Toe.

Figure 2.3: Representations of MDPs from [SB18] and [Pla20].

of the optimal value function, which is a fundamental concept in solving MDPs. The
value function, denoted as V (s), represents the expected sum of discounted rewards
when starting from state s and following an optimal policy π∗. It satisfies the Bellman
optimality equation

V (st) = max
at∈A

∑︂
st+1∈S

P (st+1|st, at)[R(st, at, st+1) + γV (st+1)]. (2.3)

This equation expresses the fact that the optimal value of a state is the maximum
expected return that can be achieved by selecting the best action at, considering both
the immediate reward and the discounted value of the next state st+1. Similarly, the
Bellman equation (2.3) can also be expressed for the action-value function Q(st, at),
which represents the expected return of taking action at in state st and following the
optimal policy:

Q(st, at) =
∑︂

st+1∈S

P (st+1|st, at)[R(st, at, st+1) + γ max
at+1∈A

Q(st+1, at+1)]. (2.4)

[Sew19] concludes that by solving these equations, we can determine the optimal value
function and derive the corresponding optimal policy π∗, which specifies the best action
to take in each state.
Several techniques exist to solve MDPs by leveraging the Bellman equation, which are
all explained in [Sew19], including:

• Value Iteration: This method updates the value function iteratively by applying
the Bellman optimality equation until convergence.

• Policy Iteration: This method alternates between policy evaluation (computing
the value function for a given policy) and policy improvement (updating the policy
based on the computed values).
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• Q-Learning: A model-free RL approach that estimates the action-value function
Q(st, at) and updates it using observed rewards from interactions with the environ-
ment.

While classical dynamic programming methods such as Value Iteration and Policy
Iteration have been extensively studied in the context of MDPs, they come with significant
limitations. Both of these methods require full knowledge of the environment’s dynamics,
including the transition probabilities P (st+1|st, at) and the reward function R(st, at, st+1).
In many real-world or complex simulated environments, such information is either not
available or too cumbersome to model accurately. Also these methods rely on the explicit
enumeration of the state space. For high-dimensional or continuous state spaces, the
computational cost becomes prohibitive due to the so-called “curse of dimensionality”
[Bel57]. In contrast, Q-learning uses function approximation, allowing them to generalize
across similar states without the need for exhaustive state enumeration. Another benefit
of model-free approaches like Q-Networks and DQNs is that they learn directly from
sampled experiences, making them much more adaptable to large-scale and dynamic
environments as described by [Sew19].
In this thesis, we will focus on Q-learning methods, including Q-Networks and DQNs,
which will be discussed in the next section.

2.3 Q-Networks and Deep Q-Networks
A Q-Network is a neural network that serves as a function approximator for the Q-
function:

Q(s, a; θ) ≈ Q∗(s, a), (2.5)

where θ represents the parameters of the network. The network takes a representation
of the state s and an action a as input and outputs a Q-value for each possible action.
Training is typically performed by minimizing a suitable loss function (e.g., mean-squared
error) so that the Q-values produced by the network approximate the optimal Q-values.
As described in [SB18], the update is based on the Bellman error, which is defined as the
difference between the current Q-value and a target value computed according to the
Bellman equation:

Q(st, at) ← Q(st, at) + α
[︂
R(st, at, st+1) + γ max

at+1
Q(st+1, at+1) − Q(st, at)

]︂
, (2.6)

where α represents the learning rate, which will be discussed in more detail in further
sections. In this case, the learned action-value function Q directly approximates Q∗

regardless of the policy being followed. This significantly simplifies the analysis of the
algorithm and facilitates early convergence proofs. However, the policy still influences
which state-action pairs are visited and updated. As [SB18] notes, this method enables
efficient learning even in environments where the full model of the system is not known.
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The breakthrough in applying deep neural networks to RL was largely achieved with
DQNs [Sew19]. DQN extends the basic idea of a Q-Network by incorporating two key
mechanisms that improve training stability in high-dimensional environments:

Experience Replay

Rather than using each experience tuple (st, at, rt, st+1) immediately for training, the
RLA stores these tuples in a replay buffer. During training, mini-batches are randomly
sampled from this buffer. This technique breaks the correlations between sequential
samples, leading to more efficient and stable learning [Sew19].

Target Network

A significant issue when computing target values is that the parameters of the Q-network
are continuously changing during training. To address this, DQN employs a separate
target network with its own parameters θ−. This target network is updated less frequently
(for example, every fixed number of steps) by copying the parameters from the main
network. This prevents the Q-values from shifting too rapidly, avoiding feedback loops
that destabilize learning. As a result, the target values remain stable for several training
iterations and the Equation (2.6) updates to

Q(st, at) ← Q(st, at) + α
[︂
R(st, at, st+1) + γ max

at+1
Q(st+1, at+1; θ−) − Q(st, at)

]︂
. (2.7)

The decoupling of the network used for estimating Q-values and the one used for computing
target values is a key innovation that greatly enhances training stability [Sew19].

2.3.1 Comparison
Both Q-Networks and DQNs use deep neural networks to approximate the Q-function.
The crucial difference lies in how training stability is achieved:

• Q-Networks: These directly approximate the Q-function using a neural network.
The network learns from observed state-action pairs and is updated continuously.
However, because the target values and the estimated Q-values come from the same,
constantly changing network, training can become unstable.

• Deep Q-Networks: In addition to using a deep neural network, DQN integrates
both Experience Replay and a Target Network. Experience Replay helps to
decorrelate the training data, and the Target Network ensures that target values
remain unchanged over multiple updates. Together, these components are essential
for achieving stable convergence in complex environments.

Although some implementations that use deep neural networks for Q-function approxi-
mation are loosely referred to as “Deep Q-networks”, the term Deep Q-Network in the
literature is typically reserved for methods that explicitly incorporate both Experience

15



2. Preliminaries

Replay and a Target Network [Pla20].
For our work, we will decide individually for each game which of these two approaches or
a combination is appropriate and suitable in terms of computing time and performance.

2.4 Applications of Reinforcement Learning and Related
Work

RL is widely recognized for its ability to solve real-world problems by enabling agents to
learn autonomously from their decision outcomes, reducing the need for constant expert
supervision. This is particularly true for Deep Reinforcement Learning (DRL), which
has demonstrated effectiveness in a range of sequential decision-making tasks [YBT+23].
The following fields are only a few of the sectors which have benefited significantly from
RL and its advanced form:

• In robotics, RL is extensively used for learning physical-world tasks under prac-
tical constraints, such as manipulation [SBS+18], grasping [KIP+18], and legged
locomotion [ITF+21].

• In recommendation systems, RL has driven advancements by optimizing long-term
user engagement [ACF22].

• In transportation, it has been applied to areas like autonomous driving [KST+22],
energy-efficient driving [FZAB21], traffic control [HY22], and vehicle routing
[NOST18].

• In manufacturing, RL improves production scheduling [WPW21] and maintenance
[LM23].

To get a deeper understanding of these applications and how RL plays a crucial role we
refer to three practical examples of the book Reinforcement Learning: An Introduction
[SB18], which we summarized here:

Example 2.4.1 Bioreactor [SB18]: In this scenario, RL is used to optimize the temper-
atures and stirring rates in a bioreactor which produces useful chemicals from nutrients
and bacteria. The agent’s actions involve setting target temperatures and stirring rates,
while the states consist of sensor readings and symbolic inputs representing the ingredients
and target chemical. The reward is the rate at which the chemical is produced, guiding
the agent to adjust parameters for optimal production.

Example 2.4.2 Pick-and-Place Robot [SB18]: Here, RL controls a robot arm in a
repetitive task of picking up and placing objects. The agent’s actions are the voltages
applied to the motors at each joint, and the states are the joint angles and velocities. The
reward system encourages success through positive rewards for picking and placing objects,
with negative rewards for inefficient movements to promote smoother operations.
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Example 2.4.3 Recycling Robot [SB18]: A mobile robot uses RL to decide when to
search for cans, wait for cans, or return to recharge based on its battery level. The
state is determined by the battery’s charge, and the rewards are positive when the robot
successfully collects cans, or negative if the battery runs out. The agent’s decisions affect
the robot’s behavior in its environment, but it does not control the robot’s full system,
which includes navigation and gripper control.

Each of these examples highlights the core strength of RL, its ability to learn from
interactions and refine strategies over time, ultimately leading to more effective and
intelligent automation across various fields.

There have also been many successes in the gaming domain. Nearly everyone has heard
of the well known examples of a RLA playing Chess, Go, or Shogi (Japanese form of
chess) etc. [SHS+18] on a high level and their impressive capabilities to discover nearly
optimal strategies in complex games. Additionally, newer board games like The Settlers
Of Catan [XCA19] or Ticket to Ride [YBT+23] were tackled. Most of theses papers have
one thing in common: finding the best playing algorithm.
However, other studies go one step further, focusing on analyzing winning strategies or
the win probabilities to balance the game. Paolini et al. [PMVI24] tried to find the best
playing agent for the game 7 Wonders Duel, which was published 2015, based on RL
and also found out that the win probability of the starting player is a staggering 66.8%,
by far exceeding the estimate of 55.7% based on games between human players. The
rules were subsequently adjusted, yielding a starting-player win rate of 51.6%, which is
considered a near-optimal balance in competitive scenarios. An alternative approach was
taken by Hom and Marks in their paper “Automatic Design of Balanced Board Games”
[MH07], applying Genetic Algorithms to examine game balance through rule variations
for games like Tic-Tac-Toe, Reversi, and Checkers, analyzing different settings such as
board types or victory conditions to find the most balanced configurations of these games.
Extensive research has also focused on identifying the board size that offers the most
balanced gameplay experience in Go [WKI20].

RL is also used in video games for gametesting, so that test coverage is increased
and unintended game play mechanics, exploits, and bugs are discovered [BGTG20].
Specifically for “Match 3” a way was found to use RL to test levels and help the
developers to measure the difficulty of levels through automated playtesting of different
missions [SKJK20].
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CHAPTER 3
Noch mal!/Noch mal so gut!

The purpose of the following chapter is to show how the games “Noch mal!” and its
extension “Noch mal so gut!” by Inka and Markus Brand work and how we build, train,
and evaluate RLAs which play the game on an experienced level. We also show if certain
rule changes introduced in the extension can be justified based on data, and examine
whether some of the new options in “Noch mal so gut!” are inherently weaker than
others.

3.1 Game Concepts
“Noch mal!” and “Noch mal so gut!” are two games of dice, which were designed and
released in 2016 and 2019, respectively, by Inka and Markus Brand. “Noch mal!” was
also published in English under the name “Encore!”. Both games are recommended to
be played by one to six players at the age of 8 and above. As each player has their own
board in these games, for the sake of simplicity we will concentrate on the two-player
game in this thesis. In both games the goal is to tick the right fields on the board to
collect more points than the opponents. Since “Noch mal so gut!” is the extension of
“Noch mal!” we will first explain the original game and then list the special rules and
new options added in the advanced game.

3.1.1 Noch mal! – Game Instructions
Game Contents and Setup

For the original game of “Noch mal!” this content is needed [BB16]:

• Each player needs a game sheet, which features a single game board identical for
every player where changes will be noted every round, and a pencil to tick the fields
on the board, see Figure 3.1.
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• Three color dice, where the colors green, yellow, blue, red, and orange as well as a
black “X” for a joker option can be seen.

• Three number dice, where the numbers 1 to 5 as well as a “?” for the joker option
can be seen.

Figure 3.1: The game sheet for each player for the game “Noch mal!” [BB16].

Gameplay

Based on the game instructions [BB16], each turn consinst of the same phases:

1. All six dice are rolled.

2. The active player chooses a combination of a color die and a number die, takes
them away and ticks fields on their game board according to certain placement
rules detailed below.

3. All other players now choose a combination of a color die and a number die from
the remaining four dice and also tick fields on their boards. In a game of more than
two players, several players may use the same combination of color and number
dice (from the four remaining dice).

4. At the end of each turn, every player checks if some colors or columns are finished.

There are two exceptions to these rules:

• In the first three rounds of the game, the dice chosen from the active player are
not removed, so that all players can choose from the same set of dice and also are
allowed to take the same combinations.
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• It is always allowed to pass, so that the players do not choose dice. If the active
players passes, the other players can choose from all six remaining dice in Phase 3.

If the players have chosen a combination of a color die and a number die, there are some
rules for marking fields on their own board:

• In the first turn of the game, the players have to start in column “H”, i.e., the
middle column.

• All crosses placed in any one turn must be placed contiguously in one color block
of the selected color.

• Crosses may only be placed horizontally or vertically adjacent to at least one box
that has already been marked or in column “H”. Boxes that only touch diagonally
are not considered adjacent.

• It is not permitted to tick fewer or more boxes than the number the chosen number
die indicates.

• A color block consisting of several boxes does not have to be completely filled in
one turn.

• A player can never check more than five boxes in one turn, even with the number
joker.

• In one turn, the number rolled may not be split in order to tick boxes in two
different color blocks of the same color.

• If a player has chosen “X” or “?”, they can select any color or any number between
1 to 5, respectively. If so, the player has to cross out one of the joker-symbols on
their game board, of which only eight are given at the start. It is also allowed
to choose both the number and the color joker in one round so that the player
can choose from all colors and numbers between 1 to 5, meaning, of course, that
two joker-symbols have to be crossed out. If the player does not have enough
joker-symbols left, the action is not permitted.

In Figure 3.2 we see on the left two examples of correct moves and on the right two
examples of incorrect moves. The upper example is incorrect because the ticked fields
are not contiguous. The bottom example is incorrect because the ticked fields are not
adjacent to other marked fields.

Scoring and Game End

The last phase of each turn is to check if any player has finished any of the columns or
colors, which will award them points. If so, the first player to finish one column announces
the corresponding column out loud and circles the higher points right underneath the
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Figure 3.2: Examples of allowed and disallowed moves for crossing fields [BB16].

column (varies from 1 to 5, see Figure 3.1). All other players are required to cross it out,
and from that point on, they can only score the lower number of points for this specific
column (varies from 0 to 3). Again, if the game is played with more than two players, the
lower amount of points for one column can then be earned by all remaining players, not
just the second one, if they finish the column before the game ends. It is also possible to
finish multiple columns in one turn. If several players are the first to fill the same column
in the same turn, all these players receive the upper point value.
If the same happens with a whole color instead of columns, the first player to achieve
this again gets the higher value of the color bonus field in the right upper corner of the
game sheet (always 5), whereas the other players from now on can only get the lower
point value (always 3) for this specific color.
The game ends immediately after the turn in which (at least) one player manages to
circle their second color bonus field (the value does not matter), i.e., if a players manages
to finish their second color. If this is the active player, all other players may form a
combination of the remaining four dice for the last time and enter it.
The points of each individual player are then determined as follows:

• Add up all the circled points for all finished columns and colors.

• For every unused joker-symbol a player gets 1 extra point.

• For every not crossed star on the board a player loses 2 points.

The player with the highest score wins. In the event of a tie, the player who has more
joker-symbols left wins. Otherwise there are several winners.
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3.1.2 Noch mal so gut! – Game Instructions

For the extension of “Noch mal so gut!” the basic game remains the same. It is still the
goal to get more points than the opponents by finishing colors and columns. But now
there are a few other ways how one can earn points and also a few more options than
taking just a color die and a number die. Again, all further details can be found in the
game instructions [BB19b].

New Options

The main difference for the extension is the new special die. Instead of just rolling the
six dice (three color and three number dice) from the basic game, we now roll a 7th die,
which gives special options. Now every time someone picks dice in Phase 2 or 3, they
can now take the special die if they have one unlocked, instead of taking a combination
of color and number dice. If the active player chooses the special die in Phase 2, the
others cannot pick it, but instead can choose from the remaining six instead of four dice.
On the other hand, if the active player does not choose the special die, all other players
have the option to choose it in Phase 3. Again, the exceptions of the original game
mentioned above stay the same, i.e., in the first three turns everyone can pick the special
die regardless of who else uses it.
The new options that the special die offers are:

• Bomb: The player detonates a bomb. To do this, they may mark up to four fields
within a 2 × 2 grid (regardless of color) on the game block. These crosses do not
have to be adjacent to existing crosses or in starting column “H”. This allows the
player to mark fields away from column “H” at the start of the game. As the game
progresses, further crosses may be placed adjacent to the fields that have been
ticked by the bomb.

• Heart: With this option, the player circles a heart in their heart column, starting
from the top. The hearts give the player an additional column bonus (from 1 to 5).
The more hearts a player circles in the course of the game, the higher this bonus
becomes. Whenever a player has completely ticked a column, they immediately
receive their current heart bonus in addition to the point value they receive for the
column. This is then entered directly in the heart below the corresponding column.
If the player manages to circle additional hearts in the course of the game, they
only increases the column bonus for columns completed at a later stage and not
retroactively. Important to say is that this option is the only option which appears
twice on the 6-sided special die.

• Stars: The player crosses up to two stars on their board sheet. However, these
must be placed vertically or horizontally adjacent to at least one box that has
already been crossed or in the starting column “H”.
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• Three in a row: The player immediately crosses off up to three boxes in one row.
These do not have to be adjacent to each other, but adjacent to boxes that have
already been crossed.

• Color block: The player immediately crosses a complete color block. This block
can be completely empty, but the player may also complete a color block that has
already been started. The color block must be adjacent to at least one box that has
already been crossed. This means that also a complete block of six can be crossed
at once. This is the only way to achieve this in one turn.

New Board

Another difference of the extension is the game sheet, which you can see in Figure 3.3.
Not only does it look different because the color blocks are sorted differently, there are
also lots of new things to earn. In the extension there are only six normal jokers available
(instead of eight in the basic game), but all players start with one special die symbol,
which represents the available use of the special die, and can earn up to nine in the game.
Some of the die symbols are distributed on the map and can be collected by ticking the
corresponding field.
Other changes on the board include the hearts, which were described earlier, and the
rewards for completing rows. In “Noch mal so gut!”, a key difference is that players can
earn points and rewards by completing a full row. As before, finishing rows faster than
the opponent is beneficial, as the first player to complete a specific row receives an extra
bonus along with 5 points, while all other players only receive the 5 points. The extra
bonuses can include additional die symbols, extra hearts, or the ability to immediately
place a bomb on the board without using one of their special die symbols. If two players
complete the same row simultaneously, both receive the extra bonus. Additionally, if a
player completes both a row and a column in the same turn, the row bonus is awarded
first.
A slight difference from the original board is that the first player to complete column
“H” now earns 2 points. Additionally, regardless of order, every player who finishes “H”
receives a special die symbol, represented by the die symbol behind the reward numbers
on the game board.

New Scores

The points of each individual player are now determined like this:

• Add up all the circled points for all finished rows, columns, and colors.

• Sum all bonus points earned from hearts by completing columns.

• For every unused but unlocked special die symbol, a player receives 2
extra points.
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Figure 3.3: The game sheet for each player for the game “Noch mal so gut!” [BB19c].

• For every unused joker-symbol a player gets get 1 extra point.

• For every not crossed star on the board a player loses 2 points.

The player with the highest score wins. Again, in the event of a tie the player who has
more joker-symbols left wins. Otherwise there are several winners.

3.2 Environment Architecture
This section will explain how we implemented the games “Noch mal!” and “Noch mal so
gut!”, so that we could later train a RLA based on it. The game environments were both
implemented in Python and both games can also be played by two human players in a
terminal.
We again always start with the original game “Noch mal!” and then explain the differences
to “Noch mal so gut!”.

3.2.1 Game
This class holds the methods for the majority of the game logic such as rolling the dice,
ticking the fields on the players’ boards, score calculations when stars, whole columns, or
colors are ticked as well as calculating the legal actions for the current player. It also
holds all the important information that we later need for the DQN like the number
of features, the action size, the actual observation state of the current situation, or the
possibility to make a random move to explore the action space. Since we are only looking
at a two-player game in this thesis, all player-related information like the board, scored
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points, jokers taken, etc., are saved two times, which can be adapted, but then also the
input size for the DQN increases drastically for each additional player.
The game environment is largely the same for both versions. Naturally, the additional
options are included in the class of “Noch mal so gut!”, but the core structure remains
unchanged. The main difference is the need to track additional elements, such as the
number of special die symbols available, hearts collected, and completed rows for the
expansion.

3.2.2 Observation State
The state, as discussed in Section 2.1.2, is encoded as a list, allowing the RLA to utilize
and interpret it effectively. The features included in the current state are:

• The game boards of both players, which contain 7 · 15 = 105 fields, whereby these
are one-hot encoded, i.e., 0 means not crossed and 1 means crossed.

• The current score of each player, which are stored in two integers.

• The number of jokers that have already been used by each player, which are stored
in two integers.

• The completed columns and colors for each player, which are stored in 40 integers,
where again 0 means not finished and 1 means finished.

• The dice that are currently rolled, which we store in 12 integers, so that each digit
is associated with one side of the dice. This means that the first digit stands for
how often the color “red” was rolled, the second for “yellow” and so on.

Overall, the number of features is

210⏞⏟⏟⏞
boards

+ 2⏞⏟⏟⏞
scores

+ 2⏞⏟⏟⏞
jokers

+ 40⏞⏟⏟⏞
columns and colors

+ 12⏞⏟⏟⏞
dice

= 266.

For the game “Noch mal so gut!” we also add:

• The number of special die symbols that are available for each player, which are
stored in two integers.

• The completed rows for each player, which are stored in 14 integers, again one-hot
encoded.

• The new special die, which is also coded per digit, so that each option is represented
by one digit, which add up five integers.

• The number of hearts collected, which are stored in two integers.
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So overall we get

210⏞⏟⏟⏞
boards

+ 2⏞⏟⏟⏞
scores

+ 2⏞⏟⏟⏞
jokers

+ 2⏞⏟⏟⏞
special die symbols

+ 54⏞⏟⏟⏞
columns, colors and rows

+ 12⏞⏟⏟⏞
dice

+ 5⏞⏟⏟⏞
special die

+ 2⏞⏟⏟⏞
hearts collected

= 288.

3.2.3 Action Space

For the game “Noch mal!” we first write a script that saves all the possible actions in a
JSON file. Since generalizing actions like “right”, “left”, “up”, and “down” as in other
games for example is not straightforward, we have to figure out all possible combinations
of dice rolls and the fields that can be marked over the entire game. Therefore, we have
to go through all the combinations of dice that can be chosen and all the possible fields
that can be ticked with it. Each move is assigned an “ID”, a “color”, a “num_fields” (the
number of fields that can be marked), and a “fields” array that lists the specific fields
involved in the move as can be seen in Figure 3.4.
For example, with the combination “red” and “1” each of the 21 fields that are red, can
be ticked. For the combination “red” and “2” only moves with two neighboring red fields
are possible, which are 15.

Figure 3.4: Visual examples illustrating the attributes “ID”, “color”, “num_fields”, and
“fields”. This figure is a reconstructed representation of the game board [BB16].
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We then also add the 10 combinations with jokers, like “X” and “1”,“X” and “2” etc., as
well as “red” and “?”, “yellow” and “?”, etc. For these joker-options we choose not to
save any fields, so that these options just open up the other already stated options and
another input is needed to complete the turn (see Section 3.3.2). At least also the “pass”
option has to be added. Because not all colors have the same number of options we get a
total number of actions of

62⏞⏟⏟⏞
red

+ 76⏞⏟⏟⏞
yellow

+ 63⏞⏟⏟⏞
green

+ 64⏞⏟⏟⏞
blue

+ 56⏞⏟⏟⏞
orange

+ 11⏞⏟⏟⏞
joker-options

+ 1⏞⏟⏟⏞
pass

= 333

For the RLA, which will be explained later in Section 3.3, all of these action have to be
individual output nodes. It must be said that this is the number of all possible actions
over the entire game, but usually only about 20 of them are legal and therefore available
in one turn, because of the given rules for ticking described in Section 3.1.1.

For the game “Noch mal so gut!”, one could believe that with the new special options
there have to be more options than in the original game, but because the game sheet
looks different there are actually less. For this game, we also count all the options for
every dice combination and save them in a new JSON file. We add the joker-option and
“pass” as before and also put in the five new special options which come from the new
special die. For the option “bomb” and “three-in-a-row”, we decided to use a different
network afterwards so we do not add these options to the original file. But for the “color
block” option, where a complete block of six can now be crossed off at once, we decided
to put these five options also in the JSON file, because one always has these options in
combination with the other options in this file. We end up with an action size of

55⏞⏟⏟⏞
red

+ 55⏞⏟⏟⏞
yellow

+ 64⏞⏟⏟⏞
green

+ 55⏞⏟⏟⏞
blue

+ 55⏞⏟⏟⏞
orange

+ 11⏞⏟⏟⏞
joker-options

+ 5⏞⏟⏟⏞
special options

+ 1⏞⏟⏟⏞
pass

+ 5⏞⏟⏟⏞
6-block-option

= 306.

For the two stated special options the amount of further options is pretty simple to
compute. The “three-in-a-row” option brings up the choice of every row, which are seven,
so the action size for this extra network is 7. After deciding the row, we can come back
to the original network to choose some of the options restricted on the selected row.
For the “bomb” action we know that every possible 4 × 4 block on the field is an option.
Since the board game is 7 × 15 fields large we have an action size of 6 · 14 = 84.

3.3 Agent Architecture
For the training phase we implement a self-playing program in which the RLA plays
against itself and receives rewards based on the reward function. In this section, we
will describe how we build the network and how we reward the agent in order to create
a competitive player. As seen in Section 3.1, both of these games have no hidden
information, allowing for a theoretically optimal strategy, similar to Go and Chess.
However, unlike those games, “Noch mal!” and “Noch mal so gut!” incorporate elements
of randomness, because of the dice rolling, which makes it even more difficult to produce
a well playing agent.
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3.3.1 Networks
The implementation of the RLA was inspired by the GitHub repository of the user
“chiamp”, which is publicly available at [chi20] and served as a foundation for key
aspects of the architecture. While the original implementation served as a useful starting
point, substantial modifications were necessary to adapt the architecture to the specific
requirements and goals of this project and especially for our given games. The RLA is
built using Keras [Ker15], which is a Python binding to the ML framework TensorFlow
[Ten15]. The structure of the network is based on many hyper-parameters, for which the
tuning will be discussed in detail in Section 3.3.3, but to give an overview we will briefly
describe the structure of the network in this section:

• First, the neural network has an input layer with a number of neurons equal to
the number of features, which was computed in Section 3.2.2. It uses the ReLU
activation function, which was chosen due to its computational efficiency and its
ability to soften the vanishing gradient problem in deep networks.

• Then we have a few hidden layers whose number is based on the hyper-parameter
“hidden_layers”, with 300 neurons based on [Kri21], which states: “The number
of hidden neurons should be between the size of the input layer and the size of the
output layer”. Again, the activation function is ReLU.

• At the end, we have the output layer which has the number of neurons based on the
action size, which was calculated in Section 3.2.3. It uses the activation function
linear, which is the default choice and was found to be sufficient for the purposes of
this work.

The network structure varies depending on the game, as both state and action sizes differ
between “Noch mal!” and “Noch mal so gut!”. All of these layers are dense layers, which
means that all neurons are fully connected to all neurons of the next layer. Overall the
network uses the Mean Squared Error as loss function and the Adam optimizer, which
are both very common in ML tasks and also used by “chiamp” [chi20].

As mentioned earlier for the game “Noch mal so gut!”, we also build two further networks
for the “bomb” and the “three-in-a-row” special-options. The idea behind that is to have
hierarchical networks, which is also mentioned in [Pla20], where the first network is the
high level network and the two others are only called if the first one decides to.
Both these networks have the same structure and functions used as the main one, but
instead have the hyper-parameter “bomb_hidden_layers” or “row_hidden_layers”, which
give the number of hidden layers. The number of neurons was also reduced to 150 and
50, respectively, to match the considerably smaller output layer, as previously calculated
in Section 3.2.3.

For these games we also argue that we do not need a target network, because in simpler,
fully observable environments like these board games, there is less risk of instability
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during learning, so a target network (used to prevent instability in complex environments)
is not required. Moreover, these games have a clearly defined endpoint after a set number
of moves, which reduces the accumulation of errors that can destabilize the learning
process. Additionally, removing the target network reduces memory consumption since
only one neural network needs to be stored, avoiding the duplication of weights and
computations. This is quite similar to the approach of “chiamp” [chi20].

3.3.2 Training Loop
Algorithm 3.1 shows a simplified version of the main training loop that the RLA has to
go through. The code will be discussed in detail in the following sections. As we can see
in the overall context, the agent always plays 10 games against itself and then trains on
a sample batch of actions that were taken in the last games. Every 500 games, the agent
competes against the current best model, evaluating its win rate to track performance
improvements. For the first opponent, we use a RandomAgent that always selects a
random action from the permitted actions. An important fact to notice is that these
agents only learn through self-play, which means no additional information about the
rules, the points deduction for taking jokers or additional points for crossing fields with
stars are given. The only guidance provided is that the agent cannot take illegal actions,
as described in the next section.

Taking Action

Every turn the agent has to take one of the current legal actions. As mentioned before,
in most of the cases around 10 to 20 options are actually allowed out of the huge action
space. To simplify action learning and reduce computational complexity, we determine
the set of allowed actions at each turn and mask all others. That means the DQN always
computes the Q-values of all actions based on the given current state and set all illegal
moves to −∞. Algorithm 3.2 also shows the Epsilon-Greedy-strategy, which is commonly
used to strike the trade-off between the “exploration” and ”exploitation” phases, which
we described in Section 2.1.3. The idea is that the RLA continuously explores the action
space by a given amount of percentage, which decreases from game to game. If ϵ is greater
than a random number between 0 and 1, then a random option out of the legal options
is taken, if it is less, then the agent will choose an action based on the current network.
A minimum value of ϵ = 0.1 ensures that the agent continues to explore the action space
at least slightly even in later stages of training. This prevents the agent from falling
into a local optimum by always exploiting the current knowledge. It guarantees ongoing
exploration, helping the agent refine its strategies and avoid premature convergence.

For joker- and special-actions, the agent must take an additional step, as these actions
introduce additional decision-making levels. For example, if the agent chooses the option
“red” and “?”, we need to determine the second part of the action. At this point, the
network is re-entered with an updated state, considering the already chosen die. The
set of legal actions is then recalculated, restricting the choices to valid moves (based on
Section 3.2) using “red” with any number from 1 to 5. A similar approach applies to

30



3.3. Agent Architecture

Algorithm 3.1: Main Training Loop
Require: Game environment G, number of episodes N

1: Initialize Q-network
2: Initialize replay memory M ← ∅
3: for episode e = 1 to N do
4: Reset game: G.reset()
5: while game not done do
6: Roll dice: G.roll_dice()
7: for player in {0, 1} do
8: Get current state: st ← G.get_features(player)
9: Choose action at

10: Execute action: G.act(at)
11: Observe reward rt, next state st+1
12: Store (st, at, rt, st+1) in M
13: end for
14: if Game is over then
15: End the game
16: end if
17: end while
18: if e mod 10 == 0 and memory M has enough samples then
19: Sample batch from M
20: Train network on batch
21: end if
22: if e mod 500 == 0 then
23: Test performance against best version and save model
24: end if
25: end for

Algorithm 3.2: Act
1: Get current state: st ← G.get_features(player)
2: Get legal actions: Alegal ← G.get_legal_actions()
3: Choose action at using Epsilon-Greedy-strategy: ϵ = max(0.1, 1 - episode / 10000)

at ←
{︄

random action from Alegal, w.p. ϵ

arg maxa′
t∈Alegal

Q(st, a′
t), w.p. 1 − ϵ

4: Execute action: G.act(at)
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special actions, where the second choice is constrained based on the first.
In case of the “bomb” and the “three-in-a-row” action, we build the agent so that we
enter the specific network with the current state and also use the Epsilon-Greedy-strategy
to explore the action space of these networks.

Remembering

The remembering of the RLA is simple. Since the agent plays against itself, it saves all
the actions made from the perspective of the current player. In this case, we choose to
save the last 10,000 actions, as shown in detail in Algorithm 3.3. It always saves the
action, the current state, the reward, and the next state. Because the dice are given in
the current state, see Section 3.2.2, we decide to define the next state as the state of
the next turn of the player. Additionally, we save the legal actions provided by the next
situation to improve the accuracy of the training.

Algorithm 3.3: Remember
1: Store (st, at, rt, st+1) in M
2: M = M[−10000 :]

For the low-level networks in the game of “Noch mal so gut!” we also save the action, the
current state, the reward, but not the next state as in the main network. This is because
the next state of these low-level networks cannot be defined as well. Simply treating the
next turn as the new state would be inaccurate, because for example where the next
“bomb” should be placed is not relevant, because very likely the agent does not choose
this option in the next turn and we would not enter the low-level network. Another
difference is that each action is used only once for training in the low-level networks.
After each training phase, we clear the “bomb” and the “three-in-a-row” memories due
to the limited amount of input data (only 10 games played). Retaining this small dataset
would lead to the repeated use of the same data for training. By clearing the memory, we
help prevent overfitting, ensuring the agent does not memorize infrequently used actions
and instead focuses on generalizing better for future decisions.

Reward

The reward is an important factor in the training loop because it defines what good
or bad options are. During the development of our approach, we experimented with
various reward functions to assess their impact on the model’s performance. The reward
functions we ended up with, simply rewards winning and punishes losing, by setting the
reward for all actions taken by one player in the game as follows:

• +1 for winning

• 0 for a draw

32



3.3. Agent Architecture

• -1 for losing

Additionally, we introduced two exceptions:

• -1 for passing

• -1 if the cluster marked in this turn could have been filled in that turn.

Both of these exceptions were taken to reduce the training time by anticipating bad
moves manually. By imposing this penalty, we encourage the agent to make proactive
decisions, rather than avoiding actions altogether. It also helps guide the agent to
prioritize actions that have a more significant impact on the game’s outcome. While there
are rare situations where passing could be beneficial, we chose to treat it as generally
undesirable.

After experimentation and analysis, we decided to use this reward function because it
performed well and provided a more general understanding of the game. Due to its
simplicity and generality, it can be reused in similar games, as it is not too specific to
the game in particular. By keeping the reward structure minimal and avoiding complex,
game-specific rules, the agent can learn more effectively without unnecessary bias. This
flexibility also allows the reward function to be easily adapted to other environments
with minimal adjustments as we will see in Chapter 4. A similar structure (without the
exceptions) is also used in the paper [PMVI24] for the game “7 Wonders Duel”.

For joker and special actions that require additional action selections, we only reward the
initial action. This is because the second action is simply a consequence of the agent’s
already learned strategy, based on the restrictions imposed by the first action. Rewarding
the initial action reflects the agent’s ability to make a good decision, considering the
available options at the time, without needing to further evaluate the outcome of the
second action. For the game “Noch mal so gut!”, we apply the same reward function to
the two low-level networks as described for the main network.

Train on Batch

After every 10 games, we train the network using the memory buffer. As shown in
Algorithm 3.4, we sample a small batch from the memory and update the weights of the
network using the Bellman equation (2.4) from Section 2.2. We apply a similar approach
for the low-level networks in “Noch mal so gut!”, as previously mentioned. However,
instead of using the next state, we update the network based solely on the reward of the
current move, treating every turn in the low-level networks as a terminal state.

Testing

For the last part, we implement an evaluation of the trained models. To this end, every
500 games the current model plays 200 games against the current best model and see if

33



3. Noch mal!/Noch mal so gut!

Algorithm 3.4: Train on Batch
Require: Memory M, batch_size, discount_factor γ

1: if e mod 10 == 0 and len(M) > 1000 then
2: batch ←

Get batch_size random samples from memory; sample_obj = (st, at, rt, st+1)
3: create Q-values-table
4: for each sample_obj in batch do
5: if the game ended after this move (no next state available) then
6: Update Q-values-table with rt

7: else
8: Mask new state st+1 with legal actions
9: Update Q-values-table with rt + (γ · maxat+1∈Alegal

Q(st+1, at+1))
10: end if
11: end for
12: Train network with Q-values-table
13: end if

it has improved over the last games. If so, we save the new model and use it as the new
best model. It is clear that winning in a game is not transitive. This means that if A
wins against B and B wins against C, A does not necessarily have to win against C, but
because we have that many agents to test, we decide to use this as a presorting method.
Algorithm 3.5 displays this process. We also play tournaments afterwards between the
different best agents to see which one prevails against the other trained opponents, see
Section 3.3.3. In the end, we also test some models against human players, as described
in Section 3.4.

Algorithm 3.5: Test
Require: Current Network/Model Qn, Best Network/Model Q

1: if e mod 500 == 0 then
2: Test Qn against Q in 200 games
3: if wins > losses then
4: Save Qn

5: Q ← Qn

6: end if
7: end if

3.3.3 Hyper-parameter tuning

For the entire RLA, there are many parameters to consider. We have already addressed
some of these in the previous section and left some of them open for further testing. To
provide a complete overview of all relevant hyper-parameters, we list them here:
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• hidden_layers: The number of hidden layers in the network.

• Number of neurons: The number of neurons in each hidden layer. For the main
network, we set this to 300, as we discussed earlier.

• Epsilon (ϵ): The value that determines whether to explore or exploit the action
space. We set this value to max(0.1, episode/10000) as mentioned earlier.

• learning_rate: The learning rate for the Adam optimizer.

• Number of episodes: The total number of games the agent plays during training.

• discount_factor (γ): The value of γ in the Bellman equation (2.4).

• memory_size: The number of action-state-reward-next-state pairs stored in
the memory buffer. We set this to 10,000 to learn from a broader range of past
experiences.

• batch_size: The number of samples used in each training batch. We set this to
1,000 to provide enough variety to allow effective training without overwhelming
the available resources.

• training interval and testing interval: The number of episodes after which
we train/test the network. We set this to 10 and 500, respectively, to update the
network frequently and provide a meaningful evaluation of the agents’ performance.

Additionally, for the game “Noch mal so gut!”, there are a few more hyper-parameters
specific to the low-level networks:

• bomb_hidden_layers: The number of hidden layers in the “bomb” network.

• Number of neurons of the “bomb” network: The number of neurons in each
hidden layer of the bomb network. We set this to 150.

• bomb_learning_rate: The learning rate for the Adam optimizer in the bomb
network.

• row_hidden_layers: The number of hidden layers in the “three-in-a-row” net-
work.

• Number of neurons of the “three-in-a-row” network: The number of neurons
in each hidden layer of the row network. We set this to 50.

• row_learning_rate: The learning rate for the Adam optimizer in the “three-in-
a-row” network.
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Since there are numerous hyper-parameters to consider, we choose to fix some and
focus on an in-depth analysis of four key ones: the number of hidden layers, learning
rate, number of episodes, and discount factor. These parameters were selected for their
expected significant impact on model performance. To explore their impact, we conduct
a grid search with specific settings. Table 3.1 presents the initial combinations we test.

Hyper-parameter Values Tested
hidden_layers [5, 8, 10]
learning_rate [0.0001, 0.001]
discount_factor [0.5, 0.6, 0.7, 0.8, 0.9, 0.95]

Table 3.1: The first set of tested hyper-parameters for the game “Noch mal!”.

The 36 combinations of these settings were initially tested with 50,000 episodes, so that
every configuration runs through the training loop from Algorithm 3.1 of the game “Noch
mal!”. Afterwards, the best model from each configuration is selected to compete against
one another in a tournament, where each model plays 200 games against all other models.
The tournament results are summarized in Table A.1 in the Appendix, and the top six
models are displayed in Table 3.2.

Model hidden layers learning rate discount factor Wins
3 5 0.0001 0.8 3823

12 8 0.0001 0.5 3907
24 10 0.0001 0.5 3817
27 10 0.0001 0.8 3854
30 10 0.001 0.5 3885
31 10 0.001 0.6 3938

Table 3.2: The best six models after 50,000 episodes of Table A.1.

From this tournament, we observe that models with 10 hidden layers performed the
best, and lower learning rates were more effective. We then conduct another round of
training with 100,000 episodes, as detailed in Table 3.3, to further assess the models’
performances. We retain both learning rates for this second round, hypothesizing that
the networks with a lower learning rate would improve over time with more episodes.

Hyper-parameter Values Tested
hidden_layers [10]
learning_rate [0.0001, 0.001]
discount_factor [0.5, 0.6, 0.7, 0.8, 0.9]

Table 3.3: The second set of tested hyper-parameters for the game “Noch mal!”.

After this second training round, we conducted another tournament with these 10
networks, which are numbered in Table 3.4, and the detailed results are shown in Table
3.5.
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Model hidden layers learning rate discount factor
0 10 0.0001 0.5
1 10 0.0001 0.6
2 10 0.0001 0.7
3 10 0.0001 0.8
4 10 0.0001 0.9
5 10 0.001 0.5
6 10 0.001 0.6
7 10 0.001 0.7
8 10 0.001 0.8
9 10 0.001 0.9

Table 3.4: Numbering of the models after the second training round of 100,000 episodes
of “Noch mal!”.

Model 0 1 2 3 4 5 6 7 8 9 Wins
0 X 93 101 120 127 116 97 107 125 121 1007
1 107 X 112 111 114 100 112 127 121 115 1019
2 98 87 X 118 117 97 96 110 109 108 940
3 73 86 82 X 106 96 85 101 107 98 834
4 73 86 80 93 X 97 100 105 103 100 837
5 84 97 101 102 100 X 90 121 105 104 904
6 103 86 103 114 100 109 X 96 106 110 927
7 91 69 90 99 92 77 104 X 88 97 807
8 73 76 90 92 95 93 94 111 X 104 828
9 78 82 92 100 100 94 88 103 95 X 832

Losses 780 762 851 949 951 879 866 981 959 957

Table 3.5: The detailed tournament results of the 10 models listed in Table 3.4. Victories
of the respective model are recorded in the corresponding row, while losses are shown in
the respective column. Ties are not included in the table.

The table shows that the model 1 emerges as the overall winner, with 1,019 total wins.
This model outperformed all others, winning at least 100 games in each duel. Notably,
models with a learning rate of 0.0001 secured the top 3 positions. Based on these results,
we decided to use model 1 for further analysis.
That means we finish the training phase of “Noch mal!” with the hyper-parameters
you see in Table 3.6 and put them to the test against several human players, which is
described in Section 3.4.
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Hyper-Parameter Value
Hidden layers 10
Number of neurons 300
Learning rate 0.0001
Discount factor (γ) 0.60
Epsilon (ϵ) max(0.1, episode/10000)
Number of episodes tested 100,000
Memory size 10,000
Batch size 1,000
Training interval 10
Testing interval 500

Table 3.6: The hyper-parameters of the final network of “Noch mal!”

For the game “Noch mal so gut!”, we leverage the insights gained from the hyper-parameter
testing of “Noch mal!”, as both networks share a similar structure. Therefore, we adopt
the hyper-parameters from Table 3.6 and incorporate the additional hyper-parameters
for the low-level networks from Table 3.7. We also decide to test the three best discount
factors from the previous tournament (0.5, 0.6, 0.7) because the difference in performance
was minimal. Given the computational cost of training three networks simultaneously
with different configurations, we limit the first training round to testing only two numbers
for the hidden layers and two numbers for the learning rates in the low-level networks.
This results in 48 different models, which we train for 150,000 episodes/games, as we
believe this game is more complex and requires more training, particularly for the low-level
networks.

Hyper-parameter Values Tested
hidden_layers [10]
learning_rate [0.0001]
discount_factor [0.5, 0.6, 0.7]
bomb_hidden_layers [3, 5]
bomb_learning_rate [0.0001, 0.001]
row_hidden_layers [3, 5]
row_learning_rate [0.0001, 0.001]

Table 3.7: The set of tested hyper-parameters for the game “Noch mal so gut!”.

After training, we again conduct a tournament with all 48 models, where each model
plays 200 games against every other model. The results of this tournament are shown in
Table A.2 in the Appendix, and the best six models can be found in Table 3.8.

As we cannot identify any clear patterns in the top 6 models, we decide to extend the
training to 200,000 episodes to further refine the models. The detailed results of the final
tournament are presented in Table 3.9.
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Model hl lr df bomb_hl bomb_lr row_hl row_lr Wins
6 10 0.0001 0.5 3 0.001 5 0.0001 5015
9 10 0.0001 0.5 5 0.0001 3 0.001 5141

25 10 0.0001 0.6 5 0.0001 3 0.001 5227
30 10 0.0001 0.6 5 0.001 5 0.0001 4982
38 10 0.0001 0.7 3 0.001 5 0.0001 5054
45 10 0.0001 0.7 5 0.001 3 0.001 5289

Table 3.8: The best six models after 150,000 episodes of Table A.2.

Model hl lr df bomb_hl bomb_lr row_hl row_lr Wins
0 10 0.0001 0.5 3 0.0001 3 0.0001 4281
1 10 0.0001 0.5 3 0.0001 3 0.001 4876
2 10 0.0001 0.5 3 0.0001 5 0.0001 4243
3 10 0.0001 0.5 3 0.0001 5 0.001 4178
4 10 0.0001 0.5 3 0.001 3 0.0001 3971
5 10 0.0001 0.5 3 0.001 3 0.001 5099
6 10 0.0001 0.5 3 0.001 5 0.0001 5113
7 10 0.0001 0.5 3 0.001 5 0.001 4888
8 10 0.0001 0.5 5 0.0001 3 0.0001 4715
9 10 0.0001 0.5 5 0.0001 3 0.001 5011

10 10 0.0001 0.5 5 0.0001 5 0.0001 4665
11 10 0.0001 0.5 5 0.0001 5 0.001 4797
12 10 0.0001 0.5 5 0.001 3 0.0001 4386
13 10 0.0001 0.5 5 0.001 3 0.001 4323
14 10 0.0001 0.5 5 0.001 5 0.0001 4623
15 10 0.0001 0.5 5 0.001 5 0.001 4999
16 10 0.0001 0.6 3 0.0001 3 0.0001 4496
17 10 0.0001 0.6 3 0.0001 3 0.001 4629
18 10 0.0001 0.6 3 0.0001 5 0.0001 4732
19 10 0.0001 0.6 3 0.0001 5 0.001 4493
20 10 0.0001 0.6 3 0.001 3 0.0001 5097
21 10 0.0001 0.6 3 0.001 3 0.001 4688
22 10 0.0001 0.6 3 0.001 5 0.0001 4589
23 10 0.0001 0.6 3 0.001 5 0.001 4509
24 10 0.0001 0.6 5 0.0001 3 0.0001 4928
25 10 0.0001 0.6 5 0.0001 3 0.001 4997
26 10 0.0001 0.6 5 0.0001 5 0.0001 4492
27 10 0.0001 0.6 5 0.0001 5 0.001 4491
28 10 0.0001 0.6 5 0.001 3 0.0001 4651
29 10 0.0001 0.6 5 0.001 3 0.001 4478
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30 10 0.0001 0.6 5 0.001 5 0.0001 4562
31 10 0.0001 0.6 5 0.001 5 0.001 4501
32 10 0.0001 0.7 3 0.0001 3 0.0001 5167
33 10 0.0001 0.7 3 0.0001 3 0.001 4807
34 10 0.0001 0.7 3 0.0001 5 0.0001 4956
35 10 0.0001 0.7 3 0.0001 5 0.001 4446
36 10 0.0001 0.7 3 0.001 3 0.0001 4669
37 10 0.0001 0.7 3 0.001 3 0.001 4168
38 10 0.0001 0.7 3 0.001 5 0.0001 4892
39 10 0.0001 0.7 3 0.001 5 0.001 4731
40 10 0.0001 0.7 5 0.0001 3 0.0001 4788
41 10 0.0001 0.7 5 0.0001 3 0.001 4403
42 10 0.0001 0.7 5 0.0001 5 0.0001 4513
43 10 0.0001 0.7 5 0.0001 5 0.001 4734
44 10 0.0001 0.7 5 0.001 3 0.0001 5108
45 10 0.0001 0.7 5 0.001 3 0.001 4753
46 10 0.0001 0.7 5 0.001 5 0.0001 4909
47 10 0.0001 0.7 5 0.001 5 0.001 4591

Table 3.9: The results of the first training round of the game “Noch mal so gut!”. In the
table, the best 6 models are highlighted in bold.

Model 32 emerges as the winner of the final tournament, with 5,167 wins out of 9,400
games played. While this model did not dominate all the others, it remained very
competitive, winning almost half of the games in every match-up. We conclude the
training phase with model 32 and proceed to evaluate its performance against human
players, as described in Section 3.4. The specific hyper-parameters for the final agent are
summarized in Table 3.10.

3.4 Evaluation
The purpose of this section is to show that the two agents from the previous section
can prevail against human players and can be considered for analysis, especially with
regard to game development. We will also analyze the different game statistics and play
styles of our RLA and the human contestants. The first goal to be achieved is for the
agents to play better than a player taking actions at random, which is achieved in every
configuration after 500 training games, as the given action space is very large. In the
end, the final agents won 100% of the games against the random agent.
The second goal was to get a minimum win rate of 50% against human players to
confidently state that our agent is on par with human players, providing a solid foundation
for further analysis of the game. To clarify further, the goal was not to create the best
player for the given games, but to develop a competent player capable of analyzing the
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Hyper-Parameter Value
Hidden layers 10
Number of neurons 300
Learning rate 0.0001
Discount factor (γ) 0.70
Bomb hidden layers 3
Bomb number of neurons 150
Bomb learning rate 0.0001
Row hidden layers 3
Row number of neurons 50
Row learning rate 0.0001
Epsilon (ϵ) max(0.1, episode/10000)
Number of episodes tested 200,000
Memory size 10,000
Batch size 1,000
Training interval 10
Testing interval 500

Table 3.10: The hyper-parameters of the final network of “Noch mal so gut!”

game from a game developer’s perspective in order to suggest improvements.
Therefore, we set up a graphical environment on a website to play the game “Noch mal!”
outside of the terminal, making it easier for the contestants to compete against the agent.
In Figure 3.5 one can see a screenshot of the website during a game.

As one can see, all important information for the game is displayed, such as the board of
both players, the chosen and currently available dice, the finished columns and rows, etc.
We then grouped all the contestants into four categories based on their experience with
the game “Noch mal!”, in order to have a clear overview of the agent’s performance later
on. The groups were divided as follows:

• Have played the game less than 3 times.

• Have played the game between 3 and 10 times.

• Have played the game between 11 and 25 times.

• Have played the game more than 25 times.

If the players have played against the AI very often, we have also upgraded them to the
next higher level. In total, we had 18 contestant and the results of all the games in the
specific categories can been seen in Table 3.11.

As one can see, the results are impressive, with the agent achieving a win rate of over
50% in every group. It must also be said that “Noch mal!” is a game that is also very
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Figure 3.5: A screenshot of the graphical environment for testing the agent of the game
“Noch mal!”. This figure is a reconstructed representation of the game [BB16].

Group (Games played beforehand) < 3 3 − 10 11 − 25 > 25
Played Games 17 32 51 77
Won Games 9 24 26 40
Win rate 52.94% 75% 50.98% 51.95%

Table 3.11: Results of all “Noch mal!” games played against human players.

much based on luck, due to the rolling of dice, which is why it is remarkable to achieve a
high win rate at all. This is also why the win rate does not decrease significantly with
increased player experience.
In total, the RLA won 99 out of 177 games, resulting in a win rate of 55.93%. The agent
averages 24.06 points and uses 6.32 jokers, whereas the players score 23.18 points and
use 5.69 jokers in comparison. Figure 3.6 compares the color preferences of our RLA
against the human players. And as we can see, the model in general finishes much more
colors than the players. On average, the agent finished 1.66 colors per game and the
players only 1.40. The diagram also shows a strong preference for the color green in both
play styles, with the notable exception that the agent almost never finishes the color
blue. For these graphics, one also has to say that the reason for such big differences in
the numbers of the RLA completing something in comparison to the human players is
that the human players are several people with different strategies, whereas the agent
always has the same plan “in mind”.

If we look at the columns, we notice that the agent on average finished 7.27 columns and
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Figure 3.6: Color preferences of our RLA (top) and human players (bottom) across 177
games of “Noch mal!”.

the players 8.06 per game. The preferences in Figure 3.7 show that the columns “I” and
“J” are very important for both play styles. Interestingly, the column “H”, which is the
starting column, is not often finished by the agent, perhaps because it earns 0 points
when the opponent already finished it. Also interesting to see is that the columns “A”
and “B” are clearly less finished by human players than “N” and “O”, which could be
due to the fact that all 6-field color blocks are on the left side of the game board and can
therefore not be crossed in one turn.

RLA

human0 25 50 75 100 125 150

A B CDEF G H IJK L MNO

Figure 3.7: Column preferences of our RLA (top) and human players (bottom) across
177 games of “Noch mal!”.

Overall, our RLA proves to be a robust player, making it a valuable tool for game analysis
– a topic we will further explore from a developer’s perspective in Section 3.5.

For the game “Noch mal so gut!”, we also developed a graphical environment (Figure 3.8)
that allows for easy interaction and visualization of the game. This environment features
the new elements of the extension, including bonuses for rows, a special die above the
board, hearts, and special die symbols at the bottom of the figure, which reflect the new
rules and mechanics introduced.

We once again categorized our contestants into the four categories defined earlier and
start playing against the RLA of “Noch mal so gut!”. As seen in Table 3.12, our agent
won 146 out of the 278 games played, resulting in a win rate of 52.52%. It is clear that
the group of participants who played more than 25 games, i.e., those who were more
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Figure 3.8: A screenshot of the graphical environment for testing the agent of the game
“Noch mal so gut!”. This figure is a reconstructed representation of the game [BB19b].

familiar with the game, dominated the statistics, playing significantly more games than
the other groups. Despite this, the agent still maintained a competitive win rate against
this group, although it is below the expected 50%. This time we also see that the agent
dominated the group of players which played the game less than 3 times, which shows
that the game is more complicated and takes several games to understand.

Group (Games played beforehand) < 3 3 − 10 11 − 25 > 25
Played Games 25 34 38 180
Won Games 18 20 20 88
Win rate 72% 58.82% 52.63% 48.62%

Table 3.12: Results of all “Noch mal so gut!” games against human players.

When comparing the RLA and human players (Table 3.13), several key differences stand
out. For example, the agent uses more special die symbols on average, which is probably
due to the fact that it has more specials available throughout the game. Additionally,
while both the agent and human players found the “color block” action most useful,
the agent more frequently used the “three-in-a-row” action, showing a preference for
completing rows over other strategies.

Figures 3.9, 3.10, and 3.11 show the color, column, and row preferences. Notably, blue
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Player RLA Human
Points 50.86 49.25
Jokers used 5.44 4.20
Special actions used 6.18 4.89
Special Die Symbols available at the end 1.29 2.05
Hearts collected 1.62 1.30
Colors finished 1.56 1.59
Columns finished 7.96 8.02
Rows finished 3.28 3.08
Received Extra Bombs 1.27 0.95
“color block” action used 1.84 1.65
“bomb” action used 1.24 1.11
“three-in-a-row” action used 1.31 0.83
“heart” action used 0.86 0.68
“stars” action used 0.93 0.61

Table 3.13: The average statistics across 278 games of “Noch mal so gut!”, comparing
the performance of the RLA and human players.

seems to play a critical role in the agent’s strategy, which is rarely completed by human
players. This is because the human players tend not to check the blue box at the top
right of the board, a key element in the agent’s strategic decisions. There is also an
outlier in the columns: while human players often complete column “G”, the agent rarely
does so, but both play styles share a preference for completing columns ”H” and “F”, as
well as rows ”R”, “Q”, and ”S”.
Examining the row and column distributions, it is evident that the overall strategic
approaches of human players and the agent do not differ significantly. However, the
strong contrast in color preferences is particularly noticeable.
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Figure 3.9: Color preferences of our RLA (top) and human players (bottom) across 278
games of “Noch mal so gut!”.

At the end of our evaluation, we consider both our agents for the games “Noch mal!” and
“Noch mal so gut!”, respectively, suitable for game testing and move on to the findings
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Figure 3.10: Column preferences of our RLA (top) and human players (bottom) across
278 games of “Noch mal so gut!”.
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Figure 3.11: Row preferences of our RLA (top) and human players (bottom) across 278
games of “Noch mal so gut!”.

from a developer’s perspective, which can help to improve the game.

3.5 Findings and Rule Changing Options

The purpose of this section is to show the insights that we get from the agents. In the
previous section, we analyzed the different play styles of humans in comparison to our
models, but in this section, we want to analyze it from a developer’s perspective. As a
developer we would not have the statistics of the games against humans, because for a
game that is currently being developed there are no experienced testers. Therefore, we
want to see what we could find out only with the knowledge of the trained models. For
this reason we first generated 1,000 self-play games of “Noch mal!” to extract statistics
and insights as was done in [PMVI24].

The distribution of wins was evenly matched between the starting and non-starting player,
which is usually a good sign of a balanced game. Out of the 1,000 self-play games, the
second player won 511 and lost 481, whereas 8 games end up in ties. This slight edge
could be attributed to the fact that they are the first to select dice in round four, limiting
the opponent’s choices. However, overall, there appears to be no significant advantage
associated with going first.
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On average, a game took 31.33 turns, which is useful for the developer when estimating
real-time play length. In 80.8% of the games, the winner finished with two completed
colors, while that was only the case in 24.4% of losses. The winner also completed more
columns on average – 7.75 compared to 6.42 – showing stronger performance in both
main point-generating mechanics. Similarly, the player who won typically used fewer
jokers than the loser, with 5.96 on average compared to 6.25, meaning extra points also
came from avoiding joker use. The mean score of the winner was 27.28 points, while the
loser had 18.25. In general, these numbers give developers a solid benchmark to compare
against expectations. If 31 turns per game feels too long, the win condition could be
adjusted – maybe requiring only one completed color instead of two. The breakdown
of points also helps give a sense of whether the scoring system works as intended or if
changes are needed, like adjusting how many points specific columns or colors are worth.

Another important insight of the self-play games that we can find is the heatmap of all
crossed fields over all games. As illustrated in Figure 3.12, some fields are much less
crossed than others. In the previous section we figured out the color green and orange
are very popular in the strategy of our RLA, which was also the case in the self-play
games, with green completed 743 times and orange completed 463 times of the winner.
On the other hand, the color blue was nearly never finished with only 38 completions. A
closer examination of the heatmap confirms that the fields that are not used much are
mostly blue fields, like the one on the bottom in row 7 and column “F” or the field in
row 4 and column “O”. Also other fields in colors of red and yellow were only slightly
crossed, such as the yellow field in row 2 and column “F” or the fields in row 5 and 6
and column “A”, which are red.

Figure 3.12: A heatmap of all crossed fields of both players across 1,000 self-play games
of “Noch mal!” by our RLA.

This could be due to the fact that the large green color blocks are mostly positioned on
the outer edges of the playing field. Since outer color blocks are selected less frequently –
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simply because the opportunity does not arise as often – green becomes a more viable
option due to its larger block sizes (consisting of groups of five and four) in the outer
columns. Given the choice, players are more likely to complete larger color blocks, as this
allows them to mark more spaces and expand their reach on the board. Additionally,
the size of the green blocks makes them easier to access, which further reinforces their
strategic advantage. As we evaluated in Section 3.4, this is not uncommon for human
players either.
Again, for a game developer this information is useful, because now they can think of
balancing the board by rearranging the colors. This also was done for the game of “Noch
mal!”, where there are now several different game boards to choose from [BB19a]. In
combination with the other insights, one could also think about whether to make the
game board smaller or larger in order to have more or less options as a player.

Concerning the columns, it is interesting that columns “I” and “J” are finished the
most by our RLA. In Figure 3.13 you can see the distribution of the finished columns
of both players combined. One might assume that the middle columns are completed
most frequently because they are the easiest to achieve most of the time, but the game
developers have already balanced the points in such a way that the outer columns are
also completed, as they offer higher rewards. It is also interesting that column “F” is the
one with the fewest completions and also one of the columns that consists entirely of
fields in 6-field color blocks.

Figure 3.13: The distribution of completed columns of both players across 1,000 self-play
games of “Noch mal!” by our RLA.

As mentioned before in Section 3, adjustments have been made by the developers and
also new rules were added to the game to develop the extension “Noch mal so gut!”. Now
we can look closely into the second agent that we also trained in the previous section and
see if the changes have an impact on the gameplay. We also want to see if the special
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actions were used equally from our RLA or if some of them are much more useful than
others to it.

First, we examine the overall statistical changes before delving into the agent’s new play
style. To do this, we again play 1,000 self-play games of “Noch mal so gut!” and evaluate
them. Of these 1,000 games, the starting player only won 445, which could again be due
to the effect mentioned that the non-starting player is the first to take dice in round
four that the opponent is not allowed to choose. This effect could be enhanced with the
special die, as the bomb, for example, makes it easier to spread all over the board which
is particularly relevant at the beginning, because a player instantly get more options in
the game.
Another important fact is that the average number of turns taken in a game is 28.32,
which is slightly fewer than in “Noch mal!” – likely due to the new options and of course
bonuses available. The number of completed colors by the winner has decreased slightly.
Now, in 75.9% of the games, the winner completes two colors, while in 26.5% of the
games, the loser does. The number of completed columns increased on average to 8.83
for the winner and 7.19 for the loser, which could be because on average more boxes
are ticked in comparison to the basic game as the agent is not looking to end the game
quickly. Also, judging by the number of rows, the winner is far ahead by finishing 3.69
rows on average while the loser only complete 2.60. The use of the jokers is similar for
both players because now the winner and the loser typically use 5.43 and 5.38 jokers
respectively. For the usage of the special die symbols, the winner on average used 6.10
and the loser 5.85, while having 1.44 and 1.21 left over at the end of the game. This
shows that the winner often has more special die symbols available over the whole game.
Additionally, by the end of the game, the winner and the loser have an average of 1.70 and
1.25 hearts, respectively. It was clear that the mean scores will rise drastically, so that the
average score for the winner is now 58.69 and for the loser 36.74, which is much higher
than before. Again, the winner is better in all main point-generating mechanics. This
is all valuable information for the developers to analyze their own game and reconsider
the rule changes and their impact on the game. Now that we have the basic stats of the
1,000 games, we can dive deeper into the strategy.

The first thing which is clear is that the game behavior has changed completely. Because
there are now many points and also extra bonuses for completing rows, the play style
changes to completing rows as quickly as possible instead of only completing columns as
before. In addition, the change in the game board has clearly resulted in a major change.
These strategy changes can be seen drastically in the data. If we look at the heatmap of
the game “Noch mal so gut!” in Figure 3.14, we can clearly see that the columns were
not as important anymore. We can see that the rows “Q”, “R”, and “S” were used much
more than the rows “U” and “V”.

Also interesting is that now the color blue is much more interesting being the most
finished color for both players, 699 completions by the winner and 402 by the loser. In
second place is yellow with 469 and 204 completions respectively. Amusingly, now green
is the color which gets finished least by both players. These color shifts are also due to
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Figure 3.14: A heatmap of all crossed fields of both players across 1,000 self-play games
of “Noch mal so gut!” by our RLA.

the fact that in the rows “Q”, “R”, and “S”, which are used most often by our RLA,
more blue and yellow fields appear than green ones. Also the heatmap shows that the
most unused fields are green, red, and orange ones.

We can also see that the developers made column “H” more appealing to players by
offering more points and an extra special die symbol, which proved to be effective. Figure
3.15 presents the distribution of completed columns, highlighting a shift in strategic focus
compared to the original game. Now, “H” is the most finished column by our RLA. Also
the outer columns are completed more often, because the “bomb” action allows faster
spreading on the board.

If we look at the distribution of the rows in Figure 3.16, we see the things which we
expected from the heatmap. The rows “Q”, “R” and “S” are completed almost every
time, while “V” is completed almost never. This could be because “V” is one of the rows
that is on the very outside of the field, but also has fields of nine different color blocks,
while for example “Q” or “S” only have fields of eight different color blocks in their row.
Another reason could also be that for the first finisher of “Q” and “S”, which are really
close to each other, one get an additional bomb to place, which could be a huge bonus in
the game. It was clear to observe that in 587 games, the winner had more extra bombs –
meaning the bonus bomb from a row completed first – available than the loser, and in
309 games, they had the same amount, which indicates that this bonus is particularly
powerful.

Other important insights for game developers are, of course, the use of the new special
actions that the game “Noch mal so gut!” brings. Therefore, we count how often the
RLA uses the different options and display them in a bar plot, which we can see in
Figure 3.17. We notice that the special action “color block” is used the most, followed
by the “bomb” and the “three-in-a-row” action. Despite the higher availability of the
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Figure 3.15: The distribution of completed columns of both players across 1,000 self-play
games of “Noch mal so gut!” by our RLA.

Figure 3.16: The distribution of completed rows of both players across 1,000 self-play
games of “Noch mal so gut!” by our RLA.

“heart” action (with two hearts on the 6-sided die), both “heart” and “stars” are used
less frequently. This is also an indicator that these two options are less useful than the
others.

To get more specific, we can analyze the actions the agent takes with the top 3 specials.
First, we focus on the “color block” action, where the key question is how often the RLA
uses it to complete a whole 6-field color block, which is only possible with this special
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Figure 3.17: The frequency of special actions used by both players across 1,000 self-play
games by our RLA.

action. Surprisingly, the agent fills a 6-field color block in only 13.92% of cases when
using this action. The most used actions are shown in Table 3.14.

Fields Num_Fields Count
[[1, 12], [2, 12], [2, 13], [3, 13], [3, 14]] 5 381
[[0, 9], [0, 10], [1, 10], [1, 11], [2, 11]] 5 350

[[4, 11], [5, 9], [5, 10], [5, 11], [6, 8], [6, 9]] 6 256
[[1, 4], [1, 5], [2, 5], [2, 6], [2, 7]] 5 201

[[4, 12], [4, 13], [4, 14]] 3 198

Table 3.14: The most used actions with the “color block” action by both players across
1,000 self-play games by our RLA.

Next, we look at the “bombs” actions, where we notice that there are a few locations
that the RLA found which might be better than others. The top 5 locations can be seen
in Table 3.15. It is interesting that the top 3 locations are all in columns “A” and “B”.
More importantly, they consistently complete a whole color block and sometimes even
cross a field of a 6-field color block, which is a clever strategy.

Remarkably, the top three bomb placements identified by the RLA align with the top
three choices made by human players in test games. This consistency suggests that the
RLA has developed an effective strategy purely through self-play.

The results are also very interesting regarding the rows. As we can see in Table 3.16,
the “three-in-a-row” action is mostly used to check boxes in the rows “P” and “S”, but
almost never for “Q”, “R”, and “U”.

All in all, these insights are very important for game developers. Of course one could
say that this is one strategy of many in this game, but with the knowledge that this
strategy wins nearly 50% of the games against experienced players, developers might

52



3.5. Findings and Rule Changing Options

Fields Count
[[3, 0], [3, 1], [4, 0], [4, 1]] 1461
[[5, 0], [5, 1], [6, 0], [6, 1]] 1093
[[1, 0], [1, 1], [2, 0], [2, 1]] 751
[[5, 3], [5, 4], [6, 3], [6, 4]] 457
[[5, 5], [5, 6], [6, 5], [6, 6]] 141

Table 3.15: The most used bomb locations by both players across 1,000 self-play games
by our RLA.

Row Count
P 1559
S 692
V 121
T 78
Q 7
R 1
U 1

Table 3.16: The most used rows with the “three-in-a-row” action by both players across
1,000 self-play games by our RLA.

want to change something. Maybe the intention is not to have some bomb locations
that are much more powerful than others, in which case a rearranging of the board
would be the solution. Or since the data indicates that the option “stars” is used less
frequently, one could think of changing the option to cross three stars instead of two.
Maybe then the action would be as frequently used as the “color block” option. Also
the basic information about the duration of the game and the distribution of points is
helpful to further develop the game. Thus, the RLA provides valuable information about
the game, such that a game developer can see how to improve the game balance. We
also notice in the development that changes from the base game “Noch mal!” to the
expansion “Noch mal so gut!” have changed several aspects, some of which with quite
significant implications.

Now, the developer would have to decide, which changes are beneficial to the game or
which rules should be adjusted. Then we could again let a RLA learn the new rule set
and try to find weaknesses with its help. This iterative process could go on and on until
the developer decides that the game is good and balanced enough to finish developing.
For these two games, this process would be too extensive for this thesis. However, to
provide a better understanding of the iterative process, Chapter 4 introduces our own
simple board game and presents step-by-step instructions for creating it with the help of
RL.
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CHAPTER 4
Simala

This chapter is intended to show the iterative process of game development with a RLA.
By introducing our own game “Simala”, we want to show a practical example how the
development process can be improved with the help of RL. First, we explain the game
environment and the architecture of our agent and then proceed to change the game
rules to balance emergent strategies.

4.1 Game Concept
“Simala” is intended to be a board game based on strategy and luck for two players.
The idea behind the game is that both players play heroes who try to defeat a certain
number of monsters or slay the final boss during the course of the game. Along the way,
they can buy items, improve their own skills to be stronger in battle, and also engage in
player versus player combat to prevent the other from winning. Since this game is not
yet developed, all rules should be treated as a first draft of the game to have a framework
in which we can balance the game.

4.1.1 Simala – Game Instructions
Game Contents and Setup

The game is played on a board with 24 fields arranged in a loop, which can be seen in
Figure 4.1. Each field shows the actions that can be performed there, which are explained
in detail later on. Both players receive a 6-sided die and a character sheet showing
how much health points, maximum health points, attack points, gold, experience points,
trophies, and equipment they currently have and which next reward they will get if they
level up. Each player starts with the stats listed in the table of Figure 4.1. In addition,
each player places a figure on the “Shop”-fields at the bottom right and top left corner,
respectively, each representing one player. Two 6-sided dice are also provided, featuring
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the numbers 1 to 5 and one ”boss” symbol. Lastly, the level 1 and level 2 monsters are
shuffled and placed in a pile and the boss is placed next to the playing field.

Character stats
health points 5

maximum health points 5
attack points 1

gold 0
experience points 0

trophies 0
inventory [ ]

next reward attack

Figure 4.1: The game board and starting stats of each player in the game “Simala”.

Gameplay

Each turn consists of the same phases:

1. If the current player has above 0 health points, they roll both dice, if not they must
skip this round and regenerates their health points.

2. Then they choose one of the dice to move as many fields clockwise on the game
board as the chosen die indicates.

3. After that they choose one of the given actions on the field they landed on.

4. At the end of the turn, both players check whether they have moved up a level and
whether they fulfill the victory conditions. This can only happen to the non-current
player if the players fight against each other.

The actions that can be performed are:

• Well (“We”): The player gets fully healed, i.e., their health points are set to their
maximum health points.

• Mine (“Mi”): The player rolls their 6-sided die and receives one gold if the number
is 4 or above.

• Train (“Tr”): The player receives one experience point.
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• Fight against a Monster of level 1 (“M1”): A level 1 monster is drawn from
the corresponding draw pile and the player must fight it (see “Fight” below). The
level 1 monster has between 5 and 7 health points, between 1 and 3 attack points,
and no inventory. For defeating it, one receive 2 experience points, one gold, and a
trophy.

• Fight against a Monster of level 2 (“M2”): A level 2 monster is drawn from
the corresponding draw pile and the player must fight it (see “Fight” below). The
level 2 monster has between 7 and 9 health points, between 3 and 5 attack points,
and a bow in its inventory. For defeating it, you receive 3 experience points, two
gold, and a trophy.

• Shop (“Shop”): The player is allowed to buy one item for their inventory using
their gold. If so, they place it on their character sheet, because every player can
only own each item once. The costs and effects of the respective items are listed in
Table 4.1.

Item Cost Effect
Sword 2 +1 attack point
Helmet 1 +1 health point and +1 maximum health point
Shield 2 Reduces the opponent’s attack die by 1
Bow 2 Increases own attack die by 1

Table 4.1: Items available in the shop.

• Fight against the other player: If the opponent occupies the field you intend
to move to, you must engage in a fight (see “Fight” below) and cannot take any
action associated with that field. The victorious player earns 2 experience points
and claims all of the opponent’s gold. This is the only way the non-active player
can level up in the opponent’s turn.

• Fight against the Boss: If both dice show the “boss” symbol, the player is
attacked by the boss and must fight against it (see “Fight” below). This also means
the player cannot choose any option in Phase 2 and 3. The boss has 10 health
points, 6 attack points, and a shield and bow in its inventory. For defeating it, you
immediately win the game.

The “Fight” proceeds as follows:
The player whose turn it is attacks first and rolls their die. Any bonuses or penalties
from their bow or the opponent’s shield are then applied. If the total result is greater
than 3, the opponent loses health points equal to the attacking player’s attack points. If
the opponent still has health points (i.e., above 0), they now attack by rolling their die
in the same manner. If the opponent is a monster or the boss, the other player rolls the
dice for it. Again, bonuses or penalties from the bow or shield are applied, and the result
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is checked. If the total is greater than 3, the current player loses health points equal to
the opponent’s attack points. This process repeats until one of the fighters is reduced to
0 or fewer health points. The combatant who still has health points wins the fight.
If a player drops to 0 health points or below, they are placed back on their starting
square and must sit out the next round to fully regenerate their health points. So every
time a player loses a fight, they get placed back.
If a monster or the boss was involved in the fight, the associated card is placed back,
and the health points of the creature is reset. After that, the respective monster deck
(level 1 or level 2) is shuffled, i.e., no monster gets discarded, so that every time a player
fights against a monster, it is randomly picked from all existing ones.

At the end of each turn, if a player has gathered 3 or more experience points they have to
exchange 3 experience points for the next reward on their character sheet. The rewards
alternate between “attack” and “health”, meaning the player receives +1 attack point on
one cause, and +1 health point together with +1 maximum health point on the next,
and so on.

Game End

The game ends immediately if one of the players has collected five trophies or defeats the
boss in a boss fight. That player is the winner of the game.

4.2 Environment Architecture
For the game environment, we also implemented the game “Simala” in Python, following
the same approach as with the games described in previous Sections. Again, the game is
designed to be tested in the terminal so that we can check its functionality and later test
our RLA.

4.2.1 Game
This class holds all the methods that we explained in the game description such as
rolling the dice, tacking actions, and fighting against monsters. Additionally, all the
relevant information for the DQN is implemented, including the action space, the actual
observation state of the current situation, and the option to perform random legal actions
to encourage exploration. All relevant game data, such as the board state and character
sheets, are also stored and can be easily adapted in the future, should we need to make
modifications.

4.2.2 Observation State
As we learned, the observation state should only include information that the model
can use to learn and make decisions within the game. Elements that remain constant
throughout the game are not useful, as the model cannot learn from them. Therefore,
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we choose not to include the exact game board in the observation state, but rather the
players’ positions on the playing field. Again, all features are put into a list, so that the
RLA then can use and interpret the current state. The features for the game “Simala”
are:

• The positions of both players are represented using one-hot encoding. 24 integers
are used to represent each space on the game board. One set of 24 integers is
used for the figure controlled by the model, while another 24 integers represent the
position of the opponent’s figure on the game board. A value of 1 indicates the
position where a piece is located, while all other positions are marked with 0.

• All stats for both players are also stored in the observation state, by reserving 11
integers for every player for all stats represented in the table of Figure 4.1. The
inventory is also one-hot encoded, where each digit of the 4-digit list represents one
item.

• Lastly, we also put in the current dice like in the games of “Noch mal!” and “Noch
mal so gut!”.

We end up with a feature vector of size

48⏞⏟⏟⏞
player positions

+ 22⏞⏟⏟⏞
player stats

+ 6⏞⏟⏟⏞
dice

= 76.

4.2.3 Action Space
For the action space, it is straightforward to see that each option in Phase 2 (choosing a
die) combined with the action in Phase 3 (choosing an action) must correspond to one
action in the DQN. Therefore, there are seven actions that can be taken, whereas the
“Shop” action has to be split into five: buy a sword, a helmet, a shield, a bow, or choosing
to pass, which are all distinct actions. We also decide to include the “fight boss” action
in the action space, even though it is not optional. We considered the possibility that, in
future rule sets, it could become optional. This brings the total number of actions in the
action space to

5⏞⏟⏟⏞
number die

· 11⏞⏟⏟⏞
actions

+ 1⏞⏟⏟⏞
fight boss

= 56.

4.3 Agent Architecture
For the RLA, we use the same network structure as we used for the previous games, so
that the self-playing program learns based on rewards that are given by a win or a loss.
Because we took the same approach as in Section 3.3 we shall only list the differences
here:
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• Network: Naturally, we have to change the number of neurons for every hidden
layer. Since now the number of features is 76 and the action size is 56, we decide
to have fully connected layers with 60 neurons.
Another difference is that we now use a target network for stable training. This
target network, as explained in Section 2.3, is updated every hundredth game, i.e.,
after 100 games the weights of our main training network are copied and put into
the target network.

• Training loop: The training loop is the same as in Algorithm 3.1. For our reward,
we also took the last one we used for “Noch mal!” and “Noch mal so gut!”, i.e.,
+1 for winning and -1 for losing. In “Simala”, no tie is possible, because the first
player to fulfill any win condition wins. We also had no exceptions to take for the
reward, because no option could be generally considered as bad.
As mentioned, we have to add the target network update in the training loop which
can be seen in Algorithm 4.1.

Algorithm 4.1: Update Target Network
Require: Target Network T , Current Network Qn

1: if e mod 100 == 0 then
2: T ← Qn

3: end if

Similarly, for Algorithm 3.4, where the training of the network is carried out, we
also have to add the Target Network in line 9:

Algorithm 4.2: Train on Batch with Target Network
Require: Memory M, batch_size, discount_factor γ, Target Network T

1: if e mod 10 == 0 and len(M) > 1000 then
2: batch ←

Get batch_size random samples from memory; sample_obj = (st, at, rt, st+1)
3: create Q-values-table
4: for each sample_obj in batch do
5: if the game ended after this move (no next state available) then
6: Update Q-values-table with rt

7: else
8: Mask new state st+1 with legal actions
9: Update Q-values-table with rt + (γ · maxat+1∈Alegal

T (st+1, at+1))
{Adjustment: Target Network T used for next-state evaluation}

10: end if
11: end for
12: Train network with Q-values-table
13: end if
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• Hyper-parameter tuning: For the hyper-parameter tuning, we use the same
parameters as outlined in Section 3.3.3 for the main network. Most of these
parameters are kept fixed, and we only test the ones listed in Table 4.2. As shown,
we decided to test a lower number of hidden layers, as the game’s complexity does
not require a deep network for effective learning. The discount factors are set
relatively high, as foresight plays a crucial role in this game, helping the agent plan
and prepare for upcoming fights.

Hyper-parameter Values Tested
hidden_layers [3, 5, 8]
learning_rate [0.0001, 0.001, 0.01]
discount_factor [0.9, 0.95, 0.99]
Number of episodes tested 100,000

Table 4.2: The set of hyper-parameters tested in each iteration of the rule configuration
process in “Simala”.

We will use these parameters for each rule configuration. After each training phase,
we will determine the best model through a tournament, as described in the previous
chapter, and then play against it ourselves. Since we have already covered the
evaluation phase in detail, we will only discuss the strategies of each model here
and fully elaborate the evaluation process. Furthermore, for a game which is not
yet fully developed, there are no experienced testers who could recognize which way
of playing is good or bad. Therefore, we test the models against randomly playing
agents and ourselves to see if the trained models play randomly or follow a strategy.

4.4 Iterative Development Process
Now that we have set up the DQN and fixed the rules, we can dive deeper to balance the
game. The goal of this section is to go through an iterative process as follows:

• Let the RLA learn the game and determine the best one through a tournament.

• Let the best RLA play 1,000 games.

• Analyze the stats of the games, the strategy, and the behavior of the RLA.

• If the game does not meet our expectations, refine the rules based on the data.

This process aims to develop a well-balanced board game. For us, “balanced” means in
this case that no player has an advantage going first or second, that no single strategy
always wins, and that the actions taken are used about as often as intended. For example,
it would not be good if every second turn the player has to go to the well because they
have no health points or that you can win the game without buying items. Clear is also
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that the action “M1” will be used more often than “M2”, which is intended because level
2 monsters are supposed to be much stronger and thus should be more difficult to defeat.
This is why they also give slightly higher rewards in the game. Additionally, the action
to fight against the other player or the boss will be much less used, because these are
actions that can only be taken in specific situations. For the first iteration, we do not
expect everything to be perfectly balanced yet. It is likely that some actions will be used
way more frequently because they are simply better than others. We also expect that we
will have to adjust the stats of the monsters and possibly even rework actions completely
because they are not yet fully thought through.
In the following sections, we will go through the analysis of every rule set and point out
the weaknesses that should be improved in the next iteration. We also will show only
the play styles of the best RLAs in each iteration, but we note that all the top agents
have a similar strategy as the best one.

4.4.1 First Iteration
In the first iteration, we train our models based on the rule set described in Section 4.1.1.
We then run a tournament between all models using the hyper-parameters from Table
4.2 and find that the best-performing model for these rules has three hidden layers, a
learning rate of 0.001, and a discount factor of 0.95. While testing, we also realized that
the game relies too heavily on luck and players often do not have enough meaningful
choices, so that they often only have one single option to begin with. This occurs in
situations where a double or the “boss” symbol is rolled, as only one number is available
in Phase 2. Despite this, we start with the analysis of the game style and the game stats
by looking at 1,000 self-played games.
The first thing we wanted to check was whether the starting player has an advantage
and wins more often. According to our data, the starting player won 540 out of 1,000
games, which suggests that the game is fairly balanced in this regard, but should not
deviate any further.
Looking at the win conditions, we notice that in only 26 of the games the player won
by defeating the boss, i.e., the game was nearly always won by getting five trophies.
This result deviates from our initial expectations and suggests an imbalance in the
game’s mechanics. Our analysis shows that there is a huge difference between the player
values and the boss’s attributes. While the players end the game with an average of 7.3
health points and 3.75 attack points, the boss has 10 health points, 6 attack points, and
additional equipment such as a shield and a bow.
We also observed that players purchase only one item per game on average, despite the
possibility of carrying up to four. This suggests that either the incentives for purchasing
items are insufficient or that the cost-benefit ratio discourages players from making
additional purchases.
Finally, we create a heatmap of the positions of the players during the game. In Figure
4.2 we can see very quickly that the players are mainly on their starting fields. These
outliers occur because every time they lose a battle, they are placed back on their starting
square.
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Figure 4.2: A heatmap of the players’ positions across 1,000 self-play games of the first
iteration by our RLA.

As we look at the actions distribution of our RLA in Figure 4.3, we also notice that one
reason for that is that fighting against a monster is the most used action. That means
our agent often tries to fight against a level 1 monster and if it loses it gets reset to its
starting position. Another aspect we will aim to improve in future iterations is achieving
a better balance between the number of fights against level 1 and level 2 monsters. Now,
the “M1” action is more than nine times more used than the “M2” action and over the
whole game only 0.17 fights against monster level 2 are won on average. This indicates
that the strength of the monsters is very imbalanced and the incentive to get more
rewards for stronger monsters is far too small.

In the graphic, we also see that the “mine” action in comparison to the “train” action is
much less used, which could be the reason why not so many items were bought. Therefore,
we decide to balance these options slightly.

Based on all of these insights and errors of the game, we come up with a few rule changes,
which are listed below:

• A player will no longer be reset to the starting field if they lose a battle, so that
the players have more possibilities to explore the map in one game.

• As there were too few options for the players, we decided that if a double is rolled,
the player may also choose the adjacent fields. In concrete terms, this means that
if a player rolls a double of 2, they can also choose between the numbers 1 and 3,
and in the case of a double of 5 or 1, they can also choose the number 1 and 4 or 2
and 5, respectively.
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Figure 4.3: Action preferences of our RLA across 1,000 self-play games of the first
iteration.

• To improve mining, we decide that a player now gets one gold every time they mine,
but they still have to roll a die. If this shows 3 or less, the player loses one health
point. This damage should also make using the well more attractive.

• For the training mechanism, we apply the same approach. Each time a player
trains, they have to roll a die. Specifically, if the die roll results in a value of 3 or
lower, the player loses one health point.

• Finally, we improve the level 1 monsters so that they are less likely to be defeated
without any character improvement. Now they have health points between 6 and
8 and attack points of 2 or 3. We also increased the reward for level 2 monsters
so that a player now receives two trophies for defeating them. This should give
players more incentive to choose this option more often. We also lowered the attack
points of the boss to 5 to make this win option easier.

4.4.2 Second Iteration
In the second iteration, we now edit the game class with our new rule settings and let
the models train on the game. Again, after 100,000 episodes we play a tournament, in
which this time the configuration with eight hidden layers, a learning rate of 0.001 and a
discount factor of 0.9 came out on top. This time, there were sometimes more options
available, because of the double rule, which makes the game more strategic.
From the analysis, we observe that 63 out of the 1,000 self-playing games resulted in a
victory by defeating the boss. While this represents a notable improvement, the boss is
still too strong to defeat, which influences the game strongly. This is especially evident
in the early turns, where a player often wastes two turns – one due to defeat and another
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for recovery. Also 532 of the games were won by the starting player, which indicates a
slight improve of balance. The total items that are bought increased to 2.5, which is a
good indicator that the new “mining” rule worked, so that it is now beneficial to buy
more items. It is very likely that the stronger level 1 monsters also led to this reaction.
By looking at the heatmap of the positions in Figure 4.4, we can also see that the players
now can explore the map more. Some of these fields are used more often, which is also
confirmed by the actions distribution in Figure 4.5.

Figure 4.4: A heatmap of the players positions’ across 1,000 self-play games of the second
iteration by our RLA.

Again, we can see that the difference between fighting against a level 1 monster and a
level 2 monster is far too big and “M1” is used too often by our RLA. That means that
the rule change of the first iteration was too weak to convince the player to use “M2”,
which we should improve in the next iteration. The figure also shows that mining is now
used much more frequently, while the use of training has decreased a bit. This shift is a
direct response to the new rules we introduced.
We also realize that the new rule to give the player more options by rolling a double is
too weak, because the problem of rolling a "boss" symbol still stands, which still leaves
the player with just a single die to choose. One supporting indicator is the use of the
“shop pass” action, which is never beneficial, but has to be taken sometimes with these
rule configurations.

One observation is that the “well” action becomes a bit less appealing in comparison
to mining and training. This shift in preference may be attributed to the fact that
regenerating after death provides similar benefits to using the well for regeneration.
Consequently, players may feel incentivized to take greater risks, as death may not be as
detrimental. If a player’s risky strategy fails, they will receive a “free” regeneration in
the following round, as with a well, resulting in making the well less critical in certain
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Figure 4.5: Action preferences of our RLA across 1,000 self-play games of the second
iteration.

scenarios.
Interesting to see is also that the average turns a game takes rose from 42.5 in the first
iteration to 50.3 in the second, which also has to be a result of buffing the level 1 monsters.
Our analysis also shows that losing a fight against the boss has a strong impact on the
outcome of the game, as the losing player tends to have more boss losses on average than
the winner. As already mentioned, it is almost impossible to defeat the boss in the first
few rounds, so we have decided to change this.
Another thing that we notice is that the maximal health points are far too low to win
against level 2 monster or the boss, because on average the players again end up with
7.1 maximal health points, which becomes difficult compared to possibly 9 or 10 health
points on the opponent’s side.

Based on all these insights we again change the rules in the following:

• To weaken the level 2 monsters and the boss further, we decrease the attack points
to 3 or 4 and 4 respectively. We also decide to reduce their inventory so that the
level 2 monsters have no items and the boss only has a bow.

• To improve the “well” action, we decide to decrease the regeneration after a death.
From now on, players will only regenerate three quarters of their maximum health
points (rounded up) if they died last round. This means that the well is the only
way to heal completely.

• To bring even more options into the game, the double rule of the last iteration is
also extended to “boss” symbols. This means that if a player rolls a number and a
“boss” symbol, they can also choose the adjacent fields of the number die this turn.
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• To counter the problem with less health points, we buff the helmet by one health
point.

• Lastly, we also restrict access to the boss for in the first 20 turns. This means that
if a player rolls two “boss” symbols, they are not attacked by the boss, but instead
are required to re-roll the dice until a different outcome is achieved. This should
reduce the problem of early boss fights.

4.4.3 Third Iteration
In the third iteration, we again train our models and identify the best one, which features
are five hidden layers, a learning rate of 0.001, and a discount factor of 0.95. Again, we
get closer to the 50% win ratio, having 510 wins for the starting player, which is a good
signal for a game developer. This time, only 54 games end by defeating the boss, which is
due to the fact that much less boss attacks happen, because of the “20-turns-restriction”
rule, which we set up after the last iteration. Auspiciously, the maximum health points
on average increase to 8.1, which is a clear response to the helmet buff.
If we now examine the action distribution in Figure 4.6, it is clear that all our rules have
had a significant impact. With more action choices, due to the extension of the “double”
rule to include boss dice, we observe a decrease in the frequency of the “shop pass” action.
Additionally, the well has become more important due to poorer regeneration after death,
and training has become less attractive because of the higher rewards for defeating level
2 monsters, which are now being utilized. However, the most notable achievement is
the balance between level 1 and level 2 monster fights, which are now in a much better
ratio. Since level 1 monsters are easier to defeat, our intention is for the number of level
1 monster fights to exceed that of level 2 monster fights.
After this iteration, we decided to conclude the game, as continuing further would risk
extending indefinitely, which goes beyond the scope of this thesis. Of course one could
argue that the numbers of fighting against the other player or fighting against the boss
should be higher, but we think that these are just actions supposed to add fun, but
do not have to be used more frequently in our game. At the end of the day, these
iterations should be an illustrative representation of how RL can be integrated into the
development process as an assistance, showcasing the effective approach taken in this
work to demonstrate its potential.

4.4.4 More Rules
There are several rule and design changes for further development, a few of which we
would like to mention here but cannot analyze further in this thesis:

• One idea is to give the boss a fixed number of health points, which decrease each
time the boss is hit by a player, but are not reset after the fight. This means that,
in every subsequent fight, the boss could lose health points, and the player who
delivers the final blow wins.
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Figure 4.6: Action preferences of our RLA across 1,000 self-play games of the third
iteration.

• Another idea is to introduce more items in the shop, each with significantly more
effects and impact on the game.

• Additionally, one could consider a 3- or 4-player game, where player interaction is
increased due to more fields being occupied by others, forcing players to engage in
fights.

• Finally, one could consider changing the map entirely, so that players are not
restricted to a fixed path but instead have the freedom to explore a larger, more
open map on their own.
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CHAPTER 5
Conclusion

This thesis explored the use of RL as a tool for analyzing and optimizing board game
mechanics, particularly in the games “Noch mal!”, “Noch mal so gut!”, and the newly
developed game “Simala”. By implementing and training RLAs, we investigated their
ability to identify strategic patterns, evaluate rule changes, and provide insights into
game balance and mechanics.

Our results show that RL can be used as a powerful support for game development. In the
games “Noch mal!” and the extension “Noch mal so gut!”, we first showed that we could
develop a good RLA, by competing successfully against human players, achieving a win
rate of approximately 50%. This indicates that the agents were capable of understanding
and executing effective strategies, making them suitable for evaluating the game’s design.
We then used this for further analysis to find strategy differences between the base game
and its extension. By studying the frequency of certain agent decisions, we provided
insights into the relative strengths and weaknesses of different game elements, helping to
determine whether the introduced rule modifications were justified from a game balance
perspective.

Furthermore, our work on “Simala” showcased the potential of RL as a game design
tool. Since “Simala” is still in development, the data from our RLAs provided an
efficient method for refining the game’s rules without relying exclusively on traditional,
iterative human playtesting. By allowing the agent to explore various strategies under
different rule conditions, we were able to assess the impact of rule changes on win rates
and strategic diversity. This iterative approach ensured that “Simala” did not have
a dominant strategy by mainly using one of the predetermined actions, and also tried
to ensure that the vision of the game was actually realized in the game. The ability
to rapidly test different rule sets through RL simulations highlights a major advantage:
reducing subjective bias and speeding up the playtesting process.
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Despite these promising results, our research has also uncovered important challenges
in using RL for game development. One of the main concerns is to ensure that the
RLAs are strong enough to provide meaningful insights. If an agent is unable to discover
good strategies, the data it generates may lead to incorrect conclusions about game
balance, potentially resulting in unnecessary or even harmful rule changes. This problem
underlines the importance of appropriate training techniques, where the reward function
can be crucial, but also do not emphasize certain strategies in order not to interfere
too much with the open learning process. In our experiments, we tried to use objective
rewards that interfere as little as possible with the style of play so as to not dictate a
particular strategy. This approach guarantees that the RLA does not approximate a
human strategy and can thus explore the game itself. However, it might also mean that
good results are never achieved, as the RLA never becomes as good as humans.

Another challenge is the interpretability of RL-based decisions. Even if an agent favors
certain moves or strategies, it is not always easy to understand why it makes these
decisions. This lack of transparency can make it difficult for game developers to learn
from the play style of AI, as small rule changes could shift the entire strategy. Future
work could explore methods to improve explainability in RL-based game analysis, such
as visualization tools or hybrid AI-human playtesting approaches.

For further research, this work contributes to the development of board games using AI.
One possible direction is to extend the use of RL to a wider range of board games with
varying complexity and mechanics. While our study focused on dice-based games with
discrete decisions, RL could be applied to more complex strategic games that involve
hidden information, multiplayer interactions, or more advanced game states.

Furthermore, the games analyzed in this work can also be used for research purposes, for
example to investigate the effects of the proposed rule changes. Above all, however, it
is important to understand how these changes are perceived by human players. After
all, these efforts only make sense if they ultimately lead to games that are not only
balanced, but most importantly fun for the players. In this context, further research into
what makes a game truly engaging for people would be very valuable, as our work has
often raised the question of whether a game with equally strong strategic options is also
engaging for its players.

Additionally, future research could investigate how RL can be integrated with evolutionary
algorithms or other AI techniques to develop entirely new board game concepts. Instead
of just optimizing existing games, AI could be used as a creative partner in the game
development process to propose new mechanisms and evaluate their playability, as was
done with “Match 3” [SKJK20].

Another promising way is to combine RL with human feedback mechanisms. By having
human testers guide or refine the training process, AI agents could develop strategies
that better match human preferences, resulting in an engaging and entertaining gam-
ing experience. This hybrid approach could bridge the gap between purely AI-driven
optimization and traditional human playtesting.
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Overview of Generative AI Tools
Used

Generative AI tools were only used as assistance in the thesis. ChatGPT helped to
increase the expressiveness and readability without changing my own arguments and for
proofreading. DeepL was employed for translating individual words or phrases. ChatGPT
supported debugging tasks and reduced the effort for simpler tasks by providing code
snippets. Additionally, GitHub Copilot was used to assist with coding, helping to
streamline development. The outputs generated by these tools were treated carefully and
only served as starting points or checks for my own formulations and code. The ideas
and arguments of this thesis were not generated by any AI Tool.
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Appendix

Model hidden layers learning rate discount factor Wins
0 5 0.0001 0.5 3798
1 5 0.0001 0.6 3633
2 5 0.0001 0.7 3513
3 5 0.0001 0.8 3823
4 5 0.0001 0.9 3423
5 5 0.0001 0.95 3076
6 5 0.001 0.5 3762
7 5 0.001 0.6 3447
8 5 0.001 0.7 3511
9 5 0.001 0.8 3549

10 5 0.001 0.9 3370
11 5 0.001 0.95 2796
12 8 0.0001 0.5 3907
13 8 0.0001 0.6 3608
14 8 0.0001 0.7 3628
15 8 0.0001 0.8 3767
16 8 0.0001 0.9 3459
17 8 0.0001 0.95 3078
18 8 0.001 0.5 3560
19 8 0.001 0.6 3497
20 8 0.001 0.7 3748
21 8 0.001 0.8 3437
22 8 0.001 0.9 3340
23 8 0.001 0.95 2749
24 10 0.0001 0.5 3817
25 10 0.0001 0.6 3721
26 10 0.0001 0.7 3611
27 10 0.0001 0.8 3854
28 10 0.0001 0.9 3383
29 10 0.0001 0.95 3150
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30 10 0.001 0.5 3885
31 10 0.001 0.6 3938
32 10 0.001 0.7 3395
33 10 0.001 0.8 3311
34 10 0.001 0.9 3391
35 10 0.001 0.95 2163

Table A.1: The results of the first training round of the game “Noch mal!” after 50,000
episodes. In the table, the best 6 models are highlighted in bold.

Model hl lr df bomb_hl bomb_lr row_hl row_lr Wins
0 10 0.0001 0.5 3 0.0001 3 0.0001 4435
1 10 0.0001 0.5 3 0.0001 3 0.001 4531
2 10 0.0001 0.5 3 0.0001 5 0.0001 4214
3 10 0.0001 0.5 3 0.0001 5 0.001 4272
4 10 0.0001 0.5 3 0.001 3 0.0001 4566
5 10 0.0001 0.5 3 0.001 3 0.001 4588
6 10 0.0001 0.5 3 0.001 5 0.0001 5015
7 10 0.0001 0.5 3 0.001 5 0.001 4366
8 10 0.0001 0.5 5 0.0001 3 0.0001 4885
9 10 0.0001 0.5 5 0.0001 3 0.001 5141

10 10 0.0001 0.5 5 0.0001 5 0.0001 4420
11 10 0.0001 0.5 5 0.0001 5 0.001 4908
12 10 0.0001 0.5 5 0.001 3 0.0001 4422
13 10 0.0001 0.5 5 0.001 3 0.001 4563
14 10 0.0001 0.5 5 0.001 5 0.0001 4679
15 10 0.0001 0.5 5 0.001 5 0.001 4943
16 10 0.0001 0.6 3 0.0001 3 0.0001 4671
17 10 0.0001 0.6 3 0.0001 3 0.001 4933
18 10 0.0001 0.6 3 0.0001 5 0.0001 4734
19 10 0.0001 0.6 3 0.0001 5 0.001 4727
20 10 0.0001 0.6 3 0.001 3 0.0001 4628
21 10 0.0001 0.6 3 0.001 3 0.001 4865
22 10 0.0001 0.6 3 0.001 5 0.0001 4118
23 10 0.0001 0.6 3 0.001 5 0.001 4624
24 10 0.0001 0.6 5 0.0001 3 0.0001 4888
25 10 0.0001 0.6 5 0.0001 3 0.001 5227
26 10 0.0001 0.6 5 0.0001 5 0.0001 4515
27 10 0.0001 0.6 5 0.0001 5 0.001 4466
28 10 0.0001 0.6 5 0.001 3 0.0001 4831
29 10 0.0001 0.6 5 0.001 3 0.001 4664
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30 10 0.0001 0.6 5 0.001 5 0.0001 4982
31 10 0.0001 0.6 5 0.001 5 0.001 4514
32 10 0.0001 0.7 3 0.0001 3 0.0001 4638
33 10 0.0001 0.7 3 0.0001 3 0.001 4230
34 10 0.0001 0.7 3 0.0001 5 0.0001 4625
35 10 0.0001 0.7 3 0.0001 5 0.001 4766
36 10 0.0001 0.7 3 0.001 3 0.0001 4613
37 10 0.0001 0.7 3 0.001 3 0.001 4249
38 10 0.0001 0.7 3 0.001 5 0.0001 5054
39 10 0.0001 0.7 3 0.001 5 0.001 4834
40 10 0.0001 0.7 5 0.0001 3 0.0001 4526
41 10 0.0001 0.7 5 0.0001 3 0.001 4684
42 10 0.0001 0.7 5 0.0001 5 0.0001 4674
43 10 0.0001 0.7 5 0.0001 5 0.001 4705
44 10 0.0001 0.7 5 0.001 3 0.0001 4534
45 10 0.0001 0.7 5 0.001 3 0.001 5289
46 10 0.0001 0.7 5 0.001 5 0.0001 4523
47 10 0.0001 0.7 5 0.001 5 0.001 4880

Table A.2: The results of the first training round of the game “Noch mal so gut!” after
150,000 episodes. In the table, the best 6 models are highlighted in bold.

87


	Kurzfassung
	Abstract
	Contents
	Introduction
	Goal and Research Questions
	Challenges and Contributions
	Structure of the Thesis

	Preliminaries
	What is Reinforcement Learning?
	Markov Decision Processes and Bellman Equation
	Q-Networks and Deep Q-Networks
	Applications of Reinforcement Learning and Related Work

	Noch mal!/Noch mal so gut!
	Game Concepts
	Environment Architecture
	Agent Architecture
	Evaluation
	Findings and Rule Changing Options

	Simala
	Game Concept
	Environment Architecture
	Agent Architecture
	Iterative Development Process

	Conclusion
	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography
	Appendix

