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Kurzfassung

Das Ziel jedes numerischen Verfahrens fiir partielle Differentialgleichungen ist die Berechnung
einer Naherungslosung mit einer vorgeschriebenen Genauigkeit bei minimaler Rechenzeit.
Zu diesem Zweck umfasst die adaptive Finite-Elemente-Methode (AFEM) neben einer
schitzerbasierten lokalen Netzverfeinerung einen inexakten Loser mit einem ausgekliigelten
Abbruchkriterium, um die verschiedenen Fehlerkomponenten auszugleichen.

Zur a posteriori Fehlerschiatzung des Diskretisierungsfehlers setzt die state-of-the-art
Analysis fiir AFEM mit inexaktem Ldoser auf den Residualschétzer. Dieser erfiillt die soge-
nannten axioms of adaptivity aus |Carstensen, Feischl, Page, Praetorius: Comput. Math.
Appl. 67, 2014|. Das Ziel dieser Arbeit ist es, die aktuelle Analysis von |Bringmann, Feischl,
Miragi, Praetorius, Streitberger: Comput. Math. Appl. 180, 2025| auf adaptive Algorithmen
mit inexaktem Loser zu erweitern, die durch nicht-residualbasierte Fehlerschétzer gesteuert
werden. Dies wird durch die Tatsache motiviert, dass es viele andere Fehlerschéitzer mit wiin-
schenswerten praktischen und numerischen Eigenschaften gibt. Basierend auf einer Idee von
[Kreuzer, Siebert: Numer. Math. 117, 2011|, die AFEM fiir nicht-residualbasierte Schétzer,
aber mit exaktem Loser analysieren, werden in dieser Arbeit Fehlerschéitzer betrachtet, die
zwar nicht die axioms of adaptivity erfiillen, aber in einem gewissen Sinne lokal dquivalent
zum Residualschéatzer sind.

Im abstrakten Rahmen der axioms of adaptivity betrachten wir allgemeine lineare ellipti-
sche PDEs zweiter Ordnung. Das Hauptresultat ist der Beweis der parameter-unabhéngigen
vollen R-linearen Konvergenz von AFEM mit inexaktem Loser, die durch einen lokal dquiva-
lenten Schéatzer gesteuert wird, d.h. Kontraktion eines geeigneten Quasi-Fehlers in jedem
Schritt des Algorithmus unabhéngig von den vom Benutzer gewéhlten Parametern. Dies
verifiziert die unbedingte Konvergenz des adaptiven Algorithmus und erlaubt es, in einem
weiteren Schritt die optimale Komplexitét des adaptiven Algorithmus zu zeigen, d.h. optimale
Konvergenzraten beziiglich der kumulierten Rechenzeit. Zudem zeigt die Arbeit, dass der
Z7-Schéatzer von [Zienkiewicz, Zhu: Int. J. Numer. Methods Eng. 24, 1987] und Schétzer
basierend auf Fluss-Equilibrierung (siehe z.B. [Ern, Vohralik: STAM J. Numer. Anal. 53,
2015| und die dort zitierten Arbeiten) lokal dquivalent zum Residualschétzer sind, wodurch
die optimale Komplexitat fiir AFEM, die durch die diese Schétzer gesteuert wird, bewiesen
wird. Die Arbeit schliefst mit numerischen Experimenten, die die theoretischen Resultate
bestétigen und eine praktische Anwendung anderer Fehlerschitzer in AFEM aufzeigen.
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Abstract

The ultimate goal of any numerical scheme for partial differential equations (PDEs) is to
compute an approximation of user-prescribed accuracy at minimal computational cost. To
this end, the adaptive finite element method (AFEM) employs an estimator-steered local
mesh-refinement strategy and an inexact solver with a cleverly designed stopping criterion
to balance the different error components.

The state-of-the-art analysis for AFEM with inexact solver hinges on the standard residual-
based estimator for a posteriori error estimation of the discretization error. This estimator
satisfies the so-called azioms of adaptivity from |[Carstensen, Feischl, Page, Praetorius:
Comput. Math. Appl. 67, 2014|. The goal of this thesis is to extend the current analysis
from [Bringmann, Feischl, Miragi, Praetorius, Streitberger: Comput. Math. Appl. 180, 2025]
to adaptive algorithms with inexact solver steered by non-residual error estimators. This is
motivated by the fact that there are many other error estimators with desirable practical
and numerical properties. Based on an idea of [Kreuzer, Siebert: Numer. Math. 117,
2011], that considers AFEM for non-residual-based estimators yet exact solver, we consider
estimators that do not satisfy the axioms of adaptivity directly, but are locally equivalent to
the residual-based estimator in a certain sense.

In the abstract framework of the axioms of adaptivity, we consider general second-order
linear elliptic PDEs in this thesis. Our main contribution is proving parameter-robust full
R-linear convergence of AFEM with inexact solver steered by a locally equivalent estimator,
i.e., contraction of a suitable quasi-error in every step of the algorithm independently of the
user-chosen parameters. This proves unconditional convergence of the adaptive algorithm and
allows to show optimal complexity, i.e., optimal convergence rates with respect to the total
computational time. Moreover, the thesis shows that the ZZ-estimator from [Zienkiewicz,
Zhu: Int. J. Numer. Methods Eng. 24, 1987] and the equilibrated flux estimator (see, e.g.,
[Ern, Vohralik: STAM J. Numer. Anal. 53, 2015] and the references therein) are locally
equivalent to the residual-based estimator, thus proving optimal complexity for AFEM
steered by these estimators. The thesis closes with numerical experiments that support the
theoretical results and demonstrate the practical application of other error estimators in

AFEM.
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1 Introduction

Partial differential equations (PDEs) are used to model complex real-world phenomena
across various scientific disciplines such as physics, engineering, finance, and biology. Since
most PDEs do not have closed-form solutions, a variety of numerical methods has been
developed yielding computable approximations instead. One such numerical method is the
finite element method (FEM), which approximates the solution of a PDE by discretizing
the function space to which the solution belongs. First, the domain is meshed into a finite
set Ty of elements. For second-order elliptic PDEs with solution in H'(), the approximate
solution is usually computed as a Tp-piecewise polynomial function defined on each element
while ensuring inter-element continuity. The accuracy of this approximation depends on the
quality of the mesh and the order of the polynomial degree chosen for the discretization,
with finer meshes and higher-order polynomials generally producing more accurate solutions.

However, many PDEs exhibit singularities or sharp gradients that locally require very
fine meshes to be resolved accurately. In such cases, using uniformly fine meshes is compu-
tationally expensive and often unnecessary. The adaptive finite element method (AFEM)
is a technique that aims to reduce the computational cost of numerically solving PDEs by
adaptively refining the mesh only in regions where the solution has low accuracy. Given
an initial mesh and polynomial degree, the standard AFEM algorithm can be described by
modules SOLVE, ESTIMATE, MARK, and REFINE, illustrated in Figure 1.

SOLVE ESTIMATE MARK REFINE

Figure 1: Schematic for standard AFEM.

The SOLVE module computes the FEM solution for the given mesh and polynomial degree.
This is then used by the ESTIMATE module to compute a posteriori error estimates used as
refinement indicators for each element of the mesh. The MARK module then marks elements
for refinement, where the estimated error is large. Finally, the REFINE module produces a
finer mesh by refining (at least) the marked elements. The loop is repeated until a stopping
criterion is met, which in real-world applications is usually determined by the available
computational resources or a user-prescribed mandatory accuracy.

Over the past three decades, the convergence theory of AFEM has matured significantly.
The groundwork was laid by [Dor96], who proved plain convergence of AFEM, i.e., con-
vergence of the a posteriori error estimator, for the 2D Poisson problem under certain
assumptions, most notably on the MARK module. The marking strategy introduced by
[Dor96] is known as Dérfler marking and used by most AFEM algorithms. In the subsequent
years, plain convergence of AFEM was shown for more general problems under weaker
assumptions; see, e.g., [MNS00; MSV08|. The notion of optimal convergence rates for AFEM
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1 Introduction

was first put into a rigorous mathematical framework by [BDDO04|, but the proof therein
required an additional coarsening step that was later proven unnecessary by [Ste07]. In both
works, optimal convergence rates for AFEM with respect to the number of degrees of freedom,
i.e., the dimension of the discrete finite element space, were shown for the 2D Poisson
problem under considerably strong constraints on the refinement strategy. This result was
generalized by [CKNS08| to general second-order symmetric linear elliptic PDEs in arbitrary
dimensions and standard refinement by newest vertex bisection. The extension to general
(nonsymmetric) linear elliptic PDEs was achieved in [CN12] for a sufficiently fine initial
mesh and in [FFP14] without any further assumptions. Later, [CFPP14] introduced an
axiomatic approach to the convergence theory of AFEM, which provides a unified framework
for proving optimal convergence rates with respect to the number of degrees of freedom for
a wide range of PDEs and adaptive algorithms.

However, due to the incremental nature of AFEM, optimal converge rates should rather
be considered with respect to the overall computational cost (and, in practice, overall
computational time) than the number of degrees of freedom. Beyond the 1D case, optimality
in this sense, usually referred to as optimal complexity, can only be achieved for AFEM with
inexact solvers: Instead of solving the FEM problem exactly in the SOLVE module, such
algorithms employ an iterative solver and a cleverly designed stopping criterion in order to
balance the solver error, resulting from the iterative solver, against the discretization error,
resulting from a locally too coarse mesh and under-resolved singularity. In simple terms, this
enables the algorithm to save computational time in the SOLVE module to not unnecessarily
iterate the solver if the discretization error dominates. Since this requires an alternating
computation of solver-steps and error estimates, the SOLVE and ESTIMATE modules should
be considered as a single module SOLVE & ESTIMATE, as illustrated in Figure 2.

SOLVE & ESTIMATE MARK REFINE

Figure 2: Schematic for AFEM with inexact solver.

Optimal complexity of AFEM with inexact solver was already shown for certain model
problems in [Ste07; CG12| under the assumption that the iterative solution of the solver is
sufficiently close to the (unavailable) exact solution. This algorithmic restriction was removed
in [GHPS21], who also showed that full R-linear convergence, i.e., contraction of a suitable
quasi-error in every step of the algorithm, is the key to proving optimal complexity. Recently,
[BEM ' 25] proposed a novel proof of full R-linear convergence that, unlike [GHPS21], does not
rely on the Pythagorean identity and thus extends to nonsymmetric problems by employing
the generalized quasi-orthogonality from [Fei22].

The state-of-the-art analysis of [GHPS21; BFM ' 25] requires that the error estimator
steering the adaptive algorithm satisfies the so-called azioms of adaptivity from [CFPP14].
While the standard residual-based error estimator fits into this framework, there are many
other error estimators with desirable practical and numerical properties that do not satisfy
the axioms of adaptivity. Examples include recovery-based estimators, often referred to as
ZZ-estimators (see, e.g., |2787]), or estimators based on flux equilibration (see, e.g., [EV15]
and the references therein).
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1 Introduction

The paper [[KS11| proposed the idea to consider estimators that satisfy certain local
equivalence properties with respect to the residual-based estimator. Under the restriction
that the Galerkin solution is computed exactly (and hence excluding inexact solvers), they
showed that AFEM steered by such estimators can achieve optimal convergence rates (with
respect to the number of degrees of freedom), but their analysis is only concerned with the
Poisson problem. Later, [CFPP14] extended this result to the axiomatic framework, which
allows for a wider range of problems and a broader notion of local equivalence. However,
optimal complexity of AFEM with inexact solver steered by non-residual-based estimators
remained an open question.

The goal of this thesis is to address this question by extending the state-of-the-art analysis
of [BFM " 25] to AFEM with inexact solvers steered by non-residual-based error estimators.
Asin [KS11; CFPP14], the considered error estimators do not satisfy the axioms of adaptivity
(in particular, the reduction aziom (A2)), but are in a some sense locally equivalent to
the residual-based estimator. The main contribution of this thesis is the proof of full
R-linear convergence independently of the user-chosen adaptivity parameters, thus showing
unconditional convergence of the adaptive algorithm. This then allows to show optimal
complexity of AFEM steered by such locally equivalent estimators with respect to the total
computational time. As potential application, the thesis shows that, for general second-order
linear elliptic PDEs in the setting of the Lax-Milgram lemma, the ZZ-estimator and the
equilibrated flux estimator fit into the framework, thus proving optimal complexity for
AFEM steered by the these estimators.

The thesis is structured as follows: In Chapter 2, we present the AFEM algorithm with
iterative contractive solver and the underlying mathematical assumptions. In particular, we
show how to derive a contractive solver for nonsymmetric problems from contractive solvers
for symmetric problems by means of the Zarantonello iteration [Zar60[; see Section 2.4.2.
Moreover, we introduce two notions of local equivalence: one where the considered estimator
is equivalent to the residual-based estimator for all discrete functions, and a weaker one where
the estimator is only equivalent for the exact Galerkin solution; see Section 2.3. In Chapter 3,
we show that AFEM steered by an equivalent estimator guarantees a perturbed version
of the so-called estimator reduction from |[CKNS08, Corollary 3.4] for a modified residual-
based estimator that uses the generalized mesh-size function from [CEFPP14, Proposition
8.6]. This is the key to proving unconditional full R-linear convergence (Theorem 3.11 and
Theorem 3.14). In Chapter 4, we employ the full R-linear convergence to show optimal
complexity of the adaptive algorithm steered by an equivalent estimator (Theorem 4.3)
provided that, as usual in this context, the adaptivity parameters are sufficiently small.
Afterwards, we discuss the ZZ-estimator and the equilibrated flux estimator in Chapter 5,
where we show that these estimators are locally equivalent to the residual-based estimator.
This allows us to conclude optimal complexity for AFEM steered by these estimators
(Corollary 5.7 and Corollary 5.19). Finally, in Chapter 6, we present numerical experiments
that support the analysis of the preceding chapters.
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2 Adaptive FEM with contractive solver

The algorithm presented in this chapter follows the general structure of the adaptive loop
shown in Figure 2. We begin by introducing the abstract model problem in Section 2.1.
Following this, we discuss our assumptions on the submodules REFINE, ESTIMATE, SOLVE and
MARK in that specific order, which results from their interdependencies. Finally, we formulate
the algorithm itself in Section 2.6.

2.1 Abstract model problem

Throughout this chapter, X is a real Hilbert space with norm ||- || x and scalar product (-, ) x.
Let a : X x X — R be a bounded and elliptic bilinear form, i.e., there exist constants
Cell, Cong > 0 such that

a(u,u) > Cop |lullxy  and  a(u,v) < Cppa ||lul|x ||v||x  for all u,v € X. (2.1)
The symmetric part of a(-,-) defined by

a(u,v) + a(v,u)

b(u,v) = 5

for all u,v € X (2.2)

is a symmetric, bounded, and elliptic bilinear form on X. In particular, b(-,-) is a scalar
product on X and the induced norm b(-,-)*/? is an equivalent norm on X. Since a(u,u) =
b(u,u) for all u € X, this norm is indeed the energy norm ||| - || == a(-,-)'/2. For a bounded
linear functional F': X — R, we seek the solution u* € X to the variational problem

a(u*,v) = F(v) forallveX. (2.3)

The existence and uniqueness of the solution u* to (2.3) is guaranteed by the Lax-Milgram
theorem [Eva98, Section 6.2.1].

Assume that Q is a bounded polyhedral Lipschitz domain in R? with d > 1, i.e.,  is open
and connected and, for d > 2, the boundary 952 of 2 is locally the graph of a piecewise affine
and Lipschitz continuous function. Given a symmetric diffusion tensor A € [L> (Q)}gyxn‘f, a
convection coefficient b € [L>(0)]?, a reaction coefficient ¢ € L>(0), and data f € [L2(2)]¢
and f € L?(2), a possible application would be the nonsymmetric second-order linear elliptic

PDE
—div(AVu*) +b- Vu* + cu* = f — div(f) in Q CR? subject to u* =0 on 9Q. (2.4)

We use the notation for Sobolev spaces from [Eva98, Chapter 5| and write (-, -)p2(q) for the
usual L?(Q)-scalar product. Multiplying (2.4) with a test-function v € H{ (), integrating
over €2, and performing integration by parts, we obtain (2.3) with space X = H}(Q),
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2 Adaptive FEM with contractive solver

bilinear form a(u,v) == (AVu, V) 12q)+(b- Vu+cu,v) 2(q), and right-hand side functional
F(v) = (f,v)r2(0) + (f, VV)2(q). We suppose that A, b and ¢ guarantee that a(-,-) is
bounded and elliptic on H}(2) in order to fit into the setting of (2.3). This is for instance
satisfied if divb € L>(Q) and —1 divb + ¢ > 0 almost everywhere in Q.

The Lax-Milgram theorem also applies to any closed subspace Xy C X and guarantees
the existence and uniqueness of u}; € X' solving

a(ufp,vg) = F(vg) for all vy € Xp. (2.5)

The so-called Galerkin method considers the problem in (2.5) restricted to finite-dimensional
subspaces Xy C X. In this case, the unique solution u}; € Xy to (2.5) is called Galerkin
solution. The subtraction of (2.5) from (2.3) results in the Galerkin orthogonality

a(u* —uy,vyg) =0 forall vy € Xy. (2.6)

If a(-,-) is additionally symmetric and thus a scalar product on H}(2), the Galerkin
orthogonality (2.6) implies the Pythagorean identity

llw* = omlll® = llu* = upll* + llugy — vell* for all vy € X (2.7)

The following proposition from |[Fei22] provides a generalization of the Pythagorean iden-
tity (2.7) that also applies to nonsymmetric problems.

Proposition 2.1 (quasi-orthogonality). Under the assumptions (2.1), there exist con-
stants Copgn, > 0 and 0 < § < 1 such that the following property holds for any sequence
(Xp)een, of nested finite-dimensional subspaces Xy C Xy 1 C X = HE(Q):

=

(QO) quasi-orthogonality: The corresponding Galerkin solutions uj € Xy to (2.5)
satisfy

+N

D gy = wpl? < Coran(N + D)l —wjl|I* for all £, N € No.
=

Here, Coin, and 0 depend only on the dimension d, the elliptic bilinear form a(-,-), and the
chosen norm ||| - |||, but are independent of the spaces Xy and F € X'. O

Finally, we want to mention the following well-known result, which states that the Galerkin
error ||u* — wy ||| is quasi-optimal, i.e., it behaves like the best approximation error up to a
multiplicative constant.

Lemma 2.2 (Céa). With the constants Cey1, Cphng > 0 from (2.1) and Ccea = Chna/Cen, it
holds
" — il < Coen min [t — vall. (25)
v EXY

i.e., the Galerkin error is quasi-optimal. ]

The proof of the Céa lemma can be found in any introductory finite-element textbook,
e.g., [EG21b, Lemma 26.13|.
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2 Adaptive FEM with contractive solver

2.2 Refinement

Before we can discuss the refinement step, we need to introduce the notion of simplices and
triangulations.

Definition 2.3 (simplex). Let d > 2. For 1 < k < d, asubset T C R is called a (compact)

k-dimensional simplez if there exist vertices zp, ...z, € R? such that T = conv{zo, ..., 2k},
i.e., T is the convex hull of z, ..., zx. Its set of vertices is denoted by V(T') := {z0,. .., 2k}
The k-dimensional simplex is non-degenerate if {z1 — 29, ..., 2z — 20} is linearly independent

and hence the k-dimensional measure is positive. We say that T C R? is a (compact)
simplex, if T is a d-dimensional simplex. A k’-dimensional simplex 7" is a subsimplex of a
k-dimensional simplex T, if V(T") C V(T'). The 1-dimensional subsimplices of a simplex T
are called edges, whereas the (d — 1)-dimensional subsimplices of T are called faces. We
denote the set of faces of 7" with £(T').

Definition 2.4 (conforming triangulation). Let @ C R? be a bounded polyhedral
Lipschitz domain. A finite set Ty is a conforming (simplicial) triangulation of Q if and only
if

e every T € Ty is a non-degenerate simplex,
e the closure of Q is covered by Ty, i.e., Q = UTETH T,

e and the intersection of all pairwise different simplices T',7" € Ty is either empty or a
joint k-dimensional subsimplex of T and 7" with 1 < k < d — 1.

We denote the set of vertices of Ty by Vi == {V(T) : T € Ty} and the set of faces by
En = {&(T) : T € Tu}. Moreover, we write £ for the faces which lie inside €, i.e., for
E € £, there exist T,T' € Ty with E=TNT' € &y.

Definition 2.5 (uniform shape regularity). Let T C R? be a simplex. The shape
regularity constant o(7T') involves the diameter

diam(T") = max{|z —y| : z,y € T}
and reads diam(T)
iam

Since the volume of T is clearly smaller than the volume of the d-dimensional cube with
side length diam(T'), we have |T| < diam(T)?, which implies o(7T) > 1. We say that a
triangulation Ty is o-shape regular if

o(Tu) = max o(T) <o < 0. (2.9)

Given a triangulation Ty and a set My C Ty of marked elements, the fixed refinement
strategy refine(,-) generates a new triangulation 7} := refine(7y, M) such that

e at least all marked elements My C Tp are refined, i.e., there holds My C Ty, \ Tx,
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e and each refined element T' € Ty \ T is the union of its children, i.e., there holds
T=UHT€T,:T CT}.

We write T, € T(Tpg) if T, can be obtained from Tz by finitely many applications of refine.
Let 7y be a conforming initial triangulation of Q and define T := T(7j) as the set of all
meshes that can be generated from the initial mesh Ty by use of refine. We suppose
that refine preserves conformity in the sense of Definition 2.4 and ensures uniform shape
regularity, i.e., there exists a constant o > 1 depending only on the initial triangulation 7y
such that (2.9) holds for all 77 € T. Finally, we assume that refine satisfies the following
properties, which are sufficient to prove optimality (cf. [CFPP14]).

(R1) child estimate: There exists a constant Cepjg > 1, such that for all 7 € T and
all ) # My C Ty it holds

T = refine(Ty, My) = #Tu < #Th < Cenita #7T1-

(R2) overlay estimate: For all meshes Ty, 7, € T, there exists a coarsest common
refinement T @& Ty, € T(Tw) N'T(Ty,) such that

#(Tu ® Tn) < #Ta + #Tn — #7To.

(R3) closure estimate: There exists a constant Cjosure > 1 depending only on 7 and

refine such that for any sequence (77)een, of successive refinements of 7o, i.e.,
Te+1 = refine(7;, My) for all £ € Ny with appropriate My C Ty, it holds

-1

#72 - #76 < Cclosure Z #M]

Jj=0

We suppose that, for any Ty € T and any set of marked elements M C Ty, the computation
of T, = refine(Ty, Mp) can be accomplished at linear cost O(#7Tg) (cf. [BDD04; Ste07]).
In particular, the child estimate (R1) guarantees that this is possible. For instance, the
refinement strategy newest vertex bisection (NVB) satisfies (R1)—(R3) (cf. [AFF " 15] for
d =1, |[KPP13] for d = 2, and [DGS25| for d > 2). In the following, we illustrate the
procedure in the two-dimensional case.

Example 2.6 (newest vertex bisection). In the 2D NVB algorithm, the refinement of a
triangulation 7y € T is generated by repeated bisection of its triangles T" € Ty. A triangle is
bisected by introducing a new edge between the midpoint of the so-called refinement edge
and its opposite vertex. For the initial conforming triangulation 7y, each triangle T' € 7 is
assigned a refinement edge. After each bisection, the edges opposite of the newly created
vertex become the refinement edges of the resulting children triangles, explaining the name
of the algorithm. For a triangulation 7, with marked elements M, C 7T, the refinement
process proceeds as follows.

Algorithm A (2D newest vertex bisection).
Input: Triangulation Ty and set of marked elements My C Ty.
(i) For all T € My, mark its refinement edge.
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(ii) Repeat recursively
If a triangle T € Ty has a marked edge that is not the refinement edge, also mark the
refinement edge of T.
until
No triangle T' € Ty with marked edges has an unmarked refinement edge.
(iii) For all T € Ty, refine according to the pattern from Figure 3.
Output: Refined triangulation Ty 1.

N N N N
PAANY NP APEON

Figure 3: Visualization of the refinement pattern of 2D newest vertex bisection
in 2D. Marked edges are indicated by red dots and refinement edges by red lines.
The upper triangles display the configuration prior to refinement, while the lower
triangles show the corresponding refined elements.

The application of NVB as refinement routine ensures that all resulting triangulations
are conforming and uniformly shape-regular. The algorithm can also be formulated for the
general case in R? with d > 2, but it becomes more complicated. For more details, we refer
to [Ste08; KPP13; DGS25; Mau95; Tra97; Mit91; Sew72].

With every triangulation 7z, we associate a finite-dimensional subspace X C X. We
require nestedness of the discrete spaces Xpr:

(N) nestedness of discrete spaces: Nestedness of meshes 7, € T(7y) implies nested-
ness X C A&} of the corresponding discrete spaces.

For the PDE problem (2.4), a common choice for Xy would be the space of globally
continuous and piecewise polynomials of total degree p € N, i.e.,

SP(Tw) = {vg € HY(Q) : vg|r is a polynomial of degree < p for all T € Ty}, (2.10)

In particular, the choice Xy := S§(T) guarantees the nestedness (N) of Xz. Moreover,
this ensures that the discrete spaces A associated to any sequence (7y)sen, of successive
refinements of 7y satisfy the assumptions of quasi-orthogonality (QO).

Remark 2.7 (discrete objects). The mesh-level index H historically refers to meshes
with a uniform mesh-size H € R. In this thesis, however, it denotes all discrete objects,
including those related to highly adapted meshes with non-uniform mesh-sizes. In that
case, the mesh-size is a function of the triangulation Ty denoted by H, i.e., the size of an
element T' € Ty is given by H(T'). Related discrete objects share the same index, e.g., vy is
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a discrete function in the space X'y corresponding to the triangulation Tz. Many estimates,
especially those used in the later convergence analysis, should not depend on the mesh-level
H, which is why we introduce the following notation: For two expressions A and B, we
write A < B if there holds A < C' B for a constant C' > 0 that is independent of H. In case
that both A < B and B < A hold, we write A ~ B.

2.3 Error estimators

For every mesh Ty € T, suppose that we can compute refinement indicators
pg(T,vg) forall T € Ty and all vy € Xp. (2.11)

For each T' € Ty, the indicator pg(T,uj;) should, at least heuristically, measure the
discretization error ||u* — uj ||| locally on the element 7. To abbreviate the notation, we
define

U, vp)? = Z pa(T,vg)? for any Uy C Ta (2.12)

TeUy

and set pg(vy) = pu(Te,ve) as well as py = pg(uj;). We suppose that, for all Ty € T,
all T € Ty, and all vy € Xy, the refinement indicators pg (7T, vg) can be computed in
constant time O(1), i.e., the computation of pg(vy) has linear complexity O(#7m). A
possible choice is the so-called residual-based error estimator.

Example 2.8 (residual-based error estimator). In addition to the assumptions in

Section 2.1, suppose that A|p € [Wl’oo(T)]dXd and f|p € [HY(T)]? for all T € Ty. For all
T € T and all T' € Ty, we define the corresponding mesh-size function H : Tg — Rsg
by H(T) = |T|"/¢. Furthermore, for neighboring simplices T, T’ € T with joint face
E=TnT € 51{21 and corresponding normal vectors ny|p and ny|g, we define the normal
jump of vy € X across the face E by

[Vug -n]|g = (Vou|r)|e - nrle + (Voa|r)|e - nr|E. (2.13)

Then, for all triangulations 7 € T, all T € Ty, and all vy € Xy, the refinement indicators

nu(T,vg)? = H(T)? || = div(AVuy — f) +b- Vo + cog — fll72)
+H(T) |[(AVor = f) - 1]l 20r00)

=T — div(AVog — f) + b Vug + cog — FlZ2er)
+ |71V |[[(AVvr = ) - 2] 72 0r00)

(2.14)

are well-defined, since vy € C°(T) for all T € Ty. The error estimator 7y is known as
residual-based error estimator. The term

| = div(AVug — f) +b-Vog + cor — fllf2qy = | Ra(va)ll7zq (2.15)

is the so-called local volume residual, since it measures the residual associated with prob-
lem (2.4) on an element 7' € T. The term ||[(AVvy — f) - n]]H%Q(aTmQ) = HJH(”H)||2L2(T)



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2 Adaptive FEM with contractive solver

is usually referred to as jump term or consistency error and arises from piecewise integration
by parts of the residual in the weak formulation (2.3). The residual-based error estimator
can also be formulated with other mesh-size functions. For example, a potentially more
natural choice than the mesh-size function H(7T") from above would be H(T') := diam(7).
Correspondingly, we define 7 as the error estimator that is obtained by replacing |T|1/ ¢ by
diam(7T) in (2.14), i.e., for all triangulations Ty € T, all T € Ty, and all vy € Xy, it holds

(T, vg)? = diam(T)? || — div(AVvg—f) + b- Vog + cog — f||%2(T)

2.16
+ diam(7) |[(AVvg — f) 'n]]H%?(aTnQ)- 210

For more details on residual-based estimators, we refer to [AO00; Ver94).

The residual-based error estimator ny has many useful properties. Most importantly, it
satisfies the so-called azioms of adaptivity from [CFPP14, Section 3], allowing for optimal
rates of an adaptive algorithm steered by 7. There exist constants Cgian, Crel > 1 and
0 < @req < 1 such that the following properties hold for any triangulation 77 € T and any
refinement 7;, € T(7y) with corresponding Galerkin solutions u}; € Xy and uj € &), to
(2.5), any subset Uy C Ty N Ty of non-refined elements, and for arbitrary vy € Xy and
v € Xy

(A1) stability: Ing (Ui, vir) — (Ui, vn)| < Cstab |||vn — val|ls
(A2) reduction: 9,(Th \ T, ve) < Gred N (TH \ ThyVH),
(A3) reliability: |||u* — w} ||| < Crel nu(u}).

Furthermore, there exist constants Cgqrel, Cref = 1 such that the following property holds for
any triangulation 7y € T and any refinement 7, € T(7g):

(A3T) discrete reliability: There exists a subset Ry, C Ty with Ty \ 7, € Ry, and
#Run < Cret #(Tr \ Tn) such that |[|uj — wiy||| < Cavet g (REn, wiy)-

Finally, there holds quasi-monotonicity of the error estimator n in the sense that there
exists a constant Chyon > 0 such that the following property is satisfied for any triangulation
T € T and any refinement 7;, € T(Tx):

(QM) quasi-monotonicity: n,(u}) < Cmon nH (u};)-

Remark 2.9 (quasi-monotonicity). In the present setting, quasi-monotonicity (QM) is
already implied in two ways: either by stability (A1), reduction (A2), and discrete reliabil-
ity (A37) (cf. [CFPP14, Lemma 3.5]) or by stability (A1), reduction (A2), reliability (A3),
and the Cea lemma (2.8) (cf. [CFPP14, Lemma 3.6]). In particular, the two approaches lead
to the bound

Cron < min { (2 + 2Cs2tab0§rel) 1/2a (2 + 4Cs2tabcr2el(1 + C%éa))lﬂ}‘

The following remark discusses some implications of the stability axiom (A1) which are
frequently used in this thesis.

10
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Remark 2.10 (implications of stability (A1)). For v, := vy € X, stability (A1) yields
U, ve) = na(Un,vr)  for all Uy C Tu 0Ty, (2.17)

i.e., on any subset Uy of non-refined elements, the error estimators 77H and 7y, are identical
for any coarse-mesh function vy € Xp. Conversely, setting T, := Ty =: Uy implies

[ner(v) — na(ve)| < Cstap ||vn — vell]  for all vy, vy € Xp. (2.18)

Furthermore, we assume that the error estimator py; is in some sense locally equivalent
to the residual-based error estimator ng. We consider two types of estimator equivalence,
detailed in Definition 2.13 below. For that, we need to introduce the notion of m-patches.

Definition 2.11 (m-patches). For any subset Uy C Ty of a triangulation Tz, we define
the patch of Uy by

Tl ) =T [Un ) ={T € Ty : 3T € Uy, TNT" # 0}.
Let m € N with m > 2. The m-patch of Uy is defined inductively by
T U )= Tu [ T4V [Un ]].

To simplify notation, we define TI(JO)[L{H] = Uy and Q?)[UH] = UT[SW)[UH] C Q.
Furthermore, we write ngm)[T] and an)[T] in case of Uy = {T}. Figure 4 shows the
m-patch of an element for m = 1 and m = 2, while Figure 5 illustrates the m-patch of a
subset of Ty for m =1 and m = 2.

”gflfs?x'eta
'é"vu“w'
‘ VAV

4

Figure 4: Illustration of m-patches Tlgm)[T] of T'€ Ty for m € {1,2}.

Remark 2.12 (cardinality of m-patches). Uniform shape regularity implies that for
each Ty € T, the solid angle formed by d faces sharing a common vertex z is uniformly
bounded away from 0 by a constant depending only on the shape-regularity constant o > 0
and the dimension d € N (cf. [EG21a, Remark 11.5]). As a consequence, the number of
elements sharing a vertex z is uniformly bounded. This in turn implies that also the number

11
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Figure 5: Illustration of m-patches Tlgm)[UH] of Uy = {Th,T>} C Ty for
m € {1,2}.

of elements per patch Tg[T'] is bounded by a constant Cpaten > 1 depending only on the
shape-regularity constant ¢ and the dimension d, i.e., there holds that

#Tu[T]| < Cpaten for all Ty € T and all T € Ty (2.19)
The inductive definition of m-patches Tlt(lm)[T] leads to

ATI[T] < Oy forallm €N, all Ty € T, and all T € Ty, (2.20)

i.e., the number of elements in m-patches is also uniformly bounded. Since for all T, 7" € Ty
it holds T' € T(m) [T] if and only if T" € T(m)[ ] the number of m-patches each element
TeTy belongb to is also bounded by C[; ., 1

#{T' €Ty :Te€ TH [T’]} < Chaten forallm eN, all Ty € T, and all T € Ty. (2.21)

Definition 2.13 (locally equivalent estimators). A pair of error estimators py and ngy
is locally equivalent (in the strong sense) if there exists a constant Cj,. > 1 and a patch level
m € Ny such that for all triangulations Ty € T, all simplices T' € Ty, and all vy € X, it
holds

(T, vn) < Cioe par (T [T, vrr), (2.22a)
(T, vm) < Cioe i (TS [T, 0m). (2.22b)

We also consider a weaker local equivalence, where (2.22) holds only for the Galerkin
solution uj; to (2.5): A pair of error estimators py and ng is locally equivalent in the
weak sense if there exists a constant Cjo. > 1 and a patch level m € Ny such that for all
triangulations Tz € T and all simplices T € Ty, it holds

(T, wfy) < Croc pa (T[T, 0fy),s (2.23a)
(T, uy) < Cuo nar (THIT ). (2.23b)
12
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Example 2.14. Recall the mesh-size functions from Example 2.8. By uniform shape
regularity of 7z € T, it holds H(T) < H(T) < ¢ H(T) for all T € Ty. This shows that
the estimators ny from (2.14) and 7y from (2.16) are locally equivalent in the strong sense
(2.22) with m = 0 and Cjoc = 0.

Remark 2.15 (non element-based estimators). Many popular error estimators are
not defined element-wise such as in (2.11), but rather using an index set Zp depending on
the triangulation Tz. Let oi be such an error estimator, i.e., for all indices I € Z and all
vy € Xp, suppose that we can compute refinement indicators g (I, vg). In particular, the
choice Zyy = Ty results in an element-based estimator as in (2.11). Other common index
sets include the set of all vertices Zy == Vg, the set of all edges 7y :== £y, or any union
of the aforementioned sets. In order to define equivalence between pp and g, there must
exist some “translation” between the index set Zy and the triangulation 77. With pow(-)
denoting the power set, let ¢ : Ty — pow(Zy) and 7 : Zyy — pow(Ty) be such translation
functions, i.e., it holds

(T)CZy and 7(1) STy forallT € Ty and I € Ij.
To abbreviate notation, we write

(Uy) = U u(T) and 7(Jg) = U 7(I) for all Uy C Ty and Jy C Zy.
TeUy IeJu

Suppose that « and 7 satisfy the following properties:

e locality: There exists a constant s € Ny such that for all Tz € T with corresponding
index set Zg, it holds

7(W(T)) CTR(T] forall T € Th. (2.24)
e boundedness: There exists a constant Ci,gex such that

#uU(T) < Cipdex for all T € Tp. (2.25)

We say that op is locally equivalent to ny (in the strong sense) if there exists a constant
Cioc > 1 and a patch-level m € Ny such that for all triangulations 7z € T with corresponding
index set Zp, all simplices T' € Ty, all indices I € Zy, and all vy € Xy, it holds

na(T,ve) < Cloc 0H (L(T,L(Im)[T]),vH), (2.26a)
o (I,vir) < Choe nar (TS [7(I) ), v11). (2.26D)

In that case, we can prove that the error estimator py defined by

pi(T,vg)? = or(u(T),vy)* = Z or(I,vg)?* forall T € Ty (2.27)
Ieu(T)

13



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2 Adaptive FEM with contractive solver

is strongly equivalent to the error estimator ny in the sense of (2.22), as the following
calculations show: For all T' € Ty and all vy € X, it holds

T w2 (2?3)02 T 2
UH( aUH) = IOCQH(L( H [ ])7UH)

= 0120c Z QH(LUH)2
TelTM(T))
(2.25)

< CheCindex >, Y ou(l,on)

ey [T 1€UT)
= CP Cindex hnt (T[T 1ovm)?
CIQOC Cindex MH(TI_(Im+S) [T], UH)Q,

IN

Conversely, for all T' € Ty and all vy € Xz we have

(2.26b) "
pa(Toon) < C2e Y (T [r(1)],om)?
Ieu(T)

C2e S nu(TYV17((T)) ], vm)?

(225) ) )
< Cie Cindex na (T [7(u(1)) ], var)
(2.24) -

< Cite Cindex 77H(T}(I T, )2

Hence, g is locally equivalent to ng in the strong sense of (2.22) with constant Cie.c C’ilngex
and patch-level m + s. Analogously to (2.23), we define local equivalence of gy and ny in
the weak sense by restricting vy to uj; in (2.26), i.e., there exists a constant Cioe > 1 and a
patch-level m € Ny such that for all triangulations 7z € T with corresponding index set Zg,

all simplices T' € Ty, and all indices I € Ty, it holds

(T, w5y) < Croc o (T 1T, wfy), (2.28a)
o (I,wfy) < Choe it (TE™ (1) ], uly). (2.28D)

Replacing vy with u}; in the above calculations, we can show that weak local equivalence
of oy and ny in the sense of (2.28) implies weak local equivalence of ppy and ngy in
the sense of (2.23). Moreover, given that the refinement indicators pg(I,vy) can be
computed in constant time O(1), boundedness (2.25) guarantees that the computation of
wr (T, vir) also requires only constant time O(1), i.e., the computation of pp(vg) has linear
complexity O(#7Tr). Therefore, all subsequent results can be extended to index-based error
estimators gy via the error estimator py defined in (2.27).

An implication of the following lemma is that the local equivalences (2.22)—(2.23) imply
global equivalence of the estimators pg and ny.

14
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Lemma 2.16. Suppose local equivalence (2.22) of the estimators pg and ng. Then, there
exists a constant Ceq > 1 such that for all Ty € T, all Uy C T and all vy € Xg, it holds

i U, vir) < Coq uar(TE™ U ), vir) (2.292)
uirUp,vn) < Ceqnn (TS [Unt ], vn)- (2.29b)

Analogously, if pi and ng are weakly locally equivalent in the sense of (2.23), there exists a
constant Ceq > 1 such that for all Ty € T and all Uy € Tg it holds

i U ufr) < o ot (TH™ [Unt ], ufy) (2.30a)
i Un, ) < Coqnia (T3 [Un ), uy). (2.30b)

In particular, setting Uy = T yields the global equivalence of the estimators g and ng.

Proof. In (2.21), we have shown that each T" € Ty is contained in at most C}, ;, many
Cm/Q

m-patches of Tz. Hence, local equivalence (2.22) of py and ny with Ceq == Cloc patch

reveals, for all Ty € T, all Uy € Ty, and all vy € Xg,

222d)
w (U, vi)? Z (T, vm)? Cie Z Z pr(T' o)
TeUuy TeUy T’ETM)[T]
< CreClin > pu(Tovm)* = C2 (T (U ), vm)?,
TeT ™ [Un |

which verifies (2.29a). Switching the roles of g and ngy provides (2.29b). Analogously,
setting vy = u}; establishes (2.30), which concludes the proof. O

Remark 2.17 (inheritance of axioms). From (2.29)-(2.30), it immediately follows that
the locally equivalent estimator py satisfies reliability (A3) with constant Cye := Crel Ceq-
Moreover, for any triangulation 7z € T and any refinement 7, € T(7p), it holds

2.29
(A3t Ez 503 (m)
|||u;; - U?I||| < Cdrel UH(RHhau}({) < Cdrel Ceq:uH(T [RHh] )

Due to (2.20), the set Rz, = T [Ran] 2 Tir \ Th fulfills #Rpp, < Oy, Cret #(Tir \ Th).

Hence, the estimator 1y also satisfies discrete reliability (A3T) with Rin C Ty and constants
Carel = Carel Ceq > 1 and Cref == Cg;tChCref > 1. In general, however, pg does not inherit
stability (A1) and reduction (A2) from the residual-based estimator 7.

If pp is locally equivalent to ny in the strong sense (2.22), a combination of global

estimator equivalence (2.29) and stability (A1) validates for 6stab = max{C’eq, Ceq Cstab }
all subsets Uy C Ty, and all vy, wy € Xy that
(2.29b) (m)
HUn,ve) < Ceqnu(Ty  [Un |, ve)
(A1) (m)
< Ceq (mu(Ty™ [Un |, wi) + Cstab lve — wr|)
omo_ (2.31)

< q,UH(T(Z [uH]awH) + Ceq Cstab |||UH - ’LUH|||

< Csan [NH(TH m)[UH]ﬂUH) + lve — wHW]

15
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For pg = ng, inequality (2.31) is implied by stability (A1) with Cstab = Cstap- This gives
rise to the following weak stability axiom (W1): There exist constants Cgap > 1 and 7 € Ny
such that for any mesh Ty € T, any subset Uy C Ty, and arbitrary functions vy, wy € X,
there holds

(W1) weak stability: puy(Upy,vg) < Cutab H(TIL(IT)[L{H],wH) + [[Jvg — wH\H]

In particular, the calculation in (2.31) shows that weak stability (W1) is already implied by
strong estimator equivalence (2.22) and stability (A1) with Cutaby = maX{Ceq, Ceq Cstab }
and 7 := 2m. However, we suppose that weak stability (W1) is also satisfied in case of weak
equivalence (2.23).

Concrete examples of estimators puy that are locally equivalent to the residual-based
estimator ny are discussed in Chapter 5 below.

2.4 Contractive solver

Since the direct computation of the exact solution uj; of (2.5) is expensive in practice, one
resorts to iterative solvers. For all Ty € T, we write ¥y : Xy — Xg for the iteration
operator of such a solver. Hence, starting from an initial guess u?q € Xy, the discrete
function uk, = W H( ) denotes the new approximation of uj; constructed from the
previous approximation u® T —1 by one solver step of the algebraic solver. We suppose that
each solver step has linear complexity, i.e., the computation of ¥ H(u I ) requires O(#7Ty)
operations. An essential assumption for the later convergence analysis is uniform contraction
of the solver, i.e., there exists a constant 0 < g.t; < 1 independent of the mesh level H such
that

llwty = il < geu [llufy = ugr | for all k € N. (2.32)

Since the exact solution uj; is never computed explicitly but only approximated by u’fq,
controlling the algebraic solver error |||uy; — ub||| is crucial. Together with the (reverse)
triangle inequality, contraction (2.32) implies, for all k € N,

L — gt P
— gy —ufll < (1= gew) lufy — ul |H |||UH —ulfy M = g — uf
Getr (2.33)
k—
< |y — UH U< g — w4 g — UH |” (1 + Getr) [llufy — wl I

This means that [||uf, —u%||| acts as a computable quantity to measure the algebraic solver
error [[|uk; — uly||| from above and |||u%; — u¥ ||| from above and below. Using the triangle
inequality, the total error ||u* — u% || can thus be bounded by the sum of the discretization
error ||lu* — w% ||| and the algebraic solver error ||[u%; — u¥ || via

k k
™ = willl < Ml = willl + [llur — willl (2.34)

Therefore, the algorithm should control both error contributions simultaneously. However,
both terms are not available in practice. In Remark 2.17, we have observed that the locally
equivalent error estimator up satisfies reliability (A3). As a result, the discretization error
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2 Adaptive FEM with contractive solver

[||w* —w}; ||| is bounded by Chrel 1t u(u};). Moreover, the combination with weak stability (W1)
yields, for k > 1,

34)
llu* — iy < Il = il + Mg = ulll
(A3)

< Cra par(uy) + [llufy — vl

(W1) ~
< C'rel Cstab ,U'H(UH) (1 +Crel Cstab) H|UH _uHm

(2:33) ~ Getr 1
< C’rel Cstab ,UH(UH) (1 +Crel Cstab)l ||| - uH |||

k
< par(uly) + My — .

This means that the sum iz (u) + [|[u¥; — u¥7!] is a computable upper bound for the total
error H|u — uk ||| Since solver iterations only reduce the (estimated) algebraic solver error
[k, — uh7t|l, this motivates to stop the solver once the second summand [[[u¥, —uf | is
smaller than a fixed multiple A > 0 of the first summand ug (u]}{), ie.,

ey =l Il < X o (). (2.35)

This functions as the stopping criterion for the algebraic solver used in the adaptive algorithm
in Section 2.6. With k[H] we denote the minimal index k € N such that u¥, satisfies (2.35).
Whenever it is clear from the context, we will omit the dependency on the discretization

parameter H in this notation and write only k& = k[H| for the final solver index, e.g.,
u% = U%H}.

2.4.1 Symmetric elliptic PDEs

For the symmetric case, iterative linear solvers are well-understood. Examples include opti-
mally preconditioned CG methods [CNX12] or optimal geometric multigrid methods [WZ17;
IMPS24].

2.4.2 Nonsymmetric elliptic PDEs

In case that a(-,-) is nonsymmetric, we consider its symmetric part b(-,-) from (2.2) and the
so-called Zarantonello mapping introduced in the state-of-the-art proof of the Lax-Milgram
theorem by Zarantonello [Zar60]. For a triangulation Ty € T and § > 0, the Zarantonello
mapping ®g(0;-) : Xg — Xp is implicitly defined by

b( Py (d;um),ve) = blum,vi) + 5[F(UH) — a(uH,vH)] for all ugr, vy € Xgy.  (2.36)

Since b(+, -) is a scalar product, the Riesz representation theorem guarantees the existence
and uniqueness of @ (d;upy) € Xy satisfying (2.36), i.e., the mapping is well-defined. In
particular, the Galerkin solution uj; of (2.5) is the only ﬁxpomt of ®p(6;-) for any § > 0.
For a sufficiently small § > 0, the Zarantonello mapping ®x(J;-) is contractive, i.e., there
exists a constant 0 < gsym < 1 such that

llwgr — P (0;um)||l < gsym |||wf —uml| for all upy € Xg. (2.37)
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Solving for @ (d;up) in (2.36) leads to a symmetric problem, which means that ® g (0; uz)
can be approximated with the aforementioned linear solvers from Section 2.4.1. For any k € N,

let 7 denote the index of such a solver with iteration operator \Pgm(ul;[*, -) and contraction

constant 0 < gag < 1 approximating u];f = O (5; u];jl). Starting from ulfg’o = uH E X,

the discrete function u ‘Ilsym(u 2 ,ul;}] 1) denotes the new approximation of u® W con-

structed from the previous approximation u’;{ by one step of the solver for the symmetric
problem (2.36), i.e., it holds

k k .
g™ — H| < Qalg H|uH - uH’j Y| for all j € N. (2.38)

We stress that u® H is never computed explicitly and that W3 m(u 13 +) depends only on the

right-hand side of (2.36) and the scalar product b(-,-), while 0 < gag < 1 depends only
on b(-,-). With j denoting the final solver index, we define the iteration operator Wy of

k7 .
the algebraic solver for the nonsymmetric problem (2.5) via u¥, = Wy (u ];I D=u va ie.,

one step of the algebraic solver for the nonsymmetric problem (2.5) corresponds to j steps
of the solver for the symmetric problem (2.36). We aim to determine a lower bound jo for
the total number of solver iterations j needed to ensure that Wy is a uniformly contractive
linear solver approximating u;. This is the content of the following proposition.

Proposition 2.18 (solver contraction for nonsymmetric elliptic PDEs). Suppose
that the iteration operator \Ifsym(u’;{* -) of the solver for the symmetric problem (2.36) is
contractive, i.e., there exists a constant 0 < gz < 1 independent of the mesh level H and
the index k such that (2.38) holds. Suppose that total number of solver iterations j € N for

the symmetric problem (2.36) is sufficiently large in the sense that

log(iJFQSym)
. . Qsym
j>jo=|— 2.39
= l0g(qalg) (2.39)
Then, there exists a constant 0 < qetr < 1 such that
* k,j * k—1,5
lludr = upglll < gew lufr —wgy =l for all 1 <k < E[H], (2.40)

e., the proposed solver for the nonsymmetric problem (2.5) is contractive.

Proof. We follow the reasoning from |[BIM 24, Section 2|. The triangle inequality and the
contraction of Zarantonello mapping (2.37) show for all k£ € N that

k 1.4 k.j
U [. (2.41)

|+l

k,j
Mgy — gl < ety = il + e = sl < oyl —

Contraction (2.38) together with nested iteration u’EO = uz_l’l and j > 1 proves
k, k:, kil»l
ludy* — ly” — ity 21 (2.42)
Furthermore, the triangle inequality and contraction (2.37) yield
k, k 1’7 ’7 k7177
g™ — I < ety = g I+ ey — gy 20 < (g + 1) ey — gy 2 (2.43)
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Combining the last three estimates (2.41)—(2.43), we obtain

etz = Il < asym + @ (asym + D] ety = wyy

We observe that getr = Gsym + qil o (gsym + 1) < 1 is equivalent to

J QSym
e < .
qalg 1 + qsym

Hence, the choice of j € N in (2.39) guarantees contraction (2.40) of each solver iteration
k,j k—1,5

uH@ =Ty (u ’l) for all Ty € T and 1 < k < k[H]. This concludes the proof. O
Hence, we set the number of solver iterations j to the minimal index satisfying (2.39),

ie., j:=min{j € N:j > jo}. Since j is independent of the triangulation 7z € T and the

index k, and each solver step U37™ has linear cost O(#7s), the resulting solver for the

nonsymmetric problem has also linear complexity O(#7z) and thus fits into the framework

from above.

2.5 Marking

Given the local error indicators g (7, u%) of the final iterate u% on each element 7" € Ty,
the goal in the marking step is to determine a set My C Tx of marked elements that should
be refined in the consecutive refinement step. For this, we will employ the so-called Dérfler
marking criterion introduced in [D6r96]: Given a marking parameter 0 < 6 < 1, find a set
My C Ty such that

0 1o () < (M, ). (2.44)

This can be interpreted as choosing a set of elements My C Ty whose corresponding
estimated discretization error accounts for a f-fraction of the total estimated discretization
error. Smaller choices of 6 lead to fewer marked elements and thus highly adapted meshes.
On the contrary, the selection 6 = 1 essentially corresponds to uniform mesh refinement
since (generically) all elements are marked for refinement. In order to obtain optimal
convergence rates, it seems natural to select My with minimal cardinality. A naive
approach involves sorting the computed refinement indicators, which results in a suboptimal
log-linear complexity in terms of the number of elements # 7. However, [Ste07]| showed
that determining a set of elements

Mpyg € MHW,U%] = {Uy C Ty : QMH(U%)Q < MH(UH7U%)2} (2.45a)
with quasi-minimal cardinality

H#Mpg < Chark min #Ug where Cpax > 1, (2.45Db)
U €My [0,u%]

suffices to prove optimality. [Ste07| proposed an algorithm based on binning that achieves (2.45)
with Ciark = 2 in linear complexity O(#7x). [PP20] later improved on that by showing
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that a modified QuickSelect algorithm on average even allows for Cpax = 1 with linear
complexity.

Dérfler marking is sufficient for linear convergence (cf. [CKNS08]). However, the following
proposition even shows that it is essentially necessary to achieve linear convergence, which
is the central reason why the adaptive algorithm in Section 2.6 employs Doérfler marking.

Proposition 2.19 (optimality of Dorfler marking [CFPP14, Proposition 4.12]).
Suppose that the estimator ny satisfies stability (A1) and discrete reliability (A3"). Re-
call the set Ryp C Ty from discrete reliability (A3") satisfying Ty \ Tn € Run and

H#Run < Cret #(Tgr \ Tn). Let 0% = (1 + Cgrel Cs2tab)_1' Then, for all 0 < 0y < 0*, there

exists a constant 0 < gopy < 1 such that for all 0 < 0 < 0y, all triangulations Ty € T, and
all refinements Ty, € T(Tw) it holds

mn(up)? < qopt i (ufp)? = Onu(uf)® < np(Run, wi)?. O

The proposition above asserts that whenever the error estimator is contracted, the set
Run C Ty satisfies the Dorfler marking criterion (2.44). Since the set Ry, is essentially
the set of refined elements T \ Tj, this implies that, regardless of the marking strategy
used, the set of refined elements will always satisfy the Dorfler marking criterion (2.44) if
the marking strategy guarantees contraction of the estimator. Therefore, using any marking
strategy other than Dorfler would be pointless.

2.6 Formulation of the algorithm

With the preliminary discussion from Section 2.1-2.5 above, we can formulate the following
adaptive algorithm (cf. [GHPS21; BFM ' 25]), which is steered by the estimator jup.

Algorithm B (AFEM with contractive solver).
Input: Initial mesh Ty, marking parameters 0 < 8 < 1 and Cupark > 1, solver-stopping
parameter X > 0, and initial guess u8 € Xp.
For all £ =0,1,2,..., repeat (i)—(iii):
(i) Solve & Estimate: For allk = 1,2,3,..., repeat (a)—(b):
(a) Compute uff = \Ifg(ulzfl) using one step of the contractive solver Wy.
(b) Compute refinement indicators pe(T,uf) for all T € T.
until
Mok = =) < X ). (2.46)

Upon termination, define the index k[¢] = k and abbreviate u% = ufm.

(ii) Mark: Determine a set My € Mg[@,u%] that satisfies (2.45).
(iii) Refine: Generate Tyy1 = refine(T;, M) and use nested iteration uy, | = u%

We define
Q = {({,k) € N§ : u} is defined in Algorithm B}

as the countably infinite index set of all iterates generated by Algorithm B. We order the
indices sequentially by their appearance in the algorithm, i.e.,

(0,k) < (I',K) <= u} appears not later than uf, in Algorithm B,
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2 Adaptive FEM with contractive solver

or in explicit terms,
(k)< (LK) <= (<l or ({=/{ and k<K).

The latter definition is usually referred to as lexicographical ordering. Correspondingly, we
define the total step counter

-1
0 k| = #{(CK) € Q: (0 K) < (LK)} =k + > K[V
0'=0
and the stopping indices
¢:=sup{l € Ny : (£,0) € Q}, (2.47)
k[0] =sup{k e N: ({,k) € Q}. (2.48)

We note that this definition of k[¢] is consistent with the definition in Algorithm B.
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3 Parameter-robust full R-linear
convergence

Our objective in the following chapter is to show full R-linear convergence of Algorithm B
independently of the adaptivity parameters 8 and A. This property is the key to cost-
optimality as described in [GHPS21] and Chapter 4 below. While [BEM " 25] establishes
parameter-robust full R-linear convergence for the standard residual-based estimator that
fulfills the axioms of adaptivity (A1)—(A3), we aim to prove this for locally equivalent
estimators py that lack reduction (A2) and thus seemingly do not fit into this framework.

First, we prove a weaker version of the estimator reduction in the spirit of [BFM 25,
Equation (36)] for a modified residual-based estimator 77, that still applies if Algorithm B
is steered by the locally equivalent estimator py. For that, we suppose that 7, satisfies a
modified stability axiom (M1) and a modified reduction axiom (M2). In Section 3.2, we
define 7, through the appropriate mesh-size function from Proposition 3.8 and prove that
the estimator satisfies the modified axioms. Finally, we apply the estimator reduction from
Section 3.1 to prove parameter-robust full R-linear convergence for the locally equivalent
estimator uy in Section 3.3.

3.1 Estimator reduction

In general, Dorfler marking
k k
0 po(uy)? < pe( My, up)? (3.1)

for an estimator uy does not imply Dérfler marking
k k
0m0(ug)® < ne(Mp,ug)” (3.2)

for a locally equivalent estimator 7. However, for strong estimator equivalence (2.22), we
can prove (3.2) for a different marking parameter 6 and a suitable larger set of marked

elements E(m) [My].

Lemma 3.1 (equivalence of Dorfler-marking for strongly equivalent estimators).
Let 0 < 0 <1 and My C Ty be the marked set associated with the triangulation Ty € T
from Step (ii) in Algorithm B. Suppose that the error estimator g is strongly equivalent to
an estimator ny in the sense of (2.22). Then, it holds 0 < 0 = 0&149 < 1 and the Dorfler
marking criterion (3.1) for py implies the Dorfler marking criterion for ng in the sense that

0o (ub)? < (T [ M), uf)?. (3.3)
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Proof. Strong estimator equivalence (2.29) and Dérfler marking (3.1) provide

b 2299 by 3D , (2:290) . -
On(uf)? < " C20ug(uf)? < O peMeug)? < Ol (T M, ug)?.

Since Ceq > 1, a rearrangement of this concludes the proof. O

Dérfler marking is crucial to prove the estimator reduction for the inexact iterate u% from
[BEM 25, Equation (36)], which states that there exists a constant 0 < gy < 1 such that

e (g, 1) < o ne(uf) + Cuap g, — gl for all £ € N with (£ 4+ 1,k) € Q. (3.4)

In the proof, the reduction axiom (A2) is combined with the Dérfler marking criterion (3.2),
which is possible since all marked elements are refined. However, this is not feasible if only

(3.3) holds, because not all elements of ﬂ(m)[/\/lg] are refined in general, i.e., we cannot

guarantee that ﬁ(m)[./\/lg] C 7o\ Te41. As a remedy, we introduce a modified residual-based
estimator 7, which satisfies a modified stability axiom (M1) and a modified reduction
axiom (M2). This requires some additional notation.

Definition 3.2. For a refinement 7, € T(7y) and M € Ny, we define Qg/[h) as the union of
all refined elements plus M additional layers

Q) =T T\ T C

We write Tp,| QM) for the set of fine-mesh simplices T' € T, that are contained in Q%, ie.,
H,h )

Tl = {T € Tu: T €y}
Note that for the triangulation 7y, the set TH|Q(M) coincides with 'TH [T\ T ]. Moreover,
since Ty \ Ty [TH\E] C Tua N Ty, it holds
T\ 77L!Q<M> = Tu \ TH!Q(M> C Tu N Th.

Let Cgap > 0 and 0 < G,oq < 1 be constants such that the following propertles hold for
any triangulation Ty € T, any refinement T, € T(7Ty), any subset Uy C T\ T [TH\E ],
and arbitrary vy € Xy and v, € Ap:

(M1) patch stability: |7, Uz, vn) — g U, vi)| < Cseab |l|on — vl
(M2) patch reduction: 7, (7| o0, V) < Greq T (T | o000, Vi)
Qi n Qi n

Remark 3.3 (implications of patch stability (M1)). Patch stability (M1) yields
implications comparable to those of stability (A1) discussed in Remark 2.10. Similar to
(2.17), the choice vy, == vy provides

U, vir) =T Up, o) for all Uy © T \ T [T \ T ]
Analogously to (2.18), setting 7, := Ty implies

75 (vh) = N (ve)] < Cstap lllon = vall
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In Section 3.2 below, we show that the residual-based estimator 7 defined in (3.22)
satisfies the modified axioms (M1)-(M2) in addition to reliability (A3), discrete reliability
(A37), and quasi-monotonicity (QM). Contrary to 1y, the estimator 7 satisfies estimator
reduction (3.4) in case of strong local equivalence (2.22).

Lemma 3.4 (estimator reduction via strong local equivalence (2.22)). Let0 < 6 <1,
Chark = 1, A > 0, and ug € Ay in Algorithm B be arbitrary. Suppose that the error
estimator puy is equivalent to an estimator 7, in the sense of (2.22). With m € Ny from the
equivalence (2.22), suppose that 7, satisfies the azioms (M1)—(M2) with M := m. Recall
0= 0;140 from Lemma 5.1. Then, with the constant

0<q;= [1 - (1- (qred)“))ﬂ 2 <1, (3.5)

the estimator 1, satisfies
_ _ k Val k
Ne+1(Ves1) < qg To(uy) + Cstablllvers — gl for all € < £ and all vy 1 € Xpyy. (3.6)

In particular, if ((+1,k) € Q, setting vpy1 = ul%rl yields the estimator reduction (3.4).
Proof. Let ¢ < £ be arbitrary. Using patch stability (M1) and patch reduction (M2), we get

— k\2 — kv2 | — k\2
W+1(uz) = W+1(7Z+1 \ 7Z+1’Q§;Z>rl7ue) +W+1(72+1|Q%3r17u€)

(M1) _ k _ 3
="0¢(Te \ Tel om) Jup)® + N1 (Te1] gom) Juy)?
£,0+1 0+1

(M2)_ kv | -2 — ky2
< 77@(72\72|Q%3rla%) +qredn€(7z|ﬂ§7z)'_laué)

_ ok 2 N\ — k
= W(UZ)Q - (1 - q?ed) 774(7Z|Qgﬂ2rlauz)2-

Since My C Ty \ Ty+1, Lemma 3.1 implies for the marking parameter 0 < §§ 1

. (3.3) m Cm _
Om(u < AT Mo ) < TUT TN Town ) ) = (Tl gy )

By definition (3.5) of gz, the combination of this estimate with (3.7) yields

_ k — ik
Me1(uy) < gz Me(uy)- (3.8)
Together with patch stability (M1), we obtain for any vsy1 € Xpq1 that

- (1\11) _ L o k (38) _ k o k
Nep1(Ver1) < Moga(up) + Cstablllvers —ugll < g5 M0(wy) + Cstanlllver1 — ug]l]-

This concludes the proof. O

Contrary to [BEM 25|, we use a weaker estimator reduction than (3.4) in the full R-linear
convergence proof, which has two reasons: First, we employ a different (but equivalent)
quasi-error compared to [BEM 25|, detailed in Section 3.3 below. Second, it is not possible
to prove estimator reduction (3.6) in case of weak local equivalence (2.23). Instead, we will
use the following estimator reduction, which is an immediate consequence of Lemma 3.4.
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Corollary 3.5 (perturbed estimator reduction via strong local equivalence (2.22)).
Let 0 <0 <1, Chpark = 1, A > 0 and u8 € Xy in Algorithm B be arbitrary. With m € Ny
from the strong equivalence (2.22), suppose that 7, satisfies the azioms (M1)—~(M2) with
M = m. Then, with the constant 0 < q5 < 1 defined in (3.5) and C; = (1+ q5) Cstap > 1,
the estimator m, satisfies

_ _ ki A
Mer1(ui1) < g5 Te(ug) + Gy llluf — wylll + Cstanll[ufyr — will - for all £ < L. (3.9)

Proof. Let ¢ < { be arbitrary. Patch stability (M1), the triangle inequality and Lemma 3.4
applied to the function vey; = uj, , yield

_ _ / k Val k
Te1 (W) < dgMeug) + Cotapllluzey —ugl

_ ol k ral k
< g3 Me(u}) + q5 Cstablllug — uglll + Cstablllugiy — ugll
_ k ral
< g5 () + Cyllluf — uflll + Cotanllluiy — ufll.

This concludes the proof. O

In case that uy is locally equivalent to 7, in the weak sense (2.23), utilizing Dorfler
marking becomes problematic: Since the Dorfler marking criterion (2.45) involves only the
final iterate uf and weak local equivalence considers only the Galerkin solution uj, they
cannot be combined directly. However, using the weak stability (W1) that we suppose for
e in Section 2.3, we can prove Dérfler marking for i, up to a perturbation term.

Lemma 3.6 (Dorfler-like inequality for weakly equivalent estimators). Let 0 < 6 < 1.
For a triangulation Ty € T from Algorithm B, let My C Ty be the corresponding set of marked
elements. Suppose that the error estimator py is weakly locally equivalent to an estimator m, in
the sense of (2.23) with m € Ny and satisfies weak stability (W1) with r € No. Furthermore,
suppose that 7, satisfies the axioms (M1)—(M2) with M := m + r. Then, with the constants

[u—

0<8:= fec JO << and 0< Cper = Col + 020 CLL <2 (3.10)

[\

the Dérfler marking criterion (3.1) implies
= * — m+r *\ 2 * k
0 (uf)” < W™ [ Me], ) + Ol — > (3.11)

Moreover, if the estimator 7, additionally satisfies patch stability (M1) for any M € Ny, the
Dérfler marking criterion (3.1) also implies for Cper = Cstap(1 + 0Y2C, 2C 2) + Cper >0

07, (uf)? < (T [ My ), uf)? + Colllug — ul|?. (3.12)

Proof. Weak estimator equivalence (2.30), weak stability (W1) of uy, and Dorfler mark-
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ing (3.1) lead to

(2-30a)
0'2C IO (up) < 0" PC CL2, ne(uf)

(W1)
< OV2CICLY po(ul) + 0120l s — |

3.1)

< OOk me(Meyug) + 02 C ol g — ugl) (3.13)
(Vil) C—l 7‘(7’) M * C—l 01/20 C * k

< Ol T Mo up) + Ot + | ez = |
(2.30b)

< (T IM ] wf) + Cper g — ul-

Since )
i(a +b)?<a®+b* for any a,b >0, (3.14)

inequality (3.13) results in
G oayg G101 (m+7) « k2
Omy(wp)® < 5T, I Me] uf) + Cperlluf — wpll)

< BT ML uf)? + Ol — 2.

(3.15)

The fact Ceq, éstab > 1 guarantees 0 < 0 < % and 0 < Cper < 2. This concludes the proof
of (3.11). For the proof of (3.12), we combine patch stability (M1) with (3.13) to obtain
1/2 =275 (M) 1/2 =275 1/2,—2 * k
02 CorCL2 molup) < 0V2Cx O Me(up) + 02C 2 CL 2 Ctan Iy — ugl
(3.13) o
< AT M) ) + (012 C2C32 Cotan + Crer) llluf — u|

(M1) S _
< (T IM ], uE) + Cer [lJuf — ).

With an analogous calculation as in (3.15), we conclude the proof of (3.12). O

The following lemma shows that the Dérfler-like inequality (3.11) is sufficient to prove
the perturbed estimator reduction (3.9).

Lemma 3.7 (perturbed estimator reduction via weak local equivalence (2.23)).
Let 0 < 6 < 1, Copark > 1, X > 0 and u) € Xy in Algorithm B be arbitrary. Suppose
that the error estimator g is equivalent to an estimator 7, in the sense of (2.23) and
satisfies weak stability (W1). With m € Ny from the equivalence (2.23) and r € Ny
from weak stability (W1), suppose that 7, satisfies (M1)—(M2) with M = m + r. Recall
=1 50 Cq 4Cst:b and 0 < Cper < 2 from Lemma 5.6. Then, with the constants

1 .

7% <gqz:

the estimator 7, satisfies

i|1/2 <1l and 0< Cg = Cper( q?ed) 12 < 27

— 1= (1-2)?
_ _ k el
o1 (ui1) < g Me(ug) + Cglllug — wgll + Cstabllluzyy —will - for all <t (3.16)
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Proof. Let ¢ < { be arbitrary. Analogously to (3.7), patch stability (M1) and patch
reduction (M2) verify

M1 (uf)? = Mgt (Ten \ Texa| gonn s 07)? + Tegr (Teralgomen s uf)?
641 0,041
(1\_“)7 N2 | = *\2
= Te(Te\ Tel gm0, 47)" + et (Teal g 47)
(M2) 7 ’ (3.17)
< T (Te \ Telgyomtrr s ) + Troa T Tel mr s 107)
0,041 00t

= To(up)® = (1 = Goa) m(ﬁlgmpuﬁ-

The Dérfler-like inequality (3.11) and My C Ty \ Tp41 imply

S C 5 =) I o ) N -
0m,(up)® < 0T, [ Ml up)? + Coolllup — ufl

< TN T ) ud)? + Cepllosg — |2 (3.18)
Te

My
_ k
T Telggnss 8 + Clnlli = 11

The combination of the last two estimates results in
_ _ k
o1 (u})? < @g(up)? + CF [[luf — ug||>. (3.19)

1/2

Since (a2 + b2) < a+bfor all a,b > 0, inequality (3.19) yields

_ _ k
e (uf) < qg Me(uy) + Cg lllug — gl (3.20)
Together with patch stability (M1), we obtain

(M1) o
Toep1(upyy) < Togq(up) + Capaplllugyy — ugll

3200 . i _ N N
< g Me(uy) + Cé [[up — UZ\H + Cstab|”“£+1 —ug|ll-

This concludes the proof. O

3.2 Generalized mesh-size function

A central property in the proof of the reduction axiom (A2) for the residual-based esti-
mator g from Example 2.8 is that the mesh-size function H(T') contracts whenever an
element T' € Ty is refined, i.e., there exists a constant 0 < p < 1 such that for all trian-
gulations Ty € T, all refinements 7, € T(7Tg), all refined elements 7' € Ty \ Tp, and all
T € T, with T/ C T it holds H(T) < ph(T”). This is the reason why [CKNS08| introduced
the mesh-size function H(T') := |T|"/% over the (arguably) more natural mesh-size function
H(T) := diam(T): While the diameter of refined elements T € Ty \ T, does not necessarily
decrease, their volume |T'| is always halved with every bisection. Consequently, it holds
|T'| < |T'|/2 for all refined elements T' € T \ Tp, and all 77 € T, with T C T', which implies
H(T) < 27 Y4 h(1").
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In the previous section, however, we introduced the patch reduction axiom (M2) because
we did not only require the reduction property for refined elements Tz \ T, but also for
elements in the M-patch of refined elements T}(IM)[TH \ Tr]. Since the mesh-size function H
does not contract for all elements in TI({M)[TH \ 71|, the original proof cannot be applied
to the residual-based estimator ny directly. Instead, we switch to a mesh-size function
H : Ty — R which contracts for an element 7' € Ty if at least one element in its M-patch
T;Im)[T] is refined. A mesh-size function with this property is constructed in [CFPP14].

Proposition 3.8 (generalized mesh-size function [CFPP14, Proposition 8.6]). Let
M € Ny. For a given initial triangulation To, suppose that the triangulations T € T are
conforming and uniformly shape regular with constant o > 1. Then, there exist constants
Chesh > 1 and 0 < pmesh < 1 and, for all Ty € T, a mesh-size function H : T — Rsq, such
that the following properties are satisfied for all T € Ty, all Tp, € T(Ty), and all T" € Ty,
with T" C T':

(H1) local equivalence: H(T) < |T)|"% < Cpesn H(T),
(H2) monotonicity: h(T") < H(T),
(H3) contraction: hT") < pmesh H(T), if T € TISM)[TH \ Tl

The constants Ciesh and pmesh depend only on the shape-reqularity constant o and M. [

Remark 3.9 (construction of the generalized mesh-size function). In the proof of
Proposition 3.8 given in [CFPP14], the inductive construction of the generalized mesh-size
function ensures that for all triangulations Ty € T and all refinements T, € T(Tgy), the
corresponding mesh-size functions H and h satisfy

H(T) =R(T) forall T € Ty \ TS Tu \ Th ). (3.21)

Let 175 be the residual-based error estimator that is obtained by replacing the mesh-size
function H in (2.14) with the generalized mesh-size function H from Proposition 3.8, i.e.,
for all triangulations Ty € T, all T' € Ty, and all vy € X, it holds

g (T,on)? = H(T)? | — div(AVog — f) + b- Vg + con — flZ2(p)

+F(T) H[[(AV’UH - f)- n]]“%ﬂ(aTnQ). (3.22)

Given that the residual-based error estimator ng is locally equivalent to the error estimator
pp in the sense of (2.22) or (2.23), our goal in this section is therefore to show that

e the estimator 7 is also locally equivalent to pp and

e the estimator 7j; satisfies patch stability (M1), patch reduction (M2), reliability (A3),
and discrete reliability (A37).

For all T € T, all T € Ty, and all vy € Xy, local equivalence (H1) and Cipesn > 1 lead to

(H1) (H1)
Ng(Tvr) < nu(T,va) < Cmesh T (T, vH). (3.23)
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This implies that both strong local equivalence (2.22) and weak local equivalence (2.23) of g
and pp extends to gy and gy with Cloe == Ciesh Cloe. Similarly, quasi-monotonicity (QM)
extends to 7y for all triangulations 7z € T and all refinements 75, € T(7Tg) via

NG @) L .
Mh (UH) < T (uh) < Cmon NH (uH) < CYInesh Crnon N (uH) = CVrnorl NH (UH) (324>

Using (3.23), we can also conclude both reliability (A3) and discrete reliability (A3") for
the estimator 7z via

(A3) (H1) _

[[uw* =kl < Crana(uy) < Cumesh Cre Mg (ul) = Cra Ty (uf), (3.25a)
A3t

llup — vl < Cavel N (Ren, wi)
o (3.25b)

< Chesh Care T (Rirns wiy) = Cavel T (Rin, why).-

Patch stability (M1) and patch reduction (M2), however, require modifications in their
original proofs.

Proposition 3.10 (axioms of adaptivity). Let ng be the standard residual-based error es-
timator (2.14) which satisfies the azioms of adaptivity (A1)~(A3") and (QM) with constants
Cstabs Crel, Carel, Crot > 1, Crnon > 0 and 0 < greq < 1. For M € Ny and Ty € T, let H be
the corresponding generalized mesh-size function from Proposition 3.8. Let g from (3.22)
be the residual-based error estimator with the mesh-size function H. Then, the estimator
Ny satisfies patch stability (M1), patch reduction (M2), reliability (A3), discrete reliabil-
ity (A37), and quasi-monotonicity (QM) with the constants Crel, Carel > 1 from (3.25),
Cron > 0 from (3.24), Cgab = Cstab, Cret = Cref and 0 < Groq = prln/jsh < 1.

Proof. Reliability (A3), discrete reliability (A3™), and quasi-monotonicity of 7j; are proven
n (3.24)—(3.25). Thus, it remains to establish patch stability (M1) and patch reduction (M2)

of ﬁH

Step 1 (proof of patch stability (M1)). Let TH € T be a triangulation and T3, € T(Tx)
be any refinement of Ty. For any Uy C TH\TH [TH\'E] any vy € Xy and any vy, € A},
the reverse triangle inequalities on the sequence space 2 and the Lebesgue space L? together
with equality (3.21) yield

_ _ 2
T Urr, vn) = U o) [ <7 [T (T vm) = T(Town))|
TeUy
(3.21) S ' ,
< (H(T) | — div (AV(UH — vh)) +b-V(vg —vp) +c(vg — vh)HLQ(T)
TeUy

FHD) AV (o~ o0) - oy )
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This and local equivalence (H1) validate

Ty Un, o) — ﬁh(uH,vh)\Q

(H1)
<3 (|T\2/d | = div (AV(vn = vn)) + b V(0 = va) + (o —vn) B2y (3.26)

TeUy

TV [AV (o = o)) - 2] or))-

The latter sum also appears in the original stability proof, where the estimate

> (yT|2/d | = div (AV(vir —vn)) +b- V(vg — o) + ¢ (vr = on)| 721
TeUy

+ T [(AV (0 = on)) - 2l gorry ) < Collon — oall?

is shown using an inverse estimate and the trace inequality. For details, we refer to [CKNS08,
Corollary 3.4]. The combination of that result with (3.26) thus proves patch stability (M1)
of 7y with the same stability constant Cgiap, as for ng.

Step 2 (proof of patch reduction (M2)). Let 77 € T be an arbitrary triangulation
and Tj, € T(Ty) any refinement of 7z. By Definition 3.2, it holds

Tilgon = U {TeTu:T'CT} and Talgon = T4 [T\ Tl
H,h H,h
TeT 1 Tu\Th]

With the notation from Example 2.8, contraction (H3) of H with 0 < ppesn < 1 results for
any vg € Xy in

ﬁh(7;b|9g\4h)7UH)2 = Z Z ﬁh(Tv /UH)2

TGTH| (M) T€7—h
Qgn T'CT

= > (R IRu ) ey + B 1 (011) 32 )

TGTH| (]W) T€7—h
Qo T'CT

Z > (PmeshH 2NIRe (i) | Z2erry + pmesh H(T )HJH<’UH)H%2(T’)>

TETH| on T'eTh
Qun T'CT

<pmen > O (AT IRu )3 + FT) i (0m) () ).

TeTH| (M) T €Ty,
QH L T'CT

Since vy € Xy is smooth on the new edges of the refinement 7, and T = | J{T" € T, : T C T'},
linearity of the integral shows

S (H@? 1Ra i) 3200y + F ) 11 (08320

T €Ty - _
T'CT = H(T)? |Ru (o)1 22y + HD) 1)l 7y = T (T, 0m).
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Hence, the combination of the previous equations leads to

ﬁh(ﬁ‘gg{Mh)va)z < Pmesh Z ﬁH(Tv UH)2 = pmeshﬁH(TH’Q(I_ﬁW}z’Q}H)Q‘
' TETH|Q(M) 1
H.h

This concludes the proof. O

3.3 Proof of full R-linear convergence

The two notions of local estimator equivalence require different assumptions and are therefore
covered in separate theorems. In both cases, we consider the quasi-error

k. k
My = pe(ug) + [llug — ug]l, (3.27)
which measures the algebraic error plus discretization error. This differs from the quasi-error
Vi k k
My = pe(ug) + [[[ug — ugll,

proposed in [BFM 25|, which uses u¢(uf) instead of uy(u}) in (3.27). However, weak
stability (W1) provides for all (¢, k) € Q the estimates

pe(f) < Cotan [pe(wf) + lup = wfll] - and  pe(uf) < Crar |pe(w) + N = ] (3.28)
This implies equivalence of both quasi-errors, i.e.,
Mk_ * * k)~ k * _ k _Mk f (0. k Q
¢ = pe(uy) + [lug —uglll 2= pe(ug) + [luf —ugl[| =My for all (¢,k) € Q.

The following theorem states that in case of strong local equivalence (2.22), there holds
parameter-robust full R-linear convergence of M’g, i.e., quasi-contraction of the quasi-error
M]Lf in each step of Algorithm B for any parameter § and \.

Theorem 3.11 (full R-linear convergence for strong local equivalence (2.22)). Let
0<0<1, Cpark > 1, A >0 and ul € Xy be arbitrary. Suppose that the error estimator yuy
is strongly equivalent to an estimator T, in the sense of (2.22). With m € Ny from the
equivalence (2.22), suppose that 7, satisfies (M1), (M2), (A3), and (QM) with M = m.
Then, Algorithm B guarantees full R-linear convergence of the quasi-error Méf, i.e., there
exist constants 0 < qun < 1 and Cy, > 0 such that

ME < Chn VR ING for all (€1, (0,k) € Q with |€/, K| < |0, k. (3.29)

m
The constants Clin and qin depend only on Csab, Greds Crel, Ceqs Getrs Cmons Corth, 0, and A.

The proof follows the reasoning of [BFM 25, Theorem 7] and employs the following
characterizations of full R-linear convergence.

Lemma 3.12 (tail summability vs. R-linear convergence [BFM 25, Lemma 10]).
Let (ag)een, be a nonnegative sequence of real numbers and s > 0. Then, the following
statements are equivalent:
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(i) tail summability: There exists a constant Cs > 0 such that

Z ap < Csa;  for all £ € Ny.
U=0+1

(ii) R-linear convergence: There exist 0 < qin < 1 and Chyy > 0 with
apin < Chin qiy ae  for all £,n € Ny. 0
Lemma 3.13 (tail summability criterion [BEM ™25, Lemma 6]). Let (a)sen,, (be)een,

be nonnegative sequences of real numbers. With given constants 0 < g <1,0< 6 <1, and
Cy,Cy > 0, suppose that (ag)een, and (be)ren, satisfy the following conditions:

(i) apr1 < qag+by  for all £ € Ny
(ii) bpyny < Crag forall ¢,N € Ny
(iii) S5V b2 < Co (N +1)10a2  for all ¢, N € Ny
Then, (ag)ren, s R-linearly convergent, i.e., there exist 0 < qun < 1 and Cly > 0 with
apn < Chinqiy ae  for all £,n € Ny. O

Proof of Theorem 3.11. First, we observe that global estimator equivalence (2.29) with
vy = u; implies
k k k = )
My = [l — wf | + pe(uf) = luf — g ||| +7(uy) = Hy. (3.30)
Hence, to prove full R-linear convergence of Mi?, it suffices to show full R-linear convergence

of H?. The proof is split into two steps.

Step 1 (tail summability of Hf in £). Let ¢ € Ny with (¢ + 1,k) € Q be arbitrary. We
note that u 1= u% by nested iteration and Algorithm B ensures k[¢ + 1] > 1. Thus,
contraction of the algebraic solver (2.32) yields

(2.32
k k[¢+1 Ek[{+1 k k
legir =gl < geie ™ Mg =il = e ™ Musr =l < geer i —wgll- (3:31)
We first prove contraction of the weighted quasi-error
k _
Hy = [llug — wglll +~7e(uf)

with a suitable 0 < v < 1 chosen below. By definition, we have H, < H% < 71 Hy, ie.,

it holds Hy ~ Hf The error estimator 7, satisfies the assumptions of Lemma 3.4. Hence,
the combination of inequality (3.31), estimator reduction (3.9) and the triangle inequality
results in

(3.31) . . B N
Hovr < qetellluiis — wglll + v Mg (uiiq)
(3<()) * E — * C * E 6 * *
< el = ugll +7 | g5 (i) + Cgllug — ugll + Csavllluzys —will] (5 59y

N

k o —
< (Gewr + 7 Cp) llluf = uglll + a5y 7o (wg) + (getr + 7 Cstan) [l[wgr — uzll

IN

k o —
max{qce +7C, 5} [IHUZ = uglll + Y 7e(uf) | + (qetr + ¥ Cstan) iy — w7l
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We set ¢ := max{qgetr +7Cp, q5}. The choice 0 < v < 05_1(1 — Qetr) < 1 ensures 0 < g < 1.
Thus, this verifies condition (i) from Lemma 3.13 for the sequences defined by a, := Hy
and by = (getr + 7 Cstan) [lluf 1 — uj|l. The triangle inequality, reliability (A3), and quasi-
monotonicity (QM) show for all £,¢' ¢" € Ny with ¢ < ¢ < ¢” the estimate

lugr — uplll < [llugr — w{l| + [llu* — ugp ]l
(A3) ) L@ N B (3.33)
< Crel (ﬁ[” (uﬂ”) + ﬁﬂ’ (uff)) < 2 Cmoncrel ﬁ[(uZ) < 2 CmonCrel Y Hf-

In particular, this proves the second condition (ii) from Lemma 3.13. Quasi-orthogonality
(QO) and reliability (A3) prove condition (iii) from Lemma 3.13 via
{+N {+N

-5
Dt = ZH|W+1—W”|2 < 1) et = gl

(A3)
S (N+1D)"70m(w))* S (N +1) 70 (Hy)>

Since H% ~ Hy, Lemma 3.13 thus concludes tail summability of HE7 ie.,

-1
Z Hy ~ > Hy SHy~ Hy forall0<{<(—1. (3.34)
=(+1 0=0+1

Step 2 (tail summability of H} in £ and k). First, we consider 0 < k < k' < k[/] —
for 0 < ¢ < ¢ —1. Recall that weak stability (W1) implies

(W1 ~ * k'
() < Cotany [aelf') + i = uf ] (3.35)

Hence, failure of the stopping criterion (2.46), the triangle inequality, and contraction of the
solver (2.32) show

,B.35) L ,
M} < (14 Cstab) lluf — uf Il + Cstab pe(uy )
(2.46) ~ * 1 k’fl
< (1+ Cotan) lluf = uf Il + Cotar A luf — w1

< (14 Cstab + Catan A7) [llup — uf ||| + Cotar Al — ul Y|
(2.32) ~ ~ -1 ~ -1 * k-1

S [QCtr (1 + Cstab + Cstab A ) + Cstab A :| |”ug - UZ H|
(232) -1 * k

< Qe [1 + C(stab + C(Stab )\ + qctr Cstab A ] H‘ug — Uy H‘
327) _ _ . . i

< qCtr [1 4 Cstab + Cstab A (1 + thr)} My

—k
S ctr MK

Clearly, the inequality above applies for k = k' as well. Due to (3.30), this contraction
property also holds for H?, ie.,

HY < gF=FHE forall 0 <k <K < K.
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Furthermore, contraction (2.32) yields

(2.32)
k k—1 _ k—1 k—1
Hz < Getr |||U27 — Uy ||| + W(Uz) 5 HE = qctr HZ

Therefore, it follows that

HY FHE forall 0 <k < K < Kk[f]. (3.36)

N ctr

Analogous to (3.7) and (3.17), patch stability (M1) and patch reduction (M2) yield mono-
tonicity of the estimator

Mey1(ug) < My(uz)  forall £ < L. (3.37)

Together with patch stability (M1), the triangle inequality, and estimate (3.33), this proves

0 k =
Hy = uppr — wglll + Mo (ugyq)

(M1) * k ai * * — *
< lugyr — gl + Cseabllluzey — uglll + Mopq (uy)

(3.37) i o B
< H|U?+1 - UZ‘H + Ostabmuz_;.l - Uzm + W(u}) (338)

— k
< (1+ Cstab) lufy — will + Hy

(3.33) o o
< |:1 + (]‘ + Cstab) 2 Cmoncrel fyi ] HZ

Therefore, tail summability follows from the geometric series via

k[g] ¢ K
(' keQ =k+1 =0+1k'=
\e’ K[>,k
(3.36) (3.38) -1 (3.34) (3.36)
S Hf+ Z H) < HP+ > Hp S Hf+Hp S Hf

0'=0+1 =0
for all (¢,k) € Q. Since Q is countable and linearly ordered with respect to |-, |, we can
employ Lemma 3.12 to conclude full R-linear convergence of H¥, which by (3.30) implies
full R-linear convergence of ML? This concludes the proof. O

In case of weak local equivalence (2.23), we must additionally require weak stability (W1)
in order to obtain the estimator reduction (3.9). With that assumption, we can still show
parameter-robust full R-linear convergence for Mlg using the same arguments as for strong
local equivalence (2.22) in Theorem 3.11.

Theorem 3.14 (full R-linear convergence for weak local equivalence (2.23)). Let
0<60<1, Chpak > 1, A >0 and u) € Xy be arbitrary. Suppose that the error estimator py is
weakly equivalent to an estimator 7j, in the sense of (2.23) and satisfies weak stability (W1).
With m € Ny from the equivalence (2.23) and r € Ny from weak stability (W1), suppose
that 7, satisfies (M1), (M2), (A3), and (QM) with M = m + r. Then, Algorithm B
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guarantees full R-linear convergence of the quasi-error M’Z from (3.27), i.e., there exist
constants 0 < qin < 1 and Chyi, > 0 such that
k |€,k|—€' K |\ 1k’ ’ o1 . ;o
My < Ciin g5, My, for all (¢',K"), (¢, k) € Q with |0, k'| < |, K|.
The constants C’lin and Qlin depend Only on 6stab; Cstab; Greds C'rel; Ceq; Gctr; Cmon; Corth; 0
and A.

Proof. We note that the global estimator equivalence (2.30) implies MF ~ ng Hence, we
can proceed as in the proof of Theorem 3.11. In the following, we will only highlight the
changes that are necessary to account for the different assumptions on the estimators g
and 7j,.

In Step 1, we used the estimator equivalence only in terms of estimator reduction (3.9).
This perturbed estimator reduction is also provided by Lemma 3.7, whose assumptions are
satisfied by g and 7,. Consequently, we only need to change the constants ¢; and Cj in
inequality (3.32) to g7 and Cj, which then reads

o _
Herr < max{ger +7Cqe ag} |luf — ufll+ 77| + (Getr +5 Cotan) ltfn = i -

Defining ¢ = max{qctr + 7 C5, qg} analogously with 0 < v < min {1, C’gl(l — thr)} <1,

we can therefore conclude tail summability of H% in ¢ identically as in the first step of the
original proof.

Step 2 does not make use of the equivalence of iy and 7,. Therefore, all arguments of the
second step hold verbatim. Overall, we can thus conclude full R-linear convergence of Mé? in
the same way as in the proof of Theorem 3.11. O

In case that a(-,-) is a scalar product, and thus the Pythagorean identity (2.7) holds,
we can prove an even stronger result. In the following, we prove that the quasi-error Af
introduced below contracts with every step of Algorithm B. As for the proof of full R-linear
convergence, the two notions of estimator equivalence require different assumptions and are
therefore covered in separate theorems.

Theorem 3.15 (contraction of quasi-error for strong local equivalence (2.22)).
Suppose that a(-,-) is a scalar product so that the Pythagorean identity (2.7) holds. Let
0<0<1, Chark =1, A >0 and u8 € Xy be arbitrary. Suppose that the error estimator iy
is strongly equivalent to an estimator 7, in the sense of (2.22). With m € Ny from
the equivalence (2.22), suppose that 7, satisfies (M1), (M2), (A3) with M = m. Let
O = {(4,k) € Q:0 <k < E[f]} be the set of all iterates generated by Algorithm B without
the nested iterates u% Then, Algorithm B guarantees the existence of constants 0 < qin < 1
and 0 < v < 1 such that the quasi-error

AY =l = wg|I* + () for all (€, k) € QF
satisfies the following statements:

(i) AFTY < qun AF for all (0, +1) € OF.
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3 Parameter-robust full R-linear convergence

(i) A),, < qun Ay for all (£+1,0) € Q%.
The constants qun and v depend only on Cstab, Greds Crels Getr; Ceq, 0 and .

Proof. The proof follows the reasoning of [GHPS21, Lemma 10| and is split into three steps.
In the first two steps, we prove the statements (i) and (ii) under certain assumptions on
parameters ¢, v and d. In the last step, we fix those parameters such that the assumptions
from the previous two steps are satisfied.

Step 1 (proof of Theorem 3.15 (i)). Let ¢ and ~ be free parameters, which will be fixed
below. For arbitrary (¢, k 4 1) € Q7 reliability (A3), patch stability (M1), and the Young
inequality (3.14) provide

(M1)

(A3) B (3.14) B .
llu* —wpll* < Chamip(up)? < 2CRT(uy ™) + 2 Chy Oy lluf — ug ™I (3.39)

I

We define Cy :=2C% and Cy =202, 6§tab. Together with the Pythagorean identity (2.7)
and contraction of the algebraic solver (2.32), this leads to

AV (1 )t — a2 + el — w1 + g — b2 4+ (a2
SN0 It — P+ (42 O T+ (14 € Co) i — b
SN P+ (2 O T+ (2 C) s — b
Since k + 1 < k[f] by the definition of Q¥ failure of the stopping criterion (2.46) and
estimate (2.33) thus yield

AU (1 ) et — P+ (7 + e OO A b — I + 1+ € Co) i —
U ol w1 [+ £ OO AR (L )+ (142 Co)] i —
Provided that e,~ are chosen such that

(e COA (Lt g + @l +2Ca) < (1—¢), (3.40)

the Pythagorean identity (2.7) verifies

(3.40) (2.7)
AT < (M=) (Ml =l + ey = wfll®) "= (1 =€)l — wf[[* < (1 — &) Af.
Up to the final choice of € and 7, this concludes the proof of Theorem 3.15 (i).

Step 2 (proof of Theorem 3.15 (ii)). Let ¢, 7, and 0 be free parameters, which will be
fixed below. Analogous to estimate (3.39), reliability (A3), patch stability (M1), and the
Young inequality (3.14) provide

(M1)

(A3) B @) 1
llw* —will* < Chame(up)? < Cimglug )+ Collup —wy I (3.41)
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3 Parameter-robust full R-linear convergence

Together with the Pythagorean identity (2.7) and contraction of the algebraic solver (2.32),
this leads to

2.7)
e = w12 = (@~ ) e = w1 + e fl* — gl + [ — 1)

(3.41) B i
< (1=e) [l = upll® + & Cr (g ™) + & Ca lljuf — g |17 + g — wgll® (342)

(2.32

) _ k1
< (1= &)l = w1 + e CaTiCuf ™) + (e Co + i) g — %

The triangle inequality and contraction of the algebraic solver (2.32) prove

- o1, (232) .
e = g™ M < e = gl + o = 0 < (4 genr) llaf = a1 (3.43)

Together with patch stability (M1) and the Young inequality for 6 > 0, this yields for
—2
C3 = C’s‘cab (1 =+ thI')2
(M1) .
_ ok _ k-1 1 A2
Ae(u)® < (14 0)Tlup ™) + (14071 gyl — ™[I

(3.43) — k=12 -1 2
< (40Tl 2+ (1 + 67 Ca |flu —us )%

(3.44)

Recall estimate (3.8) and 0 < g5 < 1 from Lemma 3.4, which was derived using patch
stability (M1) and patch reduction (M2). Furthermore, note that Algorithm B guarantees

nested iteration u) , = u%. Combining this with estimates (3.42) and (3.44), we obtain

0 (3.8) * k2 2— ¢ k\2
Mg <l = wglll” + v @5 me(uy)
(3é2) 1 * *1112 — E—12 2 2— (. k\2
< (1 =) lut = wflll® + e Crig(up )2 + (e Ca + ) lluf — g | + 7 ¢ Me(wy)
(3.44) * (112 -1 21 o — (., k=1\2
< (A=)l =ugll]* + [eCry™" + (1 +6) aF] v 7wy )

+ [eCot @+ a3 (14071 ] [l — g1

Provided that
eC1y P+ (1 +5)q§ <1l-¢ and 03+, +’yq§(1 +06 03 < 1—¢, (3.45)
the Pythagorean identity (2.7) verifies

(3.45) e (2.7) _
Ay < (1=2) [l — gl + g — wf P + 2] 2 (1) AE T

Up to the final choice of €, v, and §, this concludes the proof of Theorem 3.15 (ii).

Step 3 (fixing the free parameters). Note that the constants Cy, Cy, C5, and qy depend
only on the problem setting. We proceed as follows:

e Choose § > 0 such that (1 + ) qz\ < 1.
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3 Parameter-robust full R-linear convergence

e Choose v > 0 such that ¢Z, + ’yq%(l +0 ) Cs<1and Yy A2 (1 + gewr)? + ¢4, < 1.
e Finally, choose € > 0 sufficiently small such that (3.40) and (3.45) are satisfied.

This concludes the proof of Theorem 3.15 with ¢, == 1 — €. O

As with the proof of full R-linear convergence, we need to additionally suppose weak
stability (W1) in case of weak local equivalence (2.23) in order to prove contraction of A.

Theorem 3.16 (contraction of quasi-error for weak local equivalence (2.23)).
Suppose that a(-,-) is a scalar product so that the Pythagorean identity (2.7) holds. Let
0<0<1,Chrark =1, A >0, and u8 € Xy be arbitrary. Suppose that the error estimator py
is weakly equivalent to an estimator 7, in the sense of (2.23) and satisfies weak stability (W1).
With m € Ng from the equivalence (2.22) and r € Ny from weak stability (W1), suppose
that 7, satisfies (M1), (M2), (A3) with M :=m +r. Let Q% = {(£,k) € Q: 0 < k < k[(]}
be the set of all iterates generated by Algorithm B without the nested iterates u% Then,
Algorithm B guarantees the existence of constants 0 < qin < 1 and 0 < v < 1 such that the
quasi-error
A = [l — w2 + A7) for all (¢,k) € QF

satisfies the following statements:

(i) AFTY < qun AF for all (0, +1) € OF.

(i) A, < qun AF" for all (€+1,0) € Q%.

The constants qun and vy depend only on Caa, Greds Crels Cstab, Getrs Ceq, 0 and .

Proof. Similar to Theorem 3.15, the proof follows the reasoning of [GHPS21, Lemma 10]
and is split into three steps. In the first two steps, we prove the statements (i) and (ii) under
certain assumptions on the parameters ¢, v and . In the last step, we fix those parameters
such that the assumptions from the previous two steps are satisfied. We highlight only the
changes that are necessary to account for the different assumptions on the estimators py
and 7,.

Step 1 (proof of Theorem 3.16 (i)). All arguments in Step 1 of the proof of Theo-
rem 3.15 do not make use of the equivalence of py and 7, and therefore hold verbatim.
Provided that (3.40) is satisfied, this concludes the proof of Theorem 3.16 (i) up to the final
choice of € and ~.

Step 2 (proof of Theorem 3.16 (ii)). Let ¢, v, and § be free parameters, which will be
fixed below. Analogously to estimate (3.17), patch stability (M1) and patch reduction (M2)
verify, for all £ < £, that

_ k _ k _ k
W+1(UZ)2 = 77£+1(77Z+1 \7Z+1|Q%++1r>7uz)2 + 77z+1(72+1\Q%ﬂ)aUZ)2

(M1)_ k _ k

= 7]@(72 \ 72|Q%I1T) > UZ)Q + 77£+1(72+1|Q§72Lr) ) UZ)Q

(M2) ’ B ’ . (3.46)

Te(Te \ Tel goms, ug)? + Tooa Te(Tel yomeery > 1)
£,0+1 0,041

IN

ok o\ k
= Tg(uy)® = (1 —Goa) W(MQ%HMUZ)Q-
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3 Parameter-robust full R-linear convergence

Recall Cper > 0 from Lemma 3.6. The Dérfler-like inequality (3.12) and My C T; \ To41
imply

_ (3.12) .
_ k — -+ k 2 k
7)< T IM ] up)? + Coellug — ugl|?
_ k —2 k
< Ue(n(err)[ﬁ \ T ], up)® + Crerllug — ug||? (3.47)
_ k —2 k
= Uz(ﬁ’Q<m+r),uZ)2 + Cper’”uz B UZWQ
,0+1
With 1/2 < qg =1-(1-¢%y)0 <1 and 6% = éier(l —g%4) > 0, the combination of the
last two estimates results in
_ k _ k -2 k
Mo (ug)? < @ 1p(ug)? + Cg lllug — . (3.48)

Moreover, the estimates (3.42) and (3.44) from Step 2 of the proof of Theorem 3.15 hold
verbatim. Together with nested iteration and contraction (2.32), the combination of above
estimates yields

o G4 g 2 ¢ k\2 A2k kg2
Appr <l =g ll1? 4y a5 me(ug)® + v Cg lllup — gl

(2‘32) k B k —9 k_1
< lwt = ugllPP + v &7 (ug)? + v Cg g2 llup — uy ||
(3:42) * *[112 —  k—1\2
< (T=e)llu” —uplll* +eCrimp(u, )
—2 k-1 _ k
+ [eCo+ @2 + 7 Coaie] Nlug — gy 1P+ 63 7e(uyg)?

(3'44) * *1112 -1 2 — k—1\2
< (L)l —ugll? + [eCry™t + (1 +8) 2] yTp(up )
PR

+ [ Cot au o (Chad + a2 (1457 C)] s — i
Provided that
eC1y 1+ (1496) q% <l-e and eCy+¢%, +7 (égqgtr—l—q%(l—i-(rl) Cg) < 1-¢, (3.49)
the Pythagorean identity (2.7) verifies

(3.45) k1 _ L k-1y2] 27) k1
A < (=) [llu* =gl + g — w12+ ™)) 2 (1 - o) AT

Up to the final choice of €, v, and §, this concludes the proof of Theorem 3.16 (ii).

Step 3 (fixing the free parameters). Note that the constants C1, C, C3, and g depend
only on the problem setting. We proceed as follows:

e Choose § > 0 such that (1 + ) q% < 1.
e Choose v > 0 such that

—2 _ _
YO @+ B +61)Cs) + % <1 and YA (14 getr)” + gor < 1.
e Finally, choose € > 0 sufficiently small such that (3.40) and (3.49) are satisfied.

This concludes the proof of Theorem 3.16 with ¢, == 1 — €. O
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4 Optimal complexity

Recall the quasi-error M¥ from (3.27) that satisfies full R-linear convergence (3.29) from The-
orem 3.11 (for strong local equivalence (2.22)) and Theorem 3.14 (for weak local equivalence
(2.23)). This section reveals that this is the crucial component to link optimal convergence
rates with respect to the number of degrees of freedom and optimal convergence rates with
respect to the total computational cost (and hence time). To this end, we say that Mf
decays with rate s > 0 over the number of elements #7; if and only if M} € O((#77)*), i.e.,
it holds that

A(s) = sup (#T7)*MF < occ. (4.1)

(Lk)eQ

As discussed in Sections 2.2-2.5, the modules Solve & Estimate, Mark and Refine from
Algorithm B can be realized at linear cost O(#7;). Since the adaptive algorithm relies on
the full history of prior algorithmic decisions, the overall computational cost cost(¢, k) until
step (£,k) € Q (i.e., the cost to compute uf) is thus proportional to

cost({, k) ~ Z H#To. (4.2)

(0 K)eQ

[k |<|E,k|
The goal of this chapter is to prove that Algorithm B ensures optimal convergence of
Mf with respect to the total computational cost, i.e., the quasi-error decays with the best
possible convergence rate s > 0. To this end, we first prove two crucial corollaries of full
R-linear convergence in Section 4.1. Then, we formalize the notion of optimality and prove
optimal complexity as the main result of this chapter in Theorem 4.3. The analysis in this

chapter proceeds along the lines of similar results in [CFPP14] and [MPS24].

4.1 Corollaries of full R-linear convergence

A first crucial consequence of full R-linear convergence is that if the rate of convergence s > 0
is attainable with respect to the degrees of freedom dim Xy ~ #7y, it is also achievable with
respect to the total computational cost.

Corollary 4.1 (rates = complexity). Suppose full R-linear convergence (3.29) of the
quasi-error M’g Then, for all s > 0, it holds that

Chin
1/s\s
€Q Y eQ — Qin )
|0 k1< |0 K]

As) < swp (0 #T0) M < Als). (4.3)

(4F)

Moreover, there exists an so > 0 such that A(s) < oo for all 0 < s < sg.
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4 Optimal complexity

Proof. The first inequality of (4.3) is clear by definition of A(s) in (4.1). Moreover, the
definition shows that

Ty < A(s)(ME)T® for all (¢, K) € Q. (4.4)

Hence, full R-linear convergence (3.29) and the geometric series show

(4.4) S (3.29) s _ s e
ST ATe < AWM ST (ME) TS AV oplt (ME) T ST (gff) R
' keQ ' KHeQ ' K)eQ
10/ <[ K] 10 K< [0k K< [0K
cl/s _
< A(s)Vs —tm (k)T

(1—a)

The upper bound from (4.3) thus follows from a rearrangement of this estimate. Therefore,
it only remains to verify that there exists an sop > 0 such that A(s) < oo for 0 < s < sp.
Note that successive application of the child estimate (R1) implies

(R1) R1) o
0<#Tt < Cona#Te-1 < Conina #7T0 < Cpg #7To  for all (£,k) € Q.

Since full R-linear convergence (3.29) guarantees

(3.29)
0<MF < Cind™™ MY forall (4,k) € Q,

lin
the multiplication of the previous two estimates thus yields
(#70)° M < (Ciya diin)'“* Cin (#T0)* MG for all (£, k) € Q.

The right-hand side is uniformly bounded, provided that s > 0 is sufficiently small such that
Ciq in < 1. This concludes the proof with sg == log(1/qiin)/10g(Cenila)- O

Another important implication of full R-linear convergence (3.29) is the following result,
which characterizes the limit of Algorithm B in case of a finite number of mesh levels £ < oc.

Corollary 4.2 (lucky breakdown). Suppose full R-linear convergence (3.29) of the quasi-
error Mf. Furthermore, suppose reliability (A3) of the estimator py. Then, £ < 0o guarantees
that u* = uy and pe(uj) = 0.

Proof. From the definition (2.47) of the stopping index /£, it follows that & — oo on the
mesh level £. By full R-linear convergence (3.29), it thus holds

0< ug(uZ) < MZ < Chin q{ﬁ’lk‘ M8 — 0 as k — oo.
Hence, the estimator satisfies yio(uy) = 0 and reliability (A3) verifies
lu* = uflll < Crer prg(u) = 0.

This concludes the proof. O
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4 Optimal complexity

4.2 Proof of optimal complexity

To formalize the idea of attainable convergence rates, we introduce the notion of approxima-
tion classes from [BDDO04; Ste07; CKNS08; CEFPP14]. For N € N, let Ty denote the set of
all triangulations with at most N more elements than the initial triangulation 7o, i.e.,

Ty :={Tu €T:#Tu —#To < N}.

For any rate s > 0 and the exact solution u*, we define

u* = su <N—|—1Smin Uy )
ol = s (V4 1)" min )

It can be shown that [Ju*|[s. < oo implies the existence of a sequence of meshes (77)¢en,
along which the corresponding error estimators piy(uj) decay with rate s over the number of
elements #’72. Consequently, we say that Algorithm B is optimal with respect to the number
of degrees of freedom dim Xy o~ #7; if the generated sequence of meshes (77)scn, satisfies

Vs >0: (HU*HAS <oo = sup (#T)*M} < oo),
(k)eQ

i.e., the adaptive algorithm realizes any possible convergence rate. Likewise, we say that
Algorithm B is optimal with respect to the total computational cost if the generated sequence
of meshes (77)sen, satisfies

S
Vs> 0: (HU*HAS <oo =  sup Z #ﬁx) M} < oo).
(LREQ Ny e
1K' |<|¢,k|

The goal of this section is to prove the following theorem, which states that Algorithm B is
optimal with respect to the total computational cost, provided that the adaptivity parameters
0 and A are chosen sufficiently small. Since strong estimator equivalence (2.22) implies
weak estimator equivalence (2.23) by definition and, according to (2.31), also implies weak
stability (W1), we formulate the theorem only for the latter two assumptions.

Theorem 4.3 (optimal complexity). Let Cpar > 1 and u € Xy be arbitrary. Suppose
that the error estimator g is weakly equivalent to an estimator ng in the sense of (2.23).
Furthermore, suppose that g satisfies weak stability (W1) and that 1, satisfies the axioms
(A1)—(A3T). With

1- Gctr
Gctr Cstab

A= and 0" = (1 + 0521:ab Cczirel)_17 (45)
let 0 <0 <1 and X >0 be sufficiently small in the sense that

stab

(1—2/x%)°

C4  C4 (C=L N/A* 4 91/2)?
0< A < >\* and 0 < emark — stab ~eq ( / ) -
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4 Optimal complexity

Then, for all s > 0, there exist constants 0 < copt, Copt such that

S
Copt ||[u*]|a, < sup ( Z #7}/) M? < Copt maX{HU*HASa Mg}.

(EREQ Yy 1heQ
[€ K [< |6,k

(4.7)

In particular, Algorithm B is optimal with respect to the total computational cost. The
constant copy depends only on Cenig and s, while the constant Copy depends only on Cgab,

Cstab; C’drel; Cmark; Cpatch; C'mesha Galg, )\; Clin; Qlin #76; and s.

The proof follows the lines of [CFPP14, Proposition 4.15] and [MPS24, Theorem 10]. To
this end, we need the following three auxiliary results and start with an upper bound on the
algebraic error by means of the discretization error ny(u}) due to the stopping criterion (2.35).

Lemma 4.4 (upper bound on the algebraic error by discretization error). Suppose
that the error estimator py is weakly equivalent to an estimator ng in the sense of (2.23) and
satisfies weak stability (W1). With \* > 0 from (4.5), it holds

. Ceq A N X
g — ub||| < ey e(uf)  for all0 < A< N (4.8)

Proof. The a-posteriori error estimate of the algebraic error in (2.33) and the stopping
criterion (2.35) result in

(2.33) (2.35)

k q k k— q k

llup =gl < —— g — gl < 2 X pre(u). (4.9)
1- Gctr 1- Gctr

Hence, weak stability (W1) yields

(4.9)
(W1) ~ A
* k‘ thr * * k * * k 410
g =l < T2 A )+ Ml =] = 55 [mae) + g = ] 1
Since A < \*, estimator equivalence (2.30) establishes
(410)  \/\* A (2.30) Oy A
* k * * e *
llug —u,lll < T/ pre(ug) = mﬂe(uz) S = - \ ne(ug).
This concludes the proof. O

The following lemma shows that Dorfler marking for n,(u}) with Omarc from (4.6) implies
Dorfler marking for ug(u%) with € for a slightly larger set of marked elements.

Lemma 4.5 (Doérfler marking for ny implies Dorfler marking for py). Suppose
that the error estimator uy is weakly equivalent to an estimator ng in the sense of (2.23)
and satisfies weak stability (W1). With m € Ny from the equivalence (2.23), r € No from
weak stability (W1), and 0 < Opark < 1 from (4.6), the following implication holds for any
triangulation Ty € T and any subset Ry C Tp:

Omark 1e(W})? < me(Reyu)® = 0 pe(ud)? < e (T [Re ], ul)?. (4.11)
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Proof. Weak stability (W1), weak estimator equivalence (2.30) and estimate (4.9) provide

€32, O 012 (o) ' Ol O 012, [ + Wi — ]
PV o 62 ) + Ol € 62 Nt — )
2 G at mRa ) + By O 6112, it — )
FLUG e (TRt + Gy O 02 Mt — o]
" (TR ) + (14 Gy o2 0112,) it —
(459) fhe (72(""‘”)[72@],1;%) +(1+ és_t;b 0;12 erln/aQrk) 1 Eczctr )\M(U%)-

Rearrangement of the second term on the right-hand side verifies

[6—2 Co20Y2 — (14 C ), co2ot? ) et A} pe(ul) < (T [ R ), ub). (412)

stab ~'eq “mark eq “mark 1— et
ctr

The definition of fpark and A\* in (4.5)—(4.6) reveals

CN’*Q -2 91/2 (1 +C~,S,t;b -2 91/2 ) Gctr

stab ~eq “mark eq “mark/ | _ ot
ctr

(4.5) _ -
(1L9) Gy M A +0Y2 M+ Caan 012 51 AN
< 1_)\/)\* 1_)\/)\* stab

és_t;b AN 402 " * és_talb A/X* + 612
- 1_)\/)\* _Cstab)‘/)‘ _)‘/)‘ 1_)\//\*
’vafl A/ )\ 01/2 _
= (=) S A G /=0

Thus, estimate (4.12) reduces to
o1/ NZ(U%) < e (E(mH)[RE]? U§)7
which concludes the proof. O

Finally, we need the following comparison lemma for the error estimator of the Galerkin
solution n,(u}), which is found in [CFPP14, Lemma 4.14] and relies only on the optimality
of Dorfler marking (Proposition 2.19) and the overlay estimate (R2).

Lemma 4.6 (comparison lemma [CFPP14, Lemma 4.14.]). Suppose that the error
estimator 1 satisfies (A1)~(A3T). Let 0 < 0 < 0* .= (1+ C2%,, C% )~*. Then, there exist

constants C1,Cy > 0 depending only on the constants of (A1)~(A3") such that for all s > 0
with ||[u*||a, < oo and all Ty € T, there exists a subset Ry C Th satisfying

#Ry < Oy Cy o | i (u) ™ and g (Rag, wly) < 6 ni (). O
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With these auxiliary results at hand, we are now ready to prove Theorem 4.3.

Proof of Theorem /.3. By Corollary 4.1, it suffices to show

[0 [la, < (KSISPQ(#E)SM'Z < max{|u*||a,, Mp}. (4.13)
R)E

The proof is divided into four steps.

Step 1 (lower bound in (4.7) for £ = 00). Let £ = oco. Since M; # 0 and hence
#Tos1 > #7Tp by the child estimate (R1), Algorithm B guarantees #7; — oo as ¢ — oc.
Following the proof of [CFPP14, Proposition 4.15], we choose for any N € N the maximal
index ¢/ € Ny with 7y € Ty. Since the child estimate (R1) provides #7p 11 < Cepjla #7Te, it
holds

N+1<#Tpp1 —#To+1 < #Try1 < Cenita #7T0.

The fact that 7y € Ty verifies

min g (uly) < pe(uf) < ME for all ' € Ny with (¢, k) € Q.
Tu€eTn

A combination of the two previous estimates thus shows

(N +1)° min ppg(ufy) < Cohuq (F#T0)* ME < CSuq sup (#70)° ME.

Tu€eTn (f k)EQ

Hence, taking the supremum over all N € N yields the lower bound in (4.13).

Step 2 (lower bound in (4.7) for £ < oo). In the case that £ < oo, Corollary 4.2 en-
sures u* = uj and pe(u;) = 0. As discussed in Remark 2.9, the estimator 7, satisfies quasi-
monotonicity (QM), which by Remark 2.17 implies that s, also satisfies quasi-monotonicity.
Hence, it holds miny, et pr(uf;) = 0 for all N > #7T; — #7o and thus the definition of the
approximation class || - ||, reduces to

* s . *
u||a, = sup (N—I—l min pg(u >
e = s (V1) i )

Treating all N € Ng with 0 < N < #7; — #7 analogously to Step 1 establishes the lower
bound in (4.13).

Step 3 (estimate of marked elements). Since the upper bound in (4.13) is clear if
|u*]|a, = oo, we may suppose ||u*]|a, < co. Let (¢ +1,0) € Q be arbitrary. By Lemma 4.6,
there exists a subset Ry C Ty such that

#Rey S HU*HXS ne(up) ™Y and  Oark me (up)? < o (Rer, uly)?. (4.14)

s

As a consequence of Lemma 4.5, the Dorfler marking criterion in (4.14) implies

m-+r 2
0 e (ub)? < por (T [ Ry )l ) 2.
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4 Optimal complexity

Hence, the Dorfler marking criterion (2.45) holds on the enlarged set TEmM)[Rg/ ]. Esti-

mate (2.20) thus ensures that the set of marked elements M satisfies
(2.45) (m) (2.20)
#MZ’ < Chark #T/ [RZ’ ] < Chark oty #Ry (415)

patch

Full R-linear convergence (3.29), estimator equivalence (2.30b), and the upper bound on the
algebraic error from (4.8) result in
3.29 (2.30b) (4.8)
My S MG = llap — il + e i) S llah =l e () S me(ui). (4.16)
A combination of the previous estimates (4.14)—(4.16) therefore validates for all (¢'41,0) € Q
BMe S #Re S el i) S e () @

Step 4 (upper bound in (4.7)). Let ({,k) € Q be arbitrary. Full R-linear conver-
gence (3.29) and the geometric series verify

(3.29) .

Z (M@/) 1/s 5 (M?)_l/s Z (qllu/13)|€k\ [ | < (Mé;)—l/s. (418)
' K)eQ ' K)eQ
€,k |<€,k] €,k <€ k]

A combination with the mesh-closure estimate (R3) and estimate (4.17) proves, for all £ > 1
with (£,0) € Q, that

BT BT+ 1 <2 (BT o) Z#W e S g
=0
(4.18)
1/s 'N—1/s 1/s —1/s
<ty > )TV S el ()T
' KHYeQ
[¢/ K| <|¢,k|

A rearrangement of this estimate thus results in

(#T0 — #To+ 1)° M5 < |Ju*||s, for all (£,k) € Q with £> 1. (4.19a)
In the case ¢ = 0, full R-linear convergence (3.29) trivially provides
(3.29)
(#Ti — #To+1)°ME = ME < MY for all (£,k) € Q with £ = 0. (4.19b)

As in [BHP17, Lemma 22|, a rearrangement of

(BT — 4Ty +1) — 1L !

HTo—#T)(1———=) >0
LT 7— ( l— O)( m 7—0 )
leads to the estimate

#To < #To (#Te —#To +1). (4.20)
Overall, the previous estimates (4.19)—(4.20) prove

s 1k (4.20) s s\ 1k (4.19) * 0
#T)* My < (#T0)" (#Te — #To + 1)° My < max {||u*|a,, M}
Taking the supremum over all (¢,k) € Q thus concludes the proof of the upper bound
n (4.13). O
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5 Applications

In Example 2.14, we have already seen that the residual-based estimator ny (2.14) is strongly
equivalent in the sense of (2.22) to the residual-based estimator 7y (2.16), which uses the
diameter as mesh-size function. As a consequence of Theorem 3.11 and Theorem 4.3, we can
conclude full R-linear convergence and optimal complexity for Algorithm B steered by 7.

In this chapter, we want to introduce further error estimators, that satisfy the requirements
for full R-linear convergence and optimal complexity laid out in the previous chapters. Specif-
ically, we will consider recovery-based estimators and estimators based on flux equilibration.
The analysis of recovery-based estimators is based on [Z2Z87; KS11; CFPP14], while the
section on flux equilibration uses results and ideas from [BPS09; EV15; EV20).

Throughout this chapter, we employ newest vertex bisection (cf. Example 2.6) as
the mesh-refinement strategy and, for a polynomial degree p € N, define the discrete
spaces X = S§(Ty) as in (2.10).

5.1 Recovery-based estimators

In this section, we consider recovery-based error estimators, which are also referred to
as ZZ-estimators after Zienkiewicz and Zhu [ZZ87]. These estimators are widely used in
computational science and engineering due to their ease of implementation and impressive
performance in various applications.

Throughout this section, we suppose A = ol for a € C(Q) and f = 0 in problem (2.4),
i.e., we consider the PDE

—div(aVu*) +b-Vu* + cu* = fin Q subject to w* =0 on 9. (5.1)
In particular, the refinement indicators of the residual-based estimator ng (2.14) read
i (T,vy)* = H(T)? | R (vmn) 22y + H(T) |8 (vin) | 72 0700)

with local volume residuals Ry(vy) = —div(aVvg) + b - Vug + cvog — f and jump
terms Jy(vy) = [aVvg - n]. In order to define the ZZ-estimator, we need to introduce
further notation.

Definition 5.1 (patches and stars). Let 7y € T be a triangulation and z € Vi N2 an
interior vertex of Tr. We define the corresponding vertex-patch Tg[ 2] as the set of elements
T € Ty such that z € T, i.e.,

Talz] ={T €Ty :2€T}.
Similarly, the star X[ 2] is defined as the set of faces E € £} such that » € E, i.e.,
Splz]={FEc&:z¢€E}.

To abbreviate notation, we write Qg [z] = Tu[z] and wy[z] = U X[z ].
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5 Applications

For a triangulation 7z € T, the definition of the ZZ-estimator employs a local averaging
operator G : L*(2) — SP(Ty) which is defined as follows:

e For lowest-order polynomials p = 1, the operator G'y maps any function v € L?(2) to
the unique discrete function G (v) € S*(Tx) satisfying
1

Gp(v)(z) = oREl v dz for all vertices z € V. (5.2)

e For the general case p € N, we define the operator G as L*-stable Variant of the
Scott—Zhang projection from [SZ90|. With J := dim(Sp('TH)) let {¢j 1 denote the

nodal basis of SP(7Tx) with associated nodes {a; }J i

1 forj =k
é;(ax) = IR v all k=1,..., .
0 forj #k.

With each node a;, we associate an element S; € Ty with a; € S;. For each

j € {1,...,J}, linear algebra yields the existence of a unique dual basis function
Y; € span{¢g;|s, : a; € S;} satisfying
(¢ka¢j)L2(Sj) = Ojk for all j,]{) = 1,...,J. (53)
The Scott-Zhang projection G : L?(2) — SP(Ty) is then defined as the unique
function G (v) € SP(Ty) satisfying G (v)(a;) = (Vj,v)2g,) forall j=1,...,J, ie,
J
= (1, v)2s;) @5 for all v € L*(Q). (5.4)
j=1

By (5.3), it holds for all vy € SP(Ty) with vy = Zi:l U@ that

J J
= (W vm)ras) ¢ = >, vk, dr)ras ¢y = vak = vm,
Jj=1 Ji,k=1

i.e., the Scott—Zhang projection is indeed a projection from L?(2) onto SP(Tx).

Let ¢ € Ny with 0 < ¢ < p — 1. For each subset U C Q, let I1,(U) : L*(U) — P4(U) denote
the L2-orthogonal projection onto the space of polynomials of degree ¢, i.e.,

I,(U)(v) = wer%ygU) |lv— U)H%z(U) for all v € L*(U).

For each interior vertex z € Vg N and each discrete function vy € Xy, we define

roz(vi) =(Qu[2]) Ru(vg) = argmin R (vy) — wl72iq,1.))- (5.5)
weP(Qp[z])
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5 Applications

With the index set Zy == Ty U Vg and H(z) = diam(Qg][z]), the refinement indicators of
the ZZ-estimator read

lal/2(1 — GH)VUHH%Q(T) for I =T € Ty,
H(Z)2 ||RH(UH) - TH,Z(UH)||%2(QH[ZD fOI' I =z S VH N Q

o (I, UH)2 = {

As detailed in Remark 2.15, we consider the corresponding element-based estimator

pr(Toom)* = (|02 (1 = Gu)Vor|faqy + D HE)? |Ru(vr) = rre(vm)liz @y -)-

z€V N
zeT

(5.6)
Our goal is to show that the ZZ-estimator satisfies the requirements for full R-linear
convergence (Theorem 3.14) and optimal complexity (Theorem 4.3). To this end, we need to
prove that the ZZ-estimator is weakly equivalent (in the sense of (2.23)) to the residual-based
estimator ny from 2.14, and that it satisfies weak stability (W1). This is the content of the
following two subsections.

5.1.1 Weak equivalence of ZZ-estimator and residual-based estimator

In order to show weak equivalence of the ZZ-estimator (5.6) and the residual-based estima-
tor (2.14), we first need to establish a few auxiliary results. The following lemma provides a
bound for the residual in terms of normal jumps and volume oscillations.

Lemma 5.2. There exists a constant Cres > 0 such that for any interior vertexr z € Vg N
and any element T' € Ty with z € T, it holds that

H()? | Rar (i) e

* 2 2 * * 112 (5'7)
< Cres [H(Z) Vg - n]ll72 w20 + H(2) [ Ra(u) — TH,Z(UH)HL?(QH[,Z})]'

The constant Cyes depends only on the polynomial degree q and the initial triangulation Ty.

Proof. For every z € Vg, let ¢, € S'(Ty) denote the nodal basis function characterized by
¢,(z) =1 and ¢,(z') =0 for all 2/ € Vg with 2’ # z. To abbreviate notation in the proof,
we write 17, = 1. (u}), Ry = Rp(uy) and Il == I1y(Qp [ 2]). Recall that rj; , = Il; Rj;.
A scaling argument shows

752 2 ntep S 102 k.

— / Ryéarty, do — / (1~ 1) Ry dorty. do.
Q2] Qplz]

L2(Qu[2])

The hidden constant depends only on o-shape regularity and the polynomial degree q.
Together with ||¢. || ) = 1, we obtain

15 2l r2urz)) S /Q ] T 0T, Az + (L= T) Ryl 2= lm k2l 2ur=))- (5.8)
Hlz

49



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5 Applications

We first consider the left term of the right-hand side in (5.8). Since supp(¢.) = Qglz],
it holds v := ¢.r}; . € S§(Tm[2]). Combining this with the weak formulation (2.5) and
element-wise integration by parts, we calculate

/ 10T, do = / (—div(aVuf) + b Vuj + cuj)v do — / fo dz
Qulz] Qplz] Qulz]

(2—'5)/ —div(aVuy)v dz — / aVuy - Vo do
Qulz] Qp|z]

= / [aVuy - njv dz
whlz]
< aVulr -]l 2wy 172l L2 @n =)
Since rj; , € P1(Qp]z]), an inverse-type inequality provides

7% 2 wnt=) S HE) 2 I N 2 2)-

Again, the hidden constant depends only on o-shape regularity and the polynomial degree q.
Combining the previous estimates with (5.8), we obtain

75072 ep S [HE) 2 oV ]l 2w 2)

. . . (5.9)
+ | R — TH,ZHB(QH[Z])] HTH,ZHB(QH[Z])-
Thus, the triangle inequality shows
H(2)* | Ryl r2ry S H(2)? ||7”f{,z”%2(QH[z]) + H(2)? |Ry — 7.l 20 2)
(5.9)
< H(2) eVl -l z2n=) + HE?IRE — 2 z2u(2)-
This concludes the proof. O

The next lemma shows that the normal jumps are locally equivalent to averaging.

Lemma 5.3 (averaging is equivalent to jumps). There ezists a constant Cyyg > 0 such
that

Covg HEN[Vor - 1] 72 (0120

IN

(1 = G)VorlZz0y,2)
Cog S HE)Vor - nlBag oy 010

Z'eX[z]NVNQ

IN

The constant Cayvg depends only the polynomial degree p and the use of newest vertex bisection.

The proof of Lemma 5.3 uses a seminorm argument, which is based on the following
elementary result.

Lemma 5.4 (equivalence of seminorms). For any two seminorms |- |1,|- |2 on a finite
dimensional space V', there exists a constant C > 0 such that |v|; < Clvly for allv € V if
and only if it holds

{veV:i|v=0} C{veV:|v; =0} O
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5 Applications

Proof of Lemma 5.3. All terms in (5.10) define seminorms on SP(7g[#]). By Lemma 5.4,
it thus suffices to show that the chain of inequalities holds true if one term is zero.

First, we assume that (1 — Gy)Vog = 0 on Qg 2], which implies Vog € SP(Ty[z]).
Thus, Vug is continuous on Q[ z] and hence [Vog - n] =0 on wy|z].

Next, assume that [Vug -n] =0 on wy[2z'] for all inner vertices 2’ of X[ z]. Since vy €
H!(9), also all tangential jumps of Vv vanish over S| 2’ ]. Overall, this implies that Voy €
SPYTy[2']) = PP~Y (T2 ])NC(Qy[2']) for all inner vertices 2’ of X[ 2]. If p > 1 and the
averaging operator Gy is defined via the Scott—Zhang projection, this results in GgVog =
Vug. In case that p = 1 and patch averaging (5.2) is used, Vvy € S°(Ty[2']) yields that
Vuy is constant on Qg 2’] for all inner vertices 2’ of X[ 2], and thus GgVvy = Vug. In
any case, it therefore holds (1 — Gg)Vug =0 on Qg z].

The constant Cyyg initially depends on the shape of the patches Qp[2']. However, since
NVB leads to finitely many patch shapes, a scaling argument proves that Caye depends only
on the use of newest vertex bisection and the polynomial degree p. O

With Lemma 5.2 and Lemma 5.3 at hand, we can finally prove that the ZZ-estimator is
weakly equivalent to the residual-based estimator 7y in the sense of (2.23).

Proposition 5.5 (ZZ-estimator is weakly equivalent to residual-based estimator).
Suppose that the triangulation Ty € T is sufficiently fine in the sense that each element
T € Ty contains at least one interior verter z € Vg NQNT. For any polynomial degree
p € N, the ZZ-estimator pg defined in (5.6) is weakly equivalent to the residual-based
estimator ng (2.14) in the sense of (2.23) with m = 2. The equivalence constant Ceq depends
only on the polynomial degrees p and q, the bounds ||| e (q) and amin = mingeq a(x) >0,
the initial triangulation 7o, and the use of newest vertex bisection.

Proof. For an arbitrary triangulation Ty € T, let T € Ty and z € Vg N QN 7T. Since

A = ol with a € C(Q), it holds that

IaVul - nlllz2 g2 = le VUl - nlll 22 g2

X (5.11)
< leflzes @) 1TVul -l L2y =)
Furthermore, with ayiy == mingeq a(x) > 0 we obtain
* 1 *
VUl 2wy =) < o— IlaVug - nlll2wn12) (5.12)
and L
(1= Ga) Va2 < 0l 021 — G Vil ey, (513)

Uniform o-shape regularity implies H(z) ~ H(T'). Thus, finite overlap of patches (2.21) and
estimates (5.7), (5.11), and (5.10) yield

(T, uy)® = H(T)? | Rer (ufy) | 2y + H(T) [[oVagy - nll|72 0700

(5.7)
< ) [H(z)H[[aVUE-n]]H%z(wH[zwH(Z)QHRH(UFI)—TH,z(u}I)Iliz(QH[Z])

z€VHNQ
zeT
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5 Applications

(5.11) -
S D [ HE NV -l sy + HE) [ Ra(ul) - TH,Z(“?I)H%Q(QH[Z])}
ZEVHNQ
z€T
(5.10) [ * |12 2 * * (12
S 2 0= G VuglEageey + HE? IRt = rme i) 122,00
z2eVH NN )
z€T
(5.13) -
S S [10V20 - GV gy + HEP IR () = i) B, |
VN
zeT
(2.21) 12
S Z [HO‘ (1- GH)VUHHL2(T’) + Z H(2)?||Ru (ufy) — 7 z(UH)HL2 (Qmlz ])]
T'eTy[T] 2EVHNQ

zeT’
= pr(Tu[T], uf)*.

The hidden constant depends only on the polynomial degrees p and g, the bounds |||z (q)
and auin, the initial triangulation 7y, and the use of newest vertex bisection. This concludes
the proof of (2.23a). To prove (2.23b), we treat the two terms of (5.6) individually. For the
first term, estimates (5.10) and (5.12), a € L*°(2), and uniform o-shape regularity verify

lo/2(1 = Gr) Vi [y < llo*(1 = Gu) Vaufllza,-)
(1= Gr) Vg i)

S Y HE V- nll e
2/ €X[z]NVNQ
(5.12)
S Z H(Z') [[aVu; - n]]”%,Q(wH[z’])
Z'eX[z]NVuNQ

2
< (T [T, wip)?,
The hidden constant depends only on the polynomial degree p, the constant ||| e () > 0,
the use of newest vertex bisection, and the initial triangulation 75. Since 1 — I, (g [ 2])
is an L%-orthogonal projection and Ry (u¥y) — g .(u¥) = [1 — O (Qu[2])] Ru(uwy), finite
overlap of patches (2.21) yields

> HERa(uy) —ra-wi)liequzy < . HO IRu(ui)iz@pu-))
2EVHNNR 2e€V NN
z€T zeT

(2.21)

< nm(Tul T up)*.

The hidden constant depends only on the initial triangulation 7y and the use of newest
vertex bisection. Finally, combining these two estimates, we get

u(Touyy)® =10 = Go)VuylFay + Y H()? |Ru(uly) = rmz(ui) 22,2

1% Y]
zeT

S (T T,
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5 Applications

Overall, the hidden constant depends only on the polynomial degrees p and ¢, the bounds
[]| Loo () and aumin, the initial triangulation 7o, and the use of newest vertex bisection. This
concludes the proof of (2.23b) and thus of (2.23). O

5.1.2 Weak stability of the ZZ-estimator

It only remains to prove weak stability (W1) for the ZZ-estimator (5.6) in order to fulfill
the assumptions of Theorem 3.14 and Theorem 4.3. This is the content of the following
Proposition.

Proposition 5.6 (weak stability of ZZ-estimator). The ZZ-estimator defined in (5.6)
satisfies weak stability (W1) with r = 0, where the constant Cgay, depends only on the
polynomial degree p, the bounds ||a||pec(q) and amin = mingeq a(x) > 0, the ellipticity
constant Copp > 0, and uniform o-shape reqularity of T € T.

Proof. The proof is divided into five steps.

Step 1 (stability of averaging term). Let 7y € T and vy, wy € Xy be arbitrary. For
the first term of (5.6), the triangle inequality and the Young inequality (3.14) yield

la/2(1 = G)Vor e,

(5.14)

S a1 = Gu)Vwn|faqy + 0?1 = Ga) V(v — wa)||F2 ).

Both patch averaging (5.2) and the Scott-Zhang projection (5.4) are locally L2-stable, i.e.,
it holds

o' 2(1 = G)ol|Z 2y S llo!?0l72gq, ) for all v e LA(), (5.15)

where the hidden constant depends only on the bounds ||&|| () and quin, and, in the case
of the Scott—Zhang projection, on the polynomial degree p and uniform o-shape regularity
of Ty € T. We will prove (5.15) in the next two steps for both patch averaging and the
Scott—Zhang projection.

Step 2 (L2-stability (5.15) of patch averaging). Let v € L?(Q2). For every z € Vy,
let ¢, € S'(Ty) denote the nodal basis function characterized by ¢,(2) =1 and ¢,(z') =0
for all 2’ € Vi with 2’ # 2. Note that [¢.| 1) = 1 and that |supp(¢.) NT| > 0 implies
z € T. Hence, the triangle inequality, the Cauchy—Schwarz inequality, and o € L*(Q)
provide

1
o 2G ol p2ery = ||? P vdx )b,
H Z;}{(‘QH[Z” Qplz] ) L2(T)
< > 1Qulzl M i@ plet?é:ll 2y
z2eVyNT
S D 19ul 2TV e 2ol e 162 22
zeVyNT
< > 0 Pollpzys) < (d+ D) 020l 7))
zeVyNT
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5 Applications

Combining this once more with the triangle inequality, we obtain
l2(1 = Gr)ollizry < 10 ?0)1 220y + 102G rol 2y < (d+2) |00 20y 1)
This proves L?-stability (5.15) for patch averaging.

Step 3 (L2-stability (5.15) of Scott—Zhang projection). With J := dim(SP(Tg)), re-
call that {qﬁj}j:l denotes the nodal basis of SP(Ty) with associated nodes {aj}gJ:1 and
a; € Sj € Tu. Let j € {1,...,J} be arbitrary. Note that | supp(¢;) N T'| > 0 implies a; € T
Hence, with Jr == {j : a; € T'}, the triangle inequality, the Cauchy-Schwarz inequality, and
a € L>(Q) yield

o' 2Grollary < Y (W5, 0) 1205 | a5l r2ry

JEIT

< 3 ollzagsy 9l r2gs,) o265 2y 5.16)
Jj€IT

< ST ol paery 151l ee s,y 1631 poe(ry ez ()
Jj€IT

A scaling argument shows

Ijll o) S 1 and  [[¥jllzee(s;) S 185171 (5.17)

where the hidden constants depend only on the polynomial degree p. Since S; € Ty[T'] by
the definition of the Scott—Zhang projection (5.4), uniform o-shape regularity of 7z € T
implies |S;|~1/2|T|/2 < 1. Together with #Jr < 2(p+ 1)(p + 2), we can further estimate
(5.16) by

(5.17)
lo*Grrollzzry S 3 155172 111 ol ey

JEIT
S olleeery £ 0 N0 20llzry S llov]l 2oy r)-
Jje€IT Jje€IT

Here, the hidden constant depends only on the polynomial degree p, the bounds ||a| e (q)
and auin, and uniform o-shape regularity of 7z € T. This proves L2-stability (5.15) for the
Scott—Zhang projection.

Step 4 (stability of oscillation term). Next, we consider the second term of (5.6). Since
1 — I (Qu[z]) is an L*-orthogonal projection, the triangle inequality and the Young
inequality (3.14) show

> HE|Ru(on) = raz(vm)l 2,12

ZGVHTOQ
z€ < H 2 1 —T1.(Q R 2 (518)
S Y HE? I o Qu[z]) R (wi) 722
zEVHNQ 9
e 1R om) = Rer(wm)|2 01|
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5 Applications

As in the proof of stability (A1) of the residual-based estimator (see [CKNS08, Corollary 3.4|),
an inverse estimate proves

H(2)*|R (vir) — R (win) T2y S 10°V(0r — win)ll72@pui2))- (5.19)

Step 5 (combination of estimates). A combination of the previous estimates together
with uniform o-shape regularity and uniform ellipticity of a(-,-) yields

pUi,vn)* = > [Hal/Q(l — Gm)Voulliaey + Y H() [|Ru(vm) — TH,Z(UH)H%Q(QH[Z])]

TeUy ZGVHTﬂQ
ze

S pUmwn)®+ Y {Ham(l — Gm)V(vn — w7z

+ > H(2)’||Ry(vn) — RH(wH)H%Q(QH[z})]

z2eVHNQ
(5.15) zeT

5.
(1 , ,
S pUy,wp)” + lllvg —whl|*.

=]
~

By finally applying the Young inequality (3.14) to the above inequality, we conclude weak
stability (W1) for the ZZ-estimator. Overall, the constant éstab depends only on the
polynomial degree p, the bounds ||a| 0y and amin = mingeq a(z) > 0, and uniform
o-shape regularity of 7y € T. O

Finally, we fulfill all conditions of Theorem 3.14 and Theorem 4.3 and can therefore
conclude full R-linear convergence of the quasi-error (3.27) and optimal complexity of
Algorithm B steered by the ZZ-estimator.

Corollary 5.7. Let 0 < 0 <1, Chpark = 1, A > 0, and u8 € Xy be arbitrary. Suppose
that A = oI for a € C(Q) and f = 0 so that the model problem (2.4) reads as in (5.1).
Let Algorithm B be steered by the ZZ-estimator uy defined in (5.6). Then, Theorem 3.1/
guarantees full R-linear convergence of the quasi-error (3.27) and Theorem 4.3 ensures
optimal complezity of Algorithm B.

5.2 Estimator based on local flux equilibration

The equilibrated flux estimator is a popular choice for error estimation due to its remarkable
numerical properties, which include a known reliability constant. The motivation for the
equilibrated flux estimator is based on the following observation.

We consider the variational problem (2.3) for the PDE (2.4). It is well-known (see, e.g.,
[Bra07, Theorem 3.6]) that the well-posedness of this problem is equivalent to the inf-sup

condition
|la(v, w)|

o= inf >0 (5.20a)

veH3(Q\{0} wert @\fo} [Vl m @ lwllm @)
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and the non-degeneracy condition
Vw € HY(Q)\ {0} Fv € H}(Q) : |a(v,w)| > 0. (5.20Db)
In particular, the inf-sup stability (5.20a) implies that

|a(v, w)]

v« = sup for all v € H}(Q) (5.21)

wert@\{o} 1wllm )
defines a norm on Hg(Q) that is equivalent to the Hl-norm. Let
H(div; Q) == {7 € [L}(Q)]¢ : divT € L*(Q)}

denote the space of [L?(€2)]%-functions whose divergence exists in a weak sense and belongs
to L%(Q) equipped with the weighted graph norm

)1/2

17l aiviey = (I171172(q) + diam(Q)? || div 7|72 o

For some v € H}(f2), suppose that we have a function o[v] € H(div;{) at our disposal
satisfying
divelv)=gv] = f—b-Vv—cv in Q. (5.22)

We will refer to o[v] as the fluz of v. Then, the inf-sup stability (5.20a), the fact that u* is
the solution of (2.3), integration by parts, and the Cauchy—Schwarz inequality verify

5200 a(uw* — v,w)] 6:21)

at [u* = vl < sup [[u* — vl

werr@\{oy Wl

e [(f,w) 2y + (f, Vw) 2(q) — a(v, w)]
we HL ()\{0} 1wl 1 ()

(5.22) sup [(g[v], w)r2(0) — (AVV — f,Vw) 2(q)] (5.23)
we HI(Q)\{0} lwll ()

(5.22) [(o[v] + AV — f, Vw) 12|

= sup

we HL ()\{0} 1wl g1 (0

< lov] + AVv — fllL2(q)-

Assuming that the function o[v] is computable, the expression |[o[v] + AVv — fl|12(q) is
thus a guaranteed upper bound for the error ||u* — v||, (with known constant 1) and a
reliable error estimator for [[u* — v|[z1(q) with explicit reliability constant a. Moreover,
since u* solves (2.4), the choice o[u*] == f — AVu* satisfies

<0'[U*], V’U))LQ(Q) = <f — AVu*, V’U)>L2(Q)

@4 (f, vw>L2(Q) +(b-Vu* + cu*,w)Lz(Q) — a(u*,w)

23 (b-Vu* +cu”,w)r20) — (f;0) 12(0)

gl w)pey for all w € HY(Q).
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Therefore, o[u*] solves (5.22) and is thus the solution of the minimization problem

ofu*] = argmin |7+ AVu* — fll12(q), (5.24)
TE€H (div;Q?)
div r=g[u*]
with
in T+ AV~ £l = llofu] + AVY” ~ fllixq) = 0.
div r=g[u*]

In particular, we note that o[u*] is indeed the unique minimizer to (5.24). For a dis-
crete function vy € X, one might thus aim to compute olvyg] as the minimizer of
|o[vu] + AVu — fllr2(q) in a finite-dimensional subspace of H(div;(2) with side con-
straint (5.22) in order to obtain a computable error estimator for ||u* — vy | g1(q), which
hopefully still has an explicit reliability constant. The obvious disadvantage of this approach
is that the computation of ovy] requires the solution of global problem.

Therefore, we will first introduce a local version of o [vg] before providing a discretization
of the corresponding local problems. This is the content of the next subsection. After
that, we will show that the equilibrated flux estimator constructed in this way is weakly
equivalent to the residual-based estimator. Finally, we will prove weak stability of the local
equilibrated flux estimator, which will allow us to conclude full R-linear convergence and
optimal complexity of Algorithm B steered by the local equilibrated flux estimator.

5.2.1 Construction of the equilibrated flux estimator

Let Ty € T be a triangulation of Q. For every z € Vy, let ¢, € S'(Ty) denote the nodal
basis function characterized by ¢,(z) = 1 and ¢,(2’) = 0 for all 2’ € Vg with 2’ # 2. Again,
we consider o[u*] = f — AVu* and define the local flures o,[u*] == ¢, o[u*]. Since the
nodal basis forms a partition of unity, it holds

ou*] = ( Z qbz) olu] = Z o [u].
2EVH z€VH

Let n denote the unit normal vector on the edges | JEy of Ty (with arbitrary but fixed
orientation). By definition, o ,[u*] (restricted to Q[z]) is contained in

{7 € H(div; Qg[z]) : 7-n =0 o0n 0Qx[ 2]} if z€eVpnQ,

Ho(div; Q[ 2]) = {{T € H(div;Qpg[z]): 7 -n=00n00y[2]\0Q} if z€ Vg NoQ.

The divergence of o.[u*] is given by

dive,[u*] = ¢, dive[u*| + Vo, - olu”] 622 ¢. glu*] = Vo, - (AVu* — f) = g,[u*]. (5.25)

Therefore, the local fluxes o,[u*] = ¢, o.[u*] = ¢.(f — AVu*) are the solutions of the
minimization problems

o.[w]=  argmin |7+ ¢. (AVW — f)ll12(04(2)) (5.26)
TE€Ho(div;Qg[2])
div T=g.[u*]
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with

i AVu* — = * AVu* — =0,
et |7+ ¢ (AVU" = fllr2(p(2)) = lo:[u'] + ¢ (AVU" = fllL20p12)
div r=g.[u*]
which are localized versions of the minimization problem (5.24). In particular, we note that
o .[u*] is indeed the unique minimizer to (5.26). Since we have

(div T, 1>L2(QH[z]) = <T,V1>L2(QH[2D =0 forall 7 € Hy(div;Qg[z]) with z € Vg N Q,
the range of the divergence operator applied to Hy(div; Q| z]) is contained in

{g € L*(Qu2]) : (¢, D2z =0} ifz€Vun,

2 -
L;(Qpuz]) = {LQ(QH[Z]) if z € Vg Noa.

The next lemma shows that the divergence operator is even surjective. Although this result
will only be needed for a discrete setting, the subsequent construction will also be used in
the proof of the discrete analogue.

Lemma 5.8 (divergence is surjective). The operator div: Ho(div; Qg[z]) — L2(Qy|z])
is surjective for all z € Vg. Moreover, there exists a constant 5, > 0 depending only on
uniform o-shape regularity of Ty € T such that

div T, P
inf sup (v T, 9) 122412 > diam(Qp[z]) "1 By > 0. (5.27)

g€L2(Qn12)) reHy(divin (=) 1T H@ivien =) 12l L2@p2))

Proof. Let z € Vg NQ and ¢ € L2(Qy[z]) be arbitrary. Consider the homogeneous

Neumann problem
—Au=gq inQg[z],

Vu-n=0 ondQg|z],

with corresponding variational formulation
<VU, VU>L2(QH[2]) = <q,v>L2(QH[z]) for all v € Hl(QH[z]) (5.28)

Since the Neumann compatibility condition (q,1)72(q,[.])) = 0 is satisfied, there exists
a unique solution v € H}(Qu[z]) = {v € H (Qpu|z]) : (v,1)12(0,[.)) = 0} of (5.28).
By (5.28), ¢ is the weak divergence of ¢ := —Vu. Moreover, (5.28) implies ¢ -n = 0
on 00p[z] in the sense of traces. Thus, we have found a function ¢ € Hy(div;Qg[z])
with div ¢ = ¢. The Cauchy—Schwarz inequality and the Poincaré inequality (see [EG21a,
Lemma 3.24|) prove

(5.28)
IVullZ2,pay) = (Vi Vi) 2ty = (4 0) L2(@u2)

<llallz2ur=)) Ill2y21) < Cp diam(Qu[2]) lall 2y 21) VUl L2(@u )5

i.e., it holds ||Vullr2(q,(2)) < Cp diam(Qu[2]) [lql|2(qy(27)- The Poincaré constant Cp > 0
depends only on the shape of Q[ z] and thus only on uniform o-shape regularity of 7 € T.
Hence, the definitions of the H(div)-norm and ¢ yield

||CH§‘I(d1V,QH[z]) = ||CH%2(QH[Z]) + dlam(QH[Z])2 || leCH%Q(QH[Z])
< diam(Qp[z])% (CE + 1) HQH%?(QH[z])
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With B, = (1+ C2)~!/2, we therefore have

sup (div T, q) 2y 2]) - (div ¢, @) r2(0p12))
reHo(divin =) ITN @ =)l 2@uz) — ICE@vQL =)l L2@ur2))
lallz2(u(=))

= > diam(Qp[2]) 7! B,

€1 £ @ivin =)
Taking the infimum over functions in L2(2g[2]) shows (5.27) for z € Vg N . The case
z € Vg N IS can be treated analogously by considering the Poisson problem with mixed
boundary conditions and the Friedrichs inequality. This concludes the proof. O

As the next step, we will discretize the local problems (5.26) in order to obtain computable
local fluxes o .[vy| for any discrete function vy € Xg. To this end, we introduce local
Raviart-Thomas spaces RT{(Tu[z]) of order ¢ € Ny on the patches Qp[z], which are
defined as

RTHTulz]) = {Tu € Ho(div; Qu[z]) : Tr|r € [PUT)] + 2 PUT) for all T € T[]}

Here, the notation 7 € [P4(T)]¢ 4 2 P4(T) means that there exist polynomials p; € P4(T)
and p, € [PY(T)]? such that 7(x) = py(x) + 2 p1(x) for all € T. This will be the discrete
counterpart of the space Hy(div;Qp[z]), in which the local equilibrated fluzes o p .[vy]
for discrete functions vy € X'y will be sought. By definition, the range of the divergence
operator applied to RT{(Tx[2]) is contained in

L3 (Qul2]) N PU(Tul2]) = P(Tul2])-

Let IT7; - L*(Qyz]) — PL(Tu|z]) denote the L?-orthogonal projection onto P{(Ty[z]).
The straightforward approach to define the constraint for the discrete minimization problems
would be to simply replace the exact solution v* in (5.25) with the discrete function vy, i.e.,

divey . lvi] = g:lva] = ¢. glva] — V¢, - (AVvg — f). (5.29)

However, a discrete o .[vg] € RT{(Tr[2]) can in general no longer satisfy that constraint.
Instead, we have to project g.[vy] onto PZ(Tu[z]), which leads to the discrete local
minimization problems

ou:lval = argmin |70 + ¢ (AVvr — F)llr242))- (5.30)
THERT(Tu[2])
div Ty =I1}; _(9z[va])

Let II%: L?(Qg[2]) — L?(Qu|z]) denote the L?-orthogonal projection onto L2(Qy[z]),
which, for all v € L?(Qg[2]), is given by

1 .
H:(v) _ v — alz] <U, 1>L2(QH[2D if z€VgnNQ, (5.31)
v if z € Vg nos.

Furthermore, we write Iy : L?(Q) — P4(Ty) for the L2-orthogonal projection onto P4(Ty).
The following lemma shows that the minimization problems (5.30) indeed admit unique
solutions, which can be computed by solving local saddle-point problems.
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Lemma 5.9 (local flux equilibration). For every Ty € T and z € Vg, the minimization
problem (5.30) admits a unique solution oy ,[vy) € RT(Tu|z]). With

a(Ty, TH) = (TH,TH) L2y 2) for all Ty, T € RT4(Tu2]), (5.32)
b(Tr,qm) = (divTH, ) 120,02 for dl 7w € RT{(Tulz]), qu € PYTul2]),
and
F(tu) = —(Tu,¢: (AVvg — f))r2(0u(=)) for all Ty € RT{(Tu[2]), (5.33)

Glqm) = (Z(g:[vn)), am) L2y =) for all qir € PU(Tu|z2]),

this solution is also the first component of the unique solution (o .[vk),TH:[VH]) €
RTE(Tulz]) x PL(Tulz]) of the saddle-point problem

aloplvpl,7H) +b(TH,rH:lvH]) = F(th) for all Ty € RTHTu|z2]), (5.34a)

blon:lvul, qu) = Glgu)  for all gu € P*(Tu[z]). (5.34b)

Moreover, there exists a constant Eg > 0 depending only on uniform o-shape reqularity of

T € T and the polynomial degree q such that
o[l aivien (=) < IF |l @ivian =)y + 2 diam(Qu(2]) B |Gl 2 @p =y~ (5:35)

For the proof we need Brezzi’s theorem from [Bre74]. The following formulation of Brezzi's
theorem is taken from [EG21b, Theorem 49.13].

Theorem 5.10 (Brezzi). Let X and Y be reflexive Banach spaces. Let a: X x X and

b: X XY be continuous bilinear forms. Define the operator B € L(X,Y") by Bx := b(z, "),

e., (Bx,y)yy = b(z,y) for allz € X andy € Y. Then, for any F € X" and G € Y’,

there exists a unique solution (Z,y) € X XY of the saddle-point problem
a(zZ,z) + b(x,y) = F(x) foralze X,

b(Z,y) = G(y) forally €Y. (5.36)

if and only if a(-,-) satisfies the inf-sup condition and the non-degeneracy condition on the
kernel of B, i.e.,

a(z, 7)
inf sup —————— =« >0,
weker(B)\{O}xex\{O} =l x|z x (5.37)

Vz € ker(B) \ {0} 3z € ker(B) : |a(z,z)| > 0,
and b(-,+) satisfies the inf-sup condition
|b(z,y)|
inf sup ———— =3 > 0. 5.38
veY vex [|l2]x[lylly 539

In this case, we have the followmg a priori estimates for the solution (Z,7):
Ll
< — .
Jallx < 2 1Fle + 5 (14 20 6y (5.390)
~ L al Ll el
< — .
il < 5 (1+ B0 1P + 2 (1+ 120 el (5.390)
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The condition (5.37) is automatically satisfied if a(-,-) is elliptic on the kernel of B, whereas
the inf-sup condition (5.38) is equivalent to the surjectivity of B. O

Furthermore, we need the following proposition, which links the saddle-point problem (5.36)
to a minimization problem.

Proposition 5.11 (equivalent minimization problem for saddle-point problem).
Let X andY be reflexive Banach spaces. Let a: X x X and b: X XY be continuous bilinear
forms that satisfy (5.37) and (5.38). Furthermore, suppose that a(-,-) is symmetric and
positive semidefinite, i.e.,

a(z,z)=a(z,x) and a(z,x) >0 forallz,zecX.

Then, for any F € X' and G € Y', (Z,y) € X x Y is a solution of the saddle-point
problem (5.36) if and only if the Lagrange functional

L(z,y) = %a(m,x) — F(x)+b(z,y) —G(y) forall (z,y) e X XY

satisfies
L(Z,y) < L(z,y) < L(z,§) for all (z,y) € X x Y,

i.e., (T,Y) is a saddle-point of L. In that case, the first component T is the unique solution
of the minimization problem

1
BE(@)= min (- - .
(7) min <2 a(z,x) F(w)) O
b(z,)=G
For a proof, we refer to |[EG21b, Proposition 49.11|. Finally, we need a discrete version of
Lemma 5.8.

Lemma 5.12 (discrete divergence is surjective). For all z € Vy, the operator
div: RT{(Tulz]) — Pi(Tulz]) is surjective. Moreover, there exists a constant B, > 0
depending only on uniform o-shape reqularity of Ty € T and the polynomial degree q such
that

(div T, qm) L2y 2))

inf sup
an€PL(Tu(2)) 7y erT(Th (=) ITH I H(divou =) |98 1204 2) (5.40)

> diam(Qp[2]) " B > 0.

Proof. Let qg € PL(Tu|z]) be arbitrary. In Lemma 5.8, we have already shown that
div: Ho(div;Qpy[z]) — L2(Qu|z]) is surjective for all z € Vy. Verbatim as in the proof of
Lemma 5.8, we first construct a function ¢ € Ho(div; Q[ z]) with

diVC =dqH and HC”L2(QH[ZD < Cp diam(QH[z]) HqHHLz(QH[Z]) (5.41)

Let II,: L?(Qy[2]) — P9(Tu[z]) denote the L?-orthogonal projection onto P4(Ty[z]).
[EGSV22, Theorem 3.2| proves the existence of an interpolation operator

Jr : Ho(div; Qu[2]) = RT(Tu|2])
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that satisfies the commuting property
divJu () = (divr) for all 7 € Ho(div; Q[ z]). (5.42)

Moreover, Jg is uniformly L2-stable with respect to the mesh size H up to data oscillations
of the divergence, i.e., there exists a constant C'7 > 0 depending only on uniform o-shape
regularity of Tz € T and the polynomial degree ¢ such that, for all 7 € Hy(div; Q[ z]),

i)

2
T ||div7-—Hz(div7-)||L2(T)] )

17 2 < O (I gy oy + 2

TGQH[Z]

In particular, since div{ = gy € P4(Tg|z]) and II, is a projection, we have

1T (Ol z2@u127) < C7 1€z (@p12))- (5.43)

By defining ¢ = Ju(¢), we thus obtain a function ¢y € RT¢(Tu|z]) with

5.42 . 5.4
div ¢y = div Tu(€) "2 T (dive) "2V T (qm) = g, and
5.43 (5.41) ‘
ICullzeuiz) < Crll€llzquzy < CpCg diam(Qu|z]) lqmllr2(y2)-

—-1/2

Proceeding as in the proof of Lemma 5.8, we define EU = (1+ CI% C%) and obtain

di ) z Y
inf sup (divry QH>L2(QH[ ) > diam(QH[z])_1 By >0,

au€PL(Tul2)) 7y erT(T =) ITH I H(@ivou =) 98 1204 (2)

where the constant Bo depends only on the uniform o-shape regularity of 7T € T and the
polynomial degree ¢q. This concludes the proof. O

Now we are ready to prove Lemma 5.9.
Proof of Lemma 5.9. The proof is split into four steps.

Step 1 (construction of o g .[vyg]| and rH . [vH]). Let z € Vg be arbitrary. In or-
der to apply Theorem 5.10, we set X = RT{(Tu[z]), Y = P{(Tu[z]) and, as in the
Brezzi theorem, define the operator B € L(X,Y") via Bty = (div Ty, ) 12(q,[-])- Since
divry € Pi(Tu|z]) for all 7y € RT{(Tu|z]), the kernel of B is then given by

ker(B) = {tg € RT{(Tu|z]) : divry = 0},

i.e., the subspace of divergence-free functions in R7{(Tx|[z]). By definition of the H (div)-
norm, it therefore holds

a(Tu, TH) = (TH, TH)12(04]2)) (5.44)

= HTHH%Z(QH[Z]) = ”THH%{(div;QH[z]) for all Ty € ker(B).
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=

Thus, the bilinear form a(,-) is elliptic on ker(B), which implies the condition (5.37).
Moreover, for all 7y € ker(B) \ {0}, it holds that

=1.

sup a(TH,TH) a(’TH,TH)

#rerT(Tal 2\ ITHl @V ) ITEl H@ven )~ 1T =)

Thus, the inf-sup condition of (5.37) is even satisfied with a = 1. Lemma 5.12 provides
the inf-sup condition (5.38) with 3 := diam(Qg[z])~! B,. Clearly, the bilinear forms a(-, -)
and b(+,-) are continuous. In particular, the Cauchy—Schwarz inequality and (5.44) show
la]| = 1. Overall, all assumptions of the Brezzi theorem 5.10 are satisfied. This yields the
existence and uniqueness of the solution (o g .[vy], 7u :[ve]) € RTH(Tulz]) x PL(Tulz])
of the saddle-point problem (5.34) with P?(T[z]) replaced by P{(T[z]) in the second
equation (5.34b). Using a = 1, ||al| = 1, and B = diam(Qy[z])~! B,, we obtain (5.35) from
the a priori estimate (5.39a) of the Brezzi theorem 5.10.

Step 2 (solution of saddle-point problem (5.34)). So far, everything has been proved
for the saddle-point problem (5.34) with P%(Ty[z]) replaced by its subspace P (Tx|z]).
In case that z € Vg N IQ, we have PI(Ty|z]) = PL(Tu[z]), which already implies that
(o z[vi], 7 :[ve]) is indeed the unique solution of the saddle-point problem (5.34). From
now on, we thus suppose that z € Vg N Q. It holds

PUTlz]) = PLTu|z]) + span{1}.

Therefore, it remains to show that

(5.32 (5.33)

) 5. !
(divon.[val, D22 = (Hi(g:lvn]), iz, = G(1). (5.45)

Integration by parts with vanishing boundary term (o .[vh] - 7)|aq, (-] = 0 shows for the
left-hand side of (5.45) that

b(om.lvul, 1)

<diV O'H,z[UH]a 1>L2(QH[z]) = _<0'H,z[UH]’ V1>L2(QH[2D =0.
For the right-hand side of (5.45), the fact that IT% is the L2-orthogonal projection onto
L2(Qg]2]) already implies
(I (g=[va]); 1) r2(ay2)) = 0-

Therefore, both sides of (5.45) vanish, which proves that (o g .[vk], 7H 2 [vr]) is indeed the
unique solution of the saddle-point problem (5.34).

Step 3 (II3;, =TIy on L2(Qp[z])). By extending the functions in L?(Qy[z]) and
PL(Tu|z]) by zero, we have the inclusions

L*(Qu[2]) CL*(Q) and PY(Tu(z]) € PY(Tnu).

In particular, we can consider both II};  and Il as mappings from L2(Qy|z]) to PU(Ty).
For v € L?(Qp[#]), these two projections are characterized by

(I vy qm) L2Qp(2) = (Vs qu) 12y -)) for all gg € PH(Tu[z]),

(5.46)
Mg v, qu) 2,12 = (0 q1) 120,12 for all gu € PU(Tu[z]).
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If 2 € Vg NOQ, II% is the identity and it holds P{(Ty[z]) = P4(Ty|z]) by definition, which

implies I}, , = Iy o IIZ. For 2z € Vy N Q, the characterization (5.46) shows that
h.v=gollf)v forallve L*(Qy[z]).

In any case, we obtain that II3; . = IIg o IT}. In particular, the projections II}; , and Iy

coincide on L2(Qg[2]).

Step 4 (0 H,z[vH] is minimizer of (5.30)). It remains to show that op.[vg] is the
unique solution of the minimization problem (5.30). Since II};, = IIg o II5 by Step 3
and Iy is the L2-orthogonal projection onto P4(Tx) 2 PL(Tx[z]), we have

(037 o (9=[vE)), am) 27 = (2 (9:[va]), qm) 1212 = Glan)  for all g € PHTu[z]).

This shows that the constraint div g = II}; , (g2 [vg]) in (5.30) is equivalent to the constraint
divry = IIi(g:[vk]). For any 7y € RT§(Tu[z]), we rewrite the minimized functional
in (5.30) as
7 H+¢= (AVor — P72
= Tull720y2)) + 2 (T 02 (AVOE = £)) 204 120) + 192 (AVOE = FlT200,12))

Therefore, with

. 1
E(ru) = SlITullizpz)) + (Ta: 62 (AVVH = F)r2@p(2) = 52070 m0) = F(Ta)
for all 7 € ’RT%(TH[Z])’

the minimization problem (5.30) is equivalent to the minimization problem

on:|ve) = argmin E(tw). (5.47)
THERTg(TH[Z])
div Ty =TT (gz [va])

Since a(+, -) is symmetric and positive semidefinite, Proposition 5.11 guarantees that o g .[vg]
is the unique solution of the minimization problem (5.47) and thus also of the minimization
problem (5.30). This concludes the proof. O

By extending functions in Hy(div; Q[ z]) by zero to Q \ Qg[z], we have the inclusion
Hy(div; Qp[z]) € H(div;Q) for all z € Vy.
Hence, we obtain that the global equilibrated fluzx

onlon] =Y ou:lvu (5.48)

z2eV

is contained in the global Raviart-Thomas space, i.e.,
orlvg) € RTYTy) = {rg € H(div;Q) : Tgl|r € [PUT)]? + 2z PUT) for all T € Ty}

Moreover, the following corollary shows that the global equilibrated flux o g [u};] for the
Galerkin solution u}; satisfies the constraint (5.22) up to the application of the L?-orthogonal
projection Il.
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Corollary 5.13 (global flux). The global equilibrated fluz o g u}y;) for the Galerkin solution
ujy satisfies
divegluy] = My (gluy]). (5.49)

Proof. The proof is split into two steps.
Step 1 (g:[u};] € L2(Q2u[2])). The definition of the Galerkin solution (2.3) implies

C20(6. glut] — V- - (AVuly — £), 12 s)

= (glulr]; @2 2p(2)) T (F Vo) r2y2]) — (AVUl, Véu) 2,02

2 F, b2 e + (F Vo) aap(s)) — aludn 62) 0.

Hence, the Galerkin solution u}; satisfies

(9=1ukr), V2120

(5.29)

g [u] b. glut] — V. - (AVul, — f) € L2(Qy[z]) for all z € Vy. (5.50)

In particular, we have II%(g.[u};]) = g:[u}].

Step 2 (divog[uyy] = Hu(g[uly])). Since g.[uty] € L2(Qu[z]), Step 3 of the proof of
Lemma 5.9 shows IIy; (g:[uf;]) = U (g:[uf]) for all z € V. Thus, the definition (5.30) of
the local equilibrated fluxes o g . [u};] provides

divegluy] = Z div oy . [u}] Z Iy . (9:[uF])
2V 2V
5.50
P2 ST Hulg-lul) = (Y gelu)).
z2EVH z2EVH

Moreover, the fact that ¢, is a partition of unity implies

* (529) * * * * *
Y g:lul) =7 Y (6xglui] = Vs (AVuj — ) = glul] - V1-(AVuj, — f) = glujy].
2eV zeVy
Combining these two equations yields the desired result (5.49), which concludes the proof. [

In the spirit of (5.23), we now define the equilibrated flux estimator pg as in (2.12) with
refinement indicators

pa(T,vg) = lou(va] + AVvg — fllr2(m) (1 = Tg)glva]ll L2

forall T € Ty, vy € Xy.

diam(7)
™ (5.51)

We finish this subsection by proving reliability (A3) of the equilibrated flux estimator (5.51).
Proving reliability of pz is, in theory, not necessary, since it already follows from the
weak equivalence (2.23) of the equilibrated flux estimator and the residual-based estimator,
which will be shown in the next subsection. However, as one of the main properties of
the equilibrated flux estimator is the known reliability constant, it is indeed worth proving
reliability of pyr.
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Theorem 5.14 (reliability of the equilibrated flux estimator). For Ty € T, let g be
the equilibrated fluz estimator (5.51). Let a > 0 denote the inf-sup constant (5.20a). Then,
it holds

ot = ufllme) < lw —ujlle < par(udy), (5.52)
i.e. the equilibrated flux estimator pg is reliable in the sense of (A3) with reliability
constant Cre = 1 if the discretization error is measured with respect to the dual norm || - ||,
and with reliability constant Crq == « if the discretization error is measured with respect to
the H -norm.

Proof. Inf-sup stability (5.20a), Corollary 5.13 and integration by parts show

|a(u* —UH,w)\

a lur —ufll i) < sup

weri\foy  lwllme
(2.3) sup [(fw) 2y + (f, vw>L2(Q) — a(uj, w)|
we HI(Q)\{0} 1wl 710
(5.22) [(glufr), w) 2y — (AVuy — f,Vw) 2(q)l
= sup (5.53)
we HL (Q)\{0} 1wl (0
649 o [(divogluy] + (1 — Hm)gluy], w)r2) — (AVuy — f, V) 2 )l
weHL (\{0} 1wl 1)
_ sup (onuy] + AVuy — f,Vw) 2y + (1 = g glug], w) r2)
we HL (Q)\{0} 1wl g1 (0

Splitting the nominator element-wise and using the triangle inequality leads to
(o aul] + AVul; — f,Vw) r20) + (1 — g)gluy], w) 20|
< AV \% (1-T1I x (5.54)
s Z (o uluf] + AVuG — f,Vw) 2| + [(( m)glugl, w) 2| )-
TeT

For the second term in the sum, the fact that Il an L?-orthogonal projection, the Cauchy-
Schwarz inequality, and the Poincaré inequality on the convex domain 7" with known constant
Crp =7 (cf. [EG21a, Lemma 3.27]) show

(1 = Tg)gluj), w) 2y < [((1 = g)glugy], (1= g)w) 2|
N dlam( ) (5.55)
< N =Tm)glupllliceqry ——

Vw27
Hence, after applying the Cauchy—Schwarz inequality to the first term in the sum, a
combination of the previous inequalities together with the Cauchy—Schwarz inequality for
sums results in

(o uluy] + AVul; — f,Vw)r2) + (1 — Oa)gluf], w) 20|

(5.51)
(5.55) diam(T
<Y (loutui + AV — Fliar + 220

TGTH

10 = T gl 2y ) 9ol

Z o (T, uir) [Vl ey < pa(uf) [Vwllzeq) < pa(ug) [wll g e
TeETy
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Together with (5.53), this proves the reliability estimate (5.52), which concludes the proof. [

Remark 5.15 (pure diffusion problems). For pure diffusion problems, i.e. b =0 and
¢ =01n (2.4), it is possible to achieve the reliability constant Cie; = 1 by measuring the
discretization error in the energy norm ||| - [|* = (AV(:), V(:)) 12(q). To this end, one uses

the estimate <AV( . ) - >
s —of| < sup ¢ YR

weHL ()\{0} ([[w]l

instead of the inf-sup stability (5.20a) in (5.23), which leads to
llu* = oll] < |A7Y2 (o o] = f) + A2V0] 2.

By appropriately altering the minimization problem (5.30) for o g .[vy] to

op:lvg) = argmin AT 27y 4+ ¢, (AV2Voy — ATV2F) | 2 ple0)s
THERTg(TH[Z])
div g =I%(gz[va])
the resulting equilibrated flux estimator jijy is reliable with constant Ciq = 1 in the energy
norm, i.e., it holds |||u* — wj ||| < pa(u};).

5.2.2 Weak equivalence of the equilibrated flux estimator and the
residual-based estimator

In the following proposition, we show that the equilibrated flux estimator pg from (5.51)
and the residual-based estimator 7y from (2.14) are weakly equivalent in the sense of (2.23).

Proposition 5.16 (equilibrated flux estimator and residual-based estimator are
weakly equivalent). Suppose ¢ > p and define s == q —p > 0. Furthermore, suppose that
A € [P(To)|¥4, b e [PHH(To)]%, c € P*(To), f € PUTo), and f € [PI"Y(To)|¢. Then, the
equilibrated fluz estimator pg from (5.51) is weakly equivalent to the residual-based estimator
nu from (2.14) in the sense of (2.23) with m = 1. The equivalence constant Ceq depends
only on the polynomial degrees p and q, the initial triangulation Ty, and the use of newest
vertex bisection.

Proof. The proof is split into two steps, corresponding to the two bounds (2.23a) and
(2.23b) of the weak equivalence (2.23).

Step 1 (proof of (2.23b)). For Ty € T, let T € Ty be arbitrary. An inverse esti-
mate [EG2la, Lemma 12.1] and H(T') ~ diam(7) show for the local volume residual
term (2.15) of ny that

H(T)?|| — div(AVul — f) + b Vuly + cufr — fl320,
(5.22) , .
2D H(T)? |lgluiy) + div(AVagy — £
5.49 , N N
O H(T)2 || divionluy] + AVuy — £+ (0 = Ua)glufg]Zeey  (5.56)

< lomluy] + AVuly = £l 72 + diam(T)? |1 = Tg)gluf] |72 )

(5.51)
5 12254 (Ta u’I({)Z
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5 Applications

Here, the hidden constant depends only on uniform o-shape regularity of 7 € T and the
polynomial degree ¢. Since o y[u};] € H(div; (), its normal jumps [o g[u};] - ng] vanish
across any face F € 51?1- Therefore, the trace inequality [DE12, Lemma 1.49] and an inverse
estimate [EG21a, Lemma 12.1] show for the local jump term of ny that

H(T) |[(AVuG = F) - 2]l 72 0rm0)
= H(T) |[(ouluy) + AVuy — f) - 0]l 0rm0)
S loului) + AVuy = fllf2, )
< pr(Tu [T, ujy)?.

(5.57)

Again, the hidden constant depends only on uniform o-shape regularity of 77 € T and the
polynomial degree ¢q. The combination of (5.56) and (5.57) provides

n (Touwip)? < pp (T[T, uy)? for all T € Ty.
This concludes the proof of (2.23b).

Step 2 (proof of (2.23a)). For Ty € T, let T € Ty be arbitrary. Let u};(f, f) be the
Galerkin solution of the model problem (2.4) with data f € P4(Tg) and f € [P9~1(Tx)]¢.
By (2.3), u¥(f, f) depends linearly on (f, f) € P4(Ty) x [P?1(Tu)] = V. Hence, the
mapping |(f, f)|2 = nu(Ta[T],u};(f, f)) defines a seminorm on V.

Since the right-hand in the saddle-point problem (5.34) is linear in f, f, and uw}, (f, f),
the local equilibrated flux oy .[u};(f, f)] also depends linearly on (f, f) for all z € V.
Therefore, also

(£ =Y Nomalui(f. )+ 6= (AVal(f. ) = 2=y (5:58)

zeVyNT

defines a seminorm on V. Since the nodal basis functions ¢, form a partition of unity, the
triangle inequality shows

lonluy] + AVl — fllrzer)
< S Nomelui] + é: (AVEl — Fllzui=p = 1(F Al 659

z2eVyNT

Since V is finite-dimensional, Lemma 5.4 guarantees that there exists a constant Ceq > 0
such that for all (f, f) e V

(5.59)
pa(Touy (f, ) < 1l < Ceq|(f, Fl2 = Ceqnu (Tu [T |, up (f, F))

if and only it holds

(£, P)l2=0 = [(f, )l =0 forall (f,f)eV. (5.60)

The constant Ceq obtained in this way initially depends on the shape of the patch T [T']
and the polynomial degrees p and ¢q. However, since newest vertex bisection leads to finitely
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many patch shapes, it follows that Ceq depends only on the use of newest vertex bisection,
the initial triangulation 7y, and the polynomial degrees p and ¢. It thus only remains to
prove (5.60).

To this end, let (f, f) € V be arbitrary with |(f, f)|2 = 0. For the sake of readability,
denote u};(f, f) by u};. By the definition of the residual-based estimator ng from (2.14)
and gluj;] from (5.22), the condition ng (T[T |, u};) = 0 implies that

[(AVu} — f) - n] =0 for all £ € £ N Q[T (5.61a)

—div(AVuy — f) = gluy] onall T € Ty[T]. (5.61b)
From (5.61a), it follows that AVu}, — f is continuous across all faces E € £ N Qu[T],
which means that (5.61b) even holds on Qg[T]. For arbitrary z € Vg with z € T, we
define Ty, = —¢, (AVuy — f) € [P(Tu[2])]¢. By the previous observations, Ty . is a
H(div; Q| z ])-function with divergence

. (5.61b) N * (5.29) * q
divrg. =" ¢ gluy] = V.- (AVuyy — f) =" g:[up] € PU(Tu[z]).

The last inclusion follows from the assumptions on the polynomial degrees of A, b, ¢, f,
and f. By (5.50), we even have g,[u};] € L2(Qx[2]) and therefore

divry. =g: [up,] = ;Iz(gz [up])-
In the case that z € Vg NT'NOQ, we already have T, € Ho(div; Qnlz]). If z € VENTNQ,
it holds T . -n = ¢ ((AVu}, — f)-n) = 0 on 0Qg[ 2] by the definition of ¢., which verifies
TH, € Ho(div; Qy[z]) for all z € Vg NT. Thus, it holds

TH,z S Ho(div; QH[Z]) N [Pq(TH[Z])]d C RTg(TH[Z])

Overall, we have shown that 7p . is an admissible function in the local minimization
problem (5.30). Since Tg . is, by definition, clearly the minimizer of this problem, we have
on:uy) =TH.=—¢.(AVuj — f). By definition (5.58), it therefore holds |(f, f)|1 = 0.
This concludes the proof of (5.60) and thus the proof of the weak equivalence (2.23). [

Remark 5.17. We stress that Step 1 of the previous proof uses only that the global flux
o m|uyy] satisfies (5.49). The restrictions on the coefficients and the data are only necessary
for Step 2. However, there is a different proof for Step 2 that, instead of a seminorm
argument, relies on the non-trivial estimate

d.rHeRHI%%?T(H[f” DHTH R o 5.62
ivrg=II} 2[ug, i i '
e S opim 7 s [6s (Al = O o) 562

div r=IT}; _(9=[u}])

where Iy ¢ [L2(Qpu[2])]? — [PU(Tu[2])]? + 2P4(Ty|z]) is the L?-orthogonal projection
onto the space of piecewise Raviart—-Thomas functions (see [BPS09, Theorem 7] for d = 2,
and [EV20, Theorem 2.5, Corollary 3.3] for d = 3). Although this proof is a lot more
involved, it has the advantage that it only requires A and f to be piecewise polynomial
and that the resulting equivalence constant is independent of the polynomial degrees p
and ¢q. We note that the converse estimate of (5.62) holds with known constant 1 as
RTE(Tu|z]) C Ho(div; Q[ z]) and hence the minimum on the right-hand side is taken over
a much larger space.
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5.2.3 Weak stability of the equilibrated flux estimator

In order to fulfill the requirements of Theorem 3.14 and Theorem 4.3, it only remains to
prove weak stability (W1) for the equilibrated flux estimator (5.51). This is the content of
the following proposition.

Proposition 5.18 (weak stability (W1) of the equilibrated flux estimator). The
equilibrated flux estimator pg from (5.51) satisfies weak stability (W1) with r = 0. The
constant Cgap, depends only on the uniform o-shape reqularity of Ty € T, the polynomial
degree q, the bounds ||A||Le, ||b||Lee, ||c||Le, and the ellipticity constant Cey > 0.

Proof. The proof consists of three steps.

Step 1 (first stability estimates). For Ty € T, let pgy be the equilibrated flux estima-
tor (5.51). Let vy, wy € Xy and Uy C Ty be arbitrary. The reverse triangle inequalities
on the sequence space ¢? and the Lebesgue space L? show

o U, ve) — o U w) > <Y | (Tyvom) = p (T, wi)|

TeUy
(5.51)
(3.14)
< Y (lonlon) — onlonllZaem + 1AV @r —wm e, (5.63)
TeUy
diam(7")?
+ S0~ M) glon] — gl D))

As in the proof of stability (A1) in Proposition 3.10, we want to bound the right-hand
side of (5.63) by ||lvg — wgl|* up to a constant. To this end, we estimate the terms in
the sum separately. The second term in the sum can be estimated using the assumption
A € [L2(Q))4%d e,

sym
HAV(’UH - ’wH)”L2(T) S HAHLoo HUH — wHHH1(T) for all T € UH (5.64)

Similarly, since Iy is an L2-orthogonal projection, b € [L*°(2)]¢ and ¢ € L°°(Q) imply for
the third term in the sum

L) 1~ 11 glom] — glwnDlzary < T2 o] — gz
(522) dial:Tl(T) ||b . V(UH — ’LUH) +c (UH - wH)HLQ(T) (5'65)
diam(€2)

<

(HbHLoo + HCHLoo) HUH — wHHHl(T) forall T € Uy .

It thus only remains to estimate the first term ||o g [vy] — o y[wn]| 27y in the sum (5.63).

Step 2 (estimate of local flux difference). The triangle inequality and the definition
of the global equilibrated flux (5.48) yield

lonlva] = onlwalllizry < Y louzlva] = ou:lwalllzzo-). (5.66)

2EVYH
zeT
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Subtraction of the saddle-point problems (5.34) for oy .[vy] and o g .[wy]| shows

a(on:[ve] — on:(wh), TH) + b(TH, "H:[VH] — rH:[WH])
—(TH,¢Z (AV(UH — wH))>L2(Q[Z]) for all T € RTg(TH[Z]),

(5.67)
blon.lvy] — on.([wu],qm)
= (II7(g:[ve] — g:[wn]), qu) 12y for all gy € PHTu[z]).
Therefore, the a priori estimate (5.35) provides
||0-H,Z[UH] - O-H7Z[wH]||H(div;Q[z]) < H <¢Z (AV(UH - wH))7 '>L2(Q[z}) HH(div;Q[z])’ (5 68)

+2 dlam(Q[Z]) E;l H<H;(gz[vH] - gz[wHD? >L2(Q[z}) HLQ(Q[Z])"

The Cauchy-Schwarz inequality, the fact that |¢.| < 1, and A € [L®(Q)]2%¢ imply for
all Ty € RT{(Twu|[z]) that

¢z (AV(ve —wi)), TH) L2 )| < 1Al [[V(or —wi)ll 22 ITH 200 2)-
Hence, the first term of the right-hand side in (5.68) can be estimated by
(6= (AV(ve — wr)), ) r2(0f- ])HH diviafz)y < 1Al lve — wallmor2)- (5.69)

For the second term in (5.68), plugging in the definitions of g, and g and using the Cauchy—
Schwarz inequality leads, for all gz € P (Tg[2]), to

[{IT

z( [ ] _gz[wH])7QH>L2(Q[zD’
(5
HH (sz vp| = glwn]) — V. - (AV(vg — wH))) ||L2(Q[Z])HQH||L2(Q[Z])
Since II% is an L2-orthogonal projection, we can further estimate the first term in the product
by
HH:((Zsz(g[vH] - g[’LUH]) - v¢z : (AV(UH - wH))) HLQ(Q[Z])
< |lo=(glvn] = glwn]) = Vo, - (AV(ve — wn))l2(0r2)

"2 6.6+ V(on — wir) + ¢ (v — wn)) + V6. - (AV (0 — wn))l2cop)
< l¢2(b-V(vy —wn) + c(ve —wn)) 2] + VP2 - (AV(vr —wn))l L2 )2))-
The fact that [¢.| <1, b€ [L®(Q)]4, and ¢ € L>=(Q) imply
l6:(b - V(vi = wir) + e wr = win)lrzopey < (bllzs + lell) lvm = wirllms g
The scaling ||V || () < diam(Q[2])~" and the assumption A € [L(Q)] % show

sym

IV, - (AV(vy — wp))|l 2027 S dam(Q[2]) " |[AV (ve — wa) |l 12(9)21)
< diam(Qz]) " || Al e [lver — wa |l gapz))-
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Altogether, combining the previous four estimates we obtain
KM (g:[vn] — g:=lwn)): ) r2ra) | 2 payy S diam(Q[2])) ™" log — wall o). (5.70)
Overall, a combination of the estimates (5.66), (5.68), (5.69), and (5.70) shows

lonlva] = onlwalllizay S Y lvr — wallg o)

eV
zeT

(5.71)

Step 3 (combination of local estimates). Using (5.71), (5.64), and (5.65), we can fur-
ther estimate the right-hand side of (5.63) by

wr Un,vi) = p U, win) P S Y Mlvm —wallipgy + D D e —walligp.)-

TeUy TeUy eV
zeT
(5.72)
Therefore, uniform o-shape regularity and uniform ellipticity of a(-,-) imply
n U, vm) — pr U wi)|? S llor — wal|?.
This concludes the proof of weak stability (W1). O

Finally, we have verified all conditions of Theorem 3.14 and Theorem 4.3 and can therefore
conclude full R-linear convergence and optimal complexity of Algorithm B steered by the
equilibrated flux estimator.

Corollary 5.19. Let 0 < 0 <1, Cpark > 1, A > 0, and ul € Xy be arbitrary. Suppose ¢ > p
and define s = q —p > 0. Furthermore, suppose that A € [P*(Tp)]%*?, b € [P*+1(To)]%,
c € P*(To), f € PUTo), and f € [PTY(To)]? in the model problem (2.4). Let Algorithm B
be steered by the equilibrated flux estimator pg defined in (5.51). Then, Theorem 3.1/
guarantees full R-linear convergence of the quasi-error (3.27) and Theorem 4.3 ensures
optimal complezity of Algorithm B.
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6 Numerical experiments

In this chapter, we examine the numerical performance of AFEM with inexact solver
steered by equivalent estimators (Algorithm B). Our primary focus lies on demonstrating
optimal convergence rates with respect to the overall computational time, as this is the
key result of this thesis (Theorem 4.3). To this end, we consider the ZZ-estimator (5.6)
and the equilibrated flux estimator (5.51) from Chapter 5, for which we have shown that
they satisfy the assumptions of Theorem 4.3 and thus guarantee optimal complexity of
Algorithm B provided that the adaptivity parameters are sufficiently small (Corollary 5.7
and Corollary 5.19). We also present comparisons of both estimators with the standard
residual-based estimator (2.14), demonstrating their potential as practical alternatives in
adaptive finite element methods. All experiments in this chapter employ the MATLAB
software package MooAFEM from [IP23].

6.1 Experiments with the ZZ-estimator

In this section, we first provide a brief overview of the implementational details for the
ZZ-estimator, followed by numerical experiments for the Poisson model problem (6.3), a
nonsymmetric second-order PDE (6.6), and a diffusion problem (6.9).

6.1.1 Implementational aspects for the ZZ-estimator

Recall the ZZ-estimator (5.6), which we defined in Section 5.1 for the PDE (5.1). In
the following, we consider a weighted version of the ZZ-estimator (5.6), where the patch
contributions in the oscillation term are scaled by the inverse of the number of patch-elements,
i.e.,

ot (T, v)? = (T, o) + (T, o), (6.1)

where the recovery term p}°(7T',vy) and the oscillation term p%°(T, vy ) are defined as

(T vg)? = [la!/2(1 — GH)VUHH%Q(T)

W) =Y S IR m) = o) g )y (62)

#T
z€VENQ
zeT
Analogously to (2.12), we write
rec — Z 'urec T, UH and 'uosc — Z Mosc T, 'UH

TeTy TeT

The weighting in (6.2) is introduced to lower the influence of the oscillation terms p%°(T, ver)
in the global error estimate g7 (vgr). Since the number of elements in a vertex patch #7x[ 2]
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6 Numerical experiments

is uniformly bounded by the constant Cpaten > 1 from Remark 2.12, the analysis in Section 5.1
also holds for the weighted ZZ-estimator (6.1) with slightly different constants.

For ease of implementation, we consider only the case of lowest-order approximation
rix(ve) € P(Qu[2]) of the residual Ry (vy), i.e., ¢ = 0 in (5.5). For ¢ > 1, the imple-
mentation becomes more involved, as one needs to introduce a patch-based basis for the
spaces P4(Qy[z]).

In Section 5.1, we have defined the averaging operator Gy in terms of the patch averaging
operator (5.2) (in the case p = 1) and the Scott—Zhang projection (5.4) (for p > 1). In
contrast to the patch averaging operator (5.2), the implementation of the Scott—Zhang
projection (5.4) might seem more involved at first glance. However, as it only needs to be
evaluated for discrete functions Vvy € [PP~1(Ty)]?, property (5.3) of the dual basis {1, }_
guarantees

(5.3) .
(5, Vun)r2es,) = Vonls;(a;) Vi=1,...,J,

i.e., the coefficients of the Scott—Zhang projection (5.4) of Vuy are determined by point
evaluations of the gradient Vug in the nodes {a; }3]:1 of the nodal basis {¢; }3-]:1. While Vog
is not continuous across the element boundaries, the associated element S; € Ty for each node
a; can be selected arbitrarily according to the definition of the Scott-Zhang projection (5.4),
allowing to choose any of the values Vv takes at a node a; as the corresponding coefficient
in the Scott—Zhang projection (5.4).

Overall, the effort required to implement the ZZ-estimator (6.1) is at least comparable, if
not less, than that needed for the residual-based estimator (2.14).

6.1.2 AFEM with the ZZ-estimator for the Poisson problem

In order to verify Corollary 5.7, which is a consequence of Theorem 4.3, we first consider the
Poisson model problem on the L-shaped domain, i.e.,

—Au*=f inQ:=(-1,1)2\1[0,1], uw*=0 on 9N (6.3)

The right-hand side f is chosen such that the exact solution u* € H{ (), for polar coordi-
nates (r, ) € RF x [0,27), is given by

u*(r, p) = /3 sin (Z (cp = ;T)) (1 —r?sin®(¢)) (1 — r? cos?(y)). (6.4)
Problem (6.3) is well-known to exhibit a singularity at the re-entrant corner (0,0) of the
L-shaped domain €2, making it a suitable test case for adaptive finite element methods.

Figure 6 visualizes the initial mesh 7T and the adaptively generated meshes Ts, Ty ... Ti4,
computed by Algorithm B using the ZZ-estimator (6.1). We observe that the algorithm
captures the singularity at (0,0) by refining the mesh in the vicinity of the origin.

Figure 7 and Figure 8 illustrate the convergence of the ZZ-estimator ,LL((U%) in Algorithm B.
In Figure 7, we use the Scott—Zhang projection (5.4) for the averaging operator G, while in
Figure 8, we use the patch averaging operator (5.2). In either case, we see that Algorithm B
leads to optimal convergence rates —p/2 with respect to the theoretical complexity

complexity({) = Z #To (6.5)

(¢ k)EQ
€' k| <[,k
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(a) #To = 12 (b) #73 = 62 () #71 = 162 (d) #75 = 270
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(e) #7Ts = 386 (f) #7T1o = 514 (8) #Ti2 = 687 (h) #T14 = 941

Figure 6: Sequence of meshes 7, generated by Algorithm B wusing the
ZZ-estimator (6.1) with the Scott—Zhang projection (5.4). The algorithm is applied
to problem (6.3) with f corresponding to the exact solution (6.4), parameters
0 = 0.5, A = 0.1, and polynomial degree p = 4.
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Figure 7: Convergence history plots of Algorithm B using the ZZ-estimator p, (6.1)
with the Scott—Zhang projection (5.4). The algorithm is applied to problem (6.3)
with f corresponding to the exact solution (6.4), initial mesh 7y, depicted in Fig-
ure 6a, fixed parameters § = 0.5 and A = 0.1, and polynomial degrees p = 1,2, 3,4.
The convergence of ug(u%) (solid lines) and the corresponding total error |||u* — u%“\
(dashed lines) is presented with respect to the theoretical complexity (6.5) (left)
and the total computation time (right). For p = 1, the ZZ-estimator appears to be
asymptotically exact.

75



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

6 Numerical experiments

100 ] 100 ]
ERURES 1 20t} g
E 5
8 8

1072 F E 1072 F E
TEETTTI B S W T 1T B S W R UET B S A N R U1 S S SR R U171 S A SR ST R R} 1l 1 Ll 1 Lol 1 Ll
10t 102 103 10* 10° 109 107 107! 10° 10t 102
complexity(¢) total computation time [s]

Figure 8: Convergence history plots of Algorithm B using the ZZ-estimator p, (6.1)
with patch averaging (5.2). The algorithm is applied to problem (6.3) with f
corresponding to the exact solution (6.4), initial mesh 7y, depicted in Figure Ga,
and fixed parameters § = 0.5 and A = 0.1. The convergence of ug(u%) (solid line)

and the corresponding total error |||u* — u%]” (dashed line) is presented with respect
to the theoretical complexity (6.5) (left) and the total computation time (right).
Again, this variant of the ZZ-estimator appears to be asymptotically exact.

and, more importantly, with respect to the total computation time. Hence, the observed
convergence rates are consistent with the theoretical results presented in Theorem 4.3 and
Corollary 5.7.

In Figure 9, we compare the convergence of the contributions ,u@ec(u%) and ugsc(u%) (6.2)

of the ZZ-estimator (6.1) with the residual-based estimator m(u%) (2.14) and the total error

[l|lu* — u%m The ZZ-estimator is computed using the Scott—Zhang projection (5.4) as the

averaging operator Gp. The results are presented for the polynomial degrees p = 1 (left)
0osc

and p = 4 (right). In the case of p = 1, we observe that the oscillation part u (u%)
is of higher order, since it converges with rate —1. Hence, one might consider to drop
the oscillation term u?sc(uﬁ) in the ZZ-estimator (6.1) for this case. While the residual-
based estimator 77((U%) overestimates the total error |||u* — u%”\, the ZZ-estimator ug(u%)
gives a very accurate error estimate. In contrast, for p = 4, the oscillation term ugsc(u%)

dominates the recovery term ,u@ec(u%) approximately by a factor of 10, which is likely due

to the simplifying choice of lowest-order approximation ¢ = 0 in (5.5). Because of this, the

ZZ-estimator M(u%) overestimates the total error |||u* — u%]H more than the residual-based

estimator ng(u%). However, the recovery term ,u?ec(u%) still provides a good approximation

of the total error |||u* — uf”] Moreover, even though the oscillation term 1> (uf) is not of

rec

higher order for p > 2, using only the recovery term p; (u%) for steering Algorithm B still
led to optimal convergence rates in our testing.
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Figure 9: Convergence history plots of Algorithm B using the ZZ-estimator (6.1)
with the Scott—Zhang projection (5.4). The algorithm is applied to problem (6.3)
with f corresponding to the exact solution (6.4), initial mesh 7y, depicted in
Figure 6a, fixed parameters § = 0.5 and A = 0.1, and polynomial degrees p = 1

rec

(left) and p = 4 (right). The convergence of the estimator contributions 1 (u%) and

u‘l?sc(ug), the residual-based estimator ng(fu%) (2.14), and the total error |||u* — u%]H
is presented with respect to the theoretical complexity (6.5).

6.1.3 AFEM with the ZZ-estimator for a nonsymmetric second-order PDE

Since the analysis in Section 5.1 covers more general problems than the Poisson problem (6.3),
we now consider the nonsymmetric second-order PDE

—div(aVu*) +b-Vu* +u* =1 in Q:=(-1,1)>\[0,1]*, »* =0 on 9N (6.6)

with a(z) = 10 - e l#=vl2 for y == (0.5,-0.5)" and b(z) = 1 — 2. This problem is
nonsymmetric due to the presence of the convection term b - Vu*. We deal with the
nonsymmetry as described in Section 2.4.2, where we showed how to derive a contractive
solver for nonsymmetric problems from contractive solvers for symmetric problems by means
of the Zarantonello iteration (2.36). More specifically, we proved that for a sufficiently small
parameter § > 0, there exists a lower bound jy, > 0, such that j > jo solver iterations
applied to the symmetric problem of the Zarantonello iteration (5.36) correspond to one
step of a contractive solver for the nonsymmetric problem (6.6). In contrast to the Poisson
problem (6.3), the diffusion in (6.6) is not constant. The diffusion coefficient o € C(Q)
chosen in (6.6) peaks at the point y = (0.5, —0.5) " and decays exponentially. Its effect can
be observed in the illustration of the computed solution u% in Figure 10. The non-constant
diffusion is an additional challenge for the adaptive algorithm, apart from the singularity at
the re-entrant corner (0,0) of the L-shaped domain (2.

Figure 11 illustrates a mesh 7; generated by Algorithm B using the ZZ-estimator (6.1)
with the Scott—Zhang projection (5.4). We can clearly observe that the algorithm captures
both the singularity at (0,0) and the diffusion peak at (0.5, —0.5) by refining the mesh in
the vicinity of these points.
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0.5 1 1 0

Figure 10: [llustration of the computed solution Ugo for problem (6.6). The solution
is obtained from Algorithm B using the ZZ-estimator (6.1) with the Scott—Zhang
projection (5.4). In the algorithm, we use 7, depicted in Figure 6a, as initial mesh,
fixed parameters § = 0.5, A = 0.1, = 0.5, j = 5, and polynomial degree p = 3.
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Figure 11: Mesh generated by Algorithm B using the ZZ-estimator py (6.1) with

the

Scott—Zhang projection (5.4). The algorithm is applied to problem (6.6) with

initial mesh 7y, depicted in Figure 6a, fixed parameters § = 0.5, A = 0.1, § = 0.5,

j =

5, and polynomial degree p = 3. We illustrate the mesh 7z, consisting of

20291 elements. In addition to displaying the mesh (left), we also visualize the
corresponding mesh-size function H(T) = |T|"/? (right).
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Figure 12: Convergence history plots of Algorithm B using the ZZ-estimator u, (6.1)
with the Scott—Zhang projection (5.4). The algorithm is applied to problem (6.6)
with initial mesh 7y, depicted in Figure 6a, fixed parameters § = 0.5, A\ = 0.1,
0 = 0.5, j = 5, and polynomial degrees p = 1,2,3,4. The convergence of W(u%)
is presented with respect to the theoretical complexity (6.5) (left) and the total
computation time (right).
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Figure 13: Convergence history plots of Algorithm B using the ZZ-estimator yy (6.1)
with patch averaging (5.2). The algorithm is applied to problem (6.6) with initial
mesh 7y, depicted in Figure 6a, and fixed parameters § = 0.5, A = 0.1, § = 0.5,
and j = 5. The convergence of ,ug(u%) is presented with respect to the theoretical
complexity (6.5) (left) and the total computation time (right).

Figure 12 and Figure 13 show the convergence of the ZZ-estimator ,ug(u%) in Algorithm B
for the nonsymmetric problem (6.6). In Figure 12, we use the Scott—Zhang projection (5.4)
for the averaging operator G, while in Figure 13, we use the patch averaging operator (5.2).
In either case, we observe that Algorithm B leads to optimal convergence rates —p/2 both
with respect to the theoretical complexity (6.5) and the total computation time. Thus, the
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observed convergence rates further confirm the theoretical results presented in Theorem 4.3
and Corollary 5.7.

Finally, Table 1 and Table 2 present experimental contraction factors for g, (2.38) and
getr (2.40). For an index pair (k, j), the experimental contraction factor g, is computed as

Il = g |
Qalg = 1 ka1 (6.7)
Similarly, for a solver index k, the experimental contraction factor g, is defined as
k7j
Wiy — Upr
Gepr = H*Hkiil,LH (68>
gy =gl

Table 1 and Table 2 present the mean value and standard deviation of the experimental
contraction factors q., and q,,, computed in different runs of Algorithm B applied to the
nonsymmetric problem (6.6). In each run, we varied the polynomial degree p = 1,2,3,4
and the number of solver iterations 7 = 1,2, 3,4, 5 while keeping all other parameters fixed.
We observe that regardless of the palynomial degree p and the number of solver iterations
J, both g, and g, are mostly below 0.7, which is considered a good contraction factor.
While this is to be expected for G,y it is surprising that g, is low even for j = 1.

p=1 p=2 p=3 p=4
0.6124 £0.0701 0.7624 £ 0.0732 0.7721 £0.0732 0.7804 £ 0.0658
0.5468 £0.0346 0.6461 £ 0.0535 0.6623 £ 0.0531 0.6654 £ 0.0489
0.5132 £0.0128 0.5802 £0.0344 0.5933 £ 0.0350 0.5966 +£ 0.0329
0.5065 £ 0.0065  0.5522 £ 0.0214 0.5634 £ 0.0228 0.5627 £ 0.0207
0.5023 £0.0026  0.5277 £0.0120 0.5357 £ 0.0133 0.5330 £ 0.0112

SIS S S >
I T
U W N

Table 1: Mean value and standard deviation of the experimental contraction
factor g., (6.8) in different runs of Algorithm B applied to the nonsymmetric
problem (6.6). In each run, we used the ZZ-estimator (6.1) with the Scott-Zhang
projection (5.4), the same initial mesh 7, depicted in Figure 6a, and the same
parameters 6 = 0.5, A = 0.1, § = 0.5, but different polynomial degrees p =1,2,3,4
and different numbers of solver iterations j = 1,2, 3,4,5. The algorithm was run
until the number of degrees of freedom exceeded 106.

6.1.4 AFEM with the ZZ-estimator for a diffusion problem

In this section, we want to confirm that al/2 is indeed the right scaling in the recovery

term g5 (6.2) of the ZZ-estimator (6.1). To this end, we consider the symmetric diffusion
problem

—div(aVu*) =1 in Q= (-1,1)2\[0,1% «*=0 on dQ (6.9)
with a(x) = 1000-e~1#=¥l2 for ¢ :== (0.5, —0.5)". As in the nonsymmetric problem (6.6), the
diffusion coefficient o € C(€2) chosen in (6.9) peaks at the point = (0.5, —0.5) " and decays
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p=1

p=2

p=3

p=4

0.3378 £ 0.1256
0.3993 £+ 0.1458
0.4229 £ 0.1479
0.4473 £ 0.1459
0.4656 £ 0.1453

0.5550 £ 0.1075
0.5818 +£0.1189
0.6065 £ 0.1254
0.6239 £ 0.1244
0.6340 4= 0.1236

0.5667 £ 0.1200
0.6034 £ 0.1350
0.6324 £ 0.1378
0.6533 £ 0.1335
0.6683 4= 0.1294

0.5763 £ 0.1083
0.6029 £ 0.1250
0.6317 £ 0.1269
0.6481 £ 0.1249
0.6627 4= 0.1224

SIS S S 1>
Il
U W N =

Table 2: Mean value and standard deviation of the experimental contraction
factor @, (6.7) in different runs of Algorithm B applied to the nonsymmetric
problem (6.6). In each run, we used the ZZ-estimator (6.1) with the Scott-Zhang
projection (5.4), the same initial mesh 7y, depicted in Figure 6a, and the same
parameters 6 = 0.5, A = 0.1, § = 0.5, but different polynomial degrees p =1,2,3,4
and different numbers of solver iterations j = 1,2, 3,4,5. The algorithm was run
until the number of degrees of freedom exceeded 106.

exponentially. While the exact solution u* of the diffusion problem (6.9) is unavailable,
Galerkin orthogonality (2.6) implies that the total error |||u* — u%”] is equal to

k2 (2.6) k2 (2:6) k
e =gl =" Mt = gl + Mg = gl =" W 1P = g 1 + g = gl (6-10)
By estimating or guessing the value [|u*||[? (e.g., by first computing [[|u%[[|* on a very fine
mesh 7p), formula (6.10) allows us to compute the total error |||u* — u%m even without

knowing the exact solution u*.
Figure 14 shows the convergence of the recovery term j;* (u%) with different scalings in

comparison to the total error |||u* — u%\” Apart from the scaling a'/2, we also consider the
scalings o and 1 (i.e., no scaling). We observe that the recovery term ,ufc(u%) with the

scaling o'/? gives the best approximation of the total error |||u* — u%m Hence, we conclude
that the scaling /2 in (6.2) is indeed the right choice.

6.2 Experiments with the equilibrated flux estimator

As in the previous section, we first present implementational details for the equilibrated
flux estimator, and then proceed to numerical experiments. For simplicity, we will restrict
ourselves to to the Poisson model problem (6.3) in this section.

6.2.1 Implementational aspects for the equilibrated flux estimator
Recall the equilibrated flux estimator (5.51) from Section 5.2. For the Poisson problem (6.3),
the refinement indicators of the estimator are given by

diam(7")
s

pa(T,vn) = |oulva] + Vou| L2y + (1 =Tg) fll 22y, (6.11)

where I is the L?-projection onto the space P4(Ty) and o glvy] € RTE(Tu[z]) is the
global equilibrated flux defined in (5.48). The latter is constructed as the sum of local
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Figure 14: Convergence history plots of Algorithm B using the ZZ-estimator py (6.1)
with the Scott—Zhang projection (5.4). The algorithm is applied to problem (6.9),
initial mesh 7y, depicted in Figure 6a, fixed parameters § = 0.5 and A = 0.1, and
polynomial degrees p = 1,2,3,4. The convergence behavior of the recovery term
uiec(ut@) is shown for three different scalings: o!/? (square markers —#-), o (triangle
markers ——), and without scaling (circle markers —e—). For comparison, the
corresponding total error |||u* — u%”\ is also shown (asterisk markers ——), which is
computed using (6.10). The results are presented with respect to the theoretical
complexity (6.5). For p = 1, we observe asymptotic exactness of the ZZ-estimator.

fluxes oy .[vy], which, according to Lemma 5.9, are the first component of the unique
solution (o g ;[vn|, 7H 2 [vH]) € RTH(Tu[2]) x Pi(Twu|[z]) of the local saddle-point problems

(ou:lval, TH) 2,7 + AV T rE[VE]) 1200, 127) = —(0-VVr, TH) 1200, 2))
(divop . lval, qm)r2y2)) = (U@ f = Vs - Vou), qu) 120y 2)) (6.12)
for all 7y € RT3(Tu(z]) and all gy € P4 (Tu[z]).

Here, IT% denotes the L?-orthogonal projection (5.31) onto L2(Qy[z]) and ¢, € S*(Ty) is
the hat function associated with the vertex z € Vy.

Since MooAFEM does not provide a built-in implementation of Raviart-Thomas elements,
we use the computational basis derived in [Erv12|. For simplicity, we restrict ourselves to
p = 1 and Raviart-Thomas elements of order ¢ = 1. Initially, we implemented lowest-order
Raviart—Thomas elements, i.e., ¢ = 0, but we did not observe optimal convergence rates
of the equilibrated flux estimator (6.11) in that case. While this is not a contradiction to
Corollary 5.19, which requires ¢ > p and therefore does not cover the case p =1 and g = 0,
it makes the implementation of the equilibrated flux estimator (6.11) more laborious in
contrast to, e.g., the residual-based estimator (2.14) or the ZZ-estimator (6.1).
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6.2.2 AFEM with the equilibrated flux estimator for the Poisson problem

In order to verify Corollary 5.19, we consider the Poisson model problem (6.3) with the right-
hand side f = 1 on the L-shaped domain € := (—1,1)2\ [0, 1]2. As discussed in Section 6.1.2,
this is a well-suited test case for the adaptive algorithm due to the singularity at the
re-entrant corner (0,0). In Figure 15, we visualize the initial mesh 7y and the adaptively
generated meshes 73, 7Ty, ...,T10, computed by Algorithm B using the equilibrated flux
estimator (6.11). We see that the algorithm captures the singularity at (0, 0), since it refines
the mesh particularly in the vicinity of the origin.

(2) #To =12 (b) #72 =70 (c) #T3 = 248 (d) #75 = 793

(e) #Ts = 2771 (f) #T10 = 9864

Figure 15: Sequence of meshes 7; generated by Algorithm B using the equilibrated
flux estimator (6.11). The algorithm is applied to problem (6.3) with f =1, fixed
parameters 6§ = 0.5 and A = 0.1, and polynomial degrees p =1 and ¢ = 1.

Figure 16 shows the convergence of the equilibrated flux estimator ,ug(u%) in Algorithm B.
We observe that the algorithm leads to the optimal convergence rate —1/2 both with respect
to the theoretical complexity (6.5) and the total computation time, which confirms the
theoretical results presented in Theorem 4.3 and Corollary 5.19.

Finally, we want to consider a non-constant right-hand side f in the Poisson problem (6.3).
To this end, we choose the right-hand side f such that the exact solution u* € Hg(Q)
is given by (6.4). This enables us to compare the equilibrated flux estimator W(uf) and

the residual-based estimator m(uf) (2.14) with the actual total error [[|u* — u%]H Such a
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Figure 16: Convergence history plots of Algorithm B steered by the equilibrated
flux estimator uy (6.11). The algorithm is applied to problem (6.3) with f =1,
initial mesh 7g, depicted in Figure 15a, fixed parameters § = 0.5 and A = 0.1,
and fixed polynomial degrees p = 1 and ¢ = 1. The convergence of ,ug(u%), the
residual-based estimator ng(uf) (2.14), and the total error |||u* — u%||| (computed
using (6.10)) is presented with respect to the theoretical complexity (6.5) (left) and
the total computation time (right).

comparison is illustrated in Figure 17 (left), in which the components

1/2
M?ux(uﬁ) = ( Z ||JH[u%] + Vu%H%Q(T)) and
TeT,

diam(7)? 1/2
e = (3 B (1 11
TeT,

(6.13)

of the equilibrated flux estimator ,ug(u%) are plotted next to W(uf) and |||u* — u%\” We can
see that the flux term ,u?“x(uf), the residual-based estimator ’I’]g(u%), and the total error

[Ilw* — u%||| all converge with the optimal rate —1/2, while the oscillation term 1> converges

with the rate —3/2. Thus, the effect of the oscillation term 9* on the equilibrated flux

estimator W(uf) is almost negligible in this experiment. Theorem 5.14 and Remark 5.15
show that the equilibrated flux estimator (6.11) is a guaranteed upper bound for the total
error |||u* — u%”], which can also be observed in Figure 17 (left). Moreover, we see that the
flux term ,u?ux(u%) provides a much better estimate of the total error |[|u* — u%”] than the
residual-based estimator ng(uf). This is illustrated in Figure 17 (right), which shows the
respective experimental Cy¢ constants, i.e., the ratio of the total error |||u* — u§||| to the
respective estimator. While the experimental Cye constant of the flux term M?“X(uf) is very
close to 1, meaning that it provides a very accurate estimate of the total error |||u* — uf”\,

the residual-based estimator ng(u%) has an experimental Cle constant of approximately 0.2,
i.e., it overestimates the total error by a factor of around 5.
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6 Numerical experiments
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Figure 17: Convergence history plots and experimental Cye constants for Algo-
rithm B steered by the equilibrated flux estimator p, (6.11). The algorithm is
applied to problem (6.3) with f corresponding to the exact solution (6.4), initial
mesh 7, depicted in Figure 15a, fixed parameters # = 0.5 and A = 0.1, and fixed
polynomial degrees p =1 and ¢ = 1. On the left, the convergence of the estimator
contributions M?“X(u%) and 9> (6.13), the residual-based estimator m(u%) (2.14),
and the total error [[|u* — u§|\| is presented with respect to the theoretical com-
plexity (6.5). The right plot shows the experimental Ci. constants for u?ux(u%)
and ng(uf), which are computed as the ratio of the total error to the respective
estimator.
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