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Kurzfassung

Das Ziel jedes numerischen Verfahrens für partielle Differentialgleichungen ist die Berechnung
einer Näherungslösung mit einer vorgeschriebenen Genauigkeit bei minimaler Rechenzeit.
Zu diesem Zweck umfasst die adaptive Finite-Elemente-Methode (AFEM) neben einer
schätzerbasierten lokalen Netzverfeinerung einen inexakten Löser mit einem ausgeklügelten
Abbruchkriterium, um die verschiedenen Fehlerkomponenten auszugleichen.

Zur a posteriori Fehlerschätzung des Diskretisierungsfehlers setzt die state-of-the-art
Analysis für AFEM mit inexaktem Löser auf den Residualschätzer. Dieser erfüllt die soge-
nannten axioms of adaptivity aus [Carstensen, Feischl, Page, Praetorius: Comput. Math.
Appl. 67, 2014]. Das Ziel dieser Arbeit ist es, die aktuelle Analysis von [Bringmann, Feischl,
Miraçi, Praetorius, Streitberger: Comput. Math. Appl. 180, 2025] auf adaptive Algorithmen
mit inexaktem Löser zu erweitern, die durch nicht-residualbasierte Fehlerschätzer gesteuert
werden. Dies wird durch die Tatsache motiviert, dass es viele andere Fehlerschätzer mit wün-
schenswerten praktischen und numerischen Eigenschaften gibt. Basierend auf einer Idee von
[Kreuzer, Siebert: Numer. Math. 117, 2011], die AFEM für nicht-residualbasierte Schätzer,
aber mit exaktem Löser analysieren, werden in dieser Arbeit Fehlerschätzer betrachtet, die
zwar nicht die axioms of adaptivity erfüllen, aber in einem gewissen Sinne lokal äquivalent
zum Residualschätzer sind.

Im abstrakten Rahmen der axioms of adaptivity betrachten wir allgemeine lineare ellipti-
sche PDEs zweiter Ordnung. Das Hauptresultat ist der Beweis der parameter-unabhängigen
vollen R-linearen Konvergenz von AFEM mit inexaktem Löser, die durch einen lokal äquiva-
lenten Schätzer gesteuert wird, d.h. Kontraktion eines geeigneten Quasi-Fehlers in jedem
Schritt des Algorithmus unabhängig von den vom Benutzer gewählten Parametern. Dies
verifiziert die unbedingte Konvergenz des adaptiven Algorithmus und erlaubt es, in einem
weiteren Schritt die optimale Komplexität des adaptiven Algorithmus zu zeigen, d.h. optimale
Konvergenzraten bezüglich der kumulierten Rechenzeit. Zudem zeigt die Arbeit, dass der
ZZ-Schätzer von [Zienkiewicz, Zhu: Int. J. Numer. Methods Eng. 24, 1987] und Schätzer
basierend auf Fluss-Equilibrierung (siehe z.B. [Ern, Vohralík: SIAM J. Numer. Anal. 53,
2015] und die dort zitierten Arbeiten) lokal äquivalent zum Residualschätzer sind, wodurch
die optimale Komplexität für AFEM, die durch die diese Schätzer gesteuert wird, bewiesen
wird. Die Arbeit schließt mit numerischen Experimenten, die die theoretischen Resultate
bestätigen und eine praktische Anwendung anderer Fehlerschätzer in AFEM aufzeigen.
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Abstract

The ultimate goal of any numerical scheme for partial differential equations (PDEs) is to
compute an approximation of user-prescribed accuracy at minimal computational cost. To
this end, the adaptive finite element method (AFEM) employs an estimator-steered local
mesh-refinement strategy and an inexact solver with a cleverly designed stopping criterion
to balance the different error components.

The state-of-the-art analysis for AFEM with inexact solver hinges on the standard residual-
based estimator for a posteriori error estimation of the discretization error. This estimator
satisfies the so-called axioms of adaptivity from [Carstensen, Feischl, Page, Praetorius:
Comput. Math. Appl. 67, 2014]. The goal of this thesis is to extend the current analysis
from [Bringmann, Feischl, Miraçi, Praetorius, Streitberger: Comput. Math. Appl. 180, 2025]
to adaptive algorithms with inexact solver steered by non-residual error estimators. This is
motivated by the fact that there are many other error estimators with desirable practical
and numerical properties. Based on an idea of [Kreuzer, Siebert: Numer. Math. 117,
2011], that considers AFEM for non-residual-based estimators yet exact solver, we consider
estimators that do not satisfy the axioms of adaptivity directly, but are locally equivalent to
the residual-based estimator in a certain sense.

In the abstract framework of the axioms of adaptivity, we consider general second-order
linear elliptic PDEs in this thesis. Our main contribution is proving parameter-robust full
R-linear convergence of AFEM with inexact solver steered by a locally equivalent estimator,
i.e., contraction of a suitable quasi-error in every step of the algorithm independently of the
user-chosen parameters. This proves unconditional convergence of the adaptive algorithm and
allows to show optimal complexity, i.e., optimal convergence rates with respect to the total
computational time. Moreover, the thesis shows that the ZZ-estimator from [Zienkiewicz,
Zhu: Int. J. Numer. Methods Eng. 24, 1987] and the equilibrated flux estimator (see, e.g.,
[Ern, Vohralík: SIAM J. Numer. Anal. 53, 2015] and the references therein) are locally
equivalent to the residual-based estimator, thus proving optimal complexity for AFEM
steered by these estimators. The thesis closes with numerical experiments that support the
theoretical results and demonstrate the practical application of other error estimators in
AFEM.
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1 Introduction

Partial differential equations (PDEs) are used to model complex real-world phenomena
across various scientific disciplines such as physics, engineering, finance, and biology. Since
most PDEs do not have closed-form solutions, a variety of numerical methods has been
developed yielding computable approximations instead. One such numerical method is the
finite element method (FEM), which approximates the solution of a PDE by discretizing
the function space to which the solution belongs. First, the domain is meshed into a finite
set TH of elements. For second-order elliptic PDEs with solution in H1(Ω), the approximate
solution is usually computed as a TH -piecewise polynomial function defined on each element
while ensuring inter-element continuity. The accuracy of this approximation depends on the
quality of the mesh and the order of the polynomial degree chosen for the discretization,
with finer meshes and higher-order polynomials generally producing more accurate solutions.

However, many PDEs exhibit singularities or sharp gradients that locally require very
fine meshes to be resolved accurately. In such cases, using uniformly fine meshes is compu-
tationally expensive and often unnecessary. The adaptive finite element method (AFEM)
is a technique that aims to reduce the computational cost of numerically solving PDEs by
adaptively refining the mesh only in regions where the solution has low accuracy. Given
an initial mesh and polynomial degree, the standard AFEM algorithm can be described by
modules SOLVE, ESTIMATE, MARK, and REFINE, illustrated in Figure 1.

SOLVE ESTIMATE MARK REFINE

Figure 1: Schematic for standard AFEM.

The SOLVE module computes the FEM solution for the given mesh and polynomial degree.
This is then used by the ESTIMATE module to compute a posteriori error estimates used as
refinement indicators for each element of the mesh. The MARK module then marks elements
for refinement, where the estimated error is large. Finally, the REFINE module produces a
finer mesh by refining (at least) the marked elements. The loop is repeated until a stopping
criterion is met, which in real-world applications is usually determined by the available
computational resources or a user-prescribed mandatory accuracy.

Over the past three decades, the convergence theory of AFEM has matured significantly.
The groundwork was laid by [Dör96], who proved plain convergence of AFEM, i.e., con-
vergence of the a posteriori error estimator, for the 2D Poisson problem under certain
assumptions, most notably on the MARK module. The marking strategy introduced by
[Dör96] is known as Dörfler marking and used by most AFEM algorithms. In the subsequent
years, plain convergence of AFEM was shown for more general problems under weaker
assumptions; see, e.g., [MNS00; MSV08]. The notion of optimal convergence rates for AFEM
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1 Introduction

was first put into a rigorous mathematical framework by [BDD04], but the proof therein
required an additional coarsening step that was later proven unnecessary by [Ste07]. In both
works, optimal convergence rates for AFEM with respect to the number of degrees of freedom,
i.e., the dimension of the discrete finite element space, were shown for the 2D Poisson
problem under considerably strong constraints on the refinement strategy. This result was
generalized by [CKNS08] to general second-order symmetric linear elliptic PDEs in arbitrary
dimensions and standard refinement by newest vertex bisection. The extension to general
(nonsymmetric) linear elliptic PDEs was achieved in [CN12] for a sufficiently fine initial
mesh and in [FFP14] without any further assumptions. Later, [CFPP14] introduced an
axiomatic approach to the convergence theory of AFEM, which provides a unified framework
for proving optimal convergence rates with respect to the number of degrees of freedom for
a wide range of PDEs and adaptive algorithms.

However, due to the incremental nature of AFEM, optimal converge rates should rather
be considered with respect to the overall computational cost (and, in practice, overall
computational time) than the number of degrees of freedom. Beyond the 1D case, optimality
in this sense, usually referred to as optimal complexity, can only be achieved for AFEM with
inexact solvers: Instead of solving the FEM problem exactly in the SOLVE module, such
algorithms employ an iterative solver and a cleverly designed stopping criterion in order to
balance the solver error, resulting from the iterative solver, against the discretization error,
resulting from a locally too coarse mesh and under-resolved singularity. In simple terms, this
enables the algorithm to save computational time in the SOLVE module to not unnecessarily
iterate the solver if the discretization error dominates. Since this requires an alternating
computation of solver-steps and error estimates, the SOLVE and ESTIMATE modules should
be considered as a single module SOLVE & ESTIMATE, as illustrated in Figure 2.

SOLVE & ESTIMATE MARK REFINE

Figure 2: Schematic for AFEM with inexact solver.

Optimal complexity of AFEM with inexact solver was already shown for certain model
problems in [Ste07; CG12] under the assumption that the iterative solution of the solver is
sufficiently close to the (unavailable) exact solution. This algorithmic restriction was removed
in [GHPS21], who also showed that full R-linear convergence, i.e., contraction of a suitable
quasi-error in every step of the algorithm, is the key to proving optimal complexity. Recently,
[BFM+25] proposed a novel proof of full R-linear convergence that, unlike [GHPS21], does not
rely on the Pythagorean identity and thus extends to nonsymmetric problems by employing
the generalized quasi-orthogonality from [Fei22].

The state-of-the-art analysis of [GHPS21; BFM+25] requires that the error estimator
steering the adaptive algorithm satisfies the so-called axioms of adaptivity from [CFPP14].
While the standard residual-based error estimator fits into this framework, there are many
other error estimators with desirable practical and numerical properties that do not satisfy
the axioms of adaptivity. Examples include recovery-based estimators, often referred to as
ZZ-estimators (see, e.g., [ZZ87]), or estimators based on flux equilibration (see, e.g., [EV15]
and the references therein).
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1 Introduction

The paper [KS11] proposed the idea to consider estimators that satisfy certain local
equivalence properties with respect to the residual-based estimator. Under the restriction
that the Galerkin solution is computed exactly (and hence excluding inexact solvers), they
showed that AFEM steered by such estimators can achieve optimal convergence rates (with
respect to the number of degrees of freedom), but their analysis is only concerned with the
Poisson problem. Later, [CFPP14] extended this result to the axiomatic framework, which
allows for a wider range of problems and a broader notion of local equivalence. However,
optimal complexity of AFEM with inexact solver steered by non-residual-based estimators
remained an open question.

The goal of this thesis is to address this question by extending the state-of-the-art analysis
of [BFM+25] to AFEM with inexact solvers steered by non-residual-based error estimators.
As in [KS11; CFPP14], the considered error estimators do not satisfy the axioms of adaptivity
(in particular, the reduction axiom (A2)), but are in a some sense locally equivalent to
the residual-based estimator. The main contribution of this thesis is the proof of full
R-linear convergence independently of the user-chosen adaptivity parameters, thus showing
unconditional convergence of the adaptive algorithm. This then allows to show optimal
complexity of AFEM steered by such locally equivalent estimators with respect to the total
computational time. As potential application, the thesis shows that, for general second-order
linear elliptic PDEs in the setting of the Lax-Milgram lemma, the ZZ-estimator and the
equilibrated flux estimator fit into the framework, thus proving optimal complexity for
AFEM steered by the these estimators.

The thesis is structured as follows: In Chapter 2, we present the AFEM algorithm with
iterative contractive solver and the underlying mathematical assumptions. In particular, we
show how to derive a contractive solver for nonsymmetric problems from contractive solvers
for symmetric problems by means of the Zarantonello iteration [Zar60]; see Section 2.4.2.
Moreover, we introduce two notions of local equivalence: one where the considered estimator
is equivalent to the residual-based estimator for all discrete functions, and a weaker one where
the estimator is only equivalent for the exact Galerkin solution; see Section 2.3. In Chapter 3,
we show that AFEM steered by an equivalent estimator guarantees a perturbed version
of the so-called estimator reduction from [CKNS08, Corollary 3.4] for a modified residual-
based estimator that uses the generalized mesh-size function from [CFPP14, Proposition
8.6]. This is the key to proving unconditional full R-linear convergence (Theorem 3.11 and
Theorem 3.14). In Chapter 4, we employ the full R-linear convergence to show optimal
complexity of the adaptive algorithm steered by an equivalent estimator (Theorem 4.3)
provided that, as usual in this context, the adaptivity parameters are sufficiently small.
Afterwards, we discuss the ZZ-estimator and the equilibrated flux estimator in Chapter 5,
where we show that these estimators are locally equivalent to the residual-based estimator.
This allows us to conclude optimal complexity for AFEM steered by these estimators
(Corollary 5.7 and Corollary 5.19). Finally, in Chapter 6, we present numerical experiments
that support the analysis of the preceding chapters.
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2 Adaptive FEM with contractive solver

The algorithm presented in this chapter follows the general structure of the adaptive loop
shown in Figure 2. We begin by introducing the abstract model problem in Section 2.1.
Following this, we discuss our assumptions on the submodules REFINE, ESTIMATE, SOLVE and
MARK in that specific order, which results from their interdependencies. Finally, we formulate
the algorithm itself in Section 2.6.

2.1 Abstract model problem

Throughout this chapter, X is a real Hilbert space with norm ∥·∥X and scalar product ⟨·, ·⟩X .
Let a : X × X → R be a bounded and elliptic bilinear form, i.e., there exist constants
Cell, Cbnd > 0 such that

a(u, u) ≥ Cell ∥u∥X and a(u, v) ≤ Cbnd ∥u∥X ∥v∥X for all u, v ∈ X . (2.1)

The symmetric part of a(·, ·) defined by

b(u, v) :=
a(u, v) + a(v, u)

2
for all u, v ∈ X (2.2)

is a symmetric, bounded, and elliptic bilinear form on X . In particular, b(·, ·) is a scalar
product on X and the induced norm b(·, ·)1/2 is an equivalent norm on X . Since a(u, u) =
b(u, u) for all u ∈ X , this norm is indeed the energy norm ||| · ||| := a(·, ·)1/2. For a bounded
linear functional F : X → R, we seek the solution u⋆ ∈ X to the variational problem

a(u⋆, v) = F (v) for all v ∈ X . (2.3)

The existence and uniqueness of the solution u⋆ to (2.3) is guaranteed by the Lax-Milgram
theorem [Eva98, Section 6.2.1].

Assume that Ω is a bounded polyhedral Lipschitz domain in Rd with d ≥ 1, i.e., Ω is open
and connected and, for d ≥ 2, the boundary ∂Ω of Ω is locally the graph of a piecewise affine
and Lipschitz continuous function. Given a symmetric diffusion tensor A ∈ [L∞(Ω)]d×d

sym , a
convection coefficient b ∈ [L∞(Ω)]d, a reaction coefficient c ∈ L∞(Ω), and data f ∈ [L2(Ω)]d

and f ∈ L2(Ω), a possible application would be the nonsymmetric second-order linear elliptic
PDE

− div(A∇u⋆) + b · ∇u⋆ + cu⋆ = f − div(f) in Ω ⊆ Rd subject to u⋆ = 0 on ∂Ω. (2.4)

We use the notation for Sobolev spaces from [Eva98, Chapter 5] and write ⟨·, ·⟩L2(Ω) for the
usual L2(Ω)-scalar product. Multiplying (2.4) with a test-function v ∈ H1

0 (Ω), integrating
over Ω, and performing integration by parts, we obtain (2.3) with space X := H1

0 (Ω),

4



2 Adaptive FEM with contractive solver

bilinear form a(u, v) := ⟨A∇u,∇v⟩L2(Ω)+⟨b ·∇u+cu, v⟩L2(Ω), and right-hand side functional
F (v) := ⟨f, v⟩L2(Ω) + ⟨f ,∇v⟩L2(Ω). We suppose that A, b and c guarantee that a(·, ·) is
bounded and elliptic on H1

0 (Ω) in order to fit into the setting of (2.3). This is for instance
satisfied if div b ∈ L∞(Ω) and −1

2 div b+ c ≥ 0 almost everywhere in Ω.
The Lax-Milgram theorem also applies to any closed subspace XH ⊂ X and guarantees

the existence and uniqueness of u⋆H ∈ XH solving

a(u⋆H , vH) = F (vH) for all vH ∈ XH . (2.5)

The so-called Galerkin method considers the problem in (2.5) restricted to finite-dimensional
subspaces XH ⊂ X . In this case, the unique solution u⋆H ∈ XH to (2.5) is called Galerkin
solution. The subtraction of (2.5) from (2.3) results in the Galerkin orthogonality

a(u⋆ − u⋆H , vH) = 0 for all vH ∈ XH . (2.6)

If a(·, ·) is additionally symmetric and thus a scalar product on H1
0 (Ω), the Galerkin

orthogonality (2.6) implies the Pythagorean identity

|||u⋆ − vH |||2 = |||u⋆ − u⋆H |||2 + |||u⋆H − vH |||2 for all vH ∈ XH . (2.7)

The following proposition from [Fei22] provides a generalization of the Pythagorean iden-
tity (2.7) that also applies to nonsymmetric problems.

Proposition 2.1 (quasi-orthogonality). Under the assumptions (2.1), there exist con-
stants Corth > 0 and 0 < δ < 1 such that the following property holds for any sequence
(Xℓ)ℓ∈N0 of nested finite-dimensional subspaces Xℓ ⊆ Xℓ+1 ⊂ X = H1

0 (Ω):

(QO) quasi-orthogonality: The corresponding Galerkin solutions u⋆ℓ ∈ Xℓ to (2.5)
satisfy

ℓ+N�
ℓ′=ℓ

|||u⋆ℓ′+1 − u⋆ℓ′ |||2 ≤ Corth(N + 1)1−δ|||u⋆ − u⋆ℓ |||2 for all ℓ,N ∈ N0.

Here, Corth and δ depend only on the dimension d, the elliptic bilinear form a(·, ·), and the
chosen norm ||| · |||, but are independent of the spaces Xℓ and F ∈ X ′.

Finally, we want to mention the following well-known result, which states that the Galerkin
error |||u⋆ − u⋆H ||| is quasi-optimal, i.e., it behaves like the best approximation error up to a
multiplicative constant.

Lemma 2.2 (Céa). With the constants Cell, Cbnd > 0 from (2.1) and CCéa := Cbnd/Cell, it
holds

|||u⋆ − u⋆H ||| ≤ CCéa min
vH∈XH

|||u⋆ − vH |||, (2.8)

i.e., the Galerkin error is quasi-optimal.

The proof of the Céa lemma can be found in any introductory finite-element textbook,
e.g., [EG21b, Lemma 26.13].
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2 Adaptive FEM with contractive solver

2.2 Refinement

Before we can discuss the refinement step, we need to introduce the notion of simplices and
triangulations.

Definition 2.3 (simplex). Let d ≥ 2. For 1 ≤ k ≤ d, a subset T ⊂ Rd is called a (compact)
k-dimensional simplex if there exist vertices z0, . . . zk ∈ Rd such that T = conv{z0, . . . , zk},
i.e., T is the convex hull of z0, . . . , zk. Its set of vertices is denoted by V(T ) := {z0, . . . , zk}.
The k-dimensional simplex is non-degenerate if {z1 − z0, . . . , zk − z0} is linearly independent
and hence the k-dimensional measure is positive. We say that T ⊆ Rd is a (compact)
simplex, if T is a d-dimensional simplex. A k′-dimensional simplex T ′ is a subsimplex of a
k-dimensional simplex T , if V(T ′) ⊆ V(T ). The 1-dimensional subsimplices of a simplex T
are called edges, whereas the (d − 1)-dimensional subsimplices of T are called faces. We
denote the set of faces of T with E(T ).
Definition 2.4 (conforming triangulation). Let Ω ⊂ Rd be a bounded polyhedral
Lipschitz domain. A finite set TH is a conforming (simplicial) triangulation of Ω if and only
if

• every T ∈ TH is a non-degenerate simplex,

• the closure of Ω is covered by TH , i.e., Ω =
�

T∈TH T ,

• and the intersection of all pairwise different simplices T, T ′ ∈ TH is either empty or a
joint k-dimensional subsimplex of T and T ′ with 1 ≤ k ≤ d− 1.

We denote the set of vertices of TH by VH := {V(T ) : T ∈ TH} and the set of faces by
EH := {E(T ) : T ∈ TH}. Moreover, we write EΩ

H for the faces which lie inside Ω, i.e., for
E ∈ EΩ

H , there exist T, T ′ ∈ TH with E = T ∩ T ′ ∈ EH .

Definition 2.5 (uniform shape regularity). Let T ⊂ Rd be a simplex. The shape
regularity constant σ(T ) involves the diameter

diam(T ) := max{|x− y| : x, y ∈ T}

and reads
σ(T ) :=

diam(T )

|T |1/d .

Since the volume of T is clearly smaller than the volume of the d-dimensional cube with
side length diam(T ), we have |T | ≤ diam(T )d, which implies σ(T ) ≥ 1. We say that a
triangulation TH is σ-shape regular if

σ(TH) := max
T∈TH

σ(T ) ≤ σ < ∞. (2.9)

Given a triangulation TH and a set MH ⊆ TH of marked elements, the fixed refinement
strategy refine(·, ·) generates a new triangulation Th := refine(TH ,MH) such that

• at least all marked elements MH ⊆ TH are refined, i.e., there holds MH ⊆ Th \ TH ,
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2 Adaptive FEM with contractive solver

• and each refined element T ∈ TH \ Th is the union of its children, i.e., there holds
T =

�{T ′ ∈ Th : T ′ ⊆ T}.
We write Th ∈ T(TH) if Th can be obtained from TH by finitely many applications of refine.
Let T0 be a conforming initial triangulation of Ω and define T := T(T0) as the set of all
meshes that can be generated from the initial mesh T0 by use of refine. We suppose
that refine preserves conformity in the sense of Definition 2.4 and ensures uniform shape
regularity, i.e., there exists a constant σ ≥ 1 depending only on the initial triangulation T0
such that (2.9) holds for all TH ∈ T. Finally, we assume that refine satisfies the following
properties, which are sufficient to prove optimality (cf. [CFPP14]).

(R1) child estimate: There exists a constant Cchild ≥ 1, such that for all TH ∈ T and
all ∅ ̸= MH ⊆ TH it holds

Th = refine(TH ,MH) =⇒ #TH < #Th ≤ Cchild #TH .

(R2) overlay estimate: For all meshes TH , Th ∈ T, there exists a coarsest common
refinement TH ⊕ Th ∈ T(TH) ∩ T(Th) such that

#(TH ⊕ Th) ≤ #TH +#Th −#T0.

(R3) closure estimate: There exists a constant Cclosure ≥ 1 depending only on T0 and
refine such that for any sequence (Tℓ)ℓ∈N0 of successive refinements of T0, i.e.,
Tℓ+1 = refine(Tℓ,Mℓ) for all ℓ ∈ N0 with appropriate Mℓ ⊆ Tℓ, it holds

#Tℓ −#T0 ≤ Cclosure

ℓ−1�
j=0

#Mj .

We suppose that, for any TH ∈ T and any set of marked elements MH ⊆ TH , the computation
of Th = refine(TH ,MH) can be accomplished at linear cost O(#TH) (cf. [BDD04; Ste07]).
In particular, the child estimate (R1) guarantees that this is possible. For instance, the
refinement strategy newest vertex bisection (NVB) satisfies (R1)–(R3) (cf. [AFF+15] for
d = 1, [KPP13] for d = 2, and [DGS25] for d ≥ 2). In the following, we illustrate the
procedure in the two-dimensional case.

Example 2.6 (newest vertex bisection). In the 2D NVB algorithm, the refinement of a
triangulation Tℓ ∈ T is generated by repeated bisection of its triangles T ∈ Tℓ. A triangle is
bisected by introducing a new edge between the midpoint of the so-called refinement edge
and its opposite vertex. For the initial conforming triangulation T0, each triangle T ∈ T0 is
assigned a refinement edge. After each bisection, the edges opposite of the newly created
vertex become the refinement edges of the resulting children triangles, explaining the name
of the algorithm. For a triangulation Tℓ with marked elements Mℓ ⊆ Tℓ, the refinement
process proceeds as follows.

Algorithm A (2D newest vertex bisection).
Input: Triangulation Tℓ and set of marked elements Mℓ ⊆ Tℓ.

(i) For all T ∈ Mℓ, mark its refinement edge.
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2 Adaptive FEM with contractive solver

(ii) Repeat recursively
If a triangle T ∈ Tℓ has a marked edge that is not the refinement edge, also mark the
refinement edge of T .

until
No triangle T ∈ Tℓ with marked edges has an unmarked refinement edge.

(iii) For all T ∈ Tℓ, refine according to the pattern from Figure 3.
Output: Refined triangulation Tℓ+1.

Figure 3: Visualization of the refinement pattern of 2D newest vertex bisection
in 2D. Marked edges are indicated by red dots and refinement edges by red lines.
The upper triangles display the configuration prior to refinement, while the lower
triangles show the corresponding refined elements.

The application of NVB as refinement routine ensures that all resulting triangulations
are conforming and uniformly shape-regular. The algorithm can also be formulated for the
general case in Rd with d ≥ 2, but it becomes more complicated. For more details, we refer
to [Ste08; KPP13; DGS25; Mau95; Tra97; Mit91; Sew72].

With every triangulation TH , we associate a finite-dimensional subspace XH ⊂ X . We
require nestedness of the discrete spaces XH :

(N) nestedness of discrete spaces: Nestedness of meshes Th ∈ T(TH) implies nested-
ness XH ⊆ Xh of the corresponding discrete spaces.

For the PDE problem (2.4), a common choice for XH would be the space of globally
continuous and piecewise polynomials of total degree p ∈ N, i.e.,

Sp
0 (TH) := {vH ∈ H1

0 (Ω) : vH |T is a polynomial of degree ≤ p for all T ∈ TH}. (2.10)

In particular, the choice XH := Sp
0 (TH) guarantees the nestedness (N) of XH . Moreover,

this ensures that the discrete spaces Xℓ associated to any sequence (Tℓ)ℓ∈N0 of successive
refinements of T0 satisfy the assumptions of quasi-orthogonality (QO).

Remark 2.7 (discrete objects). The mesh-level index H historically refers to meshes
with a uniform mesh-size H ∈ R. In this thesis, however, it denotes all discrete objects,
including those related to highly adapted meshes with non-uniform mesh-sizes. In that
case, the mesh-size is a function of the triangulation TH denoted by H, i.e., the size of an
element T ∈ TH is given by H(T ). Related discrete objects share the same index, e.g., vH is

8



2 Adaptive FEM with contractive solver

a discrete function in the space XH corresponding to the triangulation TH . Many estimates,
especially those used in the later convergence analysis, should not depend on the mesh-level
H, which is why we introduce the following notation: For two expressions A and B, we
write A ≲ B if there holds A ≤ C B for a constant C > 0 that is independent of H . In case
that both A ≲ B and B ≲ A hold, we write A ≃ B.

2.3 Error estimators

For every mesh TH ∈ T, suppose that we can compute refinement indicators

µH(T, vH) for all T ∈ TH and all vH ∈ XH . (2.11)

For each T ∈ TH , the indicator µH(T, u⋆H) should, at least heuristically, measure the
discretization error |||u⋆ − u⋆H ||| locally on the element T . To abbreviate the notation, we
define

µH(UH , vH)2 :=
�

T∈UH

µH(T, vH)2 for any UH ⊆ TH (2.12)

and set µH(vH) := µH(TH , vH) as well as µH := µH(u⋆H). We suppose that, for all TH ∈ T,
all T ∈ TH , and all vH ∈ XH , the refinement indicators µH(T, vH) can be computed in
constant time O(1), i.e., the computation of µH(vH) has linear complexity O(#TH). A
possible choice is the so-called residual-based error estimator.

Example 2.8 (residual-based error estimator). In addition to the assumptions in
Section 2.1, suppose that A|T ∈ �

W 1,∞(T )
�d×d and f |T ∈ �

H1(T )]d for all T ∈ T0. For all
TH ∈ T and all T ∈ TH , we define the corresponding mesh-size function H : TH → R>0

by H(T ) := |T |1/d. Furthermore, for neighboring simplices T, T ′ ∈ TH with joint face
E := T ∩ T ′ ∈ EΩ

H and corresponding normal vectors nT |E and nT ′ |E , we define the normal
jump of vH ∈ XH across the face E by

[[∇vH · n]]|E := (∇vH |T )|E · nT |E + (∇vH |T ′)|E · nT ′ |E . (2.13)

Then, for all triangulations TH ∈ T, all T ∈ TH , and all vH ∈ XH , the refinement indicators

ηH(T, vH)2 = H(T )2 ∥ − div(A∇vH − f) + b · ∇vH + c vH − f∥2L2(T )

+H(T ) ∥[[(A∇vH − f) · n]]∥2L2(∂T∩Ω)

= |T |2/d ∥ − div(A∇vH − f) + b · ∇vH + c vH − f∥2L2(T )

+ |T |1/d ∥[[(A∇vH − f) · n]]∥2L2(∂T∩Ω)

(2.14)

are well-defined, since vH ∈ C∞(T ) for all T ∈ TH . The error estimator ηH is known as
residual-based error estimator. The term

∥ − div(A∇vH − f) + b · ∇vH + c vH − f∥2L2(T ) =: ∥RH(vH)∥2L2(T ) (2.15)

is the so-called local volume residual, since it measures the residual associated with prob-
lem (2.4) on an element T ∈ TH . The term ∥[[(A∇vH − f) · n]]∥2L2(∂T∩Ω) =: ∥JH(vH)∥2L2(T )
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2 Adaptive FEM with contractive solver

is usually referred to as jump term or consistency error and arises from piecewise integration
by parts of the residual in the weak formulation (2.3). The residual-based error estimator
can also be formulated with other mesh-size functions. For example, a potentially more
natural choice than the mesh-size function H(T ) from above would be �H(T ) := diam(T ).
Correspondingly, we define �ηH as the error estimator that is obtained by replacing |T |1/d by
diam(T ) in (2.14), i.e., for all triangulations TH ∈ T, all T ∈ TH , and all vH ∈ XH , it holds

�ηH(T, vH)2 = diam(T )2 ∥ − div(A∇vH−f) + b · ∇vH + c vH − f∥2L2(T )

+ diam(T ) ∥[[(A∇vH − f) · n]]∥2L2(∂T∩Ω).
(2.16)

For more details on residual-based estimators, we refer to [AO00; Ver94].

The residual-based error estimator ηH has many useful properties. Most importantly, it
satisfies the so-called axioms of adaptivity from [CFPP14, Section 3], allowing for optimal
rates of an adaptive algorithm steered by ηH . There exist constants Cstab, Crel ≥ 1 and
0 < qred < 1 such that the following properties hold for any triangulation TH ∈ T and any
refinement Th ∈ T(TH) with corresponding Galerkin solutions u⋆H ∈ XH and u⋆h ∈ Xh to
(2.5), any subset UH ⊆ TH ∩ Th of non-refined elements, and for arbitrary vH ∈ XH and
vh ∈ Xh:

(A1) stability: |ηH(UH , vH)− ηh(UH , vh)| ≤ Cstab |||vh − vH |||,
(A2) reduction: ηh(Th \ TH , vH) ≤ qred ηH(TH \ Th, vH),
(A3) reliability: |||u⋆ − u⋆H ||| ≤ Crel ηH(u⋆H).

Furthermore, there exist constants Cdrel, Cref ≥ 1 such that the following property holds for
any triangulation TH ∈ T and any refinement Th ∈ T(TH):

(A3+) discrete reliability: There exists a subset RHh ⊆ TH with TH \ Th ⊆ RHh and
#RHh ≤ Cref #(TH \ Th) such that |||u⋆h − u⋆H ||| ≤ Cdrel ηH(RHh, u

⋆
H).

Finally, there holds quasi-monotonicity of the error estimator ηH in the sense that there
exists a constant Cmon ≥ 0 such that the following property is satisfied for any triangulation
TH ∈ T and any refinement Th ∈ T(TH):

(QM) quasi-monotonicity: ηh(u
⋆
h) ≤ Cmon ηH(u⋆H).

Remark 2.9 (quasi-monotonicity). In the present setting, quasi-monotonicity (QM) is
already implied in two ways: either by stability (A1), reduction (A2), and discrete reliabil-
ity (A3+) (cf. [CFPP14, Lemma 3.5]) or by stability (A1), reduction (A2), reliability (A3),
and the Ceá lemma (2.8) (cf. [CFPP14, Lemma 3.6]). In particular, the two approaches lead
to the bound

Cmon ≤ min
��

2 + 2C2
stabC

2
drel

�1/2
,
�
2 + 4C2

stabC
2
rel(1 + C2

Céa)
�1/2�

.

The following remark discusses some implications of the stability axiom (A1) which are
frequently used in this thesis.
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Remark 2.10 (implications of stability (A1)). For vh := vH ∈ XH , stability (A1) yields

ηh(UH , vH) = ηH(UH , vH) for all UH ⊆ TH ∩ Th, (2.17)

i.e., on any subset UH of non-refined elements, the error estimators ηH and ηh are identical
for any coarse-mesh function vH ∈ XH . Conversely, setting Th := TH =: UH implies

|ηH(vh)− ηH(vH)| ≤ Cstab |||vh − vH ||| for all vh, vH ∈ XH . (2.18)

Furthermore, we assume that the error estimator µH is in some sense locally equivalent
to the residual-based error estimator ηH . We consider two types of estimator equivalence,
detailed in Definition 2.13 below. For that, we need to introduce the notion of m-patches.

Definition 2.11 (m-patches). For any subset UH ⊆ TH of a triangulation TH , we define
the patch of UH by

TH [UH ] := T (1)
H [UH ] := {T ∈ TH : ∃T ′ ∈ UH , T ∩ T ′ ̸= ∅}.

Let m ∈ N with m ≥ 2. The m-patch of UH is defined inductively by

T (m)
H [UH ] := TH

� T (m−1)
H [UH ]

�
.

To simplify notation, we define T (0)
H [UH ] := UH and Ω

(m)
H [UH ] :=

� T (m)
H [UH ] ⊆ Ω.

Furthermore, we write T (m)
H [T ] and Ω

(m)
H [T ] in case of UH := {T}. Figure 4 shows the

m-patch of an element for m = 1 and m = 2, while Figure 5 illustrates the m-patch of a
subset of TH for m = 1 and m = 2.

T

m = 1

T

m = 2

Figure 4: Illustration of m-patches T (m)
H [T ] of T ∈ TH for m ∈ {1, 2}.

Remark 2.12 (cardinality of m-patches). Uniform shape regularity implies that for
each TH ∈ T, the solid angle formed by d faces sharing a common vertex z is uniformly
bounded away from 0 by a constant depending only on the shape-regularity constant σ > 0
and the dimension d ∈ N (cf. [EG21a, Remark 11.5]). As a consequence, the number of
elements sharing a vertex z is uniformly bounded. This in turn implies that also the number
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T1

T2

m = 1

T1

T2

m = 2

Figure 5: Illustration of m-patches T (m)
H [UH ] of UH := {T1, T2} ⊆ TH for

m ∈ {1, 2}.

of elements per patch TH [T ] is bounded by a constant Cpatch ≥ 1 depending only on the
shape-regularity constant σ and the dimension d, i.e., there holds that

#TH [T ] ≤ Cpatch for all TH ∈ T and all T ∈ TH . (2.19)

The inductive definition of m-patches T (m)
H [T ] leads to

#T (m)
H [T ] ≤ Cm

patch for all m ∈ N, all TH ∈ T, and all T ∈ TH , (2.20)

i.e., the number of elements in m-patches is also uniformly bounded. Since for all T, T ′ ∈ TH
it holds T ∈ T (m)

H [T ′ ] if and only if T ′ ∈ T (m)
H [T ], the number of m-patches each element

T ∈ TH belongs to is also bounded by Cm
patch, i.e.,

#{T ′ ∈ TH : T ∈ T (m)
H [T ′ ]} ≤ Cm

patch for all m ∈ N, all TH ∈ T, and all T ∈ TH . (2.21)

Definition 2.13 (locally equivalent estimators). A pair of error estimators µH and ηH
is locally equivalent (in the strong sense) if there exists a constant Cloc ≥ 1 and a patch level
m ∈ N0 such that for all triangulations TH ∈ T, all simplices T ∈ TH , and all vH ∈ XH , it
holds

ηH(T, vH) ≤ Cloc µH

�T (m)
H [T ], vH

�
, (2.22a)

µH(T, vH) ≤ Cloc ηH
�T (m)

H [T ], vH
�
. (2.22b)

We also consider a weaker local equivalence, where (2.22) holds only for the Galerkin
solution u⋆H to (2.5): A pair of error estimators µH and ηH is locally equivalent in the
weak sense if there exists a constant Cloc ≥ 1 and a patch level m ∈ N0 such that for all
triangulations TH ∈ T and all simplices T ∈ TH , it holds

ηH(T, u⋆H) ≤ Cloc µH

�T (m)
H [T ], u⋆H

�
, (2.23a)

µH(T, u⋆H) ≤ Cloc ηH
�T (m)

H [T ], u⋆H
�
. (2.23b)
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Example 2.14. Recall the mesh-size functions from Example 2.8. By uniform shape
regularity of TH ∈ T, it holds H(T ) ≤ �H(T ) ≤ σH(T ) for all T ∈ TH . This shows that
the estimators ηH from (2.14) and �ηH from (2.16) are locally equivalent in the strong sense
(2.22) with m = 0 and Cloc = σ.

Remark 2.15 (non element-based estimators). Many popular error estimators are
not defined element-wise such as in (2.11), but rather using an index set IH depending on
the triangulation TH . Let ϱH be such an error estimator, i.e., for all indices I ∈ IH and all
vH ∈ XH , suppose that we can compute refinement indicators ϱH(I, vH). In particular, the
choice IH := TH results in an element-based estimator as in (2.11). Other common index
sets include the set of all vertices IH := VH , the set of all edges IH := EH , or any union
of the aforementioned sets. In order to define equivalence between ϱH and ηH , there must
exist some “translation” between the index set IH and the triangulation TH . With pow(·)
denoting the power set, let ι : TH → pow(IH) and τ : IH → pow(TH) be such translation
functions, i.e., it holds

ι(T ) ⊆ IH and τ(I) ⊆ TH for all T ∈ TH and I ∈ IH .

To abbreviate notation, we write

ι(UH) :=
�

T∈UH

ι(T ) and τ(JH) :=
�

I∈JH

τ(I) for all UH ⊆ TH and JH ⊆ IH .

Suppose that ι and τ satisfy the following properties:

• locality: There exists a constant s ∈ N0 such that for all TH ∈ T with corresponding
index set IH , it holds

τ(ι(T )) ⊆ T (s)
H [T ] for all T ∈ TH . (2.24)

• boundedness: There exists a constant Cindex such that

#ι(T ) ≤ Cindex for all T ∈ TH . (2.25)

We say that ϱH is locally equivalent to ηH (in the strong sense) if there exists a constant
Cloc ≥ 1 and a patch-level m ∈ N0 such that for all triangulations TH ∈ T with corresponding
index set IH , all simplices T ∈ TH , all indices I ∈ IH , and all vH ∈ XH , it holds

ηH(T, vH) ≤ Cloc ϱH
�
ι(T (m)

H [T ]), vH
�
, (2.26a)

ϱH(I, vH) ≤ Cloc ηH
�T (m)

H [ τ(I) ], vH
�
. (2.26b)

In that case, we can prove that the error estimator µH defined by

µH(T, vH)2 := ϱT (ι(T ), vH)2 =
�

I∈ι(T )

ϱH(I, vH)2 for all T ∈ TH (2.27)
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is strongly equivalent to the error estimator ηH in the sense of (2.22), as the following
calculations show: For all T ∈ TH and all vH ∈ XH , it holds

ηH(T, vH)2
(2.26a)
≤ C2

loc ϱH
�
ι(T (m)

H [T ]), vH
�2

= C2
loc

�
I∈ι(T (m)

H [T ])

ϱH(I, vH)2

(2.25)
≤ C2

loc Cindex
�

T∈T (m)
H [T ]

�
I∈ι(T )

ϱH(I, vH)2

= C2
loc Cindex µH(T (m)

H [T ], vH)2

≤ C2
loc Cindex µH(T (m+s)

H [T ], vH)2.

Conversely, for all T ∈ TH and all vH ∈ XH we have

µH(T, vH)2
(2.26b)
≤ C2

loc

�
I∈ι(T )

ηH(T (m)
H [ τ(I) ], vH)2

≤ C2
loc

�
I∈ι(T )

ηH(T (m)
H [ τ(ι(T )) ], vH)2

(2.25)
≤ C2

loc Cindex ηH(T (m)
H [ τ(ι(T )) ], vH)2

(2.24)
≤ C2

loc Cindex ηH(T (m+s)
H [T ], vH)2.

Hence, µH is locally equivalent to ηH in the strong sense of (2.22) with constant Cloc C
1/2
index

and patch-level m+ s. Analogously to (2.23), we define local equivalence of ϱH and ηH in
the weak sense by restricting vH to u⋆H in (2.26), i.e., there exists a constant Cloc ≥ 1 and a
patch-level m ∈ N0 such that for all triangulations TH ∈ T with corresponding index set IH ,
all simplices T ∈ TH , and all indices I ∈ IH , it holds

ηH(T, u⋆H) ≤ Cloc ϱH
�
ι(T (m)

H [T ]), u⋆H
�
, (2.28a)

ϱH(I, u⋆H) ≤ Cloc ηH
�T (m)

H [ τ(I) ], u⋆H
�
. (2.28b)

Replacing vH with u⋆H in the above calculations, we can show that weak local equivalence
of ϱH and ηH in the sense of (2.28) implies weak local equivalence of µH and ηH in
the sense of (2.23). Moreover, given that the refinement indicators ϱH(I, vH) can be
computed in constant time O(1), boundedness (2.25) guarantees that the computation of
µH(T, vH) also requires only constant time O(1), i.e., the computation of µH(vH) has linear
complexity O(#TH). Therefore, all subsequent results can be extended to index-based error
estimators ϱH via the error estimator µH defined in (2.27).

An implication of the following lemma is that the local equivalences (2.22)–(2.23) imply
global equivalence of the estimators µH and ηH .
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Lemma 2.16. Suppose local equivalence (2.22) of the estimators µH and ηH . Then, there
exists a constant Ceq ≥ 1 such that for all TH ∈ T, all UH ⊆ TH and all vH ∈ XH , it holds

ηH(UH , vH) ≤ Ceq µH(T (m)
H [UH ], vH) (2.29a)

µH(UH , vH) ≤ Ceq ηH(T (m)
H [UH ], vH). (2.29b)

Analogously, if µH and ηH are weakly locally equivalent in the sense of (2.23), there exists a
constant Ceq ≥ 1 such that for all TH ∈ T and all UH ⊆ TH it holds

ηH(UH , u⋆H) ≤ Ceq µH(T (m)
H [UH ], u⋆H) (2.30a)

µH(UH , u⋆H) ≤ Ceq ηH(T (m)
H [UH ], u⋆H). (2.30b)

In particular, setting UH := TH yields the global equivalence of the estimators µH and ηH .

Proof. In (2.21), we have shown that each T ∈ TH is contained in at most Cm
patch many

m-patches of TH . Hence, local equivalence (2.22) of µH and ηH with Ceq := Cloc C
m/2
patch

reveals, for all TH ∈ T, all UH ∈ TH , and all vH ∈ XH ,

ηH(UH , vH)2 =
�

T∈UH

ηH(T, vH)2
(2.22a)
≤ C2

loc

�
T∈UH

�
T ′∈T (m)

H [T ]

µH(T ′, vH)2

≤ C2
loc C

m
patch

�
T∈T (m)

H [UH ]

µH(T, vH)2 = C2
eq µH(T (m)

H [UH ], vH)2,

which verifies (2.29a). Switching the roles of µH and ηH provides (2.29b). Analogously,
setting vH := u⋆H establishes (2.30), which concludes the proof.

Remark 2.17 (inheritance of axioms). From (2.29)–(2.30), it immediately follows that
the locally equivalent estimator µH satisfies reliability (A3) with constant �Crel := Crel Ceq.
Moreover, for any triangulation TH ∈ T and any refinement Th ∈ T(TH), it holds

|||u⋆h − u⋆H |||
(A3+)
≤ Cdrel ηH(RHh, u

⋆
H)

(2.29)
(2.30)
≤ Cdrel Ceq µH(T (m)

H [RHh ], u
⋆
H).

Due to (2.20), the set �RHh := T (m)
H [RHh ] ⊇ TH \ Th fulfills # �RHh ≤ Cm

patchCref #(TH \ Th).
Hence, the estimator µH also satisfies discrete reliability (A3+) with �RHh ⊆ TH and constants�Cdrel := Cdrel Ceq ≥ 1 and �Cref := Cm

patchCref ≥ 1. In general, however, µH does not inherit
stability (A1) and reduction (A2) from the residual-based estimator ηH .

If µH is locally equivalent to ηH in the strong sense (2.22), a combination of global
estimator equivalence (2.29) and stability (A1) validates for �Cstab := max{C2

eq, Ceq Cstab},
all subsets UH ⊆ TH , and all vH , wH ∈ XH that

µH(UH , vH)
(2.29b)
≤ Ceq ηH(T (m)

H [UH ], vH)

(A1)
≤ Ceq

�
ηH(T (m)

H [UH ], wH) + Cstab |||vH − wH |||�
(2.29a)
≤ C2

eq µH(T (2m)
H [UH ], wH) + Ceq Cstab |||vH − wH |||

≤ �Cstab



µH(T (2m)

H [UH ], wH) + |||vH − wH |||


.

(2.31)
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2 Adaptive FEM with contractive solver

For µH := ηH , inequality (2.31) is implied by stability (A1) with �Cstab := Cstab. This gives
rise to the following weak stability axiom (W1): There exist constants �Cstab ≥ 1 and r ∈ N0

such that for any mesh TH ∈ T, any subset UH ⊆ TH , and arbitrary functions vH , wH ∈ XH ,
there holds

(W1) weak stability: µH(UH , vH) ≤ �Cstab



µH(T (r)

H [UH ], wH) + |||vH − wH |||



In particular, the calculation in (2.31) shows that weak stability (W1) is already implied by
strong estimator equivalence (2.22) and stability (A1) with �Cstab := max{C2

eq, Ceq Cstab}
and r := 2m. However, we suppose that weak stability (W1) is also satisfied in case of weak
equivalence (2.23).

Concrete examples of estimators µH that are locally equivalent to the residual-based
estimator ηH are discussed in Chapter 5 below.

2.4 Contractive solver

Since the direct computation of the exact solution u⋆H of (2.5) is expensive in practice, one
resorts to iterative solvers. For all TH ∈ T, we write ΨH : XH → XH for the iteration
operator of such a solver. Hence, starting from an initial guess u0H ∈ XH , the discrete
function ukH := ΨH(uk−1

H ) denotes the new approximation of u⋆H constructed from the
previous approximation uk−1

H by one solver step of the algebraic solver. We suppose that
each solver step has linear complexity, i.e., the computation of ΨH(uk−1

H ) requires O(#TH)
operations. An essential assumption for the later convergence analysis is uniform contraction
of the solver, i.e., there exists a constant 0 < qctr < 1 independent of the mesh level H such
that

|||u⋆H − ukH ||| ≤ qctr |||u⋆H − uk−1
H ||| for all k ∈ N. (2.32)

Since the exact solution u⋆H is never computed explicitly but only approximated by ukH ,
controlling the algebraic solver error |||u⋆H − ukH ||| is crucial. Together with the (reverse)
triangle inequality, contraction (2.32) implies, for all k ∈ N,

1− qctr
qctr

|||u⋆H − ukH |||
(2.32)
≤ (1− qctr) |||u⋆H − uk−1

H |||
(2.32)
≤ |||u⋆H − uk−1

H ||| − |||u⋆H − ukH |||

≤ |||ukH − uk−1
H ||| ≤ |||u⋆H − ukH |||+ |||u⋆H − uk−1

H |||
(2.32)
≤ (1 + qctr) |||u⋆H − uk−1

H |||.
(2.33)

This means that |||ukH −uk−1
H ||| acts as a computable quantity to measure the algebraic solver

error |||u⋆H − ukH ||| from above and |||u⋆H − uk−1
H ||| from above and below. Using the triangle

inequality, the total error |||u⋆ − ukH ||| can thus be bounded by the sum of the discretization
error |||u⋆ − u⋆H ||| and the algebraic solver error |||u⋆H − ukH ||| via

|||u⋆ − ukH ||| ≤ |||u⋆ − u⋆H |||+ |||u⋆H − ukH |||. (2.34)

Therefore, the algorithm should control both error contributions simultaneously. However,
both terms are not available in practice. In Remark 2.17, we have observed that the locally
equivalent error estimator µH satisfies reliability (A3). As a result, the discretization error
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2 Adaptive FEM with contractive solver

|||u⋆−u⋆H ||| is bounded by �Crel µH(u⋆H). Moreover, the combination with weak stability (W1)
yields, for k ≥ 1,

|||u⋆ − ukH |||
(2.34)
≤ |||u⋆ − u⋆H |||+ |||u⋆H − ukH |||

(A3)
≤ �Crel µH(u⋆H) + |||u⋆H − ukH |||

(W1)
≤ �Crel �Cstab µH(ukH) + (1 + �Crel �Cstab) |||u⋆H − ukH |||

(2.33)
≤ �Crel �Cstab µH(ukH) + (1 + �Crel �Cstab)

qctr
1− qctr

|||ukH − uk−1
H |||

≲ µH(ukH) + |||ukH − uk−1
H |||.

This means that the sum µH(ukH)+ |||ukH −uk−1
H ||| is a computable upper bound for the total

error |||u⋆ − ukH |||. Since solver iterations only reduce the (estimated) algebraic solver error
|||ukH − uk−1

H |||, this motivates to stop the solver once the second summand |||ukH − uk−1
H ||| is

smaller than a fixed multiple λ > 0 of the first summand µH(ukH), i.e.,

|||ukH − uk−1
H ||| ≤ λµH(ukH). (2.35)

This functions as the stopping criterion for the algebraic solver used in the adaptive algorithm
in Section 2.6. With k[H] we denote the minimal index k ∈ N such that ukH satisfies (2.35).
Whenever it is clear from the context, we will omit the dependency on the discretization
parameter H in this notation and write only k = k[H] for the final solver index, e.g.,
u
k
H = u

k[H]
H .

2.4.1 Symmetric elliptic PDEs

For the symmetric case, iterative linear solvers are well-understood. Examples include opti-
mally preconditioned CG methods [CNX12] or optimal geometric multigrid methods [WZ17;
IMPS24].

2.4.2 Nonsymmetric elliptic PDEs

In case that a(·, ·) is nonsymmetric, we consider its symmetric part b(·, ·) from (2.2) and the
so-called Zarantonello mapping introduced in the state-of-the-art proof of the Lax-Milgram
theorem by Zarantonello [Zar60]. For a triangulation TH ∈ T and δ > 0, the Zarantonello
mapping ΦH(δ; ·) : XH → XH is implicitly defined by

b(ΦH(δ;uH), vH) = b(uH , vH) + δ
�
F (vH)− a(uH , vH)

�
for all uH , vH ∈ XH . (2.36)

Since b(·, ·) is a scalar product, the Riesz representation theorem guarantees the existence
and uniqueness of ΦH(δ;uH) ∈ XH satisfying (2.36), i.e., the mapping is well-defined. In
particular, the Galerkin solution u⋆H of (2.5) is the only fixpoint of ΦH(δ; ·) for any δ > 0.
For a sufficiently small δ > 0, the Zarantonello mapping ΦH(δ; ·) is contractive, i.e., there
exists a constant 0 < qsym < 1 such that

|||u⋆H − ΦH(δ;uH)||| ≤ qsym |||u⋆H − uH ||| for all uH ∈ XH . (2.37)

17



2 Adaptive FEM with contractive solver

Solving for ΦH(δ;uH) in (2.36) leads to a symmetric problem, which means that ΦH(δ;uH)
can be approximated with the aforementioned linear solvers from Section 2.4.1. For any k ∈ N,
let j denote the index of such a solver with iteration operator Ψsym

H (uk,⋆H ; ·) and contraction
constant 0 < qalg < 1 approximating uk,⋆H := ΦH(δ;uk−1

H ). Starting from uk,0H := uk−1
H ∈ XH ,

the discrete function uk,jH = Ψsym
H (uk,⋆H ;uk,j−1

H ) denotes the new approximation of uk,⋆H con-
structed from the previous approximation uk,j−1

H by one step of the solver for the symmetric
problem (2.36), i.e., it holds

|||uk,⋆H − uk,jH ||| ≤ qalg |||uk,⋆H − uk,j−1
H ||| for all j ∈ N. (2.38)

We stress that uk,⋆H is never computed explicitly and that Ψsym
H (uk,⋆H ; ·) depends only on the

right-hand side of (2.36) and the scalar product b(·, ·), while 0 < qalg < 1 depends only
on b(·, ·). With j denoting the final solver index, we define the iteration operator ΨH of

the algebraic solver for the nonsymmetric problem (2.5) via ukH := ΨH(uk−1
H ) := u

k,j

H , i.e.,
one step of the algebraic solver for the nonsymmetric problem (2.5) corresponds to j steps
of the solver for the symmetric problem (2.36). We aim to determine a lower bound j0 for
the total number of solver iterations j needed to ensure that ΨH is a uniformly contractive
linear solver approximating u⋆H . This is the content of the following proposition.

Proposition 2.18 (solver contraction for nonsymmetric elliptic PDEs). Suppose
that the iteration operator Ψsym

H (uk,⋆H ; ·) of the solver for the symmetric problem (2.36) is
contractive, i.e., there exists a constant 0 < qalg < 1 independent of the mesh level H and
the index k such that (2.38) holds. Suppose that total number of solver iterations j ∈ N for
the symmetric problem (2.36) is sufficiently large in the sense that

j > j0 :=

����� log(
1−qsym
1+qsym

)

log(qalg)

����� . (2.39)

Then, there exists a constant 0 < qctr < 1 such that

|||u⋆H − u
k,j

H ||| ≤ qctr |||u⋆H − u
k−1,j

H ||| for all 1 ≤ k ≤ k[H], (2.40)

i.e., the proposed solver for the nonsymmetric problem (2.5) is contractive.

Proof. We follow the reasoning from [BIM+24, Section 2]. The triangle inequality and the
contraction of Zarantonello mapping (2.37) show for all k ∈ N that

|||u⋆H − u
k,j

H ||| ≤ |||u⋆H − uk,⋆H |||+ |||uk,⋆H − u
k,j

H ||| ≤ qsym |||u⋆H − u
k−1,j

H |||+ |||uk,⋆H − u
k,j

H |||. (2.41)

Contraction (2.38) together with nested iteration uk,0H = u
k−1,j

H and j ≥ 1 proves

|||uk,⋆H − u
k,j

H ||| ≤ q
j

alg |||uk,⋆H − u
k−1,j

H |||. (2.42)

Furthermore, the triangle inequality and contraction (2.37) yield

|||uk,⋆H − u
k−1,j

H ||| ≤ |||u⋆H − uk,⋆H |||+ |||u⋆H − u
k−1,j

H ||| ≤ (qsym + 1) |||u⋆H − u
k−1,j

H |||. (2.43)
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2 Adaptive FEM with contractive solver

Combining the last three estimates (2.41)–(2.43), we obtain

|||u⋆H − u
k,j

H ||| ≤


qsym + q

j

alg (qsym + 1)


|||u⋆H − u

k−1,j

H |||.

We observe that qctr := qsym + q
j

alg (qsym + 1) < 1 is equivalent to

q
j

alg <
1− qsym

1 + qsym
.

Hence, the choice of j ∈ N in (2.39) guarantees contraction (2.40) of each solver iteration

u
k,j

H = ΨH

�
u
k−1,j

H

�
for all TH ∈ T and 1 ≤ k ≤ k[H]. This concludes the proof.

Hence, we set the number of solver iterations j to the minimal index satisfying (2.39),
i.e., j := min{j ∈ N : j > j0}. Since j is independent of the triangulation TH ∈ T and the
index k, and each solver step Ψsym

H has linear cost O(#TH), the resulting solver for the
nonsymmetric problem has also linear complexity O(#TH) and thus fits into the framework
from above.

2.5 Marking

Given the local error indicators µH(T, u
k
H) of the final iterate u

k
H on each element T ∈ TH ,

the goal in the marking step is to determine a set MH ⊆ TH of marked elements that should
be refined in the consecutive refinement step. For this, we will employ the so-called Dörfler
marking criterion introduced in [Dör96]: Given a marking parameter 0 < θ ≤ 1, find a set
MH ⊆ TH such that

θ µH(u
k
H)2 ≤ µH(MH , u

k
H)2. (2.44)

This can be interpreted as choosing a set of elements MH ⊆ TH whose corresponding
estimated discretization error accounts for a θ-fraction of the total estimated discretization
error. Smaller choices of θ lead to fewer marked elements and thus highly adapted meshes.
On the contrary, the selection θ = 1 essentially corresponds to uniform mesh refinement
since (generically) all elements are marked for refinement. In order to obtain optimal
convergence rates, it seems natural to select MH with minimal cardinality. A naive
approach involves sorting the computed refinement indicators, which results in a suboptimal
log-linear complexity in terms of the number of elements #TH . However, [Ste07] showed
that determining a set of elements

MH ∈ MH [θ, u
k
H ] :=

�UH ⊆ TH : θµH(u
k
H)2 ≤ µH(UH , u

k
H)2

	
(2.45a)

with quasi-minimal cardinality

#MH ≤ Cmark min
UH∈MH [θ,u

k
H ]

#UH where Cmark ≥ 1, (2.45b)

suffices to prove optimality. [Ste07] proposed an algorithm based on binning that achieves (2.45)
with Cmark = 2 in linear complexity O(#TH). [PP20] later improved on that by showing
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2 Adaptive FEM with contractive solver

that a modified QuickSelect algorithm on average even allows for Cmark = 1 with linear
complexity.

Dörfler marking is sufficient for linear convergence (cf. [CKNS08]). However, the following
proposition even shows that it is essentially necessary to achieve linear convergence, which
is the central reason why the adaptive algorithm in Section 2.6 employs Dörfler marking.

Proposition 2.19 (optimality of Dörfler marking [CFPP14, Proposition 4.12]).
Suppose that the estimator ηH satisfies stability (A1) and discrete reliability (A3+). Re-
call the set RHh ⊆ TH from discrete reliability (A3+) satisfying TH \ Th ⊆ RHh and
#RHh ≤ Cref #(TH \ Th). Let θ⋆ := (1 + C2

drel C
2
stab)

−1. Then, for all 0 < θ0 < θ⋆, there
exists a constant 0 < qopt < 1 such that for all 0 < θ < θ0, all triangulations TH ∈ T, and
all refinements Th ∈ T(TH) it holds

ηh(u
⋆
h)

2 ≤ qopt ηH(u⋆H)2 =⇒ θ ηH(u⋆H)2 ≤ ηH(RHh, u
⋆
H)2.

The proposition above asserts that whenever the error estimator is contracted, the set
RHh ⊆ TH satisfies the Dörfler marking criterion (2.44). Since the set RHh is essentially
the set of refined elements TH \ Th, this implies that, regardless of the marking strategy
used, the set of refined elements will always satisfy the Dörfler marking criterion (2.44) if
the marking strategy guarantees contraction of the estimator. Therefore, using any marking
strategy other than Dörfler would be pointless.

2.6 Formulation of the algorithm

With the preliminary discussion from Section 2.1–2.5 above, we can formulate the following
adaptive algorithm (cf. [GHPS21; BFM+25]), which is steered by the estimator µH .

Algorithm B (AFEM with contractive solver).
Input: Initial mesh T0, marking parameters 0 < θ ≤ 1 and Cmark ≥ 1, solver-stopping
parameter λ > 0, and initial guess u00 ∈ X0.
For all ℓ = 0, 1, 2, . . . , repeat (i)–(iii):

(i) Solve & Estimate: For all k = 1, 2, 3, . . . , repeat (a)–(b):
(a) Compute ukℓ := Ψℓ(u

k−1
ℓ ) using one step of the contractive solver Ψℓ.

(b) Compute refinement indicators µℓ(T, u
k
ℓ ) for all T ∈ Tℓ.

until
|||ukℓ − uk−1

ℓ ||| ≤ λ µℓ(u
k
ℓ ). (2.46)

Upon termination, define the index k[ℓ] := k and abbreviate u
k
ℓ := u

k[ℓ]
ℓ .

(ii) Mark: Determine a set Mℓ ∈ Mℓ[θ, u
k
ℓ ] that satisfies (2.45).

(iii) Refine: Generate Tℓ+1 := refine(Tℓ,Mℓ) and use nested iteration u0ℓ+1 := u
k
ℓ .

We define
Q := {(ℓ, k) ∈ N2

0 : u
k
ℓ is defined in Algorithm B}

as the countably infinite index set of all iterates generated by Algorithm B. We order the
indices sequentially by their appearance in the algorithm, i.e.,

(ℓ, k) ≤ (ℓ′, k′) :⇐⇒ ukℓ appears not later than uk
′

ℓ′ in Algorithm B,
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2 Adaptive FEM with contractive solver

or in explicit terms,

(ℓ, k) ≤ (ℓ′, k′) :⇐⇒ ℓ < ℓ′ or (ℓ = ℓ′ and k ≤ k′).

The latter definition is usually referred to as lexicographical ordering. Correspondingly, we
define the total step counter

|ℓ, k| := #{(ℓ′, k′) ∈ Q : (ℓ′, k′) ≤ (ℓ, k)} = k +
ℓ−1�
ℓ′=0

k[ℓ′]

and the stopping indices

ℓ := sup{ℓ ∈ N0 : (ℓ, 0) ∈ Q}, (2.47)
k[ℓ] := sup{k ∈ N : (ℓ, k) ∈ Q}. (2.48)

We note that this definition of k[ℓ] is consistent with the definition in Algorithm B.
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3 Parameter-robust full R-linear
convergence

Our objective in the following chapter is to show full R-linear convergence of Algorithm B
independently of the adaptivity parameters θ and λ. This property is the key to cost-
optimality as described in [GHPS21] and Chapter 4 below. While [BFM+25] establishes
parameter-robust full R-linear convergence for the standard residual-based estimator that
fulfills the axioms of adaptivity (A1)–(A3), we aim to prove this for locally equivalent
estimators µℓ that lack reduction (A2) and thus seemingly do not fit into this framework.

First, we prove a weaker version of the estimator reduction in the spirit of [BFM+25,
Equation (36)] for a modified residual-based estimator ηℓ that still applies if Algorithm B
is steered by the locally equivalent estimator µℓ. For that, we suppose that ηℓ satisfies a
modified stability axiom (M1) and a modified reduction axiom (M2). In Section 3.2, we
define ηℓ through the appropriate mesh-size function from Proposition 3.8 and prove that
the estimator satisfies the modified axioms. Finally, we apply the estimator reduction from
Section 3.1 to prove parameter-robust full R-linear convergence for the locally equivalent
estimator µℓ in Section 3.3.

3.1 Estimator reduction

In general, Dörfler marking
θ µℓ(u

k
ℓ )

2 ≤ µℓ(Mℓ, u
k
ℓ )

2 (3.1)

for an estimator µℓ does not imply Dörfler marking

θ ηℓ(u
k
ℓ )

2 ≤ ηℓ(Mℓ, u
k
ℓ )

2 (3.2)

for a locally equivalent estimator ηℓ. However, for strong estimator equivalence (2.22), we
can prove (3.2) for a different marking parameter �θ and a suitable larger set of marked
elements T (m)

ℓ [Mℓ ].

Lemma 3.1 (equivalence of Dörfler-marking for strongly equivalent estimators).
Let 0 < θ ≤ 1 and Mℓ ⊆ Tℓ be the marked set associated with the triangulation Tℓ ∈ T
from Step (ii) in Algorithm B. Suppose that the error estimator µℓ is strongly equivalent to
an estimator ηℓ in the sense of (2.22). Then, it holds 0 < �θ := C−4

eq θ ≤ 1 and the Dörfler
marking criterion (3.1) for µℓ implies the Dörfler marking criterion for ηℓ in the sense that

�θ ηℓ(ukℓ )2 ≤ ηℓ(T (m)
ℓ [Mℓ ], u

k
ℓ )

2. (3.3)
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3 Parameter-robust full R-linear convergence

Proof. Strong estimator equivalence (2.29) and Dörfler marking (3.1) provide

θηℓ(u
k
ℓ )

2
(2.29a)
≤ C2

eq θµℓ(u
k
ℓ )

2
(3.1)
≤ C2

eq µℓ(Mℓ, u
k
ℓ )

2
(2.29b)
≤ C4

eq ηℓ(T (m)
ℓ [Mℓ ], u

k
ℓ )

2.

Since Ceq ≥ 1, a rearrangement of this concludes the proof.

Dörfler marking is crucial to prove the estimator reduction for the inexact iterate u
k
ℓ from

[BFM+25, Equation (36)], which states that there exists a constant 0 < qθ < 1 such that

ηℓ+1(u
k
ℓ+1) ≤ qθ ηℓ(u

k
ℓ ) + Cstab|||ukℓ+1 − u

k
ℓ ||| for all ℓ ∈ N0 with (ℓ+ 1, k) ∈ Q. (3.4)

In the proof, the reduction axiom (A2) is combined with the Dörfler marking criterion (3.2),
which is possible since all marked elements are refined. However, this is not feasible if only
(3.3) holds, because not all elements of T (m)

ℓ [Mℓ ] are refined in general, i.e., we cannot
guarantee that T (m)

ℓ [Mℓ ] ⊆ Tℓ \ Tℓ+1. As a remedy, we introduce a modified residual-based
estimator ηH , which satisfies a modified stability axiom (M1) and a modified reduction
axiom (M2). This requires some additional notation.

Definition 3.2. For a refinement Th ∈ T(TH) and M ∈ N0, we define Ω
(M)
H,h as the union of

all refined elements plus M additional layers

Ω
(M)
H,h :=

�
T (M)
H [ TH \ Th ] ⊆ Ω.

We write Th|Ω(M)
H,h

for the set of fine-mesh simplices T ∈ Th that are contained in Ω
(M)
H,h , i.e.,

Th|Ω(M)
H,h

:=
�
T ∈ Th : T ⊆ Ω

(M)
H,h

	
.

Note that for the triangulation TH , the set TH |
Ω

(M)
H,h

coincides with T (M)
H [ TH \Th ]. Moreover,

since TH \ T (M)
H [ TH \ Th ] ⊆ TH ∩ Th, it holds

Th \ Th|Ω(M)
H,h

= TH \ TH |
Ω

(M)
H,h

⊆ TH ∩ Th.
Let Cstab ≥ 0 and 0 < qred < 1 be constants such that the following properties hold for

any triangulation TH ∈ T, any refinement Th ∈ T(TH), any subset UH ⊆ TH \T (M)
H [ TH \Th ],

and arbitrary vH ∈ XH and vh ∈ Xh:

(M1) patch stability: |ηh(UH , vh)− ηH(UH , vH)| ≤ Cstab |||vh − vH |||,
(M2) patch reduction: ηh(Th|Ω(M)

H,h

, vH) ≤ qred ηH(TH |
Ω

(M)
H,h

, vH).

Remark 3.3 (implications of patch stability (M1)). Patch stability (M1) yields
implications comparable to those of stability (A1) discussed in Remark 2.10. Similar to
(2.17), the choice vh := vH provides

ηh(UH , vH) = ηH(UH , vH) for all UH ⊆ TH \ T (M)
H [ TH \ Th ].

Analogously to (2.18), setting Th := TH implies

|ηH(vh)− ηH(vH)| ≤ Cstab |||vh − vH |||.
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3 Parameter-robust full R-linear convergence

In Section 3.2 below, we show that the residual-based estimator ηH defined in (3.22)
satisfies the modified axioms (M1)–(M2) in addition to reliability (A3), discrete reliability
(A3+), and quasi-monotonicity (QM). Contrary to ηH , the estimator ηH satisfies estimator
reduction (3.4) in case of strong local equivalence (2.22).

Lemma 3.4 (estimator reduction via strong local equivalence (2.22)). Let 0 < θ ≤ 1,
Cmark ≥ 1, λ > 0, and u00 ∈ X0 in Algorithm B be arbitrary. Suppose that the error
estimator µℓ is equivalent to an estimator ηℓ in the sense of (2.22). With m ∈ N0 from the
equivalence (2.22), suppose that ηℓ satisfies the axioms (M1)–(M2) with M := m. Recall�θ := C−4

eq θ from Lemma 3.1. Then, with the constant

0 < q�θ :=


1− �

1− (qred)
2
��θ 
1/2 < 1, (3.5)

the estimator ηℓ satisfies

ηℓ+1(vℓ+1) ≤ q�θ ηℓ(ukℓ ) + Cstab|||vℓ+1 − u
k
ℓ ||| for all ℓ < ℓ and all vℓ+1 ∈ Xℓ+1. (3.6)

In particular, if (ℓ+ 1, k) ∈ Q, setting vℓ+1 := u
k
ℓ+1 yields the estimator reduction (3.4).

Proof. Let ℓ < ℓ be arbitrary. Using patch stability (M1) and patch reduction (M2), we get

ηℓ+1(u
k
ℓ )

2 = ηℓ+1(Tℓ+1 \ Tℓ+1|Ω(m)
ℓ,ℓ+1

, u
k
ℓ )

2 + ηℓ+1(Tℓ+1|Ω(m)
ℓ,ℓ+1

, u
k
ℓ )

2

(M1)
= ηℓ(Tℓ \ Tℓ|Ω(m)

ℓ,ℓ+1

, u
k
ℓ )

2 + ηℓ+1(Tℓ+1|Ω(m)
ℓ,ℓ+1

, u
k
ℓ )

2

(M2)
≤ ηℓ(Tℓ \ Tℓ|Ω(m)

ℓ,ℓ+1

, u
k
ℓ )

2 + q2red ηℓ(Tℓ|Ω(m)
ℓ,ℓ+1

, u
k
ℓ )

2

= ηℓ(u
k
ℓ )

2 − �
1− q2red

�
ηℓ(Tℓ|Ω(m)

ℓ,ℓ+1

, u
k
ℓ )

2.

(3.7)

Since Mℓ ⊆ Tℓ \ Tℓ+1, Lemma 3.1 implies for the marking parameter 0 < �θ ≤ 1

�θ ηℓ(ukℓ )2 (3.3)
≤ ηℓ(T (m)

ℓ [Mℓ ], u
k
ℓ )

2 ≤ ηℓ(T (m)
ℓ [ Tℓ \ Tℓ+1 ], u

k
ℓ )

2 = ηℓ(Tℓ|Ω(m)
ℓ,ℓ+1

, u
k
ℓ )

2.

By definition (3.5) of q�θ, the combination of this estimate with (3.7) yields

ηℓ+1(u
k
ℓ ) ≤ q�θ ηℓ(ukℓ ). (3.8)

Together with patch stability (M1), we obtain for any vℓ+1 ∈ Xℓ+1 that

ηℓ+1(vℓ+1)
(M1)
≤ ηℓ+1(u

k
ℓ ) + Cstab|||vℓ+1 − u

k
ℓ |||

(3.8)
≤ q�θ ηℓ(ukℓ ) + Cstab|||vℓ+1 − u

k
ℓ |||.

This concludes the proof.

Contrary to [BFM+25], we use a weaker estimator reduction than (3.4) in the full R-linear
convergence proof, which has two reasons: First, we employ a different (but equivalent)
quasi-error compared to [BFM+25], detailed in Section 3.3 below. Second, it is not possible
to prove estimator reduction (3.6) in case of weak local equivalence (2.23). Instead, we will
use the following estimator reduction, which is an immediate consequence of Lemma 3.4.

24



3 Parameter-robust full R-linear convergence

Corollary 3.5 (perturbed estimator reduction via strong local equivalence (2.22)).
Let 0 < θ ≤ 1, Cmark ≥ 1, λ > 0 and u00 ∈ X0 in Algorithm B be arbitrary. With m ∈ N0

from the strong equivalence (2.22), suppose that ηℓ satisfies the axioms (M1)–(M2) with
M := m. Then, with the constant 0 < q�θ < 1 defined in (3.5) and C�θ := (1 + q�θ)Cstab ≥ 1,
the estimator ηℓ satisfies

ηℓ+1(u
⋆
ℓ+1) ≤ q�θ ηℓ(u⋆ℓ ) + C�θ |||u⋆ℓ − u

k
ℓ |||+ Cstab|||u⋆ℓ+1 − u⋆ℓ ||| for all ℓ < ℓ. (3.9)

Proof. Let ℓ < ℓ be arbitrary. Patch stability (M1), the triangle inequality and Lemma 3.4
applied to the function vℓ+1 := u⋆ℓ+1 yield

ηℓ+1(u
⋆
ℓ+1)

(3.6)
≤ q�θ ηℓ(ukℓ ) + Cstab|||u⋆ℓ+1 − u

k
ℓ |||

(M1)
≤ q�θ ηℓ(u⋆ℓ ) + q�θ Cstab|||u⋆ℓ − u

k
ℓ |||+ Cstab|||u⋆ℓ+1 − u

k
ℓ |||

≤ q�θ ηℓ(u⋆ℓ ) + C�θ |||u⋆ℓ − u
k
ℓ |||+ Cstab|||u⋆ℓ+1 − u⋆ℓ |||.

This concludes the proof.

In case that µℓ is locally equivalent to ηℓ in the weak sense (2.23), utilizing Dörfler
marking becomes problematic: Since the Dörfler marking criterion (2.45) involves only the
final iterate u

k
ℓ and weak local equivalence considers only the Galerkin solution u⋆ℓ , they

cannot be combined directly. However, using the weak stability (W1) that we suppose for
µℓ in Section 2.3, we can prove Dörfler marking for ηℓ up to a perturbation term.

Lemma 3.6 (Dörfler-like inequality for weakly equivalent estimators). Let 0 < θ ≤ 1.
For a triangulation Tℓ ∈ T from Algorithm B, let Mℓ ⊆ Tℓ be the corresponding set of marked
elements. Suppose that the error estimator µℓ is weakly locally equivalent to an estimator ηℓ in
the sense of (2.23) with m ∈ N0 and satisfies weak stability (W1) with r ∈ N0. Furthermore,
suppose that ηℓ satisfies the axioms (M1)–(M2) with M := m+ r. Then, with the constants

0 < θ :=
1

2
θ C−4

eq
�C−4
stab ≤ 1

2
and 0 < Cper := C−1

eq + θ1/2C−1
eq

�C−1
stab ≤ 2 (3.10)

the Dörfler marking criterion (3.1) implies

θ ηℓ
�
u⋆ℓ )

2 ≤ ηℓ(T (m+r)
ℓ [Mℓ ], u

⋆
ℓ

�2
+ C2

per|||u⋆ℓ − u
k
ℓ |||2. (3.11)

Moreover, if the estimator ηℓ additionally satisfies patch stability (M1) for any M ∈ N0, the
Dörfler marking criterion (3.1) also implies for Cper := Cstab(1 + θ1/2C−2

eq
�C−2
stab) +Cper > 0

θ ηℓ
�
u
k
ℓ )

2 ≤ ηℓ(T (m+r)
ℓ [Mℓ ], u

k
ℓ

�2
+ C

2
per|||u⋆ℓ − u

k
ℓ |||2. (3.12)

Proof. Weak estimator equivalence (2.30), weak stability (W1) of µℓ, and Dörfler mark-
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ing (3.1) lead to

θ1/2C−2
eq

�C−2
stabηℓ(u

⋆
ℓ )

(2.30a)
≤ θ1/2C−1

eq
�C−2
stab µℓ(u

⋆
ℓ )

(W1)
≤ θ1/2C−1

eq
�C−1
stab µℓ(u

k
ℓ ) + θ1/2C−1

eq
�C−1
stab |||u⋆ℓ − u

k
ℓ |||

(3.1)
≤ C−1

eq
�C−1
stab µℓ(Mℓ, u

k
ℓ ) + θ1/2C−1

eq
�C−1
stab |||u⋆ℓ − u

k
ℓ |||

(W1)
≤ C−1

eq µℓ(T (r)
ℓ [Mℓ ], u

⋆
ℓ ) +



C−1

eq + θ1/2C−1
eq

�C−1
stab



|||u⋆ℓ − u

k
ℓ |||

(2.30b)
≤ ηℓ(T (m+r)

ℓ [Mℓ ], u
⋆
ℓ ) + Cper |||u⋆ℓ − u

k
ℓ |||.

(3.13)

Since
1

2
(a+ b)2 ≤ a2 + b2 for any a, b ≥ 0, (3.14)

inequality (3.13) results in

θηℓ(u
⋆
ℓ )

2
(3.13)
≤ 1

2

�
ηℓ(T (m+r)

ℓ [Mℓ ], u
⋆
ℓ ) + Cper|||u⋆ℓ − u

k
ℓ |||

�2
≤ ηℓ(T (m+r)

ℓ [Mℓ ], u
⋆
ℓ )

2 + C2
per|||u⋆ℓ − u

k
ℓ |||2.

(3.15)

The fact Ceq, �Cstab ≥ 1 guarantees 0 < θ ≤ 1
2 and 0 < Cper ≤ 2. This concludes the proof

of (3.11). For the proof of (3.12), we combine patch stability (M1) with (3.13) to obtain

θ1/2C−2
eq

�C−2
stab ηℓ(u

k
ℓ )

(M1)
≤ θ1/2C−2

eq
�C−2
stab ηℓ(u

⋆
ℓ ) + θ1/2C−2

eq
�C−2
stabCstab |||u⋆ℓ − u

k
ℓ |||

(3.13)
≤ ηℓ(T (m+r)

ℓ [Mℓ ], u
⋆
ℓ ) + (θ1/2C−2

eq
�C−2
stabCstab + Cper) |||u⋆ℓ − u

k
ℓ |||

(M1)
≤ ηℓ(T (m+r)

ℓ [Mℓ ], u
k
ℓ ) + Cper |||u⋆ℓ − u

k
ℓ |||.

With an analogous calculation as in (3.15), we conclude the proof of (3.12).

The following lemma shows that the Dörfler-like inequality (3.11) is sufficient to prove
the perturbed estimator reduction (3.9).

Lemma 3.7 (perturbed estimator reduction via weak local equivalence (2.23)).
Let 0 < θ ≤ 1, Cmark ≥ 1, λ > 0 and u00 ∈ X0 in Algorithm B be arbitrary. Suppose
that the error estimator µℓ is equivalent to an estimator ηℓ in the sense of (2.23) and
satisfies weak stability (W1). With m ∈ N0 from the equivalence (2.23) and r ∈ N0

from weak stability (W1), suppose that ηℓ satisfies (M1)–(M2) with M := m + r. Recall
θ := 1

2 θ C
−4
eq

�C−4
stab and 0 < Cper ≤ 2 from Lemma 3.6. Then, with the constants

1√
2
< qθ :=



1− �

1− q2red
�
θ

1/2

< 1 and 0 ≤ Cθ := Cper
�
1− q2red

�1/2
< 2,

the estimator ηℓ satisfies

ηℓ+1(u
⋆
ℓ+1) ≤ qθ ηℓ(u

⋆
ℓ ) + Cθ |||u⋆ℓ − u

k
ℓ |||+ Cstab|||u⋆ℓ+1 − u⋆ℓ ||| for all ℓ < ℓ. (3.16)
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3 Parameter-robust full R-linear convergence

Proof. Let ℓ < ℓ be arbitrary. Analogously to (3.7), patch stability (M1) and patch
reduction (M2) verify

ηℓ+1(u
⋆
ℓ )

2 = ηℓ+1(Tℓ+1 \ Tℓ+1|Ω(m+r)
ℓ,ℓ+1

, u⋆ℓ )
2 + ηℓ+1(Tℓ+1|Ω(m+r)

ℓ,ℓ+1

, u⋆ℓ )
2

(M1)
= ηℓ(Tℓ \ Tℓ|Ω(m+r)

ℓ,ℓ+1

, u⋆ℓ )
2 + ηℓ+1(Tℓ+1|Ω(m+r)

ℓ,ℓ+1

, u⋆ℓ )
2

(M2)
≤ ηℓ(Tℓ \ Tℓ|Ω(m+r)

ℓ,ℓ+1

, u⋆ℓ )
2 + q2red ηℓ(Tℓ|Ω(m+r)

ℓ,ℓ+1

, u⋆ℓ )
2

= ηℓ(u
⋆
ℓ )

2 − �
1− q2red

�
ηℓ(Tℓ|Ω(m+r)

ℓ,ℓ+1

, u⋆ℓ )
2.

(3.17)

The Dörfler-like inequality (3.11) and Mℓ ⊆ Tℓ \ Tℓ+1 imply

θ ηℓ(u
⋆
ℓ )

2
(3.11)
≤ ηℓ(T (m+r)

ℓ [Mℓ ], u
⋆
ℓ )

2 + C2
per|||u⋆ℓ − u

k
ℓ |||2

≤ ηℓ(T (m+r)
ℓ [ Tℓ \ Tℓ+1 ], u

⋆
ℓ )

2 + C2
per|||u⋆ℓ − u

k
ℓ |||2

= ηℓ(Tℓ|Ω(m+r)
ℓ,ℓ+1

, u⋆ℓ )
2 + C2

per|||u⋆ℓ − u
k
ℓ |||2.

(3.18)

The combination of the last two estimates results in

ηℓ+1(u
⋆
ℓ )

2 ≤ q2
θ
ηℓ(u

⋆
ℓ )

2 + C2
θ
|||u⋆ℓ − u

k
ℓ |||2. (3.19)

Since
�
a2 + b2

�1/2 ≤ a+ b for all a, b ≥ 0, inequality (3.19) yields

ηℓ+1(u
⋆
ℓ ) ≤ qθ ηℓ(u

⋆
ℓ ) + Cθ |||u⋆ℓ − u

k
ℓ |||. (3.20)

Together with patch stability (M1), we obtain

ηℓ+1(u
⋆
ℓ+1)

(M1)
≤ ηℓ+1(u

⋆
ℓ ) + Cstab|||u⋆ℓ+1 − u⋆ℓ |||

(3.20)
≤ qθ ηℓ(u

⋆
ℓ ) + Cθ |||u⋆ℓ − u

k
ℓ |||+ Cstab|||u⋆ℓ+1 − u⋆ℓ |||.

This concludes the proof.

3.2 Generalized mesh-size function

A central property in the proof of the reduction axiom (A2) for the residual-based esti-
mator ηH from Example 2.8 is that the mesh-size function H(T ) contracts whenever an
element T ∈ TH is refined, i.e., there exists a constant 0 < ρ < 1 such that for all trian-
gulations TH ∈ T, all refinements Th ∈ T(TH), all refined elements T ∈ TH \ Th, and all
T ′ ∈ Th with T ′ ⊂ T it holds H(T ) ≤ ρ h(T ′). This is the reason why [CKNS08] introduced
the mesh-size function H(T ) := |T |1/d over the (arguably) more natural mesh-size function�H(T ) := diam(T ): While the diameter of refined elements T ∈ TH \ Th does not necessarily
decrease, their volume |T | is always halved with every bisection. Consequently, it holds
|T ′| ≤ |T |/2 for all refined elements T ∈ TH \ Th and all T ′ ∈ Th with T ′ ⊂ T , which implies
H(T ) ≤ 2−1/d h(T ′).
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3 Parameter-robust full R-linear convergence

In the previous section, however, we introduced the patch reduction axiom (M2) because
we did not only require the reduction property for refined elements TH \ Th, but also for
elements in the M -patch of refined elements T (M)

H [ TH \ Th ]. Since the mesh-size function H

does not contract for all elements in T (M)
H [ TH \ Th ], the original proof cannot be applied

to the residual-based estimator ηH directly. Instead, we switch to a mesh-size function
H : TH → R>0 which contracts for an element T ∈ TH if at least one element in its M -patch
T (m)
H [T ] is refined. A mesh-size function with this property is constructed in [CFPP14].

Proposition 3.8 (generalized mesh-size function [CFPP14, Proposition 8.6]). Let
M ∈ N0. For a given initial triangulation T0, suppose that the triangulations TH ∈ T are
conforming and uniformly shape regular with constant σ ≥ 1. Then, there exist constants
Cmesh ≥ 1 and 0 < ρmesh < 1 and, for all TH ∈ T, a mesh-size function H : TH → R>0, such
that the following properties are satisfied for all T ∈ TH , all Th ∈ T(TH), and all T ′ ∈ Th
with T ′ ⊆ T :

(H1) local equivalence: H(T ) ≤ |T |1/d ≤ Cmesh H(T ),
(H2) monotonicity: h(T ′) ≤ H(T ),
(H3) contraction: h(T ′) ≤ ρmesh H(T ), if T ∈ T (M)

H [ TH \ Th ].
The constants Cmesh and ρmesh depend only on the shape-regularity constant σ and M .

Remark 3.9 (construction of the generalized mesh-size function). In the proof of
Proposition 3.8 given in [CFPP14], the inductive construction of the generalized mesh-size
function ensures that for all triangulations TH ∈ T and all refinements Th ∈ T(TH), the
corresponding mesh-size functions H and h satisfy

H(T ) = h(T ) for all T ∈ TH \ T (M)
H [ TH \ Th ]. (3.21)

Let ηH be the residual-based error estimator that is obtained by replacing the mesh-size
function H in (2.14) with the generalized mesh-size function H from Proposition 3.8, i.e.,
for all triangulations TH ∈ T, all T ∈ TH , and all vH ∈ XH , it holds

ηH(T, vH)2 = H(T )2 ∥ − div(A∇vH − f) + b · ∇vH + c vH − f∥2L2(T )

+H(T ) ∥[[(A∇vH − f) · n]]∥2L2(∂T∩Ω).
(3.22)

Given that the residual-based error estimator ηH is locally equivalent to the error estimator
µH in the sense of (2.22) or (2.23), our goal in this section is therefore to show that

• the estimator ηH is also locally equivalent to µH and

• the estimator ηH satisfies patch stability (M1), patch reduction (M2), reliability (A3),
and discrete reliability (A3+).

For all TH ∈ T, all T ∈ TH , and all vH ∈ XH , local equivalence (H1) and Cmesh ≥ 1 lead to

ηH(T, vH)
(H1)
≤ ηH(T, vH)

(H1)
≤ Cmesh ηH(T, vH). (3.23)
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3 Parameter-robust full R-linear convergence

This implies that both strong local equivalence (2.22) and weak local equivalence (2.23) of ηH
and µH extends to ηH and µH with C loc := Cmesh Cloc. Similarly, quasi-monotonicity (QM)
extends to ηH for all triangulations TH ∈ T and all refinements Th ∈ T(TH) via

ηh(u
⋆
H)

(H1)
≤ ηh(u

⋆
h)

(QM)
≤ Cmon ηH(u⋆H)

(H1)
≤ Cmesh Cmon ηH(u⋆H) =: Cmon ηH(u⋆H). (3.24)

Using (3.23), we can also conclude both reliability (A3) and discrete reliability (A3+) for
the estimator ηH via

|||u⋆ − u⋆H |||
(A3)
≤ Crel ηH(u⋆H)

(H1)
≤ Cmesh Crel ηH(u⋆H) =: Crel ηH(u⋆H), (3.25a)

|||u⋆h − u⋆H |||
(A3+)
≤ Cdrel ηH(RHh, u

⋆
H)

(H1)
≤ Cmesh Cdrel ηH(RHh, u

⋆
H) =: Cdrel ηH(RHh, u

⋆
H).

(3.25b)

Patch stability (M1) and patch reduction (M2), however, require modifications in their
original proofs.

Proposition 3.10 (axioms of adaptivity). Let ηH be the standard residual-based error es-
timator (2.14) which satisfies the axioms of adaptivity (A1)–(A3+) and (QM) with constants
Cstab, Crel, Cdrel, Cref ≥ 1, Cmon ≥ 0 and 0 < qred < 1. For M ∈ N0 and TH ∈ T, let H be
the corresponding generalized mesh-size function from Proposition 3.8. Let ηH from (3.22)
be the residual-based error estimator with the mesh-size function H. Then, the estimator
ηH satisfies patch stability (M1), patch reduction (M2), reliability (A3), discrete reliabil-
ity (A3+), and quasi-monotonicity (QM) with the constants Crel, Cdrel ≥ 1 from (3.25),
Cmon ≥ 0 from (3.24), Cstab := Cstab, Cref := Cref and 0 < qred := ρ

1/2
mesh < 1.

Proof. Reliability (A3), discrete reliability (A3+), and quasi-monotonicity of ηH are proven
in (3.24)–(3.25). Thus, it remains to establish patch stability (M1) and patch reduction (M2)
of ηH .

Step 1 (proof of patch stability (M1)). Let TH ∈ T be a triangulation and Th ∈ T(TH)
be any refinement of TH . For any UH ⊆ TH \T (M)

H [ TH \Th ], any vH ∈ XH and any vh ∈ Xh,
the reverse triangle inequalities on the sequence space ℓ2 and the Lebesgue space L2 together
with equality (3.21) yield��ηH(UH , vH)− ηh(UH , vh)

��2 ≤ �
T∈UH

��ηH(T, vH)− ηh(T, vh)
��2

(3.21)
≤

�
T∈UH

�
H(T )2 ∥ − div

�
A∇(vH − vh)

�
+ b · ∇(vH − vh) + c (vH − vh)∥2L2(T )

+H(T ) ∥[[(A∇(vH − vh)) · n]]∥2L2(∂T∩Ω)

�
.

29



3 Parameter-robust full R-linear convergence

This and local equivalence (H1) validate��ηH(UH , vH)− ηh(UH , vh)
��2

(H1)
≤

�
T∈UH

�
|T |2/d ∥ − div

�
A∇(vH − vh)

�
+ b · ∇(vH − vh) + c (vH − vh)∥2L2(T )

+ |T |1/d ∥[[(A∇(vH − vh)) · n]]∥2L2(∂T∩Ω)

�
.

(3.26)

The latter sum also appears in the original stability proof, where the estimate�
T∈UH

�
|T |2/d ∥ − div

�
A∇(vH − vh)

�
+ b · ∇(vH − vh) + c (vH − vh)∥2L2(T )

+ |T |1/d ∥[[(A∇(vH − vh)) · n]]∥2L2(∂T∩Ω)

�
≤ Cstab|||vH − vh|||2

is shown using an inverse estimate and the trace inequality. For details, we refer to [CKNS08,
Corollary 3.4]. The combination of that result with (3.26) thus proves patch stability (M1)
of ηH with the same stability constant Cstab as for ηH .

Step 2 (proof of patch reduction (M2)). Let TH ∈ T be an arbitrary triangulation
and Th ∈ T(TH) any refinement of TH . By Definition 3.2, it holds

Th|Ω(M)
H,h

=
�

T∈T (M)
H [ TH\Th ]

{T ′ ∈ Th : T ′ ⊆ T} and TH |
Ω

(M)
H,h

= T (M)
H [ TH \ Th ].

With the notation from Example 2.8, contraction (H3) of H with 0 < ρmesh < 1 results for
any vH ∈ XH in

ηh(Th|Ω(M)
H,h

,vH)2 =
�

T∈TH |
Ω
(M)
H,h

�
T ′∈Th
T ′⊆T

ηh(T, vH)2

=
�

T∈TH |
Ω
(M)
H,h

�
T ′∈Th
T ′⊆T

�
h(T ′)2 ∥RH(vH)∥2L2(T ′) + h(T ′) ∥JH(vH)∥2L2(T ′)

�
(H3)
≤

�
T∈TH |

Ω
(M)
H,h

�
T ′∈Th
T ′⊆T

�
ρ2mesh H(T )2 ∥RH(vH)∥2L2(T ′) + ρmesh H(T ) ∥JH(vH)∥2L2(T ′)

�

≤ ρmesh
�

T∈TH |
Ω
(M)
H,h

�
T ′∈Th
T ′⊆T

�
H(T )2 ∥RH(vH)∥2L2(T ′) +H(T ) ∥JH(vH)∥2L2(T ′)

�
.

Since vH ∈ XH is smooth on the new edges of the refinement Th and T =
�{T ′ ∈ Th : T ′ ⊆ T},

linearity of the integral shows�
T ′∈Th
T ′⊆T

�
H(T )2 ∥RH(vH)∥2L2(T ′) +H(T ) ∥JH(vH)∥2L2(T ′)

�
= H(T )2 ∥RH(vH)∥2L2(T ) +H(T ) ∥JH(vH)∥2L2(T ) = ηH(T, vH)2.
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Hence, the combination of the previous equations leads to

ηh(Th|Ω(M)
H,h

, vH)2 ≤ ρmesh
�

T∈TH |
Ω
(M)
H,h

ηH(T, vH)2 = ρmesh ηH(TH |
Ω

(M)
H,h

, vH)2.

This concludes the proof.

3.3 Proof of full R-linear convergence

The two notions of local estimator equivalence require different assumptions and are therefore
covered in separate theorems. In both cases, we consider the quasi-error

Mk
ℓ := µℓ(u

⋆
ℓ ) + |||u⋆ℓ − ukℓ |||, (3.27)

which measures the algebraic error plus discretization error. This differs from the quasi-error

�Mk
ℓ := µℓ(u

k
ℓ ) + |||u⋆ℓ − ukℓ |||,

proposed in [BFM+25], which uses µℓ(u
k
ℓ ) instead of µℓ(u

⋆
ℓ) in (3.27). However, weak

stability (W1) provides for all (ℓ, k) ∈ Q the estimates

µℓ(u
⋆
ℓ ) ≤ �Cstab



µℓ(u

k
ℓ ) + |||u⋆ℓ − ukℓ |||



and µℓ(u

k
ℓ ) ≤ �Cstab



µℓ(u

⋆
ℓ ) + |||u⋆ℓ − ukℓ |||



. (3.28)

This implies equivalence of both quasi-errors, i.e.,

Mk
ℓ = µℓ(u

⋆
ℓ ) + |||u⋆ℓ − ukℓ ||| ≃ µℓ(u

k
ℓ ) + |||u⋆ℓ − ukℓ ||| = �Mk

ℓ for all (ℓ, k) ∈ Q.

The following theorem states that in case of strong local equivalence (2.22), there holds
parameter-robust full R-linear convergence of Mk

ℓ , i.e., quasi-contraction of the quasi-error
Mk

ℓ in each step of Algorithm B for any parameter θ and λ.

Theorem 3.11 (full R-linear convergence for strong local equivalence (2.22)). Let
0 < θ ≤ 1, Cmark ≥ 1, λ > 0 and u00 ∈ X0 be arbitrary. Suppose that the error estimator µℓ

is strongly equivalent to an estimator ηℓ in the sense of (2.22). With m ∈ N0 from the
equivalence (2.22), suppose that ηℓ satisfies (M1), (M2), (A3), and (QM) with M := m.
Then, Algorithm B guarantees full R-linear convergence of the quasi-error Mk

ℓ , i.e., there
exist constants 0 < qlin < 1 and Clin > 0 such that

Mk
ℓ ≤ Clin q

|ℓ,k|−|ℓ′,k′|
lin Mk′

ℓ′ for all (ℓ′, k′), (ℓ, k) ∈ Q with |ℓ′, k′| ≤ |ℓ, k|. (3.29)

The constants Clin and qlin depend only on Cstab, qred, Crel, Ceq, qctr, Cmon, Corth, θ, and λ.

The proof follows the reasoning of [BFM+25, Theorem 7] and employs the following
characterizations of full R-linear convergence.

Lemma 3.12 (tail summability vs. R-linear convergence [BFM+25, Lemma 10]).
Let (aℓ)ℓ∈N0 be a nonnegative sequence of real numbers and s > 0. Then, the following
statements are equivalent:
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(i) tail summability: There exists a constant Cs > 0 such that
∞�

ℓ′=ℓ+1

asℓ′ ≤ Cs a
s
ℓ for all ℓ ∈ N0.

(ii) R-linear convergence: There exist 0 < qlin < 1 and Clin > 0 with

aℓ+n ≤ Clin q
n
lin aℓ for all ℓ, n ∈ N0.

Lemma 3.13 (tail summability criterion [BFM+25, Lemma 6]). Let (aℓ)ℓ∈N0 , (bℓ)ℓ∈N0

be nonnegative sequences of real numbers. With given constants 0 < q < 1, 0 < δ < 1, and
C1, C2 > 0, suppose that (aℓ)ℓ∈N0 and (bℓ)ℓ∈N0 satisfy the following conditions:

(i) aℓ+1 ≤ q aℓ + bℓ for all ℓ ∈ N0

(ii) bℓ+N ≤ C1 aℓ for all ℓ,N ∈ N0

(iii)
�ℓ+N

ℓ′=ℓ b
2
ℓ′ ≤ C2 (N + 1)1−δ a2ℓ for all ℓ,N ∈ N0

Then, (aℓ)ℓ∈N0 is R-linearly convergent, i.e., there exist 0 < qlin < 1 and Clin > 0 with

aℓ+n ≤ Clin q
n
lin aℓ for all ℓ, n ∈ N0.

Proof of Theorem 3.11. First, we observe that global estimator equivalence (2.29) with
vH := u⋆ℓ implies

Mk
ℓ = |||u⋆ℓ − ukℓ |||+ µℓ(u

⋆
ℓ ) ≃ |||u⋆ℓ − ukℓ |||+ ηℓ(u

⋆
ℓ ) =: H

k
ℓ . (3.30)

Hence, to prove full R-linear convergence of Mk
ℓ , it suffices to show full R-linear convergence

of Hk
ℓ . The proof is split into two steps.

Step 1 (tail summability of Hk
ℓ in ℓ). Let ℓ ∈ N0 with (ℓ+ 1, k) ∈ Q be arbitrary. We

note that u0ℓ+1 = u
k
ℓ by nested iteration and Algorithm B ensures k[ℓ + 1] ≥ 1. Thus,

contraction of the algebraic solver (2.32) yields

|||u⋆ℓ+1−u
k
ℓ+1|||

(2.32)
≤ q

k[ℓ+1]
ctr |||u⋆ℓ+1−u0ℓ+1||| = q

k[ℓ+1]
ctr |||u⋆ℓ+1−u

k
ℓ ||| ≤ qctr |||u⋆ℓ+1−u

k
ℓ |||. (3.31)

We first prove contraction of the weighted quasi-error

Hℓ := |||u⋆ℓ − u
k
ℓ |||+ γ ηℓ(u

⋆
ℓ )

with a suitable 0 < γ < 1 chosen below. By definition, we have Hℓ ≤ H
k
ℓ ≤ γ−1Hℓ, i.e.,

it holds Hℓ ≃ H
k
ℓ . The error estimator ηℓ satisfies the assumptions of Lemma 3.4. Hence,

the combination of inequality (3.31), estimator reduction (3.9) and the triangle inequality
results in

Hℓ+1

(3.31)
≤ qctr|||u⋆ℓ+1 − u

k
ℓ |||+ γ ηℓ+1(u

⋆
ℓ+1)

(3.9)
≤ qctr|||u⋆ℓ+1 − u

k
ℓ |||+ γ



q�θ ηℓ(u⋆ℓ ) + C�θ |||u⋆ℓ − u

k
ℓ |||+ Cstab|||u⋆ℓ+1 − u⋆ℓ |||



≤ (qctr + γ C�θ) |||u⋆ℓ − u

k
ℓ |||+ q�θ γ ηℓ(u⋆ℓ ) + (qctr + γ Cstab) |||u⋆ℓ+1 − u⋆ℓ |||

≤ max{qctr + γ C�θ, q�θ}


|||u⋆ℓ − u

k
ℓ |||+ γ ηℓ(u

⋆
ℓ )


+ (qctr + γ Cstab) |||u⋆ℓ+1 − u⋆ℓ |||.

(3.32)
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3 Parameter-robust full R-linear convergence

We set q := max{qctr + γ C�θ, q�θ}. The choice 0 < γ < C−1�θ (1− qctr) < 1 ensures 0 < q < 1.
Thus, this verifies condition (i) from Lemma 3.13 for the sequences defined by aℓ := Hℓ

and bℓ := (qctr + γ Cstab) |||u⋆ℓ+1 − u⋆ℓ |||. The triangle inequality, reliability (A3), and quasi-
monotonicity (QM) show for all ℓ, ℓ′, ℓ′′ ∈ N0 with ℓ ≤ ℓ′ ≤ ℓ′′ the estimate

|||u⋆ℓ′′ − u⋆ℓ′ ||| ≤ |||u⋆ℓ′′ − u⋆|||+ |||u⋆ − u⋆ℓ′ |||
(A3)
≤ Crel

�
ηℓ′′(u

⋆
ℓ′′) + ηℓ′(u

⋆
ℓ′)
�(QM)

≤ 2CmonCrel ηℓ(u
⋆
ℓ ) ≤ 2CmonCrel γ

−1Hℓ.
(3.33)

In particular, this proves the second condition (ii) from Lemma 3.13. Quasi-orthogonality
(QO) and reliability (A3) prove condition (iii) from Lemma 3.13 via

ℓ+N�
ℓ′=ℓ

b2ℓ′ ≃
ℓ+N�
ℓ′=ℓ

|||u⋆ℓ+1 − u⋆ℓ |||2
(QO)
≲ (N + 1)1−δ |||u⋆ − u⋆ℓ |||2

(A3)
≲ (N + 1)1−δ ηℓ(u

⋆
ℓ )

2 ≲ (N + 1)1−δ(Hℓ)
2.

Since H
k
ℓ ≃ Hℓ, Lemma 3.13 thus concludes tail summability of Hk

ℓ , i.e.,

ℓ−1�
ℓ′=ℓ+1

H
k
ℓ′ ≃

ℓ−1�
ℓ′=ℓ+1

Hℓ′ ≲ Hℓ ≃ H
k
ℓ for all 0 ≤ ℓ < ℓ− 1. (3.34)

Step 2 (tail summability of Hk
ℓ in ℓ and k). First, we consider 0 ≤ k < k′ ≤ k[ℓ]− 1

for 0 ≤ ℓ ≤ ℓ− 1. Recall that weak stability (W1) implies

µℓ(u
⋆
ℓ )

(W1)
≤ �Cstab



µℓ(u

k′
ℓ ) + |||u⋆ℓ − uk

′
ℓ |||



. (3.35)

Hence, failure of the stopping criterion (2.46), the triangle inequality, and contraction of the
solver (2.32) show

Mk′
ℓ

(3.35)
≤ (1 + �Cstab) |||u⋆ℓ − uk

′
ℓ |||+ �Cstab µℓ(u

k′
ℓ )

(2.46)
≤ (1 + �Cstab) |||u⋆ℓ − uk

′
ℓ |||+ �Cstab λ

−1|||uk′ℓ − uk
′−1

ℓ |||
≤ �

1 + �Cstab + �Cstab λ
−1

� |||u⋆ℓ − uk
′

ℓ |||+ �Cstab λ
−1|||u⋆ℓ − uk

′−1
ℓ |||

(2.32)
≤



qctr

�
1 + �Cstab + �Cstab λ

−1
�
+ �Cstab λ

−1


|||u⋆ℓ − uk

′−1
ℓ |||

(2.32)
≤ qk

′−k
ctr



1 + �Cstab + �Cstab λ

−1 + q−1
ctr

�Cstab λ
−1



|||u⋆ℓ − ukℓ |||

(3.27)
≤ qk

′−k
ctr



1 + �Cstab + �Cstab λ

−1
�
1 + q−1

ctr
�


Mk
ℓ

≲ qk
′−k

ctr Mk
ℓ

Clearly, the inequality above applies for k = k′ as well. Due to (3.30), this contraction
property also holds for Hk

ℓ , i.e.,

Hk′
ℓ ≲ qk

′−k
ctr Hk

ℓ for all 0 ≤ k ≤ k′ < k[ℓ].
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Furthermore, contraction (2.32) yields

H
k
ℓ

(2.32)
≤ qctr |||u⋆ℓ − u

k−1
ℓ |||+ ηℓ(u

⋆
ℓ ) ≲ H

k−1
ℓ ≃ qctr H

k−1
ℓ .

Therefore, it follows that

Hk′
ℓ ≲ qk

′−k
ctr Hk

ℓ for all 0 ≤ k ≤ k′ ≤ k[ℓ]. (3.36)

Analogous to (3.7) and (3.17), patch stability (M1) and patch reduction (M2) yield mono-
tonicity of the estimator

ηℓ+1(u
⋆
ℓ ) ≤ ηℓ(u

⋆
ℓ ) for all ℓ < ℓ. (3.37)

Together with patch stability (M1), the triangle inequality, and estimate (3.33), this proves

H0
ℓ+1 = |||u⋆ℓ+1 − u

k
ℓ |||+ ηℓ+1(u

⋆
ℓ+1)

(M1)
≤ |||u⋆ℓ+1 − u

k
ℓ |||+ Cstab|||u⋆ℓ+1 − u⋆ℓ |||+ ηℓ+1(u

⋆
ℓ )

(3.37)
≤ |||u⋆ℓ+1 − u

k
ℓ |||+ Cstab|||u⋆ℓ+1 − u⋆ℓ |||+ ηℓ(u

⋆
ℓ )

≤ (1 + Cstab) |||u⋆ℓ+1 − u⋆ℓ |||+ H
k
ℓ

(3.33)
≤ �

1 + (1 + Cstab) 2CmonCrel γ
−1

�
H

k
ℓ .

(3.38)

Therefore, tail summability follows from the geometric series via

�
(ℓ′,k′)∈Q
|ℓ′,k′|>|ℓ,k|

Hk′
ℓ′ =

k[ℓ]�
k′=k+1

Hk′
ℓ +

ℓ�
ℓ′=ℓ+1

k[ℓ′]�
k′=0

Hk′
ℓ′

(3.36)
≲ Hk

ℓ +

ℓ�
ℓ′=ℓ+1

H0
ℓ′

(3.38)
≲ Hk

ℓ +

ℓ−1�
ℓ′=ℓ

H
k
ℓ′

(3.34)
≲ Hk

ℓ +H
k
ℓ

(3.36)
≲ Hk

ℓ

for all (ℓ, k) ∈ Q. Since Q is countable and linearly ordered with respect to |·, ·|, we can
employ Lemma 3.12 to conclude full R-linear convergence of Hk

ℓ , which by (3.30) implies
full R-linear convergence of Mk

ℓ . This concludes the proof.

In case of weak local equivalence (2.23), we must additionally require weak stability (W1)
in order to obtain the estimator reduction (3.9). With that assumption, we can still show
parameter-robust full R-linear convergence for Mk

ℓ using the same arguments as for strong
local equivalence (2.22) in Theorem 3.11.

Theorem 3.14 (full R-linear convergence for weak local equivalence (2.23)). Let
0 ≤ θ ≤ 1, Cmark ≥ 1, λ > 0 and u00 ∈ X0 be arbitrary. Suppose that the error estimator µℓ is
weakly equivalent to an estimator ηℓ in the sense of (2.23) and satisfies weak stability (W1).
With m ∈ N0 from the equivalence (2.23) and r ∈ N0 from weak stability (W1), suppose
that ηℓ satisfies (M1), (M2), (A3), and (QM) with M := m + r. Then, Algorithm B
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3 Parameter-robust full R-linear convergence

guarantees full R-linear convergence of the quasi-error Mk
ℓ from (3.27), i.e., there exist

constants 0 < qlin < 1 and Clin > 0 such that

Mk
ℓ ≤ Clin q

|ℓ,k|−|ℓ′,k′|
lin Mk′

ℓ′ for all (ℓ′, k′), (ℓ, k) ∈ Q with |ℓ′, k′| ≤ |ℓ, k|.

The constants Clin and qlin depend only on Cstab, �Cstab, qred, Crel, Ceq, qctr, Cmon, Corth, θ
and λ.

Proof. We note that the global estimator equivalence (2.30) implies Mk
ℓ ≃ Hk

ℓ . Hence, we
can proceed as in the proof of Theorem 3.11. In the following, we will only highlight the
changes that are necessary to account for the different assumptions on the estimators µℓ

and ηℓ.
In Step 1, we used the estimator equivalence only in terms of estimator reduction (3.9).

This perturbed estimator reduction is also provided by Lemma 3.7, whose assumptions are
satisfied by µℓ and ηℓ. Consequently, we only need to change the constants q�θ and C�θ in
inequality (3.32) to qθ and Cθ, which then reads

Hℓ+1 ≤ max{qctr + γ Cθ, qθ}


|||u⋆ℓ − u

k
ℓ |||+ γ ηℓ(u

⋆
ℓ )


+ (qctr + γ Cstab) |||u⋆ℓ+1 − u⋆ℓ |||.

Defining q := max{qctr + γ Cθ, qθ} analogously with 0 < γ < min
�
1, C−1

θ
(1 − qctr)

	 ≤ 1,

we can therefore conclude tail summability of Hk
ℓ in ℓ identically as in the first step of the

original proof.
Step 2 does not make use of the equivalence of µℓ and ηℓ. Therefore, all arguments of the

second step hold verbatim. Overall, we can thus conclude full R-linear convergence of Mk
ℓ in

the same way as in the proof of Theorem 3.11.

In case that a(·, ·) is a scalar product, and thus the Pythagorean identity (2.7) holds,
we can prove an even stronger result. In the following, we prove that the quasi-error Λk

ℓ

introduced below contracts with every step of Algorithm B. As for the proof of full R-linear
convergence, the two notions of estimator equivalence require different assumptions and are
therefore covered in separate theorems.

Theorem 3.15 (contraction of quasi-error for strong local equivalence (2.22)).
Suppose that a(·, ·) is a scalar product so that the Pythagorean identity (2.7) holds. Let
0 < θ ≤ 1, Cmark ≥ 1, λ > 0 and u00 ∈ X0 be arbitrary. Suppose that the error estimator µℓ

is strongly equivalent to an estimator ηℓ in the sense of (2.22). With m ∈ N0 from
the equivalence (2.22), suppose that ηℓ satisfies (M1), (M2), (A3) with M := m. Let
Q# := {(ℓ, k) ∈ Q : 0 ≤ k < k[ℓ]} be the set of all iterates generated by Algorithm B without
the nested iterates u

k
ℓ . Then, Algorithm B guarantees the existence of constants 0 < qlin < 1

and 0 < γ < 1 such that the quasi-error

Λk
ℓ := |||u⋆ − ukℓ |||2 + γ ηℓ(u

k
ℓ )

2 for all (ℓ, k) ∈ Q#

satisfies the following statements:

(i) Λk+1
ℓ ≤ qlin Λ

k
ℓ for all (ℓ, k + 1) ∈ Q#.
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(ii) Λ0
ℓ+1 ≤ qlin Λ

k−1
ℓ for all (ℓ+ 1, 0) ∈ Q#.

The constants qlin and γ depend only on Cstab, qred, Crel, qctr, Ceq, θ and λ.

Proof. The proof follows the reasoning of [GHPS21, Lemma 10] and is split into three steps.
In the first two steps, we prove the statements (i) and (ii) under certain assumptions on
parameters ε, γ and δ. In the last step, we fix those parameters such that the assumptions
from the previous two steps are satisfied.

Step 1 (proof of Theorem 3.15 (i)). Let ε and γ be free parameters, which will be fixed
below. For arbitrary (ℓ, k + 1) ∈ Q#, reliability (A3), patch stability (M1), and the Young
inequality (3.14) provide

|||u⋆ − u⋆ℓ |||2
(A3)
≤ C2

rel ηℓ(u
⋆
ℓ )

2

(M1)
(3.14)
≤ 2C2

rel ηℓ(u
k+1
ℓ )2 + 2C2

rel C
2
stab |||u⋆ℓ − uk+1

ℓ |||2. (3.39)

We define C1 := 2C2
rel and C2 := 2C2

rel C
2
stab. Together with the Pythagorean identity (2.7)

and contraction of the algebraic solver (2.32), this leads to

Λk+1
ℓ

(2.7)
= (1− ε) |||u⋆ − u⋆ℓ |||2 + ε |||u⋆ − u⋆ℓ |||2 + |||u⋆ℓ − uk+1

ℓ |||2 + γ ηℓ(u
k+1
ℓ )2

(3.39)
≤ (1− ε) |||u⋆ − u⋆ℓ |||2 + (γ + εC1) ηℓ(u

k+1
ℓ )2 + (1 + εC2) |||u⋆ℓ − uk+1

ℓ |||2.
(2.32)
≤ (1− ε) |||u⋆ − u⋆ℓ |||2 + (γ + εC1) ηℓ(u

k+1
ℓ )2 + q2ctr(1 + εC2) |||u⋆ℓ − ukℓ |||2.

Since k + 1 < k[ℓ] by the definition of Q#, failure of the stopping criterion (2.46) and
estimate (2.33) thus yield

Λk+1
ℓ

(2.46)
≤ (1− ε) |||u⋆ − u⋆ℓ |||2 + (γ + εC1)λ

−2 |||uk+1
ℓ − ukℓ |||2 + q2ctr(1 + εC2) |||u⋆ℓ − ukℓ |||2

(2.33)
≤ (1− ε) |||u⋆ − u⋆ℓ |||2 +



(γ + εC1)λ

−2 (1 + qctr)
2 + q2ctr(1 + εC2)



|||u⋆ℓ − ukℓ |||2.

Provided that ε, γ are chosen such that

(γ + εC1)λ
−2 (1 + qctr)

2 + q2ctr(1 + εC2) ≤ (1− ε), (3.40)

the Pythagorean identity (2.7) verifies

Λk+1
ℓ

(3.40)
≤ (1− ε)

�|||u⋆ − u⋆ℓ |||2 + |||u⋆ℓ − ukℓ |||2
� (2.7)

= (1− ε) |||u⋆ − ukℓ |||2 ≤ (1− ε) Λk
ℓ .

Up to the final choice of ε and γ, this concludes the proof of Theorem 3.15 (i).

Step 2 (proof of Theorem 3.15 (ii)). Let ε, γ, and δ be free parameters, which will be
fixed below. Analogous to estimate (3.39), reliability (A3), patch stability (M1), and the
Young inequality (3.14) provide

|||u⋆ − u⋆ℓ |||2
(A3)
≤ C2

rel ηℓ(u
⋆
ℓ )

2

(M1)
(3.14)
≤ C1 ηℓ(u

k−1
ℓ )2 + C2 |||u⋆ℓ − u

k−1
ℓ |||2. (3.41)
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Together with the Pythagorean identity (2.7) and contraction of the algebraic solver (2.32),
this leads to

|||u⋆ − u
k
ℓ |||2

(2.7)
= (1− ε) |||u⋆ − u⋆ℓ |||2 + ε |||u⋆ − u⋆ℓ |||2 + |||u⋆ℓ − u

k
ℓ |||2

(3.41)
≤ (1− ε) |||u⋆ − u⋆ℓ |||2 + εC1 ηℓ(u

k−1
ℓ )2 + εC2 |||u⋆ℓ − u

k−1
ℓ |||2 + |||u⋆ℓ − u

k
ℓ |||2

(2.32)
≤ (1− ε) |||u⋆ − u⋆ℓ |||2 + εC1 ηℓ(u

k−1
ℓ )2 + (εC2 + q2ctr) |||u⋆ℓ − u

k−1
ℓ |||2.

(3.42)

The triangle inequality and contraction of the algebraic solver (2.32) prove

|||ukℓ − u
k−1
ℓ ||| ≤ |||ukℓ − u⋆ℓ |||+ |||u⋆ℓ − u

k−1
ℓ |||

(2.32)
≤ (1 + qctr) |||u⋆ℓ − u

k−1
ℓ |||. (3.43)

Together with patch stability (M1) and the Young inequality for δ > 0, this yields for
C3 := C

2
stab (1 + qctr)

2

ηℓ(u
k
ℓ )

2
(M1)
≤ (1 + δ) ηℓ(u

k−1
ℓ )2 + (1 + δ−1)C

2
stab |||ukℓ − u

k−1
ℓ |||2

(3.43)
≤ (1 + δ) ηℓ(u

k−1
ℓ )2 + (1 + δ−1)C3 |||u⋆ℓ − u

k−1
ℓ |||2.

(3.44)

Recall estimate (3.8) and 0 < q�θ < 1 from Lemma 3.4, which was derived using patch
stability (M1) and patch reduction (M2). Furthermore, note that Algorithm B guarantees
nested iteration u0ℓ+1 = u

k
ℓ . Combining this with estimates (3.42) and (3.44), we obtain

Λ0
ℓ+1

(3.8)
≤ |||u⋆ − u

k
ℓ |||2 + γ q2�θ ηℓ(ukℓ )2

(3.42)
≤ (1− ε) |||u⋆ − u⋆ℓ |||2 + εC1 ηℓ(u

k−1
ℓ )2 + (εC2 + q2ctr) |||u⋆ℓ − u

k−1
ℓ |||2 + γ q2�θ ηℓ(ukℓ )2

(3.44)
≤ (1− ε) |||u⋆ − u⋆ℓ |||2 +

�
εC1 γ

−1 + (1 + δ) q2�θ� γ ηℓ(uk−1
ℓ )2

+
�
εC2 + q2ctr + γ q2�θ (1 + δ−1)C3

� |||u⋆ℓ − u
k−1
ℓ |||2.

Provided that

εC1 γ
−1 + (1 + δ) q2�θ ≤ 1− ε and εC2 + q2ctr + γ q2�θ (1 + δ−1)C3 ≤ 1− ε, (3.45)

the Pythagorean identity (2.7) verifies

Λ0
ℓ+1

(3.45)
≤ (1− ε)



|||u⋆ − u⋆ℓ |||2 + |||u⋆ℓ − u

k−1
ℓ |||2 + γ ηℓ(u

k−1
ℓ )2


 (2.7)
= (1− ε) Λ

k−1
ℓ .

Up to the final choice of ε, γ, and δ, this concludes the proof of Theorem 3.15 (ii).

Step 3 (fixing the free parameters). Note that the constants C1, C2, C3, and q�θ depend
only on the problem setting. We proceed as follows:

• Choose δ > 0 such that (1 + δ) q2�θ < 1.
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• Choose γ > 0 such that q2ctr + γ q2�θ (1 + δ−1)C3 < 1 and γ λ−2 (1 + qctr)
2 + q2ctr < 1.

• Finally, choose ε > 0 sufficiently small such that (3.40) and (3.45) are satisfied.

This concludes the proof of Theorem 3.15 with qlin := 1− ε.

As with the proof of full R-linear convergence, we need to additionally suppose weak
stability (W1) in case of weak local equivalence (2.23) in order to prove contraction of Λk

ℓ .

Theorem 3.16 (contraction of quasi-error for weak local equivalence (2.23)).
Suppose that a(·, ·) is a scalar product so that the Pythagorean identity (2.7) holds. Let
0 < θ ≤ 1, Cmark ≥ 1, λ > 0, and u00 ∈ X0 be arbitrary. Suppose that the error estimator µℓ

is weakly equivalent to an estimator ηℓ in the sense of (2.23) and satisfies weak stability (W1).
With m ∈ N0 from the equivalence (2.22) and r ∈ N0 from weak stability (W1), suppose
that ηℓ satisfies (M1), (M2), (A3) with M := m+ r. Let Q# := {(ℓ, k) ∈ Q : 0 ≤ k < k[ℓ]}
be the set of all iterates generated by Algorithm B without the nested iterates u

k
ℓ . Then,

Algorithm B guarantees the existence of constants 0 < qlin < 1 and 0 < γ < 1 such that the
quasi-error

Λk
ℓ := |||u⋆ − ukℓ |||2 + γ ηℓ(u

k
ℓ )

2 for all (ℓ, k) ∈ Q#

satisfies the following statements:

(i) Λk+1
ℓ ≤ qlin Λ

k
ℓ for all (ℓ, k + 1) ∈ Q#.

(ii) Λ0
ℓ+1 ≤ qlin Λ

k−1
ℓ for all (ℓ+ 1, 0) ∈ Q#.

The constants qlin and γ depend only on Cstab, qred, Crel, �Cstab, qctr, Ceq, θ and λ.

Proof. Similar to Theorem 3.15, the proof follows the reasoning of [GHPS21, Lemma 10]
and is split into three steps. In the first two steps, we prove the statements (i) and (ii) under
certain assumptions on the parameters ε, γ and δ. In the last step, we fix those parameters
such that the assumptions from the previous two steps are satisfied. We highlight only the
changes that are necessary to account for the different assumptions on the estimators µℓ

and ηℓ.

Step 1 (proof of Theorem 3.16 (i)). All arguments in Step 1 of the proof of Theo-
rem 3.15 do not make use of the equivalence of µℓ and ηℓ and therefore hold verbatim.
Provided that (3.40) is satisfied, this concludes the proof of Theorem 3.16 (i) up to the final
choice of ε and γ.

Step 2 (proof of Theorem 3.16 (ii)). Let ε, γ, and δ be free parameters, which will be
fixed below. Analogously to estimate (3.17), patch stability (M1) and patch reduction (M2)
verify, for all ℓ < ℓ, that

ηℓ+1(u
k
ℓ )

2 = ηℓ+1(Tℓ+1 \ Tℓ+1|Ω(m+r)
ℓ,ℓ+1

, u
k
ℓ )

2 + ηℓ+1(Tℓ+1|Ω(m+r)
ℓ,ℓ+1

, u
k
ℓ )

2

(M1)
= ηℓ(Tℓ \ Tℓ|Ω(m+r)

ℓ,ℓ+1

, u
k
ℓ )

2 + ηℓ+1(Tℓ+1|Ω(m+r)
ℓ,ℓ+1

, u
k
ℓ )

2

(M2)
≤ ηℓ(Tℓ \ Tℓ|Ω(m+r)

ℓ,ℓ+1

, u
k
ℓ )

2 + q2red ηℓ(Tℓ|Ω(m+r)
ℓ,ℓ+1

, u
k
ℓ )

2

= ηℓ(u
k
ℓ )

2 − �
1− q2red

�
ηℓ(Tℓ|Ω(m+r)

ℓ,ℓ+1

, u
k
ℓ )

2.

(3.46)
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3 Parameter-robust full R-linear convergence

Recall Cper > 0 from Lemma 3.6. The Dörfler-like inequality (3.12) and Mℓ ⊆ Tℓ \ Tℓ+1

imply

θ ηℓ(u
k
ℓ )

2
(3.12)
≤ ηℓ(T (m+r)

ℓ [Mℓ ], u
k
ℓ )

2 + C
2
per|||u⋆ℓ − u

k
ℓ |||2

≤ ηℓ(T (m+r)
ℓ [ Tℓ \ Tℓ+1 ], u

k
ℓ )

2 + C
2
per|||u⋆ℓ − u

k
ℓ |||2

= ηℓ(Tℓ|Ω(m+r)
ℓ,ℓ+1

, u
k
ℓ )

2 + C
2
per|||u⋆ℓ − u

k
ℓ |||2.

(3.47)

With 1/2 < q2
θ
:= 1− (1− q2red)θ < 1 and C

2
θ := C

2
per(1− q2red) > 0, the combination of the

last two estimates results in

ηℓ+1(u
k
ℓ )

2 ≤ q2
θ
ηℓ(u

k
ℓ )

2 + C
2
θ |||u⋆ℓ − u

k
ℓ |||2. (3.48)

Moreover, the estimates (3.42) and (3.44) from Step 2 of the proof of Theorem 3.15 hold
verbatim. Together with nested iteration and contraction (2.32), the combination of above
estimates yields

Λ0
ℓ+1

(3.48)
≤ |||u⋆ − u

k
ℓ |||2 + γ q2

θ
ηℓ(u

k
ℓ )

2 + γ C
2
θ |||u⋆ℓ − u

k
ℓ |||2

(2.32)
≤ |||u⋆ − u

k
ℓ |||2 + γ q2

θ
ηℓ(u

k
ℓ )

2 + γ C
2
θ q

2
ctr |||u⋆ℓ − u

k−1
ℓ |||2

(3.42)
≤ (1− ε) |||u⋆ − u⋆ℓ |||2 + εC1 ηℓ(u

k−1
ℓ )2

+
�
εC2 + q2ctr + γ C

2
θ q

2
ctr
� |||u⋆ℓ − u

k−1
ℓ |||2 + γ q2

θ
ηℓ(u

k
ℓ )

2

(3.44)
≤ (1− ε) |||u⋆ − u⋆ℓ |||2 +

�
εC1 γ

−1 + (1 + δ) q2
θ

�
γ ηℓ(u

k−1
ℓ )2

+


εC2 + q2ctr + γ

�
C

2
θ q

2
ctr + q2

θ
(1 + δ−1)C3

�
 |||u⋆ℓ − u
k−1
ℓ |||2.

Provided that

εC1 γ
−1+(1+δ) q2

θ
≤ 1−ε and εC2+q2ctr+γ

�
C

2
θ q

2
ctr+q2

θ
(1+δ−1)C3

� ≤ 1−ε, (3.49)

the Pythagorean identity (2.7) verifies

Λ0
ℓ+1

(3.45)
≤ (1− ε)



|||u⋆ − u⋆ℓ |||2 + |||u⋆ℓ − u

k−1
ℓ |||2 + γ ηℓ(u

k−1
ℓ )2


 (2.7)
= (1− ε) Λ

k−1
ℓ .

Up to the final choice of ε, γ, and δ, this concludes the proof of Theorem 3.16 (ii).

Step 3 (fixing the free parameters). Note that the constants C1, C2, C3, and qθ depend
only on the problem setting. We proceed as follows:

• Choose δ > 0 such that (1 + δ) q2
θ
< 1.

• Choose γ > 0 such that

γ
�
C

2
θ q

2
ctr + q2

θ
(1 + δ−1)C3

�
+ q2ctr < 1 and γ λ−2 (1 + qctr)

2 + q2ctr < 1.

• Finally, choose ε > 0 sufficiently small such that (3.40) and (3.49) are satisfied.

This concludes the proof of Theorem 3.16 with qlin := 1− ε.
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4 Optimal complexity

Recall the quasi-error Mk
ℓ from (3.27) that satisfies full R-linear convergence (3.29) from The-

orem 3.11 (for strong local equivalence (2.22)) and Theorem 3.14 (for weak local equivalence
(2.23)). This section reveals that this is the crucial component to link optimal convergence
rates with respect to the number of degrees of freedom and optimal convergence rates with
respect to the total computational cost (and hence time). To this end, we say that Mk

ℓ

decays with rate s > 0 over the number of elements #Tℓ if and only if Mk
ℓ ∈ O((#Tℓ)s), i.e.,

it holds that
A(s) := sup

(ℓ,k)∈Q
(#Tℓ)sMk

ℓ < ∞. (4.1)

As discussed in Sections 2.2–2.5, the modules Solve & Estimate, Mark and Refine from
Algorithm B can be realized at linear cost O(#Tℓ). Since the adaptive algorithm relies on
the full history of prior algorithmic decisions, the overall computational cost cost(ℓ, k) until
step (ℓ, k) ∈ Q (i.e., the cost to compute ukℓ ) is thus proportional to

cost(ℓ, k) ≃
�

(ℓ′,k′)∈Q
|ℓ′,k′|≤|ℓ,k|

#Tℓ′ . (4.2)

The goal of this chapter is to prove that Algorithm B ensures optimal convergence of
Mk

ℓ with respect to the total computational cost, i.e., the quasi-error decays with the best
possible convergence rate s > 0. To this end, we first prove two crucial corollaries of full
R-linear convergence in Section 4.1. Then, we formalize the notion of optimality and prove
optimal complexity as the main result of this chapter in Theorem 4.3. The analysis in this
chapter proceeds along the lines of similar results in [CFPP14] and [MPS24].

4.1 Corollaries of full R-linear convergence

A first crucial consequence of full R-linear convergence is that if the rate of convergence s > 0
is attainable with respect to the degrees of freedom dimXℓ ≃ #Tℓ, it is also achievable with
respect to the total computational cost.

Corollary 4.1 (rates = complexity). Suppose full R-linear convergence (3.29) of the
quasi-error Mk

ℓ . Then, for all s > 0, it holds that

A(s) ≤ sup
(ℓ,k)∈Q

� �
(ℓ′,k′)∈Q
|ℓ′,k′|≤|ℓ,k|

#Tℓ′
�s

Mk
ℓ ≤ Clin�

1− q
1/s
lin

�s A(s). (4.3)

Moreover, there exists an s0 > 0 such that A(s) < ∞ for all 0 < s ≤ s0.
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4 Optimal complexity

Proof. The first inequality of (4.3) is clear by definition of A(s) in (4.1). Moreover, the
definition shows that

#Tℓ′ ≤ A(s)1/s
�
Mk′

ℓ′
�−1/s for all (ℓ′, k′) ∈ Q. (4.4)

Hence, full R-linear convergence (3.29) and the geometric series show

�
(ℓ′,k′)∈Q
|ℓ′,k′|≤|ℓ,k|

#Tℓ′
(4.4)
≤ A(s)1/s

�
(ℓ′,k′)∈Q
|ℓ′,k′|≤|ℓ,k|

�
Mk′

ℓ′
�−1/s

(3.29)
≤ A(s)1/sC

1/s
lin

�
Mk

ℓ

�−1/s
�

(ℓ′,k′)∈Q
|ℓ′,k′|≤|ℓ,k|

�
q
1/s
lin

�|ℓ,k|−|ℓ′,k′|

≤ A(s)1/s
C

1/s
lin�

1− q
1/s
lin

� �Mk
ℓ

�−1/s
.

The upper bound from (4.3) thus follows from a rearrangement of this estimate. Therefore,
it only remains to verify that there exists an s0 > 0 such that A(s) < ∞ for 0 < s ≤ s0.
Note that successive application of the child estimate (R1) implies

0 ≤ #Tℓ
(R1)
≤ Cchild #Tℓ−1

(R1)
≤ Cℓ

child #T0 ≤ C
|ℓ,k|
child #T0 for all (ℓ, k) ∈ Q.

Since full R-linear convergence (3.29) guarantees

0 ≤ Mk
ℓ

(3.29)
≤ Clin q

|ℓ,k|
lin M0

0 for all (ℓ, k) ∈ Q,

the multiplication of the previous two estimates thus yields

(#Tℓ)sMk
ℓ ≤ (Cs

child qlin)
|ℓ,k|Clin (#T0)sM0

0 for all (ℓ, k) ∈ Q.

The right-hand side is uniformly bounded, provided that s > 0 is sufficiently small such that
Cs

child qlin ≤ 1. This concludes the proof with s0 := log(1/qlin)/ log(Cchild).

Another important implication of full R-linear convergence (3.29) is the following result,
which characterizes the limit of Algorithm B in case of a finite number of mesh levels ℓ < ∞.

Corollary 4.2 (lucky breakdown). Suppose full R-linear convergence (3.29) of the quasi-
error Mk

ℓ . Furthermore, suppose reliability (A3) of the estimator µℓ. Then, ℓ < ∞ guarantees
that u⋆ = u⋆ℓ and µℓ(u

⋆
ℓ ) = 0.

Proof. From the definition (2.47) of the stopping index ℓ, it follows that k → ∞ on the
mesh level ℓ. By full R-linear convergence (3.29), it thus holds

0 ≤ µℓ(u
⋆
ℓ ) ≤ Mk

ℓ ≤ Clin q
|ℓ,k|
lin M0

0 −→ 0 as k → ∞.

Hence, the estimator satisfies µℓ(u
⋆
ℓ ) = 0 and reliability (A3) verifies

|||u⋆ − u⋆ℓ ||| ≤ Crel µℓ(u
⋆
ℓ ) = 0.

This concludes the proof.
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4.2 Proof of optimal complexity

To formalize the idea of attainable convergence rates, we introduce the notion of approxima-
tion classes from [BDD04; Ste07; CKNS08; CFPP14]. For N ∈ N, let TN denote the set of
all triangulations with at most N more elements than the initial triangulation T0, i.e.,

TN := {TH ∈ T : #TH −#T0 ≤ N}.

For any rate s > 0 and the exact solution u⋆, we define

∥u⋆∥As
:= sup

N∈N0

��
N + 1

�s
min

TH∈TN

µH(u⋆H)
�
.

It can be shown that ∥u⋆∥As < ∞ implies the existence of a sequence of meshes (�Tℓ)ℓ∈N0

along which the corresponding error estimators µℓ(u
⋆
ℓ ) decay with rate s over the number of

elements #�Tℓ. Consequently, we say that Algorithm B is optimal with respect to the number
of degrees of freedom dimXℓ ≃ #Tℓ if the generated sequence of meshes (Tℓ)ℓ∈N0 satisfies

∀s > 0 :
�
∥u⋆∥As < ∞ =⇒ sup

(ℓ,k)∈Q
(#Tℓ)sMk

ℓ < ∞
�
,

i.e., the adaptive algorithm realizes any possible convergence rate. Likewise, we say that
Algorithm B is optimal with respect to the total computational cost if the generated sequence
of meshes (Tℓ)ℓ∈N0 satisfies

∀s > 0 :
�
∥u⋆∥As < ∞ =⇒ sup

(ℓ,k)∈Q

� �
(ℓ′,k′)∈Q
|ℓ′,k′|≤|ℓ,k|

#Tℓ′
�s

Mk
ℓ < ∞

�
.

The goal of this section is to prove the following theorem, which states that Algorithm B is
optimal with respect to the total computational cost, provided that the adaptivity parameters
θ and λ are chosen sufficiently small. Since strong estimator equivalence (2.22) implies
weak estimator equivalence (2.23) by definition and, according to (2.31), also implies weak
stability (W1), we formulate the theorem only for the latter two assumptions.

Theorem 4.3 (optimal complexity). Let Cmark ≥ 1 and u00 ∈ X0 be arbitrary. Suppose
that the error estimator µℓ is weakly equivalent to an estimator ηℓ in the sense of (2.23).
Furthermore, suppose that µℓ satisfies weak stability (W1) and that ηℓ satisfies the axioms
(A1)–(A3+). With

λ⋆ :=
1− qctr

qctr �Cstab
and θ⋆ := (1 + C2

stab C
2
drel)

−1, (4.5)

let 0 ≤ θ ≤ 1 and λ > 0 be sufficiently small in the sense that

0 < λ < λ⋆ and 0 < θmark :=
�C4
stab C

4
eq
� �C−1

stab λ/λ
⋆ + θ1/2

�2�
1− λ/λ⋆

�2 < θ⋆. (4.6)
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Then, for all s > 0, there exist constants 0 < copt, Copt such that

copt ∥u⋆∥As ≤ sup
(ℓ,k)∈Q

� �
(ℓ′,k′)∈Q
|ℓ′,k′|≤|ℓ,k|

#Tℓ′
�s

Mk
ℓ ≤ Copt max

�∥u⋆∥As , M
0
0

	
.

(4.7)

In particular, Algorithm B is optimal with respect to the total computational cost. The
constant copt depends only on Cchild and s, while the constant Copt depends only on Cstab,�Cstab, Cdrel, Cmark, Cpatch, Cmesh, qalg, λ, Clin, qlin, #T0, and s.

The proof follows the lines of [CFPP14, Proposition 4.15] and [MPS24, Theorem 10]. To
this end, we need the following three auxiliary results and start with an upper bound on the
algebraic error by means of the discretization error ηℓ(u⋆ℓ ) due to the stopping criterion (2.35).

Lemma 4.4 (upper bound on the algebraic error by discretization error). Suppose
that the error estimator µℓ is weakly equivalent to an estimator ηℓ in the sense of (2.23) and
satisfies weak stability (W1). With λ⋆ > 0 from (4.5), it holds

|||u⋆ℓ − u
k
ℓ ||| ≤

Ceq λ

λ⋆ − λ
ηℓ(u

⋆
ℓ ) for all 0 < λ < λ⋆. (4.8)

Proof. The a-posteriori error estimate of the algebraic error in (2.33) and the stopping
criterion (2.35) result in

|||u⋆ℓ − u
k
ℓ |||

(2.33)
≤ qctr

1− qctr
|||ukℓ − u

k−1
ℓ |||

(2.35)
≤ qctr

1− qctr
λµℓ(u

k
ℓ ). (4.9)

Hence, weak stability (W1) yields

|||u⋆ℓ − u
k
ℓ |||

(4.9)
(W1)
≤ qctr

1− qctr
�Cstab λ



µℓ(u

⋆
ℓ ) + |||u⋆ℓ − u

k
ℓ |||



=

λ

λ⋆



µℓ(u

⋆
ℓ ) + |||u⋆ℓ − u

k
ℓ |||



.

(4.10)

Since λ < λ⋆, estimator equivalence (2.30) establishes

|||u⋆ℓ − u
k
ℓ |||

(4.10)
≤ λ/λ⋆

1− λ/λ⋆
µℓ(u

⋆
ℓ ) =

λ

λ⋆ − λ
µℓ(u

⋆
ℓ )

(2.30)
≤ Ceq λ

λ⋆ − λ
ηℓ(u

⋆
ℓ ).

This concludes the proof.

The following lemma shows that Dörfler marking for ηℓ(u
⋆
ℓ ) with θmark from (4.6) implies

Dörfler marking for µℓ(u
k
ℓ ) with θ for a slightly larger set of marked elements.

Lemma 4.5 (Dörfler marking for ηℓ implies Dörfler marking for µℓ). Suppose
that the error estimator µℓ is weakly equivalent to an estimator ηℓ in the sense of (2.23)
and satisfies weak stability (W1). With m ∈ N0 from the equivalence (2.23), r ∈ N0 from
weak stability (W1), and 0 < θmark < 1 from (4.6), the following implication holds for any
triangulation Tℓ ∈ T and any subset Rℓ ⊆ Tℓ:

θmark ηℓ(u
⋆
ℓ )

2 ≤ ηℓ(Rℓ, u
⋆
ℓ )

2 =⇒ θ µℓ(u
k
ℓ )

2 ≤ µℓ

�T (m+r)
ℓ [Rℓ ], u

k
ℓ

�2
. (4.11)

43



4 Optimal complexity

Proof. Weak stability (W1), weak estimator equivalence (2.30) and estimate (4.9) provide

�C−2
stab C

−2
eq θ

1/2
mark µℓ(u

k
ℓ )

(W1)
≤ �C−1

stab C
−2
eq θ

1/2
mark



µℓ(u

⋆
ℓ ) + |||u⋆ℓ − u

k
ℓ |||



(2.30b)
≤ �C−1

stab C
−1
eq θ

1/2
mark ηℓ(u

⋆
ℓ ) +

�C−1
stab C

−2
eq θ

1/2
mark |||u⋆ℓ − u

k
ℓ |||

(4.11)
≤ �C−1

stab C
−1
eq ηℓ(Rℓ, u

⋆
ℓ ) +

�C−1
stab C

−2
eq θ

1/2
mark |||u⋆ℓ − u

k
ℓ |||

(2.30a)
≤ �C−1

stab µℓ

�T (m+r)
ℓ [Rℓ ], u

⋆
ℓ

�
+ �C−1

stab C
−2
eq θ

1/2
mark |||u⋆ℓ − u

k
ℓ |||

(W1)
≤ µℓ

�T (m+r)
ℓ [Rℓ ], u

k
ℓ

�
+
�
1 + �C−1

stab C
−2
eq θ

1/2
mark

� |||u⋆ℓ − u
k
ℓ |||

(4.9)
≤ µℓ

�T (m+r)
ℓ [Rℓ ], u

k
ℓ

�
+
�
1 + �C−1

stab C
−2
eq θ

1/2
mark

� qctr
1− qctr

λµℓ(u
k
ℓ ).

Rearrangement of the second term on the right-hand side verifies
 �C−2
stab C

−2
eq θ

1/2
mark −

�
1 + �C−1

stab C
−2
eq θ

1/2
mark

� qctr
1− qctr

λ


µℓ(u

k
ℓ ) ≤ µℓ

�T (m+r)
ℓ [Rℓ ], u

k
ℓ

�
. (4.12)

The definition of θmark and λ⋆ in (4.5)–(4.6) reveals

�C−2
stab C

−2
eq θ

1/2
mark −

�
1 + �C−1

stab C
−2
eq θ

1/2
mark

� qctr
1− qctr

λ

(4.5)
(4.6)
≤

�C−1
stab λ/λ

⋆ + θ1/2

1− λ/λ⋆
−
�
1 +

λ/λ⋆ + �Cstab θ
1/2

1− λ/λ⋆

� �C−1
stab λ/λ

⋆

=
�C−1
stab λ/λ

⋆ + θ1/2

1− λ/λ⋆
− �C−1

stab λ/λ
⋆ − λ/λ⋆

�C−1
stab λ/λ

⋆ + θ1/2

1− λ/λ⋆

=
�
1− λ/λ⋆

� �C−1
stab λ/λ

⋆ + θ1/2

1− λ/λ⋆
− �C−1

stab λ/λ
⋆ = θ1/2.

Thus, estimate (4.12) reduces to

θ1/2 µℓ(u
k
ℓ ) ≤ µℓ

�T (m+r)
ℓ [Rℓ ], u

k
ℓ

�
,

which concludes the proof.

Finally, we need the following comparison lemma for the error estimator of the Galerkin
solution ηℓ(u

⋆
ℓ ), which is found in [CFPP14, Lemma 4.14] and relies only on the optimality

of Dörfler marking (Proposition 2.19) and the overlay estimate (R2).

Lemma 4.6 (comparison lemma [CFPP14, Lemma 4.14.]). Suppose that the error
estimator ηℓ satisfies (A1)–(A3+). Let 0 < θ′ < θ⋆ := (1 + C2

stab C
2
drel)

−1. Then, there exist
constants C1, C2 > 0 depending only on the constants of (A1)–(A3+) such that for all s > 0
with ∥u⋆∥As < ∞ and all TH ∈ T, there exists a subset RH ⊆ TH satisfying

#RH ≤ C1C
−1/s
2 ∥u⋆∥1/sAs

ηH(u⋆H)−1/s and ηH(RH , u⋆H) ≤ θ′ ηH(u⋆H).

44



4 Optimal complexity

With these auxiliary results at hand, we are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. By Corollary 4.1, it suffices to show

∥u⋆∥As ≲ sup
(ℓ,k)∈Q

(#Tℓ)sMk
ℓ ≲ max{∥u⋆∥As , M

0
0}. (4.13)

The proof is divided into four steps.

Step 1 (lower bound in (4.7) for ℓ = ∞). Let ℓ = ∞. Since Mℓ ≠ ∅ and hence
#Tℓ+1 > #Tℓ by the child estimate (R1), Algorithm B guarantees #Tℓ → ∞ as ℓ → ∞.
Following the proof of [CFPP14, Proposition 4.15], we choose for any N ∈ N the maximal
index ℓ′ ∈ N0 with Tℓ′ ∈ TN . Since the child estimate (R1) provides #Tℓ′+1 ≤ Cchild #Tℓ′ , it
holds

N + 1 < #Tℓ′+1 −#T0 + 1 ≤ #Tℓ′+1 ≤ Cchild #Tℓ′ .
The fact that Tℓ′ ∈ TN verifies

min
TH∈TN

µH(u⋆H) ≤ µℓ′(u
⋆
ℓ′) ≤ Mk′

ℓ′ for all k′ ∈ N0 with (ℓ′, k′) ∈ Q.

A combination of the two previous estimates thus shows

(N + 1)s min
TH∈TN

µH(u⋆H) ≤ Cs
child (#Tℓ′)sMk′

ℓ′ ≤ Cs
child sup

(ℓ,k)∈Q
(#Tℓ)sMk

ℓ .

Hence, taking the supremum over all N ∈ N yields the lower bound in (4.13).

Step 2 (lower bound in (4.7) for ℓ < ∞). In the case that ℓ < ∞, Corollary 4.2 en-
sures u⋆ = u⋆ℓ and µℓ(u

⋆
ℓ ) = 0. As discussed in Remark 2.9, the estimator ηℓ satisfies quasi-

monotonicity (QM), which by Remark 2.17 implies that µℓ also satisfies quasi-monotonicity.
Hence, it holds minTH∈TN

µH(u⋆H) = 0 for all N ≥ #Tℓ −#T0 and thus the definition of the
approximation class ∥ · ∥As reduces to

∥u⋆∥As = sup
0≤N<#Tℓ−#T0

��
N + 1

�s
min

TH∈TN

µH(u⋆H)
�
.

Treating all N ∈ N0 with 0 ≤ N < #Tℓ −#T0 analogously to Step 1 establishes the lower
bound in (4.13).

Step 3 (estimate of marked elements). Since the upper bound in (4.13) is clear if
∥u⋆∥As = ∞, we may suppose ∥u⋆∥As < ∞. Let (ℓ′ + 1, 0) ∈ Q be arbitrary. By Lemma 4.6,
there exists a subset Rℓ′ ⊆ Tℓ′ such that

#Rℓ′ ≲ ∥u⋆∥1/sAs
ηℓ′(u

⋆
ℓ′)

−1/s and θmark ηℓ′(u
⋆
ℓ′)

2 ≤ ηℓ′(Rℓ′ , u
⋆
ℓ′)

2. (4.14)

As a consequence of Lemma 4.5, the Dörfler marking criterion in (4.14) implies

θ µℓ′(u
k
ℓ′)

2 ≤ µℓ′
�T (m+r)

ℓ′ [Rℓ′ ], u
k
ℓ′
�2
.
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Hence, the Dörfler marking criterion (2.45) holds on the enlarged set T (m+r)
ℓ′ [Rℓ′ ]. Esti-

mate (2.20) thus ensures that the set of marked elements Mℓ′ satisfies

#Mℓ′
(2.45)
≤ Cmark #T (m+r)

ℓ′ [Rℓ′ ]
(2.20)
≤ Cmark C

m+r
patch #Rℓ′ . (4.15)

Full R-linear convergence (3.29), estimator equivalence (2.30b), and the upper bound on the
algebraic error from (4.8) result in

M0
ℓ′+1

(3.29)
≲ M

k
ℓ′ = |||u⋆ℓ′ − u

k
ℓ′ |||+ µℓ′(u

⋆
ℓ′)

(2.30b)
≲ |||u⋆ℓ′ − u

k
ℓ′ |||+ ηℓ′(u

⋆
ℓ′)

(4.8)
≲ ηℓ′(u

⋆
ℓ′). (4.16)

A combination of the previous estimates (4.14)–(4.16) therefore validates for all (ℓ′+1, 0) ∈ Q

#Mℓ′
(4.15)
≲ #Rℓ′

(4.14)
≲ ∥u⋆∥1/sAs

ηℓ′(u
⋆
ℓ′)

−1/s
(4.16)
≲ ∥u⋆∥1/sAs

�
M0

ℓ′+1

�−1/s
. (4.17)

Step 4 (upper bound in (4.7)). Let (ℓ, k) ∈ Q be arbitrary. Full R-linear conver-
gence (3.29) and the geometric series verify�

(ℓ′,k′)∈Q
|ℓ′,k′|≤|ℓ,k|

�
Mk′

ℓ′
�−1/s

(3.29)
≲

�
Mk

ℓ

�−1/s
�

(ℓ′,k′)∈Q
|ℓ′,k′|≤|ℓ,k|

�
q
1/s
lin

�|ℓ,k|−|ℓ′,k′| ≲
�
Mk

ℓ

�−1/s
. (4.18)

A combination with the mesh-closure estimate (R3) and estimate (4.17) proves, for all ℓ ≥ 1
with (ℓ, 0) ∈ Q, that

#Tℓ −#T0 + 1 ≤ 2 (#Tℓ−#T0)
(R3)
≲

ℓ−1�
ℓ′=0

#Mℓ′
(4.17)
≲ ∥u⋆∥1/sAs

ℓ−1�
ℓ′=0

�
M0

ℓ′+1

�−1/s

≤ ∥u⋆∥1/sAs

�
(ℓ′,k′)∈Q
|ℓ′,k′|≤|ℓ,k|

�
Mk′

ℓ′
�−1/s

(4.18)
≲ ∥u⋆∥1/sAs

�
Mk

ℓ

�−1/s
.

A rearrangement of this estimate thus results in

(#Tℓ −#T0 + 1)sMk
ℓ ≲ ∥u⋆∥As for all (ℓ, k) ∈ Q with ℓ ≥ 1. (4.19a)

In the case ℓ = 0, full R-linear convergence (3.29) trivially provides

(#Tℓ −#T0 + 1)sMk
ℓ = Mk

0

(3.29)
≲ M0

0 for all (ℓ, k) ∈ Q with ℓ = 0. (4.19b)

As in [BHP17, Lemma 22], a rearrangement of

(#Tℓ −#T0 + 1)− #Tℓ
#T0 = (#Tℓ −#T0)(1− 1

#T0 ) ≥ 0

leads to the estimate
#Tℓ ≤ #T0 (#Tℓ −#T0 + 1). (4.20)

Overall, the previous estimates (4.19)–(4.20) prove

(#Tℓ)sMk
ℓ

(4.20)
≤ (#T0)s (#Tℓ −#T0 + 1)sMk

ℓ

(4.19)
≲ max

�∥u⋆∥As , M
0
0

	
.

Taking the supremum over all (ℓ, k) ∈ Q thus concludes the proof of the upper bound
in (4.13).
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In Example 2.14, we have already seen that the residual-based estimator ηH (2.14) is strongly
equivalent in the sense of (2.22) to the residual-based estimator �ηH (2.16), which uses the
diameter as mesh-size function. As a consequence of Theorem 3.11 and Theorem 4.3, we can
conclude full R-linear convergence and optimal complexity for Algorithm B steered by �ηH .

In this chapter, we want to introduce further error estimators, that satisfy the requirements
for full R-linear convergence and optimal complexity laid out in the previous chapters. Specif-
ically, we will consider recovery-based estimators and estimators based on flux equilibration.
The analysis of recovery-based estimators is based on [ZZ87; KS11; CFPP14], while the
section on flux equilibration uses results and ideas from [BPS09; EV15; EV20].

Throughout this chapter, we employ newest vertex bisection (cf. Example 2.6) as
the mesh-refinement strategy and, for a polynomial degree p ∈ N, define the discrete
spaces XH := Sp

0 (TH) as in (2.10).

5.1 Recovery-based estimators

In this section, we consider recovery-based error estimators, which are also referred to
as ZZ-estimators after Zienkiewicz and Zhu [ZZ87]. These estimators are widely used in
computational science and engineering due to their ease of implementation and impressive
performance in various applications.

Throughout this section, we suppose A = αI for α ∈ C(Ω) and f = 0 in problem (2.4),
i.e., we consider the PDE

− div(α∇u⋆) + b · ∇u⋆ + cu⋆ = f in Ω subject to u⋆ = 0 on ∂Ω. (5.1)

In particular, the refinement indicators of the residual-based estimator ηH (2.14) read

ηH(T, v⋆H)2 = H(T )2 ∥RH(vH)∥2L2(T ) +H(T ) ∥JH(vH)∥2L2(∂T∩Ω)

with local volume residuals RH(vH) = − div(α∇vH) + b · ∇vH + cvH − f and jump
terms JH(vH) = [[α∇vH · n]]. In order to define the ZZ-estimator, we need to introduce
further notation.

Definition 5.1 (patches and stars). Let TH ∈ T be a triangulation and z ∈ VH ∩ Ω an
interior vertex of TH . We define the corresponding vertex-patch TH [ z ] as the set of elements
T ∈ TH such that z ∈ T , i.e.,

TH [ z ] := {T ∈ TH : z ∈ T}.
Similarly, the star ΣH [ z ] is defined as the set of faces E ∈ EΩ

H such that z ∈ E, i.e.,

ΣH [ z ] := {E ∈ EΩ
H : z ∈ E}.

To abbreviate notation, we write ΩH [ z ] :=
� TH [ z ] and ωH [ z ] :=

�
ΣH [ z ].
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For a triangulation TH ∈ T, the definition of the ZZ-estimator employs a local averaging
operator GH : L2(Ω) → Sp(TH) which is defined as follows:

• For lowest-order polynomials p = 1, the operator GH maps any function v ∈ L2(Ω) to
the unique discrete function GH(v) ∈ S1(TH) satisfying

GH(v)(z) :=
1

|ΩH [ z ]|
�
ΩH [ z ]

v dx for all vertices z ∈ VH . (5.2)

• For the general case p ∈ N, we define the operator GH as L2-stable variant of the
Scott–Zhang projection from [SZ90]. With J := dim(Sp(TH)), let {φj}Jj=1 denote the
nodal basis of Sp(TH) with associated nodes {aj}Jj=1, i.e.,

φj(ak) =

�
1 for j = k,

0 for j ̸= k.
for all j, k = 1, . . . , J.

With each node aj , we associate an element Sj ∈ TH with aj ∈ Sj . For each
j ∈ {1, . . . , J}, linear algebra yields the existence of a unique dual basis function
ψj ∈ span{φi|Sj : ai ∈ Sj} satisfying

(ψk, φj)L2(Sj) = δjk for all j, k = 1, . . . , J. (5.3)

The Scott–Zhang projection GH : L2(Ω) → Sp(TH) is then defined as the unique
function GH(v) ∈ Sp(TH) satisfying GH(v)(aj) = (ψj , v)L2(Sj) for all j = 1, . . . , J , i.e.,

GH(v) =

J�
j=1

(ψj , v)L2(Sj) φj for all v ∈ L2(Ω). (5.4)

By (5.3), it holds for all vH ∈ Sp(TH) with vH =
�J

k=1 vkφk that

GH(vH) =
J�

j=1

(ψj , vH)L2(Sj) φj =
J�

j,k=1

vk(ψj , φk)L2(Sj) φj
(5.3)
=

J�
k=1

vkφk = vH ,

i.e., the Scott–Zhang projection is indeed a projection from L2(Ω) onto Sp(TH).

Let q ∈ N0 with 0 ≤ q ≤ p− 1. For each subset U ⊆ Ω, let Πq(U) : L2(U) → Pq(U) denote
the L2-orthogonal projection onto the space of polynomials of degree q, i.e.,

Πq(U)(v) := min
w∈Pq(U)

∥v − w∥2L2(U) for all v ∈ L2(U).

For each interior vertex z ∈ VH ∩ Ω and each discrete function vH ∈ XH , we define

rH,z(vH) := Πq(ΩH [ z ])RH(vH) = argmin
w∈Pq(ΩH [ z ])

∥RH(vH)− w∥2L2(ΩH [ z ]). (5.5)
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With the index set IH := TH ∪ VH and H(z) := diam(ΩH [ z ]), the refinement indicators of
the ZZ-estimator read

ϱH(I, vH)2 :=

�
∥α1/2(1−GH)∇vH∥2L2(T ) for I = T ∈ TH ,

H(z)2 ∥RH(vH)− rH,z(vH)∥2L2(ΩH [ z ]) for I = z ∈ VH ∩ Ω.

As detailed in Remark 2.15, we consider the corresponding element-based estimator

µH(T, vH)2 := ∥α1/2(1−GH)∇vH∥2L2(T ) +
�

z∈VH∩Ω
z∈T

H(z)2 ∥RH(vH)− rH,z(vH)∥2L2(ΩH [ z ]).

(5.6)
Our goal is to show that the ZZ-estimator satisfies the requirements for full R-linear
convergence (Theorem 3.14) and optimal complexity (Theorem 4.3). To this end, we need to
prove that the ZZ-estimator is weakly equivalent (in the sense of (2.23)) to the residual-based
estimator ηH from 2.14, and that it satisfies weak stability (W1). This is the content of the
following two subsections.

5.1.1 Weak equivalence of ZZ-estimator and residual-based estimator

In order to show weak equivalence of the ZZ-estimator (5.6) and the residual-based estima-
tor (2.14), we first need to establish a few auxiliary results. The following lemma provides a
bound for the residual in terms of normal jumps and volume oscillations.

Lemma 5.2. There exists a constant Cres > 0 such that for any interior vertex z ∈ VH ∩ Ω
and any element T ∈ TH with z ∈ T , it holds that

H(z)2 ∥RH(u⋆H)∥2L2(T )

≤ Cres



H(z) ∥[[α∇u⋆H · n]]∥2L2(ωH [ z ]) +H(z)2 ∥RH(u⋆H)− rH,z(u

⋆
H)∥2L2(ΩH [ z ])



.

(5.7)

The constant Cres depends only on the polynomial degree q and the initial triangulation T0.
Proof. For every z ∈ VH , let φz ∈ S1(TH) denote the nodal basis function characterized by
φz(z) = 1 and φz(z

′) = 0 for all z′ ∈ VH with z′ ̸= z. To abbreviate notation in the proof,
we write r⋆H,z := rH,z(u

⋆
H), R⋆

H := RH(u⋆H) and Πq := Πq(ΩH [ z ]). Recall that r⋆H,z = Πq R
⋆
H .

A scaling argument shows

∥r⋆H,z∥L2(ΩH [ z ]) ≲ ∥φ1/2
z r⋆H,z∥L2(ΩH [ z ])

=

�
ΩH [ z ]

R⋆
Hφzr

⋆
H,z dx−

�
ΩH [ z ]

�
(1−Πq)R

⋆
H

�
φzr

⋆
H,z dx.

The hidden constant depends only on σ-shape regularity and the polynomial degree q.
Together with ∥φz∥L∞(Ω) = 1, we obtain

∥r⋆H,z∥L2(ΩH [ z ]) ≲
�
ΩH [ z ]

R⋆
Hφzr

⋆
H,z dx+ ∥(1−Πq)R

⋆
H∥L2(ΩH [ z ])∥r⋆H,z∥L2(ΩH [ z ]). (5.8)

49



5 Applications

We first consider the left term of the right-hand side in (5.8). Since supp(φz) = ΩH [ z ],
it holds v := φzr

⋆
H,z ∈ Sp

0(TH [ z ]). Combining this with the weak formulation (2.5) and
element-wise integration by parts, we calculate�

ΩH [ z ]
R⋆

Hφzr
⋆
H,z dx =

�
ΩH [ z ]

�− div(α∇u⋆H) + b · ∇u⋆H + cu⋆H
�
v dx−

�
ΩH [ z ]

fv dx

(2.5)
=

�
ΩH [ z ]

− div(α∇u⋆H)v dx−
�
ΩH [ z ]

α∇u⋆H · ∇v dx

=

�
ωH [ z ]

[[α∇u⋆H · n]]v dx

≤ ∥[[α∇u⋆H · n]]∥L2(ωH [ z ]) ∥r⋆H,z∥L2(ωH [ z ]).

Since r⋆H,z ∈ Pq(ΩH [ z ]), an inverse-type inequality provides

∥r⋆H,z∥L2(ωH [ z ]) ≲ H(z)−1/2 ∥r⋆H,z∥L2(ΩH [ z ]).

Again, the hidden constant depends only on σ-shape regularity and the polynomial degree q.
Combining the previous estimates with (5.8), we obtain

∥r⋆H,z∥2L2(ΩH [ z ]) ≲
�
H(z)−1/2 ∥[[α∇u⋆H · n]]∥L2(ωH [ z ])

+ ∥R⋆
H − r⋆H,z∥L2(ΩH [ z ])

� ∥r⋆H,z∥L2(ΩH [ z ]).
(5.9)

Thus, the triangle inequality shows

H(z)2 ∥R⋆
H∥L2(T ) ≲ H(z)2 ∥r⋆H,z∥2L2(ΩH [ z ]) +H(z)2 ∥R⋆

H − r⋆H,z∥L2(ΩH [ z ])

(5.9)
≲ H(z) ∥[[α∇u⋆H · n]]∥L2(ωH [ z ]) +H(z)2 ∥R⋆

H − r⋆H,z∥L2(ΩH [ z ]).

This concludes the proof.

The next lemma shows that the normal jumps are locally equivalent to averaging.

Lemma 5.3 (averaging is equivalent to jumps). There exists a constant Cavg > 0 such
that

C−1
avg H(z)∥[[∇vH · n]]∥2L2(ωH [ z ]) ≤ ∥(1−GH)∇vH∥2L2(ΩH [ z ])

≤ Cavg
�

z′∈Σ[ z ]∩VH∩Ω
H(z′) ∥[[∇vH · n]]∥2L2(ωH [ z′ ]).

(5.10)

The constant Cavg depends only the polynomial degree p and the use of newest vertex bisection.

The proof of Lemma 5.3 uses a seminorm argument, which is based on the following
elementary result.

Lemma 5.4 (equivalence of seminorms). For any two seminorms | · |1, | · |2 on a finite
dimensional space V , there exists a constant C > 0 such that |v|1 ≤ C|v|2 for all v ∈ V if
and only if it holds

{v ∈ V : |v|2 = 0} ⊆ {v ∈ V : |v|1 = 0}.
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Proof of Lemma 5.3. All terms in (5.10) define seminorms on Sp(TH [ z ]). By Lemma 5.4,
it thus suffices to show that the chain of inequalities holds true if one term is zero.

First, we assume that (1 − GH)∇vH = 0 on ΩH [ z ], which implies ∇vH ∈ Sp(TH [ z ]).
Thus, ∇vH is continuous on ΩH [ z ] and hence [[∇vH · n]] = 0 on ωH [ z ].

Next, assume that [[∇vH ·n]] = 0 on ωH [ z′ ] for all inner vertices z′ of ΣH [ z ]. Since vH ∈
H1(Ω), also all tangential jumps of ∇vH vanish over ΣH [ z′ ]. Overall, this implies that ∇vH ∈
Sp−1(TH [ z′ ]) = Pp−1(TH [ z′ ])∩C(ΩH [ z′ ]) for all inner vertices z′ of ΣH [ z ]. If p ≥ 1 and the
averaging operator GH is defined via the Scott–Zhang projection, this results in GH∇vH =
∇vH . In case that p = 1 and patch averaging (5.2) is used, ∇vH ∈ S0(TH [ z′ ]) yields that
∇vH is constant on ΩH [ z′ ] for all inner vertices z′ of ΣH [ z ], and thus GH∇vH = ∇vH . In
any case, it therefore holds (1−GH)∇vH = 0 on ΩH [ z ].

The constant Cavg initially depends on the shape of the patches ΩH [ z′ ]. However, since
NVB leads to finitely many patch shapes, a scaling argument proves that Cavg depends only
on the use of newest vertex bisection and the polynomial degree p.

With Lemma 5.2 and Lemma 5.3 at hand, we can finally prove that the ZZ-estimator is
weakly equivalent to the residual-based estimator ηH in the sense of (2.23).

Proposition 5.5 (ZZ-estimator is weakly equivalent to residual-based estimator).
Suppose that the triangulation TH ∈ T is sufficiently fine in the sense that each element
T ∈ TH contains at least one interior vertex z ∈ VH ∩ Ω ∩ T . For any polynomial degree
p ∈ N, the ZZ-estimator µH defined in (5.6) is weakly equivalent to the residual-based
estimator ηH (2.14) in the sense of (2.23) with m = 2. The equivalence constant Ceq depends
only on the polynomial degrees p and q, the bounds ∥α∥L∞(Ω) and αmin := minx∈Ω α(x) > 0,
the initial triangulation T0, and the use of newest vertex bisection.

Proof. For an arbitrary triangulation TH ∈ T, let T ∈ TH and z ∈ VH ∩ Ω ∩ T . Since
A = αI with α ∈ C(Ω), it holds that

∥[[α∇u⋆H · n]]∥L2(ωH [ z ]) = ∥α [[∇u⋆H · n]]∥L2(ωH [ z ])

≤ ∥α∥L∞(Ω) ∥[[∇u⋆H · n]]∥L2(ωH [ z ]),
(5.11)

Furthermore, with αmin := minx∈Ω α(x) > 0 we obtain

∥[[∇u⋆H · n]]∥L2(ωH [ z ]) ≤
1

αmin
∥[[α∇u⋆H · n]]∥L2(ωH [ z ]) (5.12)

and
∥(1−GH)∇u⋆H∥L2(T ) ≤ α

−1/2
min ∥α1/2(1−GH)∇u⋆H∥L2(T ). (5.13)

Uniform σ-shape regularity implies H(z) ≃ H(T ). Thus, finite overlap of patches (2.21) and
estimates (5.7), (5.11), and (5.10) yield

η(T , u⋆H)2 = H(T )2 ∥RH(u⋆H)∥2L2(T ) +H(T ) ∥[[α∇u⋆H · n]]∥2L2(∂T∩Ω)

(5.7)
≲

�
z∈VH∩Ω

z∈T



H(z) ∥[[α∇u⋆H · n]]∥2L2(ωH [ z ]) + H(z)2 ∥RH(u⋆H)− rH,z(u

⋆
H)∥2L2(ΩH [ z ])
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(5.11)
≲

�
z∈VH∩Ω

z∈T



H(z) ∥[[∇u⋆H · n]]∥2L2(ωH [ z ]) + H(z)2 ∥RH(u⋆H)− rH,z(u

⋆
H)∥2L2(ΩH [ z ])



(5.10)
≲

�
z∈VH∩Ω

z∈T



∥(1−GH)∇u⋆H∥2L2(ΩH [ z ]) + H(z)2 ∥RH(u⋆H)− rH,z(u

⋆
H)∥2L2(ΩH [ z ])



(5.13)
≲

�
z∈VH∩Ω

z∈T



∥α1/2(1−GH)∇u⋆H∥2L2(ΩH [ z ]) + H(z)2 ∥RH(u⋆H)− rH,z(u

⋆
H)∥2L2(ΩH [ z ])



(2.21)
≲

�
T ′∈TH [T ]



∥α1/2(1−GH)∇u⋆H∥2L2(T ′) +

�
z∈VH∩Ω
z∈T ′

H(z)2 ∥RH(u⋆H)− rH,z(u
⋆
H)∥2L2(ΩH [ z ])



= µH(TH [T ], u⋆H)2.

The hidden constant depends only on the polynomial degrees p and q, the bounds ∥α∥L∞(Ω)

and αmin, the initial triangulation T0, and the use of newest vertex bisection. This concludes
the proof of (2.23a). To prove (2.23b), we treat the two terms of (5.6) individually. For the
first term, estimates (5.10) and (5.12), α ∈ L∞(Ω), and uniform σ-shape regularity verify

∥α1/2(1−GH)∇u⋆H∥2L2(T ) ≤ ∥α1/2(1−GH)∇u⋆H∥2L2(ΩH [ z ])

≲ ∥(1−GH)∇u⋆H∥2L2(ΩH [ z ])

(5.10)
≲

�
z′∈Σ[ z ]∩VH∩Ω

H(z′) ∥[[∇u⋆H · n]]∥2L2(ωH [ z′ ])

(5.12)
≲

�
z′∈Σ[ z ]∩VH∩Ω

H(z′) ∥[[α∇u⋆H · n]]∥2L2(ωH [ z′ ])

≲ ηH(T (2)
H [T ], u⋆H)2.

The hidden constant depends only on the polynomial degree p, the constant ∥α∥L∞(Ω) > 0,
the use of newest vertex bisection, and the initial triangulation T0. Since 1 − Πq(ΩH [ z ])
is an L2-orthogonal projection and RH(u⋆H)− rH,z(u

⋆
H) = [1−Πq(ΩH [ z ])]RH(u⋆H), finite

overlap of patches (2.21) yields�
z∈VH∩Ω

z∈T

H(z)2 ∥RH(u⋆H)− rH,z(u
⋆
H)∥2L2(ΩH [ z ]) ≤

�
z∈VH∩Ω

z∈T

H(T )2 ∥RH(u⋆H)∥2L2(ΩH [ z ])

(2.21)
≲ ηH(TH [T ], u⋆H)2.

The hidden constant depends only on the initial triangulation T0 and the use of newest
vertex bisection. Finally, combining these two estimates, we get

µ(T, u⋆H)2 = ∥(1−GH)∇u⋆H∥2L2(T ) +
�

z∈VH∩Ω
z∈T

H(z)2 ∥RH(u⋆H)− rH,z(u
⋆
H)∥2L2(ΩH [ z ])

≲ ηH(T (2)
H [T ], u⋆H)2.
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Overall, the hidden constant depends only on the polynomial degrees p and q, the bounds
∥α∥L∞(Ω) and αmin, the initial triangulation T0, and the use of newest vertex bisection. This
concludes the proof of (2.23b) and thus of (2.23).

5.1.2 Weak stability of the ZZ-estimator

It only remains to prove weak stability (W1) for the ZZ-estimator (5.6) in order to fulfill
the assumptions of Theorem 3.14 and Theorem 4.3. This is the content of the following
Proposition.

Proposition 5.6 (weak stability of ZZ-estimator). The ZZ-estimator defined in (5.6)
satisfies weak stability (W1) with r = 0, where the constant �Cstab depends only on the
polynomial degree p, the bounds ∥α∥L∞(Ω) and αmin := minx∈Ω α(x) > 0, the ellipticity
constant Cell > 0, and uniform σ-shape regularity of TH ∈ T.

Proof. The proof is divided into five steps.

Step 1 (stability of averaging term). Let TH ∈ T and vH , wH ∈ XH be arbitrary. For
the first term of (5.6), the triangle inequality and the Young inequality (3.14) yield

∥α1/2(1−GH)∇vH∥2L2(T )

≲ ∥α1/2(1−GH)∇wH∥2L2(T ) + ∥α1/2(1−GH)∇(vH − wH)∥2L2(T ).
(5.14)

Both patch averaging (5.2) and the Scott–Zhang projection (5.4) are locally L2-stable, i.e.,
it holds

∥α1/2(1−GH)v∥2L2(T ) ≲ ∥α1/2v∥2L2(ΩH [T ]) for all v ∈ L2(Ω), (5.15)

where the hidden constant depends only on the bounds ∥α∥L∞(Ω) and αmin, and, in the case
of the Scott–Zhang projection, on the polynomial degree p and uniform σ-shape regularity
of TH ∈ T. We will prove (5.15) in the next two steps for both patch averaging and the
Scott–Zhang projection.

Step 2 (L2-stability (5.15) of patch averaging). Let v ∈ L2(Ω). For every z ∈ VH ,
let φz ∈ S1(TH) denote the nodal basis function characterized by φz(z) = 1 and φz(z

′) = 0
for all z′ ∈ VH with z′ ̸= z. Note that ∥φz∥L∞(Ω) = 1 and that | supp(φz) ∩ T | > 0 implies
z ∈ T . Hence, the triangle inequality, the Cauchy–Schwarz inequality, and α ∈ L∞(Ω)
provide

∥α1/2GHv∥L2(T ) =
���α1/2

�
z∈VH

� 1

|ΩH [ z ]|
�
ΩH [ z ]

v dx
�
φz

���
L2(T )

≤
�

z∈VH∩T
|ΩH [ z ]|−1∥v∥L1(ΩH [ z ])∥α1/2φz∥L2(T )

≲
�

z∈VH∩T
|ΩH [ z ]|−1/2∥α1/2v∥L2(ΩH [ z ])∥φz∥L2(T )

≤
�

z∈VH∩T
∥α1/2v∥L2(ΩH [ z ]) ≤ (d+ 1) ∥α1/2v∥L2(ΩH [T ]).
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Combining this once more with the triangle inequality, we obtain

∥α1/2(1−GH)v∥2L2(T ) ≤ ∥α1/2v∥2L2(T ) + ∥α1/2GHv∥2L2(T ) ≤ (d+ 2) ∥α1/2v∥L2(ΩH [T ]).

This proves L2-stability (5.15) for patch averaging.

Step 3 (L2-stability (5.15) of Scott–Zhang projection). With J := dim(Sp(TH)), re-
call that {φj}Jj=1 denotes the nodal basis of Sp(TH) with associated nodes {aj}Jj=1 and
aj ∈ Sj ∈ TH . Let j ∈ {1, . . . , J} be arbitrary. Note that | supp(φj)∩ T | > 0 implies aj ∈ T .
Hence, with JT := {j : aj ∈ T}, the triangle inequality, the Cauchy–Schwarz inequality, and
α ∈ L∞(Ω) yield

∥α1/2GHv∥L2(T ) ≤
�
j∈JT

��(ψj , v)L2(Sj)

�� ∥α1/2φj∥L2(T )

≤
�
j∈JT

∥v∥L2(Sj) ∥ψj∥L2(Sj) ∥α1/2φj∥L2(T )

≤
�
j∈JT

|Sj |1/2 |T |1/2 ∥v∥L2(T ) ∥ψj∥L∞(Sj) ∥φj∥L∞(T ) ∥α∥L∞(T )

(5.16)

A scaling argument shows

∥φj∥L∞(Ω) ≲ 1 and ∥ψj∥L∞(Sj) ≲ |Sj |−1, (5.17)

where the hidden constants depend only on the polynomial degree p. Since Sj ∈ TH [T ] by
the definition of the Scott–Zhang projection (5.4), uniform σ-shape regularity of TH ∈ T
implies |Sj |−1/2|T |1/2 ≲ 1. Together with #JT ≤ 1

2(p+ 1)(p+ 2), we can further estimate
(5.16) by

∥α1/2GHv∥L2(T )

(5.17)
≲

�
j∈JT

|Sj |−1/2 |T |1/2 ∥v∥L2(T )

≲
�
j∈JT

∥v∥L2(T ) ≲
�
j∈JT

∥α1/2v∥L2(T ) ≲ ∥α1/2v∥L2(ΩH [T ]).

Here, the hidden constant depends only on the polynomial degree p, the bounds ∥α∥L∞(Ω)

and αmin, and uniform σ-shape regularity of TH ∈ T. This proves L2-stability (5.15) for the
Scott–Zhang projection.

Step 4 (stability of oscillation term). Next, we consider the second term of (5.6). Since
1 − Πq(ΩH [ z ]) is an L2-orthogonal projection, the triangle inequality and the Young
inequality (3.14) show�

z∈VH∩Ω
z∈T

H(z)2 ∥RH(vH)− rH,z(vH)∥2L2(ΩH [ z ])

≲
�

z∈VH∩Ω
z∈T

H(z)2


∥(1−Πq(ΩH [ z ]))RH(wH)∥2L2(ΩH [ z ])

+ ∥RH(vH)−RH(wH)∥2L2(ΩH [ z ])



.

(5.18)
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As in the proof of stability (A1) of the residual-based estimator (see [CKNS08, Corollary 3.4]),
an inverse estimate proves

H(z)2 ∥RH(vH)−RH(wH)∥2L2(ΩH [ z ]) ≲ ∥α1/2∇(vH − wH)∥2L2(ΩH [ z ]). (5.19)

Step 5 (combination of estimates). A combination of the previous estimates together
with uniform σ-shape regularity and uniform ellipticity of a(·, ·) yields

µ(UH , vH)2 =
�

T∈UH



∥α1/2(1−GH)∇vH∥2L2(T ) +

�
z∈VH∩Ω

z∈T

H(z)2 ∥RH(vH)− rH,z(vH)∥2L2(ΩH [ z ])



(5.14)
(5.18)
≲ µ(UH , wH)2 +

�
T∈UH



∥α1/2(1−GH)∇(vH − wH)∥2L2(T )

+
�

z∈VH∩Ω
z∈T

H(z)2∥RH(vH)−RH(wH)∥2L2(ΩH [ z ])



(5.15)
(5.19)
≲ µ(UH , wH)2 + |||vH − wH |||2.

By finally applying the Young inequality (3.14) to the above inequality, we conclude weak
stability (W1) for the ZZ-estimator. Overall, the constant �Cstab depends only on the
polynomial degree p, the bounds ∥α∥L∞(Ω) and αmin := minx∈Ω α(x) > 0, and uniform
σ-shape regularity of TH ∈ T.

Finally, we fulfill all conditions of Theorem 3.14 and Theorem 4.3 and can therefore
conclude full R-linear convergence of the quasi-error (3.27) and optimal complexity of
Algorithm B steered by the ZZ-estimator.

Corollary 5.7. Let 0 ≤ θ ≤ 1, Cmark ≥ 1, λ > 0, and u00 ∈ X0 be arbitrary. Suppose
that A = αI for α ∈ C(Ω) and f = 0 so that the model problem (2.4) reads as in (5.1).
Let Algorithm B be steered by the ZZ-estimator µℓ defined in (5.6). Then, Theorem 3.14
guarantees full R-linear convergence of the quasi-error (3.27) and Theorem 4.3 ensures
optimal complexity of Algorithm B.

5.2 Estimator based on local flux equilibration

The equilibrated flux estimator is a popular choice for error estimation due to its remarkable
numerical properties, which include a known reliability constant. The motivation for the
equilibrated flux estimator is based on the following observation.

We consider the variational problem (2.3) for the PDE (2.4). It is well-known (see, e.g.,
[Bra07, Theorem 3.6]) that the well-posedness of this problem is equivalent to the inf-sup
condition

α := inf
v∈H1

0 (Ω)\{0}
sup

w∈H1
0 (Ω)\{0}

|a(v, w)|
∥v∥H1(Ω)∥w∥H1(Ω)

> 0 (5.20a)
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and the non-degeneracy condition

∀w ∈ H1
0 (Ω) \ {0} ∃v ∈ H1

0 (Ω) : |a(v, w)| > 0. (5.20b)

In particular, the inf-sup stability (5.20a) implies that

∥v∥⋆ := sup
w∈H1

0 (Ω)\{0}

|a(v, w)|
∥w∥H1(Ω)

for all v ∈ H1
0 (Ω) (5.21)

defines a norm on H1
0 (Ω) that is equivalent to the H1-norm. Let

H(div; Ω) := {τ ∈ [L2(Ω)]d : div τ ∈ L2(Ω)}
denote the space of [L2(Ω)]d-functions whose divergence exists in a weak sense and belongs
to L2(Ω) equipped with the weighted graph norm

∥τ∥H(div;Ω) :=
�∥τ∥2L2(Ω) + diam(Ω)2 ∥ div τ∥2L2(Ω)

�1/2
.

For some v ∈ H1
0 (Ω), suppose that we have a function σ[v] ∈ H(div; Ω) at our disposal

satisfying
divσ[v] = g[v] := f − b · ∇v − c v in Ω. (5.22)

We will refer to σ[v] as the flux of v. Then, the inf-sup stability (5.20a), the fact that u⋆ is
the solution of (2.3), integration by parts, and the Cauchy–Schwarz inequality verify

α−1 ∥u⋆ − v∥H1(Ω)

(5.20a)
≤ sup

w∈H1
0 (Ω)\{0}

|a(u⋆ − v, w)|
∥w∥H1(Ω)

(5.21)
= ∥u⋆ − v∥⋆

(2.3)
= sup

w∈H1
0 (Ω)\{0}

|⟨f, w⟩L2(Ω) + ⟨f ,∇w⟩L2(Ω) − a(v, w)|
∥w∥H1(Ω)

(5.22)
= sup

w∈H1
0 (Ω)\{0}

|⟨g[v], w⟩L2(Ω) − ⟨A∇v − f ,∇w⟩L2(Ω)|
∥w∥H1(Ω)

(5.22)
= sup

w∈H1
0 (Ω)\{0}

|⟨σ[v] +A∇v − f ,∇w⟩L2(Ω)|
∥w∥H1(Ω)

≤ ∥σ[v] +A∇v − f∥L2(Ω).

(5.23)

Assuming that the function σ[v] is computable, the expression ∥σ[v] +A∇v − f∥L2(Ω) is
thus a guaranteed upper bound for the error ∥u⋆ − v∥⋆ (with known constant 1) and a
reliable error estimator for ∥u⋆ − v∥H1(Ω) with explicit reliability constant α. Moreover,
since u⋆ solves (2.4), the choice σ[u⋆] := f −A∇u⋆ satisfies

⟨σ[u⋆],∇w⟩L2(Ω) = ⟨f −A∇u⋆,∇w⟩L2(Ω)

(2.4)
= ⟨f ,∇w⟩L2(Ω) + ⟨b · ∇u⋆ + c u⋆, w⟩L2(Ω) − a(u⋆, w)

(2.3)
= ⟨b · ∇u⋆ + c u⋆, w⟩L2(Ω) − ⟨f, w⟩L2(Ω)

(5.22)
= −⟨g[u⋆], w⟩L2(Ω) for all w ∈ H1

0 (Ω).
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Therefore, σ[u⋆] solves (5.22) and is thus the solution of the minimization problem

σ[u⋆] = argmin
τ∈H(div;Ω)
div τ=g[u⋆]

∥τ +A∇u⋆ − f∥L2(Ω), (5.24)

with
min

τ∈H(div;Ω)
div τ=g[u⋆]

∥τ +A∇u⋆ − f∥L2(Ω) = ∥σ[u⋆] +A∇u⋆ − f∥L2(Ω) = 0.

In particular, we note that σ[u⋆] is indeed the unique minimizer to (5.24). For a dis-
crete function vH ∈ XH , one might thus aim to compute σ[vH ] as the minimizer of
∥σ[vH ] +A∇u− f∥L2(Ω) in a finite-dimensional subspace of H(div; Ω) with side con-
straint (5.22) in order to obtain a computable error estimator for ∥u⋆ − vH∥H1(Ω), which
hopefully still has an explicit reliability constant. The obvious disadvantage of this approach
is that the computation of σ[vH ] requires the solution of global problem.

Therefore, we will first introduce a local version of σ[vH ] before providing a discretization
of the corresponding local problems. This is the content of the next subsection. After
that, we will show that the equilibrated flux estimator constructed in this way is weakly
equivalent to the residual-based estimator. Finally, we will prove weak stability of the local
equilibrated flux estimator, which will allow us to conclude full R-linear convergence and
optimal complexity of Algorithm B steered by the local equilibrated flux estimator.

5.2.1 Construction of the equilibrated flux estimator

Let TH ∈ T be a triangulation of Ω. For every z ∈ VH , let φz ∈ S1(TH) denote the nodal
basis function characterized by φz(z) = 1 and φz(z

′) = 0 for all z′ ∈ VH with z′ ≠ z. Again,
we consider σ[u⋆] = f − A∇u⋆ and define the local fluxes σz[u

⋆] := φz σ[u
⋆]. Since the

nodal basis forms a partition of unity, it holds

σ[u⋆] =
� �

z∈VH

φz

�
σ[u⋆] =

�
z∈VH

σz[u
⋆].

Let n denote the unit normal vector on the edges
� EH of TH (with arbitrary but fixed

orientation). By definition, σz[u
⋆] (restricted to ΩH [ z ]) is contained in

H0(div; ΩH [ z ]) :=

�
{τ ∈ H(div; ΩH [ z ]) : τ · n = 0 on ∂ΩH [ z ]} if z ∈ VH ∩ Ω,

{τ ∈ H(div; ΩH [ z ]) : τ · n = 0 on ∂ΩH [ z ] \ ∂Ω} if z ∈ VH ∩ ∂Ω.

The divergence of σz[u
⋆] is given by

divσz[u
⋆] = φz divσ[u⋆] +∇φz · σ[u⋆] (5.22)

= φz g[u
⋆]−∇φz · (A∇u⋆ − f) =: gz[u

⋆]. (5.25)

Therefore, the local fluxes σz[u
⋆] = φz σz[u

⋆] = φz(f − A∇u⋆) are the solutions of the
minimization problems

σz[u
⋆] = argmin

τ∈H0(div;ΩH [ z ])
div τ=gz [u⋆]

∥τ + φz (A∇u⋆ − f)∥L2(ΩH [ z ]), (5.26)
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with

min
τ∈H0(div;ΩH [ z ])

div τ=gz [u⋆]

∥τ + φz (A∇u⋆ − f)∥L2(ΩH [ z ]) = ∥σz[u
⋆] + φz (A∇u⋆ − f)∥L2(ΩH [ z ]) = 0,

which are localized versions of the minimization problem (5.24). In particular, we note that
σz[u

⋆] is indeed the unique minimizer to (5.26). Since we have

⟨div τ , 1⟩L2(ΩH [ z ]) = ⟨τ ,∇1⟩L2(ΩH [ z ]) = 0 for all τ ∈ H0(div; ΩH [ z ]) with z ∈ VH ∩ Ω,

the range of the divergence operator applied to H0(div; ΩH [ z ]) is contained in

L2
⋆(ΩH [ z ]) :=

�
{q ∈ L2(ΩH [ z ]) : ⟨q, 1⟩L2(ΩH [ z ]) = 0} if z ∈ VH ∩ Ω,

L2(ΩH [ z ]) if z ∈ VH ∩ ∂Ω.

The next lemma shows that the divergence operator is even surjective. Although this result
will only be needed for a discrete setting, the subsequent construction will also be used in
the proof of the discrete analogue.

Lemma 5.8 (divergence is surjective). The operator div : H0(div; ΩH [ z ]) → L2
⋆(ΩH [ z ])

is surjective for all z ∈ VH . Moreover, there exists a constant βσ > 0 depending only on
uniform σ-shape regularity of TH ∈ T such that

inf
q∈L2

⋆(ΩH [ z ])
sup

τ∈H0(div;ΩH [ z ])

⟨div τ , q⟩L2(ΩH [ z ])

∥τ∥H(div;ΩH [ z ])∥q∥L2(ΩH [ z ])
≥ diam(ΩH [ z ])−1 βσ > 0. (5.27)

Proof. Let z ∈ VH ∩ Ω and q ∈ L2
⋆(ΩH [ z ]) be arbitrary. Consider the homogeneous

Neumann problem
−Δu = q in ΩH [ z ],

∇u · n = 0 on ∂ΩH [ z ],

with corresponding variational formulation

⟨∇u,∇v⟩L2(ΩH [ z ]) = ⟨q, v⟩L2(ΩH [ z ]) for all v ∈ H1(ΩH [ z ]). (5.28)

Since the Neumann compatibility condition ⟨q, 1⟩L2(ΩH [ z ]) = 0 is satisfied, there exists
a unique solution u ∈ H1

⋆ (ΩH [ z ]) := {v ∈ H1(ΩH [ z ]) : ⟨v, 1⟩L2(ΩH [ z ]) = 0} of (5.28).
By (5.28), q is the weak divergence of ζ := −∇u. Moreover, (5.28) implies ζ · n = 0
on ∂ΩH [ z ] in the sense of traces. Thus, we have found a function ζ ∈ H0(div; ΩH [ z ])
with div ζ = q. The Cauchy–Schwarz inequality and the Poincaré inequality (see [EG21a,
Lemma 3.24]) prove

∥∇u∥2L2(ΩH [ z ]) = ⟨∇u,∇u⟩L2(ΩH [ z ])
(5.28)
= ⟨q, u⟩L2(ΩH [ z ])

≤ ∥q∥L2(ΩH [ z ]) ∥u∥L2(ΩH [ z ]) ≤ CP diam(ΩH [ z ]) ∥q∥L2(ΩH [ z ]) ∥∇u∥L2(ΩH [ z ]),

i.e., it holds ∥∇u∥L2(ΩH [ z ]) ≤ CP diam(ΩH [ z ]) ∥q∥L2(ΩH [ z ]). The Poincaré constant CP > 0
depends only on the shape of ΩH [ z ] and thus only on uniform σ-shape regularity of TH ∈ T.
Hence, the definitions of the H(div)-norm and ζ yield

∥ζ∥2H(div;ΩH [ z ]) = ∥ζ∥2L2(ΩH [ z ]) + diam(ΩH [ z ])2 ∥ div ζ∥2L2(ΩH [ z ])

≤ diam(ΩH [ z ])2 (C2
P + 1) ∥q∥2L2(ΩH [ z ])
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With βσ := (1 + C2
P)

−1/2, we therefore have

sup
τ∈H0(div;ΩH [ z ])

⟨div τ , q⟩L2(ΩH [ z ])

∥τ∥H(div;ΩH [ z ])∥q∥L2(ΩH [ z ])
≥ ⟨div ζ, q⟩L2(ΩH [ z ])

∥ζ∥H(div;ΩH [ z ])∥q∥L2(ΩH [ z ])

=
∥q∥L2(ΩH [ z ])

∥ζ∥H(div;ΩH [ z ])
≥ diam(ΩH [ z ])−1 βσ.

Taking the infimum over functions in L2
⋆(ΩH [ z ]) shows (5.27) for z ∈ VH ∩ Ω. The case

z ∈ VH ∩ ∂Ω can be treated analogously by considering the Poisson problem with mixed
boundary conditions and the Friedrichs inequality. This concludes the proof.

As the next step, we will discretize the local problems (5.26) in order to obtain computable
local fluxes σz[vH ] for any discrete function vH ∈ XH . To this end, we introduce local
Raviart–Thomas spaces RT q

0(TH [ z ]) of order q ∈ N0 on the patches ΩH [ z ], which are
defined as

RT q
0(TH [ z ]) := {τH ∈ H0(div; ΩH [ z ]) : τH |T ∈ [Pq(T )]d + xPq(T ) for all T ∈ TH [ z ]}.

Here, the notation τ ∈ [Pq(T )]d + xPq(T ) means that there exist polynomials p1 ∈ Pq(T )
and p2 ∈ [Pq(T )]d such that τ (x) = p2(x) + x p1(x) for all x ∈ T . This will be the discrete
counterpart of the space H0(div; ΩH [ z ]), in which the local equilibrated fluxes σH,z[vH ]
for discrete functions vH ∈ XH will be sought. By definition, the range of the divergence
operator applied to RT q

0(TH [ z ]) is contained in

L2
⋆(ΩH [ z ]) ∩ Pq(TH [ z ]) =: Pq

⋆(TH [ z ]).

Let Π⋆
H,z : L

2(ΩH [ z ]) → Pq
⋆(TH [ z ]) denote the L2-orthogonal projection onto Pq

⋆(TH [ z ]).
The straightforward approach to define the constraint for the discrete minimization problems
would be to simply replace the exact solution u⋆ in (5.25) with the discrete function vH , i.e.,

divσH,z[vH ] = gz[vH ] := φz g[vH ]−∇φz · (A∇vH − f). (5.29)

However, a discrete σH,z[vH ] ∈ RT q
0(TH [ z ]) can in general no longer satisfy that constraint.

Instead, we have to project gz[vH ] onto Pq
⋆(TH [ z ]), which leads to the discrete local

minimization problems

σH,z[vH ] := argmin
τH∈RT q

0(TH [ z ])
div τH=Π⋆

H,z(gz [vH ])

∥τH + φz (A∇vH − f)∥L2(ΩH [ z ]). (5.30)

Let Π⋆
z : L

2(ΩH [ z ]) → L2
⋆(ΩH [ z ]) denote the L2-orthogonal projection onto L2

⋆(ΩH [ z ]),
which, for all v ∈ L2(ΩH [ z ]), is given by

Π⋆
z(v) =

�
v − 1

|ΩH [ z ]| ⟨v, 1⟩L2(ΩH [ z ]) if z ∈ VH ∩ Ω,

v if z ∈ VH ∩ ∂Ω.
(5.31)

Furthermore, we write ΠH : L2(Ω) → Pq(TH) for the L2-orthogonal projection onto Pq(TH).
The following lemma shows that the minimization problems (5.30) indeed admit unique
solutions, which can be computed by solving local saddle-point problems.
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Lemma 5.9 (local flux equilibration). For every TH ∈ T and z ∈ VH , the minimization
problem (5.30) admits a unique solution σH,z[vH ] ∈ RT q

0(TH [ z ]). With

a(τH , �τH) := ⟨τH , �τH⟩L2(ΩH [ z ]) for all τH , �τH ∈ RT q
0(TH [ z ]),

b(τH , qH) := ⟨div τH , qH⟩L2(ΩH [ z ]) for all τH ∈ RT q
0(TH [ z ]), qH ∈ Pq(TH [ z ]),

(5.32)

and

F (τH) := −⟨τH , φz (A∇vH − f)⟩L2(ΩH [ z ]) for all τH ∈ RT q
0(TH [ z ]),

G(qH) := ⟨Π⋆
z(gz[vH ]), qH⟩L2(ΩH [ z ]) for all qH ∈ Pq(TH [ z ]),

(5.33)

this solution is also the first component of the unique solution (σH,z[vH ], rH,z[vH ]) ∈
RT q

0(TH [ z ])× Pq
⋆(TH [ z ]) of the saddle-point problem

a(σH,z[vH ], τH) + b(τH , rH,z[vH ]) = F (τH) for all τH ∈ RT q
0(TH [ z ]), (5.34a)

b(σH,z[vH ], qH) = G(qH) for all qH ∈ Pq(TH [ z ]). (5.34b)

Moreover, there exists a constant �βσ > 0 depending only on uniform σ-shape regularity of
TH ∈ T and the polynomial degree q such that

∥σH,z[vH ]∥H(div;ΩH [ z ]) ≤ ∥F∥H(div;ΩH [ z ])′ + 2 diam(ΩH [ z ]) �β−1
σ ∥G∥L2(ΩH [ z ])′ . (5.35)

For the proof we need Brezzi’s theorem from [Bre74]. The following formulation of Brezzi’s
theorem is taken from [EG21b, Theorem 49.13].

Theorem 5.10 (Brezzi). Let X and Y be reflexive Banach spaces. Let a : X × X and
b : X × Y be continuous bilinear forms. Define the operator B ∈ L(X,Y ′) by Bx := b(x, ·),
i.e., ⟨Bx, y⟩Y ′,Y = b(x, y) for all x ∈ X and y ∈ Y . Then, for any F ∈ X ′ and G ∈ Y ′,
there exists a unique solution (�x, �y) ∈ X × Y of the saddle-point problem

a(�x, x) + b(x, �y) = F (x)

b(�x, y) = G(y)

for all x ∈ X,

for all y ∈ Y.
(5.36)

if and only if a(·, ·) satisfies the inf-sup condition and the non-degeneracy condition on the
kernel of B, i.e., ��

inf
x∈ker(B)\{0}

sup�x∈X\{0}

a(x, �x)
∥x∥X∥�x∥X =: α > 0,

∀�x ∈ ker(B) \ {0} ∃x ∈ ker(B) : |a(x, �x)| > 0,

(5.37)

and b(·, ·) satisfies the inf-sup condition

inf
y∈Y

sup
x∈X

|b(x, y)|
∥x∥X∥y∥Y =: β > 0. (5.38)

In this case, we have the following a priori estimates for the solution (�x, �y):
∥�x∥X ≤ 1

α
∥F∥X′ +

1

β

�
1 +

∥a∥
α

�
∥G∥Y ′ , (5.39a)

∥�y∥Y ≤ 1

β

�
1 +

∥a∥
α

�
∥F∥X′ +

∥a∥
β2

�
1 +

∥a∥
α

�
∥G∥Y ′ . (5.39b)
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The condition (5.37) is automatically satisfied if a(·, ·) is elliptic on the kernel of B, whereas
the inf-sup condition (5.38) is equivalent to the surjectivity of B.

Furthermore, we need the following proposition, which links the saddle-point problem (5.36)
to a minimization problem.

Proposition 5.11 (equivalent minimization problem for saddle-point problem).
Let X and Y be reflexive Banach spaces. Let a : X ×X and b : X × Y be continuous bilinear
forms that satisfy (5.37) and (5.38). Furthermore, suppose that a(·, ·) is symmetric and
positive semidefinite, i.e.,

a(x, �x) = a(�x, x) and a(x, x) ≥ 0 for all x, �x ∈ X.

Then, for any F ∈ X ′ and G ∈ Y ′, (�x, �y) ∈ X × Y is a solution of the saddle-point
problem (5.36) if and only if the Lagrange functional

L(x, y) :=
1

2
a(x, x)− F (x) + b(x, y)−G(y) for all (x, y) ∈ X × Y

satisfies
L(�x, y) ≤ L(x, y) ≤ L(x, �y) for all (x, y) ∈ X × Y,

i.e., (�x, �y) is a saddle-point of L. In that case, the first component �x is the unique solution
of the minimization problem

E(�x) = min
x∈X

b(x,·)=G

�
1

2
a(x, x)− F (x)

�
.

For a proof, we refer to [EG21b, Proposition 49.11]. Finally, we need a discrete version of
Lemma 5.8.

Lemma 5.12 (discrete divergence is surjective). For all z ∈ VH , the operator
div : RT q

0(TH [ z ]) → Pq
⋆(TH [ z ]) is surjective. Moreover, there exists a constant �βσ > 0

depending only on uniform σ-shape regularity of TH ∈ T and the polynomial degree q such
that

inf
qH∈Pq

⋆(TH [ z ])
sup

τH∈RT q
0(TH [ z ])

⟨div τH , qH⟩L2(ΩH [ z ])

∥τH∥H(div;ΩH [ z ])∥qH∥L2(ΩH [ z ])

≥ diam(ΩH [ z ])−1 �βσ > 0.

(5.40)

Proof. Let qH ∈ Pq
⋆(TH [ z ]) be arbitrary. In Lemma 5.8, we have already shown that

div : H0(div; ΩH [ z ]) → L2
⋆(ΩH [ z ]) is surjective for all z ∈ VH . Verbatim as in the proof of

Lemma 5.8, we first construct a function ζ ∈ H0(div; ΩH [ z ]) with

div ζ = qH and ∥ζ∥L2(ΩH [ z ]) ≤ CP diam(ΩH [ z ]) ∥qH∥L2(ΩH [ z ]). (5.41)

Let Πz : L
2(ΩH [ z ]) → Pq(TH [ z ]) denote the L2-orthogonal projection onto Pq(TH [ z ]).

[EGSV22, Theorem 3.2] proves the existence of an interpolation operator

JH : H0(div; ΩH [ z ]) → RT q
0(TH [ z ])
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that satisfies the commuting property

divJH(τ ) = Πz(div τ ) for all τ ∈ H0(div; ΩH [ z ]). (5.42)

Moreover, JH is uniformly L2-stable with respect to the mesh size H up to data oscillations
of the divergence, i.e., there exists a constant CJ > 0 depending only on uniform σ-shape
regularity of TH ∈ T and the polynomial degree q such that, for all τ ∈ H0(div; ΩH [ z ]),

∥JH(τ )∥2L2(ΩH [ z ]) ≤ C2
J

�
∥τ∥2L2(ΩH [ z ]) +

�
T∈ΩH [ z ]

�
diam(T )

q + 1
∥ div τ −Πz(div τ )∥L2(T )

�2�
.

In particular, since div ζ = qH ∈ Pq(TH [ z ]) and Πz is a projection, we have

∥JH(ζ)∥L2(ΩH [ z ]) ≤ CJ ∥ζ∥L2(ΩH [ z ]). (5.43)

By defining ζH := JH(ζ), we thus obtain a function ζH ∈ RT q
0(TH [ z ]) with

div ζH = divJH(ζ)
(5.42)
= Πz(div ζ)

(5.41)
= Πz(qH) = qH , and

∥ζH∥L2(ΩH [ z ])

(5.43)
≤ CJ ∥ζ∥L2(ΩH [ z ])

(5.41)
≤ CP CJ diam(ΩH [ z ]) ∥qH∥L2(ΩH [ z ]).

Proceeding as in the proof of Lemma 5.8, we define �βσ := (1 + C2
P C2

J )
−1/2 and obtain

inf
qH∈Pq

⋆(TH [ z ])
sup

τH∈RT q
0(TH [ z ])

⟨div τH , qH⟩L2(ΩH [ z ])

∥τH∥H(div;ΩH [ z ])∥qH∥L2(ΩH [ z ])
≥ diam(ΩH [ z ])−1 �βσ > 0,

where the constant �βσ depends only on the uniform σ-shape regularity of TH ∈ T and the
polynomial degree q. This concludes the proof.

Now we are ready to prove Lemma 5.9.

Proof of Lemma 5.9. The proof is split into four steps.

Step 1 (construction of σH,z[vH ] and rH,z[vH ]). Let z ∈ VH be arbitrary. In or-
der to apply Theorem 5.10, we set X := RT q

0(TH [ z ]), Y := Pq
⋆(TH [ z ]) and, as in the

Brezzi theorem, define the operator B ∈ L(X,Y ′) via BτH := ⟨div τH , ·⟩L2(ΩH [ z ]). Since
div τH ∈ Pq

⋆(TH [ z ]) for all τH ∈ RT q
0(TH [ z ]), the kernel of B is then given by

ker(B) = {τH ∈ RT q
0(TH [ z ]) : div τH = 0},

i.e., the subspace of divergence-free functions in RT q
0(TH [ z ]). By definition of the H(div)-

norm, it therefore holds

a(τH , τH) = ⟨τH , τH⟩L2(ΩH [ z ])

= ∥τH∥2L2(ΩH [ z ]) = ∥τH∥2H(div;ΩH [ z ]) for all τH ∈ ker(B).
(5.44)
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Thus, the bilinear form a(·, ·) is elliptic on ker(B), which implies the condition (5.37).
Moreover, for all τH ∈ ker(B) \ {0}, it holds that

sup�τH∈RT q
0(TH [ z ])\{0}

a(τH , �τH)

∥τH∥H(div;ΩH [ z ])∥�τH∥H(div;ΩH [ z ])
≥ a(τH , τH)

∥τH∥2H(div;ΩH [ z ])

= 1.

Thus, the inf-sup condition of (5.37) is even satisfied with α = 1. Lemma 5.12 provides
the inf-sup condition (5.38) with β := diam(ΩH [ z ])−1 �βσ. Clearly, the bilinear forms a(·, ·)
and b(·, ·) are continuous. In particular, the Cauchy–Schwarz inequality and (5.44) show
∥a∥ = 1. Overall, all assumptions of the Brezzi theorem 5.10 are satisfied. This yields the
existence and uniqueness of the solution (σH,z[vH ], rH,z[vH ]) ∈ RT q

0(TH [ z ])× Pq
⋆(TH [ z ])

of the saddle-point problem (5.34) with Pq(TH [ z ]) replaced by Pq
⋆(TH [ z ]) in the second

equation (5.34b). Using α = 1, ∥a∥ = 1, and β = diam(ΩH [ z ])−1 �βσ, we obtain (5.35) from
the a priori estimate (5.39a) of the Brezzi theorem 5.10.

Step 2 (solution of saddle-point problem (5.34)). So far, everything has been proved
for the saddle-point problem (5.34) with Pq(TH [ z ]) replaced by its subspace Pq

⋆(TH [ z ]).
In case that z ∈ VH ∩ ∂Ω, we have Pq(TH [ z ]) = Pq

⋆(TH [ z ]), which already implies that
(σH,z[vH ], rH,z[vH ]) is indeed the unique solution of the saddle-point problem (5.34). From
now on, we thus suppose that z ∈ VH ∩ Ω. It holds

Pq(TH [ z ]) = Pq
⋆(TH [ z ]) + span{1}.

Therefore, it remains to show that

b(σH,z[vH ], 1)
(5.32)
= ⟨divσH,z[vH ], 1⟩L2(ΩH [ z ])

!
= ⟨Π⋆

z(gz[vH ]), 1⟩L2(ΩH [ z ])
(5.33)
= G(1). (5.45)

Integration by parts with vanishing boundary term (σH,z[vH ] · n)|∂ΩH [ z ] = 0 shows for the
left-hand side of (5.45) that

⟨divσH,z[vH ], 1⟩L2(ΩH [ z ]) = −⟨σH,z[vH ],∇1⟩L2(ΩH [ z ]) = 0.

For the right-hand side of (5.45), the fact that Π⋆
z is the L2-orthogonal projection onto

L2
⋆(ΩH [ z ]) already implies

⟨Π⋆
z(gz[vH ]), 1⟩L2(ΩH [ z ]) = 0.

Therefore, both sides of (5.45) vanish, which proves that (σH,z[vH ], rH,z[vH ]) is indeed the
unique solution of the saddle-point problem (5.34).

Step 3 (Π⋆
H,z = ΠH on L2

⋆(ΩH [ z ])). By extending the functions in L2(ΩH [ z ]) and
Pq
⋆(TH [ z ]) by zero, we have the inclusions

L2(ΩH [ z ]) ⊆ L2(Ω) and Pq
⋆(TH [ z ]) ⊆ Pq(TH).

In particular, we can consider both Π⋆
H,z and ΠH as mappings from L2(ΩH [ z ]) to Pq(TH).

For v ∈ L2(ΩH [ z ]), these two projections are characterized by

⟨Π⋆
H,z v, qH⟩L2(ΩH [ z ]) = ⟨v, qH⟩L2(ΩH [ z ])

⟨ΠH v, qH⟩L2(ΩH [ z ]) = ⟨v, qH⟩L2(ΩH [ z ])

for all qH ∈ Pq
⋆(TH [ z ]),

for all qH ∈ Pq(TH [ z ]).
(5.46)
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If z ∈ VH ∩ ∂Ω, Π⋆
z is the identity and it holds Pq

⋆(TH [ z ]) = Pq(TH [ z ]) by definition, which
implies Π⋆

H,z = ΠH ◦Π⋆
z. For z ∈ VH ∩ Ω, the characterization (5.46) shows that

Π⋆
H,z v = (ΠH ◦Π⋆

z) v for all v ∈ L2(ΩH [ z ]).

In any case, we obtain that Π⋆
H,z = ΠH ◦Π⋆

z. In particular, the projections Π⋆
H,z and ΠH

coincide on L2
⋆(ΩH [ z ]).

Step 4 (σH,z[vH ] is minimizer of (5.30)). It remains to show that σH,z[vH ] is the
unique solution of the minimization problem (5.30). Since Π⋆

H,z = ΠH ◦ Π⋆
z by Step 3

and ΠH is the L2-orthogonal projection onto Pq(TH) ⊇ Pq
⋆(TH [ z ]), we have

⟨Π⋆
H,z(gz[vH ]), qH⟩L2(ΩH [ z ]) = ⟨Π⋆

z(gz[vH ]), qH⟩L2(ΩH [ z ]) = G(qh) for all qH ∈ Pq
⋆(TH [ z ]).

This shows that the constraint div τH = Π⋆
H,z(gz[vH ]) in (5.30) is equivalent to the constraint

div τH = Π⋆
z(gz[vH ]). For any τH ∈ RT q

0(TH [ z ]), we rewrite the minimized functional
in (5.30) as

∥τH+φz (A∇vH − f)∥2L2(ΩH [ z ])

= ∥τH∥2L2(ΩH [ z ]) + 2 ⟨τH , φz (A∇vH − f)⟩L2(ΩH [ z ]) + ∥φz (A∇vH − f)∥2L2(ΩH [ z ])

Therefore, with

E(τH) :=
1

2
∥τH∥2L2(ΩH [ z ]) + ⟨τH , φz (A∇vH − f)⟩L2(ΩH [ z ]) =

1

2
a(τH , τH)− F (τH)

for all τH ∈ RT q
0(TH [ z ]),

the minimization problem (5.30) is equivalent to the minimization problem

σH,z[vH ] = argmin
τH∈RT q

0(TH [ z ])
div τH=Π⋆

z(gz [vH ])

E(τH). (5.47)

Since a(·, ·) is symmetric and positive semidefinite, Proposition 5.11 guarantees that σH,z[vH ]
is the unique solution of the minimization problem (5.47) and thus also of the minimization
problem (5.30). This concludes the proof.

By extending functions in H0(div; ΩH [ z ]) by zero to Ω \ ΩH [ z ], we have the inclusion

H0(div; ΩH [ z ]) ⊂ H(div; Ω) for all z ∈ VH .

Hence, we obtain that the global equilibrated flux

σH [vH ] :=
�
z∈VH

σH,z[vH ] (5.48)

is contained in the global Raviart-Thomas space, i.e.,

σH [vH ] ∈ RT q(TH) := {τH ∈ H(div; Ω) : τH |T ∈ [Pq(T )]d + xPq(T ) for all T ∈ TH}.
Moreover, the following corollary shows that the global equilibrated flux σH [u⋆H ] for the
Galerkin solution u⋆H satisfies the constraint (5.22) up to the application of the L2-orthogonal
projection ΠH .
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Corollary 5.13 (global flux). The global equilibrated flux σH [u⋆H ] for the Galerkin solution
u⋆H satisfies

divσH [u⋆H ] = ΠH(g[u⋆H ]). (5.49)

Proof. The proof is split into two steps.

Step 1 (gz[u⋆
H ] ∈ L2

⋆(ΩH [ z ])). The definition of the Galerkin solution (2.3) implies

⟨gz[u⋆H ], 1⟩L2(ΩH [ z ])
(5.29)
= ⟨φz g[u

⋆
H ]−∇φz · (A∇u⋆H − f), 1⟩L2(ΩH [ z ])

= ⟨g[u⋆H ], φz⟩L2(ΩH [ z ]) + ⟨f ,∇φz⟩L2(ΩH [ z ]) − ⟨A∇u⋆H ,∇φz⟩L2(ΩH [ z ])

(5.22)
= ⟨f, φz⟩L2(ΩH [ z ]) + ⟨f ,∇φz⟩L2(ΩH [ z ]) − a(u⋆H , φz)

(2.3)
= 0.

Hence, the Galerkin solution u⋆H satisfies

gz[u
⋆
H ]

(5.29)
= φz g[u

⋆
H ]−∇φz · (A∇u⋆H − f) ∈ L2

⋆(ΩH [ z ]) for all z ∈ VH . (5.50)

In particular, we have Π⋆
z(gz[u

⋆
H ]) = gz[u

⋆
H ].

Step 2 (div σH [u⋆
H ] = ΠH(g[u⋆

H ])). Since gz[u
⋆
H ] ∈ L2

⋆(ΩH [ z ]), Step 3 of the proof of
Lemma 5.9 shows Π⋆

H,z(gz[u
⋆
H ]) = ΠH(gz[u

⋆
H ]) for all z ∈ VH . Thus, the definition (5.30) of

the local equilibrated fluxes σH,z[u
⋆
H ] provides

divσH [u⋆H ] =
�
z∈VH

divσH,z[u
⋆
H ]

(5.30)
=

�
z∈VH

Π⋆
H,z(gz[u

⋆
H ])

(5.50)
=

�
z∈VH

ΠH(gz[u
⋆
H ]) = ΠH

� �
z∈VH

gz[u
⋆
H ]

�
.

Moreover, the fact that φz is a partition of unity implies�
z∈VH

gz[u
⋆
H ]

(5.29)
=

�
z∈VH

�
φz g[u

⋆
H ]−∇φz · (A∇u⋆H −f)

�
= g[u⋆H ]−∇1 · (A∇u⋆H −f) = g[u⋆H ].

Combining these two equations yields the desired result (5.49), which concludes the proof.

In the spirit of (5.23), we now define the equilibrated flux estimator µH as in (2.12) with
refinement indicators

µH(T, vH) := ∥σH [vH ] +A∇vH − f∥L2(T ) +
diam(T )

π
∥(1−ΠH)g[vH ]∥L2(T )

for all T ∈ TH , vH ∈ XH .
(5.51)

We finish this subsection by proving reliability (A3) of the equilibrated flux estimator (5.51).
Proving reliability of µH is, in theory, not necessary, since it already follows from the
weak equivalence (2.23) of the equilibrated flux estimator and the residual-based estimator,
which will be shown in the next subsection. However, as one of the main properties of
the equilibrated flux estimator is the known reliability constant, it is indeed worth proving
reliability of µH .
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Theorem 5.14 (reliability of the equilibrated flux estimator). For TH ∈ T, let µH be
the equilibrated flux estimator (5.51). Let α > 0 denote the inf-sup constant (5.20a). Then,
it holds

α−1 ∥u⋆ − u⋆H∥H1(Ω) ≤ ∥u⋆ − u⋆H∥⋆ ≤ µH(u⋆H), (5.52)

i.e. the equilibrated flux estimator µH is reliable in the sense of (A3) with reliability
constant Crel := 1 if the discretization error is measured with respect to the dual norm ∥ · ∥⋆,
and with reliability constant Crel := α if the discretization error is measured with respect to
the H1-norm.

Proof. Inf-sup stability (5.20a), Corollary 5.13 and integration by parts show

α−1 ∥u⋆ − u⋆H∥H1(Ω) ≤ sup
w∈H1

0\{0}

|a(u⋆ − u⋆H , w)|
∥w∥H1(Ω)

(2.3)
= sup

w∈H1
0 (Ω)\{0}

|⟨f, w⟩L2(Ω) + ⟨f ,∇w⟩L2(Ω) − a(u⋆H , w)|
∥w∥H1(Ω)

(5.22)
= sup

w∈H1
0 (Ω)\{0}

|⟨g[u⋆H ], w⟩L2(Ω) − ⟨A∇u⋆H − f ,∇w⟩L2(Ω)|
∥w∥H1(Ω)

(5.49)
= sup

w∈H1
0 (Ω)\{0}

|⟨divσH [u⋆H ] + (1−ΠH)g[u⋆H ], w⟩L2(Ω) − ⟨A∇u⋆H − f ,∇w⟩L2(Ω)|
∥w∥H1(Ω)

= sup
w∈H1

0 (Ω)\{0}

|⟨σH [u⋆H ] +A∇u⋆H − f ,∇w⟩L2(Ω) + ⟨(1−ΠH)g[u⋆H ], w⟩L2(Ω)|
∥w∥H1(Ω)

(5.53)

Splitting the nominator element-wise and using the triangle inequality leads to��⟨σH [u⋆H ] +A∇u⋆H − f ,∇w⟩L2(Ω) + ⟨(1−ΠH)g[u⋆H ], w⟩L2(Ω)

��
≤

�
T∈TH

���⟨σH [u⋆H ] +A∇u⋆H − f ,∇w⟩L2(T )

��+ ��⟨(1−ΠH)g[u⋆H ], w⟩L2(T )

���. (5.54)

For the second term in the sum, the fact that ΠH an L2-orthogonal projection, the Cauchy–
Schwarz inequality, and the Poincaré inequality on the convex domain T with known constant
CF = π−1 (cf. [EG21a, Lemma 3.27]) show��⟨(1−ΠH)g[u⋆H ], w⟩L2(T )

�� ≤ ��⟨(1−ΠH)g[u⋆H ], (1−ΠH)w⟩L2(T )

��
≤ ∥(1−ΠH)g[u⋆H ]∥L2(T )

diam(T )

π
∥∇w∥L2(T ).

(5.55)

Hence, after applying the Cauchy–Schwarz inequality to the first term in the sum, a
combination of the previous inequalities together with the Cauchy–Schwarz inequality for
sums results in��⟨σH [u⋆H ] +A∇u⋆H − f ,∇w⟩L2(Ω) + ⟨(1−ΠH)g[u⋆H ], w⟩L2(Ω)

��
(5.54)
(5.55)
≤

�
T∈TH

�
∥σH [u⋆H ] +A∇u⋆H − f∥L2(T ) +

diam(T )

π
∥(1−ΠH)g[u⋆H ]∥L2(T )

�
∥∇w∥L2(T )

(5.51)
=

�
T∈TH

µH(T, u⋆H) ∥∇w∥L2(T ) ≤ µH(u⋆H) ∥∇w∥L2(Ω) ≤ µH(u⋆H) ∥w∥H1(Ω).
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Together with (5.53), this proves the reliability estimate (5.52), which concludes the proof.

Remark 5.15 (pure diffusion problems). For pure diffusion problems, i.e. b = 0 and
c = 0 in (2.4), it is possible to achieve the reliability constant Crel = 1 by measuring the
discretization error in the energy norm ||| · |||2 = ⟨A∇(·),∇(·)⟩L2(Ω). To this end, one uses
the estimate

|||u⋆ − v||| ≤ sup
w∈H1

0 (Ω)\{0}

⟨A∇(u⋆ − v),∇w⟩L2(Ω)

|||w|||
instead of the inf-sup stability (5.20a) in (5.23), which leads to

|||u⋆ − v||| ≤ ∥A−1/2(σ[v]− f) +A1/2∇v∥L2(Ω).

By appropriately altering the minimization problem (5.30) for σH,z[vH ] to

σH,z[vH ] = argmin
τH∈RT q

0(TH [ z ])
div τH=Π⋆

z(gz [vH ])

∥A−1/2τH + φz (A
1/2∇vH −A−1/2f)∥L2(ΩH [ z ]),

the resulting equilibrated flux estimator �µH is reliable with constant Crel = 1 in the energy
norm, i.e., it holds |||u⋆ − u⋆H ||| ≤ �µH(u⋆H).

5.2.2 Weak equivalence of the equilibrated flux estimator and the
residual-based estimator

In the following proposition, we show that the equilibrated flux estimator µH from (5.51)
and the residual-based estimator ηH from (2.14) are weakly equivalent in the sense of (2.23).

Proposition 5.16 (equilibrated flux estimator and residual-based estimator are
weakly equivalent). Suppose q ≥ p and define s := q − p ≥ 0. Furthermore, suppose that
A ∈ [Ps(T0)]d×d, b ∈ [Ps+1(T0)]d, c ∈ Ps(T0), f ∈ Pq(T0), and f ∈ [Pq−1(T0)]d. Then, the
equilibrated flux estimator µH from (5.51) is weakly equivalent to the residual-based estimator
ηH from (2.14) in the sense of (2.23) with m = 1. The equivalence constant Ceq depends
only on the polynomial degrees p and q, the initial triangulation T0, and the use of newest
vertex bisection.

Proof. The proof is split into two steps, corresponding to the two bounds (2.23a) and
(2.23b) of the weak equivalence (2.23).

Step 1 (proof of (2.23b)). For TH ∈ T, let T ∈ TH be arbitrary. An inverse esti-
mate [EG21a, Lemma 12.1] and H(T ) ≃ diam(T ) show for the local volume residual
term (2.15) of ηH that

H(T )2 ∥ − div(A∇u⋆H − f) + b · ∇u⋆H + c u⋆H − f∥2L2(T )

(5.22)
= H(T )2 ∥g[u⋆H ] + div(A∇u⋆H − f)∥2L2(T )

(5.49)
= H(T )2 ∥ div(σH [u⋆H ] +A∇u⋆H − f) + (1−ΠH)g[u⋆H ]∥2L2(T )

≲ ∥σH [u⋆H ] +A∇u⋆H − f∥2L2(T ) + diam(T )2 ∥(1−ΠH)g[u⋆H ]∥2L2(T )

(5.51)
≲ µH(T, u⋆H)2.

(5.56)
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Here, the hidden constant depends only on uniform σ-shape regularity of TH ∈ T and the
polynomial degree q. Since σH [u⋆H ] ∈ H(div; Ω), its normal jumps [[σH [u⋆H ] · nE ]] vanish
across any face E ∈ EΩ

H . Therefore, the trace inequality [DE12, Lemma 1.49] and an inverse
estimate [EG21a, Lemma 12.1] show for the local jump term of ηH that

H(T ) ∥[[(A∇u⋆H − f) · n]]∥2L2(∂T∩Ω)

= H(T ) ∥[[(σH [u⋆H ] +A∇u⋆H − f) · n]]∥2L2(∂T∩Ω)

≲ ∥σH [u⋆H ] +A∇u⋆H − f∥2L2(ΩH [T ])

≤ µH(TH [T ], u⋆H)2.

(5.57)

Again, the hidden constant depends only on uniform σ-shape regularity of TH ∈ T and the
polynomial degree q. The combination of (5.56) and (5.57) provides

ηH(T, u⋆H)2 ≲ µH(TH [T ], u⋆H)2 for all T ∈ TH .

This concludes the proof of (2.23b).

Step 2 (proof of (2.23a)). For TH ∈ T, let T ∈ TH be arbitrary. Let u⋆H(f,f) be the
Galerkin solution of the model problem (2.4) with data f ∈ Pq(TH) and f ∈ [Pq−1(TH)]d.
By (2.3), u⋆H(f,f) depends linearly on (f,f) ∈ Pq(TH)× [Pq−1(TH)]d =: V . Hence, the
mapping |(f,f)|2 := ηH(TH [T ], u⋆H(f,f)) defines a seminorm on V .

Since the right-hand in the saddle-point problem (5.34) is linear in f , f , and u⋆H(f,f),
the local equilibrated flux σH,z[u

⋆
H(f,f)] also depends linearly on (f,f) for all z ∈ VH .

Therefore, also

|(f,f)|1 :=
�

z∈VH∩T
∥σH,z[u

⋆
H(f,f)] + φz (A∇u⋆H(f,f)− f)∥L2(ΩH [ z ]) (5.58)

defines a seminorm on V . Since the nodal basis functions φz form a partition of unity, the
triangle inequality shows

∥σH [u⋆H ] +A∇u⋆H − f∥L2(T )

≤
�

z∈VH∩T
∥σH,z[u

⋆
H ] + φz (A∇u⋆H − f)∥L2(ΩH [ z ]) = |(f,f)|1. (5.59)

Since V is finite-dimensional, Lemma 5.4 guarantees that there exists a constant Ceq > 0
such that for all (f,f) ∈ V

µH(T, u⋆H(f,f))
(5.59)
≤ |(f,f)|1 ≤ Ceq |(f,f)|2 = Ceq ηH(TH [T ], u⋆H(f,f))

if and only it holds

|(f,f)|2 = 0 =⇒ |(f,f)|1 = 0 for all (f,f) ∈ V. (5.60)

The constant Ceq obtained in this way initially depends on the shape of the patch TH [T ]
and the polynomial degrees p and q. However, since newest vertex bisection leads to finitely
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many patch shapes, it follows that Ceq depends only on the use of newest vertex bisection,
the initial triangulation T0, and the polynomial degrees p and q. It thus only remains to
prove (5.60).

To this end, let (f,f) ∈ V be arbitrary with |(f,f)|2 = 0. For the sake of readability,
denote u⋆H(f,f) by u⋆H . By the definition of the residual-based estimator ηH from (2.14)
and g[u⋆H ] from (5.22), the condition ηH(TH [T ], u⋆H) = 0 implies that

[[(A∇u⋆H − f) · n]] = 0 for all E ∈ EΩ
H ∩ ΩH [T ] (5.61a)

− div(A∇u⋆H − f) = g[u⋆H ] on all T ∈ TH [T ]. (5.61b)

From (5.61a), it follows that A∇u⋆H − f is continuous across all faces E ∈ EΩ
H ∩ ΩH [T ],

which means that (5.61b) even holds on ΩH [T ]. For arbitrary z ∈ VH with z ∈ T , we
define τH,z := −φz (A∇u⋆H − f) ∈ [Pq(TH [ z ])]d. By the previous observations, τH,z is a
H(div; ΩH [ z ])-function with divergence

div τH,z
(5.61b)
= φz g[u

⋆
H ]−∇φz · (A∇u⋆H − f)

(5.29)
= gz[u

⋆
H ] ∈ Pq(TH [ z ]).

The last inclusion follows from the assumptions on the polynomial degrees of A, b, c, f ,
and f . By (5.50), we even have gz[u

⋆
H ] ∈ L2

⋆(ΩH [ z ]) and therefore

div τH,z = gz[u
⋆
h] = Π⋆

H,z(gz[u
⋆
H ]).

In the case that z ∈ VH ∩T ∩∂Ω, we already have τH,z ∈ H0(div; ΩH [ z ]). If z ∈ VH ∩T ∩Ω,
it holds τH,z ·n = φz((A∇u⋆H −f) ·n) = 0 on ∂ΩH [ z ] by the definition of φz, which verifies
τH,z ∈ H0(div; ΩH [ z ]) for all z ∈ VH ∩ T . Thus, it holds

τH,z ∈ H0(div; ΩH [ z ]) ∩ [Pq(TH [ z ])]d ⊂ RT q
0(TH [ z ]).

Overall, we have shown that τH,z is an admissible function in the local minimization
problem (5.30). Since τH,z is, by definition, clearly the minimizer of this problem, we have
σH,z[u

⋆
H ] = τH,z = −φz (A∇u⋆H − f). By definition (5.58), it therefore holds |(f,f)|1 = 0.

This concludes the proof of (5.60) and thus the proof of the weak equivalence (2.23).

Remark 5.17. We stress that Step 1 of the previous proof uses only that the global flux
σH [u⋆H ] satisfies (5.49). The restrictions on the coefficients and the data are only necessary
for Step 2. However, there is a different proof for Step 2 that, instead of a seminorm
argument, relies on the non-trivial estimate

min
τH∈RT q

0(TH [ z ])
div τH=Π⋆

H,z(gz [u
⋆
H ])

��τH +ΠH,z

�
φz (A∇u⋆H − f)

���
L2(ΩH [ z ])

≲ min
τ∈H0(div;ΩH [ z ])
div τ=Π⋆

H,z(gz [u
⋆
H ])

��τ +ΠH,z

�
φz (A∇u⋆H − f)

���
L2(ΩH [ z ])

, (5.62)

where ΠH,z : [L
2(ΩH [ z ])]d → [Pq(TH [ z ])]d + xPq(TH [ z ]) is the L2-orthogonal projection

onto the space of piecewise Raviart–Thomas functions (see [BPS09, Theorem 7] for d = 2,
and [EV20, Theorem 2.5, Corollary 3.3] for d = 3). Although this proof is a lot more
involved, it has the advantage that it only requires A and f to be piecewise polynomial
and that the resulting equivalence constant is independent of the polynomial degrees p
and q. We note that the converse estimate of (5.62) holds with known constant 1 as
RT q

0(TH [ z ]) ⊂ H0(div; ΩH [ z ]) and hence the minimum on the right-hand side is taken over
a much larger space.

69



5 Applications

5.2.3 Weak stability of the equilibrated flux estimator

In order to fulfill the requirements of Theorem 3.14 and Theorem 4.3, it only remains to
prove weak stability (W1) for the equilibrated flux estimator (5.51). This is the content of
the following proposition.

Proposition 5.18 (weak stability (W1) of the equilibrated flux estimator). The
equilibrated flux estimator µH from (5.51) satisfies weak stability (W1) with r = 0. The
constant �Cstab depends only on the uniform σ-shape regularity of TH ∈ T, the polynomial
degree q, the bounds ∥A∥L∞ , ∥b∥L∞ , ∥c∥L∞ , and the ellipticity constant Cell > 0.

Proof. The proof consists of three steps.

Step 1 (first stability estimates). For TH ∈ T, let µH be the equilibrated flux estima-
tor (5.51). Let vH , wH ∈ XH and UH ⊆ TH be arbitrary. The reverse triangle inequalities
on the sequence space ℓ2 and the Lebesgue space L2 show

|µH(UH , vH)− µH(UH , wH)|2 ≤
�

T∈UH

��µH(T, vH)− µH(T,wH)
��2

(5.51)
(3.14)
≲

�
T∈UH

�
∥σH [vH ]− σH [wH ]∥2L2(T ) + ∥A∇(vH − wH)∥2L2(T )

+
diam(T )2

π2
∥(1−ΠH)(g[vH ]− g[wH ])∥2L2(T )

�
.

(5.63)

As in the proof of stability (A1) in Proposition 3.10, we want to bound the right-hand
side of (5.63) by |||vH − wH |||2 up to a constant. To this end, we estimate the terms in
the sum separately. The second term in the sum can be estimated using the assumption
A ∈ [L∞(Ω)]d×d

sym , i.e.,

∥A∇(vH − wH)∥L2(T ) ≤ ∥A∥L∞ ∥vH − wH∥H1(T ) for all T ∈ UH . (5.64)

Similarly, since ΠH is an L2-orthogonal projection, b ∈ [L∞(Ω)]d and c ∈ L∞(Ω) imply for
the third term in the sum

diam(T )

π
∥(1−ΠH)(g[vH ]− g[wH ])∥L2(T ) ≤

diam(T )

π
∥g[vH ]− g[wH ]∥L2(T )

(5.22)
=

diam(T )

π
∥b · ∇(vH − wH) + c (vH − wH)∥L2(T )

≤ diam(Ω)

π

�∥b∥L∞ + ∥c∥L∞
� ∥vH − wH∥H1(T ) for all T ∈ UH .

(5.65)

It thus only remains to estimate the first term ∥σH [vH ]− σH [wH ]∥L2(T ) in the sum (5.63).

Step 2 (estimate of local flux difference). The triangle inequality and the definition
of the global equilibrated flux (5.48) yield

∥σH [vH ]− σH [wH ]∥L2(T ) ≤
�
z∈VH
z∈T

∥σH,z[vH ]− σH,z[wH ]∥L2(Ω[ z ]). (5.66)
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Subtraction of the saddle-point problems (5.34) for σH,z[vH ] and σH,z[wH ] shows

a(σH,z[vH ]− σH,z[wH ], τH) + b(τH , rH,z[vH ]− rH,z[wH ])

= −⟨τH , φz (A∇(vH − wH))⟩L2(Ω[ z ]) for all τH ∈ RT q
0(TH [ z ]),

b(σH,z[vH ]− σH,z[wH ], qH)

= ⟨Π⋆
z(gz[vH ]− gz[wH ]), qH⟩L2(Ω[ z ]) for all qH ∈ Pq

⋆(TH [ z ]).

(5.67)

Therefore, the a priori estimate (5.35) provides

∥σH,z[vH ]− σH,z[wH ]∥H(div;Ω[ z ]) ≤
��⟨φz (A∇(vH − wH)), ·⟩L2(Ω[ z ])

��
H(div;Ω[ z ])′

+ 2 diam(Ω[ z ]) �β−1
σ

��⟨Π⋆
z(gz[vH ]− gz[wH ]), ·⟩L2(Ω[ z ])

��
L2(Ω[ z ])′ .

(5.68)

The Cauchy–Schwarz inequality, the fact that |φz| ≤ 1, and A ∈ [L∞(Ω)]d×d
sym imply for

all τH ∈ RT q
0(TH [ z ]) that

|⟨φz (A∇(vH − wH)), τH⟩L2(Ω[ z ])| ≤ ∥A∥L∞ ∥∇(vH − wH)∥L2(Ω[ z ]) ∥τH∥L2(Ω[ z ]).

Hence, the first term of the right-hand side in (5.68) can be estimated by��⟨φz (A∇(vH − wH)), ·⟩L2(Ω[ z ])

��
H(div;Ω[ z ])′ ≤ ∥A∥L∞ ∥vH − wH∥H1(Ω[ z ]). (5.69)

For the second term in (5.68), plugging in the definitions of gz and g and using the Cauchy–
Schwarz inequality leads, for all qH ∈ Pq

⋆(TH [ z ]), to

|⟨Π⋆
z(gz[vH ]− gz[wH ]), qH⟩L2(Ω[ z ])|
(5.29)
≤ ��Π⋆

z

�
φz(g[vH ]− g[wH ])−∇φz · (A∇(vH − wH))

���
L2(Ω[ z ])

∥qH∥L2(Ω[ z ])

Since Π⋆
z is an L2-orthogonal projection, we can further estimate the first term in the product

by��Π⋆
z

�
φz(g[vH ]− g[wH ])−∇φz · (A∇(vH − wH))

���
L2(Ω[ z ])

≤ ∥φz(g[vH ]− g[wH ])−∇φz · (A∇(vH − wH))∥L2(Ω[ z ])

(5.22)
= ∥φz(b · ∇(vH − wH) + c (vH − wH)) +∇φz · (A∇(vH − wH))∥L2(Ω[ z ])

≤ ∥φz(b · ∇(vH − wH) + c (vH − wH))∥L2(Ω[ z ]) + ∥∇φz · (A∇(vH − wH))∥L2(Ω[ z ]).

The fact that |φz| ≤ 1, b ∈ [L∞(Ω)]d, and c ∈ L∞(Ω) imply

∥φz(b · ∇(vH − wH) + c (vH − wH))∥L2(Ω[ z ]) ≤ (∥b∥L∞ + ∥c∥L∞) ∥vH − wH∥H1(Ω[ z ]).

The scaling ∥∇φz∥L∞(Ω) ≲ diam(Ω[ z ])−1 and the assumption A ∈ [L∞(Ω)]d×d
sym show

∥∇φz · (A∇(vH − wH))∥L2(Ω[ z ]) ≲ diam(Ω[ z ])−1 ∥A∇(vH − wH)∥L2(Ω[ z ])

≤ diam(Ω[ z ])−1 ∥A∥L∞ ∥vH − wH∥H1(Ω[ z ]).
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Altogether, combining the previous four estimates we obtain��⟨Π⋆
z(gz[vH ]− gz[wH ]), ·⟩L2(Ω[ z ])

��
L2(Ω[ z ])′ ≲ diam(Ω[ z ])−1 ∥vH − wH∥H1(Ω[ z ]). (5.70)

Overall, a combination of the estimates (5.66), (5.68), (5.69), and (5.70) shows

∥σH [vH ]− σH [wH ]∥L2(T ) ≲
�
z∈VH
z∈T

∥vH − wH∥H1(Ω[ z ]) (5.71)

Step 3 (combination of local estimates). Using (5.71), (5.64), and (5.65), we can fur-
ther estimate the right-hand side of (5.63) by

|µH(UH , vH)− µH(UH , wH)|2 ≲
�

T∈UH

∥vH − wH∥2H1(T ) +
�

T∈UH

�
z∈VH
z∈T

∥vH − wH∥2H1(Ω[ z ]).

(5.72)
Therefore, uniform σ-shape regularity and uniform ellipticity of a(·, ·) imply

|µH(UH , vH)− µH(UH , wH)|2 ≲ |||vH − wH |||2.

This concludes the proof of weak stability (W1).

Finally, we have verified all conditions of Theorem 3.14 and Theorem 4.3 and can therefore
conclude full R-linear convergence and optimal complexity of Algorithm B steered by the
equilibrated flux estimator.

Corollary 5.19. Let 0 ≤ θ ≤ 1, Cmark ≥ 1, λ > 0, and u00 ∈ X0 be arbitrary. Suppose q ≥ p
and define s := q − p ≥ 0. Furthermore, suppose that A ∈ [Ps(T0)]d×d, b ∈ [Ps+1(T0)]d,
c ∈ Ps(T0), f ∈ Pq(T0), and f ∈ [Pq−1(T0)]d in the model problem (2.4). Let Algorithm B
be steered by the equilibrated flux estimator µℓ defined in (5.51). Then, Theorem 3.14
guarantees full R-linear convergence of the quasi-error (3.27) and Theorem 4.3 ensures
optimal complexity of Algorithm B.
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In this chapter, we examine the numerical performance of AFEM with inexact solver
steered by equivalent estimators (Algorithm B). Our primary focus lies on demonstrating
optimal convergence rates with respect to the overall computational time, as this is the
key result of this thesis (Theorem 4.3). To this end, we consider the ZZ-estimator (5.6)
and the equilibrated flux estimator (5.51) from Chapter 5, for which we have shown that
they satisfy the assumptions of Theorem 4.3 and thus guarantee optimal complexity of
Algorithm B provided that the adaptivity parameters are sufficiently small (Corollary 5.7
and Corollary 5.19). We also present comparisons of both estimators with the standard
residual-based estimator (2.14), demonstrating their potential as practical alternatives in
adaptive finite element methods. All experiments in this chapter employ the Matlab
software package MooAFEM from [IP23].

6.1 Experiments with the ZZ-estimator

In this section, we first provide a brief overview of the implementational details for the
ZZ-estimator, followed by numerical experiments for the Poisson model problem (6.3), a
nonsymmetric second-order PDE (6.6), and a diffusion problem (6.9).

6.1.1 Implementational aspects for the ZZ-estimator

Recall the ZZ-estimator (5.6), which we defined in Section 5.1 for the PDE (5.1). In
the following, we consider a weighted version of the ZZ-estimator (5.6), where the patch
contributions in the oscillation term are scaled by the inverse of the number of patch-elements,
i.e.,

µH(T, vH)2 := µrec
H (T, vH)2 + µosc

H (T, vH)2, (6.1)

where the recovery term µrec
H (T, vH) and the oscillation term µosc

H (T, vH) are defined as

µrec
H (T, vH)2 := ∥α1/2(1−GH)∇vH∥2L2(T )

µosc
H (T, vH)2 :=

�
z∈VH∩Ω

z∈T

H(z)2

#TH [ z ]
∥RH(vH)− rH,z(vH)∥2L2(ΩH [ z ]).

(6.2)

Analogously to (2.12), we write

µrec
H (vH)2 :=

�
T∈TH

µrec
H (T, vH)2 and µosc

H (vH)2 :=
�
T∈TH

µosc
H (T, vH)2.

The weighting in (6.2) is introduced to lower the influence of the oscillation terms µosc
H (T, vH)

in the global error estimate µH(vH). Since the number of elements in a vertex patch #TH [ z ]
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is uniformly bounded by the constant Cpatch ≥ 1 from Remark 2.12, the analysis in Section 5.1
also holds for the weighted ZZ-estimator (6.1) with slightly different constants.

For ease of implementation, we consider only the case of lowest-order approximation
rH,z(vH) ∈ P0(ΩH [ z ]) of the residual RH(vH), i.e., q = 0 in (5.5). For q ≥ 1, the imple-
mentation becomes more involved, as one needs to introduce a patch-based basis for the
spaces Pq(ΩH [ z ]).

In Section 5.1, we have defined the averaging operator GH in terms of the patch averaging
operator (5.2) (in the case p = 1) and the Scott–Zhang projection (5.4) (for p ≥ 1). In
contrast to the patch averaging operator (5.2), the implementation of the Scott–Zhang
projection (5.4) might seem more involved at first glance. However, as it only needs to be
evaluated for discrete functions ∇vH ∈ [Pp−1(TH)]d, property (5.3) of the dual basis {ψj}Jj=1

guarantees

(ψj ,∇vH)L2(Sj)
(5.3)
= ∇vH |Sj (aj) ∀j = 1, . . . , J,

i.e., the coefficients of the Scott–Zhang projection (5.4) of ∇vH are determined by point
evaluations of the gradient ∇vH in the nodes {aj}Jj=1 of the nodal basis {φj}Jj=1. While ∇vH
is not continuous across the element boundaries, the associated element Sj ∈ TH for each node
aj can be selected arbitrarily according to the definition of the Scott–Zhang projection (5.4),
allowing to choose any of the values ∇vH takes at a node aj as the corresponding coefficient
in the Scott–Zhang projection (5.4).

Overall, the effort required to implement the ZZ-estimator (6.1) is at least comparable, if
not less, than that needed for the residual-based estimator (2.14).

6.1.2 AFEM with the ZZ-estimator for the Poisson problem

In order to verify Corollary 5.7, which is a consequence of Theorem 4.3, we first consider the
Poisson model problem on the L-shaped domain, i.e.,

−Δu⋆ = f in Ω := (−1, 1)2 \ [0, 1]2, u⋆ = 0 on ∂Ω. (6.3)

The right-hand side f is chosen such that the exact solution u⋆ ∈ H1
0 (Ω), for polar coordi-

nates (r, ϕ) ∈ R+
0 × [0, 2π), is given by

u⋆(r, ϕ) = r2/3 sin

�
2

3

�
ϕ− π

2

���
1− r2 sin2(ϕ)

��
1− r2 cos2(ϕ)

�
. (6.4)

Problem (6.3) is well-known to exhibit a singularity at the re-entrant corner (0, 0) of the
L-shaped domain Ω, making it a suitable test case for adaptive finite element methods.

Figure 6 visualizes the initial mesh T0 and the adaptively generated meshes T2, T4 . . . T14,
computed by Algorithm B using the ZZ-estimator (6.1). We observe that the algorithm
captures the singularity at (0, 0) by refining the mesh in the vicinity of the origin.

Figure 7 and Figure 8 illustrate the convergence of the ZZ-estimator µℓ(u
k
ℓ ) in Algorithm B.

In Figure 7, we use the Scott–Zhang projection (5.4) for the averaging operator GH , while in
Figure 8, we use the patch averaging operator (5.2). In either case, we see that Algorithm B
leads to optimal convergence rates −p/2 with respect to the theoretical complexity

complexity(ℓ) :=
�

(ℓ′,k′)∈Q
|ℓ′,k′|≤|ℓ,k|

#Tℓ′ (6.5)
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(a) #T0 = 12 (b) #T2 = 62 (c) #T4 = 162 (d) #T6 = 270

(e) #T8 = 386 (f) #T10 = 514 (g) #T12 = 687 (h) #T14 = 941

Figure 6: Sequence of meshes Tℓ generated by Algorithm B using the
ZZ-estimator (6.1) with the Scott–Zhang projection (5.4). The algorithm is applied
to problem (6.3) with f corresponding to the exact solution (6.4), parameters
θ = 0.5, λ = 0.1, and polynomial degree p = 4.
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Figure 7: Convergence history plots of Algorithm B using the ZZ-estimator µℓ (6.1)
with the Scott–Zhang projection (5.4). The algorithm is applied to problem (6.3)
with f corresponding to the exact solution (6.4), initial mesh T0, depicted in Fig-
ure 6a, fixed parameters θ = 0.5 and λ = 0.1, and polynomial degrees p = 1, 2, 3, 4.
The convergence of µℓ(u

k
ℓ ) (solid lines) and the corresponding total error |||u⋆−u

k
ℓ |||

(dashed lines) is presented with respect to the theoretical complexity (6.5) (left)
and the total computation time (right). For p = 1, the ZZ-estimator appears to be
asymptotically exact.
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Figure 8: Convergence history plots of Algorithm B using the ZZ-estimator µℓ (6.1)
with patch averaging (5.2). The algorithm is applied to problem (6.3) with f
corresponding to the exact solution (6.4), initial mesh T0, depicted in Figure 6a,
and fixed parameters θ = 0.5 and λ = 0.1. The convergence of µℓ(u

k
ℓ ) (solid line)

and the corresponding total error |||u⋆−u
k
ℓ ||| (dashed line) is presented with respect

to the theoretical complexity (6.5) (left) and the total computation time (right).
Again, this variant of the ZZ-estimator appears to be asymptotically exact.

and, more importantly, with respect to the total computation time. Hence, the observed
convergence rates are consistent with the theoretical results presented in Theorem 4.3 and
Corollary 5.7.

In Figure 9, we compare the convergence of the contributions µrec
ℓ (u

k
ℓ ) and µosc

ℓ (u
k
ℓ ) (6.2)

of the ZZ-estimator (6.1) with the residual-based estimator ηℓ(u
k
ℓ ) (2.14) and the total error

|||u⋆ − u
k
ℓ |||. The ZZ-estimator is computed using the Scott–Zhang projection (5.4) as the

averaging operator GH . The results are presented for the polynomial degrees p = 1 (left)
and p = 4 (right). In the case of p = 1, we observe that the oscillation part µosc

ℓ (u
k
ℓ )

is of higher order, since it converges with rate −1. Hence, one might consider to drop
the oscillation term µosc

ℓ (u
k
ℓ ) in the ZZ-estimator (6.1) for this case. While the residual-

based estimator ηℓ(u
k
ℓ ) overestimates the total error |||u⋆ − u

k
ℓ |||, the ZZ-estimator µℓ(u

k
ℓ )

gives a very accurate error estimate. In contrast, for p = 4, the oscillation term µosc
ℓ (u

k
ℓ )

dominates the recovery term µrec
ℓ (u

k
ℓ ) approximately by a factor of 10, which is likely due

to the simplifying choice of lowest-order approximation q = 0 in (5.5). Because of this, the
ZZ-estimator µℓ(u

k
ℓ ) overestimates the total error |||u⋆ − u

k
ℓ ||| more than the residual-based

estimator ηℓ(u
k
ℓ ). However, the recovery term µrec

ℓ (u
k
ℓ ) still provides a good approximation

of the total error |||u⋆ − u
k
ℓ |||. Moreover, even though the oscillation term µosc

ℓ (u
k
ℓ ) is not of

higher order for p ≥ 2, using only the recovery term µrec
ℓ (u

k
ℓ ) for steering Algorithm B still

led to optimal convergence rates in our testing.
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Figure 9: Convergence history plots of Algorithm B using the ZZ-estimator (6.1)
with the Scott–Zhang projection (5.4). The algorithm is applied to problem (6.3)
with f corresponding to the exact solution (6.4), initial mesh T0, depicted in
Figure 6a, fixed parameters θ = 0.5 and λ = 0.1, and polynomial degrees p = 1
(left) and p = 4 (right). The convergence of the estimator contributions µrec

ℓ (u
k
ℓ ) and

µosc
ℓ (u

k
ℓ ), the residual-based estimator ηℓ(u

k
ℓ ) (2.14), and the total error |||u⋆ − u

k
ℓ |||

is presented with respect to the theoretical complexity (6.5).

6.1.3 AFEM with the ZZ-estimator for a nonsymmetric second-order PDE

Since the analysis in Section 5.1 covers more general problems than the Poisson problem (6.3),
we now consider the nonsymmetric second-order PDE

− div(α∇u⋆) + b · ∇u⋆ + u⋆ = 1 in Ω := (−1, 1)2 \ [0, 1]2, u⋆ = 0 on ∂Ω (6.6)

with α(x) = 10 · e−∥x−y∥2 for y := (0.5,−0.5)⊤ and b(x) = 1 − x. This problem is
nonsymmetric due to the presence of the convection term b · ∇u⋆. We deal with the
nonsymmetry as described in Section 2.4.2, where we showed how to derive a contractive
solver for nonsymmetric problems from contractive solvers for symmetric problems by means
of the Zarantonello iteration (2.36). More specifically, we proved that for a sufficiently small
parameter δ > 0, there exists a lower bound j0 > 0, such that j ≥ j0 solver iterations
applied to the symmetric problem of the Zarantonello iteration (2.36) correspond to one
step of a contractive solver for the nonsymmetric problem (6.6). In contrast to the Poisson
problem (6.3), the diffusion in (6.6) is not constant. The diffusion coefficient α ∈ C(Ω)
chosen in (6.6) peaks at the point y = (0.5,−0.5)⊤ and decays exponentially. Its effect can
be observed in the illustration of the computed solution u

k
ℓ in Figure 10. The non-constant

diffusion is an additional challenge for the adaptive algorithm, apart from the singularity at
the re-entrant corner (0, 0) of the L-shaped domain Ω.

Figure 11 illustrates a mesh Tℓ generated by Algorithm B using the ZZ-estimator (6.1)
with the Scott–Zhang projection (5.4). We can clearly observe that the algorithm captures
both the singularity at (0, 0) and the diffusion peak at (0.5,−0.5) by refining the mesh in
the vicinity of these points.
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Figure 10: Illustration of the computed solution u
k
20 for problem (6.6). The solution

is obtained from Algorithm B using the ZZ-estimator (6.1) with the Scott–Zhang
projection (5.4). In the algorithm, we use T0, depicted in Figure 6a, as initial mesh,
fixed parameters θ = 0.5, λ = 0.1, δ = 0.5, j = 5, and polynomial degree p = 3.
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Figure 11: Mesh generated by Algorithm B using the ZZ-estimator µℓ (6.1) with
the Scott–Zhang projection (5.4). The algorithm is applied to problem (6.6) with
initial mesh T0, depicted in Figure 6a, fixed parameters θ = 0.5, λ = 0.1, δ = 0.5,
j = 5, and polynomial degree p = 3. We illustrate the mesh T20, consisting of
20291 elements. In addition to displaying the mesh (left), we also visualize the
corresponding mesh-size function H(T ) = |T |1/2 (right).
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Figure 12: Convergence history plots of Algorithm B using the ZZ-estimator µℓ (6.1)
with the Scott–Zhang projection (5.4). The algorithm is applied to problem (6.6)
with initial mesh T0, depicted in Figure 6a, fixed parameters θ = 0.5, λ = 0.1,
δ = 0.5, j = 5, and polynomial degrees p = 1, 2, 3, 4. The convergence of µℓ(u

k
ℓ )

is presented with respect to the theoretical complexity (6.5) (left) and the total
computation time (right).
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Figure 13: Convergence history plots of Algorithm B using the ZZ-estimator µℓ (6.1)
with patch averaging (5.2). The algorithm is applied to problem (6.6) with initial
mesh T0, depicted in Figure 6a, and fixed parameters θ = 0.5, λ = 0.1, δ = 0.5,
and j = 5. The convergence of µℓ(u

k
ℓ ) is presented with respect to the theoretical

complexity (6.5) (left) and the total computation time (right).

Figure 12 and Figure 13 show the convergence of the ZZ-estimator µℓ(u
k
ℓ ) in Algorithm B

for the nonsymmetric problem (6.6). In Figure 12, we use the Scott–Zhang projection (5.4)
for the averaging operator GH , while in Figure 13, we use the patch averaging operator (5.2).
In either case, we observe that Algorithm B leads to optimal convergence rates −p/2 both
with respect to the theoretical complexity (6.5) and the total computation time. Thus, the
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observed convergence rates further confirm the theoretical results presented in Theorem 4.3
and Corollary 5.7.

Finally, Table 1 and Table 2 present experimental contraction factors for qalg (2.38) and
qctr (2.40). For an index pair (k, j), the experimental contraction factor qalg is computed as

qalg :=
|||uk,⋆H − uk,jH |||
|||uk,⋆H − uk,j−1

H |||
. (6.7)

Similarly, for a solver index k, the experimental contraction factor qctr is defined as

qctr :=
|||u⋆H − u

k,j

H |||
|||u⋆H − u

k−1,j

H |||
. (6.8)

Table 1 and Table 2 present the mean value and standard deviation of the experimental
contraction factors qctr and qalg computed in different runs of Algorithm B applied to the
nonsymmetric problem (6.6). In each run, we varied the polynomial degree p = 1, 2, 3, 4
and the number of solver iterations j = 1, 2, 3, 4, 5 while keeping all other parameters fixed.
We observe that regardless of the polynomial degree p and the number of solver iterations
j, both qalg and qctr are mostly below 0.7, which is considered a good contraction factor.
While this is to be expected for qalg, it is surprising that qctr is low even for j = 1.

p = 1 p = 2 p = 3 p = 4

j = 1 0.6124± 0.0701 0.7624± 0.0732 0.7721± 0.0732 0.7804± 0.0658

j = 2 0.5468± 0.0346 0.6461± 0.0535 0.6623± 0.0531 0.6654± 0.0489

j = 3 0.5132± 0.0128 0.5802± 0.0344 0.5933± 0.0350 0.5966± 0.0329

j = 4 0.5065± 0.0065 0.5522± 0.0214 0.5634± 0.0228 0.5627± 0.0207

j = 5 0.5023± 0.0026 0.5277± 0.0120 0.5357± 0.0133 0.5330± 0.0112

Table 1: Mean value and standard deviation of the experimental contraction
factor qctr (6.8) in different runs of Algorithm B applied to the nonsymmetric
problem (6.6). In each run, we used the ZZ-estimator (6.1) with the Scott–Zhang
projection (5.4), the same initial mesh T0, depicted in Figure 6a, and the same
parameters θ = 0.5, λ = 0.1, δ = 0.5, but different polynomial degrees p = 1, 2, 3, 4
and different numbers of solver iterations j = 1, 2, 3, 4, 5. The algorithm was run
until the number of degrees of freedom exceeded 106.

6.1.4 AFEM with the ZZ-estimator for a diffusion problem

In this section, we want to confirm that α1/2 is indeed the right scaling in the recovery
term µrec

H (6.2) of the ZZ-estimator (6.1). To this end, we consider the symmetric diffusion
problem

− div(α∇u⋆) = 1 in Ω := (−1, 1)2 \ [0, 1]2, u⋆ = 0 on ∂Ω (6.9)

with α(x) = 1000 ·e−∥x−y∥2 for y := (0.5,−0.5)⊤. As in the nonsymmetric problem (6.6), the
diffusion coefficient α ∈ C(Ω) chosen in (6.9) peaks at the point y = (0.5,−0.5)⊤ and decays
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p = 1 p = 2 p = 3 p = 4

j = 1 0.3378± 0.1256 0.5550± 0.1075 0.5667± 0.1200 0.5763± 0.1083

j = 2 0.3993± 0.1458 0.5818± 0.1189 0.6034± 0.1350 0.6029± 0.1250

j = 3 0.4229± 0.1479 0.6065± 0.1254 0.6324± 0.1378 0.6317± 0.1269

j = 4 0.4473± 0.1459 0.6239± 0.1244 0.6533± 0.1335 0.6481± 0.1249

j = 5 0.4656± 0.1453 0.6340± 0.1236 0.6683± 0.1294 0.6627± 0.1224

Table 2: Mean value and standard deviation of the experimental contraction
factor qalg (6.7) in different runs of Algorithm B applied to the nonsymmetric
problem (6.6). In each run, we used the ZZ-estimator (6.1) with the Scott–Zhang
projection (5.4), the same initial mesh T0, depicted in Figure 6a, and the same
parameters θ = 0.5, λ = 0.1, δ = 0.5, but different polynomial degrees p = 1, 2, 3, 4
and different numbers of solver iterations j = 1, 2, 3, 4, 5. The algorithm was run
until the number of degrees of freedom exceeded 106.

exponentially. While the exact solution u⋆ of the diffusion problem (6.9) is unavailable,
Galerkin orthogonality (2.6) implies that the total error |||u⋆ − u

k
ℓ ||| is equal to

|||u⋆ − u
k
ℓ |||2

(2.6)
= |||u⋆ − u⋆ℓ |||2 + |||u⋆ℓ − u

k
ℓ |||2

(2.6)
= |||u⋆|||2 − |||u⋆ℓ |||2 + |||u⋆ℓ − u

k
ℓ |||2. (6.10)

By estimating or guessing the value |||u⋆|||2 (e.g., by first computing |||u⋆H |||2 on a very fine
mesh TH), formula (6.10) allows us to compute the total error |||u⋆ − u

k
ℓ ||| even without

knowing the exact solution u⋆.
Figure 14 shows the convergence of the recovery term µrec

ℓ (u
k
ℓ ) with different scalings in

comparison to the total error |||u⋆ − u
k
ℓ |||. Apart from the scaling α1/2, we also consider the

scalings α and 1 (i.e., no scaling). We observe that the recovery term µrec
ℓ (u

k
ℓ ) with the

scaling α1/2 gives the best approximation of the total error |||u⋆ − u
k
ℓ |||. Hence, we conclude

that the scaling α1/2 in (6.2) is indeed the right choice.

6.2 Experiments with the equilibrated flux estimator

As in the previous section, we first present implementational details for the equilibrated
flux estimator, and then proceed to numerical experiments. For simplicity, we will restrict
ourselves to to the Poisson model problem (6.3) in this section.

6.2.1 Implementational aspects for the equilibrated flux estimator

Recall the equilibrated flux estimator (5.51) from Section 5.2. For the Poisson problem (6.3),
the refinement indicators of the estimator are given by

µH(T, vH) := ∥σH [vH ] +∇vH∥L2(T ) +
diam(T )

π
∥(1−ΠH)f∥L2(T ), (6.11)

where ΠH is the L2-projection onto the space Pq(TH) and σH [vH ] ∈ RT q
0(TH [ z ]) is the

global equilibrated flux defined in (5.48). The latter is constructed as the sum of local
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Figure 14: Convergence history plots of Algorithm B using the ZZ-estimator µℓ (6.1)
with the Scott–Zhang projection (5.4). The algorithm is applied to problem (6.9),
initial mesh T0, depicted in Figure 6a, fixed parameters θ = 0.5 and λ = 0.1, and
polynomial degrees p = 1, 2, 3, 4. The convergence behavior of the recovery term
µrec
ℓ (u

k
ℓ ) is shown for three different scalings: α1/2 (square markers ), α (triangle

markers ), and without scaling (circle markers ). For comparison, the
corresponding total error |||u⋆ − u

k
ℓ ||| is also shown (asterisk markers ), which is

computed using (6.10). The results are presented with respect to the theoretical
complexity (6.5). For p = 1, we observe asymptotic exactness of the ZZ-estimator.

fluxes σH,z[vH ], which, according to Lemma 5.9, are the first component of the unique
solution (σH,z[vH ], rH,z[vH ]) ∈ RT q

0(TH [ z ])×Pq
⋆(TH [ z ]) of the local saddle-point problems

⟨σH,z[vH ], τH⟩L2(ΩH [ z ]) + ⟨div τH , rH,z[vH ]⟩L2(ΩH [ z ]) = −⟨φz∇vH , τH⟩L2(ΩH [ z ])

⟨divσH,z[vH ], qH⟩L2(ΩH [ z ]) = ⟨Π⋆
z(φz f −∇φz · ∇vH), qH⟩L2(ΩH [ z ])

for all τH ∈ RT q
0(TH [ z ]) and all qH ∈ Pq(TH [ z ]).

(6.12)

Here, Π⋆
z denotes the L2-orthogonal projection (5.31) onto L2

⋆(ΩH [ z ]) and φz ∈ S1(TH) is
the hat function associated with the vertex z ∈ VH .

Since MooAFEM does not provide a built-in implementation of Raviart–Thomas elements,
we use the computational basis derived in [Erv12]. For simplicity, we restrict ourselves to
p = 1 and Raviart–Thomas elements of order q = 1. Initially, we implemented lowest-order
Raviart–Thomas elements, i.e., q = 0, but we did not observe optimal convergence rates
of the equilibrated flux estimator (6.11) in that case. While this is not a contradiction to
Corollary 5.19, which requires q ≥ p and therefore does not cover the case p = 1 and q = 0,
it makes the implementation of the equilibrated flux estimator (6.11) more laborious in
contrast to, e.g., the residual-based estimator (2.14) or the ZZ-estimator (6.1).
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6.2.2 AFEM with the equilibrated flux estimator for the Poisson problem

In order to verify Corollary 5.19, we consider the Poisson model problem (6.3) with the right-
hand side f ≡ 1 on the L-shaped domain Ω := (−1, 1)2 \ [0, 1]2. As discussed in Section 6.1.2,
this is a well-suited test case for the adaptive algorithm due to the singularity at the
re-entrant corner (0, 0). In Figure 15, we visualize the initial mesh T0 and the adaptively
generated meshes T2, T4, . . . , T10, computed by Algorithm B using the equilibrated flux
estimator (6.11). We see that the algorithm captures the singularity at (0, 0), since it refines
the mesh particularly in the vicinity of the origin.

(a) #T0 = 12 (b) #T2 = 70 (c) #T4 = 248 (d) #T6 = 793

(e) #T8 = 2771 (f) #T10 = 9864

Figure 15: Sequence of meshes Tℓ generated by Algorithm B using the equilibrated
flux estimator (6.11). The algorithm is applied to problem (6.3) with f ≡ 1, fixed
parameters θ = 0.5 and λ = 0.1, and polynomial degrees p = 1 and q = 1.

Figure 16 shows the convergence of the equilibrated flux estimator µℓ(u
k
ℓ ) in Algorithm B.

We observe that the algorithm leads to the optimal convergence rate −1/2 both with respect
to the theoretical complexity (6.5) and the total computation time, which confirms the
theoretical results presented in Theorem 4.3 and Corollary 5.19.

Finally, we want to consider a non-constant right-hand side f in the Poisson problem (6.3).
To this end, we choose the right-hand side f such that the exact solution u⋆ ∈ H1

0 (Ω)

is given by (6.4). This enables us to compare the equilibrated flux estimator µℓ(u
k
ℓ ) and

the residual-based estimator ηℓ(u
k
ℓ ) (2.14) with the actual total error |||u⋆ − u

k
ℓ |||. Such a
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Figure 16: Convergence history plots of Algorithm B steered by the equilibrated
flux estimator µℓ (6.11). The algorithm is applied to problem (6.3) with f ≡ 1,
initial mesh T0, depicted in Figure 15a, fixed parameters θ = 0.5 and λ = 0.1,
and fixed polynomial degrees p = 1 and q = 1. The convergence of µℓ(u

k
ℓ ), the

residual-based estimator ηℓ(u
k
ℓ ) (2.14), and the total error |||u⋆ − u

k
ℓ ||| (computed

using (6.10)) is presented with respect to the theoretical complexity (6.5) (left) and
the total computation time (right).

comparison is illustrated in Figure 17 (left), in which the components

µflux
ℓ (u

k
ℓ ) :=

� �
T∈Tℓ

∥σH [u
k
ℓ ] +∇u

k
ℓ ∥2L2(T )

�1/2
and

µosc
ℓ :=

� �
T∈Tℓ

diam(T )2

π2
∥(1−ΠH)f∥2L2(T )

�1/2
(6.13)

of the equilibrated flux estimator µℓ(u
k
ℓ ) are plotted next to ηℓ(u

k
ℓ ) and |||u⋆ − u

k
ℓ |||. We can

see that the flux term µflux
ℓ (u

k
ℓ ), the residual-based estimator ηℓ(u

k
ℓ ), and the total error

|||u⋆−u
k
ℓ ||| all converge with the optimal rate −1/2, while the oscillation term µosc

ℓ converges
with the rate −3/2. Thus, the effect of the oscillation term µosc

ℓ on the equilibrated flux
estimator µℓ(u

k
ℓ ) is almost negligible in this experiment. Theorem 5.14 and Remark 5.15

show that the equilibrated flux estimator (6.11) is a guaranteed upper bound for the total
error |||u⋆ − u

k
ℓ |||, which can also be observed in Figure 17 (left). Moreover, we see that the

flux term µflux
ℓ (u

k
ℓ ) provides a much better estimate of the total error |||u⋆ − u

k
ℓ ||| than the

residual-based estimator ηℓ(u
k
ℓ ). This is illustrated in Figure 17 (right), which shows the

respective experimental Crel constants, i.e., the ratio of the total error |||u⋆ − u
k
ℓ ||| to the

respective estimator. While the experimental Crel constant of the flux term µflux
ℓ (u

k
ℓ ) is very

close to 1, meaning that it provides a very accurate estimate of the total error |||u⋆ − u
k
ℓ |||,

the residual-based estimator ηℓ(u
k
ℓ ) has an experimental Crel constant of approximately 0.2,

i.e., it overestimates the total error by a factor of around 5.
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Figure 17: Convergence history plots and experimental Crel constants for Algo-
rithm B steered by the equilibrated flux estimator µℓ (6.11). The algorithm is
applied to problem (6.3) with f corresponding to the exact solution (6.4), initial
mesh T0, depicted in Figure 15a, fixed parameters θ = 0.5 and λ = 0.1, and fixed
polynomial degrees p = 1 and q = 1. On the left, the convergence of the estimator
contributions µflux

ℓ (u
k
ℓ ) and µosc

ℓ (6.13), the residual-based estimator ηℓ(u
k
ℓ ) (2.14),

and the total error |||u⋆ − u
k
ℓ ||| is presented with respect to the theoretical com-

plexity (6.5). The right plot shows the experimental Crel constants for µflux
ℓ (u

k
ℓ )

and ηℓ(u
k
ℓ ), which are computed as the ratio of the total error to the respective

estimator.
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