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Kurzfassung

Wir stellen Thovea vor, ein dreischichtiges visuelles Analysesystem für Informations-
verbreitung über große Netzwerke. Mit diesem dreischichtigem Ansatz können mehrere
Diffusionsprozesse gleichzeitig untersucht werden, wobei jede Schicht eine andere Abstrak-
tionsebene darstellt. Unsere Methode unterstützt eine Top-Down-Strategie: ausgehend
von einer Übersicht auf hoher Abstraktionsebene werden die einzelnen Knoten bis ins
Detail untersucht. Dieses Design ermöglicht ein umfassendes Verständnis des jeweiligen
Diffusionsprozesses, während es gleichzeitig eine detaillierte Untersuchung bis hin zu
einzelnen Infektionsketten ermöglicht. Wir integrieren geeignete Layoutalgorithmen und
Visualisierungsmethoden in jede Ebene, um eine skalierbare und flexible Erforschung von
Informationsverbreitungsprozessen und Netzwerken zu ermöglichen.

Informationsverbreitung beschreibt, wie sich Information über ein engmaschiges Netzwerk
verbreitet und ist für viele Bereiche relevant, z. B. für die Modellierung der Verbreitung
von Fake News, Krankheitserregern oder Malware. In der Literatur gibt es zwar verschie-
dene Modellierungsansätze, die Visualisierung von Informationsverbreitungsprozessen
ist jedoch immer noch ein wenig erforschtes Gebiet. Um einen umfassenden Überblick
zu gewinnen, präsentieren wir den aktuellen Stand der Technik zu visuellen Analysesys-
temen, die zur Darstellung und zum Verständnis von Informationsverbreitungssysteme
in Netzwerken eingesetzt werden. Wir präsentieren eine Taxonomie, die ausgewählte
Beiträge kategorisiert, strukturiert und über Anwendungsbereiche hinweg verallgemei-
nert. Bestehende Beiträge sind oft auf Nischenprobleme gegebener Anwendungsgebiete
zugeschnitten und nicht verallgemeinerbar. Die visuelle Skalierbarkeit, konkret das arbei-
ten mit Netzwerken, welche Knoten und Kanten im Tausenderbereich besitzten, stellt
ebenfalls eine Herausforderung dar. Dies schränkt ihre praktische Anwendbarkeit ein.

Wir evaluieren unser System, mit zwei Fallstudien und der quantitativen ICE-T [WAM+19]-
Methode. Letzteres bestätigt den Wert von Thovea mit einem globalen durchschnitt von
5,82, wobei jede Komponente mit über 5 Punkten bewertet wurde. Die am höchsten
bewerteten Komponenten stellen Essence und Insight dar, mit jeweils 6,2 Punkten.
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Abstract

We introduce Thovea, a THree-layer information diffusiOn Visual analytics systEm for
lArge networks. This three-layered approach is designed to simultaneously investigate
several diffusion processes—with each layer representing a different level of abstraction.
Our method supports a top-down exploration strategy: starting from a high-level overview
and drilling down to individual node details. This design provides a comprehensive
understanding of the diffusion process(es) at hand, while enabling a detailed exploration
down to distinct infection chains. We integrate suitable network layouts and representation
methodologies into each level, aiming to support a scalable and agile exploration of
information diffusion processes and networks.

Information Diffusion investigates how information spreads over a tightly connected
network and is relevant to many domains, such as modeling fake news spreading, pathogen
contagion, or malware infections. While different modeling approaches exist in the
literature, the visualization of information diffusion processes still constitutes an under-
investigated problem. To gain a comprehensive overview, we present a survey and analysis
of the current state-of-the-art in visual analytics techniques employed in representing and
understanding diffusion processes happening over networks. We introduce a taxonomy that
categorizes and structures the selected approaches while generalizing across application
domains. Existing contributions are often tailored to niche domain-specific problems
and lack generalizability. Visual scalability is also a challenge, as current research still
struggles to effectively handle networks with thousands of nodes and edges, limiting their
practical applicability.

We evaluate our system by (i) presenting two case studies and (ii) conducting a quan-
titative value-driven estimation using the ICE-T [WAM+19] methodology. The latter
confirms the value of Thovea with a global average score of 5.82, where each component
has been awarded a score greater than 5. The highest scored components are Essence
and Insight with a score of 6.2 each.
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CHAPTER 1
Introduction

Information Diffusion (ID) is a research domain that investigates how information prop-
agates across a network or a population. This phenomenon concerns various disciplines,
including the analysis of epidemic transmission pathways [BPW+21], or the investigation
of information flow through social networks [GHFZ13]. In the context of social networks,
there is significant interest in understanding the dynamics of ID. A closely related combi-
natorial problem, known as Influence Maximization (IM), focuses on identifying a small
set of initial seed nodes that maximize the spread of information, i.e., the number of
nodes reached, under a given ID model. This has plenty of potential applications, such
as optimizing the influence or propagation [LFWT18a] of a marketing campaign [DR01].
Even under simple models, identifying an optimal seed set has been proven to be an
NP-hard problem [KKT03]. IM primarily relies on stochastic ID models, such as the
Independent Cascade (IC) or Linear Threshold (LT), further complicating the evaluation
of individual seed sets [LFWT18a]. These challenges make scalability a significant hurdle
in solving the IM problem efficiently [CWW10].

Given these computational challenges, Visual Analytics (VA) can assist domain experts
in understanding and analyzing the underlying ID process, while also facilitating the
comparison of different ID models. However, visualization and VA solutions for ID
remain underexplored. Existing contributions are often tailored to niche domain-specific
problems and lack adaptability and generalizability for problems in other domains or for
broader applications. Many approaches in social media analysis often rely on platform-
specific data, such as Twitter [NYX+12], Weibo [CCW+19], and Google [VWH+13],
where diffusion behavior is inherently represented (e.g., through reposting networks).
Yet, only a few VA systems provide a flexible, scalable, and comprehensive platform
for comparing diffusion simulations using different ID models [ADL+22]. Even in those
cases, visual scalability remains a challenge, as the large quantity of nodes and edges
makes it difficult to assess the role of individual activation chains among the global
ID process [SGM+23]. This problem is amplified further when attempting to provide
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1. Introduction

visual encodings for the comparison of the ID models, as currently, there is no specialized
methodology for comparison within the application domain of ID [ADL+22].

1.1 Research Questions
Given the circumstances described above, we formulate our research questions that we try
to answer within this thesis. The main research question is split further into 3 additional
sub-questions

• How can VA be leveraged to explore and analyze diffusion processes in large
networks to uncover useful, otherwise hidden insights? (Q1).

To answer Q1 it is necessary to look at three further questions, which can be categorized
as sub-questions:

• Which visualization technique or combination of techniques is suitable for exploring
dynamic diffusion processes over large networks? (Q2)

• Does a layered visualization approach that uses different levels of abstraction help
break down the complexity of analyzing ID over large networks (Q3)

• How can two or more diffusion models be meaningfully compared in a single view
such that local node-level and broader network-wide differences can be intuitively
spotted and assessed (Q4)

1.2 Contribution
In this thesis, we first explore the state-of-the-art in the visualization of ID and introduce
a taxonomy that generalizes across different application domains. We identify gaps in the
current literature landscape and design a system that aims to offer an answer to those
identified gaps. We propose Thovea, a THree-layer information diffusiOn Visual analytics
systEm for lArge networks. Thovea progressively reduces the level of abstraction as
users delve deeper into the employed three layers, facilitating an intuitive and scalable
exploration of ID processes.

• The first layer offers a high-level aggregated overview of the network, highlighting
inter- and intra-community diffusion trends.

• The second layer provides a density-based estimation and visualization of user-
selected communities, detailing intra- and inter-community diffusion progression.

• The last layer enables in-depth investigation and analysis of specific regions within
communities, allowing users to explore individual diffusion paths down to the node
level.
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1.3. Structure

By structuring the analysis across these layers, Thovea enables the user to first identify
and assess possible regions of interest in an overview, before delving deeper into parts
of the network that are of interest. This reduces visual clutter and provides a smooth
and intuitive interactive navigation between layers, while preserving the user’s mental
map, maintaining spatial and structural consistency across different abstraction levels.
Moreover, Thovea supports concurrent loading and comparison of up to four different
diffusion simulations across all layers, each employing a distinct visual metaphor suited
to its abstraction level. This layered, multi-perspective visualization approach represents
the core innovation of Thovea, offering a flexible and comprehensive tool for analyzing
ID processes in large networks.
Finally, we showcase the use and value of Thovea via two case studies and an ICE-T
[WAM+19] evaluation

1.3 Structure
The rest of the thesis is structured as follows: Chapter 2 presents an overview of
the literature related to our contribution and introduces a taxonomy that categorizes
contributions that offer visualization platforms for ID-related problems. It further enables
us to frame Thovea in the current state-of-the-art. The design and feature set of our
system itself is detailed in Chapter 3. Chapter 4 presents our twofold evaluation process.
In Chapter 5, we provide a summarizing discussion while elaborating on limitations and
possible future research directions in the field of ID. There, we also assess whether our
research questions have been answered to a meaningful extent. We give a summary of
this thesis in Chapter 6.

3





CHAPTER 2
Related Work

In this section, we present and discuss the literature in the relevant fields of research.
First, we provide a concise overview of the relevant ID models (see section 2.1). Then
we discuss the visualization of large graphs (see section 2.2). Finally, we introduce a
comprehensive taxonomy that puts structure into the field of visualization of ID (see
section 2.3).

2.1 Theory of Information Diffusion
Various models exist to capture the real-world phenomenon of how information spreads
across a network or a population. Significant interest in such models has been expressed
in the domain of social networks [LWGZ17, GHFZ13] and also more specifically within
the context of the IM problem [LFWT18b, AGB+21]. Classical compartmental models
used in epidemiology [Bra08], such as the basic Susceptible-Infected-Removed (SIR)
model, allow for subjects to recover from an infection and become immune to further
infections. Besides the basic SIR model, other versions have been introduced. The
Susceptible-Infected-Susceptible (SIS) model does not consider the ability to become
immune after an infection, but rather enables the repeated infection of subjects. The
Susceptible-Infected-Removed-Susceptible (SIRS) model assumes that a removed subject
can become susceptible again with a given probability α [LWGZ17]. These compartmental
models have been further developed to more accurately describe diffusion processes that
are happening over social networks [LWGZ17]. Sulis and Tambuscio [BAEA11] model
the spreading of fake news as a competition between ”Fact Checkers“ and ”Believers“
adopting the classical SIR model. Apart from the compartmental models that are
often used in epidemiological applications [BGG+11, YDH+17, MLR+11], there exist
models that are commonly used for the IM problem, namely the IC and the LT model
[LFWT18b]. These stochastic models consider the probability assigned to each edge or
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2. Related Work

node, respectively. If the given threshold is passed, then the corresponding edge or node
is activated, respectively. These probabilities can be uniform or set individually.

2.2 Large Graph Visualization
Defining what constitutes a large graph remains an open question, as no standardized
threshold exists [vLKS+11]. In literature, graphs ranging from thousands to millions
of nodes are commonly considered large, with edge density and connectivity playing a
crucial role in this classification. This poses significant challenges for visual scalability
[YAD+18], which refers to the ability of a visualization to effectively represent large
graphs, as large graph visualizations are prone to visual clutter[vLKS+11]. Additionally,
cognitive scalability [YAD+18] is a key consideration. Large graphs, especially when
combined with dynamic ID processes, hold a vast amount of information and complexity
that, if conveyed inefficiently, can overwhelm the cognitive capacity of the user and hinder
effective analysis.

2.3 State-of-the-Art: Visualization of Information
Diffusion

In this section, we will first detail our methodology for conducting the state-of-the-art on
the visualization of ID (see section 2.3.1), In Section 2.3.2, we introduce our taxonomy
and subsequently go through every major goal that the approaches are designed to
achieve (see section 2.3.3 - section 2.3.8). We discuss our results and point to gaps in the
literature in Section 2.3.9.

2.3.1 Methodology
In this section, we will in detail outline our methodology for this state-of-the-art. To
gain a good understanding of the field and collect relevant papers, a thorough literature
research was conducted and concluded with a total of 28 contributions, 19 of which are
journal articles and nine conference papers.

The root of the research consisted of Li et al.’s Survey on Information Diffusion in Online
Social Networks: Models and Methods [LWGZ17] and a novel VA approach to IM by Arleo
et al. [ADL+22]. The search for contributions was iterative. Through a combination of
backward, forward, and keyword searches, the collection of seemingly relevant papers
kept expanding. For the backward search and forward search, we used the References
and Cited by functionality of the corresponding library.

In parallel, a keyword search was conducted. We compiled a list of relevant keywords into
two sets, as seen in Table 2.1: The first set included all keywords that relate in some way
to diffusion processes for which the root survey [LWGZ17] was helpful. The second set
contained all those keywords that relate to visualization. Finally, we crafted all possible
combinations of keywords between the two sets to conduct the keyword search: ”Influence

6



2.3. State-of-the-Art: Visualization of Information Diffusion

Set 1 Set 2

Influence Maximization Visual Analytics
Influential Spreaders Visual Analysis
Information Diffusion Visualization
Independent Cascade

Linear Threshold
SIR
SIS

SIRS
Diffusion Process
Epidemic Model
Game Theory

Individual Influence
Community Influence

Table 2.1: Selection of keywords split into two sets

Maximization” AND ”Visual Analytics”, ”Influence Maximization” AND ”Visualization”,
and so on. The utilized search engines were IEEEXplore1 and Google Scholar2.

During the literature research, we set specific exclusion/inclusion criteria to avoid unfitting
approaches. However, we also did not want to be too specific and disqualify approaches
that serve certain application domains. This reasoning led us to set the following three
criteria for inclusion:

• The paper has to introduce a VA system that offers a platform to explore and
analyze complex data through a set of interactive elements. We distinguish such
systems from rather static visualizations that offer no or very limited interaction
and do not enable an in-depth exploration of data [MBO+22].

• Further, the paper has to implement [ADL+22] or adapt [ST20] an existing model.
We also consider approaches that use data that inherently describes diffusion
behavior, such as reposting [YWL+14] or citation networks [HSS+20]

• Lastly, we consider approaches that use a network or graph structure to describe
diffusion processes or use data that has a network or graph structure. We refer to
this underlying network as a ”medium“ network. We also include epidemic models

1https://ieeexplore.ieee.org/Xplore/home.jsp
2https://scholar.google.com/
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2. Related Work

that describe the diffusion process as a set of differential equations [MLR+11], as it
is possible to model such ”medium“ networks as a complete graph.

We assessed the abstract and conclusion of every paper that, by its title, seemed sufficiently
relevant. We preliminarily included those papers that provided a novel VA approach to
an ID problem. The emphasis hereby lies in VA. We excluded simple visualizations of
diffusion models and processes that did not offer any or very limited interactivity.

This thorough literature research led us to a list of 35 papers. We further examined
those compiled papers in more detail and disregarded eight of them. The reasons for this
exclusion were: the existence of a more up-to-date version and an insufficient presence of
VA tools. This process led us to our 19 journal articles and nine conference papers. The
conference papers were presented mainly at IEEE conferences (eight papers) and one in
ACM CHI. The journal articles have the following distribution of publication journals:

• IEEE Transactions on Visualization and Computer Graphics - 10 papers

• ACM Transactions on Intelligent Systems and Technology - 2 papers

• ACM Transactions on Knowledge Discovery from Data - 1 paper

• Electronic Proceedings in Theoretical Computer Science - 1 paper

• Journal of Visual Languages & Computing - 1 paper

• BMC Infectious Diseases - 1 paper

• Information Visualization - 1 paper

• Computer Graphics Forum - 1 paper

• IEEE Transactions on Knowledge and Data Engineering - 1 paper

Since we have collected approaches from different application domains, the categorization
has to be suitable for this diversity. Ranging from popular topic detection of social media
data [NYX+12] to epidemic monitoring and decision-support systems [YDH+17], the
taxonomy must be able to offer a degree of generalization across multiple application
domains. In our case, it is rather ineffective to craft a categorization that focuses too
much on the application-specific properties of the data. Some surveys focus on specific
application domains such as social networks and therefore discriminate approaches based
on criteria inherent to that domain, for example, keyword-, topic-, and sentiment-based
[WCG+16].

Given the above reasons, we generalize across application domains and decide to focus
on the overarching abstract main goal that the VA sytsem aims to achieve. We look at
what kind of tools are offered and to what extent the user can interact with the diffusion
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2.3. State-of-the-Art: Visualization of Information Diffusion

process in question to reach a specific goal. Furthermore, we also consider the type of
visualizations that the approaches use, meaning what type of visualization metaphor or
structure is present (maps, node-links, matrices, and so on).

To assess the main goals of the VA systems, we first had to get a good understanding of
each one of them. We extracted preliminary goals from each paper and then, through an
iterative process, assessed and compared them with each other. For this process, we had
to focus not only on what features are offered by the system but arguably more so on
the intended use case and output of it as stated by the respective authors and indicated
by their evaluation. Features do overlap across different domains and systems, and often
the combination of features or the lack of them plays a part in the decision process in
assigning a main goal. To also represent this dimension, the category "Utility Features"
is also introduced to indicate possible key features in the main goal.

2.3.2 The Taxonomy
We introduce a categorization of every approach collected in the context of this survey in
Table 2.2 and distinguish three main criteria: The visualization method, the main goal
that is achieved by the VA tools, and a set of utility features provided by the VA system
[UA24]. Cells in dark red indicate the main visualization technique of the approach.
Cells colored in light red mark visualization techniques that provide additional context,
navigation functionality, or more detailed investigation. The utility features are also
marked with dark red colored cells. The table is primarily sorted by the main goal. In
total, the taxonomy distinguishes between:

• six main goals (Diffusion Exploration, Spread Simulation, Influence Maximization,
Influence Summarization, Model Comparison, Anomaly Detection),

• eight visualization methods (Node-Link, Matrix, Map Metaphor, Map, River
Metaphor, Tree, Timeline, Storyline),

• three utility features (Key-Player Detection, Comparison Tools, Model/Parame-
ter Tweaking).

2.3.3 Diffusion Exploration
13 of our collected approaches offer an extensive toolkit for the exploration of diffusion
networks to unfold patterns, analyze trends, and detect key influencers. Methods that
are presented in this section focus on the overall exploration of diffusion processes via a
diverse toolkit and provide a comprehensive dashboard to assist in that goal. They use
datasets that inherently contain diffusion behaviour (e.g., reposting networks). All but
two of those apply to social network data. The other ones address policy diffusions and
epidemics. A variety of different visualization methods have been tried in this context.
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[NYX+12] Diffusion Exploration
[STP+17] Diffusion Exploration

[HNWC23] Diffusion Exploration
[CCL+17] Diffusion Exploration
[CCW+19] Diffusion Exploration
[CLCY20] Diffusion Exploration
[MBB+11] Diffusion Exploration
[WLY+14] Diffusion Exploration
[SWL+14] Diffusion Exploration
[DXZ+14] Diffusion Exploration
[BPW+21] Diffusion Exploration
[YWL+14] Diffusion Exploration
[YJZ+25] Diffusion Exploration

[VLDBF15] Spread Simulation
[SRMV16] Spread Simulation
[BAEA11] Spread Simulation
[MLR+11] Spread Simulation
[BGG+11] Spread Simulation
[YDH+17] Spread Simulation
[AME11] Spread Simulation

[LWY+20] Spread Simulation
[SGM+23] Spread Simulation
[ADL+22] Influence Maximization

[LW14] Influence Maximization
[HSS+20] Influence Summarization
[STTL15] Influence Summarization
[VKPM15] Model Comparison
[ZCW+14] Anomaly Detection

Table 2.2: Taxonomy of all 28 contributions with three main classifications: visualization
technique, goal, and utility features
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2.3. State-of-the-Art: Visualization of Information Diffusion

(a) D-Map+ map metaphor with description
of map [CCW+19].

(b) R-Map map metaphor with description
of map [CLCY20].

Figure 2.1: Map metaphors used by D-map+[CCW+19] (a) and R-Map[CLCY20] (b).

Map Metaphor

Chen et al. introduce D-Map+ [CCW+19], a VA tool that leverages a map metaphor
to convey diffusion characteristics of reposting networks. The map consists of many
little hexagons that, based on their specific color and geometrical properties, convey
different semantics as seen in Figure 2.1(a). It enables a rather intuitive examination of
key players and communities, as both are visually highlighted. Another approach that
makes use of the map metaphor is R-Map [CLCY20]. A set of geographical metaphors,
such as rivers, lakes, and countries, encode specific network and diffusion properties of a
reposting network. Overlaid keywords visually encode the overall sentiment toward the
topic. An example can be viewed in Figure 2.1(b).

E-Map by Chen et al. [CCL+17] also uses the map metaphor to convey social media
diffusion behavior via geographical structure. Marcus et al. [MBB+11] introduce a
method to aggregate and detect social media events in a timeline and map view. The
timeline shows peaks for user-selected overarching events and labels them automatically.
Geographical information and sentiment are visualized through a standard world map.
While D-Map+ [CCW+19] and R-Map [CLCY20] conduct user studies to evaluate their
systems, E-Map [CCL+17] only uses case studies.

River Metaphor

Sun et al. [SWL+14] introduce a novel “coopetition” model that models the interplay
between competition and cooperation of social media topics, as seen in Figure 2.2(a).
The temporal trend of “coopetition" is then visualized through a river metaphor. Each
flow represents a different topic, which through its evolution can change its “coopetition”
power. A negative value indicates that the topic competes with other topics to gain
attention, and a positive value suggests cooperation between topics for attention. The
visualization encodes this information by varying the height of the flow. Higher flows have
a positive “coopetition” power and are also color-coded green. Lower flows are colored
red and have low “coopetition” power. The visualization also integrates purple flows for

11



2. Related Work

(a) EvoRiver ’s visualization approach with its components: (a) main river-like visualization, (b)
playfair-style chart to investigate “coopetition” power, (c) comparison view, and (d) word cloud
view and topic leader flows [SWL+14].

(b) Interface of OpinionFlow with the main river-like view in the middle [WLY+14].

Figure 2.2: River metaphors for diffusion exploration used by EvoRiver [SWL+14] (a)
and OpinionFlow[WLY+14] (b).

corresponding topic threads that represent topic leaders. This enables the identification
of key influencers. A word cloud enables the viewing of keywords related to a specific
topic, and a comparison view shows the detailed interplay between two selected topics.

Wu et al. [WLY+14] present OpinionFlow and combine a Sankey graph with a tailored
density map to visualize the diffusion of opinion in social networks in a river-like way. A
stacked tree describes the topic hierarchy, from which topic flows can be opened by the
user, as seen in Figure 2.2(b). Those also encode the overall sentiment towards the topic.
Green represents positive and red negative sentiments. Additionally, a node-link diagram
can be put onto the topic flow to investigate the influence of specific users.

Both approaches conducted case studies and expert interviews to validate the usefulness
of their respective system.
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(a) Whisper [NYX+12] interface with the main
visualization in 0.

(b) Interface of SocialWave[STP+17] with its
spatial view (b) and temporal view (a).

Figure 2.3: Node-link diagram for diffusion exploration by Whisper [NYX+12] (a) and
SocialWave [STP+17] (b).

Node-Link

Cao et al.’s Whisper [NYX+12] combines a node-link diagram with a world map to
explain the process of ID in real-time using Twitter3 data. The design is based on disc
florets of sunflowers. Inside the inner circle are yet not retweeted tweets (inactive), and
on the inner circle are those that have been reposted at least once. Circular user groups
are placed on the outside ring around the center. A diffusion path is drawn between
an active tweet and a user group if they retweeted it. The pathway encodes the time
through small perpendicular lines and the sentiment in color. The background map
indicates either in longitudinal or latitudinal mode the geographic diffusion pattern. Key
influencers can be traced by analyzing the number of diffusion paths leading away from a
specific tweet. This can be seen in Figure 2.3(a). To evaluate their system, the authors
combine a performance evaluation, a case study, and an expert interview. They conclude
that their predefined design goals are met.

SocialWave, a spatio-temporal social network diffusion visualization, is presented by
Sun et al. [STP+17]. Taking into account linguistic and cultural proximity, a weighted
node-link diagram encodes diffusion paths via edges and locations via differently sized
nodes. The size is dependent on the salience of the location regarding selected hashtags.
Information about the temporal trend is provided separately via a timeline view. The
interface of SocialWave can be viewed in Figure 2.3(b). After two use cases and a user
study, the authors conclude that the node-link diagram is not as intuitive to encode
geospatial information as common geographical views.

Yin et al. [YJZ+25] introduce BloomWind that enables the user to explore cross-platform
diffusion patterns and investigate associated and relevant social media posts. They use
hierarchical glyphs that contain the most influential players at the center. Glyphs are

3https://twitter.com. formerly “Twitter”, now called “X”
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Figure 2.4: Interface of BloomWind [YJZ+25]

(a) Interface of PDViz [HNWC23] includ-
ing the main matrix view.

(b) Interface of dashboard by Baumgartl et al.
[BPW+21] with the main storyline view (3).

Figure 2.5: Diffusion exploration via matrix view [HNWC23] (a) and storylines [BPW+21]
(b).

connected, encoding the diffusion pattern, similar to a node-link visualization. The VA
platform uses a specialized ID model that estimates the probability of a social media
contribution spreading to different social media platforms. Yin et al. [YJZ+25] show the
usefulness of their contribution through two case studies and expert interviews.

Matrix

Han et al. [HNWC23] introduce PDViz. A VA tool to explore the diffusion of policy
among U.S. states. Figure 2.5(a) shows that the main exploration takes place in a matrix
view. Each state’s policy diffusion measure is listed for several different policy topics.
Additionally, the diffusion between every two states is quantified by a selectable measure
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(a) Simulation interface by von Landesberger
et al. [VLDBF15] with the input graph in the
middle, performed simulation on the left and
parameter settings on the right.

(b) Comparison of multiple simulation runs and
their respective time steps [VLDBF15].

Figure 2.6: Spread simulation with the system of von Landesberger et al. [VLDBF15].

in a matrix-like arrangement. Navigation and exploration are aided by a map-like view
and a timeline view. After two case studies and an expert interview, the authors conclude
that PDViz provides results that are consistent with the knowledge of domain experts
and that their system, at least for experts, is easy to learn.

Storyline

In the application domain of epidemics, Baumgartl et al. [BPW+21] propose an extensive
dashboard to detect epidemic outbreaks (Figure 2.5(a)(1)), trace transmission pathways
(3), view patient location (4) and contact (2) information. A coordinated interface
enables domain experts to effectively trace back transmission paths and identify key
transmission events. The storyline view represents patients as distinct lines and illustrates
their location via the y-axis and the flow of time by the x-axis. Patient lines that pass
closely indicate potential contact. The lines are color-coded and express infection statuses.
Their system has been evaluated on a real-world dataset from an epidemic outbreak in a
hospital and provided positive results. An additional expert interview also indicates the
usefulness of this approach.

2.3.4 Spread Simulation
Besides the general exploration of diffusion processes, some approaches focus on the
simulation and prediction of diffusion processes. Nine of our collected papers fall into this
classification. Half of them specifically apply to the domain of epidemic and pandemic
response, three to social networks, and one to the financial domain. We identify two
main visualization methods.

Node-Link

Von Landesberger et al. [VLDBF15] implement a VA tool to simulate the contagion
process via node-link diagrams (Figure 2.6(a)). By varying seed points and parameters,
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Figure 2.7: Interface of DiVA [SGM+23] in dual diffusion visualization mode.

one can collect a set of simulations. The approach offers a comparison view to evaluate
those, as seen in Figure 2.6(b). Each colored line is a separate simulation. Each node
represents the graph structure at a specific time step, indicated by the node’s labeling.
The distance between nodes from different simulations encodes a similarity measure. The
closer the nodes, the more similar the simulation at that specific time step. A case study
has been conducted on a financial network. A similar approach is presented by Skianis et
al. [SRMV16]. Sulis and Tambuscio [BAEA11] simulate the spread of misinformation in
social networks using a node-link diagram and the SBFC model ("Susceptible", "Believer",
"FactChecker"). They verify their simulation results by comparing them with ones
from previous work in this field. Sahnan et al. [SGM+23] have introduced DiVA, a
domain-agnostic, scalable VA Platform for ID on large networks. It employs a simple
node-link visualization and color-codes the nodes depending on their current status in
the simulation. They offer a comparison view that can toggle between a side-by-side and
single-view mode (see fig. 2.7). They evaluate their system through a comparative study
and a case study.

Map-based

Approaches in this category use geographically accurate maps to visualize their simulated
diffusion process. PanViz by Maciejewski et al. [MLR+11] offers an environment (Figure
2.8 (a)) for evaluating the impact of decision measures taken in response to a simulated
pandemic. They focus on the following decision measures: school closure, media alerts,
and strategic national stockpile deployment. A map visualizes the spread based on spatial
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(a) Interface of PanViz [MLR+11].

(b) Decision-support view to evaluate con-
sequences of different decision measures.
[AME11].

Figure 2.8: PanViz interface [MLR+11] (a), Decision history tree [AME11] (b).

diffusion. The red color indicates the severity of the selected measuring criteria. Afzal et
al. [AME11] add a decision-support history tree view, as seen in Figure 2.8(b). Here,
simulations are represented as lines along an x-axis that encodes time and a y-axis that
plots the deviation from the baseline simulation. Utilized decision measures are marked
as glyphs. These measures split the line into two scenarios.

Broeck et al. [BGG+11] also use a geographical map to visually investigate epidemic
spread (Figure 2.9(a)). They also offer a Model Builder (b) with which the user can
modify the underlying model of the simulation, from simple SIR models (Susceptible,
Infected, Recovered) to more complex model structures. PandemCap [YDH+17] also
offers a decision support environment that visually conveys the spread via a geographical
map and various charts in a tile-based layout.

All these approaches use case studies to demonstrate the usefulness of their respective
system. PanViz [MLR+11] also states that their system was used in an educational
context to showcase the consequences of social distancing during a disease outbreak.

2.3.5 Influence Maximization
Given a network, we sometimes want to know how the maximal number of nodes can
be activated or reached during a diffusion process, given a set of seed nodes. This
algorithmic problem tries to identify a set of initial spreaders that result in the biggest
possible influence spread [LFWT18a]. Arleo et al. [ADL+22] introduce VAIM, a VA
tool for the IM problem, as seen in Figure 2.10(a). It enables a comparison of two
different simulations step by step. A density matrix provides a high-level schematic view
of the graph structure (B), by changing the cell color intensity based on the node count.
The Diffusion Matrix (D) color codes spread distribution based on the number of likely
active nodes in the cell. The node-link view (E), to explore sub-areas of the diffusion
matrix, shows active and non-active nodes and edges, and color codes their corresponding
probabilities. The layout of the systems makes it possible to compare four simulations
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(a) GLEaMviz map view of epidemic spread simulation
[BGG+11]

(b) Model Builder tool in GLEaMviz
[BGG+11]

Figure 2.9: GLEaMviz [BGG+11] map interface (a), and model builder (b)

(a) VAIM [ADL+22] interface: Density Ma-
trix(B), loaded simulations(C), Diffusion
Matrix(D), Node-Link view(E).

(b) Interface of Eiffel [HSS+20]: Node-Link view
of summarized Influence Graph (a), timeline view
with animation controller (b).

Figure 2.10: VAIM [ADL+22] interface (a), and Eiffel [HSS+20] interface (b).

side-by-side. By selecting the model, modifying the seed selection technique, or setting
a seed “budget”, the user can investigate different IM strategies. The effectiveness of
VAIM is indicated by two case studies that include experts and an ICE-T evaluation
[WAM+19]. In the marketing domain, Long and Wong [LW14] leverage VA and offer a
set of tools for viral marketing. As they include location information, they present a
map-based approach. A demonstration explains the use case of their system.
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(a) Vallet et al.’s [VKPM15] interface to
compare different models by using graph
rewriting rule sets.

(b) A trend glyph in #FluxFlow [ZCW+14]. Purple-
colored circles indicate a certain degree of anomaly.

Figure 2.11: Model Comparison [VKPM15] (a), and #FluxFlow [ZCW+14] (b).

2.3.6 Influence Summarization
For the summarization of time-evolving influence graphs, Huang et al. [HSS+20] propose
new edge summarization algorithms for nodes, edges, and the temporal dimension to
visualize the evolution of citation influence networks. A tree-like flow map depicts the
influence flow in the network (Figure 2.10(b)). Starting from a source node, the network
shows the flow of influence to node groups, where each group contains a certain number of
clustered nodes (a). The user can tweak the number of clusters, the similarity threshold,
and the minimum citation number to filter more important work. In a timeline view, the
animation controller can be used to view the temporal evolution of the influence graph
(b). A user study and two case studies highlight the usefulness of this approach.

2.3.7 Model Comparison
Vallet et al. [VKPM15] lay their focus on the comparison of different diffusion models.
The user can formally describe diffusion models through a set of graph rewriting rules
and application strategies. The paper presents the transformation of the LT and the IC
models into such as set of rules. A set of rules can be seen in Figure 2.11(a)(6). The
Derivation Tree (3) keeps track of the rule application history. Each node here represents
the graph structure at a certain propagation step. The length of the tree provides insights
about the model’s propagation speed. The authors address possible scalability issues.

2.3.8 Anomaly Detection
Zhao et al. [ZCW+14] use machine learning algorithms to extract anomalies from a
Twitter dataset. The challenge and main focus here lie in distinguishing unconventional
patterns, like the dissemination of rumors or misinformation (anomalies), from more
traditional trends such as popular topics and newsworthy events, which is rather found
in Diffusion Exploration. Via their VA interface #FluxFlow, they present each thread
through a river-like method, as seen in Figure 2.11(b). Users are represented as color-
coded circles, where purple indicates anomalous behavior. The evolution of time is
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following the x-axis. The leftmost thread glyph summarizes the sentiment and overall
anomaly in the thread. The user is provided tools to change anomaly thresholds, compare
threads, and identify anomalous users by tracking them across multiple threads. A
clustered tree view enables the navigation between multiple threads. The effectiveness of
the model is evaluated and shown with two case studies and an expert interview.

2.3.9 Discussion

In the following subsections, we go through some discussion points that each focus on
different findings and compare and relate the collected approaches in more detail. In the
last subsection, we will highlight existing gaps and explain how Thovea fills these gaps.

High Variety in Diffusion Exploration. Among the approaches that provide novel
VA tools to explore diffusion processes, there is a rather great variety of employed
visualization techniques. One dimension of consistency seems to be the use of some
timeline view, be it in the main view or an assistive view. This is not surprising, since all
methods explore diffusion processes with temporal evolution.

SocialWave [STP+17] and Whisper [NYX+12] both make use of a node-link structure.
However, they use a different approach to represent spatial information. While SocialWave
distributes its nodes across the view according to the geographic location of the data,
Whisper uses a more compact technique. Giving up one dimension, Whisper offers the
choice between longitudinal and latitudinal representation. Combined with an underlying
world map, it encodes the spatial information in a compact and, in our opinion, more
elegant way.

We presented three different approaches from Chen et al. that use map metaphors:
E-Map [CCL+17], D-Map+ [CCW+19], and the latest one, R-Map [CLCY20]. D-Map+
extends on D-Map [CCW+16] and focuses on event analysis. As does E-Map. R-Map lays
its focus on a single microblog and offers an in-depth diffusion analysis. One difference
that can be noticed quickly is the different designs of the map metaphor. While D-Map+
builds maps out of many little hexagons, the other two use more natural maps that use
topographical features like countries and rivers to encode semantics. R-Map, however,
uses a more schematic and colorful approach than E-Map, which, in our opinion, is more
intuitive to read from.

We also take a closer look at the two approaches that use river metaphors to convey the
diffusion process. Specifically, OpinionFlow [WLY+14] and EvoRiver [SWL+14]. Both
were published in Issue 12 of IEEE Transactions on Visualization and Computer Graphics
in 2014 and offer a VA environment to explore the diffusion of topics in social media in
some way. Both use case studies to apply their approach to Twitter data. OpinionFlow
focuses on the investigation of opinion propagation in the context of different topics and
events. It intuitively integrates sentiment data into the visualization and makes it easy
to analyze the flow of opinion propagation among users. EvoRiver approaches a different
problem. It prioritizes the relationship between topics. Using a “coopetition” model,
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EvoRiver intuitively depicts the flow of interplay between multiple topics over time. Color
coding in both approaches helps in acquiring a quick overview of the situation.
Key-Player Detection in Diffusion Exploration. When we look at the utility
features defined in Table 2.2, it can be seen that tools for the detection of key players
appear in all but two approaches. Depending on the actual application domain, the tools
enable the identification of topic leaders [SWL+14], key U.S. states in policy diffusion
[HNWC23], and patient zero in a hospital epidemic situation [BPW+21].
Interactive Parameter Tweaking and Comparison in Spread Simulation. When
simulating a spreading process, there is a need to adjust and tweak parameters and models
such that the simulation becomes more accurate and fulfills the user’s requirements. This
is also apparent when we look at our categorization. Every approach offers a set of
parameters that can be adjusted to achieve a more suitable simulation. When it comes
to comparison tools, the situation looks different. Von Landesberger et al. [VLDBF15]
enable a side-by-side comparison of multiple simulation runs. Their system quantifies the
similarity between simulations for each time step and intuitively visualizes the results.
With a glance, the user can identify similar simulations.
In the domain of pandemic and epidemic response, decision-support features play an
important role [MLR+11][YDH+17][AME11]. These decision measures are applied to
the simulation at different time points and different combinations. To evaluate the
most effective decision measures, some sort of comparison tool would be useful. Afzal
et al.’s [AME11] Decision History Tree covers this need. Through a rather compact
timeline view, the baseline simulation line is split once a decision is made. This can be
repeated for a series of measures and results in a tree where the distance to the baseline
and alternative pathways encodes insightful information about the effectiveness of the
measures. PandemCap [YDH+17] also offers comparison tools, however, they are rather
simple. Here, various scores of different simulations can be plotted in the same line chart.
Rather than having one graph where information about the effectiveness of decision
measures can be extracted, the user has to view multiple separate graphs.
Comparing with Different Goals in Mind. Here, we want to briefly look at VAIM ’s
[ADL+22], DiVA’s [SGM+23], and Vallet et al.’s [VKPM15] comparison environments.
Even though all of them offer a comprehensive interface that is geared toward comparing
multiple models and simulation runs, they have notable differences, as, looking at the
taxonomy, we notice that they strive for different goals. VAIM implements popular IM
algorithms and models, which can then be compared to maximize the propagation in a
network with features like “budgeting” seeds and modifying the seed selection technique.
Vallet et al.’s system, different from VAIM, facilitates the creation and application of
a set of common graph rewriting rules with which different diffusion models can be
expressed and compared. They do not focus on IM but rather create a formal common
language to describe and compare different ID models over networks while giving the
user the ability to modify the defined models. DiVA [SGM+23], similarly to VAIM,
offers a dual visualization mode where two simulations can be compared side by side,
as seen in Figure 2.7. In contrast to Vallet et al. [VKPM15], they enable either a
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scalable intra-model or inter-model comparison, where differences in hyperparameter
configurations or selected models are assessed, respectively.

Evaluation Methods. When we look at the evaluation methods that are used by the 28
collected approaches, we see that case studies seem to be a popular way of demonstrating
the different use case scenarios and interaction possibilities. Some approaches also
test their systems by letting people interact with them. Here, we can differentiate
between user studies and expert interviews/ expert feedback. For expert interviews,
respective domain experts are consolidated, while for normal user studies, no experts
are needed. Approaches that also introduce a novel diffusion model or algorithm tend to
utilize quantitative performance evaluation [STTL15] [LWY+20]. Arleo et al. [ADL+22]
evaluate their visualization by making use of an existing value-driven heuristic called
ICE-T [WAM+19].

Literature Gap. Most VA platforms that explore different facets of the diffusion process
are designed to address specific problems within their respective application domain,
[CCW+19, CLCY20, CCL+17, BPW+21, HNWC23, WLY+14, SWL+14], limiting their
generalizability—an area where Thovea excels. Domain-agnostic VA applications, while
more flexible, often exhibit significant shortcomings. Looking at DiVA [SGM+23], we
notice that especially while exploring large graphs, visualization techniques that solely
utilize node-link diagrams can suffer from visual clutter that makes tracking and identi-
fying distinct diffusion pathways difficult, especially when they change over time. Unlike
Thovea, DiVA keeps edges static and does not encode their role in the simulation, pre-
venting users from exploring distinct activation pathways. Similarly, VAIM [ADL+22]
does not provide visual encodings for this information, but rather encodes the probability
of that edge to activate within the context of the respective simulation. While DiVA
supports the comparison of two simulations, Thovea matches VAIM [ADL+22] and offers
the concurrent comparison of up to four simulations. However, both DiVA and VAIM
struggle with visual scalability, particularly when analyzing networks with thousands of
nodes. Additionally, Vallet et al. [VKPM15] specialize in the assessment of ID models,
but support networks with only a few hundred nodes and edges. By addressing these
limitations, Thovea offers a more scalable and comprehensive approach, providing clear,
interactive visual encodings for diffusion pathways while maintaining usability across
large networks.
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CHAPTER 3
Thovea - The System

The design of Thovea follows Munzner’s [Mun09] nested model for design and evaluation
(see fig. 3.1). It entails four layers by which we, first, define the data and tasks within
the context of the problem domain, in our case ID (see section 3.1). From those, we
generate high-level operations and data types (see section 3.2). Subsequently, meaningful
visual encodings as well as interaction methods are identified (see section 3.3). Within
the innermost layer, we implement those design decisions (see section 3.4).

3.1 Data

We model entities that are related to one another via a Network (or Graph) G. A graph
G = (V, E) consists of a set of nodes (or vertices) V and edges E that are vertex pairs
[BM08]. An edge consist of an unordered pair (u, v) ∈ E if it is undirected, and an
ordered pair (u, v) ̸= (v, u) if it is directed. Within the context of Thovea, we support
graphs that either consist of just undirected or directed edges. Within an ID process, a
directed edge signifies that only one entity has the ability to activate the other, whereas
an undirected edge represents a reciprocal relationship, where both entities can activate
each other.

Figure 3.1: Munzner’s [Mun09] nested model for design and evaluation
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We consider a static Graph G = (V, E) as the structure over which we simulate an ID
process via a suitable diffusion model. We refer to G as a ”medium“ graph, meaning that
this represents the base network over which we simulate an ID process. We simulate the
ID process over G for a total of T time steps, where 0 ≤ j ≤ T . We define the set of
vertices Vj ⊆ V and edges Ej ⊆ E that contain all nodes and edges that are active, or
facilitate an activation at step j, respectively. Thus, we can consider the diffusion process
that is happening over G as a ”diffusion“ dynamic graph D = (G0, G1, ..., GT ) where
each Gj = (Vj , Ej) is a static graph that represents the current status of the diffusion
process at time step j. The visualization of such a combination of a static ”medium“
graph G and a “diffusion” dynamic graph D constitute the main challenge in our design
process, as we not only have to find meaningful visualizations for the underlying base
network G but also visually encode a dynamic process (D) on top of it.

We use ID models to encapsulate real-world dynamics of a diffusion process over a
”medium“ graph G. During this process, a vertex V becomes active, a term that generalizes
across different domains. For example, in epidemiology, activation may represent an
individual becoming infected, while in a social network, it can indicate a user being
influenced by another. Accordingly, an edge (whether directed or undirected) becomes
active if it facilitates an activation from one of its vertices to another. For undirected
edges, the ID simulation assigns a direction to an edge to encode the specific flow of
activation between the two vertices.

We use the NDLib [RMR18] to compute the simulation over a given network. We support
the IC and LT models, as well as compartmental models, such as the SIR, which introduce
the concept of node deactivation (e.g., gaining immunity after infection) [LWGZ17].
However, some problems in ID require a comparison to assess the infectiousness, reach,
or effectiveness of a given diffusion simulation. This could be the need to evaluate an
optimal seed node selection for the problem of IM [LFWT18a] or to investigate whether
or to what degree disease prevalence varies based on countermeasures taken [BGG+11].
The investigation of such differences needs to be accommodated.

3.2 Users & Tasks Analysis
The target users of this system are knowledgeable about information visualization and
able to interpret modes of network visualization. Our approach is not tailored to any
specific research domain, which would typically require specialized tools or features.
For instance, in epidemiology, geographical maps are often used in visualizing infection
processes [PL20], which may not be applicable to other areas. Instead, we aim to provide
a domain-agnostic platform designed to address a wide range of problems within the
ID research field. Thus, our target users do not need knowledge specific to application
domains, however, they are knowledgeable in network visualization and interested in
diffusion visualization and algorithms.

By reviewing the literature in the research field of ID in visualization, as described in
Section 2.3, and considering our research questions stated in Section 1.1, we collect

24



3.3. Visualization Design

a set of common tasks across domains of application where ID processes are relevant.
Ultimately, Thovea is designed to support the following tasks:

• T1 Explore the ”medium“ network’s topology, community structures, inter-/intra-
community relationships, and the ”diffusion“ dynamic ID process.

• T2 Compare multiple diffusion simulations concurrently, to analyze differences
and similarities in diffusion patterns.

• T3 Navigate the temporal evolution of the diffusion processes, tracking changes
over time.

• T4 Gain a comprehensive overview of the ”medium“ network, its communities, as
well as the ”diffusion“ network and its diffusion trends—globally, i.e. across the
”medium“ network, and locally, i.e. within the individual communities.

As an example, in the domain of epidemiology, T1 involves analyzing disease spread across
a population, identifying community structures and diffusion patterns, while T2 allows for
the comparison of disease simulations under different interventions, such as vaccination
versus quarantine. T3, instead, tracks the disease’s temporal evolution, observing peak
infection periods and community impacts, and T4 provides a comprehensive view of the
disease’s spread across the population, with detailed insights into specific communities,
like age groups or geographic regions. Similarly, in social networks, T1 investigates how
information or influence spreads, uncovering community structures and inter-community
diffusion, while T2 enables the comparison of diffusion simulations for different content
types, like news versus memes. T3 tracks the evolution of influence or information over
time and, finally, T4 offers a global view of information spread, with the ability to focus
on localized trends within specific communities.

3.3 Visualization Design
As the number of nodes and edges increases, graph drawing algorithms alone cannot
keep up. Therefore, graph filtering and aggregation have become a prominent direction
in large graph visualization [vLKS+11]. Thovea follows this direction by dividing the
problem into smaller problems. As a consequence, we do not need to calculate a fitting
graph layout for the whole ”medium“ network, but only for sub-parts of the network. We
achieve this by introducing a three-layer visualization approach, where each layer provides
a characteristic and integrated visual encoding to support an intuitive comparison of
multiple ID processes across the different layers of abstraction.

Design Challenges. The main challenge when designing the system entailed dealing
with the computational and visual complexity associated with large networks. Our first
design iteration followed a single-layer Level-of-Detail (LoD) approach, where individual
nodes and edges would be aggregated into cluster nodes and edge bundles, respectively.

25



3. Thovea - The System

This results in an abstract representation of the network, providing an overview of the
”medium“ network structure. Selecting a cluster node or edge bundle would reveal the
individual elements inside this group, allowing for the interactive exploration of regions of
interest while keeping the overall context of the network. In our design, the basis for the
groups would be formed by the coordinates, calculated by the continuous force-directed
graph drawing layout ForceAtlas2 [JVHB14]. ForceAtlas2 enables the usage of the LinLog
energy model [Noa07], which causes nodes to repulse each other like charged particles
and edges to act as springs pulling together the nodes adjacent to it. It iteratively applies
such forces until the node positions converge into a balanced state with minimum energy.
This tends to reveal local group structures within the network visually [JVHB14].

However, we encountered two main challenges: (i) achieving a readable layout and visually
distinguishing clusters from the network proved to be time-consuming, and (ii) grouping
nodes into clusters based solely on visual separation was difficult. As a result, we opted
to use the Louvain method [BGLL08] to assign each node to a cluster. However, this
dual clustering approach introduced ambiguity and inconsistencies, making it impractical
to calculate the size and position of the corresponding high-level cluster nodes.

These problems prompted us to take a step back and reevaluate our design. We tackled the
scalability problem by dividing the computational load into smaller problems. Computing
a layout of a network with thousands of nodes was simply too time-inefficient. Therefore,
we decided to first determine the communities within the ”medium“ network using the
Louvain method [BGLL08]. Once assigned, we could then limit the layout calculations to
consider only the individual communities. Thereby, we address the problem of scalability
and avoid ambiguous community assignments by only relying on one method. This
approach was inspired by Onoue and Koyamada’s group-in-a-box layout [OK17]. Their
graph drawing algorithm is designed to highlight the predefined group structures within
a graph and reorder those groups to avoid overlaps in the drawing, however, it struggles
with larger networks.

Three-Layer Approach. The primary view of Thovea employs a three-layer visualiza-
tion approach. Figure 3.2 showcases the concept of this approach: The first view is called
the Overview Layer (1) and operates on the highest level of abstraction. It divides the
loaded ”medium“ network into non-overlapping communities. The main purpose of this
layer is to provide an aggregated, high-level overview of both the underlying ”medium“
and the ”diffusion“ dynamic network. The second layer enables the investigation of
topology and local diffusion trends inside selected communities. It is accordingly referred
to as the Local Layer (2). Here, after the initial assessment in the Overview Layer, one can
delve deeper into specific communities and explore local diffusion patterns. The Detail
Layer (3) constitutes the final step of this three-layer approach and contains low-level
information about nodes and their relationships to each other. Here, distinct diffusion
pathways can be revealed and explored. This approach is in line with Schneiderman’s
mantra, which states “Overview first. Zoom and filter. Details on demand” [Shn03].
Each layer contains its own set of interactions and visualizations, designed to fit the
respective level of abstraction.
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Figure 3.2: Flowchart of Thovea’s layers: Overview Layer (1), Local Layer (2), and Detail
Layer (3). One Node is highlighted throughout the layers.

Across all three layers, zooming and panning can be used to navigate within the view.
We offer different ways of highlighting nodes of interest, e.g. they are marked in pink
and are easier to track when switching between layers (T1) (see fig. 3.2).

Overview Layer. The main purpose of this layer is to provide an overview (T4) of the
”medium“ network and the ID process (see fig. 3.3-D). Therefore, we do not intend to
show any individual nodes at this layer. Instead, the Louvain method allows us to detect
community structures inside networks [BGLL08] and assigns each node of the network
exactly one community. As seen in Figure 3.3-D, each community is represented via a
rectangular Community Tile. The size of this tile is proportional to the number of nodes
inside the respective community, allowing for a quick assessment of the communities’
sizes relative to each other. We connect two Community Tiles via an Edge Bundle. An
Edge Bundle represents the collection of all edges that connect two nodes from different
communities. The size of such an Edge Bundle is proportional to the interconnectivity of
the related communities and is scaled relative to the minimum and maximum observed
instances to ensure a normalized representation. As a measure against edge clutter, we
only show the largest Edge Bundle. We refer to such an Edge Bundle as the dominant
one. Only when hovering over or clicking on a Community Tile, all the Edge Bundles are
shown (see fig. 3.2(1), Community 2). If a Community Tile contains a highlighted node,
it is visually emphasized via a pink border (see fig. 3.2(1), Community 2).

Once a diffusion simulation is loaded, there are additional visual representations that
encode the diffusion trends inside and between the communities of the ”medium“ network
for each specified time step. Each Community Tile contains n colored bars, where n is
equal to the number of loaded simulations (T4) (see fig. 3.3-D; green, blue, magenta
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Figure 3.3: Thovea interface: (A) Setup view containing drawing parameters, node search
& highlight, simulation control panel, and loading tools; (B) Community-wise stats
and metrics; (C) Global stats and metrics; (D) Primary visualization view—currently
showing the Overview Layer for three simulations, (E) Panel for customization of primary
visualization including the Time Control Panel.

bars). This constitutes a multivariate network visualization where the topology serves
as a base representation with embedded ID-related attributes [HSS15]. The height of
each bar encodes the activation rate of the respective simulation within that community.
This simple juxtaposition enables the user, via a glance, to assess relative differences in
activation rates between communities, as well as to compare intra-cluster reach between
loaded diffusion simulations via a local side-by-side comparison (T2).

The user also has the option to explore the role of a community in propagating information
to its neighbors. To do that, the user has to hover over a simulation bar inside the
desired Community Tile (T1), which unfolds a set of two Diffusion Flux Circles for each
Edge Bundle (T4). The term Diffusion Flux refers to the flow of information from one
community to the other, one circle for each direction. As seen in Figure 3.2(1), hovering
over Community 2 reveals green circles traveling from Community 2 to its neighbours
and vice versa. The speed of this circle is determined by the activation rate of available
diffusion paths in their respective directions. We calculate the speed by assigning each
direction (eg. Community 1 to Community 2) a speed value S where

S = MIN_SPEED+((infected/connectivity)∗(MAX_SPEED−MIN_SPEED))

MAX_SPEED and MIN_SPEED refer to the set boundary values that the speed S
cannot exceed. infected contains the number of inter-community edges that facilitate an
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activation from the source to the target community (eg. Community 1 to Community
2). We divide this value by the connectivity of these communities. For undirected
graphs, both directions (e.g. Community 1 to 2 and 2 to 1) have the same connectivity
value, namely the total number of inter-community edges between two communities.
For directed graphs, connectivity only considers the inter-community edges pointing in
the respective direction. If, for a direction, none of the available paths are activated,
the corresponding circle remains idle and is therefore omitted. This is due to the
MIN_SPEED variable being set to 0 within the implementation. The visual encoding
regarding the Diffusion Flux Circles follows the idea behind unfolding edges [BDT23] and
incorporates multivariate edge attributes dynamically. Initially, the choice of considering
a motion-based approach was inspired by Ware’s contributions [WB04, WB05] and its
use in dynamic network visualization [VAA24] (T1). The decision was made due to the
following considerations: (i) we wanted to avoid overloading the color channel, as the
system already uses four colors for the visual encoding of the simulations, and (ii) the
high-popup effect it would introduce. To avoid user distraction, we only show circles
that are traveling from or towards the currently hovered Community Tile. During initial
iterations, we concluded that displaying the circles of each community leads to too much
clutter and distraction.

There are three customizable parameters special to this layer, as follows: (i) The Louvain
method [BGLL08] accepts a resolution parameter that determines the size of the retrieved
communities. The higher the resolution, the more communities will be produced. To find
an optimal split, the method optimizes modularity [New06], which scores the relative
density of intra-community edges to inter-community ones. The Louvain Resolution
Slider (see fig. 3.3-A) enables the user to reconfigure the Louvain method to split large
communities into smaller ones, so a more concise selection can be investigated in the
subsequent layers; (ii) To customize the set of visible Edge Bundles, the user can set a
relative threshold via the Edge Visibility Threshold (see fig. 3.3-A). Only edges with a
size above a threshold will be shown. Especially for larger networks with a high number
of communities, one might want to focus on the more tightly connected ones and hide the
smaller bundles that would otherwise lead to edge clutter; (iii) The Maximum Oscillation
Speed (see fig. 3.3-A) slider controls the maximum travel speed of the Diffusion Flux
Circles. By pressing the pause symbol, the user can turn off this feature.

To investigate the local topology and diffusion propagation of a subset of communities,
the user can select them by clicking the corresponding Community Tiles and proceed to
the Local Layer by pressing the “Investigate” button (T1) (see fig. 3.3-E).

Local Layer. The goal of the Local Layer is to provide the local context of the selected
communities by integrating topological and local diffusion information, while omitting
detailed information about node attributes and, optionally, position. The local node
layout is calculated using the force-directed ForceAtlas2 [JVHB14] algorithm, due to its
efficacy for larger networks, ease of use through existing implementations [Pli25], and
good performance on networks with sizes that we also aim to accommodate [JVHB14].
Thovea pre-calculates the layouts for every single community and stores them in the
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Figure 3.4: The Local Layer with two communities selected (indicated within the dashed
blocks) and nodes and edges toggled on. The dominant Edge Bundle between the
communities is shown with the thick, connecting line. Two simulations (blue vs. green)
are loaded, shown at time step 0.

browser’s memory. This enables seamless exploration of many communities without
having to wait for loading times during the exploration (T1). Only when selecting two
or more communities, we need to calculate their aggregated layout on demand, before
switching to the corresponding Local Layer, as pre-calculating every combination of
communities would be too inefficient.

As seen in Figure 3.4, the visualization method employs a Kernel Density Estimation
(KDE) [and17] using the calculated positions of all nodes within the selected communities
of the ”medium“ graph and draws the result as a contour plot, which we call base contours.
We choose a density-based approach [ZBDS12] to accommodate the visualization of a
large quantity of nodes to deal with possible clutter and overplotting (T4). After all, the
selected communities could easily contain up to thousands of nodes. However, there are
situations or selections where additional context in the form of node position or edges
might be useful. To facilitate this situational need for additional context, we enable
toggling on or off the rendering of individual nodes and edges (T1) (see fig. 3.4, bottom).
Each node highlighted by the user can be identified by its pink halo (see fig. 3.2(2)).
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(a) Nodes and edges hidden (b) Nodes and edges visible

Figure 3.5: Local Layer representation of one community: (a) without and (b) with
additional context through nodes and edges.

We employ Wallinger et al.’s Edge Path Bundling [WAA+23] to reduce edge clutter (see
fig. 3.4). Their implementation also specializes in eliminating independent edge ambiguities,
which describes the problem where two independent edges are bundled together, such
that two non-adjacent vertices are visually connected (see fig. 3.6). We divide the edges
into two categories: inter-community edges and intra-community edges. We visually
emphasize the inter-community edges, since they can be critical in identifying jumping
points between communities (see fig. 3.4) (T1). Intra-community edges, depending on
the loaded network, can provide additional context to the density contours and help
avoid incorrect assumptions about the underlying topology (see fig. 3.5).

Once an ID simulation is loaded, we take the set of activated nodes from the ”diffusion“
dynamic graph at the current time step and draw simulation contours around them,
according to a KDE calculation [and17]. We do this for each loaded simulation. As seen
in Figure 3.4, this results in a superimposed representation that highlights activated
sub-regions of the selected communities (T4), while also enabling quick assessment of
regional differences of multiple simulations (T2) (see fig. 3.4). From a visualization
perspective, we aim for an “ink drop" effect using node splatting [NBW14]. If nodes
are toggled on, they are rendered in the respective colors of each simulation where it is
activated at the current time step (T2) (see fig. 3.4). While navigating through time,
the simulation contours dynamically evolve, continuously shifting in size and shape as
they adapt to the underlying changes in node activation status. Thereby, we aim for
an intuitive visual metaphor of a diffusion process evolving through time (T3). We
allow the adjustment of the KDE bandwidth parameter to either sharpen or smooth the
resulting density field. This provides independent control over both the base contours and
the simulation contours. A higher bandwidth results in smoother contours by blending
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Figure 3.6: Independent Edge Ambiguity as described by Wallinger et al. [WAA+23]

nearby points, while a lower bandwidth captures finer structures at the cost of potentially
introducing noise.

Once the user has identified a region of interest, further investigation can be conducted.
For this purpose, they can enter the Detail Layer. There are two interaction techniques
to enable the following layer (T1): (i) The user can hover over and click on a simulation
contour. This selects every node inside the contour. (ii) Alternatively, the selection circle
can be opened by right-clicking (see fig. 3.2(2)). The user can make a more fine-tuned
selection by moving the mouse and using the scroll wheel to modify the radius. The
number of nodes encircled can always be viewed at the top of the circle.

Detail Layer. The Detail Layer is designed to accommodate the detailed investigation
of no more than a few hundred nodes. At this point, we expect the user to be fully aware
of the context in which the diffusion takes place, which communities they are in, and
which sub-regions they are currently investigating (e.g., see fig. 3.2(1)-(3)). Here, by
right-clicking the desired node, we enable the viewing of node-specific metadata via the
node profile tooltip window (see fig. 3.7 (b), (c)). It contains the node’s label, attributes
like (in/out)degree, closeness centrality, and community, as well as information regarding
the loaded ID simulations. Each simulation is represented via its associated color in
a column, containing: the time of activation (infectedAt), the source of its activation
(infectedBy), and the time it is removed (removedAt). If the node profile lists source nodes
at row infectedBy, they can also be highlighted by clicking on them, thereby the user can
trace back activation pathways (e.g, see fig. 3.8) (T1). This layer can be explored via
three different node-link layouts, each serving a different purpose, as described in the
following (T1) (see Figure 4.5 (a):

ForceAtlas2 : By default, when landing on the Detail Layer, the ForceAtlas2 [JVHB14]
coordinates from the previous layer are reused (see fig. 3.7). The reasoning behind this
decision is that we want to keep the mental map of the user [BB99], as we are already
switching from one mode of visualization (density-based) to another (node-link), we
avoid simultaneously rearranging the nodes’ positions. Node labels are shown and can be
resized using a font slider.

d3.forceSimulation: By selecting d3js’s force layout [BOH11], the nodes are rearranged,
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Figure 3.7: Detail Layer of a co-authorship network using a ForceAtlas2 layout, with
the node profiles of Munzner T. (c) and Zhang X. (b) expanded and highlighted. A
minimized view of the Local Layer (a) is placed at the top left.

thus leading to a more compact and optimal representation, where less zooming and
panning are required (see fig. 3.8). However, we omit node labels at this stage to avoid
clutter, as nodes are now much closer.

Sugiyama-style: If, and only if at least one ID simulation is loaded, we allow the usage of
a more specialized layout (see fig. 4.1(c)). Here, for each time step, we only consider the
following nodes: (i) all activated nodes, except those that currently are not, or were not
activated by any node within this layer, (ii) inactive nodes that were active in previous
time steps and have activated at least one neighboring node within this layer that is
still active. This generates a Directed Acyclic Graph (DAG), which we can leverage by
employing a hierarchical graph drawing layout such as Sugiyama [STT81]. Hierarchical
graph drawing layouts perform better at providing more effective visualization of cascades
through networks [AP16].
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Figure 3.8: Detail Layer of a co-authorship network using a d3-force layout, with two
simulations active. Authors along a path between the seed and the target author are
highlighted.

All three layers encode the ID process, primarily via the respective colors of the simulations
(see fig. 3.8). A node is (partially) painted in the colors of a simulation if, at the current
time step, this node is active within the respective simulation. Similarly, we paint edges
in the corresponding colors if their target node is active. An edge, that carries an
activation, encodes the direction of the diffusion via an arrowhead. This arrowhead is
also painted according to the activating simulation (T1, T2). Additionally, edges can
be visually distinguished into inter- and intra-community edges, using dashed and solid
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lines, respectively (T1) (see fig. 3.8).

At the top-left of the Detail Layer, we retain a minimized view of the Local Layer
across all selectable layouts. This ensures that contextual spatial information remains
accessible, allowing the user to always see which part of the community they are currently
investigating. This is an additional measure to help maintain the user’s mental map
when diving into the final layer (T1).

Auxiliary Components. Besides the primary view, which hosts the three-layered
visualization, we offer three auxiliary components. The panel on the left (see fig. 3.3-A)
includes tools related to loading the network and the precalculated simulation files, as
well as layer-specific drawing parameters used to modify and customize the visualization.
We list all loaded simulations via their specified simulation names together with their
assigned color in the Simulation Control Panel (see fig. 3.3-A). An eye-themed button
can be pressed to show or hide a simulation across all other components. We offer a Node
Search & Highlight panel to not only search for specific nodes in the network but also
highlight specific nodes. All highlighted nodes are compiled in a list where they can be
removed too (see fig. 3.3-A) (T1).

The Global Metrics panel offers basic stats and information about the loaded ”medium“
network and ID simulations (see fig. 3.3-C). Some of the network stats are on-demand since
the calculation for large networks can be computationally intensive and time-consuming.
For each loaded simulation, its respective simulation card can be viewed. It contains
the name, associated color, total coverage across the entirety of the network, and a list
of its seed nodes (T4). Seed nodes can be directly highlighted here. By pressing the
circular button with the arrows, we can access the alternative Chart View. Here we plot
global diffusion trends for each simulation (T4) (see fig. 4.10a). Depending on the model
employed, we can view the evolution of nodes inside the categories, Susceptible (dotted),
Infected/Activated (solid), and Removed (dashed). As seen in Figure 4.10b, the absolute
and relative number of nodes in each category can be viewed in tooltips by hovering over
the desired time step. This hovering is coordinated across all charts and opens tooltips
for each. We thus enable an additional way to easily compare diffusion trends across
simulations (T2). We allow setting the time step by clicking on the corresponding points
in the chart (T3).

The panel at the bottom-middle of the system serves as an extension of the Global Metrics
panel (see fig. 3.3-B). It shows the same type of information, specifically for the selected
communities. If multiple communities are selected, then it aggregates stats and charts
(T4).

Accessible from every layer is also a Time Control Panel, enabling the navigation between
the time steps of the simulations (T3) (see fig. 3.3-E). Thovea requires all loaded
simulations to be of the same length. The user can navigate in steps of 1 or 10, or use
the play button to automatically advance through time.
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3.4 System Architecture

To provide all the functionalities required to fulfill T1–4, we require a comprehensive user
interface. We decided on a single-page web application using React [Rea]. The interface
depends mainly on the JavaScript libraries D3 [BOH11] for the different visualization
modes and graphology [Pli25] for the representation and management of a Graph object.
Graphology also provides implementations for the ForceAtlas2 Layout [JVHB14] and
Louvain method [BGLL08]. For the Sugiyama layout [STT81], we use an implementation
found within the d3-dag [Bri23] library. Wallinger et al. [WAA+23] have implemented the
Edge Path Bundling using the programming language Python. We therefore connect the
client-side via a REST API to a Flask [Pal24] server and include a module to calculate the
edge path bundles on the server upon request from the client. Thus, Thovea implements
a client-server architecture, and its implementation can be found within the GitHub
repository [mer25].

To load a graph into Thovea, it has to be a .json file in the following format:

1 {
2 "options": {
3 "type": <"undirected"||"directed">
4 },
5 "nodes": [
6 {
7 "key": "0",
8 "attributes": {
9 "label": "Some Label"

10 }
11 },
12 {
13 "key": "1",
14 "attributes": {
15 "label": "Some other Label"
16 }
17 }, ...
18 ],
19 "edges": [
20 {
21 "key": "0",
22 "source": "0",
23 "target": "1"
24 }, ...
25 ]
26 }
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The graph has to exclusively contain either directed or indirected edges. Furthermore,
multi-graphs are not supported. The simulation files are also .json files that have to be
formatted as follows

1 {
2 "type": < "SIR" || "IC" || "LT" >,
3 "name": "name of simulation",
4 "iterations": <model.iteration_bunch(n)>,
5 "trends":<model.build_trends(model.iteration_bunch(n))>
6 [0]["trends"]
7 }

We refer to NDLib [RMR18] functions in the format file. The term model inside the
description refers to the chosen NDLib model, e.g., model = ep.SIRModel(G), where G
is an instance of NetworkX’s [HSS08] Graph() or DiGraph() object A Python script to
create custom simulation files and the example datasets used in this thesis can be found
within the GitHub repository [mer25].

The color palette used by this system is chosen to be color-blind friendly [TP23].
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CHAPTER 4
Evaluation

We conduct a comprehensive assessment of our system to ensure a thorough evaluation
from both qualitative and quantitative perspectives. First, we elaborate on the datasets
used in Section 4.1. Second, we present two case studies in Section 4.2 to illustrate the
system’s real-world applicability and effectiveness in practical scenarios. Furthermore,
we apply the ICE-T [WAM+19] evaluation methodology in Section 4.3 to provide a
structured and standardized quantitative analysis.

4.1 Datasets
For the evaluations, we deliberately select four diverse datasets, each accompanied by its
own collection of ID simulation files. Two of those are shown later in our case studies.
These datasets are chosen to represent a range of real-world network structures and
diffusion dynamics. By selecting these datasets, we aim to demonstrate the robustness,
generalizability, and adaptability of our approach.

The first dataset is an InfoVis co-authorship network, constructed from publications at the
IEEE InfoVis conference from 1995 to 2015 [SCH+16]. Each node represents an author
and is labeled with the author’s name. An undirected edge is placed between authors
who have co-authored a paper published in one of the aforementioned conferences. The
final network contains 698 nodes and 1,806 edges. This network captures the diffusion of
academic collaboration within our community through the span of 20 years.

The second dataset includes a network of Facebook pages associated to companies and
available on the Network Repository [RA15]. Each node corresponds to a company’s
Facebook page, identified by its name and a unique Facebook-specific page ID. An
undirected edge is placed between two nodes if the two Facebook pages have both liked
each other. This dataset provides insights into social media connectivity and mutual
relationships between corporate entities. It entails 4,704 nodes and 21,921 edges.
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Figure 4.1: Snapshot of Thovea’s Three-Layer pipeline for Case Study 1: InfoVis Co-
authorship Network. (a) Overview Layer of two different ID simulations (blue and green),
where three communities (2, 3, 8) have been selected; (b) Local Layer with a density-based
visualization of the selected communities just for the green simulation, and two nodes
highlighted (in magenta); (c) The selected circular area from (b) is viewed through a
Sugiyama layout, enabling the investigation of detailed activation pathways between the
selected nodes.

Thirdly, we include a dataset representing the European Power Grid Network [Mar22] via
an undirected graph. Each node of the grid includes information about the country it’s
located in and the energy price at that location. The network contains 6,659 nodes and
8,309 undirected edges. In this case, ID simulations model cascades of power plant failures,
reflecting the vulnerability and propagation dynamics within a critical infrastructure
system.

Our fourth dataset is the German QAnon Telegram Dataset [Tho21], which maps the
spread of information within conspiracy-related Telegram channels. Each node in this
network represents a Telegram channel associated with conspiracy theories. If a message
has been forwarded from one channel to another, a directed edge is placed between
them. The network consists of 3,525 nodes and 8,471 edges. An ID simulation on this
network can simulate how information, including misinformation, propagates across
online communities.

4.2 Case Studies
In this section, we present two case studies and showcase how the design decisions and
visual encodings can be used to fulfill the tasks described in Section 3.2. For that, we
have chosen the InfoVis co-authorship network [SCH+16] and the Facebook network of
company pages [RA15].

Case Study 1: InfoVis Co-Authorship Network. For this case study, we have
prepared two simulation files. Both use the IC model to simulate an ID process over this
network, with one seed author each. Since the model accepts an activation probability
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Figure 4.2: Snapshot of Overview Layer during Case Study 1 with Metrics View opened:
Panel for graph selection and upload (a). Panel for simulation selection or upload (b).
Community 2 (contains the target author) is selected (c). Simulation card of blue and
green simulation. The green simulation card’s seed node list is expanded (d). Community-
wise simulation cards of green and blue simulation (e). Simulation Control Panel with
both simulations visible(f)

for each edge, we assign each edge a weight that is proportional to the number of
contributions two authors have co-authored. We can interpret these edge weights as a
measure of the influence that one author can have over the other. After all, more frequent
collaboration can manifest as the spread of a particular common topic or idea across an
author’s academic sphere. Even though the co-authorship network itself is undirected, as
the ID process unfolds, activated edges will become directed, thereby encoding which of
the two authors has influenced whom. With this in mind, we will now investigate which
of the two seed authors can assert their influence further into the co-authorship network
and where differences lie.

We start by loading the InfoVis dataset (see fig. 4.2(a)) and both simulation files into the
system (see fig. 4.2(b)). The seed nodes for these simulations are Miksch S. (blue) and
Munzner T. (green), two well-connected authors and high-profile figures in visualization
research. In the context of this case study, we look for communities where there is a
noticeable difference in reach between the two simulations (T2) at a global level (T4).
We can identify that Community 2 expresses such characteristics (see fig. 4.2(c)). Only
author Munzner T. can assert influence over that community. This can also be confirmed
by looking at the community-wise simulation cards in Figure 4.2(e), where Munzner T.
reaches 16.67% convergence and Miksch S. 0%. Switching to the chart view reveals the
temporal evolution of that same behaviour in Figure 4.3(b). Additionally, the global
chart view reveals that the green simulation reaches convergence faster than the blue
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Figure 4.3: Snapshot of Overview Layer during Case Study 1 with Chart View opened:
Global chart (a). Community-wise chart view while Community 2 is selected (b).

one. It also reaches a higher global coverage of 47.71% rather than the 41.83% of the
blue one (see fig. 4.2).

We refer to the author who serves as an entry point into Community 2 as the target
author. To understand how the seed author can assert influence over our target author,
we can trace back the diffusion process. Starting from Community 2, we identify each
author who has played a role in that process (T1). In preparation for that, we first
hide the blue simulation using the Simulation Control Panel (e.g. see fig. 4.2(f)), as for
now, we only focus on the green one. Then, using the appropriate simulation card, we
highlight the seed node (author Munzner T.) using the seed node list (e.g. fig. 4.2(d)).
This marks the community that contains the seed author with a distinctive pink border
(see fig. 4.2, Community 3).

Now that we can visually distinguish the seed community, let’s focus our attention
on Community 2: We hover over Community 2 and realize that it connects only to
Community 8 (see fig. 4.1(a)). Therefore, we can conclude that an author from that
community must have direct influence over Community 2. Hovering over Community
8 reveals all their inter-community Edge Bundles and their respective Diffusion Flux
Circles. We immediately notice that there is only one such circle that is traveling towards
Community 8. The source of this circle is Community 3, which happens to be the
community that contains the seed author (see fig. 4.1(a)). Thus, we have successfully
identified all the relevant communities. We select all three communities (3, 8, 2) and
progress onto the Local Layer.

As seen in Figure 4.1(b), we can view the topological characteristics of our selected
communities (T4). By default, the inter-community edges are shown and indicate the
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Figure 4.4: Snapshot of Local Layer during Case Study 1: seed author Miksch S. (a)
and target author Zhang X. (b) are highlighted via the pink halo. Both simulations
are toggled on (c), and the current time step is set to the last one. We can see that
Community 2 only contains a green simulation contour, and no blue contour (d). We can
see which areas are superimposed by only one simulation.

connection points between the three communities. We pinpoint the target author by first
setting the active time step to 0 and traversing through the time domain in increments
of 1 (T3). At time step 5, we see the first simulation contour appear inside Community
2 (see fig. 4.1(b)). We click on it to briefly visit the Detail Layer. We do this to open
the node profile window of the target author and highlight it, such that we can track
the target author across all layers. The result of this can be seen in Figure 4.5(c). We
go back to the Local Layer and can now clearly identify the seed and target author (see
fig. 4.1(b)). To showcase the superimposed comparison of our two simulations’ contours,
we show the blue simulation again (see fig. 4.4(c)). In Figure 4.4, we navigate to the last
step and investigate the activated areas within. In Community 3, which contains the
seed author of the green simulation, we can see that both the green and blue simulations
activate broad areas within the community (a). The same can be said for Community 8
(b). However, when it comes to Community 2, we notice an absence of blue simulation
contours (d) (T2). To continue with our goal for this case study, we hide the blue
simulation again and investigate the exact cascade between the seed and the target
author. We open the selection circle tool and adjust the location and radius such that it
includes not only our highlighted author, but also all authors that might have played a
role in reaching the target author (see fig. 4.1(b)) (T1).

The Detail Layer initially renders the ForceAtlas2 layout [JVHB14] as seen in Figure 4.6.
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Figure 4.5: Snapshot of Community 2 in detail Layer during Case Study 1: ForceAtlas2
[JVHB14] layout selected. Clicking on the "Layout" selection field opens a dropdown
menu that contains the 2 alternative layouts: d3-force [BOH11] and Sugiyama [STT81]
(a). A font slider scales the node labels (b). Zhang X. is highlighted. Within the green
simulation, it influences 2 other authors in this Community: Gou L. and Hu Y. (c)

We immediately switch to the Sugiyama layout [STT81] as seen in Figure 4.1(c), as it
supports a more efficient investigation of distinct cascades [AP16]. As seen in Figure 4.6,
starting from the target author (Zhang X.) (d), we open the corresponding node profile (b)
and highlight the author that has influenced Zhang X. (e) by clicking on the infectedBy
field. We repeat this for every new source author that gets highlighted until we reach the
seed author (c), thus revealing the four authors over whom Munzner T. has influenced
Zhang X. (T1). At this point, we show the blue simulation again and see that the seed
author of the green simulation is also activated in the blue one by author Hoffman E.
(a) (T2). We refer to Figure 3.8 and assess the role of our newly identified key authors
concerning the blue simulation, which could not make its way to Community 2. It
manages to influence an author that has a direct connection to Community 2, however,
this connection fails to activate (T2) (see fig. 3.8).

Case Study 2: Facebook Network of Company Pages. For the second case study,
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Figure 4.6: Snapshot of Detail Layer during Case Study 1: All influenced authors from
community 2,3, and 8 are visible. Dashed edges indicate an inter-community edge. Node
profile of Miksch S. (a) and Zhang X. (b). All authors along the path from Miksch S. (c)
and Zhang X. (d) are highlighted. Author (e) activates author (d)

we showcase the system’s capabilities to handle larger networks and choose the Facebook
network. The simulations for this dataset all use the SIR model [LWGZ17] with an
infection rate β of 0.01 and a recovery rate γ of 0.005. We can interpret this as a piece
of information or news spreading across the network of Facebook pages. Since an edge
between two pages means encoding a mutual like, we can assume that this piece of
information can spread from one page to the other. In accordance with the SIR model, a
page is considered Infected if it discusses or interacts with this piece of information or
news, and Removed if it no longer engages with it.

The seed selection technique is as follows: All three simulations use a seed set of 10%
of the total node count. As seen in Figure 4.7(a), each employs a different selection
metric. One uses randomly selected seed nodes (blue), the other two take the nodes
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Figure 4.7: Snapshot of Overview Layer during Case Study 2:

with the highest closeness centrality (magenta) and degree (green), respectively. Our
goal is to investigate the differences in reach among these seed selection strategies and
identify communities that exhibit such discrepancies. This relates to the problem of IM.
Accordingly, we start our investigation by assessing the different seed selection techniques
in terms of their reach.

The simulation cards (see fig. 4.7(a)) reveal (T4) that the random selection strategy,
with 92.98% reaches the most pages globally. It is followed closely by the strategy using
closeness centrality (92.43%). Choosing the top 10% nodes with the highest degree gives
us the smallest reach, with 91.41%. It is certainly interesting that the naive random seed
selection method results in the highest coverage (T2).

To find a possible explanation, we can interact with the Overview Layer. Firstly, it
seems that the network is tightly connected across the board, with larger, more central
communities in the middle and smaller ones at the peripheries (T4) (see fig. 4.7(b)). The
simulation bars inside the Community Tiles give us an idea of how engaging a piece of
information is inside each community (see fig. 4.7(c)). The reach of all seed strategies
across the larger communities tends to be more balanced than in the smaller ones
(T2,T4). To further investigate our initial observation, we select all smaller communities
(T1) (see fig. 4.7(b)). The community-wise stats view (see fig. 4.7(d)) aggregates the
convergence of each community and displays them for each simulation (T4). The gap
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Figure 4.8: Snapshot of Overview Layer during Case Study 2 at time step 0: All the
larger communities are selected (a) with community-wise simulation cards open (b).

between the random technique and the other metric-based techniques is evident compared
to the global situation: While the random seed set selection reaches 91.19% coverage,
the others do not even reach 89% (T2).

The seed selection method that only considers the most connected nodes seems to
perform worse in reaching the smaller communities in the peripheries (see fig. 4.7(b), e.g.,
Communities 15,21,26,28). This is no surprise, since the best-connected nodes tend to
be inside the larger communities. If we switch to the community-wise chart view (see
fig. 4.10b), we can see that the closeness centrality technique barely has any seed nodes
located in the selected set of small communities (T1). While the highest degree strategy
employs 71 seed nodes in the selected region, the random selection almost doubles it with
136 nodes (T2). Though less in quantity, the metric-based strategies, due to their tighter
connections, remain somewhat competitive in this selected subset of communities (T3).

Now, let us look at the larger communities. We deselect all currently selected and proceed
to select only the larger communities as seen in Figure 4.8(a) and navigate to time step
0. We can see that among those larger communities, the seed-selection strategy going for
the top 10% of nodes with the highest closeness centrality has marginally the highest
coverage (see fig. 4.8(b)). Furthermore, in Figure 4.9(b) we can see that among those
larger communities, the metric-based seed selection techniques (degree and closeness
centrality) have more activated nodes at time step 0, thus more of these better-connected
nodes are inside the larger communities. This is in line with our findings when we had
only the smaller communities selected.
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Figure 4.9: Snapshot of Overview Layer during Case Study 2 at time step 0: All the
larger communities are selected (a) with the community-wise chart view open (b).

4.3 ICE-T Expert Interview
Many evaluation methods rely on low-level questions that fail to capture the broader
significance of a visualization. To address this limitation, we adopt a value-driven
assessment for evaluating Thovea, following the approach by Stasko [Sta14]. He proposes
that the value of a system can be described via four different capabilities:

• Time. Captures whether the visualization can facilitate faster and more efficient
searching of a particular information or casual scanning of the dataset.

• Insight. Refers to a visualization’s capability to enable the extraction of intentional
and incidental insights

• Essence. Captures the ability of a visualization to provide the essence of the dataset,
in terms of overview and surrounding context.

• Confidence. Refers to the confidence the user has in the quality of the data and
visualization. In particular, it describes the ability of the visualization to convey
missing or false data and accurately represent the data, respectively.

Building on this framework, Wall et al. [WAM+19] introduce the ICE-T methodology,
which enables a structured quantitative assessment of these four components. Each
component is divided into three guidelines, further divided into a few low-level heuristics,
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(a)

(b)

Figure 4.10: Community-wise chart view of three simulations without hovering over (a),
and with hovering over such that a tooltip appears (b).All the smaller communities are
selected within case study 2.

formulated as rateable statements. Study participants evaluate the system by rating
these on a scale from 1 (strongly disagree) to 7 (strongly agree). In total, each participant
assesses the system by rating the 21 heuristics. To consider our system valuable, we set a
target global cumulative average score of 5 or higher, ensuring that Thovea meets a high
standard of effectiveness and usability. The ICE-T questionnaires and all evaluation-
related materials are included in our supplementary material.

Participants. As required by the ICE-T methodology, we recruited through personal
contact five participants who are experts in the field of Information Visualization and VA.
One has a strong focus on dynamic network analysis. Another has contributions in the
field of network and multivariate data visualization. Two of our participants’ research
focuses on temporal data. Furthermore, one of our participants has experience with
information visualization in an industry context. The participants comprised an assistant
professor, a post-doctoral researcher, a PhD student, a senior researcher, and the head
of a visual computing research group. In terms of demographics, 3 of our participants
were male and two were female. None of the participants were involved in the design
process of Thovea and had no knowledge of the system prior to the interview. All were
required to sign a consent form compliant with the European General Data Protection
Regulation before the interview (GDPR) and they did not receive compensation for their
participation. All of them were familiar with the concept of ID, with some dealing with
ID in their daily line of work.

Protocol. The ICE-T study was set up as a set of individual expert interviews. Since
most of our participants could not be present physically, we conducted an online interview
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with each participant individually via Microsoft Teams. The 1-hour expert interviews
were structured as follows:

• Introduction (5’): At the start of each session, an introductory presentation
highlighted the purpose behind the system. Here, we also indicated that the
participants could at any point stop the experiment if they deemed so.

• Demo (10’): A live demo of Thovea showcased all its features and familiarized the
participant with its usage.

• Free Interaction (30’): The participants were asked to explore the system on
their own and vocalize their actions and thoughts following the think-aloud method.
Each participant was offered a set of tasks for their example dataset of choice
(among the four described above). However, it was made clear that solving those
tasks was not mandatory.

• Feedback (15’): We asked each participant for some post-evaluation feedback to
supplement their quantitative scoring. The questions were as follows: (i) The system
was designed with four tasks in mind (Overview, Explore, Navigate, Compare). Do
you agree with our design decisions regarding those tasks? And which ones do you
not agree with?; (ii) What did you like?; (iii) What features did you miss when
interacting with the system?

After the interview, each participant was provided with the ICE-T Questionnaire. They
were instructed to fill it out at their convenience. Since the system was hosted as a web
application, the participants could revisit the system while filling out the questionnaire.
The evaluation was considered complete once we received the ICE-T questionnaire.

Results. The average score for each component across all participants is presented
in Table 4.1. We follow a standard score aggregation procedure outlined by Wall et
al. [WAM+19], where we compute the mean scores at each hierarchical level. This
approach ensures a balanced and structured evaluation of the system’s effectiveness.
Thovea performs best in the Insight and Essence components, both receiving an average
score of 6.2. Achieving a high score in Insight indicates that our approach not only
provides an enhanced understanding of the data but also offers alternative perspectives to
investigate the data and stumble upon new insights [WAM+19], as one participant stated:
”For the exploration task, this design is very nice, because it also gives an overview
with the clustering and the communities. Also, you can go one level deeper and see
every single node. The Exploration task is very nice across all the layers.“. This is a
crucial strength that enables us to successfully support T1 by facilitating deep analytical
exploration. A high score in Essence aligns with our goal of providing an overview of the
network and ID according to T4. One participant stated: ”The (...) overview I think is
pretty good, because it’s very easy to detect isolated clusters and connected ones, and
(...) different groups in the graph. So i think this clustering is working very nicely.“.
This confirms that our visualization effectively distills complex data into meaningful
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Parameter Average Score Std. Dev. (σ)
Insight 6.2 0.47

Confidence 5.23 0.45
Essence 6.2 0.45
Time 5.66 0.7

Table 4.1: Results of the ICE-T Evaluation. Scale from 1 (worst) to 7 (best)

representations. Following these, we observe slightly lower but still strong scores in Time
(5.6) and Confidence (5.23). The score in Time indicates that Thovea enables users to
efficiently extract key information without too many delays. The Confidence component,
however, registers the lowest score among the four, with a particular challenge identified
in the heuristic: “The visualization helps understand data quality” [WAM+19], which
received an average score of 3.4. However, this is not surprising since the requirements
for our design did not include verification of data quality. Overall, across all components,
we achieve a global average score of 5.82. Individually, each component receives a score
greater than 5. This surpasses our predefined success criterion, confirming that Thovea
effectively supports its intended tasks and delivers a high-value visualization to users.
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CHAPTER 5
Discussion

In this section, we discuss our lessons learned, especially regarding the feedback from
the ICE-T [WAM+19]. Furthermore, we identify the main limitations of the system
and point to directions for future work. Finally, we revisit our research questions from
Section 1.1 and assess whether Thovea manages to answer them.

Mental Map Preservation. One of the more notable challenges of having a three-
layered visualization method is that it requires the user to switch between multiple
different modes of visualization. This can lead to initial confusion as elements on the
screen are rearranged, vanish, or appear when traversing the layers. One participant
noted that when switching from the node-link based Overview Layer to the density-based
Local Layer, they had difficulties understanding the meaning of this transition. Here, an
animated transition could guide the user through the transition by, for example, zooming
into the selected communities [BB99]. This could make it clearer that we are traveling
into the selected communities. In the Detail Layer, one participant suggested that an
animated transition could also be leveraged for mental map preservation when switching
between the available layouts. They also extend this possibility to the navigation between
time steps. Especially inside the Sugiyama layout, some form of highlighting or movement
(e.g., [WB04, WB05, VAA24]) could be useful (T3) due to the dynamic nature of ID
[BB99]. Beyond animated transitions, additional contextual cues (e.g., subtle fading
effects for disappearing elements, breadcrumbs views, or ghosting of previous states)
could further reinforce continuity and help users maintain their mental map. Furthermore,
there was a desire for a more consistent approach in community placement across the
first two layers. The spatial relationship of Community Tiles in the Overview Layer
is not preserved when switching to the Local Layer, but rather is recalculated. Taking
this spatial information into account when drawing the respective communities could
reduce confusion. A limitation of the current implementation that relates to that issue is
overlapping communities within the Local Layer. This ambiguity led to some participants
misinterpreting this as nodes within the borders of multiple communities being also

53



5. Discussion

assigned to all of them. Additionally, some users might prefer faster or slower animations.
Allowing them to adjust transition speed could improve accessibility and user experience
Overall, the participants had positive remarks on the layered top-down approach to
exploration as it allows them to focus on the region they deem interesting (T4), especially
once they have familiarized themselves with the interface.
Guidance. During the investigation of the EU Power Grid dataset, one participant had
difficulties in locating the source of a secondary bump in activation within a simulation.
Depending on the selected resolution, that dataset can result in dozens of communities.
Thus, trying to identify a growing simulation bar inside a single Community Tile can be
challenging. This relates to the change blindness [NHT01] problem, where smaller changes
within a larger picture can remain unnoticed. To solve this issue, future work could
consider incorporating guidance mechanisms [CGM+17] that automatically highlight
potential areas of interest and nudge the user onto communities that might contain
useful insights. Such a mechanism would also help jump-start the exploration of the
data, as initially, some participants were unsure where to start (T1). Future work
could investigate how and by what metric communities that exhibit unusual or dominant
behavior within a simulation could be highlighted. Two participants also voiced their
desire for some more information about the communities in the Overview Layer that
could guide them towards potentially insightful communities. Furthermore, integrating
onboarding could help the users in navigating complex application dashboards [DWH+22].
Role of Local Layer. During the evaluation, questions about the purpose and role
of the Local Layer have come up. This was especially the case for participants who
predominantly explored the smaller InfoVis dataset. The Local Layer was designed to
provide a high-level understanding of the local topology of communities of interest and
the ID process. For larger networks, revealing detailed information about individual
nodes and low-level diffusion pathways in this layer would not be feasible due to the
large amount of visual clutter. In some cases, participants were confronted with small
density maps that were based on only a handful of nodes. To bridge the gap between
these differences in magnitudes, we provide customizability via the optional visualization
of bundled edges and individual nodes (T1).
Ambiguities with Geospatial Data. The EU Power Grid dataset contains geographical
information in the form of country codes. However, Thovea as a domain-agnostic platform
treats this information as regular metadata that is displayed in the Detail Layer but not
incorporated into the layout calculation. Thus, the partition into communities does not
consider this geographical relation. This can lead to confusion, as users might expect
communities to be separated by such geographical attributes. Future work could resolve
this confusion and leverage such geospatial attributes (if provided) to calculate a more
intuitive partition (e.g. [STP+17]).
Visual Scalability. Overall, the three-layer approach, combined with the opportunity
to customize the visualizations, manages to reduce visual clutter such that a meaningful
exploration and analysis can take place. However, there are limitations, especially when
it comes to the comparison of multiple simulations (T2). In the Local Layer, we have
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chosen a superimposed approach for this comparison. The main problem is that rendering
the contours of three, four, or in some cases even two simulations on top of each other
led to a significant amount of visual clutter that is typical for superimposed approaches
[GAW+11]. Participants worked around this problem by showing and hiding specific
simulations. A similar problem can be examined in the Sugiyama layout. The participant
had positive impressions of this layout, when it was run for a single simulation. Once
additional simulations are considered, it becomes increasingly difficult to perform a holistic
assessment of the cascade. The implementation calculates a Sugiyama layout for all the
nodes that are activated across the simulations. This mixes up the pathways between
the simulations and can, for example, lead to edges that point upwards. Given these
limitations, an alternative approach that leverages some form of difference visualization
or small multiples might be worth exploring [KCK17].

Computational Scalability. The initial reduction of computational cost by partitioning
the graph into smaller sub-graphs enables a swift experience for datasets that contain
thousands of nodes. To test out the limit of Thovea, we use a social network dataset
extracted from the website Slashdot [LHK10]. It contains 77350 nodes and 516575 edges.
We ran the application locally on a laptop with an AMD Ryzen 7 5800U CPU and 16GB
of RAM. Applying the Louvain algorithm [BGLL08] and the subsequent precalculation
of the individual community layout using the ForceAtlas2 algorithm [JVHB14] took 46
seconds. The subsequent loading of the precalculated simulation file took 26 seconds.
Thus, the simulation was ready to be explored after 72 seconds. Interactivity was smooth
for the Overview Layer and Detail Layer. Inside the Local Layer, with a community open
that contained 20623 nodes, we had to turn off the nodes for a smooth experience. The
calculation of the Edge Path Bundling [WAA+23] for the inter- and intra-community
edges took too much time to be considered usable for such large communities. Here,
one could increase the resolution of the Louvain algorithm to further divide such large
communities into smaller ones.

Diffusion Flux Circle. The choice of using animation was perceived positively by our
participants, as it provided a quick glimpse into the flow of diffusion among neighboring
communities (T4). However, the main difficulty with this encoding lies in accurately
assessing the speed of the circles to infer the activation rate of the respective Edge Bundle.
Future work could further explore the concept of unfolding edges [BDT23] to design a
more suitable representation for the application domain of ID.

Data Quality. In the ICE-T evaluation [WAM+19], we got our lowest score in Confidence.
This is not surprising since Thovea is not designed to consider data quality. Thus, the
results of the evaluation need to be assessed with this context in mind.

5.1 Revisiting Research Questions
In the final section of this chapter, we revisit our research questions that have been stated
in Section 1.1. We will start with the sub-questions Q2, Q3, and Q4 and then assess
whether the overarching main question Q1 has been given a meaningful answer.
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Q2 Which visualization technique or combination of techniques is suitable for exploring
dynamic diffusion processes over large networks?

Looking back at the state-of-the-art in Section 2.3, many approaches are designed to solve
problems specific to a certain application domain. They introduce novel visualization
techniques and model using, for example, map [CCW+19, CLCY20, CCL+17] and river
metaphors [SWL+14, WLY+14] that are tailored to their specific application domain.
Many of those are found within the domain Social Networks. When it comes to the
field of epidemiology, the use of geographical maps was very common (see table 2.2)
[AME11, BGG+11, YDH+17, MLR+11]. Overall, Table 2.2 reveals that there is a great
variety in employed visualization methods in the Diffusion Exploration category, where
the data itself encodes diffusion behaviour. When it comes to simulating an ID process,
such variety can no longer be found. Apart from the geographical maps used in an
epidemiological context, node-link visualizations are a popular choice. Some of the
approaches do support larger datasets such as R-Map [CLCY20], DMap+ [CCW+19],
and Opinionflow [WLY+14]. Even though they are successful in revealing insights hidden
in complex data sets, they are not easily exportable to different application domains.
The number of scalable VA platforms that provide a domain-agnostic approach is limited.
Namely, DiVA [SGM+23] and VAIM [ADL+22] approach this issue. The main problem
with DiVA, however, is that it solely relies on node-link visualization. Computationally
speaking, DiVA is successful in providing a platform that can load and offer interactivity
for larger networks; however, visual scalability is an area it struggles. Even though node-
link visualizations are popular (see table 2.2), they do cause clutter in larger instances.
VAIM’s [ADL+22] focus+context approach introduces Density and Diffusion Matrices
that are more abstract and can be used to explore certain areas of interest through a local
node-link visualization. These matrices serve as an overview of not only the topology
of the network but also the diffusion process. Similarly, in our ICE-T evaluation, all
participants appreciated the overview visualization that Thovea offers. It serves as a
starting point for further exploration and can help form hypotheses about the ID process
or network itself. The node-link visualization of the Overview layer and Detail Layer
was easily interpretable and understandable during our study, especially since we used
aggregation and filtering, respectively. Beyond new techniques for large graph drawings,
aggregation and filtering are identified as a popular route [vLKS+11] for working with
large networks. Therefore, it is not necessarily a specific visualization method that excels
in conveying complex patterns, but rather the way the data is processed such not to
overwhelm the cognitive load of the user [YAD+18].

Q3 Does a layered visualization approach that uses different levels of abstraction help
break down the complexity of analyzing ID over large networks?

Looking back at our ICE-T evaluation, all participants appreciated the three-layer
visualization approach of Thovea as it combines a high-level overview with an on-
demand exploration of distinct pathways. The global average score of 5.82 on the ICE-T
questionnaire also reinforces that Thovea’s layered approach is successful in breaking
down complex datasets into smaller and simpler problems. Especially when considering
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a score of 6.2 in both Essence and Insight. Not only does Thovea succeed in providing a
meaningful overview of the network and the ID process, it also enables the user to reveal
insight that otherwise would remain hidden in the complexity of the data [WAM+19], by
its ability to filter down to a handful of interesting nodes. However, there is still room
for improvement, as discussed above in this chapter.

Q4 How can two or more diffusion models be meaningfully compared in a single view
such that local node-level and broader network-wide differences can be intuitively spotted
and assessed?

Thovea integrates the comparison of multiple ID processes into each layer’s visualization
technique. We have enabled the comparison of up to four concurrent simulations. While
expressing the desire for some additional features in the Overview Layer, especially
concerning guidance, the participants were positive about the visual encodings for the
comparison feature. The simulation bar chart inside each Community Tile was intuitive
and easy to read. However, the superimposed simulation contours were prone to visual
clutter. Even though we support the comparison of up to four concurrent simulations, our
participants primarily avoided displaying more than two simulation contours. The visual
encodings for comparison in the Detail Layer were also well received by the participants.
However, comparing two or more simulations on the Sugiyama layout was very difficult. In
those cases, the participants predominantly made use of either the ForceAtlas2 [JVHB14]
or the d3.forceSimulation [BOH11] layout.

Q1 How can VA be leveraged to explore and analyze diffusion processes in large networks
to uncover useful, otherwise hidden insights?

With Thovea, we have shown that employing VA to solve problems in the field of ID can
yield great benefits. The two case studies (see section 4.2) and the ICE-T study (see
section 4.3) showcase and confirm their uses and advantages. By splitting the complexity of
dynamic diffusion datasets (see section 3.1) into multiple layers with different abstraction
levels, we enable a top-down exploration that enables a comprehensive understanding of
the underlying diffusion process.
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Summary

Within this thesis, we introduce Thovea, a three-layer VA platform that enables the
analysis, exploration, and comparison of ID processes over large networks. ID is a process
that is related to a variety of different application domain. From pathogen transmission
in epidemiology, spreading of fake news inside a social network, to the distribution of
malware inside critical infrastructure. Leveraging VA to gain a deeper understanding
on these processes can reveal otherwise hidden insight that can than be used to either
maximize, minimize or trace back the diffusion process. To get a comprehensive overview
of the existing contributions in this field we first review the literature in a state-of-the-art
on the visualization of ID. We introduce a taxonomy that brings structure into this
field and generalizes across all application domains by categorizing the limited existing
contributions by their main goal: Diffusion Exploration, Spread Simulation, Influence
Maximization, Influence Summarization, Model Comparsion, and Anomaly Detection. We
further highlight certain key features that are found within the respective contributions:
Key-Player Detection, Comparison Tools, Model/ Parameter Tweaking to understand
which features are crucial for the different main goals. We identify the lack of domain-
agnostic platforms that generalize over different application domains. Furthermore,
we acknowledge visual scalability as a main issue in dealing with larger ID processes,
especially if we want to compare multiple ID simulations.

With these shortcomings identified, we design and implement Thovea. We want to provide
a domain-agnostic platform for scalable ID. As we followed Munzner’s [Mun09] nested
model for visualization design and validation, we extracted a set of four abstract tasks that
are commonly found within the contributions listed in our taxonomy in Table 2.2. Based
on these tasks, we design and implement visual encodings. The core novelty of Thovea is
found within the layered approach to ID. The data can be separated into the ”medium“
network, which serves as the underlying base network, and the ”diffusion“ dynamic graph,
where each of its static components represents the ID process at a specific time step. The
complexity is amplified when we consider large networks. By splitting this complex data

59



6. Summary

into three distinct layers that each provide a unique perspective on the data, we reduce the
cognitive load on the user and enable a stepwise top-down exploration of the underlying
diffusion process. The first layer offers a high-level aggregated overview of the network,
highlighting inter- and intra-community diffusion trends. The second layer provides
a density-based estimation and visualization of selected communities, detailing intra-
and inter-community diffusion progression. The last layer enables in-depth investigation
and analysis of specific regions within communities, allowing users to explore individual
diffusion paths down to the node level.

The evaluation is done twofold: First, we conduct two case studies that showcase the
utility and features of our system. Furthermore, an ICE-T [WAM+19] study confirms
the value of Thovea with a global average score of 5.82, where each individual component
has been awarded a score greater than 5. We especially notice the high scores in the
components Essence and Insight with a score of 6.2, underlining Thovea’s ability to
provide a meaningful overview of the network and underlying ID process, and its ability
to help users uncover hidden insights.

Regarding lessons learned we refer to the difficulty in comparing multiple diffusion
processes in a single view. It is very easy to overload the cognitive load as the comparative
burden is left with the user. Furthermore, static transitions between layers and time
steps leave the user alone in deciphering changes, as stated by some of our participants.

For future work, we point in the direction of researching methodologies to further preserve
the mental map of the user while travelling across layers and time steps. Introducing
animated transitions could lead to improvements. Furthermore, we highlight the need
to develop a methodology that specializes in the comparison of ID processes to further
reduce clutter and improve visual scalability.
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Appendix

ICE-T Tasks
The following contains the set of tasks prepared for the ICE-T [WAM+19] evaluation.
Each example dataset contains two tasks

InfoVis

• (i) In the Simulation "IC Miksch", there seems to be a delay in the spread of
influence within the seed community. Trace the path of influence to find out why.
Use the Highlighting feature to mark seemingly relevant nodes and explore the area
of interest using all 3 Layers

• (ii) Highlight an author of your choice with the ”Node Search & Highlight“ Menu,
investigate their role in the loaded simulation(s)

Qanon

• (i) Load SIR_AH and SIR_WeTheMedia. These two simulate the spread of fake
news according to the SIR model through the telegram channel network, starting
from 1 seed node respectively. Looking at the global and community trend charts,
which simulation reaches a broader audience. Are there differences in the evolution
of the diffusion of Fake News.

• (ii) Which channels are key influencers? Investigate communities in the 2nd and
3rd layer

EU Power Grid

• (i) Load the Dataset at resolution 1. Load the ”LT_seed_FR_n50“ simulation. It
uses a LT Model to simulate a Power Grid Failure starting from 50 random Power
Plants in France. After the first surge of failures there is a secondary bump in
cluster 15, securing which power plant could have prevented this?
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• (ii) Use the Sugiyama Layout to identify Power Plants that lead to a sizeable chain
reaction of additional failures.

Facebook Pages

• (i) Load all 3 SIR simulations. We interpret this as information spreading through
Facebook pages. Removed pages no longer engage with the new information. Which
seed selection method reaches the most pages.

• (ii) At Louvain resolution 1, in which communities do we have a noticeably difference
in coverage among the 3 simulations. Take a closer look at those communities and
investigate from which neighboring communities the information is coming from.

ICE-T Questionnaires

Value of Visualization

terminology data case- refers to individual nodes of the network

attribute- refers to meta data, labels, metrics and diffusion information of individual nodes 
relationship in the data- refers to attributes among the data, such as clusters and diffusion paths

How would you rate your agreement with the following statements?

Strongly 
Disagree Disagree

Somewhat 
Disagree

Neither 
Agree nor 
Disagree

Somewhat 
Agree Agree

Strongly 
Agree

Insight

The visualization facilitates answering questions 
about the data

The visualization exposes individual data cases and their attributes ○ ○ ○ ○ ○ ○ ○
The visualization facilitates perceiving relationships in the data like patterns & distributions of 
the variables ○ ○ ○ ○ ○ ○ ○
The visualization promotes exploring relationships between individual data cases as well as 
different groupings of data cases ○ ○ ○ ○ ○ ○ ○

The visualization provides a new or better 
understanding of the data

The visualization helps generate data-driven questions ○ ○ ○ ○ ○ ○ ○
The visualization helps identify unusual or unexpected, yet valid, data characteristics or values ○ ○ ○ ○ ○ ○ ○

The visualization provides opportunities for 
serendipitous discoveries

The visualization provides useful interactive capabilities to help investigate the data in multiple 
ways ○ ○ ○ ○ ○ ○ ○
The visualization shows multiple perspectives about the data ○ ○ ○ ○ ○ ○ ○
The visualization uses an effective representation of the data that shows related and partially 
related data cases ○ ○ ○ ○ ○ ○ ○

Time

The visualization affords rapid parallel 
comprehension for efficient browsing

The visualization provides a meaningful spatial organization of the data ○ ○ ○ ○ ○ ○ ○
The visualization shows key characteristics of the data at a glance ○ ○ ○ ○ ○ ○ ○

The visualization provides mechanisms for 
quickly seeking specific information

The interface supports using different attributes of the data to reorganize the visualization's 
appearance ○ ○ ○ ○ ○ ○ ○
The visualization supports smooth transitions between different levels of detail in viewing the 
data ○ ○ ○ ○ ○ ○ ○
The visualization avoids complex commands and textual queries by providing direct interaction 
with the data representation ○ ○ ○ ○ ○ ○ ○

Essence

The visualization provides a big picture 
perspective of the data

The visualization provides a comprehensive and accessible overview of the data ○ ○ ○ ○ ○ ○ ○
The visualization presents the data by providing a meaningful visual schema ○ ○ ○ ○ ○ ○ ○

The visualization provides an understanding of 
the data beyond individual data cases

The visualization facilitates generalizations and extrapolations of patterns and conclusions ○ ○ ○ ○ ○ ○ ○
The visualization helps understand how variables relate in order to accomplish different analytic 
tasks ○ ○ ○ ○ ○ ○ ○

Confidence

The visualization helps avoid making incorrect 
inferences

The visualization uses meaningful and accurate visual encodings to represent the data ○ ○ ○ ○ ○ ○ ○
The visualization avoids using misleading representations ○ ○ ○ ○ ○ ○ ○

The visualization facilitates learning more 
broadly about the domain of the data

The visualization promotes understanding data domain characteristics beyond the individual 
data cases and attributes ○ ○ ○ ○ ○ ○ ○

The visualization helps understand data quality If there were data issues like unexpected, duplicate, missing, or invalid data, the visualization 
would highlight those issues ○ ○ ○ ○ ○ ○ ○
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X
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X
X

X
X

X
X
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Figure 1: Filled-out questionnaire from Participant 1

ICE-T Results
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Value of Visualization

terminology data case- refers to individual nodes of the network

attribute- refers to meta data, labels, metrics and diffusion information of individual nodes 
relationship in the data- refers to attributes among the data, such as clusters and diffusion paths

How would you rate your agreement with the following statements?

Strongly 
Disagree Disagree

Somewhat 
Disagree

Neither 
Agree nor 
Disagree

Somewhat 
Agree Agree

Strongly 
Agree

Insight

The visualization facilitates answering questions 
about the data

The visualization exposes individual data cases and their attributes ○ ○ ○ ○ ○ ○ ○
The visualization facilitates perceiving relationships in the data like patterns & distributions of 
the variables ○ ○ ○ ○ ○ ○ ○
The visualization promotes exploring relationships between individual data cases as well as 
different groupings of data cases ○ ○ ○ ○ ○ ○ ○

The visualization provides a new or better 
understanding of the data

The visualization helps generate data-driven questions ○ ○ ○ ○ ○ ○ ○
The visualization helps identify unusual or unexpected, yet valid, data characteristics or values ○ ○ ○ ○ ○ ○ ○

The visualization provides opportunities for 
serendipitous discoveries

The visualization provides useful interactive capabilities to help investigate the data in multiple 
ways ○ ○ ○ ○ ○ ○ ○
The visualization shows multiple perspectives about the data ○ ○ ○ ○ ○ ○ ○
The visualization uses an effective representation of the data that shows related and partially 
related data cases ○ ○ ○ ○ ○ ○ ○

Time

The visualization affords rapid parallel 
comprehension for efficient browsing

The visualization provides a meaningful spatial organization of the data ○ ○ ○ ○ ○ ○ ○
The visualization shows key characteristics of the data at a glance ○ ○ ○ ○ ○ ○ ○

The visualization provides mechanisms for 
quickly seeking specific information

The interface supports using different attributes of the data to reorganize the visualization's 
appearance ○ ○ ○ ○ ○ ○ ○
The visualization supports smooth transitions between different levels of detail in viewing the 
data ○ ○ ○ ○ ○ ○ ○
The visualization avoids complex commands and textual queries by providing direct interaction 
with the data representation ○ ○ ○ ○ ○ ○ ○

Essence

The visualization provides a big picture 
perspective of the data

The visualization provides a comprehensive and accessible overview of the data ○ ○ ○ ○ ○ ○ ○
The visualization presents the data by providing a meaningful visual schema ○ ○ ○ ○ ○ ○ ○

The visualization provides an understanding of 
the data beyond individual data cases

The visualization facilitates generalizations and extrapolations of patterns and conclusions ○ ○ ○ ○ ○ ○ ○
The visualization helps understand how variables relate in order to accomplish different analytic 
tasks ○ ○ ○ ○ ○ ○ ○

Confidence

The visualization helps avoid making incorrect 
inferences

The visualization uses meaningful and accurate visual encodings to represent the data ○ ○ ○ ○ ○ ○ ○
The visualization avoids using misleading representations ○ ○ ○ ○ ○ ○ ○

The visualization facilitates learning more 
broadly about the domain of the data

The visualization promotes understanding data domain characteristics beyond the individual 
data cases and attributes ○ ○ ○ ○ ○ ○ ○

The visualization helps understand data quality If there were data issues like unexpected, duplicate, missing, or invalid data, the visualization 
would highlight those issues ○ ○ ○ ○ ○ ○ ○
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Figure 2: Filled-out questionnaire from Participant 2
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Value of Visualization

terminology data case- refers to individual nodes of the network

attribute- refers to meta data, labels, metrics and diffusion information of individual nodes 
relationship in the data- refers to attributes among the data, such as clusters and diffusion paths

How would you rate your agreement with the following statements?

Strongly 
Disagree Disagree

Somewhat 
Disagree

Neither 
Agree nor 
Disagree

Somewhat 
Agree Agree

Strongly 
Agree

Insight

The visualization facilitates answering questions 
about the data

The visualization exposes individual data cases and their attributes ○ ○ ○ ○ ○ ○ ○
The visualization facilitates perceiving relationships in the data like patterns & distributions of 
the variables ○ ○ ○ ○ ○ ○ ○
The visualization promotes exploring relationships between individual data cases as well as 
different groupings of data cases ○ ○ ○ ○ ○ ○ ○

The visualization provides a new or better 
understanding of the data

The visualization helps generate data-driven questions ○ ○ ○ ○ ○ ○ ○
The visualization helps identify unusual or unexpected, yet valid, data characteristics or values ○ ○ ○ ○ ○ ○ ○

The visualization provides opportunities for 
serendipitous discoveries

The visualization provides useful interactive capabilities to help investigate the data in multiple 
ways ○ ○ ○ ○ ○ ○ ○
The visualization shows multiple perspectives about the data ○ ○ ○ ○ ○ ○ ○
The visualization uses an effective representation of the data that shows related and partially 
related data cases ○ ○ ○ ○ ○ ○ ○

Time

The visualization affords rapid parallel 
comprehension for efficient browsing

The visualization provides a meaningful spatial organization of the data ○ ○ ○ ○ ○ ○ ○
The visualization shows key characteristics of the data at a glance ○ ○ ○ ○ ○ ○ ○

The visualization provides mechanisms for 
quickly seeking specific information

The interface supports using different attributes of the data to reorganize the visualization's 
appearance ○ ○ ○ ○ ○ ○ ○
The visualization supports smooth transitions between different levels of detail in viewing the 
data ○ ○ ○ ○ ○ ○ ○
The visualization avoids complex commands and textual queries by providing direct interaction 
with the data representation ○ ○ ○ ○ ○ ○ ○

Essence

The visualization provides a big picture 
perspective of the data

The visualization provides a comprehensive and accessible overview of the data ○ ○ ○ ○ ○ ○ ○
The visualization presents the data by providing a meaningful visual schema ○ ○ ○ ○ ○ ○ ○

The visualization provides an understanding of 
the data beyond individual data cases

The visualization facilitates generalizations and extrapolations of patterns and conclusions ○ ○ ○ ○ ○ ○ ○
The visualization helps understand how variables relate in order to accomplish different analytic 
tasks ○ ○ ○ ○ ○ ○ ○

Confidence

The visualization helps avoid making incorrect 
inferences

The visualization uses meaningful and accurate visual encodings to represent the data ○ ○ ○ ○ ○ ○ ○
The visualization avoids using misleading representations ○ ○ ○ ○ ○ ○ ○

The visualization facilitates learning more 
broadly about the domain of the data

The visualization promotes understanding data domain characteristics beyond the individual 
data cases and attributes ○ ○ ○ ○ ○ ○ ○

The visualization helps understand data quality If there were data issues like unexpected, duplicate, missing, or invalid data, the visualization 
would highlight those issues ○ ○ ○ ○ ○ ○ ○

Figure 3: Filled-out questionnaire from Participant 3
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Figure 4: Filled-out questionnaire from Participant 4
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Value of Visualization

terminology data case- refers to individual nodes of the network

attribute- refers to meta data, labels, metrics and diffusion information of individual nodes 
relationship in the data- refers to attributes among the data, such as clusters and diffusion paths

How would you rate your agreement with the following statements?

Strongly 
Disagree Disagree

Somewhat 
Disagree

Neither 
Agree nor 
Disagree

Somewhat 
Agree Agree

Strongly 
Agree

Insight

The visualization facilitates answering questions 
about the data

The visualization exposes individual data cases and their attributes ○ ○ ○ ○ ○ ○ ○
The visualization facilitates perceiving relationships in the data like patterns & distributions of 
the variables ○ ○ ○ ○ ○ ○ ○
The visualization promotes exploring relationships between individual data cases as well as 
different groupings of data cases ○ ○ ○ ○ ○ ○ ○

The visualization provides a new or better 
understanding of the data

The visualization helps generate data-driven questions ○ ○ ○ ○ ○ ○ ○
The visualization helps identify unusual or unexpected, yet valid, data characteristics or values ○ ○ ○ ○ ○ ○ ○

The visualization provides opportunities for 
serendipitous discoveries

The visualization provides useful interactive capabilities to help investigate the data in multiple 
ways ○ ○ ○ ○ ○ ○ ○
The visualization shows multiple perspectives about the data ○ ○ ○ ○ ○ ○ ○
The visualization uses an effective representation of the data that shows related and partially 
related data cases ○ ○ ○ ○ ○ ○ ○

Time

The visualization affords rapid parallel 
comprehension for efficient browsing

The visualization provides a meaningful spatial organization of the data ○ ○ ○ ○ ○ ○ ○
The visualization shows key characteristics of the data at a glance ○ ○ ○ ○ ○ ○ ○

The visualization provides mechanisms for 
quickly seeking specific information

The interface supports using different attributes of the data to reorganize the visualization's 
appearance ○ ○ ○ ○ ○ ○ ○
The visualization supports smooth transitions between different levels of detail in viewing the 
data ○ ○ ○ ○ ○ ○ ○
The visualization avoids complex commands and textual queries by providing direct interaction 
with the data representation ○ ○ ○ ○ ○ ○ ○

Essence

The visualization provides a big picture 
perspective of the data

The visualization provides a comprehensive and accessible overview of the data ○ ○ ○ ○ ○ ○ ○
The visualization presents the data by providing a meaningful visual schema ○ ○ ○ ○ ○ ○ ○

The visualization provides an understanding of 
the data beyond individual data cases

The visualization facilitates generalizations and extrapolations of patterns and conclusions ○ ○ ○ ○ ○ ○ ○
The visualization helps understand how variables relate in order to accomplish different analytic 
tasks ○ ○ ○ ○ ○ ○ ○

Confidence

The visualization helps avoid making incorrect 
inferences

The visualization uses meaningful and accurate visual encodings to represent the data ○ ○ ○ ○ ○ ○ ○
The visualization avoids using misleading representations ○ ○ ○ ○ ○ ○ ○

The visualization facilitates learning more 
broadly about the domain of the data

The visualization promotes understanding data domain characteristics beyond the individual 
data cases and attributes ○ ○ ○ ○ ○ ○ ○

The visualization helps understand data quality If there were data issues like unexpected, duplicate, missing, or invalid data, the visualization 
would highlight those issues ○ ○ ○ ○ ○ ○ ○

Figure 5: Filled-out questionnaire from Participant 5

Figure 6: Average score per ICE-T [WAM+19] component per participant (P1-5) with
Total scores and standard deviation
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