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Kurzfassung

Das ALASPO Framework wendet Large Neighbourhood Search (LNS) auf Answer Set
Programming (ASP) an und hat sich bereits bei der Lösung verschiedener Optimierungs-
probleme bewährt. Um das Verhalten der LNS-Schleife zu steuern, bietet ALASPO eine
Vielzahl von Konfigurationsoptionen, die in Kombination mit allen möglichen Parametern
des zugrundeliegenden ASP-Solvers zu einem riesigen Konfigurationsraum führen.

Um diese Problematik zu adressieren, integrieren wir das Framework für Bayessche
Optimierung SMAC3 in ALASPO, um ein automatisches Tuning von ALASPO Konfigu-
rationen zu ermöglichen. Weiters gruppieren wir die bereitgestellten Instanzen anhand
ihrer Eigenschaften, so dass wir mehrere optimale Konfigurationen erhalten, eine für
jede Gruppe ähnlicher Instanzen. Das Ergebnis des Tunings kann dann für zukünftige
ALASPO Durchläufe mit bisher unbekannten Instanzen verwendet werden, um automa-
tisch eine geeignete Konfiguration basierend auf den Eigenschaften der jeweiligen Instanz
auszuwählen und anzuwenden.

Wir evaluieren unsere Methodik anhand von vier Benchmark-Problemen und zeigen, dass
unser Tuning bei einigen dieser Probleme zu signifikanten Verbesserungen gegenüber der
Standardkonfiguration führen kann, während wir ebenso ihre Grenzen aufzeigen, wenn
keine ausreichenden Verbesserungsmöglichkeiten vorhanden sind.
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Abstract

The ALASPO framework applies Large Neighbourhood Search (LNS) to Answer Set
Programming (ASP), and has proven to be effective in tackling a number of different
optimization problems. To control the behaviour of the LNS loop, ALASPO offers many
configuration options, that, when combined with all of the possible solving and grounding
parameters of the underlying ASP solver, result in a vast configuration space.

To address this challenge, we integrate the SMAC3 framework for Bayesian Optimization
into ALASPO to enable the automatic tuning of ALASPO configurations. Additionally,
we cluster the provided instances based on their characteristics, allowing us to obtain
multiple optimal configurations, one for each cluster of similar instances. After tuning,
the result can be used for future ALASPO runs on unseen instances to automatically
select and apply an appropriate configuration based on the characteristics of the given
instance.

We evaluate our methodology on a set of four benchmark problems and show that
tuning can, for some of them, provide significant improvements over using the default
configuration, while also demonstrating its limitations whenever there are insufficient
opportunities for advancement.
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CHAPTER 1
Introduction

Answer Set Programming (ASP) [MT98, EIK09, BET11, Lif19, GKKS17] is a declarative
paradigm rooted in logic programming, and is, unlike procedural languages, not used to
encode a problem solving algorithm, but rather the problem itself. ASP in combination
with the Large Neighbourhood Search (LNS) [Sha98, PR10] metaheuristic, which itera-
tively destroys and repairs parts of a solution to find an overall better result, specifically
the Adaptive Large-Neighbourhood ASP Optimiser ALASPO [EGH+22], has already
proven to be effective in tackling typical optimization problems [EGH+22, EGH+24].
Such optimization problems involve various criteria that contribute to an objective value
which reflects the quality of candidate solutions. These problems are then typically
optimized by iteratively finding multiple solutions, each better than its predecessor with
an objective value closer to the optimum.
ALASPO uses an ASP solver internally to facilitate both the finding of an initial solution
as well as the repair step of the LNS. This solver offers an extensive range of solving and
grounding parameters that can greatly influence its performance. In addition, ALASPO
offers numerous configuration options that control the behaviour of the LNS process,
together resulting in a considerable configuration space [EGH+22]. Consequently, any
exhaustive exploration of different parameters and combinations thereof, to identify the
optimal configuration, is infeasible by hand and calls for using an automated approach,
namely Hyperparameter Optimization (HPO) [KJ95, KFS95]. HPO is the process of
identifying the best performing parameters for a given function, by evaluating them on
trials, thereby reducing the effort of manual experimentation, improving reproducibility,
and potentially improving performance through more thorough exploration.
The topic of Hyperparameter Optimization has gained traction primarily due to the
rise of machine learning algorithms and their performance being strongly dependent on
the correct parameter choices [FH19, YS20]. The basic HPO forms of Grid Search and
Random Search [BB12], which evaluate the function with all possible combinations of
parameters or a random subset thereof, require an extensive number of trials. In contrast,
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1. Introduction

Bayesian Optimization [Moc94] takes advantage of a surrogate model and may reduce the
number of required function evaluations by balancing both exploration and exploitation
using learned knowledge from previous function calls [JSW98, FH19, BCdF10].

Given that Bayesian Optimization improves upon existing black-box HPO approaches,
it has been investigated and successfully implemented in various diverse applications:
For instance, in tuning machine learning models to predict the choice of work travel
mode [AAJ+23], network intrusion detection [MSH+21], or brain tumor classification
[AAXKM22]. Furthermore, it has been successfully used in tools like auto-sklearn
[FKE+15] as well as Auto-Pytorch [ZLH21] [LEF+22].

1.1 Research Question

In the light of these successes, a natural issue is to provide HPO in ALASPO and to
study whether similar benefits can be achieved for challenging problems of relevance in
practice. This has been the motivation for this thesis, which proceeds along the following
lines.

We integrate the Bayesian Optimization framework for Hyperparameter Optimization
SMAC3 [LEF+22] into ALASPO, to automatically find optimal configurations, elim-
inating the need for time-consuming and tedious manual trial runs. Choosing which
aspects of an ALASPO configuration should be tuned is done by providing a custom
configuration space, specifying the properties and different values that should be con-
sidered for them. Furthermore, we implement a clustering of instances based on their
characteristics, allowing us to obtain multiple optimal configurations, one for each cluster,
that exploit similarities between instances in order to improve overall performance. In
addition, we allow the customization of the instance characteristics considered in this
clustering, to best represent their features for a specific problem at hand. The result of a
finished tuning process can then be used for future ALASPO runs on new instances to
automatically select and apply an appropriate configuration based on the characteristics
of the instance provided.

We subsequently investigate the effectiveness of our tuning methodology in finding optimal
ALASPO selection strategies on a set of four different benchmark problems, using different
clustering methods and varying the number of trials. The particular benchmark problems
we choose for the evaluation are the Test Laboratory Scheduling Problem (TLSPS)
[GMM21, MM18, MM21], the Valves Location Problem (VLP) [GS09, GS10, CGN+11],
the Travelling Salesman Problem (TSP) [Men32, Rob49, DFJ54], and finally Multi-Agent
Path Finding (MAPF) [SSF+21].

1.2 Contributions and Findings

Summing up, our contributions are briefly as follows:

2



1.3. Organization

(i) The design and integration of a customizable Bayesian Hyperparameter Optimiza-
tion approach into the ALASPO framework using SMAC3, to find best performing
configurations.

(ii) A customizable clustering of problem instances based on their characteristics, en-
abling the tailoring of configurations to homogeneous groups of instances, exploiting
their similar optimization behaviour, for an overall heterogeneous set of instances.

(iii) An experimental evaluation of the effectiveness of the newly integrated features on
a set of four benchmark problems of high industrial relevance.

(iv) Detailed discussions of the experimental results, including potential factors influ-
encing the observed outcomes.

We show that our hyperparameter tuning is able to provide significant performance
improvements for some problems, already with a small number of trials, while also
demonstrating its limitations: For the TLSPS, tuning resulted in about 7% better
objective scores on average, up to 22% for some instances. The VLP saw more moderate
improvements, with an average of 5% better results, while a quarter of the instances
still performed worse than the default configuration. Next, the TSP saw significant
improvements, with average gains of 28%. Finally, tuning for the MAPF could not
provide meaningful improvements over the default configuration, suggesting that the
ALASPO baseline configuration is already best suited for this problem.

1.3 Organization
The rest of the thesis is structured as follows: In Chapter 2, we introduce the underlying
concepts on which this work builds upon, followed by Chapter 3, where we present
the automated tuning we integrate into the ALASPO framework, along with a closer
examination of its core features and their implementation. Next, Chapter 4 contains the
experimental evaluation of the newly implemented tuning on four different benchmarks,
accompanied by a discussion of their results. Finally, in Chapter 5, we briefly present
related works that use similar methodologies, and summarize our findings in Chapter 6.
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CHAPTER 2
Background

In this chapter, we introduce the underlying concepts this work builds upon, namely,
the notion of Answer Set Programming, Adaptive Large Neighbourhood Search, and
Hyperparameter Optimization.

2.1 Answer Set Programming
Answer Set Programming (ASP) [MT98, EIK09, BET11, Lif19, GKKS17] is a declarative
problem solving paradigm, rooted in logic programming, knowledge representation, and
reasoning. Unlike procedural programming languages, ASP does not encode a problem
solving algorithm, but rather the problem itself. Given an encoding and an instance of a
problem, an ASP solver computes models, so-called answer sets, that represent solutions
to the particular problem [Lif19, BET11].

2.1.1 Logic Programs
A disjunctive logic program is a finite set of rules following the form:

a1 ∨ · · · ∨ am ← b1, . . . , bk, not bk+1, . . . , not bn (2.1)

where a1, . . . , am and b1, . . . , bn are atoms, referred to as the head and body of the rule,
respectively. Literals are atoms or their negation, as indicated by the keyword not
preceding bk+1, . . . , bn, making not bk+1, . . . , not bn negated literals and b1, . . . , bk positive
literals [EIK09].

Atoms are of the form:
p(t1, . . . , tn) (2.2)

where p is a predicate symbol with arity n ≥ 0 and t1, . . . , tn are terms, which are either
constants or variables.
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2. Background

A rule is called (i) fact if its body is empty (n = 0), (ii) non-disjunctive if its head
contains only one literal (m = 1), (iii) basic if there are no negated literals in its body and
its head is not empty (k = n, m ≥ 1), (iv) normal if it is non-disjunctive and contains
no strong negation, and (v) horn if it is basic and normal. Additionally, a rule is ground,
if all of its literals are ground, i.e., do not contain any variables.

A rule without a head, such as:
← a, b (2.3)

acts as a constraint, disallowing any solution (answer set) containing both a and b. Such
constraints are a central and widely used construct in ASP.

Rule Semantics A rule of a logic program can be interpreted as implication: where
rule 2.1 is similar to the following implication:

(b1 ∧ · · · ∧ bk ∧ not bk+1 ∧ · · · ∧ not bn) =⇒ (a1 ∨ · · · ∨ am) (2.4)

and can be intuitively read as: If the body of a rule is true, then the head of the rule
must be true as well [BET11].

An example of a rule containing variables:

canFly(X) ← bird(X), not penguin(X) (2.5)

can be interpreted as: If X is a bird and it is not known that X is a penguin, then X can
fly.

Negation The already mentioned keyword not denotes the so-called default negation,
which means that an atom is not derivable. In contrast, the so-called strong negation,
denoted by the usual symbol ¬, holds, if the negation of an atom is derivable. Since any
program containing strong negation can be restated as one without, by introducing a
new atom in place of the strongly negated literal, it is not a strictly necessary construct.
It is, however, useful in order to express defaults, as in the following example, which
models inertia:

stationary(T + 1) ← stationary(T ), not ¬stationary(T + 1). (2.6)

which can be interpreted as: If some object is stationary at time T , then it is also
stationary at time T + 1 if we can not derive that the opposite is true (i.e., that it is
moving). It is thus a straightforward way of solving the frame problem [BET11].

2.1.2 Answer Sets
An answer set is an interpretation M of a ground logic program P that is a minimal
model of the Gelfond-Lifschitz reduct P M of P .

To elaborate: An interpretation M is a set of ground literals that is consistent, meaning
that it does not contain both an atom a and its negation ¬a. A logic program is
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2.1. Answer Set Programming

ground if all of its rules are. An interpretation M is a model of program P iff for every
rule, whenever the body is true (b1, . . . , bk ∈ M and bk+1, . . . , bn /∈ M), its head is too
({a1, . . . , am} ∩ M ̸= ∅). A model for P M is minimal, if there exists no subset N ⊂ M
which is also a model of P M . The Gelfond-Lifschitz reduct [GL88] P M of program P and
interpretation M is defined as follows:

P M =
{︂

a1 ∨ · · · ∨ am ← b1, . . . , bk |
(a1 ∨ · · · ∨ am ← b1, . . . , bk, not bk+1, . . . , not bn) ∈ P,

{bk+1, . . . , bn} ∩ M = ∅
}︂

(2.7)

Which means that P M is positive, i.e., does not contain any default negation.

Example 1 Following example shows how a model could be found for a very simple
program.

a ← (2.8)
b ← a (2.9)
c ← not b (2.10)

Since the first rule is a fact (i.e., contains no body), a must be contained in the resulting
answer set. Given that the body of the second rule is now true, b must also be part of the
model. Now, since b is derivable, not b cannot be true, making the body of the third rule
false and consequently c not part of the solution. Thus, the resulting model is {a,b}.

2.1.3 Extensions
There are several extensions to ASP that simplify or increase its modelling capabilities
and expressiveness, such as allowing disjunction in the head of rules (see 2.1). It affects
the notion of answer sets, since the Gelfond-Lifschitz reduct could now contain rules with
such disjunctions, potentially resulting in multiple minimal models. Consequently, an
answer set is now defined as being one of these minimal models [BET11].

Another often used construct are the so-called choice rules of the form:

l ⋄ {a1; . . . ; an} ⋄ u ← b1, . . . , bk, not bk+1, . . . , not bn (2.11)

which express that if the body is true, any number of atoms of {a1, . . . , an} should
be included in the resulting answer set, the number of which is determined by the
cardinality constraints l and u. Where the operators ⋄ can be any of the comparisons in
{<, ≤, >, ≥, =, ̸=}. More commonly, conditional choice rules of the following form are
used:

l ⋄ {a1 : L1; . . . ; an : Ln} ⋄ u ← b1, . . . , bk, not bk+1, . . . , not bn (2.12)
where L1, . . . Ln are each a list of multiple literals, acting as conditions possibly restricting
the set {a1, . . . , an} of which atoms are to be chosen from [CFG+19, GKKS12, EGH+24].

7



2. Background

Additionally, ASP solvers like clingo [GKKS17] support aggregates such as #count,
#sum, #min and #max of similar form:

α {t1 : L1; . . . ; tn : Ln} (2.13)

where t1, . . . , tn are terms, L1, . . . , Ln are each a list of literals and α is one of the
aggregate functions. Note that the chosen function will be applied to the set of terms
that are produced by their corresponding conditions, which means that duplicates will
be disregarded [Unib, GKKS12].

To facilitate optimization in ASP based on an objective value, so-called weak constraints
are available in modern solvers. They are of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bn. [w@l, t] (2.14)

where t is a tuple of terms, w is the weight (or cost) that the tuple t contributes to a
cost function, and @l is an optional level, defaulting to 0, that can be used to prioritize
the optimization of some objectives over others (higher level equals higher priority) when
using multiple weak constraints. The ASP solver clingo provides the shorthand:

#minimize{w1@l1, t1 : L1, . . . , wn@ln, tn : Ln} (2.15)

where L1, . . . , Ln are each a list of literals. These directives represent n regular weak
constraints 2.14 [CFG+19, Unib, EGH+24].

2.1.4 Computing Answer Sets
To compute answer sets for a given problem, ASP solvers will start by first grounding
the program and subsequently solving it.

Grounding The ground program grnd(P ) of P is obtained by essentially instantiating
each rule with every possible combination of constants found in P . The set of these
constants is called the Herbrand Universe HU(P ). However, following this approach
naively can result in unreasonably large groundings, which is why modern ASP solvers
implement many optimizations to produce a smaller program without altering its answer
sets [BET11].

Solving Next, the ASP solver generates answer sets for the grounded program by
exploiting methods borrowed from satisfiability solving [BET11].

Native ASP solvers use a backtracking approach similar to that of SAT solvers, while
additionally verifying the foundedness of incumbent models. The notion of foundedness
ensures that every atom can be derived by a rule of the program. Whenever a contradiction
occurs or the current model is not founded, the search will backtrack to correct earlier
decisions which proved to be wrong [BET11].

There exist other ASP solvers that are based on actual reductions to SAT. Consequently,
models of the corresponding SAT problem are answer sets of the initial problem [BET11].
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2.2. Large Neighbourhood Search

2.1.5 Modelling
When modelling a problem in ASP, a useful approach is the so-called guess-and-check
method: Generate (guess) multiple candidate solutions to the problem at hand by using
nondeterministic features such as disjunctive rule heads or choice rules 2.12. Next,
check said candidates by introducing additional rules and constraints that discard illegal
solutions [EIK09].

Example 2 Following example, as described by Eiter et al. [EIK09], demonstrates the
guess-and-check methodology using the 3-colour problem:

r(X) ∨ g(X) ∨ b(X) ← node(X) (2.16)
← r(X), r(Y ), edge(X, Y ) (2.17)
← g(X), g(Y ), edge(X, Y ) (2.18)
← b(X), b(Y ), edge(X, Y ) (2.19)

where instances are expected to have the facts node(n) for n ∈ V and similarly edge(u, v)
for (u, v) ∈ E for a given graph G(V, E). Rule 2.16 uses disjunction to produce the
candidate solutions by colouring each node, while Rules 2.17-2.19 discard candidates
containing equally coloured neighbouring nodes [EIK09].

2.2 Large Neighbourhood Search
Large Neighbourhood Search (LNS) [Sha98, PR10] is a local search heuristic often used in
optimization problems. It was first described by Shaw [Sha98] as continuous relaxation
and re-optimization and proceeds as follows:
First, an initial solution to the current problem must be obtained, for example, by using
a construction heuristic that produces a suboptimal or even trivial solution. Next, a
subset, called the neighbourhood, of the current incumbent solution is destroyed (or
relaxed). The resulting partial solution is then rebuilt in an attempt to find a new feasible
solution of better quality. If this new solution is closer to the optimum, it becomes
the new incumbent (otherwise it is discarded). Subsequently, the destroy and repair
operations are repeated in a loop until some stopping criterion is met or an optimum is
found [PR10, Sha98].
Naturally, the effectiveness of the LNS optimization is highly dependent on the neigh-
bourhood selection: If it is too small, the search may get stuck in a local optimum due
to its limited exploration of the search space; if it is too large, the heuristic may repeat
certain optimizations at each step, resulting in poor efficiency or poor solution quality
[PR10].

2.2.1 Adaptive Large Neighbourhood Search
Adaptive Large Neighbourhood Search (ALNS) [RP06] extends regular LNS by allowing
for multiple destroy and repair operators in one search. The operators are dynamically
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2. Background

selected throughout the optimization based on their associated weight, which is continu-
ously updated after each iteration based on their performance, e.g., success rate. The
degree to which each operator’s weight is affected after each iteration can be controlled
by a decay parameter [PR10].

The basic idea of ALNS is therefore to favour good performing destroy and repair
operators with a higher probability of being selected. To counteract a possible bias
towards more complex operators due to their higher quality solutions, performance can
be normalized by execution time [PR10].

2.2.2 ALASPO: Adaptive Large-Neighbourhood ASP Optimiser
The Adaptive Large-Neighbourhood ASP Optimiser ALASPO1 is a system introduced by
Eiter et al. [EGH+22, EGH+24] implementing ALNS for ASP optimization problems. It
supports the ASP solver clingo and its extensions clingcon and clingo-dl of the Potsdam
Answer Set Solving Collection Potassco [Unia].

ALASPO allows for a portfolio of different search and and neighbourhood (relax) operators,
implements different operator selection strategies and can be configured in detail through
a JSON configuration. Figure 2.1 by Eiter et al. [EGH+24] demonstrates the workflow
and architecture of the ALASPO system.

Out-of-the-Box ALASPO can be used without the need for any configuration, by mak-
ing use of a sensible default strategy and problem independent search and relax operators:
By default, the dynamic strategy is used, with two neighbourhoods selecting random
atoms or random constants with sizes [0.1, 0.2, 0.4, 0.6, 0.8] and [0.1, 0.2, 0.3, 0.5] re-
spectively, where the sizes represent the percentages of total atoms (or constants) to relax,
and a search operator with timeouts of [5, 15, 30, 60] seconds. The available strategies,
relax and search operators are outlined in more detail in the following paragraphs.

For a particular problem with its ASP encoding written in a file program.lp, the
following starts ALASPO:

> alaspo -i program.lp

The command-line interface also includes options to set the time limit, a seed, select the
desired solver, and select one of the available neighbourhood types with corresponding
relaxation rates, as well as search timeouts. For further customization and control of the
LNS loop, a JSON configuration file can be passed to ALASPO [EGH+24].

Selection Strategies ALASPO’s selection strategies determine which relax and search
operators are chosen from the given portfolio at each iteration of the LNS loop. The
following strategies are currently implemented:

1https://gitlab.tuwien.ac.at/kbs/BAI/alaspo/-/commit/
9f8d5492f249d7eef2917f2c8d5d583b2d5cb235, accessed: April 15, 2025.
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2.2. Large Neighbourhood Search

{
   "strategy": "uniform-roulette-wheel",
   "relaxOperators": [
       {  
           "type": "declarative",
           "rates": [ 0.2, 0.4, 0.6, 0.8 ], 
       } ],
   "searchOperators": [
       {   
           "type": "default",
           "timeouts": [ 5, 15, 30 ],
           "configuration": {}
       } ]
}

player(1..g*p). group(1..g). week(1..w).

{ plays(P,W,G) : group(G) } = 1 :- player(P), week(W).
{ plays(P,W,G) : player(P) } = p :- week(W), group(G).
meets(P1,P2,W):- plays(P1,W,G),
                             plays(P2,W,G), P1<P2.
:~ #count { W : meets(P1,P2,W) } > 1, player(P1), 
           player(P2), P1 < P2. [1,P1]
#show plays/3.

_lns_select(W) :- week(W).
_lns_fix(plays(P,W,G),W) :- _lns_select(W), plays(P,W,G).

ASP EncodingJSON Configuration File 

ALASPO

Solution Partial 
Solution

relax(N)

reconstruct(S)

Search Config. S Neighbourhood N

ASP Solver

Construction 
Heuristic

Strategy
Search 
Portfolio

Neighbourhood 
Portfolio

select

 𝚫costs, 𝚫time

Figure 2.1: An overview of the ALASPO system by Eiter et al. [EGH+24].

(i) The dynamic strategy aims to increase relaxation rates and time limits to escape
local optima during search. It does so using the unsatStrikes parameter, which
dictates the number of times the solver must report unsatisfiability in order to
switch to the next larger neighbourhood. The timeoutStrikes option specifies how
often the solver should time out before either increasing the time limit or decreasing
the size of the neighbourhood, the choice of which is decided by coin flip. If it is
not possible to increase the relaxation rate or time out, i.e. if they are already at
their maximum, a new operator is chosen at random.

(ii) The roulette-wheel strategy assigns each pair of relax and search operators the
same initial weight. At the end of each iteration of the LNS loop, the currently
used operators’ weight is updated based on the formula wnew = (1 − α) · wold + α · r,
where r is the improvement in objective score over the operators’ runtime, and
α is a parameter controlling the learning rate. The weight of an operator pair
determines its probability of being selected in future iterations.

(iii) The uniform roulette-wheel or random strategy selects operator pairs with
equal probability without adapting their weights.

(iv) Finally, a novel power law strategy samples operators according to a power law
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distribution based on their indices: Each i-th operator is assigned a weight wi = 1
iα ,

which is then normalized to form the probability distribution. The parameter α
is set to 1.5 by default, favouring lower indexed operators, i.e., typically smaller
neighbourhoods with shorter time limits. Negative α values can be used to invert
this trend.

Note that it is easy to implement new custom strategies by extending the abstract class
AbstractStrategy in Python code [EGH+24].

Neighbourhood Types ALASPO offers two predefined neighbourhood types that are
problem independent:

(i) The random-atoms neighbourhood chooses a random set of the visible atoms to
relax. By default, clingo treats all atoms as visible; however, the #show directive
can be used to manually specify which atoms should be visible.

(ii) The random-constants neighbourhood picks a random sample from all constant
symbols present in visible atoms and relaxes every atom containing any of the
selected constants.

Random-atoms can be quite effective, but may struggle whenever there are a lot of
dependencies between different atoms. The random-constants neighbourhood tries to
combat this by relaxing groups of related atoms sharing the same constant.

In addition, ALASPO allows user-defined neighbourhoods as part of the problem encod-
ing, so-called declarative neighbourhoods, using the predicates _lns_select/1 and
_lns_fix/2:

The _lns_select/1 predicate can be used to specify a set of terms S from which a
subset is selected to be relaxed in each iteration of the LNS loop.

The _lns_fix/2 predicate is used to provide a mapping from the terms of S to atoms
that should be fixed under assumptions during solving. The first argument is the atom
to be fixed, the second is the corresponding term of S.

For every term t ∈ S that is not to be relaxed in the current iteration, all atoms of
the current incumbent identified by the _lns_fix/2 predicate that contain any of the
terms t are fixed, i.e., provided to the solver and assumed to be true (meaning they must
be included in the solution), destroying the rest of the incumbent. Consequently, this
results in the relaxation of every selected term s ∈ S and its corresponding atoms (along
with all other non-fixed atoms).

Figure 2.1 shows the use of a declarative neighbourhood in the JSON configuration file,
and highlights the corresponding _lns_select/1 and _lns_fix/2 predicates in the
problem encoding: The encoding depicted belongs to the Social Golfer Problem (SGP),
where a number of golfers must be grouped into g groups, each containing p players, over

12



2.2. Large Neighbourhood Search

1 {
2 "strategy": {
3 "name": "dynamic",
4 "unsatStrikes": 3,
5 "timeoutStrikes": 1
6 },
7 "relaxOperators": [
8 {
9 "type": "randomAtoms",

10 "sizes": [ 0.1, 0.2, 0.4, 0.6, 0.8 ]
11 },
12 {
13 "type": "randomConstants",
14 "sizes": [ 0.1, 0.2, 0.3, 0.5 ]
15 }
16 ],
17 "searchOperators": [
18 {
19 "name": "default",
20 "timeouts": [ 5, 15, 30, 60 ]
21 }
22 ]
23 }

Figure 2.2: The default portfolio of ALASPO.

a period of w weeks, such that no two players are placed in the same group more than
once. The two special predicates at the end of the encoding are then used to define whole
weeks as neighbourhoods for ALASPO.

Finally, custom neighbourhoods can also be implemented in Python code by extending
the abstract class AbstractRelaxOperator, which allows defining specialized and
possibly more complex neighbourhoods that would otherwise be difficult or impossible to
realize as part of the encoding [EGH+24].

Advanced Configuration A portfolio of different relax and search operators can
be specified trough a JSON configuration file: The default configuration is depicted in
Figure 2.2. A search and neighbourhood portfolio can each contain multiple different
relax and search operators, each with distinct relaxation rates and timeouts.

In addition, search operators can contain a configuration of solver specific options that
should be applied to the selected ASP solver during search. Furthermore, a so-called
initial operator can be provided as part of the configuration, which can be used to let the
ASP solver pre-optimize the problem for a given time before the main LNS loop starts. A
solver configuration can be applied to the initial operator as well. Both of these features
are demonstrated in Figure 2.3.

For further details on ALASPO, we refer to Eiter et al. [EGH+24, EGH+22].
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1 {
2 /* ... */
3 "searchOperators": [
4 {
5 "name": "default",
6 "timeouts": [ 5, 15, 30, 60 ],
7 "configuration": {
8 "solver": {
9 "opt_strategy": "bb,lin"

10 },
11 "configuration": "handy"
12 }
13 }
14 ],
15 "initialOperator": {
16 "timeout": 60,
17 "configuration": {
18 "solver": {
19 "opt_strategy": "usc,3"
20 },
21 "configuration": "jumpy"
22 }
23 }
24 }

Figure 2.3: An excerpt of an ALASPO configuration file containing ASP solver specific
options and an initial operator.

2.3 Hyperparameter Optimization
The topic of Hyperparameter Optimization (HPO) [KJ95, KFS95] has gained traction
primarily due to the rise of machine learning algorithms and their performance being
strongly dependent on the correct parameter choices [FH19, YS20]. It is the process
of identifying best performing parameters for a given function by evaluating them on
trials. Automating this procedure is a natural approach to reduce the effort of manual
experimentation, improve reproducibility, and possibly improve the performance of the
examined function by exploring the configuration space more thoroughly.

The basic forms of HPO are the well known Grid Search and Random Search [BB12]. The
former evaluates the given function with all possible parameter combinations, resulting in
a considerable number of required trials. This is especially true for complex configuration
spaces, since increasing the dimensionality of the space leads to an exponential growth
in the number of function evaluations. The latter, samples the configuration space
at random until a given budget is exhausted, and is proven to work better than Grid
Search for applications where the performance impact of parameters is very uneven
[FH19, BB12].

The field of Algorithm Configuration (AC) – which focuses on finding the correct parameter
settings, i.e., configurations, for a given algorithm on a set of different problem instances
– has developed methods to effectively solve AC scenarios: Racing algorithms evaluate
multiple candidate configurations sequentially, and discard worse performing ones as
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soon as they fall too far behind. Stochastic Local Search (SLS) [HS15] algorithms use
local search in the configuration space, and lastly, Sequential Model-Based Optimization
(SMBO), adopted by SMAC3 2.3.1, uses an internal model to estimate the performance
of parameter settings [Hoo12].

2.3.1 Bayesian Optimization

Bayesian Optimization (BO) [Moc94] balances both exploration and exploitation of the
search space by using learned knowledge from previous function calls and evaluating the
most promising next trial at each iteration, thus possibly reducing the overall number of
required function evaluations [FH19, BCdF10].

To do so, it uses a surrogate model in combination with an acquisition function: At
each iteration, the model is fitted to the previously made observations. The acquisition
function is an easy to optimize estimate of the utility of points that can be sampled, and
is used to find the best possible trial to evaluate next [FH19, BCdF10].

Example Scenario Figure 2.4 shows a Bayesian Optimization of a simple one-
dimensional example function, with the intention of finding its optimum: The dashed
line is the actual objective function, while the solid line is the surrogate function, which
represents the current estimate of the objective function with its uncertainty highlighted
in blue. The acquisition function is superimposed at the bottom of each plot in green;
its maximum determines the next value to be evaluated. The example shows that the
acquisition function estimates the utility of values around observations as low, while
it is high if it either predicts a high objective (exploitation) or the uncertainty is high
(exploration). However, at iteration t = 4, the acquisition function chooses a value close
to other observations, but it does so as it correctly predicts that this will yield a new
maximum [BCdF10, FH19, SSW+16].

The mean and uncertainty estimates are referred to as the posterior because they are
derived using Bayes’ theorem, where the prior holds the beliefs or assumptions about the
objective function, and the posterior represents the updated beliefs after incorporating
the observations [BCdF10].

Surrogate Models Bayesian Optimization typically uses Gaussian Processes (GPs)
[RW06] as surrogate models. A GP is a probabilistic distribution over functions that
allows an acquisition function to rely on its mean and variance predictions. However,
standard GPs do not scale well for high-dimensional data or large data sets. Therefore,
other machine learning models can be adapted for use in place of GPs, due to their higher
flexibility and scalability. One of which are Random Forests (RFs) [HHLB11]; they are
fast, can cope with large and complex configuration spaces better than GPs [JAGS17],
and scale better [FH19].
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Figure 2.4: An example Bayesian Optimization of a one-dimensional function, by Brochu
et al. [BCdF10].

Acquisition Functions Acquisition functions determine the points to evaluate during
optimization and are thus crucial in determining the ratio of exploitation and exploration
and its overall success. Following are some of the most prominent functions:

(i) Probability of Improvement (PI) selects trials based on the probability that the
objective value will be greater than the current incumbent. It will, however, tend
to strongly exploit already good solutions rather than explore uncertain regions
[BCdF10, SSW+16].

(ii) Expected Improvement (EI) does balance exploitation and exploration by
additionally accounting for the potential magnitude of improvement [BCdF10,
SSW+16].

(iii) Upper/Lower Confidence Bounds (UCB/LCB) are metrics used for max-
imization and minimization, respectively: UCB(x) = µ(x) + κσ(x), LCB(x) =
µ(x) − κσ(x), with κ controlling the balance between exploration and exploitation.
Given κ = 1 they could be intuitively understood as the top and bottom edges of
the blue shaded uncertainty drawn surrounding the posterior mean in Figure 2.4
[BCdF10, SSW+16].
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SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
Optimization SMAC32 [LEF+22] is a Bayesian Optimization framework for hyperpa-
rameter tuning written in Python. By default, it uses Random Forests as surrogate model
for hyperparameter optimization, given the previously mentioned benefits over standard
Gaussian Processes. It implements several so-called facades tailored to specific use cases,
and allows for custom combinations of different modules. In addition, it is capable of
optimizing a function based on a given set of instances, evaluating the performance of a
configuration based on trials with multiple instances. To enable the parallelization of
trials, SMAC3 can make use of custom DASK [Roc15] clients. DASK is a Python library
that can be used to efficiently implement parallel computing; DASK clients can be passed
to SMAC3 to parallelize its trials, including across HPC clusters [LEF+22].

To identify best performing parameter configurations, SMAC3 uses an aggressive racing
algorithm [BSPV02, HHLBS09] that, if provided with multiple instances, discards less
promising candidates as soon as possible by evaluating them on only a few instances
[LEF+22].

SMAC3 has been successfully used in tools such as auto-sklearn [FKE+15] as well as
Auto-Pytorch [ZLH21], and was part of a winning solution [ASD+20] for the 2020 NeurIPS
Black-Box Optimization Challenge (BBO) [TEM+21] [LEF+22].

2https://github.com/automl/SMAC3, accessed: April 15, 2025.
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CHAPTER 3
Integrated Automated Tuning in

ALASPO

In this chapter we will describe the main ideas and building blocks of the tuning approach
integrated into the ALASPO system.

3.1 Overview
In addition to the extensive range of solving and grounding parameters of the underlying
ASP solver, ALASPO offers numerous configuration options that control the behaviour
of its LNS process, both resulting in a considerable configuration space. Consequently,
any exhaustive exploration of different parameters and combinations thereof, to identify
optimal configurations, is infeasible by hand.

To address this, we integrate the SMAC3 2.3.1 framework for Bayesian Hyperparameter
Optimization into ALASPO, to automatically tune ALASPO configurations for a varied
set of instances. We we want to, among other things, allow a workflow where we have
a small set of diverse instances for a problem, and supply them to the tuning process.
ALASPO then clusters these instances based on their characteristics, and produces a
best configuration for each. Furthermore, the finished tuning process produces an artifact
that can be used for future invocations of ALASPO with new instances to automatically
select a fitting configuration.

Figure 3.1 shows the general tuning approach in ALASPO: The tuning configuration
file contains general settings such as the total trial budget, the time limit per run,
the configuration space for the optimization, as well as the problem encoding and the
instances to be considered. Optionally, a custom feature extractor or a custom DASK 2.3.1
configuration can be provided. ALASPO then uses its feature extractor (either the default
or a custom one) to obtain a set of features for each instance. This dataset is then used to
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Figure 3.1: Overview of the automated tuning in ALASPO.

cluster the provided instances, so that instances with similar characteristics are grouped
together. Finally, Bayesian optimization is performed on each instance cluster, resulting
in a best found configuration for each. ALASPO will return a clustering.dill file
after the tuning is finished, which can then be used for future ALASPO invocations,
automatically applying a best found configuration based on the given (unseen) instance.

3.2 Feature Extraction
For the clustering of the provided instances, each instance must be associated with a set
of features which are extracted by a feature extractor.

3.2.1 Default Feature Extractor
Since the default method needs to be problem agnostic, we opted for counting the number
of occurrences of different facts for each instance. However, the success of this approach
is very dependent on the particular problem and its encoding, as the number of facts may,
in the worst case, be exactly the same across all instances, wheras their characteristics
could differ significantly depending on the unaccounted-for terms of the predicates.

3.2.2 Custom Feature Extractor
To enable problem-specific instance feature extraction, we allow a custom feature extractor
to be passed to ALASPO. This custom feature extractor is a method that takes the path
to an instance file as parameter, and must return a list of numeric values (floats) that best
represent the characteristics of the instance. The extracted features will subsequently be
used to produce a convincing clustering of the given instances.

To illustrate why this could be beneficial, lets look at the already introduced Social
Golfer Problem (SGP) 2.2.1, wherein golfers have to be grouped over w weeks, while
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ensuring that no two players are in the same group more than once: If we assume that an
ASP encoding does not expect the weeks to be represented by multiple facts of the form
week/1, but only by a single fact weeks/1 indicating the total amount, the default
approach of counting facts is unable to distinguish instances by the number of weeks.
However, it is evident that two similar instances that differ only in their duration vary in
difficulty, as it becomes increasingly difficult to avoid similar pairings. In order for the
instance clustering to account for this aspect, a custom feature extractor can be provided
that returns the actual number of weeks as a feature.

3.3 Clustering

We cluster the instances based on their characteristics and use SMAC3 to find best
performing configurations for each cluster separately. We do this in the hope of exploiting
similarities between instances to improve the quality of configurations by tailoring them
to related groups of instances.

For the clustering, we use the K-means algorithm [HW79] on the dataset of extracted
instance features. To determine the best number of clusters, we use the Silhouette
Coefficient [Rou87] to evaluate the quality of the clustering. It ranges from −1 to 1, with
the upper bound indicating that samples are far from neighbouring clusters, i.e., a good
clustering, while values around 0 and below indicate that clusters overlap. We therefore
find the number of clusters that maximizes the Silhouette Coefficient of the resulting
clustering. Alternatively, the number of clusters can be specified using a corresponding
parameter in the tuning configuration.

3.3.1 Visualization

We provide the option to visualize the resulting clustering of instances, which may help in
understanding the instance set and its features. To do so, we reduce the dimensionality
of the feature dataset using Principal Component Analysis (PCA) [Pea01], which we
then use to visualize the clustering two-dimensionally, as well as three-dimensionally with
an interactive plot. Figures 3.2a and 3.2b show examples of such visualizations.

3.4 Implementation

We perform the hyperparameter optimization with SMAC3 for each cluster of instances.
Specifically, we use its HyperparameterOptimizationFacade, which, in turn, uses
a Random Forest as the surrogate model. For the initial design – the component that
determines which configurations are evaluated before the Bayesian optimization loop – we
use the DefaultInitialDesign instead of the SobolInitialDesign used by the
selected facade. This ensures that the actual provided default configuration is evaluated
initially, rather than a random set sampled from the configuration space.
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(a) 2D cluster visualization. (b) 3D cluster visualization.

Figure 3.2: Comparison of 2D and 3D cluster visualizations for the same instance set.

For the serialization of the tuning results, we use the dill [MSS+12] library, as it allows
us to serialize complete functions, such as the feature extractor, which is needed for
future ALASPO runs on new instances. In addition to the feature extractor, the resulting
clustering.dill file also contains the feature scaler, a dictionary specifying the best
configuration per cluster, and the K-means estimator used to predict the label of future
instances.

3.4.1 Tuning Configuration
To start the hyperparameter tuning described above, a tuning configuration has to be
passed to ALASPO. This can be done using either a JSON file or directly through Python.
For a complete list and description of available parameters as well as examples we refer
to the tuning README1.

JSON Configuration

The JSON configuration file is an extension of a standard ALASPO configuration file.
It contains an additional tuning node, under which all tuning related parameters are
specified. To be valid, it must contain a time or a trial limit, the time limit of each trial,
a problem encoding, instances, a configuration space, and a default configuration. Note
that the JSON configuration itself acts as the default configuration.

Configuration Space The configuration space is configured as a JSON node where: a
key represents the JSONPath2 [GNB24] to a specific property of the default configuration,
and the associated value is an array (or range) of candidate values to be tested for
that property. Figure 3.3 shows an example JSON tuning configuration file. In the
configuration space shown, the various available ALASPO strategies are tuned along with
their respective settings. However, the parameters of the selection strategies should only

1https://gitlab.tuwien.ac.at/kbs/BAI/alaspo/-/blob/9f8d5492f249d7eef2917f2
c8d5d583b2d5cb235/examples/tuning/README.md, accessed: April 15, 2025.

2https://www.rfc-editor.org/rfc/rfc9535, accessed: April 15, 2025.
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be sampled by SMAC3 when the corresponding strategy is selected. Therefore, when
tuning entire strategies (e.g., not just the alpha parameter of the current one) using
the strategy key, the values are treated specially: The different strategies and their
attributes are essentially flattened to regular hyperparameters, while the attributes are
resolved as conditional hyperparameters for their corresponding strategies.

To illustrate tuning other parts of the configuration, Figure 3.4 shows a configuration
space that tunes only the number of unsatStrikes of the dynamic strategy 2.2.2
in Line 2 (instead of tuning complete strategies), as well as the sizes of the first relax
operator in Line 3.

To express simple uniform ranges for hyperparameters within the configuration space
using a JSON file, we allow using the string prefix $eval: to enable the use of
Python literal types. This is particularly useful for specifying Python tuples, which
are interpreted differently: Lists are interpreted as categorical hyperparameters, while
tuples are interpreted as either uniform float or uniform integer hyperparameters. An
example can be seen in Lines 39 and 43 of Figure 3.3, which specify the range for the
alpha attributes of their associated selection strategies.

DASK client Using a custom DASK client is useful for parallelizing trials and can
be used to run the workers on a HPC cluster. To use this feature, it is necessary to
specify the actual class of the desired cluster with the type key, as well as the number
of daskWorkers. Each additional key-value pair is passed to the constructor of the
specified cluster type. The available cluster types and their parameters can be found in
the documentation for the DASK jobqueue package3. Figure 3.5 shows an example for
a SLURM cluster, where 8 workers (Line 3) will be spawned as jobs, each processing
one job at a time (Line 6), with Line 9 activating the correct conda environment for the
worker processes.

Feature Extractor To use a custom feature extractor, the path to a Python file has
to be provided. This file must contain a function named extractFeatures that takes
the path to an instance as parameter and returns a list of numeric values (float or integer)
that best characterize it. Note that import statements required by the provided function
must be written inside the function itself for it to work after deserialization.

Python

Using Python directly can overcome some limitations imposed by the JSON standard.
It allows passing a custom feature extractor function as well as a custom DASK client
directly, and can be used to specify more complex types of hyperparameters. Examples of
such advanced hyperparameters, and how to define them, can be found in the ConfigSpace

3https://jobqueue.dask.org/en/latest/clusters-api.html, accessed: April 15, 2025.
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documentation4. A simple example of how to configure and start the tuning process
directly in Python is shown in Figure 3.6.

3.4.2 Setup
To use the tuning integrated into ALASPO, there exist the optional dependencies tuning
and tuning-viz which can be installed using pip install alaspo[tuning] and
pip install alaspo[tuning-viz], respectively. The latter contains additional
dependencies needed for visualizing the clustering via the visualizeClustering
option.

3.4.3 Usage
Given a tuning configuration has the name tuningConfig.json, the following can be
used to start the tuning:

> alaspo --tuning-config tuningConfig.json

The resulting clustering.dill file can then be used as input for an (unseen) instance
newInstance.lp as follows:

> alaspo --use-clustering clustering.dill -i encoding.lp
--instance newInstance.lp

The instance file must be specified explicitly using the -instance option, as this file
will determine which configuration will be automatically applied.

4https://automl.github.io/ConfigSpace/latest/reference/hyperparameters/, ac-
cessed: April 15, 2025.
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1 {
2 "strategy": {
3 "name": "dynamic",
4 "unsatStrikes": 3,
5 "timeoutStrikes": 1
6 },
7 "relaxOperators": [
8 {
9 "type": "randomAtoms",

10 "sizes": [ 0.1, 0.2, 0.4, 0.6, 0.8 ]
11 },
12 {
13 "type": "randomConstants",
14 "sizes": [ 0.1, 0.2, 0.3, 0.5 ]
15 }
16 ],
17 "searchOperators": [
18 {
19 "name": "default",
20 "timeouts": [ 5, 15, 30, 60 ]
21 }
22 ],
23 "tuning": {
24 "trials": 1000,
25 "trialTimeLimit": 600,
26 "encoding": [
27 "./encoding.lp"
28 ],
29 "instances": "./instances.txt",
30 "configurationSpace": {
31 "strategy": [
32 {
33 "name": "dynamic",
34 "unsatStrikes": [ 1, 2, 3, 4 ],
35 "timeoutStrikes": [ 1, 2, 3, 4 ]
36 },
37 {
38 "name": "powerlaw",
39 "alpha": "$eval:(-5.0, 5.0)"
40 },
41 {
42 "name": "roulette",
43 "alpha": "$eval:(0.0, 1.0)"
44 },
45 {
46 "name": "random"
47 }
48 ]
49 }
50 }
51 }

Figure 3.3: An example JSON tuning configuration for ALASPO, with a configuration
space that tunes different ALASPO strategies with their appropriate settings.
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1 "configurationSpace": {
2 "strategy.unsatStrikes": [ 1, 2, 3, 4 ],
3 "relaxOperators[0].sizes": [ [ 0.1, 0.2, 0.3 ], [ 0.5, 0.6, 0.7, 0.8 ] ]
4 }

Figure 3.4: An example configuration space tuning the unsatStrikes parameter of
the dynamic ALASPO strategy 2.2.2, and the sizes of the first relax operator.

1 "dask": {
2 "type": "SLURMCluster",
3 "workers": 8,
4 "walltime": "-1",
5 "cores": 2,
6 "processes": 1,
7 "memory": "25600MB",
8 "job_script_prologue": [
9 "source .../miniconda3/bin/activate alaspo"

10 ],
11 "job_extra_directives": [
12 "--cpu-freq=2400000-2400000:performance",
13 "--partition=sunnycove",
14 "--output=slurm-%A_%a_stdout.log",
15 "--error=slurm-%A_%a_stderr.log"
16 ]
17 }

Figure 3.5: An example DASK configuration for parallelizing the tuning on a SLURM
cluster.
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1 import json
2
3 import alaspo.json_config
4 from alaspo.tuning import TuningConfig, TunerFactory
5
6 def extractFeatures(instance: str): # dummy custom feature extractor
7 from alaspo.tuning_util import parseInstance
8 return [float(x) for x in parseInstance(instance).values()]
9

10 alaspoConfig: dict = json.loads(alaspo.json_config.DEFAULT_CONFIG)
11
12 configurationSpace = {
13 "strategy": [
14 {"name": "roulette", "alpha": (0.2, 0.8)},
15 {"name": "dynamic", "unsatStrikes": (1, 4), "timeoutStrikes": [1, 2, 5, 6]}
16 ],
17 }
18
19 tuningConfig = TuningConfig(
20 timeLimit=None,
21 trials=15,
22 trialTimeLimit=5,
23 encoding="./encoding.lp",
24 instances="./instances.txt",
25 configurationSpace=configurationSpace,
26 defaultConfig=alaspoConfig,
27 clusterInstances=True,
28 customFeatureExtractor=extractFeatures,
29 )
30
31 TunerFactory.get(tuningConfig).tune()

Figure 3.6: An example of configuring the tuning process directly in Python.
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CHAPTER 4
Experiments

In this chapter, we present the benchmark problems we use to evaluate the hyperparameter
tuning of ALASPO, and discuss the results of the experiments run.

4.1 Experimental Setup
All experiments were run on a SLURM [JW23] high performance computing (HPC)
cluster of 10 nodes, each equipped with two Intel Xeon Silver 4314 CPUs and 512GB of
RAM, running Ubuntu 22.04 (Kernel 5.15.0-131-generic).

Features such as hyperthreading, Address Space Layout Randomization (ASLR), and
Non-Uniform Memory Access (NUMA), as well as unnecessary background services, have
been disabled in favour of reproducibility. Several additional measures have been taken to
ensure stable, parallel, and repeatable experiments by: (i) taking the memory architecture
of the hardware used into account by performing cache partitioning, (ii) ensuring low
measuring overhead by using the Linux performance events subsystem (perf), and (iii)
adopting a strict SLURM setup to isolate individual job executions through cgroups
restrictions, all of which are discussed in detail by Fichte et al. [FGHS24]. In practice,
running and scheduling a multitude of experiments for specific solvers, configurations,
and problem instances that conform to the described measures was automated using the
copperbench1 tool [FGHS24].

Experiments were run at a fixed CPU frequency of 2.4GHz and a 25600MB memory
limit, using Python v3.9.19, clingo v5.6.2, clingcon v5.2.0, smac v2.3.0, and ALASPO2.

Used encodings, instances, instance generators and experiment logs are available at3.
1https://github.com/tlyphed/copperbench, accessed: April 15, 2025.
2https://gitlab.tuwien.ac.at/kbs/BAI/alaspo/-/tree/9f8d5492f249d7eef2917f2c8d5d583b2d5cb235, ac-

cessed: April 15, 2025.
3https://github.com/DaveWasTakn/DIPLOMA-THESIS, accessed: April 18, 2025.
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4.2 Hypotheses and Methodology
The methodology for evaluating the effectiveness of the newly integrated tuning and our
hypotheses about its behaviour are the same for each of the four benchmark problems:

Hypotheses With our experimental evaluations, we want to investigate the following
hypotheses about the tuning of ALASPO configurations:

(H1) The resulting configuration of a tuning run should perform better than the default
ALASPO configuration.

(H2) Clustering problem instances based on their characteristics should result in multiple
best configurations, one for each group of similar instances, thus achieving better
objective values for the validation instance set than would a single configuration.

(H3) Using a custom feature extractor to produce a more representative feature dataset
of the problem instances should lead to a better clustering and, in turn, better
configurations.

(H4) Tuning approaches without clustering may perform better if the instances are quite
similar in their optimization behaviour.

(H5) Increasing the number of trials run by the tuning should yield configurations of
better quality, and consequently improve overall performance.

Methodology For the experimental evaluations, we tested our approach with the same
configuration space contained in Figure 3.3. We thus tried to find the optimal ALASPO
selection strategy along with its best performing parameters for each problem.

In addition to the fact that the selected benchmark problems are all highly relevant to
industry, we chose the Test Laboratory Scheduling Problem [GMM21, MM18, MM21] as
it has already been examined in previous work [EGH+24, GMM21] and has proven to
be a computationally expensive scheduling task. The Valves Location Problem [GS09,
GS10, CGN+11] is a typical combinatorial network design problem and was included as
benchmark in the Fifth Answer Set Programming Competition4. The Travelling Salesman
Problem [Men32, Rob49, DFJ54] is one of the most prominent optimization problems,
with a very simple instance format (for the encoding we choose), containing only the
layout of the graph, making the extraction of features from instances for their clustering
of particular interest. Finally, Multi-Agent Path Finding [SSF+21] is a contemporary
planning and coordination problem that has recently received increased attention due
to its range of diverse applications; it is a highly conflict-intensive optimization task
involving many inter-agent dependencies.

4https://www.mat.unical.it/aspcomp2014, accessed: April 15, 2025.
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As we want to enable the overall workflow described in Section 3.1, we use separate sets
of instances for the tuning and its validation.

For each problem, we present the results in a figure showing a series of box plots of
the experiments using the described encoding, instances, and configuration space: Both
the ALASPO baseline and the tuning validations are run 5 times each and averaged.
The results are plotted against the ALASPO default baseline, with the objective values
represented as relative difference. The box plots are grouped by the number of trials
carried out by the tuning, where each group consists of four runs:

(i) Default Clustering uses the default feature extractor 3.2.1 for the instance
clustering,

(ii) Custom Clustering uses a custom feature extractor that has been tailored to
best capture the instance characteristics of the specific problem,

(iii) No Clustering does not cluster the instances by their features before running the
Bayesian Optimization for each, but rather just supplies the features to SMAC3
and optimizes over all instances,

(iv) Whereas No Clustering No Features runs the Bayesian Optimization once, but
without passing any instance features to SMAC3.

4.3 Test Laboratory Scheduling Problem (TLSPS)
The Test Laboratory Scheduling Problem (TLSPS) [GMM21, MM18, MM21] is an
extension of the well known Resource-Constrained Project Scheduling Problem (RCPSP).
It involves multiple projects, each with a number of tasks, that have to be completed.
These task are grouped into jobs, that have specific resource requirements, different
modes they can be completed in, and a time slot, in which the job must be started
and completed. The constrained resources that need to be shared among all jobs are
workbenches, equipment and employees.

A solution to this problem is a schedule, with each job being assigned a mode, the start
and end time slots, a workbench, equipment, and employees. The quality of a solution is
determined by the sum of multiple soft constraint violations, such as due date infractions
or the time taken to complete each project.

4.3.1 Problem Definition and Encoding

Based on evaluations of ALASPO on the TLSPS in previous work [EGH+24, GMM21],
we choose a clingcon based encoding that exploits clingcon specific features like domain
constraints, that performed best among other encoding variants.
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1 &dom{R..D} = start(J) :- job(J), release(J, R), deadline(J, D).
2 &dom{R..D} = end(J) :- job(J), release(J, R), deadline(J, D).
3
4 1 {modeAssign(J, M) : modeAvailable(J, M)} 1 :- job(J).
5 duration(J, T) :- job(J), modeAssign(J, M), durationInMode(J, M, T).
6 &sum{end(J); -start(J)} = T :- job(J), duration(J, T).
7 &sum{start(J)} >= end(K) :- job(J), job(K), precedence(J, K).
8 &sum{start(J)} = 0 :- job(J), started(J).
9

10 1 {workbenchAssign(J, W) : workbenchAvailable(J, W)} 1 :- job(J), workbenchRequired(J).
11 R {empAssign(J, E) : employeeAvailable(J, E)} R :- job(J), modeAssign(J, M),

requiredEmployees(M, R).↪→
12 R {equipAssign(J, E) : equipmentAvailable(J, E), group(E, G)} R :- job(J), group(_, G),

requiredEquipment(J, G, R).↪→
13
14 :- job(J), job(K), linked(J, K), empAssign(J, E), not empAssign(K, E).

Figure 4.1: The hard constraints for the TLSPS encoding.

Hard Constraints

Figure 4.1 shows the hard constraints of the encoding, which need to be satisfied by any
solution:

Lines 1 and 2 restrict the integer values of start(J) and end(J) to be within the
domains &dom{R..D}, thus ensuring that the start and end times of each job J are
within its release and deadline window. Line 4 assigns one of the available modes to a
job, while Lines 5 and 6 introduce a job’s duration based on its selected mode and
associate it with the difference between its start and end time. The next rule in Line 7
deals with precedence between jobs; it ensures that if job K is predecessor of job J, then
J can only start after K has finished. Line 8 simply states that any job that is specified
as started – problem instances can include a set of jobs that are already running – has
its start time set to 0.

Next, Rules 10–12 deal with resource allocation. They assign each job an available
workbench, employees, and equipment based on its requirements. Finally, the constraint
in Line 14 ensures that if two jobs are linked, they must be processed by the same
employees.

In addition, Figure 4.2 contains the unary resource constraints. They enforce that no
resource is used by more than one job at any given time, using the precedence relation
discussed earlier: If two jobs are assigned the same resource, then the disjunction in the
rule heads implies that one of the jobs must precede the other.

Soft Constraints

The soft constraints of the TLSPS encoding are depicted in Figure 4.3:

The first two lines contain optimization directives that minimize the number of not
preferred employees assigned to jobs, as well as the total number of employees assigned
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16 precedence(J, K), precedence(K, J) :- job(J), job(K), workbenchAssign(J, W),
workbenchAssign(K, W), J < K.↪→

17 precedence(J, K), precedence(K, J) :- job(J), job(K), empAssign(J, E),
empAssign(K, E), J < K.↪→

18 precedence(J, K), precedence(K, J) :- job(J), job(K), equipAssign(J, E),
equipAssign(K, E), J < K.↪→

Figure 4.2: The unary resource constraints for the TLSPS encoding.

20 #minimize{ 1, E, J, s2 : job(J), empAssign(J, E), not employeePreferred(J, E) }.
21 #minimize{ 1, E, P, s3 : project(P), empAssign(J, E), projectAssignment(J, P) }.
22
23 &sum{delay(J); T} = end(J) :- job(J), due(J, T), &sum{end(J); -T} > 0.
24 &sum{delay(J)}=0 :- job(J), due(J, T), &sum{end(J); -T} <= 0.
25 delay(J, T) :- job(J), &sum{delay(J)} = T, T = 0..M, M = #max{D : deadline(J, D)}.
26 #minimize{ T, J, s4 : delay(J, T), job(J)}.
27
28 &dom{0..H} = projectStart(P) :- project(P), horizon(H).
29 &dom{0..H} = projectEnd(P) :- project(P), horizon(H).
30 1 {firstJob(J) : job(J), projectAssignment(J, P)} 1 :- project(P).
31 &sum{projectStart(P)} = start(J) :- firstJob(J), projectAssignment(J, P).
32 &sum{projectStart(P)} <= start(J) :- job(J), projectAssignment(J, P).
33 1 {lastJob(J) : job(J), projectAssignment(J, P)} 1 :- project(P).
34 &sum{projectEnd(P)} = end(J) :- lastJob(J), projectAssignment(J, P).
35 &sum{projectEnd(P)} >= end(J) :- job(J), projectAssignment(J, P).
36 &sum{projectEnd(P)-projectStart(P): project(P)} = projectDelay.
37 projectDelay(D) :- &sum{projectDelay} = D, D = 0..H*C, horizon(H),

C = #count{ P : project(P) }.↪→
38 #minimize{D, s5 : projectDelay(D)}.

Figure 4.3: The soft constraints for the TLSPS encoding.

to projects.

Each job has a release, the earliest possible start time, a due date, the time by which it
should be completed, and a strict deadline. Lines 23–26 are used to minimize the delay of
jobs, i.e. the time that a job exceeds its due date by. First, the delay of a job is defined
as the difference between its end time and its due time in case it is completed late. Next,
Line 24 ensures that the delay is set to 0 if a job finishes within the desired time window.
Finally, Lines 25 and 26 introduce a standard predicate delay/2, whose second term
captures the actual value of the integer variable (theory atom) delay/1, which is then
minimized for all jobs in Line 26.

The last part of the encoding, Lines 28 through 38, introduces the necessary constructs
to ultimately minimize the project delay. In Lines 28 and 29, both the start and end of
a project are defined as integer variables with their values restricted to be within the
scheduling horizon. Rules 30–32 determine the first job of each project to then derive
the actual value for the projectStart variable. The next three lines analogously set
the value for projectEnd. In Line 36, the projectDelay variable is defined as the sum
of the differences between project end and start times over all projects. Subsequently,
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this variable is used to derive a standard predicate projectDelay/1, which is finally
minimized in the last line of the encoding.

The constants s2 to s5 within the minimization statements are used to make the derived
tuples unique across the directives.

Show Statements

Since ALASPO selects a subset of the visible atoms, we use the #show directives contained
in Figure 4.4 to limit the selection pool to only those atoms that describe all relevant
parts of a solution to the TLSPS.

40 #show modeAssign/2.
41 #show workbenchAssign/2.
42 #show empAssign/2.
43 #show equipAssign/2.
44 #show start/2.

Figure 4.4: The #show directives used for the TLSPS encoding.

4.3.2 Instances
For the evaluation we use the set of randomly generated instances5 created using the
instance generator introduced by Mischek et al. [MM18], one half of which are labelled
labStructure, and the other general. The former being modelled as close to real-world
test laboratories as possible, while the latter are constructed with more varied features.
Additionally, the set contains 3 real-world instances of an industry partner that were
anonymized.

For the tuning we select a set of 31 instances, including the same generated instances
used by Geibinger [Gei20], and one of the real-world instances. We subsequently validate
the tuning results on a different set of 74 instances, containing 36 labStructure and 36
general, as well as the remaining 2 real-world instances.

The characteristics of the tuning instances, along with all three real-world instances, can
be seen in Table 4.1, created by Geibinger [Gei20].

4.3.3 Experimental Evaluation
For the experimental evaluation we use the methodology as described in Section 4.2, with
a time limit of 600 seconds for the tuning trials and 1800 seconds for the validation runs.

For the Custom Clustering, we implement a custom feature extractor that extracts
the number of projects and jobs, how many jobs are linked and how often a precedence
relation is expressed, the number of available modes, as well as the size of the scheduling
horizon. In addition, we calculate the following two metrics:

5https://www.dbai.tuwien.ac.at/staff/fmischek/TLSP, accessed: April 15, 2025.
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# Data Set ID |P | |J | h |E| |B| |G∗| |Ej | |Bj | |Ggj |
1 General 000 5 7 88 7 7 3 2.08 3.57 1.5
2 General 001 5 8 88 7 7 3 4.88 3.63 15.67
3 LabStructure 000 5 24 88 7 7 3 1.84 3.38 11.67
4 LabStructure 001 5 14 88 7 7 3 4.36 3.5 0.36
5 General 005 10 29 88 13 13 4 4.04 3.48 5.76
6 General 006 10 18 88 13 13 6 5.56 4.22 13.28
7 LabStructure 005 10 37 88 13 13 3 6.16 4.03 0.65
8 LabStructure 006 10 29 88 13 13 3 6.21 3.76 21.01
9 General 010 20 60 174 16 16 5 7.42 4.42 11.36

10 General 011 20 84 174 16 16 4 7.31 4.3 3.7
11 LabStructure 010 20 65 174 16 16 3 6.28 4.43 26.26
12 LabStructure 011 20 62 174 16 16 3 7.27 4.24 1.21
13 General 020 15 29 174 12 12 5 5.76 3.97 1.12
14 LabStructure 020 15 53 174 12 12 3 6.28 4.47 20.63
15 General 025 30 113 174 23 23 3 8.26 4.41 5.71
16 LabStructure 025 30 105 174 23 23 3 7.52 4.25 39.63
17 General 015 40 126 174 31 31 3 9.26 4.48 29.53
18 LabStructure 015 40 138 174 31 31 3 7.36 3.57 41.93
19 General 030 60 208 174 46 46 6 9.85 4.11 31.45
20 LabStructure 030 60 212 174 46 46 3 9.28 4.17 78.16
21 General 035 20 76 520 6 6 5 4.24 3.62 8.08
22 LabStructure 035 20 71 520 6 6 3 4.3 3.42 11.70
23 General 040 40 196 520 12 12 4 6.95 4.47 4.24
24 LabStructure 040 40 187 520 12 12 3 6.55 4.51 1.38
25 General 045 60 260 520 18 18 6 7.65 4.52 23.95
26 LabStructure 045 60 239 520 18 18 3 7.44 4.42 33.65
27 General 050 60 270 782 13 13 4 6.89 4.39 3.89
28 LabStructure 050 60 247 782 13 13 3 6.97 4.21 23.42
29 General 055 90 384 782 19 19 5 7.27 4.29 26.89
30 LabStructure 055 90 401 782 19 19 3 7.34 4.53 36.76

31 2019-04 - 74 297 606 22 17 1 5.49 3.06 1*

32 2019-10 - 59 223 572 19 17 1 5.70 3.48 1*

33 2019-07 - 59 251 700 24 22 1 5.33 3.17 1*

Table 4.1: Characteristics of the TLSPS instances used. Shown are the type of the
instance (which data set it was taken from) and their ID. The following columns list the
number of projects, jobs and the length of the scheduling period, followed by the number
of employees, workbenches, and equipment groups. The last columns contain the mean of
qualified employees and available workbenches per job, as well as the mean of available
devices per job and equipment group (only over jobs that require at least one device of
the group, about 10% of all jobs).
*The discrepancy compared to the other instances is caused by the fact that some
equipment groups were not yet considered at the time this instance was created. [Gei20]

35



4. Experiments

-00 &00 -000 &000

/>$<";

05(

05+

05-

050

05-

05+

=
9
#1

7
8$
4
1
 )

<
"6

1

*1.<6"8 ,"6;81>$A%

,6;8@B ,"6;81>$A%

?@ ,"6;81>$A%

?@ ,"6;81>$A% ?@ '1<86>1;

3!32:= 9<;1"$A1

Figure 4.5: Tuning results for the TLSPS. Objective values are relative differences to the
ALASPO baseline. Detailed results are available in Table A.1 in the Appendix.

(i) The average ratio of the mean duration of a job, based on the different available
modes in which it can be processed, to its maximum makespan, i.e., the available
time from release to deadline. A high ratio would indicate that jobs are time-critical
with little room for adjustment, while the opposite would indicate more flexibility
in scheduling jobs, which may affect the optimization behavior of the problem
instance.

(ii) The average ratio of the penalty window, i.e., the time between the due date and
the deadline, to the maximum makespan of jobs. This metric reflects whether an
instance allows more opportunities for optimization when its penalty window is
large, or whether it is more dependent on strict deadlines.

Results and Observations

Figure 4.5 shows the results of the TLSPS tuning. They demonstrate that the different
clustering approaches lead to relatively similar improvements compared to the baseline.
However, the default clustering is the most consistent over the increasing number of trials,
and is almost strictly better than default ALASPO at 5000 trials, with only two instances
performing negligibly worse than the baseline. It also performs marginally better than the
other variants in all four scenarios, with a median improvement of about 5% and average
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improvement of 7% over the baseline. Both of these observations generally support our
previously formulated hypotheses H1 and H5, wherein tuning should result in better
performance over the ALASPO baseline, and increasing the number of trials yields better
results.

At 100 trials, the custom feature extraction leads to the least improvements, while at 500
and 1000 trials it performs roughly the same as the default clustering approach. Notably,
it performs worse on 5000 trials, with objective scores worse than the default ALASPO
configuration, at a maximum of about 12%. This directly contradicts hypothesis H3,
suggesting that the features used for the custom clustering did not adequately capture
the optimization behaviour of different instances.

The tuning runs without clustering, both with and without instance features, contain
quite high outliers that perform about 20% worse than the baseline for 500 and 1000
and 5000 trials, respectively. However, at only 100 trials, No Clustering performs on
par with the default clustered approach, with the same finding for No Clustering No
Features at 500 trials.

Overall, the experiments show that already a small number of trials for the hyperparameter
tuning can improve the performance of ALASPO on the TLSPS, with an average
improvement of almost 6% for 100 trials with the default method. Moreover, the Default
Clustering generally performs best in finding the right ALASPO configuration for solving
the TLSPS instances, with a quarter of the objective values being about 11% − 22%
better than the baseline. The fact that a clustered approach performs better than finding
a single best configuration for all instances supports our hypothesis H2. However, as
mentioned above, the results also indicate that Custom Clustering, using the different
metrics of our custom feature extractor, does not lead to better performance than the
default count-based clustering, which contradicts H3.

4.4 Valves Location Problem (VLP)

Next, we consider the problem of isolation valve placement in water distribution networks
[GS09, GS10, CGN+11], which we will refer to as the Valves Location Problem (VLP).
It is the practical problem of placing a number of valves in a water distribution network
such that when certain pipes need to be isolated from the rest of the system by turning
off a subset of valves, for maintenance or unplanned interruptions, the disruption to the
network is minimal. Since the number of valves is limited, the setting does not allow
the trivial case of simply placing two valves on each individual pipe. Therefore, in most
cases isolating solely the desired pipe is not possible; the affected isolated pipes are each
associated with a water demand, the sum of which must be minimized [GS10, CGN+11].
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4.4.1 Problem Definition and Encoding
The ASP encoding for this problem is introduced by Gavanelli et al. [GNP13] and is
available from the Fifth Answer Set Programming Competition (ASPCOMP 2014)6.

The basic objective of the encoding is to place valves at positions, such that every pipe
can be isolated, and the maximum undelivered demand (UD) is minimized [GNP13].

Preprocessing

Figure 4.6 contains preprocessing steps, needed for later rules: They introduce the
swap/2 and subsequently the sym_pipe/2 predicate to represent the undirected net-
work. Additionally, the last two rules establish an ordering of pipes that will be used in
later stages to break ties in water delivery scenarios.

1 swap(pipe(A,B),pipe(A,B)) :- pipe(A,B).
2 swap(pipe(A,B),pipe(B,A)) :- pipe(A,B).
3 symm_pipe(A,B) :- swap(P,pipe(A,B)).
4
5 less_ico(pipe(A,B),pipe(C,D)) :- pipe(A,B), pipe(C,D), A < C.
6 less_ico(pipe(A,B),pipe(A,D)) :- pipe(A,B), pipe(A,D), B < D.

Figure 4.6: The necessary preprocessing steps of the VLP encoding.

Valve Placements

In Figure 4.7, possible valve locations within the network are determined. Lines 8 and
9 are used to eliminate potentially bad valve locations. Such undesirable locations are
represented by atoms of the predicate drop/2, either at the far end of a pipe directly
connected to a water tank (if the instance only allows one valve per pipe), or at simple
junctions of pipes of size 2.

Next, the choice rule in Line 11 selects a subset of desirable locations for every available
valve. In addition, Line 12 now enforces that a valve is placed directly next to each tank,
which is why valves at the far end of pipes connected to water tanks were previously
disallowed if valves_per_pipe(1). The last line then globally ensures that no pipe
contains more than one valve, if specified by the instance.

Water Flow

The part of the encoding shown in Figure 4.8 is responsible for modelling how water
propagates through the network, and which parts of it become isolated (broken).

Lines 15 through 17 introduce the broken/2 predicate, which extends from a broken
pipe to all connected pipes as long as there is no valve (or tank) to stop it, expressed by
the extend/2 relation.

6https://www.mat.unical.it/aspcomp2014, accessed: April 15, 2025.
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8 drop(B,A) :- symm_pipe(A,B), tank(A), valves_per_pipe(1).
9 drop(A,C) :- symm_pipe(A,B), symm_pipe(A,C), B < C, not tank(A),

#count{ D : symm_pipe(A,D) } < 3.↪→
10
11 N <= { valve(A,B) : symm_pipe(A,B), not drop(A,B) } <= N :- valves_number(N).
12 :- symm_pipe(A,B), tank(A), not valve(A,B).
13 :- valves_per_pipe(1), valve(A,B), valve(B,A).

Figure 4.7: The part of the VLP encoding responsible for valve placement.

Similarly, Lines 19–21 model the water flow, starting from a water tank, following
non-broken pipes, using the reached/2 and deliver/2 predicates.

15 broken(P,P) :- swap(P,P).
16 broken(P,Q) :- extend(P,A), swap(Q,pipe(A,B)), not valve(A,B).
17 extend(P,A) :- broken(P,Q), swap(Q,pipe(A,B)), not valve(A,B), not tank(A).
18
19 reached(P,A) :- swap(P,P), tank(A).
20 reached(P,A) :- deliver(P,Q), swap(Q,pipe(A,B)), not extend(P,A).
21 deliver(P,Q) :- reached(P,A), swap(Q,pipe(A,B)), not broken(P,Q).

Figure 4.8: The rules that propagate the effects of a pipe failure based on water flow for
the VLP encoding.

Minimizing Undelivered Demand

Finally, Figure 4.9 contains the rules for finding the worst case scenario and minimizing
the maximum expected undelivered water demand.

The first two rules examine different isolation scenarios pairwise and introduce the
compare/4 predicate, containing the water demand that the scenarios would contribute
to the difference in delivered demand. For each pipe pipe(A,B), if it is delivered in
scenario P but not in scenario Q, it contributes its demand to the comparison as a negative
difference, or, if the opposite is the case, as a positive difference. For instance, if we have
atom compare(P, Q, pipe(3, 4), -6), then scenario P is better, indicating that
P delivers 6 more units of water than Q for this pipe.

Next, in Lines 26 and 27, all the different isolation scenarios are ordered based on
their relative differences in delivered demands, by summing up the previously generated
compare/4 atoms (i.e., their last term), to overall establish an ordering of scenarios
expressed by the lower/1 relation.

Note that all four rules make use of the ordering less_ico/1 introduced in the first
section of the encoding 4.6, in order to compare any two scenarios only once, as well as
to break ties between equally good isolation scenarios.

Finally, Line 29 introduces atoms of the form worst_deliv_dem/3, for every pipe that
does deliver water in scenario P, where P is the actual worst case scenario (there is no
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other scenario that delivers a lower amount of the demanded water). Now the directive
in Line 30 can minimize the demands of all of the pipes that are not delivered with water
in the worst case. To reiterate, the encoding minimizes the sum of the total undelivered
water demands in the worst isolation scenario, where not worst_deliv_dem(A,B,N)
filters out all pipes pipe(A,B) that are delivered with water, leaving only the isolated
pipes, whose demands N are then minimized.

23 compare(P,Q,pipe(A,B),-N) :- less_ico(P,Q), dem(A,B,N), deliver(P,pipe(A,B)), not
deliver(Q,pipe(A,B)).↪→

24 compare(P,Q,pipe(A,B), N) :- less_ico(P,Q), dem(A,B,N), deliver(Q,pipe(A,B)), not
deliver(P,pipe(A,B)).↪→

25
26 lower(P) :- less_ico(P,Q), #sum{ N,R : compare(P,Q,R,N) } < X, X=0.
27 lower(Q) :- less_ico(P,Q), not lower(P).
28
29 worst_deliv_dem(A,B,N) :- deliver(P,pipe(A,B)), dem(A,B,N), not lower(P).
30 :~ dem(A,B,N), not worst_deliv_dem(A,B,N). [N,A,B]
31
32 #show valve/2.

Figure 4.9: The final part of the VLP encoding, minimizing the maximum undelivered
water demand.

4.4.2 Instances
We use the instances provided alongside the encoding for the VLP, made available by
the ASPCOMP 20146. The total instance set contains 318 instances, the upper half of
which we select 112 instances for the validation, and 48 for the tuning.

The instances contain the predicates valves_number/1 and valves_per_pipe/1,
which specify the available number of valves and whether a pipe has one or two valves,
respectively. Furthermore, they contain the water tanks tank/1, and a network of pipes
pipe/2 with their water demands dem/3.

4.4.3 Experimental Evaluation
For the experimental evaluation, we use the same general methodology as described in
Section 4.2.

The experiments were run with a time limit of 600 seconds, for both the tuning trials
and the validation runs.

For the Custom Clustering, we implement a feature extractor that characterizes
instances by: (i) The ratio of available valves to the number of pipes in the network; a
high value indicates more flexibility in valve placement, while a low ratio may indicate
a more challenging instance, where valve locations have a greater impact on solution
quality. (iii) The valve budget relative to the sum of demands and (iii) the average water
demand per pipe.
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4.4. Valves Location Problem (VLP)

However, though the visualization of the custom clustering (depicted in Figure 3.2) did
not seem inadequate at first, we will show below that the characteristics we chose for the
custom feature extractor are worse at capturing the difficulty and optimization behaviour
of the problem instances than the default implementation.
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Figure 4.10: Tuning results for the Valves Location Problem (VLP). Objective values are
relative differences to the ALASPO baseline. Detailed results are available in Table A.2
in the Appendix.

Results and Observations

The results of the tuning for the VLP are shown in Figure 4.10. They illustrate that
the tuning of the ALASPO selection strategies did not work particularly well for this
problem, as the results are very volatile across all approaches and trial budgets.

The default clustering produces the best median improvements and is the most consistent
as the number of trials increases. It consistently outperforms the other approaches, thus
partially supporting our hypothesis H2. The custom clustering, however, performs worse
than the default clustering at any number of trials, with an outlier at 100 trials that is
78% worse than the ALASPO baseline. The results indicate that the chosen features do
not represent the optimization behaviour of the instances well; it is worse than simply
counting the occurrences of facts, which directly contradicts our assumption formulated
in H3.

41



4. Experiments

Interestingly, No Clustering produces worse objective values than both Default
Clustering and No Clustering No Features at 100 and 500 trials. That is, providing
SMAC3 with the instance feature dataset used for the default clustering, results in worse
performance than without any features, even though the clustered approach based on
these features performs best.

Also, No Clustering No Features is marginally worse at 5000 trials than at both
1000 and 500, with respect to the number of instances worse than the baseline, while
this is not the case for any other approach. Although this observation challenges the
hypothesis H5, the fact that the same hypothesis – namely, that increasing the number
of trials improves overall performance – holds for most other clustering approaches and
trial counts suggests that this is an anomaly rather than a refutation of our hypothesis.

Overall, the four variants provide similar objective values when run with a trial limit of
5000 and 1000 (excluding Custom Clustering). However, although most combinations
achieve a small improvement for the majority of instances, with maximum reductions
in objective values of about 30% − 40%, all approaches perform worse than ALASPO
with its default configuration for at least a quarter of the instances, including significant
outliers. Our hypothesis H1, which states that configurations resulting from a tuning
should perform better than the default ALASPO configuration, is challenged by the
overall observations. However, depending on how better is interpreted for a particular use
case, H1 could still theoretically hold. For example, at 5000 trials, the average relative
improvements over the baseline across the different clustering strategies are in the range
of 2.7% to 5.5%, with about 73 instances performing better and only about 36 worse
than the baseline.

4.5 Travelling Salesman Problem (TSP)
The Travelling Salesman Problem (TSP) [Men32, Rob49, DFJ54] is a well known problem
with a wide range of practical applications. It involves finding the shortest path between
a set of nodes, visiting each exactly once, and finishing at the starting point. In other
words, it tries to find a Hamiltonian cycle with minimal costs.

4.5.1 Problem Definition and Encoding
The encoding for the TSP is shown in Figure 4.11; it originates from the asparagus
platform7 and was investigated previously by Eiter et al. [EGHR+22].

A solution to a given instance is represented by the cycle/2 predicates of the visited
edges.

In the first two lines of the encoding, choice rules are used to express the fact that every
vertex vtx/1 must be included in the resulting cycle by having exactly one edge entering
and one edge leaving it (i.e., it enforces indeg(v) = outdeg(v) = 1 for every vertex v).

7https://asparagus.cs.uni-potsdam.de, found to be inaccessible as of April 15, 2025.
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4.5. Travelling Salesman Problem (TSP)

Next, Lines 4–6 introduce the notion of vertices being reached, starting with the first
vertex and propagating through vertices connected by the cycle/2 predicate, to then
ensure that every vertex can be reached within the cycle in Line 6.

Finally, Line 8 contains a minimization directive, minimizing the sum of the edge weights
for all edges included in the cycle.

The last line of the encoding is used to limit the visible atoms to only include cycle/2.

1 { cycle(X,Y) : edge(X,Y); cycle(X,Y) : edge(Y,X) } = 1 :- vtx(X).
2 { cycle(X,Y) : edge(X,Y); cycle(X,Y) : edge(Y,X) } = 1 :- vtx(Y).
3
4 reached(1).
5 reached(Y) :- reached(X), cycle(X,Y).
6 :- vtx(X), not reached(X).
7
8 :~ cycle(X,Y), edgewt(X,Y,C). [C,X,Y]
9

10 #show cycle/2.

Figure 4.11: The encoding for the Travelling Salesman Problem.

4.5.2 Instances
For the TSP, we create our own set of random instances using a generator written in
R. We make use of the tspgen8 library developed by Bossek et al. [BKN+19], which
implements a set of creative mutation operators aimed at generating diverse instances.

We generate a set of 96 instances in total, with sizes chosen from 40, 60, 80, and 100
vertices. For each size, we start with a random graph, and use one of four distinct
mutations: (i) the AxisProjectionMutation of tspgen, (ii) the GridMutation of
tspgen, (iii) a single cluster mutation, that clusters all points into a single group, and (iv)
a triple cluster mutation, which splits the points into three separate clusters. Finally, the
resulting instance is perturbed multiple times to obtain different instances with similar
global characteristics. Examples of the different types of instances are shown in Figure
4.12.

For the experiments, we then split the set, selecting the first instance of each size and
type for tuning, while using the rest to validate the tuning results. This results in 16
instances for the tuning and 80 for its validation.

4.5.3 Experimental Evaluation
We employ the general methodology for the experimental evaluation of the TSP as
outlined in Section 4.2.

The experiments were run with a time limit of 300 seconds, for both the tuning trials
and the validation runs.

8https://github.com/jakobbossek/tspgen/, accessed: April 15, 2025.
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(a) Axis Projection (b) Grid Mutation (c) Single Cluster (d) Triple Cluster

Figure 4.12: Example TSP instances using different mutations.

For the Custom Clustering, we implement a feature extractor which, for every
instance, reports back the total weight of the Minimum Spanning Tree (MST), the area of
its convex hull, as well as the mean and standard deviation of all pairwise point distances.
We choose the MST, as it is an easy to compute lower bound for the Hamiltonian cycle,
indicating the density of the instance and thus correlating with the length of the TSP
tours. The area of the convex hull represents the spread of the different nodes, with a
larger area typically indicating a more dispersed layout. Finally, the metrics about the
length of edges should provide additional information about the general distribution of
nodes. Note that we do not include the number of vertices in the feature set, as we want
the clustering to be based on the geographical structure of the instances.

Results and Observations

Figure 4.13 presents the results of the tuning for the TSP. For 100 trials, the No
Clustering No Features approach clearly outperforms the other three variants, with
an average relative improvement of about 18% over the ALASPO baseline and only 3
out of 80 instances performing worse. Interestingly, No Clustering – where SMAC3 is
also run on the entire instance set, but provided with the default instance feature set –
results in significantly worse objective values with the same number of trials. However,
for the other runs with 500, 1000, and 5000 trials, the two perform almost identically,
consistently better than the default ALASPO configuration with average improvements
of about 28%. This observation strongly supports our hypothesis H5, since increasing
the number of trials clearly leads to better configurations being found.

The clustered approaches are both equally unstable at 100 trials, with 36 of 80 instances
above the baseline, suggesting that hypothesis H2 does not hold when paired with a
small trial budget. Their respective clustering is visualized in Figure 4.14, which clearly
demonstrates the pitfall of the default feature extraction: Two TSP instances with
the same number of vertices and edges can differ significantly in difficulty due to their
spatial distributions. However, the generic method of counting facts cannot discriminate
any features other than the number of vertices (and edges). Therefore, the Default
Clustering produces four clusters, one for each instance size, whereas the Custom
Clustering takes the actual spatial features of the instances into account.
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Figure 4.13: Tuning results for the TSP. Objective values are relative differences to the
ALASPO baseline. Detailed results are available in Table A.3 in the Appendix.

While the default clustering gradually improves with an increasing number of trials,
peaking at practically indistinguishable results with 5000 trials, the custom clustering
matches the performance of the other best approaches from 500 trials on. This supports
our hypothesis H3 wherein custom feature extraction creates a more appropriate clustering
of instances, thus improving overall performance, albeit only over the default clustering.

Overall, the custom clustering and both unclustered approaches behave almost identically
for more than 500 trials (with the custom clustering slightly worse at 1000). They lead to
considerable improvements in objective values over the ALASPO baseline, with average
improvements of about 28% and maximum gains of just under 70%, strongly supporting
hypothesis H1.

That the clustered variants, especially the default one, perform worse than No Clus-
tering No Features could be explained by the fact that for the TSP, the power law
selection strategy 2.2.2 with a large alpha value stands out as the best for all instances
regardless of the instance type, which makes clustering of little use. This directly validates
our hypothesis H4, which states that clustering can be a hindrance in finding good
configurations when the optimization behaviour of all instances is quite similar, while
also providing another possible explanation as to why H2 does not hold.
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Figure 4.14: Visualization of the instance clustering for the TSP, with the default feature
extraction (left) and the implemented custom extractor (right).

4.6 Multi-Agent Path Finding (MAPF)
Multi-Agent Path Finding (MAPF) involves finding conflict-free paths for multiple agents
sharing the same environment, each having a start position and a goal position they
must reach. Naturally, this is a highly relevant problem for industry, with applications in
automated warehouse routing [LTK+21], robotics [CLH+22], and autonomous vehicles
[LHL+23] [SSF+21].

Erdem et al. [EKOS13] introduce a formal framework for applying ASP to pathfinding
problems with multiple agents, and present encodings that address different path con-
straints. We will consider the sum-of-cost optimization encoding introduced by Gomez et
al. [GHB20].

4.6.1 Problem Definition and Encoding

For our evaluation we use the encoding introduced by Gomez et al. [GHB20]. Specifically,
we use the version of encoding with quadratic conflict resolution, rather than their
proposed linear encoding, as, although the linear version produces a smaller and faster
grounding, we found it to take significantly more time in finding solutions for our instances.

Actions

Figure 4.15 contains rules that both define possible actions, and guess these actions
executed by agents.

Lines 1–5 and 7–11 first introduce the possible actions as atoms, i.e., all directions an
agent can move to (including the option to wait), and then define the positional delta of
an agent after executing one of them. For example, delta(right, X, Y, X+1, Y)
encodes the fact that an agent starting at position (X, Y) and moving to the right will
end up at node (X+1, Y).
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4.6. Multi-Agent Path Finding (MAPF)

Next, the choice rule in Line 13 guesses one possible action for each agent at every time
step, represented by the predicate exec/3. While the last line introduces atoms of the
form at/4, which specify the location of an agent at any given time.

1 action(right).
2 action(left).
3 action(up).
4 action(down).
5 action(wait).
6
7 delta(right, X, Y, X+1, Y ) :- rangeX(X), rangeY(Y).
8 delta(left, X, Y, X-1, Y ) :- rangeX(X), rangeY(Y).
9 delta(up, X, Y, X , Y+1) :- rangeX(X), rangeY(Y).

10 delta(down, X, Y, X , Y-1) :- rangeX(X), rangeY(Y).
11 delta(wait, X, Y, X , Y ) :- rangeX(X), rangeY(Y).
12
13 1 {exec(A, M, T-1) : action(M)} 1 :- time(T), agent(A).
14 at(A, X, Y, T) :- exec(A, M, T-1), at(A, X', Y', T-1), delta(M, X', Y', X, Y).

Figure 4.15: The different possible actions and their effects for the MAPF encoding.

Integrity Constraints and Conflicts

The encoding shown in Figure 4.16 imposes constraints on the possible locations and
actions of agents.

Lines 16 through 18 restrict the positions of agents to be within the boundaries of the
available grid, whose dimensions are provided with facts rangeX/1 and rangeY/1, and
disallow agents at locations that are marked as obstacles.

Next, Lines 20 and 22–23 encode vertex and swap conflicts, respectively. The former
simply disallows two different agents to be in the same place at the same time, while the
latter ensures that no two agents traverse the same edge in opposite directions at the
same time instance, for both the horizontal and vertical case.

16 :- at(A, X, Y, T), not rangeX(X).
17 :- at(A, X, Y, T), not rangeY(Y).
18 :- at(A, X, Y, T), obstacle(X, Y).
19
20 :- at(A, X, Y, T), at(A', X, Y, T), A != A'.
21
22 :- at(A, X+1, Y , T-1), at(A', X, Y, T-1), at(A, X, Y, T), at(A', X+1, Y , T).
23 :- at(A, X , Y+1, T-1), at(A', X, Y, T-1), at(A, X, Y, T), at(A', X , Y+1, T).

Figure 4.16: The integrity constraints for the MAPF encoding.

Sum-of-Costs Minimization

Lastly, Figure 4.17 introduces the necessary constructs to then optimize the sum-of-costs,
i.e., the number of actions executed by agents before arriving at their goals.
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Rules 25 and 26 define the predicate at_goal/2 representing the time an agent reaches
its goal, and enforce that every agent is at their goal at the last time step.

Next, in Lines 28–29 the at_goal_back/2 predicate is introduced, which is derived for
an agent A at time T if it is at its goal, and from time T onwards only waits. It essentially
represents if an agent is at its final position without needing to move in the future. The
actual predicate is incrementally derived in reverse, starting from the end of the horizon,
until an agent performs an action other than wait.

Finally, Rules 31–33 introduce the cost of performing penalized actions: For (i) every
time instant an agent is not at its goal, (ii) an agent moving away from its goal, and
(iii) every time an agent waits at its goal, but later moves away from it (i.e., not
at_goal_back/2), a cost of 1 is derived for the given agent and time step. The sum
of these costs is ultimately minimized in Line 35.

Again, Line 37 limits visible atoms to only those that are relevant.

25 at_goal(A, T) :- at(A, X, Y, T), goal(A, X, Y).
26 :- agent(A), not at_goal(A,T), time(T), not time(T+1).
27
28 at_goal_back(A, T ) :- agent(A), time(T), not time(T+1).
29 at_goal_back(A, T-1) :- at_goal_back(A, T), exec(A, wait, T-1).
30
31 cost(A, T, 1) :- at(A, X, Y, T), not goal(A, X, Y).
32 cost(A, T, 1) :- at(A, X, Y, T), goal(A, X, Y), exec(A, M, T), M != wait.
33 cost(A, T, 1) :- at(A, X, Y, T), goal(A, X, Y), exec(A, wait, T),

not at_goal_back(A, T).↪→
34
35 #minimize{C, T, A : cost(A, T, C)}.
36
37 #show exec/3.

Figure 4.17: The sum-of-costs optimization for the MAPF encoding.

4.6.2 Instances

For the instances, we implement an instance generator which creates random instances
with characteristics close to those used by Gomez et al. [GHB20]: We create random and
warehouse instances, with varying sizes, percentages of obstacles, and number of agents.

Random instances are created of sizes 8x8 and 20x20, with the number of agents between
10–21 and 16–29 in increments of two, respectively, with [0%, 10%, 25%] of obstacles.

For the warehouse instances, we generate 15x15 and 21x18 grids with the number of
agents between 16–29 in increments of two.

For each combination of parameters, we generate three instances randomly.

Examples of the different types of generated instances are shown in Figure 4.18.
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For our experimental evaluation, we select every third instance for tuning and the rest
for validation. Without the unsatisfiable instances (due to the generation process or
insufficient time limit), we are left with 39 instances for tuning and 81 for validation.

(a) Random 8x8 (b) Random 20x20 (c) Warehouse 15x15 (d) Warehouse 21x18

Figure 4.18: Example MAPF instances using our instance generator. With agent start
positions shown as dots and targets shown as stars.

4.6.3 Experimental Evaluation

In addition to the general methodology 4.2, we will consider an alternative configuration
space in combination with a declarative neighbourhood.

The alternative configuration space is shown in Figure 4.19; it contains the dynamic
and powerlaw selection strategies with their respective parameters, the bb,lin and
the usc,3 optimization strategy as well as different predefined configurations of the
clingo solver, that will be applied during search, and finally two sets of search timeouts.
Additionally, it contains two types of relaxation rates, the first using absolute values
corresponding to the number of agents 4.20, while the second selects them proportionally.

1 "configurationSpace": {
2 "strategy": [
3 {"name": "dynamic", "unsatStrikes": [2, 3, 4], "timeoutStrikes": [1, 3]},
4 {"name": "powerlaw", "alpha": "$eval:(-5.0, 5.0)"}
5 ],
6 "relaxOperators[0].sizes" : [
7 [ 2, 3, 4, 5, 8, 10 ], [ 0.1, 0.2, 0.3, 0.4, 0.5, 0.8 ]
8 ],
9 "searchOperators[*].configuration.solver.optStrategy" : [ "bb,lin", "usc,3" ],

10 "searchOperators[*].configuration.configuration" : [
11 "auto", "tweety", "handy", "crafty", "trendy"
12 ],
13 "searchOperators[*].timeouts": [ [ 5, 15, 30, 60 ], [ 10, 30, 60, 120 ] ]
14 }

Figure 4.19: The alternative configuration space for the declarative MAPF evaluations.

The declarative neighbourhood can be seen in Figure 4.20. It selects a subset of agents
along with all of the derived atoms corresponding to their paths for relaxation.
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39 _lns_select(A) :- agent(A).
40
41 _lns_fix(exec(A, M, T), A) :- _lns_select(A), exec(A, M, T).
42 _lns_fix(at(A, X, Y, T), A) :- _lns_select(A), at(A, X, Y, T).
43 _lns_fix(at_goal(A, T), A) :- _lns_select(A), at_goal(A, T).
44 _lns_fix(at_goal_back(A, T), A) :- _lns_select(A), at_goal_back(A, T).
45 _lns_fix(cost(A, T, 1), A) :- _lns_select(A), cost(A, T, 1).

Figure 4.20: The declarative neighbourhood for the MAPF encoding selecting entire
agents and their paths for relaxation.

For the Custom Clustering, we implement a custom feature extractor which reports
back the following features for every instance: (i) the ratio of agents to the grid area,
with a higher value generally indicating a more difficult instance due to space restrictions
and the higher chance for conflicts, (ii) the size of the grid, (iii) the average number of
line intersections per agent, where we count how often straight start-goal line segments
intersect pairwise. This should be a simplified heuristic of the number of potential
conflicts between agents, since if more paths intersect, agents are more likely to interfere
with each other. Additionally, we compute the Manhattan distances between the agents’
starting positions and their destinations, and report (iv) the sum and (v) the average.

Results and Observations

Figure 4.21a shows the tuning results with the configuration space optimizing the different
ALASPO selection strategies and their parameters. It is clear that the tuning results
for MAPF are suboptimal. Almost every approach has an average objective score that
is higher than the ALASPO baseline. The only exception to this rule is the custom
clustering run on 1000 trials with a negligible average relative improvement of 0.3%.
These results contradict one of our core hypotheses, H1, which assumes that tuning
should produce better performing configurations than the default.

Despite the unfavourable results, we can make some observations about the relative
performance between the different tuning variants as well as the trial budget.

For 100 trials, No Clustering No Features produces better objective values than
any other method, with moderate outliers in comparison. For the next larger trial size,
however, it performs significantly worse than before, and contains the worst outlier overall.
At 5000 trials, it again performs comparable to the results at only 100. This inconsistent
behaviour contradicts H5, which suggests that increasing the number of trials yields
better configurations.

In contrast, the default clustering shows a somewhat linear improvement in overall
quality with an increasing number of trials, which does, in turn, directly support H5.
Furthermore, it can be argued that the same hypothesis holds for the other two approaches,
Custom Clustering and No Clustering, particularly with regard to the generated
outliers.
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Since the results are very volatile in general, it is worth looking at which ALASPO
strategies are considered best by the tuning: At 5000 trials, 9 out of 10 clusters choose
the dynamic strategy with different parameters for Default Clustering, with No
Clustering No Features also selecting the dynamic strategy. The Custom Clustering
selects the dynamic strategy for two of its three clusters, with the powerlaw strategy
and a high alpha chosen for the third. Finally, No Clustering determines that the best
strategy is the powerlaw strategy with a high alpha value.

Looking at the results, it is evident that the default ALASPO selection strategy –
the dynamic strategy – performs best for the MAPF, leaving virtually no room for
improvement for the tuning, making hypothesis H1 unviable for this problem. This
is further highlighted by the fact that No Clustering, which uses only the powerlaw
strategy, performs strictly equal or worse than the baseline at 5000 trials, with the best
objective values only equal to the baseline for 15 out of 81 instances.

Furthermore, it seems that the default values for the parameters unsatStrikes and
timeoutStrikes of the dynamic strategy are also adequate for the tested MAPF instances:
No Clustering No Features only changes timeoutStrikes – the number of times
the solver must timeout during the search to either increase the time limit or decrease
the relaxation rate – from 1 to 4, resulting in 19 instances with improved results over the
baseline. However, the average of these 19 instances is a relative improvement of only
3.7%; while 28 instances perform worse than before, with 8% higher scores on average.
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(a) Tuning results for the MAPF with the stan-
dard configuration space.
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(b) Tuning results for the MAPF with the alter-
native configuration space 4.19 and declarative
neighbourhood 4.20.

Figure 4.21: Comparison of tuning results for MAPF using the standard (left) and
alternative (right) configuration spaces. Objective values are relative differences to the
ALASPO baseline. Detailed results are available in Tables A.4 and A.5 in the Appendix.

Figure 4.21b shows the tuning results with the alternative configuration space 4.19 and
using the declarative neighbourhood 4.20. Unfortunately, the addition of the declarative
neighbourhood and the ability to change solver configurations does not result in any
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convincing improvements over the baseline, again disproving hypothesis H1. In fact,
for any number of trials, all approaches result in an average relative difference that is
slightly worse than the default ALASPO configuration. Moreover, with the exception
of the default clustering at [100, 500, 1000] trials and the custom clustering at 5000, all
approaches perform remarkably similarly to each other, contradicting both hypotheses
H2 and H5.

4.7 Discussion
Overall, we found that tuning the available ALASPO strategies and their corresponding
parameters significantly improves the performance of ALASPO for the TLSPS and the
TSP, while producing moderate results for the VLP and virtually unusable results for the
MAPF. These findings are generally in support of our original hypothesis H1, particularly
for the TLSPS and the TSP, while highlighting that it is not applicable to the MAPF,
where the default configuration already performs best.

For the TLSPS, tuning with only 100 trials resulted in average improvements of about
5% and lower objective scores in the range of 11% − 22% for a quarter of the instances,
with the default clustering performing best.

The default clustering also performed best for the VLP, with average improvements
between 3% − 5% and little improvement gained by increasing the number of trials after
500.

For the TSP, the approach without clustering and no instance features did best, resulting
in lower objective values by 18% on average at 100 trials, and 28% from 500 trials and
up.

Finally, tuning for the MAPF did not find any configurations that consistently performs
better than the default. Using a declarative neighbourhood that selects a subset of agents
along with their paths for relaxation, and allowing solver specific configurations in an
alternative configuration space, did not change this unfavourable result.

A key observation is the fact that with a small number of trials, the clustered approaches
may perform worse than the unclustered methods whenever there is a single best configu-
ration for all instances. This can be seen at 100 trials for both the TSP and the MAPF,
where the powerlaw and dynamic strategies, respectively, perform best for all types of
instances. This is due to the fact that the clustered variants have to share the trial
budget for each cluster, whereas without clusters SMAC3 has more trials available to find
the overall best configuration. In these cases, hypothesis H2 is directly contradicted, as
the implicit assumption of heterogeneous instances does not hold, which in turn supports
H4.

Furthermore, it is evident that the performance of the custom clustering is highly
dependent on the implementation of the custom feature extractor, whereas the default
clustering is highly dependent on the structure of the instances. The former is illustrated
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4.7. Discussion

by the fact that the Custom Clustering performs worse than the default clustering for
the VLP. While the TSP instances prove to be the worst case for the latter, providing
virtually no information about their characteristics other than the number of vertices.
These results show that hypothesis H3 can only hold if the custom features extracted
from instances are successful in capturing distinct optimization behaviours.

We also observe that tuning with 5000 trials almost always gives the best objective values.
However, Custom Clustering for the TLSPS and No Clustering No Features for
the VLP performed worse than with fewer trials. A possible reason for this, and by
extension why hypothesis H5 does not hold universally, could be overfitting on the tuning
data set.

Tuning the selection strategies for the MAPF also highlights the obvious fact that when
the default strategy performs best, tuning is of little use. In cases like these, hypothesis
H1 becomes trivially inapplicable.

Another reason for the suboptimal tuning performance of the MAPF may be that the
instances are not diverse enough in their optimization behaviour to justify the use of
different selection strategies. Although we generate 4 visually distinct types of instances,
the random placement of start and goal positions has a huge impact on defining the
difficulty and characteristics of an instance. Even a small change in these positions can
have a large impact; nuances that our clustering was not able to account for.
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CHAPTER 5
Related Work

Hutter et al. [HHS07, HHLBS09] present the ParamILS framework for automated Algo-
rithm Configuration (AC). It iteratively uses local search in the configuration space to
find local optima and perturbation phases to escape from these optima, corresponding to
a traditional exploitation and exploration step, respectively. Each perturbation phase is
followed by a local search phase, after which the framework decides whether the new local
optimum is also a global optimum, and if not, reverts to the previous incumbent. The
authors report consistent and substantial performance improvements using ParamILS on
a variety of different algorithms [Hoo12].
Xia et al. [XS24] explore the problem of SAT based tree decomposition with the TW-SLIM
(treewidth SAT-based local improvement method) framework, which, instead of solving a
large translation of the problem into SAT, uses multiple SAT calls to find decompositions
for trees of smaller width. To improve the performance of TW-SLIM, the authors then
investigate how to best choose and apply configurations for the framework. They propose
an iterative cascading policy that dynamically applies the best configurations found
offline, based on the current updated instance features at each round. To find these best
configurations, the authors cluster instances based on their features, and subsequently
use the SMAC3 framework to find the best configuration for each cluster separately. The
authors report that the proposed policy is effective in improving the performance of the
TW-SLIM framework.
Similarly, Song et al. [SLC+23] propose a new instance specific Algorithm Configuration
(AC) method for Mixed-Integer Programming (MIP) solvers. The authors first introduce
an automated feature extraction for MIP instances, where each instance is represented
as a bipartite graph of variables and constraints. Then, random walks extract multiple
subgraphs that contain both numerical information as well as structural characteristics.
These complex feature sets are then compressed by an auto-encoder and used to cluster
instances, resulting in multiple homogeneous groups of instances. Finally, the SMAC3
framework is used to find the best performing configuration for solving each cluster
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5. Related Work

of instances separately. The authors report that the proposed approach is able to
outperform other AC methods on a variety of benchmarks where the set of instances is
highly heterogeneous.

Bayesian Optimization (BO) in general has been successfully implemented in several
diverse applications such as the following:

Aghaabbasi et al. [AAJ+23] discuss the use of BO for HPO of various machine learning
models in predicting the choice of work travel mode. They report that BO is most
effective in increasing classification accuracy when tuning k-nearest neighbor models.

In addition, Bayesian HPO has been applied to network intrusion detection based on
deep neural networks by Masum et al. [MSH+21]. Their work compares a Deep Neural
Network optimized with Random Search HPO to one optimized using BO, and reports
that the latter performs significantly better.

Bayesian Hyperparameter Optimization has also been successfully used by Ait Amou et
al. [AAXKM22] to automatically tune Convolutional Neural Networks for brain tumor
classification, resulting in an overall increase in model performance.
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CHAPTER 6
Conclusion and Future Work

We have integrated the SMAC3 framework for Bayesian Hyperparameter Optimization
into ALASPO to allow the tuning of ALASPO configurations. In addition, we have imple-
mented a customizable clustering of instances based on their characteristics, allowing us
to obtain multiple optimal configurations – one for each cluster. This clustering approach
exploits similarities within smaller homogeneous groups for an otherwise heterogeneous
set of instances, aiming to improve overall performance. The resulting artifact of a
successful tuning run can then be passed to future invocations of ALASPO to auto-
matically select and apply a fitting configuration based on the given problem instance.
Subsequently, we have investigated the effectiveness of our tuning approach in finding
optimal ALASPO selection strategies on a set of four benchmark problems, using different
clustering methods and varying the number of trials.

We show that tuning can provide significant performance improvements for some problems,
while also demonstrating its limitations. For the TLSPS, tuning the ALASPO strategies
resulted in about 7% better objective scores on average, up to 22% for some instances,
with virtually strictly equal or better results than the baseline. The VLP saw more
moderate improvements, with an average of 5% better results, while a quarter of the
instances still performed worse than the default configuration. Next, the TSP saw
significant performance improvements, with average gains of 28% as well as strictly better
results than the ALASPO baseline for all instances. Finally, for the MAPF, tuning could
not provide meaningful improvements over the default configuration, suggesting that the
ALASPO baseline configuration is best suited for this problem.

Overall, the success of the tuning is very dependent on the particular problem at hand.
We find it to work best whenever there are sufficient opportunities for improvement over
the default configuration, with clustering providing its greatest value over a diverse set
of instances.

57



6. Conclusion and Future Work

For future work, it would be interesting to further investigate the performance of the
clustered approach on benchmarks with more diverse sets of instances. In addition,
since the custom clustering is highly dependent on the features selected by a custom
feature extractor, testing and comparing the performance of several such implementations
could prove interesting in exploring which instance characteristics are most responsible
for particular optimization behaviours. Finally, it may be worthwhile to explore more
extensively whether tuning different parts of the ALASPO configuration, besides the
selection strategies, can further increase the performance gains of the tuning.
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Overview of Generative AI Tools
Used

DeepL Write1 was used throughout this thesis to help find synonyms, correct punctuation
and reduce word repetition.

1https://www.deepl.com/en/write, accessed: April 15, 2025.
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Appendix

In this section we present more detailed results for the different benchmark problems
described in Chapter 4.

Trials Clustering Avg Min Q1 Median Q3 Max Better Equal Worse

100 Default -0.058 -0.249 -0.106 -0.045 -0.002 0.021 57 11 6
100 Custom -0.041 -0.242 -0.070 -0.009 0.000 0.035 52 13 9
100 NoC -0.057 -0.240 -0.099 -0.038 -0.002 0.011 60 11 3
100 NoC NoF -0.055 -0.238 -0.111 -0.035 -0.000 0.050 56 11 7
500 Default -0.067 -0.254 -0.111 -0.052 -0.001 0.003 56 14 4
500 Custom -0.064 -0.245 -0.110 -0.046 -0.002 0.046 60 12 2
500 NoC -0.050 -0.222 -0.095 -0.032 0.000 0.198 51 14 9
500 NoC NoF -0.065 -0.285 -0.105 -0.040 -0.003 0.002 61 12 1

1000 Default -0.067 -0.276 -0.112 -0.049 -0.002 0.005 58 13 3
1000 Custom -0.064 -0.282 -0.111 -0.045 -0.002 0.002 61 10 3
1000 NoC -0.045 -0.224 -0.090 -0.021 0.000 0.244 50 12 12
1000 NoC NoF -0.065 -0.288 -0.115 -0.048 -0.001 0.057 58 11 5
5000 Default -0.069 -0.284 -0.113 -0.055 -0.003 0.002 62 10 2
5000 Custom -0.059 -0.249 -0.105 -0.041 -0.001 0.122 59 11 4
5000 NoC -0.065 -0.258 -0.106 -0.042 -0.003 0.009 59 11 4
5000 NoC NoF -0.053 -0.236 -0.095 -0.030 -0.000 0.203 55 11 8

Table A.1: Detailed experimental results for the TLSPS 4.5. The summary statistics
shown are computed from values representing relative differences compared to the
ALASPO baseline and are rounded to three decimal places.
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Trials Clustering Avg Min Q1 Median Q3 Max Better Equal Worse

100 Default -0.031 -0.373 -0.092 -0.018 0.011 0.563 75 2 35
100 Custom 0.008 -0.318 -0.068 0.000 0.054 0.781 54 2 56
100 NoC 0.042 -0.368 -0.034 0.018 0.105 0.570 40 2 70
100 NoC NoF 0.023 -0.364 -0.033 0.010 0.084 0.358 42 5 65
500 Default -0.053 -0.516 -0.132 -0.044 0.001 0.503 80 3 29
500 Custom -0.042 -0.454 -0.107 -0.016 0.019 0.399 69 4 39
500 NoC 0.021 -0.310 -0.034 0.008 0.087 0.345 48 2 62
500 NoC NoF -0.037 -0.395 -0.116 -0.026 0.010 0.520 70 6 36

1000 Default -0.042 -0.338 -0.122 -0.037 0.008 0.444 74 4 34
1000 Custom 0.008 -0.314 -0.055 -0.004 0.051 0.604 58 4 50
1000 NoC -0.052 -0.427 -0.111 -0.036 0.005 0.358 80 3 29
1000 NoC NoF -0.042 -0.407 -0.117 -0.023 0.012 0.446 72 3 37
5000 Default -0.053 -0.458 -0.113 -0.047 0.006 0.444 75 4 33
5000 Custom -0.027 -0.357 -0.098 -0.031 0.015 0.529 73 4 35
5000 NoC -0.055 -0.456 -0.112 -0.032 0.003 0.292 78 2 32
5000 NoC NoF -0.033 -0.395 -0.112 -0.025 0.021 0.463 67 4 41

Table A.2: Detailed experimental results for the VLP 4.10. The summary statistics shown
are computed from values representing relative differences compared to the ALASPO
baseline and are rounded to three decimal places.
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Trials Clustering Avg Min Q1 Median Q3 Max Better Equal Worse

100 Default -0.031 -0.459 -0.153 -0.010 0.077 0.479 43 1 36
100 Custom -0.025 -0.486 -0.125 -0.012 0.072 0.407 44 0 36
100 NoC 0.106 -0.377 0.026 0.079 0.170 0.597 16 0 64
100 NoC NoF -0.180 -0.582 -0.280 -0.159 -0.056 0.051 77 0 3
500 Default -0.080 -0.419 -0.183 -0.054 0.011 0.212 56 0 24
500 Custom -0.282 -0.690 -0.420 -0.273 -0.119 -0.022 80 0 0
500 NoC -0.283 -0.684 -0.405 -0.269 -0.128 -0.021 80 0 0
500 NoC NoF -0.290 -0.692 -0.422 -0.273 -0.130 -0.021 80 0 0

1000 Default -0.159 -0.444 -0.240 -0.127 -0.074 0.040 78 0 2
1000 Custom -0.261 -0.692 -0.416 -0.233 -0.091 -0.015 80 0 0
1000 NoC -0.287 -0.689 -0.418 -0.280 -0.132 -0.024 80 0 0
1000 NoC NoF -0.287 -0.691 -0.415 -0.265 -0.124 -0.017 80 0 0
5000 Default -0.289 -0.691 -0.418 -0.274 -0.128 -0.016 80 0 0
5000 Custom -0.290 -0.686 -0.428 -0.282 -0.126 -0.021 80 0 0
5000 NoC -0.291 -0.698 -0.424 -0.284 -0.130 -0.015 80 0 0
5000 NoC NoF -0.291 -0.690 -0.427 -0.284 -0.132 -0.022 80 0 0

Table A.3: Detailed experimental results for the TSP 4.13. The summary statistics shown
are computed from values representing relative differences compared to the ALASPO
baseline and are rounded to three decimal places.
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Trials Clustering Avg Min Q1 Median Q3 Max Better Equal Worse

100 Default 0.143 -0.180 0.000 0.000 0.134 1.923 6 36 39
100 Custom 0.110 -0.046 0.000 0.004 0.139 0.998 5 34 42
100 NoC 0.169 -0.048 0.000 0.003 0.216 1.965 6 34 41
100 NoC NoF 0.032 -0.191 0.000 0.000 0.041 0.316 17 35 29
500 Default 0.130 -0.180 0.000 0.000 0.052 2.016 16 32 33
500 Custom 0.080 -0.121 0.000 0.000 0.028 2.675 14 35 32
500 NoC 0.151 -0.180 0.000 0.000 0.179 2.002 7 35 39
500 NoC NoF 0.209 -0.014 0.000 0.038 0.220 2.800 2 31 48

1000 Default 0.040 -0.143 0.000 0.000 0.058 0.395 12 35 34
1000 Custom -0.003 -0.394 -0.008 0.000 0.000 0.239 27 36 18
1000 NoC 0.006 -0.218 0.000 0.000 0.006 0.340 20 32 29
1000 NoC NoF 0.142 -0.048 0.000 0.004 0.168 2.108 5 32 44
5000 Default 0.021 -0.182 0.000 0.000 0.027 0.331 15 35 31
5000 Custom 0.052 -0.216 0.000 0.014 0.103 0.297 9 25 47
5000 NoC 0.140 0.000 0.004 0.032 0.130 2.277 0 15 66
5000 NoC NoF 0.019 -0.131 0.000 0.000 0.014 0.470 19 34 28

Table A.4: Detailed experimental results for the MAPF 4.21a. The summary statistics
shown are computed from values representing relative differences compared to the
ALASPO baseline and are rounded to three decimal places.
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Trials Clustering Avg Min Q1 Median Q3 Max Better Equal Worse

100 Default 0.051 -0.259 -0.006 0.000 0.059 1.053 23 31 27
100 Custom 0.026 -0.236 -0.007 0.000 0.002 1.053 26 34 21
100 NoC 0.025 -0.284 -0.009 0.000 0.009 1.053 24 34 23
100 NoC NoF 0.030 -0.179 -0.012 0.000 0.005 1.053 25 34 22
500 Default 0.142 -0.109 0.000 0.000 0.126 2.153 15 32 34
500 Custom 0.005 -0.580 -0.014 0.000 0.005 0.359 25 33 23
500 NoC 0.003 -0.668 -0.016 0.000 0.000 0.349 27 34 20
500 NoC NoF 0.005 -0.619 -0.017 0.000 0.005 0.358 26 32 23

1000 Default 0.061 -0.260 -0.005 0.000 0.050 1.053 21 33 27
1000 Custom 0.005 -0.647 -0.017 0.000 0.001 0.360 26 34 21
1000 NoC 0.023 -0.257 -0.012 0.000 0.002 1.053 26 34 21
1000 NoC NoF 0.006 -0.575 -0.013 0.000 0.000 0.349 27 35 19
5000 Default 0.033 -0.259 -0.006 0.000 0.013 1.053 24 33 24
5000 Custom 0.078 -0.139 -0.009 0.000 0.058 2.747 23 32 26
5000 NoC 0.002 -0.642 -0.016 0.000 0.001 0.356 27 32 22
5000 NoC NoF 0.028 -0.249 -0.013 0.000 0.002 1.053 26 34 21

Table A.5: Detailed experimental results for the MAPF 4.21b using the alternative
configuration space and declarative neighbourhood. The summary statistics shown are
computed from values representing relative differences compared to the ALASPO baseline
and are rounded to three decimal places.
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