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Kurzfassung

Open Information Extraction (OIE) ist ein Teilbereich der natürlichen Sprachverarbei-
tung, bei dem Text automatisch in Tupel strukturiert wird, die Beziehungen zwischen
einem Prädikat und mehreren Argumenten abbilden. Dies ist besonders nützlich für
weiterführende Anwendungen, wie Frage-Antwort-Systeme, Textzusammenfassungen oder
den Aufbau von Wissensdatenbanken. Obwohl neuronale Modelle derzeit die Forschung
auf diesem Gebiet dominieren, schränkt deren Black-Box-Natur die Interpretierbarkeit ein
und wirft Bedenken hinsichtlich Datenschutz und Datenverzerrungen auf. Darüber hinaus
sind die enormen Rechenanforderungen dieser Modelle mit einem hohen Energieverbrauch
und CO2-Emissionen verbunden, was erhebliche Herausforderungen für die Nachhaltigkeit
darstellt.

Diese Diplomarbeit präsentiert ein vollständig transparentes, regelbasiertes OIE-System,
das auf dem Konzept semantischer Hypergraphen nach Menezes und Roth [MR21]
aufbaut. Durch die Integration von Annotationen aus dem LSOIE-Datensatz wird deren
Entwicklung erweitert und in ein “supervised rule learning” System überführt. Zusätzlich
erlaubt die entwickelte Lösung eine flexible Anpassung verschiedener Parameter, wie etwa
der Anzahl verwendeter Regeln für die Tupel Extraktion, und unterstützt eine Steuerung
des Verhältnisses zwischen Precision und Recall, je nach Zielsetzung des Nutzers.

Das System erzielte eine wettbewerbsfähige Leistung bei der Evaluierung auf vier Test-
datensätzen aus zwei unterschiedlichen Domänen. So wurde beispielsweise auf einer
reduzierten Version des LSOIE-sci/test-Datensatzes eine Precision von 40% und
ein Recall von 31,9% erreicht, was einem F1-Wert von 0,355 entspricht. Die Ergebnisse
zeigen, dass regelbasierte Methoden konsistente und interpretierbare Lösungen für OIE
liefern können und somit eine praktikable Alternative zu komplexen und undurchsichtigen
neuronalen Netzwerken darstellen. Die Implementierung dieser Arbeit ist als Open-Source
in einem Fork von newpotato auf GitHub1 verfügbar und wurde unter der MIT-Lizenz
veröffentlicht.

1https://github.com/whoopi24/newpotato (Zuletzt zugegriffen: 17. April 2025)
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Abstract

Open information extraction (OIE) is a natural language processing (NLP) task that
automatically structures text into tuples, representing relations between a predicate
phrase and several arguments. This is particularly useful for various downstream ap-
plications such as question-answering systems, text summarization and knowledge base
construction. Although neural models currently dominate research in the field, their
black box nature limits interpretability and raises concerns about data privacy and data
biases. Additionally, the enormous computational demands of these models result in high
energy consumption and carbon emissions, posing significant sustainability challenges.

This diploma thesis presents a fully transparent, rule-based OIE system that builds on
Menezes and Roth’s framework using semantic hypergraphs [MR21]. In particular, it
extends their approach by incorporating annotations from the LSOIE dataset, transform-
ing it into a supervised rule learning system. Furthermore, the resulting solution offers
flexible parameters, such as the number of symbolic patterns used for tuple extraction,
supporting a trade-off between precision and recall depending on the user’s objective.

The system demonstrated competitive performance in evaluations across four test datasets
from two distinct domains. For instance, for a filtered version of the LSOIE-sci/test
dataset, it achieved 40% precision and 31.9% recall, leading to an F1 score of 0.355.
The overall results highlight that rule-based approaches can provide consistent and
interpretable solutions for OIE, offering a viable alternative to complex and opaque
neural networks. The implementation of this work is available open-source in a fork of
the newpotato repository on GitHub2, and is released under the MIT License.

2https://github.com/whoopi24/newpotato (Last accessed: April 17, 2025)
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CHAPTER 1
Introduction

Open information extraction (OIE) is the task of mapping sentences to tuples (often
termed triplets), which are ordered sets of elements representing relationships between
entities. For example, the sentence “the cat chased the mouse” can be mapped to the
triplet (the cat; chased; the mouse). Similarly, the sentence “the dog stole a sock from
the laundry basket” can be mapped to (the dog; stole; a sock). This thesis explores how
such tuples can be extracted using simple rules (also referred to as symbolic patterns)
that are interpretable and explainable. For instance, a basic rule that works for the
examples above might be:

If a predicate p connects two noun phrases n1 and n2,
the triplet (n1; p; n2) will be extracted.

Essentially, rules are the operational logic behind how OIE systems know what to
extract from where in a sentence. In this context, rule learning refers to the process of
automatically discovering and generating symbolic patterns from a text corpus, which
are then used for tuple extraction. This procedure can be applied in either a supervised
or unsupervised manner. One benefit of unsupervised learning is that no labeled data is
required, as the derived patterns are purely based on the structure of words and phrases.
In contrast, a supervised approach can be automated, eliminating manual effort.

This work builds on the OIE system proposed by Menezes and Roth [MR21], which is
based on semantic hypergraphs (SHs). These graphs offer an effective representation
of natural language, as explained in Section 2.2. Consider the sentence “Webster is
described as Benefield’s boyfriend”, depicted in Figure 1.1 using SH notation, where each
token is annotated with a specific type (e.g., predicate /P, concept /C, modifier /M, etc.).

In this regard, OIE patterns must conform to the SH structure. An example pattern in
SH notation is (REL/P ARG0/C ARG1/S), where:

1



1. Introduction

Sentence: Webster is described as Benefield’s boyfriend.

Semantic Hyperedge:

Figure 1.1: Example of Semantic Hyperedge representation.

• REL/P refers to the predicate or relation (e.g., “is described”),

• ARG0/C represents the subject (e.g., “Webster”), and

• ARG1/S refers to the object or complement (e.g., “as Benefield’s boyfriend”).

Ultimately, mapping the pattern (REL/P ARG0/C ARG1/S) to the semantic hyperedge
shown in Figure 1.1 results in the extraction of the triplet (Webster; is described; as
Benefield’s boyfriend).

Modern NLP applications are increasingly driven by neural models, specifically large
language models (LLMs). A major drawback of these systems is their black box nature,
which makes the decision-making processes opaque and hard to interpret. This lack
of transparency likely stems from their complexity introduced by a vast number of
parameters. Bender et al. [BGMMS21] refer to LLMs as “stochastic parrots”, since
they generate text in a predictive manner without truly understanding its meaning.
This behavior is akin to “parroting” patterns learned from their training data, raising
concerns about inherent data biases. Additionally, both the training and deployment
of these models demand immense computational resources, prompting questions about
sustainability and accessibility. Consequently, NLP researchers are advised to thoroughly
weigh the risks and costs of large language models and to develop effective NLP methods
that are not excessively data-intensive. As outlined by H. Brown et al. [BLM+22],
language models also entail data privacy risks, particularly when applied in sensitive
sectors such as healthcare and finance, which users of LLMs should carefully consider.

Due to the aforementioned issues and risks of black box models, including unreliability
and untrustworthiness, the aim of this thesis is to provide symbolic rules for the open
information extraction task and to present strategies for building a rule-based system that
is comparable to state-of-the-art approaches. The final OIE system is fully transparent
and easy to understand, indicating that it offers complete visibility into how it processes
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text and how its results are obtained. By always applying the same explicit rules,
consistent performance can be expected. These characteristics should enhance trust into
the system and facilitate user interaction and improvement. This thesis addresses the
following three research questions:

1. What strategies can be used to find accurate patterns for OIE? (RQ1)
This question explores the different techniques and approaches that can be employed
to discover and develop accurate (effective) patterns for extracting information from
unstructured text in the context of OIE. Effective patterns achieve high accuracy and
can be reliably used across different datasets and scenarios. Ultimately, the focus
lies on identifying strategies that enhance precision (how accurate the extractions
are) and recall (how complete the extractions are).

2. How do rule-based OIE solutions perform in comparison to state-of-the-
art methods regarding precision and recall? (RQ2)
This question examines the performance of rule-based OIE systems in extracting
information compared to the latest, most advanced methods in the field, with a
focus on the two key metrics, precision and recall. This comparison aims to evaluate
whether rule-based approaches can match or exceed the performance of modern
techniques, or if there are specific strengths and weaknesses associated with each
approach.

3. How well do symbolic OIE patterns generalize across various datasets
compared to state-of-the-art methods? (RQ3)
This question investigates how well the extraction patterns used by rule-based OIE
systems maintain their performance when applied to a diverse range of datasets. It
concentrates on evaluating the ability of symbolic patterns to generalize effectively
across different types of texts and domains. The comparison against state-of-the-art
methods aims to determine if symbolic systems can consistently extract accurate
information from varied datasets or if there are limitations in their generalization
capability that existing solutions can overcome.

Our system demonstrated stable performance across an extensive evaluation on four
datasets from two distinct domains. It outperformed existing rule-based OIE systems on
the LSOIE datasets, indicating that the learned patterns capture meaningful structural
information. For the WiRe57 dataset, it achieved a competitive balance between precision
and recall, despite a slightly lower F1 score compared to the best-performing state-of-the-
art methods. The flexibility of our system allows users to adapt it to specific tasks by
selecting between simple base patterns or more sophisticated ones, adjusting pattern and
extraction counts, and applying a post-processing step after the initial tuple extraction.
The code of this work has been integrated into the author’s fork1 of newpotato2,
which is available open-source on GitHub and is released under the MIT License. The

1https://github.com/whoopi24/newpotato (Last accessed: April 17, 2025)
2https://github.com/adaamko/newpotato (Last accessed: April 17, 2025)
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1. Introduction

newpotato framework, named after POTATO [KGIR22], incorporates functionalities
specifically designed for information extraction. Nevertheless, the actual implementation
of an OIE system is part of this thesis. It is important to note that newpotato is still
under development and should be considered an experimental system.

This thesis is structured as follows. Chapter 2 introduces the OIE task and its associated
difficulties, and provides an overview of state-of-the-art methods and datasets in the
field. Afterwards, basic information about the Semantic Hypergraph model and the
graphbrain framework is given. Chapter 3 explains our novel supervised rule learning
process, which builds upon the approach of Menezes and Roth [MR21] and incorporates
annotations from LSOIE [SL21]. Chapter 4 describes the experimental setup of our OIE
system, focusing on extraction strategies and providing examples to ensure the clarity
and transparency of our method. The evaluation results are presented in Chapter 5,
comparing our system’s performance to state-of-the-art methods across four datasets from
two different domains. In Chapter 6, limitations and potential improvements based on
the evaluation and error analysis are discussed. Finally, Chapter 7 answers the research
questions and summarizes the main contributions of this thesis.

4



CHAPTER 2
Background

This chapter begins with an introduction to the OIE task in Section 2.1, outlining its
main challenges and reviewing state-of-the-art systems and benchmarks that have shaped
the field, in order to provide context for the approach developed in this work. Afterwards,
a detailed overview of the Semantic Hypergraph model, as proposed by Menezes and
Roth [MR21], is given in Section 2.2.

2.1 The OIE Task
Open information extraction is the task of automatically extracting relational tuples from
unstructured text without restricting extractions to a predefined set of relation types. It
is considered a foundational preprocessing step for many downstream applications, such
as question answering, text summarization and knowledge base construction.

Despite its importance and widespread use, there is no universal agreement on what
constitutes a “correct” set of extractions. Consequently, multiple plausible tuples may
exist for a given sentence, and determining a “complete” set of valid extractions is
inherently difficult. This has led to inconsistencies across OIE systems, datasets, and
evaluation methods, presenting persistent challenges for the OIE task:

1. Varying Definitions: Some OIE approaches extract only explicitly stated facts,
while others include inferred or implicit relations, such as those conveyed through
nominalizations or appositions. These conceptual differences influence both the
design and the output of extraction systems.

2. Dataset Discrepancies: OIE datasets differ in their annotation guidelines and
scope. While some focus strictly on surface-level predicates and arguments, others
permit flexible argument structures (e.g. variable number of arguments) and include
inferred content, making cross-dataset comparisons challenging.

5



2. Background

3. Evaluation Methods: Standard NLP evaluations often rely on exact matching.
However, the open-ended nature of OIE makes partial matches highly informative.
Despite this, partial matching is not consistently supported by evaluation tools or
adopted in benchmarks, complicating fair system comparisons.

Ultimately, some systems may perform better simply by producing more tuples, even if
they are noisy and do not provide additional information. This is particularly problematic
when measuring recall (how complete the extractions are). We illustrate one example of
the WiRe57 dataset. For the sentence “Chilly Gonzales (born Jason Charles Beck; 20
March 1972) is a Grammy-winning Canadian musician who resided in Paris, France for
several years, and now lives in Cologne, Germany”, 13 gold tuples are provided:

1. (Chilly Gonzales; [was] born; Jason Charles Beck)

2. (Chilly Gonzales; [was] born [on]; 20 March 1972)

3. (Chilly Gonzales; [was] born [in]; 1972)

4. (Chilly Gonzales; is; Canadian)

5. (Chilly Gonzales; is; a musician)

6. (Chilly Gonzales; is; a Grammy-winning Canadian musician)

7. (Chilly Gonzales; [won]; a [Grammy])

8. (who/(Chilly Gonzales); resided in; Paris, France; for several years)

9. (who/(Chilly Gonzales); resided in; France; for several years)

10. (Paris; [is in]; France)

11. (who/(Chilly Gonzales); lives in; Cologne, Germany; now)

12. (who/(Chilly Gonzales); lives in; Germany; now)

13. (Cologne; [is in]; Germany)

However, these extractions cannot be assumed to be complete. For instance, (Chilly
Gonzales; [was] born; Jason Charles Beck; [on] 20 March 1972) could also be considered
a valid extraction, combining the information given in tuples 1 and 2. Furthermore, a
few tuples are highly similar, such as tuples 8 and 9 or 11 and 12, which include or
omit city names in expressions of location. This highlights the nuanced and sometimes
redundant nature of the annotations. Square brackets indicate inferred elements not
explicitly stated in the original sentence. The predicates of tuples 7, 10 and 13 are solely
inferred. Especially for rule-based systems, deriving such words is almost impossible, as
they may struggle to recognize contextually implied elements.
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2.1. The OIE Task

2.1.1 Rule-based Systems

Rule-based systems for OIE use hand-crafted or automatically learned patterns to
identify and extract relational tuples from text. These rules typically operate on syntactic
structures, allowing the system to capture meaningful relationships without requiring large
amounts of labeled training data. In general, such systems are transparent, interpretable,
and consistent, as they follow explicit logic, but they can be more rigid than data-driven
neural methods when dealing with linguistic variation.

One of the first developments, TextRunner [YBB+07], introduces an unsupervised,
rule-based system capable of handling large amounts of text data, laying the foundation
for OIE research. ReVerb [FSE11] builds on TextRunner to improve precision by
adding lexical and syntactic constraints on the relational part of the extractions. The
open extractor OLLIE [MSS+12] refines these constraints and incorporates contextual
information, expanding the syntactic scope to capture more complex relations.

Another approach is ClausIE [DCG13], which was developed by Del Corro and Gemulla
and fundamentally differs from the aforementioned methods. Its unique feature is that
it is clause-based, meaning it extracts tuples by identifying and processing individual
clauses. Unlike statistical models, ClausIE relies on the linguistic knowledge of natural
language, making it a state-of-the-art rule-based system suitable for our comparison. It
uses a dependency parser to analyze syntactic structure of sentences (e.g., predicates
and arguments), then splits sentences into individual clauses and assigns one of seven
basic clause types to each of them. A key advantage is that the system does not require
model training, making it independent of large datasets. In addition, ClausIE assigns
confidence scores, obtained by the underlying dependency parser, to the extracted tuples.
The system’s performance heavily depends on the accuracy of this parser. ClausIE
struggles with complex sentences containing multiple clauses connected by conjunctions
like “and” or “or”. It applies a decomposition process to simplify these coordinated
conjunctions, but this often leads to incorrect parses. Since ClausIE focuses on syntactic
correctness and has limited semantic understanding, essential adverbials may occasionally
be omitted. Stanford OIE [AJPM15] extends the extraction of self-contained clauses
by using a classifier-based approach, followed by triplet generation through a set of
14 hand-crafted patterns. Further advancements include OpenIE4 [Mau16], PropS
[SFDG16], and MinIE [GGdC17].

To systematically evaluate all of these emerging OIE systems, WiRe57 [LGL19] was
introduced as a benchmark dataset, enabling comparative analysis of OIE performance.
The initial results can be found in Subsection 2.1.3 and the scoring procedure is further
explained in Section 4.3. Menezes and Roth [MR21] developed a rule-based OIE system
using semantic hypergraphs that outperformed all other evaluated systems on WiRe57
at the time, reaching an F1 score of 0.365 and recall of 32.6% with only five extraction
patterns. This highlights the potential of rule-based models, which preserve the richness
of natural language while providing a fully transparent and intelligible system.

7



2. Background

2.1.2 Neural Systems
Nevertheless, OIE research has increasingly shifted towards neural models to enhance
both precision and scalability. As the first supervised learning method for OIE, RnnOIE
[SMZD18] formulates OIE as a sequence labeling task using a Bidirectional Long Short-
Term Memory (BiLSTM) trained on manually annotated data. It extends deep Semantic
Role Labeling (SRL) models for triplet extraction and provides confidence scores, allowing
for adjustments in the balance of precision and recall. RnnOIE marked an important
shift from rule-based to neural methods, introducing greater flexibility but at the cost
of reduced interpretability. Additionally, Stanovsky and Dagan [SD16] introduced the
first large-scale, independently constructed OIE corpus by automatically converting
question-answer driven Semantic Role Labeling (QA-SRL) annotations [HLZ15] into OIE
tuples. In the literature, it is often referred to as OIE2016. More information on OIE
datasets follows in Subsection 2.1.3.

SpanOIE [ZZ20] represents the first attempt to frame OIE as a span-based prediction task.
The model predicts the boundaries of arguments and relations using a neural network,
outperforming previous approaches on the OIE2016 dataset and its re-annotated version,
Re-OIE2016. However, a key limitation is that it cannot capture the broader context of a
sentence. In parallel, Kolluru et al. developed IMoJIE [KAR+20], a sequence generation
model that produces the next extraction conditioned on all previously extracted tuples.
This allows the model to generate a variable number of diverse extractions per sentence,
addressing the limitations of its underlying model, CopyAttention [CWZ18]. IMoJIE
showed a significant improvement in extraction quality and influenced the development
of subsequent models. For instance, OpenIE6 [KAA+20] introduces a novel iterative
labeling-based architecture, Iterative Grid Labeling (IGL), which treats OIE as a 2-D
grid labeling task. It also incorporates a newly designed coordination analyzer capable
of handling conjunctive sentences. OpenIE6 outperforms previous models on the CaRB
[BAM19] benchmark and features a highly efficient pipeline that is ten times faster than
the state-of-the-art, making it one of the most competitive OIE systems available today.

Alternatively, MacroIE is a non-autoregressive OIE system designed to overcome a key
limitation of existing approaches, which typically extract facts sequentially by predicting
each new fact based on the previously decoded ones. This enforces an unnecessary order
and leads to error accumulation across subsequent steps. MacroIE avoids this bottleneck
by constructing a graph of fact elements and identifying maximal cliques, enabling the
simultaneous extraction of multiple facts. The modular and iterative multilingual model
milIE [KGR+22] extracts the different slots of a tuple iteratively using a BERT-based
transformer as its core architecture. As a hybrid system, it combines neural and rule-based
approaches, allowing the rule-based component to compensate for the lack of exhaustive
training data. milIE is evaluated on multilingual text corpora, including English, Chinese,
German, Arabic, Galician, Spanish, and Portuguese, where it significantly outperforms
other neural baselines on the BenchIE [GYK+22] benchmark. However, its performance
remains below rule-based systems like ClausIE and MinIE. A key strength of milIE
lies in its ability to handle multiple languages besides English effectively.

8



2.1. The OIE Task

2.1.3 Datasets
Alongside the deployment of OIE systems, the creation of suitable evaluation datasets
has been essential. This subsection provides a more detailed overview of the datasets
mentioned above, particularly focusing on those used to train and test the system
developed in this thesis.

The first independent and large-scale OIE corpus, OIE2016 [SD16], was generated
by automatically converting QA-SRL annotations [HLZ15] into OIE tuples. It was
specifically designed to serve as a benchmark for evaluating OIE systems, facilitating
the development of supervised OIE approaches. In total, it comprises 10,359 extractions
from 3,200 sentences, originally sourced from Wikipedia and newswire articles. A
comparison of OpenIE4, ClausIE, OLLIE, PropS, Stanford OIE, and ReVerb
reveals the following: OpenIE4 achieves the highest precision (above 78%) among all
systems for recall levels above 3%, and also obtains the best area under the curve (AUC)
score. ClausIE leads in recall performance, reaching over 81%. Stanford OIE assigns
a confidence score of 1 to 94% of its extractions, which indicates overconfidence and helps
explain its low precision, as it fails to distinguish between correct and incorrect outputs.

CaRB (short for “Crowdsourced Automatic Open Relation Extraction Benchmark”),
introduced by Bhardwaj et al. in 2019 [BAM19], was created by re-annotating the dev
and test splits of the OIE2016 dataset through crowdsourcing. The goal was to improve
annotation quality and provide a more reliable evaluation framework for OIE compared
to OIE2016, which was confirmed by NLP experts. On this benchmark, neural models
currently lead the field. MacroIE achieves the highest F1 score of 0.548, followed closely
by IMoJIE with 0.535, though it is relatively inefficient, processing only 2.6 sentences
per second. In third place is OpenIE6, scoring 0.527 while handling 31.7 sentences per
second. The best-performing rule-based system is OpenIE4, with an F1 score of 0.516
and a throughput of 20.1 sentences per second.

The WiRe57 dataset, published by Léchelle, Gotti, and Langlais [LGL19], was initially
used to evaluate the performance of seven rule-based OIE systems. The dataset consists
of 57 sentences extracted from Wikipedia and the news agency Reuters, comprising
343 high-quality annotations. Of these, 57% contain anaphoras and 54% include inferred
words that are not part of the original sentence. Most tuples (74%) represent binary
relations. The accompanying scorer supports both exact and partial matching. Detailed
information on the scoring procedure is provided in Section 4.3.

A comparison of all rule-based systems mentioned in Subsection 2.1.1, excluding Text-
Runner, showed that MinIE performed best regarding F1 score (0.358) and recall
(32.3%), closely followed by ClausIE with an F1 score of 0.342. ReVerb led in precision
(56.9%) but at the cost of lowest recall (12.1%). Menezes and Roth [MR21] achieved
an F1 score of 0.365 and a recall of 32.6% using only five extraction patterns with their
semantic hypergraph-based approach, outperforming all previously reported results. This
makes WiRe57 a suitable benchmark for comparing our system with state-of-the-art
methods and for addressing RQ2.

9



2. Background

Another important OIE dataset for our work, LSOIE, was presented by Solawetz and
Larson [SL21] as a large-scale resource for supervised OIE. It is derived from the QA-SRL
2.0 dataset [FMHZ18], following a similar conversion process as used for OIE2016. It is
known for its large size compared to other human-annotated OIE datasets and comprises
two corpora, LSOIE-wiki and LSOIE-sci, which distinguish between the domains of
Wikipedia articles and scientific texts. These are further split into train, dev and
test sets. The creators also constructed and evaluated several benchmark OIE models
on LSOIE, establishing baselines for future progress on the task. All models are based on
a replication of RnnOIE [SMZD18], framing the OIE task as BIO tagging with tunable
extraction thresholding. On LSOIE-wiki/test, an F1 score of 0.31 was achieved, while
LSOIE-sci/test reached an F1 score of 0.38.

For developing the rules for our system, we focus on the training part of the LSOIE-wiki
dataset, since Menezes and Roth [MR21] also worked with text from Wikipedia for
their unsupervised OIE approach. It contains 46,015 tuples from 19,675 sentences, which
are annotated at the token level with P (for predicate) and A0 to AN (for arguments).
Tokens marked as O are not extracted. The dataset focuses on explicit extractions,
where relations are directly stated by verbal predicates rather than implicitly through
nominalizations. The annotations include gold tuples without objects (consisting only of
argument A0 and predicate P ), which does not align with our objectives. Therefore, we
take additional actions to exclude these cases. We test our system with the two remaining
parts of the LSOIE-wiki dataset, as well as the test set of LSOIE-sci.

Unlike existing OIE benchmarks, BenchIE adopts a fact-based evaluation approach that
accounts for the informational equivalence of extractions across three languages: English,
Chinese and German. Its gold standard, based on 300 sentences of CaRB [BAM19], is
organized into fact synsets, which are clusters that comprehensively enumerate all accept-
able surface forms of the same fact. To better reflect common downstream applications,
BenchIE is also multi-faceted, offering variants that emphasize different aspects of OIE
evaluation, such as the compactness or minimality of extractions. Evaluations of several
state-of-the-art OIE systems on BenchIE show that their effectiveness is significantly
lower than indicated by CaRB. Notably, neural models underperform compared to rule-
based approaches. ClausIE and MinIE lead the leaderboard with an F1 score of 0.34,
followed by OpenIE6 at 0.25. ClausIE also achieves the highest precision (50%), while
MinIE attains the highest recall (28%).

An overview of all datasets used in this thesis is illustrated in Table 2.1. We chose not to
use further datasets for evaluation to avoid the influence of too many different annotators.
We believe that the domain switch within the LSOIE datasets is sufficient to answer
RQ3, which addresses generalizability across various datasets. We build on existing OIE
approaches, specifically leveraging semantic hypergraphs to enhance interpretability and
consistency. We focus on a supervised learning approach, incorporating the annotations
provided by LSOIE to develop a transparent, rule-based system that facilitates user
understanding and trust.
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Dataset Domains #Sentences #Extractions
LSOIE-sci/test Science 9,219 17,001
LSOIE-wiki/train Wiki, Wikinews 19,675 46,015
LSOIE-wiki/dev Wiki, Wikinews 2,266 5,268
LSOIE-wiki/test Wiki, Wikinews 2,403 5,373
WiRe57 Wikipedia, Newswire 57 343

Table 2.1: Overview of datasets with sentence and extraction counts.

2.2 Semantic Hypergraphs

The concept of the Semantic Hypergraph (SH) was developed by Menezes and Roth
[MR21] and serves as a powerful knowledge model. Its main functionality is to represent
natural language while preserving its hierarchical structure and complexity. It can be
described as a hybrid approach, leveraging the benefits of machine learning and symbolic
methods while also minimizing ambiguity and structural variability. This section gives a
brief overview of semantic hypergraphs, starting with their formal definition, followed by
their notation used in the literature, and concluding with their usage in a variety of tasks.
Menezes and Roth [MR21] created an open-source software library called graphbrain,
which provides a comprehensive set of tools for constructing, manipulating, and analyzing
semantic hypergraphs. Subsection 2.2.4 presents the key features of graphbrain that
are utilized in this thesis.

2.2.1 Definition

Traditional graph-based and distributional methods, which represent words based on
their contextual usage, struggle to fully capture the complexity of natural language.
Natural language is recursive, allowing concepts to be built from other concepts, and it
is capable of expressing multi-way (n-ary) relationships. These two properties motivate
the following definition of the Semantic Hypergraph:

A Semantic Hypergraph H = (V, E) consists of a vertex set V and an edge set E which
contains so-called hyperedges (ei)i∈1...M , each connecting an arbitrary number of vertices.
Furthermore, hyperedges have two key characteristics: order and recursivity. Order
emphasizes the importance of the specific vertex positions within a hyperedge, which
is similar to the concept of directed graphs. Recursivity allows hyperedges to occur as
vertices within other hyperedges, enabling the representation of higher-order relationships.
Atomic hyperedges, meaning irreducible hyperedges of size one, are denoted as “atoms”.
In the following, the term “hyperedges” will encompass all types of hyperedges, including
atomic and non-atomic structures. Thus, the corresponding hypergraph will be referred
to as a “semantic hypergraph”.
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2.2.2 Notation
To comprehend the ideas and the novel rule learning process described in this thesis, it is
necessary to introduce a few SH-related terms. However, for a more in-depth perspective,
readers are encouraged to consult the original paper and the manual available on the
graphbrain website1.

As emphasized by Menezes and Roth [MR21], the SH notation involves two principles:

1. Every hyperedge belongs to one of eight fundamental types.

2. Every hyperedge starts with a connector, followed by arguments, which can them-
selves be either atomic or non-atomic hyperedges.

The structure of a hyperedge effectively captures the meaning of a natural language
sentence. Among the eight hyperedge types, depicted in Table 2.2, the first six can be
explicit, meaning they directly annotate an atomic hyperedge, or implicit, meaning they
are derived from the types of the hyperedge’s elements. The last two types are always
implicit, as they emerge from the composition of hyperedges. At this point, we want to
mention two special atoms. The special builder atom, denoted by +/B, defines compound
nouns, while :/J represents the generic conjunction.

Code Type Purpose Example

Atomic or non-atomic
C Concept Define atomic concepts apple/C
P Predicate Build relations (is/P berlin/C nice/C)
M Modifier Modify any other hyperedge

type, including itself
(red/M shoes/C)

B Builder Build concepts from concepts (of/B capital/C germany/C)
T Trigger Build specifications (in/T 1994/C)
J Conjunction Define sequences of hyper-

edges
(and/J meat/C potatoes/C)

Non-atomic only
R Relation Express facts, statements,

questions, orders, . . .
(is/P berlin/C nice/C)

S Specifier Relation specification (e.g.,
condition, time, . . . )

(in/T 1976/C)

Table 2.2: Overview of semantic hyperedge types [MR21].

The type of a non-atomic hyperedge is implicit and can be inferred from its connector
type and arguments, following the rules shown in Table 2.3. Regular expression notation

1https://graphbrain.net (Last accessed: April 17, 2025)
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is used here: the symbol + denotes one or more occurrences of the preceding entity type,
square brackets indicate multiple possible options, and x and y represent any type.

Element types → Resulting type
(M x) x
(B C C+) C
(T [CR]) S
(P [CRS]+) P
(J x y+) x

Table 2.3: Type inference rules [MR21].

“Argument roles” are another construct that describes the types of specific hyperedge
components, namely builders and predicates. They are encoded as character sequences
that specify the role of each argument in relation to the corresponding connector. For
builders, we differentiate between main concepts (m) and auxiliary concepts (a). In
contrast, predicates have a much broader range of roles, as shown in Table 2.4, with the
top six being the most common. Argument roles in relations are necessary when the
role cannot be obtained solely from its type. For instance, the same concept may appear
either as a subject or as an object in a relation.

Role Code
active subject s
passive subject p
agent (passive) a
subject complement c
direct object o
indirect object i
parataxis t
interjection j
specification x
relative relation r

Table 2.4: Predicate argument roles [MR21].

We explain the concept of “functional pattern expressions”, since they play an essential role
in our supervised learning approach. Their general form resembles function applications
in LISP-like languages. We make use of the var functional pattern, which enables
specifying a segment of a pattern and storing it as a variable. This allows capturing
complex parts of a semantic hyperedge for further usage. It has the general form: (var
pattern-edge variable-name). From this point forward, the term “subedges”
refers to all components of a hyperedge, including both atomic and non-atomic structures.
Moreover, the “root” of an atom denotes its fundamental base form, representing its core
meaning while ignoring types and argument roles. It is the essential element that links
an atom to its primary concept, for instance, has is the root of the atom has/P.so.
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2.2.3 Applications
The SH model has a wide range of applications in natural language processing and
knowledge representation. It can be used for identifying linguistic structures with the help
of symbolic patterns. A key use case is open information extraction, where hypergraphs
facilitate knowledge extraction from unstructured text by capturing relationships between
entities in a flexible and expressive manner. Beyond OIE, semantic hypergraphs are useful
for conjunction decomposition, concept taxonomy inference, and coreference resolution.
Coreference resolution is the task of identifying all words or phrases in a text that refer
to the same real-world entity. For example, in the sentence “Mia lost her keys, but she
found them later”, “she” refers to “Mia”, and “them” refers to “her keys”. A coreference
resolution system identifies these links so that the text makes sense as a whole. Accurate
coreference resolution is essential for many downstream tasks in NLP. Menezes and Roth
[MR21] also presented a case study of a claim and conflict analysis, where statements
made by different actors can be linked, analyzed, and inferred symbolically within the
hypergraph structure.

2.2.4 graphbrain Library
In this subsection, we outline the key functionalities of graphbrain2 that were used in
this thesis. The open-source Python library graphbrain is designed for constructing,
modifying, and analyzing hypergraphs. It facilitates automated meaning extraction and
text comprehension, while also supporting knowledge exploration and inference.

A fundamental component is create_parser()3, which converts sentences into hy-
peredge structures. Since our supervised rule learning approach focuses on semantic
hyperedges, we rely on several functions from the Hyperedge class4. These include:

• hedge(), which constructs a Hyperedge object from a list, tuple, or string,

• mtype(), which determines the main type of an edge after type inference,

• argroles(), which retrieves the argument roles of an edge, and

• atoms(), which lists all unique atoms contained in the edge.

Additionally, we make use of functions related to the var functional pattern, such as
apply_variables(), contains_variable(), and all_variables()5. For the

2https://github.com/graphbrain/graphbrain (Last accessed: April 17, 2025)
3https://github.com/graphbrain/graphbrain/blob/master/graphbrain/parsers

(Last accessed: April 17, 2025)
4https://github.com/graphbrain/graphbrain/blob/master/graphbrain/hyperedge.

pyx (Last accessed: April 17, 2025)
5https://github.com/graphbrain/graphbrain/blob/master/graphbrain/patterns/

variables.pyx (Last accessed: April 17, 2025)
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tuple extraction, we leverage the conjunction decomposition functionality6, which breaks
down complex hyperedges into their individual parts. Finally, we apply the Matcher class,
specifically the match_pattern(edge, pattern) function, to match the decomposed
edges with our learned rules. As previously mentioned, this section does not provide
a complete list of all graphbrain features used in our work, but highlights the most
relevant ones.

6https://github.com/graphbrain/graphbrain/blob/master/graphbrain/utils/
conjunctions.py (Last accessed: April 17, 2025)
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CHAPTER 3
Method

In this chapter, we present our supervised rule learning method using semantic hyperedges
in combination with LSOIE annotations. The initial idea was to follow a similar OIE
approach as described by Menezes and Roth [MR21]. Their system achieves promising
results, as it outperforms the state-of-the-art on the WiRe57 dataset in terms of F1 score
and recall. However, they use an unsupervised learning approach to generate rules, which
requires manual effort. To address this limitation, this thesis focuses on experiments
with different strategies, primarily supervised learning, to develop a more efficient but
still effective OIE system. Our key innovation is the integration of annotations from the
LSOIE-wiki/train dataset into the rule learning process. This chapter outlines the
main concepts behind our method and details its technical implementation, including all
intermediate steps required to convert labeled sentences into abstract symbolic patterns
suitable for OIE.

As noted in Subsection 2.2.4, Menezes and Roth developed graphbrain1, which provides
an extensive set of tools for handling semantic hypergraphs. However, their OIE system
itself is not publicly available. It was challenging to directly build upon their approach,
as we had to reconstruct their system solely based on the details provided in their paper.
At a certain stage, we realized that shifting from an unsupervised to a supervised learning
strategy was favorable. This required a precise analysis of the existing graphbrain
functionalities in order to determine which components could be adapted for our purposes
and which needed to be implemented from scratch.

In the following, the rule learning process is illustrated using the example sentence:
“The controversial investments were made between 2007 and 2009, Panorama explains”.
The first step is to parse the sentence with the create_parser() function from the
graphbrain library. Figure 3.1 shows the resulting semantic hyperedge. As defined by
Menezes and Roth [MR21], a semantic hyperedge “reflects the meaning of the sentence

1https://graphbrain.net (Last accessed: April 17, 2025)
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and respects the SH syntactic rules”. Hereafter, we always refer to semantic hyperedges
when hyperedges are mentioned. As noted in Section 2.2, hyperedges follow a specific
structure that reflects the syntax of natural language. As a result, complex sentences
produce nested hyperedges, which can complicate the succeeding generalization process.
This nesting is visualized through a block structure, as shown in Figure 3.1. For
example, while “explains” and “panorama” are represented as individual atoms, the
remainder of the sentence forms a subedge that includes three components: (were/M
made/P.px), (the/M (controversial/M investments/C)), and (between/T
(and/J 2007/C 2009/C)), the latter two of which are further nested.

Sentence:
The controversial investments were made between 2007 and 2009, Panorama explains.

Semantic Hyperedge:

Figure 3.1: Example sentence with its corresponding semantic hyperedge.

Index Token Triplet 1 Triplet 2
0 The A1-B A0-B
1 controversial A1-I A0-I
2 investments A1-I A0-I
3 were A1-I O
4 made A1-I P-B
5 between A1-I A1-B
6 2007 A1-I A1-I
7 and A1-I A1-I
8 2009 A1-I A1-I
9 , O O
10 Panorama A0-B O
11 explains P-B O
12 . O O

Table 3.1: Examples of token-based LSOIE annotations.

The next step is to leverage the LSOIE annotations to automate and accelerate the rule
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learning process. Each token of a sentence is labeled with tags: P (for predicate), A0 to
AN (for arguments), and O (non-extraction tokens). An additional marker −B indicates
the beginning of an annotation span, while −I marks its continuation. Since semantic
hyperedges are also token-based, this alignment makes it possible to identify labeled
spans within the hypergraph structure. Table 3.1 shows two gold-standard tuples for our
example sentence, preserving the structure of the original LSOIE annotations.

We map the annotations to their corresponding hyperedges with the goal of identifying
exact matches. For each annotation label (e.g., A0, P , etc.), we search for a subedge that
exclusively contains all tokens assigned to that label. In other words, each annotation
span must be fully covered by a single atom or subedge, without including any additional
tokens. This condition ensures clean and precise mappings. Table 3.2 provides the
successful mappings of both triplets for our example sentence.

Variable Mapped Triplet 1 Mapped Triplet 2
ARG0 panorama/C (the/M (controversial/M

investments/C))
REL explains/P.rs made/P.px
ARG1 ((were/M made/P.px) (the/M (contro-

versial/M investments/C)) (between/T
(and/J 2007/C 2009/C)))

(between/T (and/J 2007/C
2009/C))

Table 3.2: Successful mappings of annotations to parts of the semantic hyperedge.

Figure 3.2 illustrates that due to the nested structure of semantic hyperedges, exact
matches are not always possible. In this example, the last argument “on February 2”
should be mapped to the subedge (on/T (of/B.ma (+/B.ma february/C 2/C)
(next/M year/C))), which also includes the tokens “of next year.” Since this subedge
cannot be further decomposed in a way that isolates only the relevant tokens, no exact
match can be established. As a result, the corresponding tuple is excluded from the rule
learning process.

Referring to the example presented in Figure 3.2, one might argue that the LSOIE anno-
tation is flawed, as “on February 2” is an incomplete representation of the full expression
“on February 2 of next year”. This highlights that our system is able to detect potential
annotation inconsistencies, which should be revised to improve dataset quality. To enforce
that annotations must align with subedges from the semantic hyperedge, we used the
map_to_subgraphs() function of the GraphbrainExtractor from newpotato
with the strict argument set to True. The parsing and mapping procedure constitutes
the time-consuming part of the rule learning process, taking around 80 minutes for the
entire LSOIE-wiki/train dataset.

Further on, the annotations are incorporated into the semantic hyperedge structure as
functional patterns by using the apply_variables() function from graphbrain.
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Sentence: The new elections are scheduled to take place on February 2 of next year.

LSOIE Annotation: (The new elections; scheduled; to take place; on February 2)

Semantic Hyperedge:

Figure 3.2: Failed mapping of argument “on February 2” to semantic hyperedge.

Sentence:
The controversial investments were made between 2007 and 2009, Panorama explains.

LSOIE Annotation:
(Panorama; explains; the controversial investments were made between 2007 and 2009)

Semantic Hyperedge with Functional Patterns:

Figure 3.3: Successful integration of annotations with functional patterns.
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These constructs enclose specific parts of a semantic hyperedge to mark individual
annotation labels. More precisely, each mapped atom or subedge is surrounded by
parentheses, the term var and the annotation label, as illustrated in Figure 3.3.

To better explain our generalization method, we first summarize the simplification
procedure used by Menezes and Roth [MR21]: Each subedge of the hyperedge is replaced
with ∗, referred to as a “wildcard”, while retaining its inferred type information. For
example, the following transformation is demonstrated in their paper:

(is/P.sc aragorn/C (of/B.ma king/C gondor/C)) → (∗/P.sc ∗/C ∗/C)

After performing type inference on the subedge (of/B.ma king/C gondor/C), it
transforms into a wildcard from type concept (∗/C). This abstraction may be recursively
applied, expanding subedges while adhering to the type inference rules outlined in
Table 2.3 in reverse order, such as:

(∗/P.sc ∗/C ∗/C) → (∗/P.sc ∗/C (∗/B.ma ∗/C ∗/C))

In our approach, the key abstraction step involves removing the content enclosed by
each functional pattern and replacing it with the corresponding annotation label. We
illustrate this step using our ongoing example, as shown in Figure 3.4. Every component
of this hyperedge represents a functional pattern, such as (var explains/P.rs REL).
During abstraction, the token “explains” is removed and replaced with the annotation label
REL, while the type and argument roles /P.rs are retained, resulting in REL/P.rs. This
transformation is repeated for each annotated part of the hyperedge. Each unannotated
component, including atomic and non-atomic elements, is replaced by a basic wildcard,
which matches any hyperedge. To preserve type information, the main type of the
eliminated parts may be inferred, conformable to Table 2.3. For predicates and builders,
the argument roles, specifying the relation to their corresponding arguments, follow.

We allow to expand subedges to the next level to prevent overgeneralization. This
feature is optional and generates additional, more sophisticated patterns. Figure 3.5
demonstrates this procedure for our example sentence. Due to the nested structure, the
second component of the semantic hyperedge contains three functional patterns with
different variables. Expanding the subedge to its next level means that we decompose it
one level deeper and treat the inner subedges as individual components. At this point,
the annotation labels are isolated, enabling the abstraction step. This expansion is also
applied to unannotated parts of the hyperedge, following the transformation process
proposed by Menezes and Roth [MR21].

As depicted in Figure 3.5, the generalization process produces the pattern (∗/P.rs
(REL/P.px ARG0/C ARG1/S) ∗/C). We ensure that each pattern contains at least
three annotation labels, thereby filtering out patterns that lack an object, which is
possible due to certain LSOIE annotations. In our example, the subpattern (REL/P.px
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Sentence:
The controversial investments were made between 2007 and 2009, Panorama explains.

LSOIE Annotation:
(Panorama; explains; the controversial investments were made between 2007 and 2009)

Semantic Hyperedge with Functional Patterns:

Generalization Process:
(var explains/P.rs REL) → REL/P.rs
(var ((were/M made/P.px) (the/M [...] )) ARG1) → ARG1/R
(var panorama/C ARG0) → ARG0/C

Final Pattern: (REL/P.rs ARG1/R ARG0/C)

Figure 3.4: Successful integration of annotations and generalization process (Example 1).

ARG0/C ARG1/S) already includes all annotation labels and is therefore valid as well.
All resulting patterns are collected in a Counter object from the collections Python
package. In the end, patterns are sorted in descending order of frequency, and the top N
patterns are returned, depending on the user’s choice. Table 3.3 summarizes the main
steps of our supervised learning approach along with the corresponding functions from
the newpotato framework.

# Step newpotato Functions
1 Text Parsing get_graphs()
2 Triplet Mapping map_triplet(), map_to_subgraphs()
3 Annotation Integration get_annotated_sentences()
4 Generalization Process generalize_edge(), edge2pattern()
5 Pattern Counting extract_rules(), get_rules()

Table 3.3: Overview of rule learning steps and corresponding functions.
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Sentence:
The controversial investments were made between 2007 and 2009, Panorama explains.

LSOIE Annotation: (The controversial investments; made; between 2007 and 2009)

Semantic Hyperedge with Functional Patterns:

Generalization Process (with expanded subedges):
explains/Pd.rs → */P.rs
(were/M (var made/P.px REL)) → REL/P.px
(var (the/M (controversial/M investments/C)) ARG0) → ARG0/C
(var (between/T (and/J 2007/C 2009/C)) ARG1) → ARG1/S
panorama/C → */C

Final Patterns:
(∗/P.rs (REL/P.px ARG0/C ARG1/S) ∗/C)
(REL/P.px ARG0/C ARG1/S)

Figure 3.5: Successful integration of annotations and generalization process (Example 2).

Menezes and Roth [MR21] limited their analysis to the 50 most frequent patterns,
manually converting them into valid OIE relations. These were further compressed using
regular expressions, resulting in the five final patterns shown in Table 3.4. These five
patterns can be decompressed into a full set of 13 rules, including optional arguments
(denoted with three dots).

Table 3.5 presents a compressed version of our top 10 patterns, whose structure closely
mirrors the final patterns shown in Table 3.4. Notably, all of our patterns resemble the
first pattern from the original approach. This pattern begins with the relation REL of
type predicate (/P), followed by argument ARG1 of type concept (/C), then ARG2, and
optionally ARG3. However, switching to a supervised learning approach led to minor
differences in the pattern format. In particular, split relations (e.g., REL1, REL2, or
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REL3) are absent, since LSOIE represents relations as unified spans within a single
annotation (denoted with REL). Additionally, our method does not produce patterns
involving the special builder atom +/B. In the original work, the relation for such patterns
is assumed to be “is” during tuple extraction. This omission means that simple inferences
involving compound nouns may be overlooked.

# Pattern
1 (REL/P.{[sp][cora]x} ARG1/C ARG2 ARG3...)
2 (+/B.{m[ma]} (ARG1/C...) (ARG2/C...))
3 (REL1/P.{sx}-oc ARG1/C (REL2/T ARG2))
4 (REL1/P.{px} ARG1/C (REL2/T ARG2))
5 (REL1/P.{sc} ARG1/C (REL3/B REL2/C ARG2/C))

Table 3.4: Final patterns from original SH approach [MR21].

# Pattern #Cases
1 (REL/P.{[sp][rx]} ARG0/C ARG1/[RS]) 1,107
2 (REL/P.{so} ARG0/C ARG1/C) 475
3 (REL/P.{sox} ARG0/C ARG1/C ∗/[RS]) 150
4 (REL/P.{sox} ARG0/C ARG1/C ARG2/S) 124

Table 3.5: Top 10 compressed patterns with number of cases.

To conclude, we integrated token-based annotations from the LSOIE dataset into semantic
hyperedges to create a novel supervised learning approach that automates the rule learning
process and eliminates the need for manual pattern identification. While our approach
results in patterns similar to those from the original OIE system, they differ in key
aspects, such as the absence of split relations and the special builder atom +/B, which
affects the handling of compound nouns. Notably, all of the top ten patterns resemble
the first pattern from the original method. This lays the foundation for the next chapter,
which presents the experimental setup of our work, including the tuple extraction process.
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CHAPTER 4
Experimental Setup

This chapter outlines the experimental setup for evaluating our OIE system. First, we
describe how the tuple extraction is conducted. To answer RQ1, we experimented with
various key configurations to identify the optimal setup for our OIE system. The so-called
WiRe57 scorer is used as evaluation method, which offers a standardized framework for
assessing OIE system performance, as detailed in Section 4.3. This section also introduces
the evaluation metrics used to measure extraction quality, including precision, recall, and
F1 score. Finally, the comparison systems are described.

4.1 Tuple Extraction and Gold Data Reduction

4.1.1 Initial Tuple Extraction

After developing the rules with the training text corpus, they will be evaluated on unseen
data. Ultimately, the patterns will be used for extracting tuples, which will be compared
to the ground truth of a test dataset. Each sentence undergoes the following procedure:

Initially, the input sentence is parsed into its semantic hyperedge structure. If an error
occurs during the parsing process, the sentence is not taken into consideration for the
evaluation. Then, conjunction decomposition is performed according to the graphbrain
function conjunctions_decomposition(edge, concepts=True). Every part of
the decomposed hyperedge is matched against the list of rules chosen for the evaluation.
We start with the first, most common pattern and continue to find matches with the
subsequent elements of the pattern set until the maximum number of extractions or
the end of the list is reached. For matching the pattern to the specific hyperedge, the
function match_pattern() of the graphbrain library is applied.
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4.1.2 Gold Data Reduction
After processing each sentence and extracting the initial tuples, the gold tuples are stored
in a JSON file formatted for compatibility with the WiRe57 scorer. Approximately 20%
of the extractions in each LSOIE dataset are annotated without an object. Since our
evaluation framework does not support such cases (see Section 4.3) and they are not
the focus of our work, we excluded all sentences containing at least one such annotation.
Table 4.1 shows that this results in a substantial reduction in dataset size, however, it
ensures a consistent evaluation.

Before After
Dataset #Sent #Extr #Sent #Extr
LSOIE-sci/test 9,219 17,001 6,116 9,901
LSOIE-wiki/dev 2,266 5,268 1,483 2,932
LSOIE-wiki/test 2,403 5,373 1,567 2,983

Table 4.1: Sizes of LSOIE datasets before and after filtering.

4.1.3 Post-processing of Extractions
We noticed that a high amount of tuples with merely varying arguments is extracted.
To reduce noise and increase precision, we added a post-processing step that combines
extractions from the same sentence with identical predicates and first arguments. The
second argument is taken from the first extraction in its original position. Subsequently,
any additional arguments from the current tuple, as well as those from similar tuples,
are included as long as they provide new information.

We implemented the function is_similar(s1, s2, threshold=0.5), which com-
pares pairs of arguments, s1 and s2, by using string similarity to identify redundant
objects. It uses the SequenceMatcher from the difflib package, which calculates
a similarity score (accessible with ratio()) between strings. If the similarity score is
greater than or equal to the specified threshold, the strings are considered similar. We
only keep arguments that are sufficiently different (i.e., their similarity score is below 0.5).
In the end, the combined extractions are saved in the same format as the gold tuples.
This step can be omitted by setting the argument comb in our implemented function
generate_triplets_and_gold_data() to False. We refer to this scenario of
omission as nc (for “no combination”) in Chapter 5 and demonstrate the process through
an example:

Consider the sentence ‘He went on to say in the same post, “Nelson Mandela did great
things for his country and was a brave man but he was not an AMERICAN!!!”’. Table 4.2
shows four similar extractions with subtle differences in the second and third arguments.
Notably, tuples #3 and #4 are combinations of #1 and #2, generated by different
symbolic patterns. #4 also presents the arguments in a different order compared to #3.
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Since all four extraction candidates share the same first argument and relation, the
post-processing step can be applied. We begin with extraction #1, which is taken as
is. Next, the argument “for his country” from tuple #2 is compared to the existing
arguments (excluding the identical first argument), in this case “great things”, using the
string similarity function described earlier. As the similarity score is below 0.5, “for his
country” is added as a third argument to the final extraction.

Tuple #3 is then compared pairwise with the current extraction arguments. Since it does
not contain additional information, it is disregarded. The same applies to tuple #4. In
the end, we obtain the single consolidated extraction (Nelson Mandela; did; great things;
for his country), instead of four similar ones.

Variable Extr. #1 Extr. #2 Extr. #3 Extr. #4
arg1 Nelson Mandela Nelson Mandela Nelson Mandela Nelson Mandela
rel did did did did

arg2 great things for his country great things for his country
arg3 – – for his country great things

Table 4.2: Four similar extractions are combined into a single tuple: (Nelson Mandela;
did; great things; for his country).

4.2 Key Configurations
The intention of this thesis is to build on the OIE approach of Menezes and Roth [MR21].
RQ1 is about the different strategies that can be used to find effective patterns for the
OIE task. In the early stages of our work, we decided to use a supervised learning
approach to avoid a manual inspection of the rules and to make the process more efficient.
Nevertheless, we had to make additional design choices during the development of our
OIE system, which we want to summarize in the following section.

Regarding the rule learning process, we adopted the restriction mentioned by Menezes
and Roth [MR21] that only relations of size 3 or 4 are used. They argue that smaller
relations cannot contain triplets, while larger ones might embed the triplet in a smaller
subgraph that meets this condition. We tested our system without these restrictions
(and without expanded subedges) and observed no changes in the top 30 patterns. A few
new patterns in the top 100 included a fourth argument (e.g., pattern #40, #50, #77,
and below). We believe these patterns are not meaningful, particularly due to their low
ranking, and therefore implemented the size constraint on hyperedges.

As mentioned in Chapter 3, type inference is performed during the generalization pro-
cedure with respect to the rules in Table 2.3. Consequently, inner parts of subedges
may disappear, such as modifiers and triggers. There is the option in our system to
expand subedges to their next level by setting the expand argument in get_levels()
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to True. We tested our system with three different settings for the evaluation presented
in Chapter 5: no expanded subedges, with additional expanded subedges (denoted with
all) as well as exclusively expanded subedges (denoted with exp). Figure 3.5 shows two
patterns derived through expanded subedges.

Further key configurations are available for the evaluation of learned patterns. Most
importantly, the user can determine the number of patterns to be considered for the
extraction process. We tested our system with the top 1, 5, 7, 10, 15, 20, 25 and 30
patterns. Additionally, it is possible to vary the maximum number of distinct extractions
allowed per decomposed hyperedge. In our experiments, the number ranged from 1 to 5,
with 3 being used most frequently. Lastly, if the user of our system focuses on extracting
binary relations, additional arguments from the LSOIE gold tuples can be ignored for
the evaluation. This scenario is denoted with bi for “binary” in the next chapter.

4.3 WiRe57 Scorer
This section summarizes the functionalities of the WiRe57 scorer, which we use to
evaluate our novel OIE system (see Chapter 5 for results). The scorer was introduced
by Léchelle, Gotti, and Langlais [LGL19] alongside the WiRe57 dataset, forming a
fine-grained evaluation framework with high-quality annotations that enables a detailed
assessment of an OIE system’s performance. They stated that “matching a system’s
output to a reference is not trivial”. Therefore, they focused on certain aspects such as
manually crafted annotations (including implicit relations and coreference information)
and partial matching at the token level. Their goal was to establish a reliable benchmark
for fair comparisons between different OIE systems.

The evaluation relies on three metrics: precision, recall, and F1 score, which are commonly
used in information extraction tasks to measure the alignment between predicted and
gold-standard extractions. In this context, precision measures the correctness of the
extractions, while recall measures their completeness. The F1 score is the harmonic mean
of precision and recall, providing a balanced measure of overall performance. A detailed
explanation of the matching and scoring procedure follows below.

The WiRe57 scorer supports exact and partial matching. An extraction is considered
an exact match if it exactly matches the gold tuple for each tuple component. This is a
very strict scoring method and not suitable for testing our approach. Partial matching
allows for more flexibility by scoring token-level overlaps between the predicted and gold-
standard extractions. This is particularly useful in OIE tasks, where the same information
can be expressed in slightly different ways, which can lead to small mismatches. Since
both the WiRe57 and the LSOIE datasets are token-based, the use of token-level partial
matching aligns well with the structure of our extractions. Below, we briefly explain how
the scoring process works for each sentence:

Let Gs = {g1, g2, . . . , gN } be the set of gold tuples and Ts = {t1, t2, . . . , tn} the set of
extractions for a given sentence s. The first step is to compute tuple-tuple matching
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scores, meaning that each gold tuple gj , j ∈ 1, . . . N is compared with each extracted
tuple ti, i ∈ 1, . . . n. We refer to a tuple as t = (ta1 , tr, ta2 , . . . ) = (tpk), k ∈ [1, kn], where
p1 represents the subject, p2 the relation, p3 the first object, and so on. The elements
within each tuple component are treated as bags of words, thereby disregarding the
original order.
Each subject, relation and first object of a gold tuple is compared separately to its
corresponding component tpk , k ∈ {1, 2, 3} of the extraction t. The number of matching
words is defined as the number of predicted words that also appear in the reference. The
number of reference words includes all “real” words of the gold annotation, excluding
inferred words and coreference information, to guarantee fair comparisons between the
systems. The number of predicted words is the total count of words in tpk . A partial
match is granted if at least one token aligns for each of these three core components.
This restriction attempts to avoid rewarding random extractions. However, there remains
room for improvement, as function words like “the” or “of” are also considered valid
matches. The matching of further objects follows a similar approach. If the gold tuple
contains only three components, any additional objects in the system’s extraction (if
present) are ignored, and the metrics remain unchanged. For additional objects in the
gold tuple (gpk , k > 3), each tuple part gpk is compared to its corresponding component
tpk in the prediction t. By enforcing positional matching, the scorer ensures that the
extracted information aligns not only in content but also in the intended logical order.
For the final tuple-tuple score between a predicted tuple ti and a gold tuple gj , the numbers
of matching words is summed over k, i.e. across all tuple components. Precision measures
the proportion of correctly extracted words relative to the total number of predicted
words. Recall reflects the proportion of “real” reference words correctly identified in the
system’s predictions. The mathematical definitions of precision and recall in this setting
are given in Equations (4.1) and (4.2).

precision(ti, gj) =
∑︁

k |tpk
i ∩ gpk

j |
|ti| (4.1)

recall(ti, gj) =
∑︁

k |tpk
i ∩ gpk

j |
|gj | (4.2)

F1 = 2 · p · r

p + r
(4.3)

Léchelle, Gotti, and Langlais [LGL19] employ a greedy algorithm to map the predicted
tuples with the references for each sentence. The scorer computes the F1 score as defined
in (4.3) for all possible combinations and selects the (ti, gj) pair with the highest F1
score. Both tuples are then removed from the set of candidate tuples, and the process is
repeated until no further matches are found. Afterwards, precision, recall, and F1 score
are calculated at the sentence level, before aggregating the results across the dataset.
Ultimately, the overall performance of an OIE system is reflected in its token-weighted
precision and recall across all tuples.
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Table 4.3 illustrates the strictness of the scoring process by comparing the binary gold-
standard extraction (Nelson Mandela; did; great things for his country) with the 3-ary
extraction (Nelson Mandela; did; great things; for his country) obtained through the post-
processing step presented in Table 4.2. Although both tuples contain exactly the same
words, they differ in how these words are assigned to tuple components (i.e., positions).
Since scoring is performed per component (i.e., per annotation label), it is impossible
to achieve 100% recall for this extraction. This is because “for his country” is assigned
to arg3 in the predicted tuple, while it belongs to arg2 in the gold-standard reference.
As the gold-standard tuple contains no additional objects, any extracted information
assigned to arg3 is disregarded. The precision remains at 100% since all predicted words
in the relevant tuple components match those in the gold tuple (5 matching words out
of 5 predicted words). However, the reference tuple contains more words (8 in total),
resulting in a recall of only 5

8 = 62.5%.

Variable Gold Tuple Predicted Tuple #Matches
arg1 Nelson Mandela Nelson Mandela 2
rel did did 1

arg2 great things for his country great things 2
arg3 – for his country -

Table 4.3: Example of partial matching of gold vs. predicted tuple.

The WiRe57 scorer is a suitable evaluation tool for our work since it has already been used
to benchmark a range of other OIE systems (as discussed in Chapter 2). Its token-level
partial matching approach aligns well with the structure of the LSOIE annotations, which
ensures a meaningful and accurate assessment of our system and penalizes excessively
long extractions. However, Kolluru et al. [KAA+20] noted that due to the scorer’s one-
to-one mapping strategy, systems generating extractions that combine information from
multiple gold extractions are unfairly penalized. This limitation represents a significant
disadvantage for benchmarking our system. During the evaluation process, we observed
that recall values greater than 1 were occasionally returned for tuple-tuple scores. This
malfunction occurs when a reference word appears more than once in the corresponding
predicted tuple component. Another issue is that inferred words, which are part of 54%
of the WiRe57 gold-standard tuples, are not considered in the matching procedure. This
can lead to seemingly successful matches even when the extraction fails to convey the
intended information. For instance, if the gold-standard relation is entirely inferred, any
word in the predicted relation could count as a match. As a result, systems that generate
a large number of extractions may appear to perform better simply because one of them
is likely to match such a gold tuple.

30



4.4. Comparison Systems

4.4 Comparison Systems
As discussed in Chapter 2, several OIE systems have been evaluated using WiRe57,
which has become a widely accepted benchmark in the field. We assess extractions from
all 57 sentences produced by seven OIE systems, as provided by Léchelle, Gotti, and
Langlais [LGL19], and compare our system’s performance against them as well as the
results obtained by Menezes and Roth [MR21].

We also aimed to evaluate some of these models on the LSOIE datasets. However, this
was particularly challenging since many OIE systems are not publicly available, poorly
documented, or require a complex setup, which significantly limited the number of eligible
options. Ultimately, we successfully extracted triplets for the LSOIE sentences using
ClausIE [DCG13]. Therefore, we used a Python wrapper1 since ClausIE was originally
implemented in Java. We attempted to run the system without modifications, however,
due to punctuation marks in the LSOIE sentences, such as apostrophes and commas as
thousand separators in numbers, we had to add a try/except clause to handle these
cases without causing execution errors. To align with the guidelines of our approach, we
only considered extractions that contain at least one object. Additionally, we discarded
tuples where at least one part of the extraction consisted of only one character, assuming
these resulted from parsing errors. We tested the system on all three LSOIE datasets.
Although no model training was required for rule generation, the extraction procedure
was time-consuming, processing approximately 1,200 sentences per hour.

Moreover, we intended to compare our system to the original approach developed by
Menezes and Roth [MR21] on the LSOIE datasets. However, this was not straightforward,
as their system is not accessible online. After contacting the authors, we obtained their
evaluation script for the OIE task and attempted to replicate their results on the WiRe57
dataset first. The next best option was to test their rules (presented in Table 3.4) within
our own evaluation setup, omitting the post-processing step of combining extracted tuples.
Despite these efforts, we were unable to reproduce the results reported in the paper for
the WiRe57 dataset. The closest match to the published results was achieved using
their evaluation script, which is independent of newpotato as well as the graphbrain
framework. To stay as close as possible to the original approach, we used this script to
evaluate the LSOIE datasets with the 13 rules derived by Menezes and Roth, assuming
that their original system would have produced similar results.

1https://github.com/drwiner/ClausIEpy (Last accessed: April 17, 2025)
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CHAPTER 5
Evaluation and Results

This chapter presents the results of different strategies for learning valid OIE patterns
(as described in Chapter 3) and for performing tuple extraction (see Section 4.1), aiming
to answer RQ1 and to establish a final solution. We evaluate the performance of these
approaches on four datasets from two distinct domains: Wikipedia articles and scientific
texts. As explained in Section 4.3, precision and recall serve as the key metrics, measuring
the correctness and completeness of the extractions. We also report the F1 score, which
balances precision and recall, providing a single metric that reflects accuracy and coverage.
Finally, we compare our system against existing OIE baselines to address RQ2 and RQ3.

As discussed in Section 4.4, we attempted to reproduce the results obtained by Menezes
and Roth [MR21] on the WiRe57 dataset using various settings. Table 5.1 presents
the evaluation metrics reported in their paper alongside our results obtained with the
newpotato framework (denoted as np) and the authors’ evaluation script.

Total Results Matches
System Prec Rec F1 Prec Rec # #Extr.
1 Rule (Script) .487 .086 .147 .71 .85 35 51
1 Rule (Paper) .475 .184 .265 .69 .85 74 107
1 Rule (np) .579 .061 .110 .70 .87 24 29
5 Rules (Script) .475 .234 .314 .68 .86 93 134
5 Rules (Paper) .416 .326 .365 .70 .93 120 201
5 Rules (np) .633 .102 .176 .74 .85 41 48

Table 5.1: Results for different setups evaluating the WiRe57 dataset, using one or five
of Menezes and Roth’s rules. “Script” refers to the evaluation metrics obtained with
their evaluation script, “Paper” to their publication, and np to our OIE system.
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Since the original publication reports the highest number of extracted tuples, it also
achieves the highest overall recall, which boosts the F1 score. In contrast, our system
produces significantly fewer extractions, only about 25% of those reported in the paper
when using five rules, but obtains the highest precision of 63.3% with five rules and 57.9%
with one rule. The metrics generated with Menezes and Roth’s evaluation script are
comparable to those published, though consistently lower. These findings support our
decision to use their script for evaluating the original semantic hypergraph-based OIE
system on the LSOIE datasets.

We briefly outline the evaluation process and the reasoning behind our decisions. The
primary goal was to find a balance between extracting more information and minimizing
noise. An overview of all key configurations is given in Section 4.2. We started with
the edge case configuration of one pattern and a maximum of only one extraction per
decomposed hyperedge (short: 1/1) and increased these parameters step-by-step. While
maximizing F1 score was the main objective, we also aimed to identify configurations that
would favor either high precision or high recall. After finding a solid configuration for the
base pattern set, we extended the evaluation by including patterns derived from expanded
subedges. We also explored alternative strategies, such as disabling the post-processing
step that combines extracted triplets, to study its impact on the overall performance.
The best configuration from each dataset served as the starting point for evaluating the
next dataset, allowing us to refine our approach based on previous insights.

We present scatter plots with recall on the x-axis and precision on the y-axis. To visualize
the different experimental setups, we use two colorbars to represent our main parameters:

• Number of patterns (inner circle)

• Maximum number of extractions per decomposed hyperedge (outer circle)

To distinguish between pattern sets and extraction methods, we apply text labels for
the specific scenarios, as explained in Section 4.2. If no text label with all or exp is
shown, the base pattern set (without expanded subedges) is used. To improve readability,
redundant points are omitted. The results are sorted in ascending order by the number
of patterns and the maximum number of extractions. This ensures that omitted points
stem from higher parameter values, making them less relevant. The point achieving the
highest F1 score (excluding the bi scenario) is also highlighted.

5.1 LSOIE-sci Dataset
The filtered LSOIE-sci/test dataset is quite large, containing over 6,000 sentences
and 9,901 extractions, as shown in Table 4.1. Although there exists a dev set as well, it
is very small, and we chose not to include it in our evaluation, as its results would likely
be unreliable.
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#Patterns #Max. Extr. Setting #Extr. #Matches P R F1

1 1 – 3,697 1,836 .435 .131 .201
5 1 – 7,374 3,550 .407 .269 .324
5 3 – 7,411 3,557 .404 .279 .330
10 1 all 8,450 3,831 .386 .294 .334
10 2 all 9,770 3,885 .344 .309 .326
10 3 – 8,135 3,889 .402 .313 .352
10 5 – 8,136 3,889 .402 .313 .352
15 2 – 8,299 3,969 .401 .319 .355
15 2 all 10,042 4,027 .345 .321 .332
15 3 – 8,309 3,969 .400 .319 .355
15 3 all 10,299 4,033 .337 .324 .330
15 3 bi 8,309 3,970 .404 .337 .368
15 3 exp 10,288 3,964 .334 .317 .325
15 3 exp/nc 21,274 4,420 .185 .349 .242
15 5 nc 18,174 4,464 .210 .361 .265
20 3 – 8,309 3,969 .400 .319 .355
20 3 all 10,463 4,044 .333 .324 .329
20 3 all/nc 21,553 4,535 .186 .359 .245
20 3 exp 11,768 4,037 .299 .324 .311
20 5 – 8,310 3,969 .400 .319 .355
25 3 all 10,794 4,080 .326 .328 .327

Table 5.2: Performance metrics for different extraction settings on LSOIE-sci/test
sorted by number of patterns and maximum number of extractions in ascending order.

Figure 5.1 and Table 5.2 illustrate the results for the LSOIE-sci/test dataset. The
best overall F1 score of 0.355 was achieved with the configuration of 20 patterns and a
maximum of 5 extractions per hyperedge. However, when rounding to three decimal places,
the same F1 score could be reached with 15 patterns and a maximum of 2 extractions. This
indicates that increasing the number of patterns and extractions beyond this point does
not necessarily improve performance but might increase computational cost. Therefore,
the configuration 15/2 can be considered a more efficient alternative, balancing precision
(0.401) and recall (0.319) effectively.

To optimize for precision, the configuration 1/1 yielded the highest value (0.435), but at
the cost of very low recall (0.131). Conversely, the highest recall (0.361) was obtained
with the nc strategy using 15 patterns and a maximum of 5 extractions, showing that
skipping the post-processing step increases recall at a drastic expense of precision. We
also evaluated the pattern sets all and exp, and observed similar recall values but lower
precision. As expected, the bi evaluation returned the highest F1 score (0.368). Since
this setting focuses on binary relations, it reflects how the system would perform when
the user prioritizes binary structures over complete extractions.
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Figure 5.1: Results on LSOIE-sci/test for several key configurations.

LSOIE-sci/test
System P R F1

Our system .400 .319 .355
SH (5 rules) .227 .182 .202
ClausIE .065 .105 .080
LSOIE Baseline – – .38

Table 5.3: Performance of all comparison systems on the LSOIE-sci/test dataset.

Table 5.3 presents the results on the reduced LSOIE-sci/test dataset for all available
comparison systems. Our best configuration achieved a significantly higher F1 score
(0.355) compared to 0.202 for the original SH rules and 0.08 for ClausIE. However, the
best neural baseline provided by LSOIE for the entire dataset reached an F1 score of
0.38, which is slightly higher. Nevertheless, these results demonstrate that our rule-based
system can compete with neural models.

5.2 LSOIE-wiki Datasets
Both LSOIE-wiki datasets, dev and test, contain nearly 3,000 gold tuples from
approximately 1,500 sentences after data cleaning. Since the results for these two datasets
are highly similar, the detailed analysis focuses on LSOIE-wiki/test. Table 5.4 and
Figure 5.2 visualize our experiments for this dataset. The results of LSOIE-wiki/dev
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are provided in the Appendix.

#Patterns #Max. Extr. Setting #Extr. #Matches P R F1

1 1 – 3,697 1,836 .380 .103 .162
5 3 – 2,246 984 .363 .248 .294
10 2 – 2,488 1,091 .361 .280 .315
10 3 – 2,495 1,091 .360 .281 .315
10 3 all 3,109 1,097 .300 .280 .290
10 3 exp 3,109 1,097 .300 .280 .290
10 4 – 2,495 1,091 .360 .281 .315
15 1 – 2,532 1,111 .363 .273 .311
15 2 – 2,545 1,112 .359 .285 .318
15 3 – 2,552 1,112 .358 .286 .318
15 3 all 3,201 1,135 .299 .291 .295
15 3 all/nc 6,196 1,329 .185 .331 .237
15 3 bi 2,552 1,113 .364 .304 .331
15 3 exp 3,191 1,115 .297 .285 .291
15 3 exp/nc 7,269 1,299 .157 .323 .211
15 3 nc 5,604 1,310 .197 .330 .247
15 4 – 2,552 1,112 .357 .286 .318
20 3 all 3,249 1,137 .296 .291 .293
20 5 – 2,553 1,112 .357 .286 .318

Table 5.4: Performance metrics for different extraction settings on LSOIE-wiki/test
sorted by number of patterns and maximum number of extractions in ascending order.

The parameter combination 15/3 achieved the highest overall F1 score (0.318), however,
almost equal scores were obtained with a maximum of 2 or 4 extractions. The best recall
(0.331) was reached with patterns including expanded subedges (all) and the nc scenario
for the same parameters, but precision dropped significantly from 35.8% to 18.5%. In
comparison to LSOIE-sci/test, similar results emerge for the edge case 1/1, the other
pattern sets, and the bi setting.

LSOIE-wiki/dev LSOIE-wiki/test
System P R F1 P R F1

Our system .358 .270 .308 .358 .286 .318
SH (5 rules) .182 .166 .174 .174 .172 .173
ClausIE .040 .072 .051 .039 .074 .051
LSOIE Baseline – – – – – .31

Table 5.5: Performance of all comparison systems on the LSOIE-wiki datasets.

Table 5.5 shows that our system achieved the highest F1 scores on both LSOIE-wiki/dev
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Figure 5.2: Results on LSOIE-wiki/test for several key configurations.

(0.308) and LSOIE-wiki/test (0.318), significantly outperforming the original SH rules
and ClausIE. Furthermore, our system surpasses the F1 score of the neural baseline
provided by Solawetz and Larson [SL21] for the entire test set. A similar pattern is
observed as for the LSOIE-sci/test dataset, though with slightly lower F1 scores
across all comparison systems.

5.3 WiRe57 Dataset
This well-known dataset contains 343 tuples of 57 sentences. 57% of them are anaphoras
and 54% include inferred words that are not part of the original sentence. Since most of
the tuples (74%) represent binary relations, we omit the bi scenario. Figure 5.3 displays
the tested configurations and the extensive list of experiments can be seen in Table 5.6.

The maximal F1 score of 0.309 was achieved with the parameters 25/2 using the exp/nc
setting. This result highlights that not combining similar triplets can lead to higher
recall, which is particularly beneficial for this small dataset. We noticed that due to
inferred words, which are disregarded for recall computation and tuple-matching, a lot
of matches seem to be quite random. As a consequence, systems which produce a lot
of noise, i.e. a high amount of similar triplets, can benefit from this limitation of the
WiRe57 dataset and its corresponding scorer. Once more, the edge case 1/1 achieved
the highest precision of 56.9%, but recall amounts to only 5.3%. The recall (0.292) from
our best configuration can be raised up to 0.338 by increasing the parameters to 30/5.

We observed in Figure 5.3 that the performance varied more strongly across configurations

38



5.3. WiRe57 Dataset

#Patterns #Max. Extr. Setting #Extr. #Matches P R F1

1 1 – 34 26 .569 .053 .097
1 1 exp 34 26 .569 .053 .097
5 1 exp 73 51 .467 .107 .175
5 2 exp 78 52 .446 .118 .187
5 3 – 73 51 .470 .117 .187
10 1 – 79 55 .463 .120 .190
10 3 – 79 55 .467 .131 .205
10 3 exp/nc 229 109 .297 .244 .268
10 3 nc 168 100 .373 .224 .280
15 3 – 79 55 .467 .131 .205
15 3 exp/nc 238 110 .288 .246 .265
15 3 nc 184 105 .352 .238 .284
20 2 nc 164 101 .384 .218 .278
20 3 nc 185 106 .355 .240 .287
20 4 all/nc 262 114 .272 .257 .264
20 4 exp/nc 311 142 .283 .323 .302
20 5 – 79 55 .466 .132 .205
20 5 all/nc 276 115 .260 .260 .260
20 5 exp/nc 329 143 .269 .326 .295
20 5 nc 209 109 .323 .251 .282
25 2 exp/nc 246 132 .328 .292 .309
25 3 exp/nc 290 140 .298 .319 .309
25 4 exp 117 72 .409 .171 .241
25 4 exp/nc 320 145 .284 .332 .306
25 5 exp/nc 340 146 .268 .336 .298
25 5 nc 226 113 .311 .258 .282
30 2 all/nc 216 108 .312 .230 .265
30 3 nc 195 110 .352 .247 .290
30 4 exp/nc 335 146 .274 .334 .301
30 5 exp 129 72 .371 .174 .237
30 5 exp/nc 355 147 .259 .338 .293

Table 5.6: Performance metrics for different extraction settings on WiRe57 sorted by
number of patterns and maximum number of extractions in ascending order.
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than in the other test sets, likely due to different annotation styles. Surprisingly, the
exp patterns outperformed the base patterns, reinforcing the assumption that diverse
annotators may have influenced the results.

Figure 5.3: Results on WiRe57 for several key configurations.

Total Results Matches
System Prec Rec F1 Prec Rec # #Extr.
SH (5 rules) .416 .326 .365 .70 .93 120 201
MinIE .400 .323 .358 .75 .83 134 252
ClausIE .401 .298 .342 .74 .84 121 223
Our System .328 .292 .309 .61 .76 132 246
OpenIE 4 .501 .182 .267 .68 .84 74 101
SH (1 rule) .475 .184 .265 .69 .85 74 107
OLLIE .347 .175 .239 .73 .81 74 145
ReVerb .569 .121 .200 .83 .77 54 79
Stanford OIE .210 .188 .198 .79 .65 99 371
PropS .222 .162 .187 .59 .80 69 184

Table 5.7: Performance of OIE systems on WiRe57, ordered by descending F1.

We compared our best results for the WiRe57 dataset with the results published in the
SH paper [MR21]. This contrasts with our evaluation of the LSOIE datasets, where we
ran the comparison systems ourselves. This may have significantly influenced the reported
results and could explain the differences compared to LSOIE. For broader comparison
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insights, we also included the results of additional OIE systems evaluated with WiRe57,
as shown in Table 5.7.

The original SH system with 5 rules achieved the highest F1 score (0.365), closely followed
by MinIE (0.358) and ClausIE (0.342). While our system produced a lower F1 score
(0.309), it maintained a balanced performance in terms of precision and recall. Notably,
the recall of our system does not differ significantly from the comparison systems, but
precision is considerably lower. ReVerb achieved the highest precision (0.569) but at the
cost of low recall (0.121) and a small number of extractions. Exactly the same precision
value can be reached by our edge case configuration of one pattern and one extraction
per decomposed hyperedge, but with reduced recall (0.053).

5.4 Final System
Our system demonstrated consistent and balanced performance across the four test
datasets, achieving competitive F1 scores in both domains. On the one hand, it notably
outperformed the other rule-based OIE systems on the LSOIE datasets, which might be
due to the fact that our patterns were obtained from LSOIE data. The F1 scores for the
two Wikipedia-based datasets were slightly lower than for the scientific-related datasets,
but still significantly higher than the baseline models. Comparisons with the neural
baselines provided by LSOIE show that we outperform a neural model on the scientific
LSOIE dataset and achieve similarly strong results on the Wikipedia-related one.
However, these comparisons may not be entirely fair, as we evaluated a reduced dataset,
while LSOIE reports results for the complete dataset. Nevertheless, this highlights the
strength of rule-based systems and demonstrates that it is not always necessary to rely
on opaque neural networks when a fully transparent and interpretable system is available.
The F1 scores for the two Wikipedia-based datasets were slightly lower than for the
scientific-related datasets, but still significantly higher than the baseline models. On the
other hand, our system produced the lowest F1 score (0.309) for the WiRe57 dataset
compared to the results for SH and ClausIE found in the literature.

The best F1 score for WiRe57 was obtained with the exp/nc strategy, which highlights
that combining similar triplets is not always advantageous since it depends on the structure
of the dataset and the objective of the extraction. By providing flexible parameters,
the user of our OIE system can decide whether to focus on high precision for a small
number of extractions or to extract a broader range of information and boost recall. The
configuration of 15 patterns and a maximum of 3 extractions per hyperedge appears to
offer the most balanced results. Moreover, the user is able to include more sophisticated
patterns obtained by expanded subedges. For the LSOIE datasets, the base patterns
worked best. The bi evaluation, which simplifies the problem to binary relations, offers
insight into how our system would perform if additional objects were ignored.
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CHAPTER 6
Discussion

This section reflects on the findings presented in the previous chapter. We identify key
errors based on a manual analysis of a small part of LSOIE-wiki/dev, discuss the
limitations of our approach, and outline potential improvements for future work.

6.1 Error Analysis
We distinguish between errors that emerged during the rule learning phase and those
that occurred in the matching process. For the latter, we analyzed the first 103 sentences
of the filtered LSOIE-wiki/dev dataset, which contains 196 gold-standard tuples. The
key configurations for this evaluation included the top 15 patterns without expanded
subedges and a maximum of three extractions per decomposed hyperedge.

6.1.1 Evaluation Errors
From the 103 analyzed sentences, we extracted 159 tuples, of which 71 matched the
gold standard, resulting in a precision of 75% and a recall of 77% for the matched
cases. For four sentences, no extraction could be obtained. We manually classified the
mismatches, assigning each to a single, most suitable error category when multiple causes
were identified. This analysis revealed four main sources of error:

Hyperedge structure (30%): The most common issue was the failure to find a
matching pattern for the relevant parts of the semantic hyperedge, often due to overly
nested hyperedge structures.

Additional objects (25%): Another major source of error involved mismatches with
additional objects. This included cases where the first object from the gold tuple (often
a time designation) was missing in the prediction (while further objects would have been
correct), the first and second object positions were swapped, or an additional object from
the gold tuple was already included in the first object of the prediction (or vice versa).
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6. Discussion

Imprecise extractions (24%): Primarily, mismatches were caused by inaccurate
relation extraction (9%). Minor issues included uninformative arguments, such as “who”,
where coreference resolution would have been required (4%), as well as problems with
conjunction decomposition, overlong extractions, and rigid subject-relation combinations
(each 3%). Although not affecting matching, auxiliary words in the relation extraction
often lowered precision (15%).

Dataset limitations (21%): We excluded sentences without an object annotation
to ensure proper triplet extraction. However, the LSOIE data still exhibits certain
limitations, such as omitted negation, swapped subject and object roles, or annotations
that miss natural language or fail to reflect the intended meaning of the sentence.

6.1.2 Training Errors
This section summarizes the errors encountered during the rule learning process. Almost
all sentences from the LSOIE-wiki/train dataset were successfully parsed into seman-
tic hyperedges. However, around 27% of the tuples were skipped due to the inability to
find an exact match between the annotation spans and the hyperedges. As mentioned
earlier, this is often not a limitation of our system but rather due to incomplete or flawed
LSOIE annotations, as illustrated in Figure 3.2.

An additional 12% of the training tuples were discarded during the integration of
functional patterns into hyperedges. These structural issues arise from token ambiguities
(e.g., duplicated words in a sentence), nested hyperedge structures, or tokenization
inconsistencies such as hyphenated words being split during parsing. For instance, in
some cases, the subedge mapped to a specific annotation label cannot be solely isolated
within a semantic hyperedge. Consider the sentence “The new elections are scheduled to
take place on February 2 of next year.” Its corresponding gold tuple (The new elections;
scheduled; February 2 of next year; to take place) was successfully mapped to the subedges
shown in Figure 6.1. The problematic mapping occurs for ARG2: the subedge ((to/M
take/P.ox) place/C) cannot technically be separated from ((to/M take/P.ox)
place/C (on/T [...]), since place/C serves as an atom and can only be extracted
either by itself or together with both surrounding subedges.

Although approximately 40% of the gold tuples could not be used during the training
process, the dataset’s large overall size of 46,015 tuples still provides a sufficient amount
of data for effective rule learning, as demonstrated by the results presented in Chapter 5.

6.2 Limitations
We encountered various challenges during our work. First, we had to reconstruct the
OIE system using semantic hypergraphs solely based on the paper by Menezes and Roth
[MR21], since it is not available in the graphbrain framework. When evaluating the
original SH rules, we could not match the two patterns involving the special builder atom
+/B due to a graphbrain malfunction in match_pattern().
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6.2. Limitations

Sentence: The new elections are scheduled to take place on February 2 of next year.

LSOIE Annotation:
(The new elections; scheduled; February 2 of next year; to take place)

Semantic Hyperedge:

Tuple Mapping:
REL: scheduled/P.px
ARG0: (the/M (new/M elections/C))
ARG1: (of/B.ma (+/B.ma february/C 2/C) (next/M year/C))
ARG2: ((to/M take/P.ox) place/C)

Figure 6.1: Failed integration of functional pattern for ARG2 as its corresponding subedge
cannot be solely extracted from the semantic hyperedge.

Another key issue was the inability to run other OIE systems because of undocumented
and unmaintained GitHub repositories. Solawetz and Larson [SL21] provided a setup for
executing state-of-the-art systems with their LSOIE datasets, as well as output files, but
their instructions were outdated, and the systems’ extractions were based on different
test data (not the final LSOIE datasets used in our evaluation). As mentioned above,
their annotations also showed inconsistencies.

The WiRe57 scorer also has limitations, noted at the end of Section 4.3, such as penalizing
systems that combine information from multiple gold extractions, which is exactly the
case for our OIE system. Furthermore, 54% of the tuples in the WiRe57 dataset contain
inferred words, making it challenging to match with our extractions. The dataset’s small
size of only 57 sentences and 343 reference tuples may limit the statistical significance
and generalizability of the results. A common issue for almost all OIE test datasets is
that the ground truth cannot be assumed to be complete, which makes it difficult to
measure recall.
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6. Discussion

6.3 Future Work
Several improvements could enhance the OIE system presented in this thesis. Expanding
the training and test datasets to include a greater diversity of sources, such as CaRB
[BAM19] or BenchIE [GYK+22], could improve the system’s generalizability. Exploring
alternative scoring approaches may provide a more balanced assessment of our system’s
performance. A broader comparison with other OIE models would offer deeper insights
into its strengths and weaknesses. Moreover, architectural adjustments of graphbrain
functionalities could reduce data loss during training and improve the accuracy of
extracted patterns. If the graphbrain issue with the special builder atom +/B is
resolved, patterns containing this atom could be used for extracting more diverse triplets.
Finally, integrating coreference resolution could further enhance the quality of the
extracted information.
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CHAPTER 7
Conclusion

To address RQ1, we explored several strategies to find accurate patterns for OIE. We
tested diverse pattern structures, including both basic and expanded hyperedges, to
determine the effect of more sophisticated patterns on extraction quality. We also
experimented with limiting the number of patterns and extractions per hyperedge to
minimize noise and balance precision and recall. Furthermore, we evaluated the impact
of post-processing extracted triplets by comparing scenarios with and without combining
similar extractions. Initially, we adopted an unsupervised learning strategy but eventually
switched to a supervised learning approach, which improved efficiency and eliminated
manual effort. Ultimately, the combination of structural variation, parameter tuning,
and supervised learning allowed us to develop a flexible and adaptable OIE system.

To answer RQ2, we compared the performance of our system against existing rule-based
OIE solutions, specifically the original SH rules and ClausIE. Our system consistently
outperformed both baselines on the LSOIE datasets. This may be partly due to a bias
from our training data or an influence from the evaluation setup of the comparison
systems. For the WiRe57 dataset, our system performed worse than these baselines.
However, it achieved better results than other state-of-the-art methods and maintained a
balanced trade-off between precision and recall, highlighting the competitiveness of our
approach.

Regarding RQ3, the generalizability of our learned patterns across datasets and domains
appears promising. The stable performance for both scientific and Wikipedia-based
datasets indicates that the patterns capture meaningful information, with slightly better
results in the scientific domain. However, there remains significant potential for further
testing on more diverse datasets, particularly those created by different annotators, to
provide a more comprehensive assessment of the robustness of the symbolic patterns.

The main contribution of this thesis is the development of a fully transparent, rule-based
OIE system that addresses key limitations of neural approaches. Unlike black box models,
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7. Conclusion

which often lack interpretability and reliability, our system provides clear insight into
how extractions are generated. The symbolic patterns derived from supervised rule
learning enable consistent and balanced performance across diverse datasets and domains.
Our system allows users to adapt it to different extraction tasks while maintaining full
transparency and efficiency. This work demonstrates that effective and competitive OIE
solutions can be achieved without relying on complex neural architectures, emphasizing
the value of symbolic approaches in NLP.
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Overview of Generative AI Tools
Used

As declared in the statement of originality, the use of generative AI tools for this thesis
was limited to an auxiliary role, with my creative influence predominating. In particular,
I have used ChatGPT, specifically GPT-4-turbo, as linguistic aid for my written work
to rephrase my self-composed sentences in a more formal way which improves flow and
clarity. Additionally, ChatGPT was used as a search engine, for instance, to find relevant
literature.
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Appendix

This appendix presents the results for the LSOIE-wiki/dev dataset, which are not
discussed in Chapter 5. Table 1 summarizes the outcomes of all experiments conducted
with different settings for this dataset. A corresponding visualization is shown in Figure 1.

#Patterns #Max. Extr. Setting #Extr. #Matches P R F1

1 1 – 953 424 .372 .093 .149
5 3 – 2,085 926 .354 .230 .279
7 2 exp 2,589 941 .299 .232 .261
10 2 – 2,300 1,029 .357 .261 .302
10 2 exp 2,768 1,018 .302 .256 .278
10 3 – 2,301 1,029 .356 .262 .302
10 3 all 2,846 1,018 .295 .257 .275
10 3 exp 2,846 1,018 .295 .257 .275
15 1 – 2,336 1,055 .362 .255 .299
15 2 – 2,345 1,056 .358 .269 .307
15 3 – 2,346 1,056 .358 .270 .308
15 3 all 2,928 1,071 .299 .273 .285
15 3 bi 2,346 1,056 .364 .291 .323
15 3 exp 2,926 1,044 .294 .264 .278
15 3 nc 5,623 1,270 .186 .316 .234
15 4 – 2,346 1,056 .358 .270 .308
15 5 – 2,346 1,056 .358 .270 .308
20 1 – 2,336 1,055 .362 .255 .299
20 3 all 2,973 1,071 .295 .273 .283
20 3 exp 3,281 1,073 .270 .272 .271
20 5 – 2,346 1,056 .358 .270 .308

Table 1: Performance metrics for different extraction settings on LSOIE-wiki/dev
sorted by number of patterns and maximum number of extractions in ascending order.
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Figure 1: Results on LSOIE-wiki/dev for several key configurations.
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