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Kurzfassung

Selbstlernende End-to-End-Agenten sind eine beliebte Wahl für kontinuierliche Rege-
lungsaufgaben. Anstatt eine Pipeline für Zustandsschätzung und Planung zu entwerfen,
konzentriert sich ein Teilbereich der Reinforcement-Learning-Forschung auf die Entwick-
lung robuster, lernbasierter Regelungen. Moderne Ansätze haben sich bei der Bewältigung
von Regelungs problemen in simulierten Umgebungen und einfachen realen Aufgaben be-
währt. Diese Leistung erfordert jedoch häufig ausgewählte, geräuschfreie Beobachtungen
und kontrollierte Laborbedingungen. Erfolgreiche, autonome Agenten, die in der realen
Welt eingesetzt werden, müssen in der Lage sein, mit Unsicherheiten umzugehen, die
durch partielle Beobachtbarkeit, Sensorrauschen und Verzögerungen entstehen.

Diese Arbeit untersucht einen Ansatz zur Modellierung von Zustandsrepräsentationen
basierend auf aufgezeichneten Trajektorien für Agenten mit Reinforcement Learning, die
in teilweise beobachtbaren Prozessen arbeiten. Liquid-Time-Constant Neural Networks
(LTC) und Closed-form Continuous-time Neural Networks (CfC) verarbeiten die Sequenz
vergangener Beobachtungen und Aktionen, um annähernd markovsche Zustände aus unzu-
verlässigen Eingangsdaten zu kodieren. Die Darstellungen werden in den modellbasierten
TD-MPC2-Rahmen integriert, um kontinuierliche Regelungs probleme mit unvollständiger
Information zu bewältigen. Die Arbeit führt drei verschiedene Weltmodellformulierun-
gen ein, die den ursprünglichen TD-MPC2-Ansatz erweitern: (1) ein deterministisches
Beobachtungs-Vorhersagemodell, (2) ein stochastisches Beobachtungs-Vorhersagemodell
und (3) ein latentes Zustands-Vorhersagemodell

Die vorgeschlagenen Methoden werden anhand ausgewählter Standard-Benchmarks für
kontinuierliche Regelungs simulationen (Cartpole, Acrobot, Walker) evaluiert, die so
angepasst wurden, dass sie Verdeckungen, Sensorrauschen und Zeitverzögerungen indu-
zieren. Die experimentellen Ergebnisse zeigen, dass die Ausstattung von TD-MPC2 mit
History-Encodern, die in der Lage sind, komplexe Dynamiken zu erfassen, die Robustheit
unter Sensorrauschen deutlich verbessert und eine optimale Leistung ohne Zugang zu
Geschwindigkeitsmessungen erreicht. Insbesondere löst einer der vorgeschlagenen Ansät-
ze die schwierige, unteraktuierte Akrobot-Schwenkaufgabe optimal, im Gegensatz zur
TD-MPC2-Basislösung. Darüber hinaus deuten vorläufige Ergebnisse darauf hin, dass die
Methoden das Potenzial haben, Zustände aus unregelmäßigen Beobachtungen zu erfassen,
was ihr Potenzial für den Einsatz in der realen Welt mit stochastischen Zeitverzögerungen
hervorhebt.
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Abstract

End-to-end self-learning agents are a popular and desirable choice for continuous control
settings. Instead of designing a pipeline of state estimation and planning, a subfield of
Reinforcement Learning research focuses on designing robust, learning-based controllers.
State of the art approaches have proven capable of tackling control problems in simulated
environments and simple real-world tasks. However, such performance often requires cu-
rated, noise-free observations and controlled laboratory settings. Successful, autonomous
agents deployed in the real world must be capable of dealing with uncertainty induced
by partial observability, sensor noise and delays.

This work explores an approach to modeling history-based state representations for
reinforcement learning agents operating in partially observable processes. Liquid Time-
Constant Neural Networks (LTC) and Closed-form Continuous-time Neural Networks
(CfC) process the sequence of past observations and actions to encode approximately
Markovian states from unreliable input data. The representations are integrated into
the model-based TD-MPC2 framework to tackle continuous control problems with
incomplete information. The work builds on theoretical foundations on approximate
information states and state abstractions from histories to introduce three different world
model formulations: (1) a deterministic observation-predictive model, (2) a stochastic
observation-predictive model, and (3) a latent state-predictive model, extending the
original TD-MPC2 approach.

The proposed methods are evaluated on selected standard, continuous control simulation
benchmarks (Cartpole, Acrobot, Walker), adapted to induce occlusions, sensor noise, and
time delays. Experimental results show that equipping TD-MPC2 with history encoders
capable of capturing complex dynamics significantly improves robustness under sensor
noise and achieves optimal performance without access to velocity measurements. In
particular, one of the proposed approaches optimally solves the challenging, underactuated
Acrobot swingup task, unlike the baseline TD-MPC2. Furthermore, preliminary results
suggest that the methods show potential in capturing states from irregularly timed
observations, highlighting their potential for real-world deployment with stochastic time
delays.

xi





Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Background 3
2.1 Probability and Statistics Overview . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Information Theory for Random Variables and Their Probability
Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Statistical Distance Metrics Between Probability Distributions 6
2.1.3 Common Probability Distributions . . . . . . . . . . . . . . . . 6

2.2 Machine Learning Overview . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . . 9
2.2.2 Optimization Methods for Neural Networks . . . . . . . . . . . 11
2.2.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Learning Algorithms for Neural Networks . . . . . . . . . . . . 16
2.2.5 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . 17

2.3 Dynamical Systems and Neural Network approximations . . . . . . . . 19
2.3.1 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Neural Ordinary Differential Equations . . . . . . . . . . . . . 19
2.3.3 Liquid Time-Constant Recurrent Neural Networks . . . . . . . 20
2.3.4 Closed-Form Continuous-Time Neural Networks . . . . . . . . 21

2.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Fundamentals of Reinforcement Learning . . . . . . . . . . . . 23

Markov Decision Processes . . . . . . . . . . . . . . . . . . . . 23
Bellman Equation and Dynamic Programming . . . . . . . . . 24
Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . 28
Temporal-Difference Learning . . . . . . . . . . . . . . . . . . . 30
Function Approximation Methods . . . . . . . . . . . . . . . . 34

2.4.2 Model-Based Reinforcement Learning . . . . . . . . . . . . . . 37

xiii



Trajectory Sampling . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.3 Partially Observable Markov Decision Processes . . . . . . . . 42

Delayed Markov Decision Processes . . . . . . . . . . . . . . . . 46
2.4.4 Continuous-Time Reinforcement Learning . . . . . . . . . . . . 47

3 Related Work 49
3.1 State of the Art in Continuous Control Agents . . . . . . . . . . . . . 49
3.2 Related Works on Partially Observable Continuous Control Problems 50

4 Method 53
4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 TD-MPC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 LNN-TD-MPC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Self-Predictive Abstraction Model . . . . . . . . . . . . . . . . 63
4.3.2 Observation-Predictive Abstraction Model . . . . . . . . . . . . 63
4.3.3 Training Procedure and Inference Function . . . . . . . . . . . 66
4.3.4 Theoretical Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.5 Nomenclature and Hyperparameter Choice . . . . . . . . . . . 70

5 Evaluation 73
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Evaluating State Representation . . . . . . . . . . . . . . . . . . . . . 78
5.4 Regression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5 Agent Performance Comparison on All Control Tasks With Proprioceptive

Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6 Comparison of Self-Predictive and Observation-Predictive Models . . . 98
5.7 Performance Comparison on Tasks with Irregularly Sampled Observations 100
5.8 Impact of Planning Horizon Length . . . . . . . . . . . . . . . . . . . . 101

6 Conclusions 103
6.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

List of Figures 113

List of Tables 117

List of Algorithms 119

Bibliography 123



CHAPTER 1
Introduction

Designing controllers for tasks such as object manipulation and locomotion under complex
system dynamics typically demands expert knowledge across various areas, including
system modeling, state estimation, and trajectory optimization. Furthermore, the com-
putational and memory constraints of robotics platforms limit solver runtime, requiring
careful trade-offs between model complexity and optimization horizon length.

Recent state-of-the-art Deep Reinforcement Learning (DRL) approaches offer the potential
for end-to-end control at higher frequencies than traditional feedback controllers like
Model Predictive Control (MPC) can achieve, while avoiding manual feature engineering
[LMA20], [WZW+23]. However, real-time control systems still face challenges such as
unreliable sensor data, compute limitations, delays, and external disturbances. Thus, it
is desirable to design algorithms that:

1. Reconstruct the system state from discrete, noisy perception data,

2. Train agents capable of data-efficient planning under real-world constraints.

This work studies the use of Liquid Neural Networks (LNN) to reconstruct a Markovian
state space from partial observations. Liquid Time-Constant Networks (LTCs) [HLA+21]
model input- and state-dependent adaptive time-constants at the neuron level, resulting
in a coupled ODE system. Their architecture approximates the membrane potential
dynamics of non-spiking neurons, inspired by the neural circuitry of small organisms
such as C. elegans. Their expressivity and adaptability allow stable modeling of complex
non-linear dynamics, a key challenge in the early stages of RL training. Moreover, their
input-adaptive responses may confer robustness at inference, even in unseen conditions. As
continuous-time recurrent networks, they enable agents to solve continuous-time control
tasks with arbitrary timestep spacing, unlike traditional discrete-time RL algorithms,
which struggle with time irregularities [YHL21]. Their closed-form variant, Closed-form
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1. Introduction

Continuous-time Neural Networks (CfC) [HLA+22], offers faster training and inference
while preserving the expressivity of LTCs, whose ODE solver-based forward passes incur
higher runtime costs.

Building on the theory of approximate information states [SSSM22] and abstract state
representations from histories [LWL06, CPP09, NES+], this thesis extends the model-
based RL algorithm TD-MPC2 [HSW], designed for continuous control tasks. TD-MPC2
employs a learned model of the agent and environment for short-horizon planning and long-
term value estimation, but models state transitions with an MLP and does not explicitly
address Partially Observable Markov Decision Processes (POMDP). This work leverages
LNNs to construct Markovian state representations from sequences of noisy observations
and past actions, proposing two abstraction models: an observation-trajectory predictive
model and a latent-trajectory predictive model.

The thesis is structured as follows. Chapter 2 reviews relevant background, including an
overview of Machine Learning (ML), neural networks for dynamical systems modeling
(focusing on LTC and CfC), and reinforcement learning fundamentals from tabular
methods to modern DRL, Model-Based Reinforcement Learning (MBRL), and POMDPs.
Chapter 4 describes the proposed LNN-based extensions to TD-MPC2, detailing the
problem settings, method architectures, and theoretical foundations for value estimation
from encoded states. Chapter 5 defines hypotheses, methodology, and experimental
setups, followed by evaluations of expressivity, robustness, sample efficiency, and overall
performance in partially observable settings. Finally, Chapter 6 summarizes findings,
discusses limitations, and outlines directions for future research.

2



CHAPTER 2
Background

The purpose of this chapter is to cover the theoretical concepts used throughout Chapter 4
and 5. Section 2.1 provides an introduction to relevant probability and information theory
concepts. The following two sections, Section 2.2 and 2.3, cover machine learning basics,
with a focus on continuous-time neural networks for modeling system dynamics such as
LTC and CfC. Section 2.4 on Reinforcement Learning (RL) provides an overarching view
of the theoretical foundation of self-learning agents, followed by specific approaches that
learn an environment model from noisy data. Sections 2.4.1 and 2.4.2 are largely based
on the seminal book on RL [Bar21], which defines much of the foundation of the RL field
of research.

2.1 Probability and Statistics Overview

Real-time control of dynamical systems with learning-based approaches features uncer-
tainty at multiple levels. These sources can be categorized as follows:

1. Observable data uncertainty: Controller inputs are typically derived from sensor
data, which are inherently noisy.

2. Control uncertainty: A learned or identified model of the system is never exact and
thus, it may not perfectly capture the system dynamics, introducing uncertainty in
the control methods.

3. Inherent process stochasticity: Dynamical systems, or sequential processes, can be
inherently stochastic in nature.

3



2. Background

2.1.1 Information Theory for Random Variables and Their Probability
Distribution

When dealing with uncertainty, it is useful to apply formal framework provided by
probability theory in order to quantify randomness in data. A random variable is a
variable whose possible values are determined by a probability distribution. For example,
assume variable x can take values v1, v2. A probability distribution would indicate the
likelihood of x = v1 and the likelihood of x = v2. This is an example of a discrete
random variable, since the value domain over which it is defined is finite. However, a
random variable defined over the set of natural numbers N would also be discrete, since
N is countably infinite. When a random variable is defined over a real-valued domain
Sn ⊆ R⋉, n ≥ 0, it is continuous.

A probability distribution over a discrete variable X with values in {x}1:n := X is defined
using a probability mass function P : X → [0, 1]. The probability mass function maps
each possible value of X to the probability of that value. It can also be denoted as P (X).
The shorthand notation P(X = x) := P (x) can also be used. Probabilities are valued
in the range [0, 1], with P(X = x) = 0 meaning that X can never take the value x, and
P(X = x) = 1 meaning that X is always x. This implies that for any other x′ ̸= x,
P(X = x′) = 0. It is also impossible for P(X = x) = 0 for all x ∈ X . It is thus intuitive
that all probabilities sum to 1: ∑︂

x∈X
P(X = x) = 1 (2.1)

A similar function can be defined for continuous variables. The probability density function
of a probability distribution over a continuous variable X with values in range [a, b] is
defined as P : [a, b] → [0, 1] and satisfies:∫︂ b

a
P(X = x)dx = 1 (2.2)

Probability distributions over multiple variables can also be defined. A set of indepen-
dent random variables {X}1:m is arranged according to a joint probability distribution
P(X1, . . . , Xm) and also satisfies (2.1) or (2.2), depending on the nature of the ran-
dom variables. Joint probability distributions can be expressed as joint probability
distributions over a subset of the variables. The relation is called marginalization. Let
P(X1, . . . , Xm) be a joint probability distribution. The marginal probability distribution
over subset {X2, . . . , Xm} can be expressed in terms of P(X1, . . . , Xm) as:

P(X2, . . . , Xm) =
∑︂
x1

P(x1, X2, . . . , Xm) (2.3)

Values of random variables in the context of probability distributions are also called
states of the random variable, and the evaluation of a random variable X = x is also

4



2.1. Probability and Statistics Overview

called an event. An independence relation between two events ⊥ ∈ {(X, Y )} is defined
as:

X⊥Y ⇔ P(X, Y ) = P(X) · P(Y ) (2.4)

Previously, {X1, . . . , Xm} have been assumed to be pairwise independent. Let X be an
event dependent on another event Y . Conditional probability distributions provide the
likelihood of X given Y and is denoted as P(X|Y ). For two random variables, conditional
probability distributions are related to joint probability distributions by the following
equality:

P(X|Y ) = P(X, Y )
P(Y ) (2.5)

A relation also exists for multiple random variables. The chain rule of probability
distributions is a recursively-applying expression of a joint probability distribution as
conditional probability distributions in the following manner:

P(X1, . . . , Xm) = P(X1|X2, . . . , Xm) · P(X2, . . . , Xm)
= P(X1|X2, . . . , Xm) · P(X2|X3, . . . , Xm) · P(X3, . . . , Xm)
. . .

= P(X1|X2 . . . Xm) · P(X2|X3, . . . , Xm) · · · · · P(Xm)

(2.6)

The labeling order of the variables 1, . . . , m does not matter.

In some cases, it is desirable to infer the probability of a hypothesis Y given some evidence
XP(Y |X), and a prior distribution over the hypothesis P(Y ). Bayes’ theorem can be
applied to infer the posterior distribution, given the evidence probability P(X) and the
likelihood of observing the evidence if the hypothesis holds P(X|Y ):

P(Y |X) = P(X|Y )P(Y )
P(X) (2.7)

An important characteristic of random variables for quantifying uncertainty is their
entropy. From the point of view of information theory, random variables carry information
according to their probability distribution. A deterministic variable (where ∃!x ∈ X :
X = x) carries little information, whereas a truly random variable is more informative. In
other words, the former has low entropy, while the latter has high entropy. The entropy
of a discrete random variable is defined as:

H(X) = −
∑︂
x∈X

P(x) · logP(x) (2.8)

where − logP(x) is also called self-information function of an event. The entropy is
similarly defined for continuous random variables:

H(X) = −
∫︂ b

a
P(x) · logP(x)dx (2.9)

5



2. Background

The expected value of a random variable is the mean of possible values, weighed by their
likelihood. It is denoted as E[X] and defined as:

E[X] =
∑︂
x∈X

x · P(X = x) (2.10)

For continuous variables, it is defined as:

E[X] =
∫︂ b

a
x · P(X = x)dx (2.11)

More generally, the expectation can also be applied for a function of the random variable
f(X). It is then defined as:

E[f(X)] =
∑︂
x∈X

f(x) · P(X = x) (2.12)

The entropy can then be expressed as the expected information value over the probability
distribution of the variable:

H(X) = −
∑︂
x∈X

P(x) · logP(x) = E[logP(X)] (2.13)

2.1.2 Statistical Distance Metrics Between Probability Distributions
Statistical distance metrics between probability distributions over the same random
variable can be defined using the expectation operator. Given two distributions P and Q
over X, a common distance metric is the Kullback-Leibler divergence (KL), defined as:

DKL(P||Q) =
∑︂
x∈X

P(x) log P(x)
Q(x) = E

[︃
log P(x)

Q(x)

]︃
(2.14)

KL can be used as an upper bound for the total variational distance (or Wasserstein
distance) between two probability distributions [CK11]. The Wasserstein distance is
denoted by dT V (P,Q) and the upper bound in terms of KL is:

dT V (P,Q) ≤
√︂

2DKL(P||Q) (2.15)

A similar distance metric is the cross-entropy between P and Q, defined as:

DCE =
∑︂
x∈X

P(x) logQ(x) = Ex∼P [logQ(x)] (2.16)

2.1.3 Common Probability Distributions
Discrete random variables can be modeled either as a multinomial distribution, or as
a categorical distribution, which are parametrized by a probability vector p ∈ [0, 1]n,
where n is the number of states the variable can take [BGC+17]. The difference lies in

6



2.1. Probability and Statistics Overview

the number of sampled values of the random variable that is modeled. The categorical
distribution assumes one sample X = k, while the multinomial distribution requires n
samples X1 = x1, X2 = x2, . . . , Xn = xn. Let P be the probability mass function of the
categorical, and Q be the probability mass function of the multinomial. They are defined
as:

P(X = k|p) = pk (2.17)

Q(X1 = x1, . . . , Xn = xn|p) = n!
x1!x2! . . . xn!p

x1
1 . . . pxn

n (2.18)

Their expected values are:

Ex∼P[x] =
n∑︂

i=1
ipi (2.19)

E{xk∼Q}[xk] = npk, k ∈ [1, n] (2.20)

Both distributions generalize distributions of discrete random variables with two possible
states to n possible states (finite or countably infinite). The multinomial distribution
generalizes the binomial distribution, while the categorical generalizes the Bernoulli
distribution.

Continuous random variables are typically represented by Gaussian distributions, param-
etrized by a mean µ and a standard deviation σ. Its probability density function is
denoted as N and is defined as:

N (X = x|µ, σ2) =
√︃

1
2πσ2 e− 1

2σ2 (x−µ)2
(2.21)

The square of the standard deviation σ2 is also called the variance of the distribution.
The expected value of a random variable sampled from a Gaussian distribution is the
mean:

Ex∼N [x] = µ (2.22)

A side-by-side comparison of categorical and Gaussian distributions is shown in Figure 2.1.
Binomial distributions are closely related to Gaussian distributions. For n samples of a
discrete random variable, where n tends towards ∞, the shape of the distribution is a
discretized Gaussian distribution, as shown in Figure 2.2.

Normal distributions can be extended to vectors of random variables X = [X]⊤n , where
the mean is expressed as the expected value of X, and the covariance matrix is computed
as:

Σi,j = E [(Xi − µi)(Xj − µj)] , i, j ∈ [1, N ] (2.23)

Any arbitrary probability distribution over a random vector X = [X]⊤n can be related to an
associated multivariate Gaussian distribution by the central limit theorem [CB24], which
states the following: given the expected value µ of the random vector X1, X2, . . . , Xn

with mean x̄n and covariance Σ, (X̄n − u)
√

n is a multivariate normal distribution with
mean 0 and covariance Σ.

7
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Figure 2.1: Comparison of a Gaussian (continuous) and a Categorical (discrete) distribu-
tion. The Gaussian highlights mean (µ) and standard deviation (σ), while the categorical
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Figure 2.2: Samples from a Binomial Distribution B(n = 20, p = 0.5) approximated by a
Gaussian N (µ = 10, σ2 = 5).

2.2 Machine Learning Overview
Over the decades, the research field of Artificial Intelligence has advanced significantly
at an accelerated pace. Starting from symbolic artificial intelligence, methods founded
in high-order logic-based reasoning, the focus shifted towards Machine Learning and
statistical methods that approximate arbitrary transfer functions that generalize to
previously unseen data. Nowadays, the subfield of Deep Learning has and continues to
give rise to algorithms and architectures that perform knowledge representation at high
orders of abstraction and execute tasks without explicit instructions. The backbone of
the field is represented by models inspired by neuroscience and algorithms that aim to
replicate animal learning. These models are aptly titled artificial neural networks due to
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2.2. Machine Learning Overview

their similarity to biological neural networks.

In general, artificial neural networks are formed by stacked layers of interconnected
neurons with defined input and output layers and an arbitrary number of intermediate
layers. The topology of the network varies, and the following subsection covers two
important ones: feedforward and recurrent networks. Figure 2.3 shows an example of an
ANN: a fully-connected feedforward neural network, which is described in the following
section.

Figure 2.3: The architecture of a feedforward neural network.

2.2.1 Feedforward Neural Networks

The topology of an FNN is a weighted directed acyclical graph, with nodes representing
artificial neurons (also called cells) and directed edges representing connections and the
direction of the flow of information through the network (input → output). Each cell
processes the signals received from the inward edges and outputs a signal along the
outward edges. From a biological point of view, the cell represents the nucleus of a
biological neuron, the dendrites represent the inward edges, and axon represents the
outward edges. Biological neurons form synapses between dendrites and axons, the
strength of which is abstracted by weights in ANNs. A biological neuron fires once the
incoming signal exceeds its synaptic threshold, a mechanism abstracted by activation
functions. An abstract view of the biological neuron model is included in Figure 2.4.

Assume an artificial neuron with n inward connections weighted by the column vector
w ∈ Rn. The neuron receives n inputs represented by the column vector x ∈ Rn. The
artificial neuron represents the following transfer function:

ŷ = σ(w⊤ · x + b) (2.24)

9



2. Background

Figure 2.4: The biological neuron model, from [ZHS09].

σ represents the aforementioned activation function, which plays the role of the synaptic
threshold. It can transform the neuron into a non-linear transfer function. In its absence,
the neuron is simply a linear mapping shifted by an offset b called the bias. The choice of
activation function depends on the desired codomain of the cell function. For a boolean
output y ∈ ⊤, ⊥, a binary step function can be chosen:

σ(x) =
{︄

0 if x < 0
1 if x ≥ 0

(2.25)

Generally, activation functions are chosen to be continuously differentiable in order to
enable gradient-based optimization methods for learning the weights and biases (the
network parameters). This will be clearly illustrated in Subsection 2.2.2, where different
continuously differentiable activation functions and their properties are also covered.

Multiple artificial neurons can be stacked "vertically" to form layers of neurons, which
can further be stacked "horizontally" to form neural networks. The number of layers in a
neural network, excluding the input layer, indicates the depth of the network. An FNN
always contains an input layer (cells that receive network inputs) and an output layer
(which emits the outputs of the network). When at least 1 hidden layer (intermediate
layers) are present, when neurons in neighboring layers are fully connected and when
non-linear activation functions are used in at least one of the hidden layers, the network
is an MLP. Rosenblatt defined the MLP in [Ros58] for the purpose of approximating
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Figure 2.5: Model of an artificial neuron with 3 weights.

any arbitrary function. Previously, single-layer FNN had proven to be incapable of
approximating the exclusive-or logic function p ⊕ u = (p ∨ u) ∧ ¬(p ∨ u) in [MP69]. MLPs
are proven universal function approximators given enough hidden neurons, as proven by
the universal function approximation theorem, which states that for any family of neural
networks and any continuous function with domain and codomain as Euclidean spaces
f : Rn → Rm, there exists an instance of neural network of the family define over the
function space such that, for any kernel K ⊆ Rn, we have:

sup
x∈K

||f(x) − φ(x)|| < ϵ (2.26)

The proof for MLPs as universal approximators is sketched in [Cyb89]. Increasing the
depth to a neural network allows for higher orders of abstractions, and networks that use
more than three hidden layers are called deep neural networks.

2.2.2 Optimization Methods for Neural Networks
Assume a given function f , a neural network φ, and training and test datasets of
the form D = {(x, y)}1:N of input-output mappings according to f . The goal of an
optimization process for learning φ is to find the right set of network parameters θ such that
some objective function L, applied over either of the datasets, is maximized/minimized.
Gradient-based optimization methods make use of derivatives to guide the optimization
process toward a minimum/maximum.

Let f : X → Y be a continuous differentiable function. The derivative of the function
f ′(x) = dx

dt gives the slope of the function at the point x. Intuitively, this indicates the
magnitude of influence a change of input has on the output. A straightforward gradient-
based optimization method which uses the slope, or the gradient, of the differentiable
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function is gradient descent. The method works by small-step updates of the parameters
in the opposite direction of the gradient. For a step size α, the update rule is:

θ ← θ − α∇f(θ) (2.27)

−2 −1 0 1 2

−2

−1

0

1

2

For x < 0, we have f ′(x) < 0,
so we can decrease f
by moving rightward.

For x > 0, we have f ′(x) > 0,
so we can decrease f
by moving leftward.

Global minimum at x = 0.
Since f ′(x) = 0, gradient

descent halts here.

x

Gradient descent

f(x) = 1
2 x2

f ′(x) = x

Figure 2.6: An illustration of a differentiable function f , its derivative f ′, its global
minimum and case-by-case updates. Adapted from [BGC+17].

A useful example is included in Figure 2.6, adapted from [BGC+17]. Here, f is a strongly
convex function with a unique local minimum at the point (0, 0), and with a linear
derivative. In the region where the gradient is negative, the optimization process "shifts"
the parameters rightwards. Where the gradient is positive, the parameters are updated
leftwards.

Stronger assertions can be made regarding the nature of the function. ∇f is Lipschitz-
continuous if it satisfies the following relation:

||∇f(x) − ∇f(y)||2 ≤ L||x − y||2, ∀x, y ∈ X (2.28)

L is the associated Lipschitz constant, and f is said to be L-smooth.

For convex, L-smooth functions, and a step-size satisfying 0 < α ≤ 1
L , it can be shown

that gradient descent converges to the global minimum. A proof is included in Section
3.1 from [GG].

A machine learning problem learns a neural network φ that estimates an unknown joint
probability distribution f , given a dataset of input-output samples D = {(x, y)}1:N from
the underlying joint probability x, y, and loss function L(φ(x; θ), y). The problem is
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turned into a gradient-based optimization problem by minimizing the expected loss over
the dataset [BGC+17]:

E(x,y)∼f(x,y) [L(φ(x; θ), y)] = 1
N

N∑︂
i=1

L(φ(xi; θ), yi) (2.29)

However, directly computing the gradient of (2.29) is intractable for D with high car-
dinality, as it requires evaluating all inputs in the dataset with the learned model. In
practice, the gradient is statistically estimated, and there exist a variety of algorithms
for deriving such statistics.

Stochastic gradient descent is applied on batches of input-output pairs sampled from D
instead, following the gradient of the objective function L with respect to the network
parameters. In that case, the gradient is estimated at each gradient descent iteration.
The gradient of the objective function over inputs, wrt. the parameters is denoted as
∇θL(φ(x; θ), y). When there are more than one parameters θ ∈ Rd, d > 1, the gradient
∇θL(x; θ) is the column vector of partial derivatives:

∇θL(x; θ) =
[︃

∂L(x)
∂θ1

,
∂L(x)

∂θ2
, . . . ,

∂L(x)
∂θd

]︃⊤
(2.30)

Let {(x, y)1:n} ∼ D represent a sampled batch, g denote the true gradient and ĝ its
estimate. The update rules for the gradient estimate ĝ and the network parameters θ are
the following:

ĝ ←
∑︂ ∇θL(φ(x; θ), y)

n
(2.31)

θ ← θ − αĝ (2.32)

Assuming i.i.d. samples, the gradient estimate is an unbiased estimate of the true gradient:
E{(x,y)1:n}1:∞∼D[ĝ] = g [BGC+17]. Convergence proofs of SGD for convex, L-smooth
functions (or derivations of bounds for non-convex but L-smooth functions) can be found
in Section 5 of [GG].

An example of an alternative to the SGD algorithm is the ADAM optimizer introduced
in [KB17]. ADAM uses estimates of the first moment (defined as the exponentially
decaying average of previous gradients) and the second moment (the squares of the
gradients) to dynamically compute individual learning rates for each parameter. The
algorithm also includes bias correction to account for the initialization of these moment
estimates. The update rules for the estimates, as well as a full description of the algorithm,
can be found in Section 2 from [KB17].

All gradient-based optimization methods assume a continuously differentiable and L-
smooth function. As a consequence, all functions in a neural network (the cell transfer
function, the activation functions) need to satisfy this property. While it is possible to
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apply gradient descent with differentiable functions that are non-differentiable at certain
points (ReLU is non-differentiable in 0, as will be shown), continuous differentiability is
desirable. The binary-step activation function (2.25), however, is outright excluded since
it is non-differentiable at 0 and the derivative is always 0 otherwise. Gradient descent
would not be able to perform any updates. For binary classification, an alternative
activation function would be the logistic function, or the sigmoid:

sigmoid(x) = 1
1 + e−x

(2.33)

The logistic function is continuously differentiable and L-smooth over the range (0, 1).
As a result, its output can parametrize a Bernoulli distribution (2.17), which can be used
to sample boolean variables.

Similarly, for predicting a discrete probability vector [p]1:k (the parameters of a categorical
or a multinomial distribution (2.17)), the softmax activation function can be used.
Assuming vector X of size n is the result of the output layer before activation, each
vector element xi is associated with a probability pi by the following mapping:

softmax(xi) = exi∑︁n
j=1 exj

(2.34)

It can easily be seen that the output probabilities sum up to 1 and are non-negative,
making softmax a valid probability mass function:

n∑︂
i=1

softmax(xi) =
n∑︂

i=1

exi∑︁n
j=1 exj

(2.35)

= 1∑︁n
j=1 exj

·
n∑︂

i=1
exi (2.36)

= 1 (2.37)

The parameters of a Gaussian distribution µ, σ can also be estimated by a neural network.
Assume [x]n is the output from the layer preceding the output layer. x can be sliced in
two vectors x[µ] := [x]1:k−1, x[σ] := [x]k:n, which can be used to parametrize the Gaussian
distribution. The standard deviation is always a positive real value. Thus, an appropriate
activation function is softplus, defined as:

softplus(x[σ]) = log 1 + ex[σ] (2.38)

Typical activation functions for hidden layers are Rectified Linear Unit (ReLU), Leaky
Rectified Linear Unit (LeakyReLU) and the hyperbolic tangent (tanh), with the following
definitions:

ReLU(x) = max(0, x) (2.39)
LeakyReLU(x) = max(0, x) + α min(0, x) (2.40)

tanh(x) = 1
1 + e−x

(2.41)
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The hyperbolic tangent (2.41) and sigmoid (2.33) activation functions are saturating
functions. A function is saturating if limx→∞ |∇(f(x)| = 0. As will be shown in
Section 2.2.3, this can have a negative impact on the gradient computation.
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Figure 2.7: Comparison of Activation Functions: Sigmoid (2.33), Softplus (2.38), Leaky
ReLU (2.40), and Tanh (2.41).

2.2.3 Backpropagation
The gradient from (2.30) is computed by backpropagating [RHW86] the evaluated loss
function at the input x through the composition of functions in the network that relate θ
to L(x; θ). The mechanism used in backpropagation is the chain rule of calculus. Assume
an MLP with one hidden layer and an activation function σ, of the following form:

Input: x ∈ Rd

Hidden linear layer: f = Wx + b

Activation function: ŷ = σ(f(x))

Starting from the partial derivative of the loss given the predicted output ∂L
∂ŷ , the partial

derivative for each model parameter and the input can be computed by recursively
applying the chain rule:

[︂
∂L
∂W , ∂L

∂b , ∂L
∂x

]︂⊤
.
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∂L
∂W

= ∂L
∂ŷ

· ∂ŷ

∂f
· ∂f

∂W
(2.42)

∂L
∂b

= ∂L
∂ŷ

· ∂ŷ

∂f
· ∂f

∂b
(2.43)

∂L
∂x

= ∂L
∂ŷ

· ∂ŷ

∂f
· ∂f

∂x
(2.44)

2.2.4 Learning Algorithms for Neural Networks
Typically, in machine learning, a NN is optimized to generalize a target function for
any inputs from the function’s domain. In supervised learning, there exists a dataset of
ground-truth input-output mappings, from which samples are used to compute a cost J ,
which is then used to apply some gradient-descent method to adjust the function estimate
parameters. The choise of cost function J is imporant for two reasons. Firstly, the
function must be continuouly differentiable w.r.t. the function parameters, as mentioned
before. Secondly, using an exact cost function perfectly fits the function estimate to the
target function for the given training dataset, in the limit, after uniformly sampling the
entire dataset. This phenomenon is known as overfitting, as the learned function would
not fit the target function for inputs that are not in the training dataset. For these
reasons, machine learning algorithms use surrogate loss functions that are continuously
differentiable and guide the learning process towards the underlying goal.

The choice of surrogate loss depends on the task. Let X be the domain of the target
function f and Y be the codomain. fθ represents the NN function estimate. The general
machine learning goal is to estimate a probability distribution over the outputs, condi-
tioned on the inputs and the NN parameters: P(Y |X, θ), as described in Section 2.2.1.
Minimizing the expectation given in (2.29) is called empirical risk minimization, which
applies to both probabilistic and deterministic function estimators. In the case of proba-
bility distribution estimation, maximum likelihood estimation optimizes θ to maximize
the likelihood of the sampled ground-truth data, under the learned distribution.

One possibility is to assume that the target probability distribution is a Gaussian
distribution, to fix its variance σ and to learn the mean of the distribution. In this case,
a useful surrogate loss function is the MSE over the i.i.d. observed ground-truth outputs
y and the outputs of the NN given the ground-truth inputs:

L(φ(x; θ), y) = ||fθ(x) − y||2 (2.45)

The MSE is then averaged over the batch dimension.

A more general objective for any probability distribution is the KL divergence between
the estimated distribution and the actual distribution (2.14). In practice, an appropriate
surrogate loss for this objective Negative Log Likelihood (NLL) of the ground-truth
outputs, given the learned distribution [BGC+17]. Let Pθ denote the distribution
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parameterized by the outputs of fθ. The NLL loss function is the following:

L(φ(x; θ), y) = − logPθ(y|x) (2.46)

2.2.5 Recurrent Neural Networks
Neural networks can be structured to share certain parameters across multiple neurons
or layers. In convolutional neural networks for example, which are used for image inputs,
the inputs as well as the layers are matrices. The weight associated with a unit is used
multiple times during the convolution operation over the matrix input at each layer
[LBBH98].

Another example are Recurrent Neural Network (RNN)s, which are used to process
sequences, where the inputs have an extra time dimension. FNN are ill-posed to handle
sequence inputs due to two important reasons:

1. Handling the time dimension would require adding separate parameters for each
time index (timestep), in each layer of the network. However, the learned parameters
would not be invariant to the time index of a given datapoint in an arbitrary input
sequence. Furthermore, the time dimension would have to be fixed to the same
value for both the network parameters and all inputs [BGC+17].

2. The space complexity of a FNN would increase linearly with the time dimension of
the input sequences.

An important concept in RNNs is the explicit build-up of memory as a statistical summary
of inputs from past timesteps. A good analogy are dynamical systems driven by external
inputs, of the form:

st = f(xt, st−1, t) (2.47)

The state of the system at timestep t st depends on the previous state st−1 and the
external input applied to the system xt. Evidently, the equation of a dynamical systems
is a recurrent expression that is equivalent to the following, unfolded expression, given a
mapping function g:

st = s0 +
t∑︂

k=0
g(xk) (2.48)

The function g maps the sequence of past inputs to the current state. It can be said that
g builds a statistical summary of the past inputs. In other words, it acts as a memory
buildup.

RNNs architectures, in general, implement the same principle. The simplest architecture
for an RNN is the one introduced in [Elm90].

For RNN, the general equation for a neuron in FNNs (2.24) is changed as follows: a
state input is introduced to the neuron (analogous to the past internal state st−1 of a
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dynamical system), and the weight and bias vectors are shared across the time dimension:

st = σ1(w⊤
1 st−1 + w⊤

2 x + b) (2.49)
yt̂ = σ2(st) (2.50)

The lack of time indices for the parameter vectors w1, w2, b indicate that they are shared
across timesteps. σ1 is typically a bounded non-linear activation function such as the
hyperbolic tangent function. Figure 2.8 illustrates an RNN in two ways: the recurrent
view and the unfolded, spatial view, where each timestep is explicitly drawn.

Figure 2.8: Recurrent and unfolded view of an RNN.

Any training algorithm for FNNs can be applied to train RNNs as well. Computing
the gradient of a loss function w.r.t the network parameters is done by applying BPTT,
which is essentially the same recursive application of the chain rule as before, but through
the unfolded view of the network. However, BPTT introduces a few drawbacks. The
composition of partial derivatives of non-linear functions at each unfolding step can lead
to either collapsed values, or very inflated values for the final gradient. This is known as
the vanishing/exploding gradient phenomenon and it introduces challenges in training
standard RNNs on long sequences [PMB13]. Another problem is the sequential process of
computing the gradient, which cannot be parallelized. This leads to training algorithms
not scaling well with increasing sequence lengths.

Specific RNNs have been designed to deal with the exploding/vanishing gradient problem.
LSTM recurrent neural networks, for example, are a type of gated RNN, where the
information flow is controlled through learned gating mechanisms [HS97]. The inputs
that pass the input gate are accumulated into the internal hidden state of the LSTM
cell, which has a self-loop controlled by a forget gate. The output is also gated by
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an output gate. The interplay between the learned gates allow the cell to selectively
accumulate inputs, to learn how to forget past stale information and to control the
outgoing information flow.

2.3 Dynamical Systems and Neural Network
approximations

This section focuses on neural network architectures used to model dynamical systems.

2.3.1 Dynamical Systems

The evolution of dynamical systems over time can be described by a system of ordinary
differential equations that define state updates. While autonomous systems depend only
on the state of the system itself, external inputs are also typically modeled. An ODE
expresses the n-order derivative of the system in terms of its state derivatives and the
external input:

s(n) = f(x, s, s(1), . . . , s(n−1)) (2.51)

2.3.2 Neural Ordinary Differential Equations

Neural ODEs belong to a different class of NNs: continuous-time neural networks.
Whereas the RNNs have been introduced as estimators for discrete-time sequential
functions, neural ODEs directly estimate the derivative of a dynamical system in time
domain [CRBD19]:

ds(t)
dt

= f(s(t), x(t), t; θ) (2.52)

(2.53)

Whereas inference (meaning, applying the learned function over some inputs) in a FNN
is done by forwarding the input through sequentially applying the linear operations
and non-linear activation functions in each layer, evaluating a neural ODE is done by
integrating the function over time, starting from an initial state:

s(t) = s(t0 + Δt) = s(t0) +
∫︂ t

t0
f(s(t), x(t), t)dt (2.54)

The integral in (2.54) is approximated using numerical solvers such as the forward Euler
method or Runge-Kutta [Run95] [Kut01]. The latter generalizes the former. For example,
4-th order Runge-Kutta (RK4) applies the following approximation steps, starting from
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the initial state st0 :

k1 = f(st0 , x(t0), t0)

k2 = f

(︃
st0 + Δt

2 k1, x(t0 + Δt

2 ), t0 + Δt

2

)︃
k3 = f

(︃
st0 + Δt

2 k2, x(t0 + Δt

2 ), t0 + Δt

2

)︃
k4 = f (st0 + Δt · k3, x(t0 + Δt), t0 + Δt)

st = s0 + Δt

6 (k1 + 2k2 + 2k3 + k4)

(2.55)

The explicit Euler discretization method is identical to first-order Runge-Kutta:

st = st0 + Δt · f(st0 , t0) (2.56)

2.3.3 Liquid Time-Constant Recurrent Neural Networks
Other approaches maintain the system dynamics estimation of neural ODEs of Sec-
tion 2.3.2, while changing the formulation of the artificial neuron, as well as the inter-
neuron synapses. Liquid Time-Constant Neural Network (LTC)s [HLA+21] represent the
cell transfer function as an ODE that explicitly incorporates the synaptic transmission
from neuroscience [KS98] into the neuron model, together with a varying time-constant.
The synaptic currents are represented as sigmoidal functions dependent on the presy-
naptic nodes’s states σ(sj) [LHA+]. The time-constant of the system is also modeled
as a nonlinear function dependent on the presynaptic node modulated by a sigmoidal
σ, and a learnable parameter representing the base time-constant of the system τ . In
this manner, LTCs learn an adaptable system response to inputs that is also intrinsically
self-coupled. The membrane capacitance of the neuron Cmi , its resting potential sleak,i

and the synapse polarity Eji are also modeled as learnable parameters of the network.

The transfer function for an LTC cell si with presynaptic neurons Iin is the following:
[LHA+]:

dsi

dt
= −

 1
τi

+
∑︂

sj∈Iin

wij

Cmi

σi(sj)

 si +

sleak,i

τi
+

∑︂
sj∈Iin

wij

Cmi

σi(sj)Eij

 (2.57)

The liquid time-constant of the neuron can be expressed as [Has20]:

τsystem = 1
1
τi

+ ∑︁
sj∈Iin

wijσi(sj)
Cmi

(2.58)

where τi = Cmi
gli

is the base time-constant paramtererized by the neuron’s leakage
conductance gli .

LTC neurons can be wired together to form neural networks as systems of nonlinear
ODEs with learnable time-constants. Similarly to neural ODEs (2.54), inference is done
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by approximating the system of ODEs using numerical solvers over discrete timesteps.
In the case of LTCs, the hybrid Euler solver is introduced [Has20] as a fast solver. The
choice is motivated by the following reasons [LHA+]:

1. Real-time systems impose runtime constraints, so numerical solvers of high time
complexity such as RK4 are avoided.

2. The system of ODEs of the form (2.57) is stiff, requiring fine-grained solver step
sizes for stability, which further increases the inference time.

3. The exploding/vanishing gradient problem that occurs when computing partial
derivatives via BPTT for RNNs must also be avoided.

The hybrid Euler solver combines the explicit Euler discretization (2.56) with the implicit
Euler method:

st = st0 + Δt · f(st, st+1) (2.59)

A forward step using the hybrid Euler solver for LTC is expressed as the following
[LHA+]:

si(t + Δt) :=
si(t)Cm/Δt + glisleak

∑︁
sj∈Iin wijσ(sj(t))Eij

Cm/Δt + gli + ∑︁
sj∈Iin wijσ(sj(t)) , (2.60)

The hybrid solver (2.60) is applied six times per LTC inference step.

2.3.4 Closed-Form Continuous-Time Neural Networks
Approximating the state of LTCs using numerical ODE solvers impose a high time
complexity. An alternative, closed-form approximation called closed-form continuous-
time neural networks (CfC) is proposed in [HLA+22]. Firstly, the synaptic currents in
LTC cells are approximated by a non-linear function of the internal state and a neural
ODE, leading to the following LTC formulation for a network [HLA+22]:

ds(t)
dt

= −
(︃ 1

τ
+ f(s(t), x(t), t; θ)

)︃
s(t) + f(s(t), x(t), t; θ)A (2.61)

where x(t) represents the network input. Theorem 1 from [HLA+22] defines an approxi-
mation for the closed-form of an LTC cell (2.57):

s(t) = (s0 − A)e−(wτ +f(x(t);θ))tf(−x(t); θ) + A (2.62)

where x(t) represents the neuron input at timestep t.

Starting from the closed-form approximation for a scalar neuron, [HLA+22] formulates a
neural network architecture where the hidden state evolution of the network at timestep
t is governed by the following equation:

s(t) = B ⊙ e−(wτ +f(s(t),x(t);θ)t) ⊙ f(−s(t), −x(t); θ) + A (2.63)
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where B, A, wτ , θ are the learnable parameters of the network.

Since the formulation above, called Cf-S in [HLA+22], is prone to exhibit vanishing
gradient issues when training via BPTT [HLA+22], the exponential decay term is
replaced by a sigmoid function of the form σ(−f(s(t), x(t), t; θf )), which has a slower
decay over time and acts as a differentiable gating mechanism for the ODE. Furthermore,
to enhance the flexibility of the model, the parameter vectors B and A are replaced by
neural networks with separate learnable parameters g(s(t), x(t); θg) and h(s(t), x(t); θh).
Finally, h is additionally multiplied with the reverse of the sigmoid 1 − σ(·) to achieve a
time-dependent gating mechanism that smoothly interpolates between f and g. Overall,
the resulting CfC model is the following [HLA+22]:

s(t) = σ(−f(s(t), x(t); θf )t ⊙ g(s(t), x(t); θg)
+ [1 − σ (f (s(t), x(t); θf ) t)] ⊙ h(s(t), x(t); θh)

(2.64)

f , g and h are preceded by a backbone neural network that acts as shared feature extractor.
Figure 2.9 illustrates the architecture of CfC:

Figure 2.9: CfC architecture, taken from [HLA+22]. I represents the input matrix as
batches of sequences of data, which is denoted as x in this section.

2.4 Reinforcement Learning
Reinforcement Learning (RL) encompasses a class of learning algorithms for solving a
given problem, expressed as a sequential decision-making task with a defined goal. RL
algorithms iteratively learns an agent that maps situations to decisions at each step,
such that the defined goal is achieved. Unlike in supervised learning (in Section 2.2.4),
ground-truth situation → decision pairs are not provided. Rather, learning is driven
purely from maximizing a reward signal that reflects the objective of the task.

The study of RL is rooted in two distinct research fields, namely classical control theory
and neuroscience. The former is concerned with designing optimal control policies for a
dynamical system/plant in order to drive an actuating signal towards a reference signal,
given a feedback signal. Regarding the latter, the theory is inspired from the study of
animal behaviour, which is reinforced by rewards and punishments received.
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In RL, an agent interacts with an environment by sampling actions from a learned policy,
given the observed state of the environment/agent. The agent refines its policy based on
the rewards received from the environment. With regards to control theory, the agent is
analogous to the controller/plant and observed state to the feedback signal. While there
is no direct analogy to the error between the reference and the actuating signals from
control theory, the agent learns to choose optimal actions from the rewards received from
the environment, in order to achieve the underlying objective of the task. The latter,
which is inaccessible, is analogous to the reference signal, while the actions of the agent
over time can be seen as the actuating signal. Meanwhile, the reward-driven learning
process in RL is directly inspired from the trial-and-error learning process observed
in neuroscience. Behavioral patterns have been observed to be reinforced by external
positive/negative stimuli. Over time, animals are more likely to choose actions that have
lead to positive stimuli. The positive stimuli is directly analogous to rewards in RL,
while the reinforcement of behavioral patterns is analogous to the learning process of the
agent’s policy.

2.4.1 Fundamentals of Reinforcement Learning
Markov Decision Processes

RL problems are formulated as Markov Decision Process (MDP)s, which are extensions
of Markov chains. A Markov chain is a stochastic process where the next event is
independent of the history of events, given the current event. In other words, future
outcomes of can predicted based solely on the current evidence. This is known as the
Markov property and it represents the basic theoretical mechanism for RL approaches.
The process is typically defined as having a state S as a random variable over time. The
Markov property is expressed in (2.65):

P(St+1|St, St−1, . . . , S1) = P(St+1|St) (2.65)

Markov chains are fully-observable Markov models, in the sense that the stochastic process
is accessible. In Hidden Markov Model (HMM)s, the observable states O are conditioned
on hidden, latent states S. The Markov property in HMM defines an independence of
future observations from past latent states and observations, given the current state:

P(Ot+1|St, St−1, . . . , S1, Ot−1, . . . O1) = P(St+1|St) (2.66)

MDPs extend Markov chains by conditioning the stochastic process on actions, and
including rewards for state-action pairs. Whereas Markov chains and HMM are au-
tonomous systems (the stocastic process is not conditioned on any inputs), MDPs are
systems controlled by an agent.

Formally, an MDP is a 5-tuple (S, A, T , R, γ), where:
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1. S is the state space, or the domain the process state is defined over

2. A is the action space for the actions taken by the agent

3. T denotes the transition probability distribution over the next process state, given
the current state and the action

4. R is the reward probability distribution, conditioned on states and actions

5. γ is a discount factor for future rewards

The transition probability distribution T of MDPs satisfies the Markov property. Future
states of the process are independent on the past state-action sequence, given the current
state and action.

Partially Observable Markov Decision Processes (POMDP) extend MDPs similarly to
how HMMs extend Markov chains. Formally, POMDPs are represented as a 7-tuple
(S, A, T , R, O,PO, γ), with the following extension:

1. O is the observation space, over which observed states are defined

2. PO is the probability distribution over observations, conditioned on the states,
otherwise known as the observation model

The process state is hidden, and the process emits observations conditioned on the hidden
states. The sequences of states and actions over time still form an MDP, and a POMDP
can always be reduced to an MDP, where the stochastic process is represented by belief
states - probability distributions over the underlying states, denoted b(s), s ∈ S. This
is called a belief MDP, and B denotes the space of belief distributions over the hidden
states s ∈ S of the original POMDP.

All Markov models described above can be finite or infinite. Finite Markov models are
defined by having an absorbing state s, such that P(St+1 = s|St = s) = 1. Figure 2.10
illustrates a simple example of each Markov model described in this subsection, with
each having a starting and an absorbing state.

Bellman Equation and Dynamic Programming

In this subsection, for simplifying the definition of the introduced notions, environments
are assumed to be finite Markov Decision Process (MDP)s. In other words, the Markov
property is satisfied (2.65) and the state space S, action space A and reward space R
are finite sets. The goal of an MDP is to find a policy that maximizes the expected sum
of rewards from the environment, up to the final absorbing state.

For finite MDPs, globally optimal policies can be found with generalized policy itera-
tion methods, of which the main ones are dynamic programming, Monte Carlo Predic-
tion/Control and temporal-difference learning. All of these methods feature a two-phase
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Markov Chain

S1 S2 S3

Hidden Markov Model (HMM)
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Markov Decision Process (MDP)
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S2

A2

S3

Partially Observable MDP
(POMDP)

S1 S2 S3

O1 O2 O3

A1 A2

Figure 2.10: Simple examples of Markov models and decision processes.

iterative process of improving the evaluation of a policy, followed by improving the policy
itself using the devised evaluation method.

A value function that maps the state space to real-scalar values V : S → R, as well as a
mapping from state-action to scalar values Q : S × A → R can be defined. Their purpose
is to quantify the utility of being in a certain state given the task at hand in the former
and the utility of being in a state and choosing a specific action in the latter. The value
function is recursively defined by the Bellman equation [BCC57] [Bar21]:

V∗(s) = max
a∈A

E[Rt+1 + γ · V∗(St+1)|St = s, At = a] (2.67)

= max
a∈A

∑︂
s′,r

T (s′, r|s, a) · [︁
r + γV∗(s′)

]︁
(2.68)

Here ∗ indicates optimality. As will be shown, there exists a total order over the possible
value functions, as well a unique, optimal V∗ such that V∗(S) ≥ V (S), ∀V . The value
function provides the expected discounted return Gt = ∑︁∞

k=0 γkRt+k+1. γ is called the
discount factor and is defined to be in range (0, 1], and it is used to avoid infinite values
for non-terminating MDP and to provide convergence guarantees for the optimal value
function. If rewards are normalized in the range (0, 1], then the bounds of the value
function are 0 ≤ Vπ(S) ≤ 1

1−γ .
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The Bellman equation for the state-action quality function is [BCC57] [Bar21]:

Q∗(s, a) = E[Rt+1 + γ max
a′∈A

·Q∗(St+1, a′)|St = s, At = a] (2.69)

=
∑︂
s′,r

T (s′, r|s, a) ·
[︃
r + γ max

a′∈A
Q∗(s′, a′)

]︃
(2.70)

As can be seen from the Bellman equation, the expected return over the possible actions
is equivalent to summing the immediate reward Rt received by following the optimal
action with the expected return starting from the next state after following said action.

Intuitively, value function V∗(st) provides the expected returns Gt achieved by choosing
the action that maximizes the value of each future state, whereas the quality function
Q∗(st, at) provides the expected Gt formed by the immediate reward Rt received by
executing the conditioned action under the condition state, followed by the future returns
under actions that maximize the future quality values.

By turning the Bellman optimality equation above into a recursive update rule, the
MDP problem satisfies the principle of optimal substructure and thus, can be solved by
DP [BCC57] [How60]. The expectation under maxa∈A in the Bellman equation is first
substituted with the expectation under the current policy π [How60]:

Vπ(St) = Eπ [Rt+1 + γVπ(St+1|St = s)] (2.71)
=

∑︂
a∈A

π(a|s)
∑︂
s′,r

T (s′, r|s, a)
[︁
r + γ · Vπ(s′)

]︁
(2.72)

Starting from an arbitrary initial approximation V0 of the true value function V∗, the
approximation is refined at each iteration k using the Bellman equation for Vπ as an
update rule, called the Bellman backup:

Vk(St) = Eπ [Rt+1 + γVk−1(St+1|St = s)] (2.73)

The existence of the fixed point Vk = Vπ can be shown using the contraction mapping
theorem [How60] [Bar21]. Let F be the space of functions on S. Furthermore, let the
Bellman operator be defined as Γ : F → F, Γ(Vπ) = Eπ [R + γ · Tπ(s′|s, π(s) · V (s′)]. It
can be shown that Γ is a contraction, i.e. ||Γ(V ) − Γ(U)||∞ ≤ γ||V − U ||∞, ∀V, U ∈ F
[How60]. Thus, there exists a unique fixed point Vk = ΓVk. The proof of applying the
contraction mapping theorem for the value function space is included in [How60], and its
application for value iteration convergence is described in [Bar21].

The iterative DP algorithm for finding Vπ is called policy evaluation, and the output
is the exact value function for the MDP state space. This is then used to iteratively
improve the policy in policy iteration. The quality function for taking an action in a
certain state and thereafter following the policy π provides an evaluation for the current
policy:

Qπ(s, a) = E[Rt+1 + γ · Vπ(St+1)|St = s, At = a] (2.74)
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The policy improvement theorem [Bar21] states that if another policy π′ provides actions
that improve the quality over the valued current policy Qπ(s, π′(s)) ≥ Vπ(s), ∀s ∈ S ,
then the policy π′ is an improvement over π because it provides greater or equal expected
returns: V ′

π(s) ≥ Vπ(s). The policy iteration algorithm proceeds as follows. Starting
from an initial random policy π, a policy π′ is chosen such that ∃s ∈ S : π′(s) ̸= π(s).
For all other states, the condition for the policy theorem (2.4.1) holds. π′ is considered
a refinement if Qπ(s, π′(s)) > Vπ(s). By the policy improvement theorem, the refined
policy is an improvement over the previous policy. Since there exists an optimal value
function V∗(S), in the limit, the iterative process converges to an optimal policy π such
that Qπ(s, π(s)) = Vπ(s).

The evaluation of the policy at each iteration (which requires multiple sweeps through
the state space) can be bypassed by directly iterating over the value function using the
Bellman optimality equation (2.67) as an update rule:

Vk+1(S) ← max
a∈A

∑︂
s′,r

T (s′, r|s, a) · [︁
r + γVk(s′)

]︁
(2.75)

where k denotes the iteration counter. Instead of evaluating under the current policy
at each iteration, the value function is directly updated using the action that yields the
highest expectation. In this manner, convergence of the value function update implies
convergence of the policy. The algorithm is called value iteration. While convergence still
occurs in the limit, in practice, the iterative algorithm is stopped when a termination
condition is satisfied (typically Vk+1(S) − Vk(S) < ϵ for all S ∈ S.

All these approaches are grouped under the general policy iteration term, as the two-phase
process of evaluation and improvement is present in all of them. Figure 2.11 illustrates
how the process alternates between satisfying the goals of finding a better estimate for
evaluating the quality of a derived policy and improving it, a process which converges in
the limit to the optimal value function and policy V∗, π∗.

Figure 2.11: Policy iteration steps towards convergence, from [Bar21].
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Monte Carlo Methods

The DP methods described in the previous section require the model of the environment
to be known. For the Bellman update rule, for example (2.75), computing the expected
value requires knowledge of the probability distribution T (s′, r|s, a). What if this is not
readily available? Fortunately, an optimal policy can still be found (at least in the tabular
case assumed until now) by learning only from samples provided by the environment
model. There is a spectrum of sampling-based approaches that ranges from Monte Carlo
to Temporal Difference learning.

Firstly, the Monte Carlo approaches are covered. As in the previous section, which
defined two-phase processes of evaluation and improvement, Monte Carlo methods can
also present two distinct phases: prediction and control. In fact, this terminology is more
common in RL literature, beyond the fundamentals of policy/value evaluation/iteration.
This distinct two-phase process is desirable because it makes the problem stationary: as
the prediction step depends on the actions taken in future iterations, which are yielded
by a policy that undergoes active learning. Thus, it can be said that the Monte Carlo
methods covered below also form a General Policy Iteration (GPI).

Monte Carlo works by averaging over sampled returns. Typically, episode rollouts are
executed under the policy and rewards are collected for each state. Then, to estimate the
expected value of each state, the collected returns starting from each state are averaged.
In theory, the optimal value function V∗ is computed in the limit, when each state has
been visited infinitely many times. For the first-visit Monte Carlo algorithm, returns
following the first visit to each state are averaged. If all rollouts have the same probability
distribution, then returns are independent and identically distributed (i.i.d.) estimates of
the value of each state [Bar21], thus, in the limit, their averages converge to the expected
returns, which are equal to V∗(S).

The same process can also be applied to find the optimal state-action value function
Q∗(S, A). State value functions are insufficient in the case of Monte Carlo techniques
because, in the absence of the state transition probability distribution, one-step lookahead
cannot be executed (crucial for the Bellman update rule). Considerations have to be
made in the case of deterministic policies, as the entire state-action space cannot be
covered by following a deterministic π. If π is not defined as a stochastic policy, then
exploration has to be artificially introduced, in order to satisfy the convergence guarantees
mentioned in the case of V∗ estimation. Essentially, even in deterministic cases, non-zero
probabilities have to be assigned to all possible actions at each environment execution
step, a technique termed exploring starts [Bar21].

Assuming the optimal Qπ(S, A) has been found, the policy improvement is trivially done
by the following update [Bar21]:

πk(s) ← argmax
a∈A

Qπk
(s, a), ∀s ∈ S (2.76)

In practice, the assumption of exploring starts (that each state-action pair is visited
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enough times) cannot hold except in the most trivial of MDPs. One way to sidestep the
assumption is to do policy improvement towards an ϵ−greedy policy, instead of the greedy
policy as above. An ϵ-greedy policy is defined as having a ϵ

|A(s)| probability of selecting a
suboptimal action (A(s) the set of possible actions from the state s). In Monte Carlo
control, first-visit returns are averaged for the estimation of Q(S, A) [Bar21], and the
ϵ-greedy stochastic policy is updated such that the actions that yield the highest estimated
returns are assigned the highest probability, while the rest are assigned ϵ

|A(s)| . [Bar21]
includes a derivation showing that the policy improvement theorem is satisfied for any
iteration of an ϵ-greedy policy.

Another way of dealing with the exploration/exploitation dilemma is to employ off-
policy algorithms, where the policy used to interact with the environment (and thus
collect experience) is different (but not entirely) from the learned policy. The former is
exploratory and stochastic, while the latter is the target optimal (possibly deterministic)
policy. A first requirement is that all actions taken under the target policy π must always
have a non-zero probability of being chosen under the exploratory policy π̄. This is
crucial because the target policy distribution (or deterministic function) is learned using
samples from π̄. Furthermore, the evaluation of the policy at each iteration depends
on the expected returns, for which only samples from π̄ are provided. To estimate the
expected returns under π, the Monte Carlo returns are weighed by the relative probability
of trajectories under the two policies, a value termed the importance sampling ratio ρ.

The probability of a trajectory τ = (At, St+1, . . . AT −1, ST ) conditioned on St and the
policy π is [Bar21]:

P(τ |St, At:T −1 ∼ π) =
T −1∏︂
k=t

π(Ak|Sk) · P(Sk+1|Sk, Ak) (2.77)

At first glance, computing the importance sampling ratio between trajectories under π
and π̄ depends on the state transition probability distribution, which is assumed to be
inaccessible (in the context of Monte Carlo methods). However, the state transition
probability factors cancel out when computing the ratio, as they are identical in the
denominator and the numerator. Thus, the final form for ρ is [Bar21]:

ρ =
T −1∏︂
k=t

π(Ak|Sk)
π̄(Ak|Sk) (2.78)

Finally, a method for dealing with the non-stationarity of the value estimates during
learning is α-step value function updates. For each sample episode, the difference
between the achieved return Gt and the value estimate under state St forms a target for
updating the estimate. The value function estimate is then "moved" towards the target
in increments based on a constant parameter α. The update rule for the value estimate
is [Bar21]:

Vπ(St) ← Vπ(St) + α [Gt − Vπ] (2.79)
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Naturally, an analogous update rule for a state-action value function Qπ(S, A) is defined
identically.

Temporal-Difference Learning

Until now, two approaches of policy evaluation and improvement have been presented.
In DP methods, the environment model is accessible, and the value estimate under
the policy Vπ is updated based on transitioning to the next state and then summing
the immediate reward with the expected future return by applying the current value
function estimate over the next state Vπ(St+1). In MC methods, on the other hand,
the environment model is assumed to be inaccessible, and thus, policy iteration occurs
purely from experienced returns. In the former, returns from the next step onwards are
estimated. In the latter, expected returns are estimated by averaging sample returns
from environment interaction. Temporal-Difference learning is a middle ground between
the two, because both the model and future returns are inaccessible, learning occurs
purely from samples (like in MC), and updates are done based on learned estimate of
future returns (like in DP). Despite this, it is surprisingly a more efficient reinforcement
learning method, for reasons that will be shown in this section.

Firstly, recall that in MC, the state(-action) value estimate is updated by averaging
over returns from sampled episodes, or by shifting the estimate by an α-weighed target
determined by the error between sampled returns and estimates. Similar targets can also
be determined for TD, but they assume a form that is closer to DP targets, which are in
turn informed by the Bellman equation. Looking at the one-step Bellman update rule
used in value iteration (2.75), the value function is bootstrapped by estimates from future
states, which are also Bellman backups. While those targets are computed based on
expectations under the environment model, in TD learning, targets are formed directly
from encountered reward Rt+1 and next-state St+1. Similarly to how target updates for
MC were defined in (2.79), the simplest TD target update rule for the value function,
based on one-step rewards, is the following [Bar21]:

V (St) ← V (St) + α [Rt+1 + γV (St + 1) − V (St)] (2.80)

The similarity to DP targets can be immediately seen in TD target Rt+1 + γV (St + 1).
Immediately, this update rule seems to be more advantageous than both DP update rule
variants (which require the environment model) and the ones that underline MC methods
(which require reaching the end of episodes to compute exact returns). TD updates are
done incrementally and online. It is enough to wait for the execution of at least one step
before updating the value function estimate. Luckily, convergence can also be shown to
hold in TD learning (at least in the tabular case), but proofs vary between the different
TD-based algorithms.

As was the case with MC control, TD control algorithm can be on-policy and off-policy. In
both cases, learning the state action value function Q(S, A) is, as stated before, required
for evaluating the behavior policy. To this end, an update rule for the state-action value

30



2.4. Reinforcement Learning

function can be trivially defined as [Bar21]:

Q(St, At) ← Q(St, At) + α [Rt+1 + γQ(St+1, At+1) − Q(St, At)] (2.81)

Again, updates are done purely based on next-step samples (Rt+1, At+1, Ot+1), starting
from St and executing At, The SARSA algorithm is based on this one-step update
mechanism, which is reflected in its namesake acronym.

Q-learning, on the other hand, is an off-policy algorithm that does not require following
the target policy for retrieving the next state-action pair St+1, At+1. Instead, the targets
for the TD-update are the greedy action (action that yields the highest Q(St+1, a)). In
other words, the algorithm directly iterates Q towards the optimal Q∗.

Another approach similar to SARSA is to compute the targets as the expected state-action
value under the policy, instead of samples from the policy like in SARSA. As shown
in [Bar21], this variant generally converges faster than SARSA due to eliminating the
variance from the distribution The algorithm is called Expected SARSA and the update
rule is [Bar21]:

Q(St, At) ← Q(St, At) + α [Rt+1 + γEπ [Q(St+1, At+1|St+1)] − Q(St, At)] (2.82)

The backups in update rules shown above are all computed by incorporating the en-
countered next-step reward, thus they are called TD(0) . Temporal difference learning
updates also work by summing n-step rewards with the future estimate. The Bellman
equation (2.67) defines a recursive relation between future returns and value estimates. In
other words, Gt = E [Rt+1 + γV (St+1)] = E

[︁
Rt+1 + γRt+2 + γ2V (St+2)

]︁
. This implies

that the TD-update rule can also incorporate multi-step rewards. If all rewards until the
end of the episode (in the episodic case) are incorporated, then the setup is identical to
Monte Carlo. Figure 2.12 (taken from [Bar21]) illustrates the spectrum of possible TD
backups, ranging from the introduced one-step TD to Monte Carlo, also named ∞-step
TD in this case.

Updating the value estimate at timestep t using n-step targets requires executing n steps,
collecting rewards along the way, and then updating the estimate. Thus, the estimate
update actually occurs after t + n steps, using the previous estimate and the return
Gt:t+n := ∑︁t+n

k=t+1 γk−t−1 · Rk [Bar21]:

Vt+n ← Vt+n−1 + α [Gt:t+n − Vt+n−1(St)] (2.83)

It can be shown that the n-step TD error of estimating Vπ is upper bound by the error
induced by the estimation at the previous timestep. This is called the error reduction
property and shows that the learning the value function via TD actually learns Vπ,
converging in the limit towards V∗ [Bar21]. The error reduction property is the following:

max
s

|Eπ [Gt:t+n|St = s] − Vπ(s)| ≤ γn max
s

|Vt+n−1(s) − Vπ(s)| (2.84)
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Figure 2.12: The spectrum of n-step TD backups, from [Bar21].

That is, the target error is always less or equal to the previous iteration error for all
states.

Substituting the value function in the n-step TD update described above with the
state-action value function Q(S, A) yields the update rule for n-step SARSA, an on-
policy control algorithm similar to the one-step SARSA. The difference is that Q for the
encountered state and chosen action at timestep t + n is updated by (2.84) based on the
collected return Gt:t+n. The policy is then updated such that it is ϵ-greedy wrt. Q, as in
the case of MC control algorithms, to ensure that the state-action space is covered in the
limit.

Similarly, for an off-policy TD control algorithm, the TD target can be weighted by the
importance sampling ratio ρ, taken as a product of ρ over the range t : t + n in the general
n-step case [Bar21].

One last important lemma related to TD learning is that targets can also be formed by
averaging multi-step returns of variable n. Any number of variable-length multi-step
returns can be summed to form a target, as long as they are weighted such that their sum
is 1. For example, 0.5 · Gt:t+1 + 0.5 · Gt:T , where T is the episode length in episodic MDPs,
is a valid target that combines a one-step TD target with a Monte Carlo target. Different
combinations can yield different results (in terms of convergence rate), depending on the
decision process.

The most common combination is the one that incorporates all n-step updates for a given
n. In particular, the targets are weighed by λn−1, and the sum is multiplied by (1 − λ)
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for normalization. The resulting target is the λ − return and is defined as [Bar21]:

Gλ
t := (1 − λ)

∞∑︂
n=1

λn−1 · Gt:t+n (2.85)

:= (1 − λ)
H−t−1∑︂

n=1
λn−1 · Gt:t+n + λH−t−1 · Gt (2.86)

The choice of λ again yields a spectrum of targets ranging from one-step TD to MC. It
is worth looking at the second formulation of the λ − return, as it can better illustrate
this effect. When λ = 1, the truncated sum on the left collapses to 0 due to the 1 − λ
factor in front, leaving Gt. Consequently, the target is the MC target. On the other
hand, if λ = 0, then the last term in the summation cancels out, together with all terms
in the expanded left sum except the one associated with n = 1, because its weight is
00 = 1. That specific term is Gt:t+1, which is equivalent to the one-step TD target (2.80).
Because of this, the latter is also called TD(0), while the former is TD(1). In general,
λ − returns are targets for the general TD(λ) algorithm.

The λ − return presented above depends on the observed returns (Gt:t+k)n
k=1. This is

called the forward view. There exists an alternative formulation for the λ targets, called
the backward view, that can be computed online. In other words, instead of waiting for
the next n timesteps to occur, the update is done using returns from the past n timesteps.
This introduces a problem known as the credit assignment problem. In the forward view,
n-step returns were weighted by an exponential decay based on λ. Steps further in the
future can be said to be assigned a smaller credit, meaning they contribute less towards
the error. This can be easily seen in Figure 2.13, taken from [Bar21].

Figure 2.13: λ-controlled exponentially-decaying weighted returns, from [Bar21].

In the backward view, however, at least in on-policy control algorithms, such a credit
assignment is not readily available. To update the current estimate based on returns in
the past with TD(λ) targets, eligibility traces have traditionally been used as an extra
weight vector that indicates both the frequency and the recency of each state. In the
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tabular setting, the eligibility trace of a state is computed as [Bar21]:

et(S) =
{︄

λ · γ · et−1(S) if S ̸= s

λ · γ · et−1(S) + 1 if S = s
(2.87)

When an update is done, the TD error is proportionally assigned to past states depending
on the computed eligibility.

While the backward view is provably equivalent to the forward view in terms of convergence
in the limit (and is included in [Bar21]), it is not covered here, as the methods in this thesis
make use of function approximation methods (described in the following Section 2.4.1),
for which the credit assignment is done with a different mechanism. Thus, the nuances
of eligibility traces for TD(λ) in the tabular case are not elaborated here.

Function Approximation Methods

So far, the decision process state, action and reward spaces S, A, R have been assumed to
be sufficiently small to explicitly store all possible mappings of the state transition prob-
ability, reward, policy and value functions P(S′|S, A), R(·|S, A), π(S), V (S) in memory.
In this case, space and time complexities are polynomial at worst. However, there are
settings where spaces are infinitely large. For example, the gripper of a robot manipulator
is located in its configuration space, a 3D Euclidean space with real values. If this position
is included in the state, then S is continuous. Naturally, a decision process in this case
cannot be stored in the memory, and an optimal policy cannot be found in finite time.
However, even in cases of discrete-valued states/actions defined on large sets that can be
stored in a sufficiently large memory buffer, there is no guarantee that the entire space is
explored in the limit, a strict requirement for convergence in the methods covered until
now.

To address both issues, the MDP functions have to be approximated using a limited
sample set, in a manner that generalizes the entire function domains S, S × A. For
example, a linear function can be approximated by parameterising the function by a
weight vector w in the number of dimensions of the function. In Deep RL, functions are
represented as ANNs, trained via supervised learning on targets. In general, function
approximations are represented by the weight vectors/matrices, the sizes of which are
usually smaller than the size of the state space. A change in one weight influences
multiple underlying states.

The state-of-art approach for function approximation is to use deep neural networks as
estimators. For example, the value function in Monte Carlo control can be represented by
a deep neural network parametrized by θ (and denoted as Vθ), which can be learned by
SGD. The target in the update rule (2.79) can be used as the basis for the loss function
to be used in backpropagation.

Let the target be denoted as Ut in general function approximation for Vπ. Under
the assumption that samples are i.i.d. random variables, the parameters θ can be
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incrementally updated in the direction of the gradient of the loss function wrt θ [Bar21]:

θ ← θ − 1
2α [Ut − Vθ(St)] ΔVθ(St) (2.88)

Under the independent and identically distributed (i.i.d.) assumption of the targets, SGD
converges the approximator Vθ to Vπ, under the stochastic approximation conditions for
the learning rate α:

∞∑︂
t=1

at = ∞ (2.89)

∞∑︂
t=1

a2
t < 1 (2.90)

For Monte Carlo control, the targets are Ut := Gt are unbiased estimates ( E [Ut|St] =
Vπ(St) ) and thus, SGD converges to Vπ. In the case of TD(0), on the other hand,
Ut := Rt+1 + γEπ [Qθ(St+1, At+1|St+1)] are biased estimates, since Qθ(St+1, At+1|St+1)
depends on the values of θ at timestep t. The update process is thus prone to divergence.
To avoid this, targets are computed using a Q estimate parameterized by a delayed
and detached copy of θ, denoted as θ̄, as shown in [Lil15] and [MKS+13]. The delayed
parameters are updated using the update rule known as Polyak averaging, introduced
in [PJ92]:

θ̄ ← τθ + (1 − τ)θ̄, τ ∈ [0, 1) (2.91)

The concept is also known in literature as having an exponential moving average (EMA)
of the learned parameters. The gradient is taken wrt the estimate Qθ(St, At), but changes
in θ have no effect on the targets, since they are computed with detached parameters. In
this case, the optimization process is called semi-gradient descent and it does not offer
the same convergence guarantees as SGD under the assumption of iid examples in the
general case.

Furthermore, off-policy algorithms with function approximation methods introduce
further issues that arise from distribution shifts. In off-policy algorithms, updates on
the target policy π are done using examples (or unbiased returns) under the behaviour
policy π̄. Approximating the two policies increases the variance of estimates and induces
mismatched distributions, which can lead to divergence in the worst case.

A better approach when using function approximation methods is to parametrize the
policy directly, and use an estimated state-action value function for computing gradients.
The policy parameters are then trained via gradient ascent by updating them in the
positive direction of the gradient of an objective function J (θ), which is typically chosen
to maximize the excepted return under the policy distribution. The expected return can
be provided by a learned parametrized Qζ(S, π(S)). In this case, the policy is called the
actor, while the value function is called the critic, since it is used to evaluate the policy.
All methods that parametrize the policy such that the policy is differentiable wrt its
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parameters (Δπθ(a|s) is well defined for all a ∈ A and s ∈ S) fall under the umbrella of
policy gradient methods.

Computing the gradient of the objective function J (θ) requires, at first glance, to compute
the gradient of the value function that provides the estimated returns. To illustrate is,
let the objective function for the episodic case be the following:

J (θ) = Vπθ
(s0) (2.92)

In the episodic case, this is an appropriate objective, since the policy should maximize the
episodic return. In the general case, the estimated return to maximize can be provided
by the state-action value function conditioned on expected actions under the policy:

Vπθ
(s) =

∑︂
a∈A

π(a|s) · Qπ(s, a) (2.93)

However, the policy gradient theorem states that the gradient of (2.93) is proportional to
the expected value of the gradient of the policy distribution times the expected return
(which in this case is provided by Qπθ

) under the on-policy state distribution. Thus, the
gradient is not propagated through either the on-policy state distribution nor the value
function. According to the policy gradient theorem, the gradient of (2.93) is:

ΔJ (θ)
∑︂

s

µ(s)
∑︂

a

Qπθ
(s, a)Δπθ(a|s) + C (2.94)

C is a constant term. µ(s) is the on-policy state distribution, defined as:

µ(s) = η(s)∑︁
s′ η(s′) (2.95)

η(s) represents the number of visits of state s in an episode. The proof for the policy
gradient theorem is sketched in [Bar21].

Any policy distribution can be approximated by parametrization, and the choice depends
on the action domain. If the action space is discrete, then one example of distribution
is the categorical distribution, where each discrete value in the domain set of size K is
associated with a probability bucket a random variable can fall in. The parametrized policy
distribution can then be modeled as a Gumbel-Softmax distribution [JGP]. This provides
a differentiable parametrization for otherwise non-differentiable categorical samples.
For discrete probabilities p1, p2, . . . , pk and k i.i.d. samples drawn from Gumbel(0, 1)
g1, g2, . . . , gk, the policy can be defined as

πθ(ai|s) = e
log(pi)+gi

τ∑︁k
j=1 e

log(pj )+gj
τ

(2.96)

Here, τ is the softmax temperature parameter that controls where the Gumbel-Softmax
distribution lies on a range from the modeled categorical distribution to a uniform
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distribution. As τ → 0, the former is achieved, while as τ → ∞, the distribution becomes
a uniform distribution. The temperature is typically annealed during training, starting
from a higher value to reduce variance and annealing towards 0.

The softmax representation of the policy provides smoother gradients than using an
ϵ-greedy policy, while keeping the policy stochastic. Thus, in policy gradient methods, it
is the preferred approach for representing discrete action spaces.

For continuous action spaces, one assumption that can be made is that actions are sampled
from a Gaussian distribution, which has the following probability density function:

p(x) = 1
σ

√
2π

e− (x−µ)2

2σ2 (2.97)

The parametrized policy can be defined as the pdf of the Gaussian distribution. Its
parameters can be split such that one part parameterized an approximator for µ and
the other an approximator for σ: θ = [θµ, θσ]⊤. In the case of the latter, the function’s
codomain must be positive, as σ > 0 for a Gaussian distribution.

If the action space is of the form A = Rn, the policy can be parametrized as a multivariate
Gaussian distribution Nn(µ, Σ) instead. Σ denotes the covariance matrix Rn×n defined
as Σi,j = E [(ai − µi)(aj − µj)] , i, j ∈ [1, n]. Σ must be a symmetric, positive definite
matrix.

The convergence properties of policy gradient under different MDPs are still under
study. Perhaps the most comprehensive study in this direction to date is [AKLM21],
which provides computational and sample complexity analysis, approximation errors and
convergence rates (or lack thereof) for policy gradient with different parametrization
methods, applied to tabular and large-space MDPs.

In general in deep RL, the optimization process is generally non-convex due to a variety
of reasons. Firstly, MDP functions are represented as deep neural networks, which are
typically non-linear. Secondly, the variance induced by the value estimation during
gradient ascent for the policy can also lead to saddle points, making the problem non-
convex. Finally, the reward signal can be non-continuous, leading to a rugged optimization
landscape. For this reason, adaptive gradient-based optimizers are used. An example is
the Adam optimizer [KB17], which adapts the learning rate based on estimates of the
first and second moments of the gradient.

2.4.2 Model-Based Reinforcement Learning
So far, all reinforcement learning methods presented aimed to find an optimal policy that
maximizes the expected returns received from the environment, which were provided
by a computed or learned value function. In the case of MC and TD learning, the
value estimate was learned from sampled transitions (St, At, Rt+1, St+1 in the case of
TD, and sampled episodes in the case of MC. State transition and reward probability
distributions were assumed to be inaccessible. These methods fall under the umbrella
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of model-free reinforcement learning, since the environment model is not used. In DP,
however, the environment model was explicitly used to compute an exact value function
at each iteration, using the available state-transition and reward distributions. Thus, DP
can be categorized as a model-based reinforcement learning algorithm.
In model-based RL, the known model is used to look ahead at what will happen in
the future, given a certain state and a policy. Updates are done based on the collected
information from the look-ahead process. In DP, the target for Vπ was the expected return
under π, which can be exactly computed given P(St+1|St, At). In this case, the model is
used as a distribution model, since it generates all possible trajectories weighed by their
probability of occurring. The model can also be used to sample trajectories. Given a state
st and a policy π, a trajectory can be computed by sampling at ∼ π(·|st), st+1 ∼ P(·|st, at),
rt+1 ∼ R(st, at) at each timestep and concatenating the samples, resulting in the trajectory
τ = (st, at, rt+1, st+1, . . . sT −1, aT −1, rT , sT ). Sampling a trajectory using the environment
model is also called a rollout in the context of model-based RL.
For conciseness, model-free RL methods can also be called learning methods, since the
value and the policy are learned from environment interactions, whereas model-based RL
are also called planning methods, since learning is done on model interactions (simulated
experience). A range of algorithms can be constructed by combining planning with
learning, ranging from one side of the spectrum (pure learning, like TD(λ)) to the
other (for example, DP). Out of these, the class of model-based RL algorithms has, as a
minimum requirement, a planning phase. Figure 2.14 illustrates the training sequence
for Dyna-Q, a model-based algorithm for tabular MDPs. The model is learned using
trajectories collected by interacting with the environment. In the next phase, the policy
and value estimates are improved using data provided by the environment, the model, or
both, using any reinforcement learning technique. The two training phases can occur
alternatively or in parallel.
The benefits of augmenting the learning process of the value function with model samples
are twofold. Firstly, it can greatly improve sample efficiency. Secondly, it can help reduce
variance in V or Q estimation. Since a model is available, the value function at each
iteration can be computed by averaging over an arbitrary number of rollouts with the
model.
A learned model can also be used for planning at inference-time by rolling out trajectories
from the current environment state, a technique called decision-time planning. In the
general case, an action is chosen by averaging the returns over simulated trajectories
and then selecting the action that yields the highest return. Such decision-time planning
methods are an instance of MC sampling since they produce Monte Carlo estimates for
state-action pairs. Given a learned environment model T (S′|S, A), R(S, A), and learned
policy π(A|S) and state-action value function Qπ(S, A), starting from a state st, a rollout
can be executed in the following manner [LXL+]:

max
at:t+H

Est+1∼P(st+1|st,at)

[︄
t+H∑︂
k=t

R(sk, ak)
]︄

(2.98)
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Figure 2.14: Dyna-Q training sequence. The model is trained via supervised learning from
experience gathered from interaction with the environment. The agent policy and value
functions are trained on targets computed from environment interaction and (optionally)
from interacting with the learned model.

One of the fundamental challenges in model-based RL is that reinforcement learning from
data provided by a learned model can be suboptimal, given that the model is trained
from a limited amount of samples from the environment. Suboptimality of the learned
policy can then lead to a flawed exploration of the state space, which increases the bias
of the learned model. This bias has to either be explicitly accounted for in model-based
RL algorithms (such as in trajectory-predictive models [LS01]) [AMKL], or analytically
bounded [AHL16]. In [AMKL], for example, the training objective is minimizing the
multi-step error between predicted future observations and ground-truth observation
sequence from the dataset, as opposed to the one-step observation prediction goal.

Upper bounds for a learned model can be derived using the simulation lemma from
[KS02]. Let T∗(S′|S, A) be the transition distribution for the environment and T∗(S, A)
be the mode. Similarly, let Tθ(S′|S, A) be the learned model and Tθ(S, A) its mode. As
stated previously in Section 2.4.1, the value estimate error in DP (with a known model) is

1
1−γ . With an approximate model where maxs,a ||Tθ(s, a)−T∗(s, a)|| ≤ ϵT and ||Rθ(s, a)−
R∗(s, a)|| ≤ ϵR, the value estimate bias has the following upper bound [LXL+] [FLRP+19]:

max
s

||V π
θ (s) − V π

∗ (s)|| ≤ γϵT maxr∈R
2(1 − γ)2 + ϵR

1 − γ
(2.99)
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Trajectory Sampling

A learned model of the environment can be used in a variety of ways. As seen in Dyna-
Q [Sut91] and illustrated in Figure 2.14, the model can be used to provide simulated
experience as a dataset for value/policy learning. Such a procedure is called background
planning in [Bar21]. The model can also, however, be used during inference. Instead of
acting under the learned policy, an action can be selected by a trajectory optimization
procedure that uses the state transition model to compute rollouts and the reward model
to compute a cost function. Using a learned model in this way is also called decision-time
planning [Bar21].

One class of algorithms that plan based on simulated trajectories is called rollout
algorithms. Rollout algorithms can be seen as computing Monte-Carlo Qπ(s, a) estimates
for a given state and action st, at by averaging over returns from simulated trajectories
starting from st and executing at. The estimates can then be used to choose the action
a′ that maximises Qπ(s, a′), as in Section 2.4.1. Trajectories are rolled out by sampling
actions from a distribution at each time step.

For discrete action spaces, a popular trajectory sampling approach is Monte Carlo Tree
Search, an instance of a heuristic search algorithm. Starting from the current state
st, MCTS incrementally builds a search tree by sampling actions at each step from
a tree policy (either randomly, from a learned policy prior or by choosing the action
according to expectation maximization of the return), up until a leaf node sl, l > t.
A rollout τ = (sl, al, sl+1, al+1, . . . , sT ) is then generated starting from sl, executing
al ∼ π(sl), using the learned transition model to sample sl+1 ∼ (P )(·|sl, al) and repeating
the process until the terminal state sT is encountered. π can be represented by a
uniform distribution or a learned distribution via policy iteration and is called the rollout
policy. The rollout return approximated by the rewards provided by the learned reward
model ∑︁T

k=t γk−1R(sk, ak) is used as a target update for all state-action values along the
trajectory.

For continuous action spaces, approximate rewards provided by a learned reward model
can be used to form a cost function for sampled trajectories. A rollout policy π together
with the transition model can be used to generate τ1, τ2, . . . , τk trajectory samples. The
trajectories can be evaluated by a cost function formed by accumulated estimated rewards
received:

J (τ) =
T∑︂

i=t

R(si, ai), (si, ai) = τi (2.100)

The action that maximises the above cost function is selected:

i ← argmax
i=1:k̄

J (τi) (2.101)

at ← τi0 (2.102)

When the rollout policy π is uniform, the trajectory sampling method is also called
random shooting. The rollout policy can also be a learned policy using GPI algorithms,
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optionally with background planning. In that case, simulated trajectories and returns
with the model can help correct the bias of a learned policy. The inverse can also be true,
however, in that the bias of the learned model can lead to a suboptimal choice of (2.101).

MBRL algorithms that also learn a policy π via MFRL also (implicitly or explicitly) learn
a state(-action) value function V (S) or Q(S, A). Let’s assume both π and Qπ are learned
from environment interactions, simulated experience, or both. Furthermore, assume an
infinite horizon. In that case, rollouts are truncated up to a given horizon T and the cost
function J is evaluated only on truncated sampled trajectories. To compute Monte Carlo
estimates, J is extended by adding a terminal value cost term associated with the return
accumulated from states at the end of the trajectories onwards. This can be termed as
the long-term return, and an approximation can be provided by Q. Assume sT is the
last state in a sampled trajectory τ . The long-term return is provided by Qπ(sT , aT ),
where aT ∼ π(·|sT ). The cost function then becomes:

J (τ) =
T∑︂

i=t

R(si, ai), +Qπ(sT , aT ), (si, ai) = τi, aT ∼ π(·|sT ) (2.103)

Such planning procedures can be reformulated as instances of learning-based MPC, with
the optimization goal being:

max
a1:T

Eτ=(s1,a1:T ,(st+1∼P(·|st,at))T
t=1

J (τ) (2.104)

Other decision-time planning approaches aim to mix the benefits of Monte Carlo estima-
tion from rollouts and having a learned policy prior. The former reduces trajectory model
and action sampling biases, while the latter guides rollouts toward higher returns. As-
sume action sequences can be sampled from a vector of multivariate normal distributions
N (µt, Σt), t ∈ [1, T ], with µ and Σ initialized at each start of the planning procedure.
The MPC cost function can be reformulated as finding the distribution parameters that
maximise the following objective:

µ, Σ = argmax
µ,Σ

Ea1:T ∼N (µ,Σ),τ=(s1,a1:T ,(st+1∼P(·|st,at))T
t=1

J(τ) (2.105)

An iterative, derivative-free optimization method called the Cross-Entropy Method can fit
µ and Σ based on evaluating resulting trajectories according to J , as shown in [Rub97].
Let {(a1, a2, . . . , aT )i}n

i=1 ∼ N (µ, Σ) be n sampled action sequences of length T . Each
sample (a1, a2, . . . , aT )i) is evaluated by J over the trajectory τi induced by the sequence
and the transition model, and the top k elite samples according to the order induced by
J are selected (k < n). The multivariate normal distribution parameters are updated
based on the elite samples by the following update rules:

µ ←
∑︁k

i=1 ai

k
(2.106)

Σ ←
∑︁k

i=1(ai − µt)(ai − µt)⊤

k
(2.107)

41



2. Background

Another derivative-free optimization method for fitting µ, Σ is MPPI [WAT]. Assume a
family of multivariate normal distribution with parameters initialized at the start of the
planning procedure, this time for each sequence timestep N (µt, Σt). MPPI is, again, an
iterative process that adjusts µ, Σ, this time for each distribution. Let {vi = J (τi)}k

i=1
be the values associated with the elite samples. n samples are then weighted by:

wi = e
vi−max

v∈{vj }k
j=1∑︁k

l=1 e
vl−max

v∈{vj }k
j=1

(2.108)

The multivariate normal distribution parameters can then be adjusted according to the
weighted samples, such that action sequences that lead to high-cost trajectories are more
likely to be sampled:

µt ←
∑︁k

i=1 wi · at,i∑︁k
i=1 wi + ϵ

(2.109)

Σt ←
⌜⃓⃓⎷∑︁k

i=1 wi(at,i − µt)2∑︁k
i=1 +ϵ

(2.110)

The convergence of the planning-time optimization of the action distribution parameters
can be guided by the learned policy prior. In [HWS] and [HSW], the MPPI sample
trajectories set {τ1:n} is formed by a set of trajectories {τ1:m} induced by action sequences
sampled from the policy prior π, and {τ1:n−m} trajectories with actions from the family
of multivariate normal distribution. Updating the distribution parameters according
to (2.109) is done as before. The MC sampling reduces variance, the samples originating
from the learned policy prior accelerate convergence of the optimization process, and the
locally-optimized distributions correct the policy prior bias.

2.4.3 Partially Observable Markov Decision Processes
Up until now, the presented RL methods assumed a MDP, where the Markov property of
St+1 ⊥⊥ St−1|St is always satisfied for all received states. The agent is provided with all
the information necessary for decision-making at each timestep, and no sensor model is
required for state estimation. This assumption does not, however, hold in almost all real-
world scenarios. It is said that the environment is not fully observable. The underlying
state of the environment is not accessible, and the environment emits observations O
instead of states S.

More formally, MDP are extended with the observation set O, and a conditional observa-
tion probability distribution O(·|S, A), resulting in POMDPs, a 7-tuple ⟨S, A,P, R, O,O, γ⟩.
There are many approaches to dealing with partial observability, and all of them rely on
estimating the state of the process given the past observable information and actions
take, which is then used as the state in value/policy estimation. An accurate estimation
of the state can then be used for value iteration. This is also termed a history abstraction.
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There are cases where a history abstraction can precisely determine the state of the
process. One such trivial case is an episodic POMDP, where the alternate sequence
of past observations and actions o1, a1, o2, . . . , at−1, ot can be concatenated to form a
state representation that satisfies the Markov property. Let St̄ := (o1:t, a1:t−1). It can
be immediately seen that S̄t+1 ⊥⊥ S̄t−1|S̄t. However, this approach is not trivial in
most cases, as the space complexity of storing past information grows linearly with the
history length (which can be ∞ in infinite-horizon MDP). Even in episodic cases, the
observations can be high dimensional, and it is not feasible to apply value iteration
over long sequences of images, for example. Thus, the computational complexity grows
exponentially with the state space dimension, as well as the length of the observation
history, two phenomena coined as the curse of dimensionality and the curse of history,
respectively [BCC57, PT87]. For the general case, there are two main approaches for
recovering Markov states from partial observations, and while both are briefly described
in this section, the latter is explored in more detail, being the class the methods presented
in this thesis belong to. The spectrum of state-of-the-art approaches is, however, much
larger (and they are covered in the comprehensive study [NES+]).

The first category uses Bayesian inference to reduce the POMDP to a MDP by modeling
belief distributions over possible states, as described in Section 2.4.1. The Bayes theorem
(2.7) places a central role in updating the belief states, given incoming observations
(which are textitevidence from a Bayesian perspective). Given the transition model
T (·|S, A) and a sensor model O(O|S, A), the belief states can be inferred by recursively
applying Bayes’s theorem:

b(s′) = P(s′|o, a, b) (2.111)

= P(o|s′, a, b) · P(s′|a, b)
P(o|a, b) (2.112)

= P(o|s′, a) · ∑︁
s∈S P(s′|s, a) · P(s|a, b)
P(o|a, b) (2.113)

= O(o|s′, a) · ∑︁
s∈S P(s′|s, a) · b(s)

P(o|a, b) (2.114)

Function approximation methods can be used to either parametrize the sensor model and
the transition model, or P(S′|O, A, B) directly. b(s) can also be inferred via variational
inference by using P(St|O1:t, A1:t−1) as an approximate variational posterior Q. The
parameters of Q can be trained by minimizing the KL divergence (2.14) between the
approximate posterior Q(St|O1:t, A1:t−1) and a temporal prior P (St|St−1, At−1). Since
the true posterior is intractable, Evidence Lower Bound Objective (ELBO) is used as a
surrogate loss:

logP(o1:t | a1:t−1) ≥ EQ(s1:t)

[︄
T∑︂

t=1
logO(ot | st, at−1)

]︄
− DKL(Q(s1:T ) ∥ P(s1:T | a1:T −1))

(2.115)
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P is typically initialized as a Dirichlet distribution (commonly used as prior distributions),
and updated by conditioning over the entire history of observations and actions. In
practice, the history (o1:t, a1:t) is typically encoded by an RNN, resulting in latent states
zt.

The second category tries to approximate the underlying state space as a latent state
space encoded by a history compression function. Formally, let ht := (o1:t, a1:t−1) be the
sequence of past observations and actions concatenated with the current observation, and
let H be the space of possible histories for a given POMDP. As stated before, the Markov
property is satisfied if states are represented by complete histories and thus, POMDPs
can be treated as MDP where S = H. In practice, this is not tractable. Furthermore,
let φ : H → Z be a history compression function that maps histories to latent variables
called information states. For a given history h, φ(h) represents a sufficient statistic
for h if, informally, its latent encoding is informationally equivalent to h. The general
criteria for a sufficient statistic is stated in [Bar21] as satisfying:

φ(h) = φ(h′) ⇒ P(τ |h) = P(τ |h′), ∀h, h′ ∈ H, τ ∈ {A × O}∗ (2.116)

In other words, the probabilities for trajectories conditioned on two histories are equal
if their associated information states are equal. An equivalent definition is provided
in [CPP09] as Definition 4.2. Under the latter definition, φ(h) and φ(h′) are belief-
trajectory equivalent. The trajectories τ are also defined as tests in [LS01], since they are
used to test equivalence relations between information states. Theorem 5 of [SSSM22]
implies any GPI can be applied on information states. Definition 3 from [SSSM22]
formalizes the notion of information states and states necessary and sufficient criteria for
σ mappings to be informationally equivalent to history inputs. The sequence of functions
(φt : Ht → Zt)T

t=1 (the sequence is introduced due to the iterative updates in GPI) is
an information state generator if for any realizations ht ∈ H, at ∈ A at timestep t, it
satisfies the following self-predictive abstraction conditions [NES+]:

(RP) Sufficient for reward prediction:

E [Rt|ht, at] = E [Rt|σ(ht), at)] (2.117)

(ZP) Self-predictive:
P(Z ′|h, a) = P(z′|φ(h), a) (2.118)

(EZP) Alternatively, predictive of the expected next latent state:

E(Z ′|h, a) = E(z′|φ(h), a) (2.119)

Satisfying RP is a hard requirement. Otherwise, there exist trivial mappings that satisfy
ZP without being informative of the history. For example, any constant mapping φ(h) = c
yields a uniform distribution over actions.
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The self-predictive abstraction conditions above can be replaced by the following set
of stronger conditions, where sufficient properties are defined in terms of observation
realizations ot, ot+1:

(Rec) Satisfies a recurrence relation:

∃ϕ : Z × A × O → Z s.t. φt+1(ht+1) = ϕt(φt(ht), ot, at) (2.120)

(OP) Sufficient for observation prediction:

P(ot+1|ht, at) = P(ot+1|φ(ht), at) (2.121)

While Rec and OP are stronger conditions (Rec ∧ OP → ZP, they are easier to verify in
some cases. To satisfy Rec, for example, σ can be modeled as an RNN, with ϕ being
RNN’s internal state update rule. In POMDPs with high-dimensional observations, an
additional observation reconstruction condition is introduced:

(OR) Observations can be reconstructed from information states

∃ψt : Zt → O s.t. ψt(φt(h)) = ot (2.122)

Definition 3 from [SSSM22] is also equivalent to Definition 4.5 of weak belief bisimulation
relation from [CPP09]

The properties notation used here (ZP, RP, Rec, OP and OR) is borrowed from [NES+],
which presents a unified view of RL algorithms for POMDPs in terms of satisfied
self-predictive properties and implication relations between them.

Figure 2.15: Implication graph for information state generator conditions, from [NES+].
Each coloring for the edges denotes a separate implication. φQ∗ is equivalent to the
optimal information state-action value function that safisfies (2.128).
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Recall the belief trajectory equivalence tests (2.116), which are formulated as equivalence
checks for trajectory rollouts given two identical histories. The predictive conditions for an
information state generator OP and ZP are instead formulated as probability distribution
equivalences for one-step predictions. However, the tests can still be expressed as a
recursive application of OP conditioned on the history and action at the previous step,
followed by Rec.

P(ot:t+k|ht, at:t+k) = P(ot+k|ht+k−1, at+k−1) · P(ht+k−1) (2.123)
= P(ot+k|ht+k−1, at+k−1) · P(ht+k−2, ot+k−1, at+k−1) (2.124)
= P(ot+k|φ(ht+k−1), at+k−1) · P(φ(ht+k−1) (2.125)
= P(ot+k|φ(ht+k−1), at+k−1) · P(ϕ(φ(ht+k−2), ot+k−1, at+k−1) (2.126)

(2.127)

This leads to the result that belief trajectory equivalence tests of arbitrary length can
be satisfied as long as OP holds (one-step predictions are accurate). Stronger assertions
can be made regarding multi-step predictions. Let ZP∗ := P(zt+k|ht, at:t+k−1) denote
multi-step ZP. Similarly, let OP∗ := P(ot+k|ht, at:t+k−1) denote multi-step OP. It can be
shown ZP → ZP∗ for POMDPs, and the proof is sketched in [NES+]. The same cannot be
said for OP, however. While OP → OP∗ holds for MDPs (again, the proof can be found
in [NES+]), it does not generally hold for POMDPs. The MDP in Figure 2.16 (taken
from [CPP09]) serves as a counterexample. In fact, it is a counterexample Markov Model,
since transitions are not conditioned on actions. On the left, we have P(u1|s) = P(u1|t1) ·
P(t1|s) = 1 · 0.5 = 0.5. On the right, we have P(u′

1|s′) = P(u′
1|t′) · P(t′|s′) = 0.5 · 1 = 0.5.

So we have P(u1|s) = P(u1|s′). However, P(t1|s) ̸= P(t′|s′).

Theorem 5 from [SSSM22] states that, given state-action value function over the informa-
tion space Qπ : Z × A → R, defined as the expected return given action a and thereafter
following policy π, we have Qπ(h, a) = Qπ(σ(h), a). Furthermore, there exists an optimal
history-action value function Q∗(h, a) = Q∗(σ(h), a) that satisfies:

σ(h) = σ(h′) ⇒ Q∗(h, a) = Q∗(h′, a) (2.128)

Q∗ can be computed (or approximated) by any model-free method described in the
previous section.

Delayed Markov Decision Processes

MDPs have so far been assumed to be time-invariant discrete piecewise sequential decision
processes. While state-action transitions of the form (st, at, st+1)T

t=1 are sequentially
defined, the time delta between two states is always one unit, and the agent is assumed
to execute an action at the same time as the environment emits its state. Many tasks
that can be approached with RL methods, however, operate in continuous time, and the
dynamics of the system are expressed as systems of ordinary differential equations. Closed
loop control systems can exhibit two delay types: feedback delay and control delay. From
the view of the agent-environment interaction loop in MDPs as a closed-loop control
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Figure 2.16: Counterexample MDP for OP∗, taken from [CPP09]. Edge weights (values
without surrounding brackets) indicate transition probabilities.

system, the former type of delay can be analogous to delayed observations (feedback
from the environment), while the latter can be related to a delayed effect of the policy
on the environment.

[WNLL09] formulates a constant-delay MDP (CDMDP) S, A, T , R, γ, k, where k is the
constant state feedback delay. Furthermore, the work explores different strategies to
handle state feedback delay, with the most significant (and widely used) being the
augmented approach. Here, the constant-delay is reduced to an MDP by mapping the
state-space to Ik := S × Ak, where the state at timestep t It is constructed from the
received state st and the following k actions {at:t+k}.

[KE03] covers Markov decision processes with both constant and stochastic observation,
action, or reward delays. Similarly to CDMDP, an MDP structure can be extended with
constants ko, ka, kc, representing the constant state feedback delay, the constant action
delay (from action emission by the agent until its effect on the environment) and the
constant reward delay. Generalizing the reduction to an MDP applied in the former
case, the state space can be redefined as Sko × Aka , meaning each state is mapped to the
last k state-action transitions. For the stochastic delay process (SDMDP), ko, ka, kc are
random natural numbers. [KE03] proceeds to provide reductions from SDMDP to MDP.

2.4.4 Continuous-Time Reinforcement Learning
Finally, a fundamentally different approach that implicitly deals with delayed timesteps is
the continuous-time model-based reinforcement learning framework proposed in [YHL21].
The work formulates a continuous-time decision process, with the state transition function
is an ordinary differential equation of the form ṡ(t) = ds(t)

dt = T (s(t), a(t)). The state at
timestep t can be explicitly computed as s(t) = s0 +

∫︁ t
0 f(s(k), a(k))dk. The continuous-

time value function is defined as [YHL21]:

V (s(t)) =
∫︂ T

0
e

−k−t
γ R(s(k), a(k)) (2.129)
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CHAPTER 3
Related Work

This chapter presents an overview of the state of the art in MBRL in the first Section 3.1,
while the second Section 3.2 covers related approaches to solving POMDPs, with a focus
on partially-observable continuous control tasks.

3.1 State of the Art in Continuous Control Agents
Up until recently, the state of the art in RL for continuous control had been defined by
actor-critic model-free algorithms. Since this group of tasks is defined by continuous
state spaces (and usually continuous action spaces), the research focus has been on
function approximation methods using deep neural networks (in other words, policy
gradient methods). Since the importance of safety and sample efficiency in control tasks
in robotics shifted the focus to off-policy approaches, where samples from the experience
collected by the behaviour policy can be used multiple times during training the target
policy.

The first groundbreaking off-policy policy gradient algorithm designed for continuous
action spaces has been Deep Deterministic Policy Gradient (DDPG) [Lil15], which trains
a deterministic policy and a state-action value function Q as the critic via policy gradient
from offline data. To encourage exploration, noise is added to the deterministic actions
from the behavior policy at train-time. Importantly, the targets for Q are computed using
an Exponential Moving Average (EMA) of the network parameters for training stability,
a notion introduced in [MKS+13]. TD3 [FHM18] extended DDPG by introducing the
notion of multiple critic networks, to avoid the overestimation bias induced by off-policy
learning. Soft Actor Critic (SAC) trains a stochastic policy instead, which is a better fit
for robotics tasks. The work introduced entropy regularization as an additional surrogate
loss term for training both the actor and the critic. Thus, the policy is encouraged to
balance a trade-off between exploiting increasing returns and exploring the state space.
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Early MBRL methods focused on using a learned model (trained on short sequences)
to augment the training dataset for the actor and critic models [JFZL] (learning in
imagination). However, the myopic rollout horizon of the learned model can populate
the dataset with noisy samples, which in turn leads to an overestimation bias for the
actor/critic networks. The quality of the learned models started to improve with Planning
in Latent Space (PlaNet) [SRD+20]. The work introduced learning latent dynamics
models (Recurrent State-Space Model (RSSM)), which enable longer rollouts for learning
in imagination, as well as introducing robustness to noise by using a probabilistic model.
Planning at inference-time is then done using CEM. The first Dreamer version [HLBN]
learns a Recurrent State-Space Model (RSSM) [DDS+] trained via variational inference,
similarly to PlaNet. The approach also trains actor and critic networks using the simulated
data, which is significantly more performant than the CEM planer. The model is then
used for generating trajectories for actor/critic training as before. The second version
[HLNB] focuses on visual inputs, and uses categorical distributions for the latent state
space instead. Finally, DreamerV3 [HPBL] is a hyperparemeter-free MBRL approach
that is performant across a variety of tasks. Importantly, it is the first model-based
approach that shows significant improvements in performance and sample efficiency over
previous state-of-art model-free algorithms in continuous control problems. It is, however,
not a sample-efficient algorithm, and the large number of learnable parameters can make
the approach unfeasible for hardware deployment.

A state-of-art MBRL algorithm that is designed for control tasks is TD-MPC2 [HSW],
which is extended in this thesis. In TD-MPC2 and similar approaches [DR11] [SRD+20],
the learned model is used in planning by generating multiple trajectories in latent space,
which are then used to derive the best action using optimization methods such as CEM and
MPC. Instead of learning an RSSM, TD-MPC2 learns a self-predictive latent dynamics
model, which is more efficient in terms of space complexity. Furthermore, to estimate
long-term returns beyond the rollout horizon during planning, the learned model also
includes a state-action value estimator, which is then used to learn a policy prior via policy
gradient and entropy regularization. The policy prior is used to bootstrap the MPPI
optimizer employed during planning by providing quality action samples. TD-MPC2 is
currently state of the art in continuous control tasks, outperforming traditional model-free
choices.

3.2 Related Works on Partially Observable Continuous
Control Problems

Various works have explored encoding statistically sufficient representations for dynamical
system states, given unreliable sensor data. One line of work has emerged from the
theoretical foundations on state abstractions [LWL06] and bisimulation relations in MDPs
[GDG03] [CPP09]. Predictive state representations [LS01] defines a maximal subset
of core tests for latent states equivalence as multi-step observation-action prediction
equivalence. States are represented as probabilities of predicted trajectories satisfying
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the core tests. Thus, states are not represented as encoded observation-action histories,
but rather as probabilities of predicting certain trajectories.

Approximate information states [SSSM22] define statistically-sufficient representations
of the observation-action history, in terms of next-state predictions. The approximate
states are encoded by information state generators, and they are capable of next-state
and next-reward predictions. [LBE24] implement an approximate state generator using
an RSSM trained via variational inference, similarly to Dreamer [HPBL].

[ZLP+21] unifies the theory on predictive state representations (for multi-step predictions)
and bisimulation relations (for state abstraction equivalence relations) by extending the
latter to POMDPs and history spaces. The work introduces the concept of causal states,
which are predictive state representations on histories encoded by RNNs. [HPBL] and
[HDT19] learn belief states via variational inference with an ELBO surrogate objective.
On the other hand, [ZMC+21] uses bisimulation metrics in the actual state and latent
state spaces, in order to train a self-predictive and reward-predictive encoder. SAC is
then applied on the latent state space.

Other works simply (but effectively) augment classical model-free architectures with
memory components. [KOD+19] extends the Deep Q-Network algorithm (Q-learning
with neural networks) by incorporating RNNs, and studies the challenges of training
RNNs via T-BPTT on sequences sampled from a replay buffer (the experience dataset).
[MGK] extends the TD3 model-free algorithm to POMDPs by adding LSTM-based
history encoders to both the actor and the critic networks. Its effectiveness is validated
on partially observable tasks that served as inspiration to the current work, such as no
velocity states and Gaussian sensor noise.

Another related line of research focuses on using continuous-time neural networks for
modeling the policy or the transition dynamics. In [ZZH+23], a GRU-ODE based history
encoder is employed within an actor-critic framework to address the challenges posed
by continuous-time environments with irregularly-sampled observations. This approach
integrates policy gradient training with KL divergence as a loss function for latent state
alignment. The Neural ODE-based encoder captures the underlying system dynamics
from past observations and actions, even at irregular timesteps, and is evaluated on
MuJoCo classical control simulations with stochastic observation delays.

A more straightforward, but principled model-based approach models both the transition
dynamics and the policy using neural ODEs [Chi], which are trained end-to-end to
minimize trajectory errors. The approach is principled because it closely models dynamical
systems as a system of coupled ODEs: one for the state evolution, the other for the
controller. A similar approach is studied in [Sch08], but the coupled neural ODEs from
the former work are replaced by traditional RNNs. The coupled architecture is trained in
phases instead: the first phase trains the state dynamics RNN via regression on predicted
observation; the second phase trains the control RNN via policy gradient ascent.
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CHAPTER 4
Method

4.1 Problem Statement
The focus of this thesis is to explore ways of modeling different components of in common
reinforcement learning system using continuous-time neural networks. In particular,
Liquid Time-constant Neural Networks (LTC) [HLA+21] and its closed form, Continuous-
time Neural Networks (CfC) [HLA+22], are used. These networks fall under the umbrella
of recurrent neural networks, and there is a wide existing body of research into employing
this family of neural networks in RL pipelines. The two main methods described in this
chapter are built upon existing end-to-end solutions that solve the general reinforcement
learning problem class. The focus, however, is on the subclass of single-agent continuous
control problems in partially-observable environments, and the methods covered in this
thesis are evaluated on specific instances of continuous control problems, the choice of
which is motivated in Chapter 5.

The single-agent reinforcement learning problem can be formulated as a discrete-time
sequential decision-making problem: given an agent placed in an environment, as well as
the state of the agent at the current timestep and observation from the environment, find
the sequence of actions the agent should take in order to reach a goal state. Formally,
RL algorithms are solutions to Markov Decision Processes, previously described in
Section 2.4.1. The methods described in this work are oriented towards solving continuous
control problems expressed as POMDPs instead, which are formalized in Section 2.4.3.

Given that LTC and CfC networks efficiently model dynamic systems with varying
time-constants, they are especially suitable for robotics applications with perception
noise and latency as constraints. As such, relevant RL problem instances to solve using
the methods covered are motion control tasks with noisy sensor input, in the absence of a
known dynamical model of the agent. Since the lack of a derived model of the robot (and
consequently, forward and inverse kinematics/dynamics) is assumed, task-space motion
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control is excluded from the scope. Thus, three problem instances with distinct dynamic
systems of the form (2.47) (where x ∈ Rn is the system state and u ∈ Rm is the control
signal) are chosen. Here, they are briefly formalized. Implementation details are covered
in Chapter 5.

The methods proposed in this work approximately reduce POMDPs to an MDP, and
the chosen approach is to map the history space of observations and actions H to a
Markovian state space Z using AIS defined as LNNs. AIS are defined in [SSSM22] and
covered in Section 2.4.3 of this work. Throughout this chapter, the POMDP is denoted
by M , and the estimated MDP (also called an augmented MDP in literature [FLRP+19]
is denoted by M̂ .

Cartpole
Cartpole represents an interesting control problem for RL approaches because the system
is inherently unstable (due to gravity), is underactuated and the only actuator present is
discrete. Nevertheless, it is a well-understood control problem with known solutions and
transparent equations of motion/system dynamics.

The setup for cartpole used is defined in [BSA83] as a cart that is able to move on a
restricted 2D plane, and a pole that is hinged on top of the cart in the middle. The
system can be controlled by applying a fixed linear force F to the left or the right side of
the cart. No other actuator is present.

Formally, the state of the system is defined by the following components:

1. χ: position of the cart on the 2D plane

2. χ̇: linear velocity of the cart

3. θ: angle of the pole with the vertical axis

4. θ̇: angular velocity of the pole

The system is further parameterized by the masses of the cart M and the pole m in
kilograms and the half-length of the pole l in meters. The general control problem is
defined as: starting from an initial state of the system (with χ̇ = 0 and θ̇ = 0), the goal
is to balance the pole vertically (θ ∼ 0) for as long as possible, while keeping the cart in
the restricted space on the plane. The system is illustrated in Figure 4.1, taken from
[BSA83].

The system dynamics at timestep t is defined by the following equation in matrix form: M + m ml cos θt

ml cos θt
3
4ml2


χ̈t

θ̈t

 −
mlθ̇

2
t sin θt

mgl sin θt

 =

F

0

 (4.1)
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g is the gravitational acceleration. The physical parameters of the system conform to
[BSA83].

In the context of this work, MDP formulations for the cartpole swingup control problem
can have the two reward functions: a dense, continuous reward signal, or sparse rewards.
The definition of the former is the one used in [TTM+]:

Rdense(st, at) = Rupright(st, at) · Rcontrol(st, at) · Rvel(st, at) · Rcentered(st, at)

where at is the constant force Fx applied to the cart at timestep t:����������
Rupright(st, at) = 1+cos θt+1

2
Rcontrol(st, at) = 4+Fxt

5
Rvel(st, at) = 1+θ̇t+1

2
Rcentered(st, at) = 1+χt+1

2

(4.2)

The reward signal above includes defines the subgoals of keeping the pole in an upwards
orientation, of using as little actuation over time as possible, of constraining the angular
velocity of the pole, and of bringing the cart to the center position on the plane.

A sparse reward function returns a reward of 1 for every timestep where the angle of the
pole is in a tolerance range around the upright position, and the cart position is in a
tolerance range of [−0.25m, 0.25m]:

Rsparse(st, at) =
{︄

1, if χt+1 ∈ [−0.25, 0.25] ∧ |θt+1| < ϵupright

0, otherwise
(4.3)

Variations on the control problem (such as starting state, state bounds, control objective)
have been previously used. For example, if the initial angle of the pole is such that the
pole is oriented "downwards", the control objective includes swinging the pole up and
then balancing it. The specific details used in this work are described in Chapter 5.

Acrobot
The acrobot system, initially defined in [Spo02], is a double pendulum chain comprised
of two links, with one end of the chain fixed to the x-axis. Only the joint that connects
the two links is actuated. A classical control problem is to actuate the system such that
the free end of the chain is balanced upwards, similar to the cartpole swingup control
problem. This is a hard continuous control problem, as the system is underactuated.

The system state is defined as:

1. θ1: angle of fixed joint w.r.t. the vertical axis

2. θ2: angle of joint between the chain links
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Figure 4.1: Cartpole system, from [BSA83]. x is equivalent to χ, while F represents the
constant force to be applied the side of the cart.

3. θ1̇: angular velocity of the fixed joint

4. theta2˙ : angular velocity of the joint between the chain links

The system dynamics can be described by the following equation in matrix form [Cou02]:a11 a12

a21 a22


θ̈1

θ̈2

 =

b1

b2

 (4.4)

where: ����������������

a11 =
(︂

4
3m1 + 4m2

)︂
l21,

a22 = 4
3m2l22,

a12 = a21 = 2m2l1l2 cos(θ1 − θ2),
b1 = 2m2l2l1θ̇

2
2 sin(θ2 − θ1) + (m1 + 2m2)l1g sin θ1 − µ1θ̇1 − u,

b2 = 2m2l1l2θ̇
2
1 sin(θ1 − θ2) + m2l2g sin θ2 − µ2θ̇2 + u.

(4.5)

The reward function defined for MDP formulations of the acrobot swingup control task is
the following:

R(st, at) = 0.5 · clip(| cos θ1t+1 |, ϵradius) + 0.5 · clip(| cos θ2t+1 |, ϵradius) (4.6)
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Figure 4.2: The acrobot system, from [Cou02].

The clip function clips the value of the first parameter to 0 if it is larger than the second
argument. Intuitively, the desired orientation for both joints is upwards, and rewards
are only received if the respective orientation angles fall in a radius tolerance of ϵradius
around 0◦ from the vertical axis.

Planar walker

To explore the ability of the proposed methods to solve locomotion tasks, a bipedal robot
is chosen as the agent. The robot is modeled as a 7-link, 6-joint biped robot, where the
legs are two open chains connected at the hip with one torso link.

This system is specifically chosen as an instance of an underactuated locomotion system,
which requires more challenging control design and system analysis.

The task under test requires maintaining a running gait, which is defined as an alternating
stance phase/flight phase cycle. During the stance phase, one leg is in no-slip contact
with the ground, while the other swings freely and during flight, both legs are in the air
[GK17]. The starting state is a double support phase, where both legs are in contact
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with the ground. During running, the dynamics are described by a spring-loaded inverted
pendulum system, as shown in Figure 4.3.

Figure 4.3: Spring-loaded inverted pendulum model of biped during running [GK17].

Figure 4.4: Kinematics of the 2D bipedal walker.

4.2 TD-MPC2
TD-MPC2 is a highly scalable, hyperparameter-free state-of-the-art Model-Based Rein-
forcement Learning algorithm (Section 2.4.2) designed to solve continuous control tasks.
It jointly trains a world model with surrogate loss terms for latent state transition, reward
and state-action value predictions, as well as a stochastic maximum entropy policy prior,
used to guide an MPPI for local trajectory optimization. The optimization cost is the

58



4.2. TD-MPC2

expected discounted sum of rewards for the optimization horizon, plus the long-term
return, both of which are provided by the learned world model [HSW].

The overall learning goal of the world model is to learn state representations for model-
based planning with trajectory sampling, a method described in Section 2.4.2. Specifically,
an MPPI optimizes the parameters of a multivariate Gaussian N (µ, Σ) according to
(2.109), using the objective function (2.104). The learned world model is used to generate
the sample trajectories {τt:t+H}1:K conditioned on sampled actions from a learned policy
prior, and to compute the cost (2.104) with the reward model for timesteps [t, t + H)
and by estimating the cost-to-go from timestep t + H onwards, for each trajectory.

Since planning in TD-MPC2 is done in the latent space, its world model does not
reconstruct observations as in [HPBL], but rather predicts next-step latent states. The
model’s architecture is the following (task embeddings are ignored and some notations
differ from the original paper for consistency reasons):

• z = φθ(o) current observation encoder

• ẑ = Tθ(z, a) next latent state predictor given current latent state, action

• r̂ = Rθ(z, a) reward categorical distribution parameters predictor for taking
given action under given latent state

• q̂ = Qθ(z, a) latent state-action value categorical distribution parameters pre-
dictor

• µ̂π, σ̂π = πξ(zt) policy prior normal distribution parameters

where θ are the parameters of the φ, T , R and Q networks and ξ are the policy prior
network parameters.

The world model in TD-MPC2 is comprised of jointly-trained MLPs, including the
state-transition model. The encoder maps each observation at each incoming timestep
to a latent state. Furthermore, the state-transition function g outputs deterministic
states, rather than parameterizing a probability distribution over latent states. Finally,
initial empirical results for the algorithm (as per [HSW]) are derived from evaluating the
algorithm on MDPs only. As a consequence, it can be hypothesized that TD-MPC2 is
not sufficient for solving POMDPs.

A feasible approach, as previously discussed in 2.4.3, is to use an encoder function
φ : H → Z that "summarizes" the information contained in the history of observations
and actions. Such encoders are called approximate information state generators if they
satisfy (AP1) and (AP2), or (AP1), (AP2a) and (AP2b) defined in [SSSM22], as covered
in 2.4.3. The properties relate to one-step reward prediction (AP1) and self-prediction
of future latent states (AP2), or the weaker property of observation prediction with
recurrence (AP2a) and (AP2b). Equivalent properties are self-predictive abstraction (RP
+ ZP / EZP and the observation-predictive abstraction properties (RP + Rec + OP)
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property sets from [NES+]. Throughout this chapter, the unified view on state and
history representations presented in [NES+] is used, since characteristics TD-MPC2, the
variant presented in this thesis and other related works can be contrasted under this
view.

In the context of MDPs, the encoder φ used in TD-MPC2 represents an AIS trained to
satisfy (AP1) and (AP2) for Markov states (or RP + EZP). Since the history information
is fully contained in the current observation, there exists a surjective mapping from
encoders defined over the space of histories in a given MDP φθ : H → Z to encoders
over the space of observations O. Furthermore, the algorithm trains a state-action value
estimator Qθ : O × A → R for policy optimization and cost-to-go estimation during
rollouts via TD(0) learning with bootstrapped targets 2.4.1, the learning goal being
(2.128). Overall, from the point of view presented in [NES+], TD-MPC2 is a deterministic
self-predictive state abstraction with return prediction RP + EZP + (2.128).

Proposition 1 from [NES+] gives a surrogate objective function as an upper bound for EZP
in deterministic environments. Given a parameterized state/history encoder φθ : O → Z
(where O = H in MDPs as previously stated) and a deterministic parameterized next-
state predictor gξ : Z × A → Z, the surrogate loss is, according to [NES+], continuous
regression with l2 norm:

L(θ, ξ) = Eo′∼P (·|o,a)
[︂
||gξ(φθ(o), a) − φθ̄(o′)||22

]︂
(4.7)

where θ̄ indicates detached parameters. Proposition 3 from [NES+] shows that targets in
the surrogate loss associated with EZP (meaning, encoded next-step observation with
detached parameters) ensure stationary points for estimating the expectation, which is
under the next-state distribution. This objective is used in TD-MPC2 for learning the
transition model, with the difference being that the parameters of the encoder and the
next-state predictor are shared under the world model parameters θ.

The surrogate loss associated with learning the latent states transition model is:

Lcons(θ) = E{{ot,at,rt,ot+1}H
t=1}B

1

[︄
H∑︂

t=0
ρt

(︂
||z̄t − φθ̄(ot)||22

)︂]︄
(4.8)

The reward predictor in TD-MPC2 parameterizes a categorical distribution with KR bins,
as shown in (2.34). In order to target RP, TD-MPC2 uses a soft cross-entropy surrogate
loss function for discrete regression by turning the real/target rewards into a soft label
distribution using a Gaussian centered at the actual scalar reward. The objective is then
(2.16) with soft targets. The associated surrogate loss function is:

Lrew(θ) = E{{ot,at,rt,ot+1}H
t=1}B

1

[︄
H∑︂

t=0
ρt (DCE(Rθ(z̄t, rt))

]︄
(4.9)

The state-action value predictor Qθ is trained on the same sampled minibatch of sequences
via one-step TD(0) learning, as seen in Section 2.4.1. The targets Rt = Q̄θ(zt, at) are
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computed using the rewards sampled from the experience dataset for the current timestep
rt (the batch dimension is implicitly assumed here) plus the state-action value from the
next step onwards Q̄θ̄(z̄t+1, π(zt+1)), using encoded ground-truth observations from the
next step zt+1 = φθ̄(ot+1) and actions sampled from a learned policy prior. Q̄θ is an
EMA of Qθ, with parameters updated using the Polyak averaging rule (2.91). Similar to
the reward model, Q parameterizes a categorical distribution over discretized values, and
the surrogate objective associated with learning Q is (2.16) with soft targets, as before.
The associated loss function is:

LQ(θ) = E{{ot,at,rt,ot+1}H
t=1}B

1

[︄
H∑︂

t=0
ρt

(︂
DCE(Qθ(z̄t, at), rt + γQθ̄(φθ̄(ot+1), πξ(φθ̄(ot)))

)︂]︄
(4.10)

To estimate expected values for rewards and next-state predictions, the training loop in
TD-MPC2 uniformly samples minibatches of short-length trajectories from an experience
buffer, with starting observations {o0

⋃︁(ot, at, rt, ot+1)H
t=1}B

1 ∼ B. Latent trajectories,
conditioned on the ground-truth actions, of the form τ = ẑt−1, at, ẑt, . . . , at+H , ẑt+H ,
are generated using the transition model zt+1ˆ = gθ(ẑt, at) (ẑ denotes model outputs),
starting from the first encoded ground-truth observation φθ(o0). Supervised learning
with stochastic gradient descent is then applied (as shown in Section 2.2.2), with the
surrogate loss associated with estimating the gradient being composed of the objectives
mentioned above. The reward and value outputs are conditioned on the predicted latent
states sequences. Thus, the loss function for training the world model is the expected
value of a weighted sum of the loss terms above, under the sampled minibatches (αcons,
αrew, αQ weigh each cost term):

L(θ) = E{{ot,at,rt,ot+1}H
t=1}B

1
[αcons · Lcons(θ) + αrew · Lrew(θ) + αQ · LQ(θ)] (4.11)

The policy prior does not share parameters with the rest of the world model. Its parameters
ξ are trained using a stochastic maximum entropy objective [HSW] [ZMB+08], which
adds a weighed entropy loss term to the policy gradient ascent objective (2.93). This
guides the optimization process for the policy parameters towards exploration (thus
implicitly dealing with the exploration/exploitation dilemma mentioned throughout
Section 2.4.1 without introducing stochasticity during planning as in ϵ-greedy, which is
non-differentiable as mentioned in Section 2.4.1. The surrogate loss for optimizing ξ is:

L(ξ) = E{{ot,at}H
t=1}B

1

[︄
H∑︂

t=0
ρt (αQθ(zt, πξ(zt)) − βH(πxi(·|zt)))

]︄
(4.12)

Here, as well as in (4.11), πξ(zt) is shorthand for ât ∼ πξ(·|zt). H(πxi(·|zt)) represents
the entropy of the policy distribution, mathematically defined as (2.8).

θ and ξ are learned using the ADAM optimizer [KB17], described briefly in Section 2.2.2.
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4.3 LNN-TD-MPC2
Several methods for dealing with POMDPs have been covered in Section 2.4.2, and all
approaches try to reduce POMDP to an glsMDP that satisfies the Markovian independence
property. Here, the AIS approach presented in [SSSM22] is chosen, due to three main
reasons:

1. Using history encoders to generate statistically sufficient latent states preserves the
overall TD-MPC2 algorithm (only the state representation is changed), avoiding
the complexity of variational-inference-based MBRL algorithms such as Dreamer
[HPBL].

2. LNNs can be efficient history encoders for an AIS (as shown in this work), enabling
the derivation of analytical properties beyond empirical results.

3. The unified view of state representations defined in [NES+] provides a common
analysis framework for both TD-MPC2 and this work.

Recall that TD-MPC2 uses state representations that satisfy RP and EZP in deterministic,
fully observable MDPs. Many continuous control tasks, however, are neither Markovian
nor deterministic. To handle such tasks, a variant of the TD-MPC2 world model can
be build, using the theoretical foundations of [SSSM22], [NES+] and [LXL+] with LNNs
such as LTC [HLA+21] and CfC [HLA+22] to encode efficient state representations in
partially observable environments.

The state representations in TD-MPC2 are replaced with representations provided by
an LNN that encodes histories of states Ht = o0, a0, . . . , at−1, ot. Let φ : H → Z denote
such an encoder. There are two approaches to using an LNN as a history encoder that
satisfies the properties of an AIS:

1. The self-predictive abstraction approach learns a latent state dynamics model
gφ : Z × A → Z that satisfies RP and (4.7) as an upper bound for ZP, as in
TD-MPC2. Ground-truth latent states are encoded using the LNN φ as a history
encoder during learning. The latent state dynamics model gφ is then used during
planning to generate rollouts.

2. The observation-predictive abstraction approach parameterizes a one-step observa-
tion probability distribution to satisfy OP together with RP. The recurrent update
condition Rec is implicitly satisfied by the unfolding nature of the LNN state, as an
instance of an RNN. During planning, forward histories are recursively constructed
by appending observations sampled from the next-observation distribution model
and actions sampled from the policy prior distribution.

The choice of state representations depends on the task. Section 5 of [NES+] provides
extensive empirical results that highlight the strengths of each compared to the other
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in different environments and tasks. In POMDPs with perturbed observations, the
self-predictive abstraction yields better results, confirming the authors’ hypothesis that
modeling observation distributions for noisy observations is a harder learning objective
than learning self-predictive state representations. In environments with sparse rewards,
however, the approach is weaker, since learning expressive latent state dynamics without
using explicit observations relies on a strong reward signal. In such cases, the observation-
predictive abstraction is more appropriate. These hypotheses also hold for the world
models presented here, as will be shown in Chapter 5.

The history encoder φθ is now represented by an LNN that captures the underlying
continuous-time state of the system, given the past observations and associated timesteps,
as well as the past actions. Given the LTC’s formulation as a nonlinear first-order
dynamical system with adaptive time-constant, and the CfC’s distillation of liquid time-
constant models to a closed-form, such an encoder is (hypothetically) capable of capturing
both the system dynamics and the system response to inputs. Lastly, as instances of
RNNs, they explicitly build up memory through their internal state feedback mechanism.
As a consequence, three hypotheses regarding LNN-based AIS φ can be formulated:

1. φ is a self-predictive abstraction or an observation-predictive abstraction in POMDPs.

2. φ the same holds for SDMDP with randomly-delayed observations of Section 2.4.3.

3. φ continuous-time RL tasks of Section 2.4.4 can be solved with LNN-TD-MPC2.

4.3.1 Self-Predictive Abstraction Model
The first approach is to target the EZP and the RP conditions for the LNN-based history
encoder. The consistency surrogate loss used in TD-MPC2 (4.8) already targets an upper
bound for EZP. The main difference is that the latent states zt used in the loss function
are provided by the LNN encoder.

4.3.2 Observation-Predictive Abstraction Model
Let φθ : H′ → Z be an encoder represented by an LNN, defined over the space of histories.
The history space is extended with the space of real numbers H′ := On × An−1 × Rn,
and the piece-wise time delta Δt between observation timesteps are added to the history.
ϕ in Rec is represented by the internal state update rule of the LNN (2.57) (2.64).
Furthermore, the latent state transition model in TD-MPC2 is replaced with a model that
parameterizes a distribution over the observation space conditioned on latent states and
actions: gθ : Z × A → ΔO. Intuitively, this transition model expresses the probabilities
of observing certain information, after taking a certain action given a certain latent state.
The reward and value models, as well as the policy prior, are kept unchanged.

In order to target OP, a forward KL-divergence surrogate loss (2.14) is used to match
the underlying observation distribution of the POMDP. For ease of readability, let Qθ(o)
denote the posterior distribution parameterized by gθ conditioned on latent states and
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actions, and P (o) be the underlying observation distribution. Given the observation
samples from minibatches o1:H (batch dimension is implicitly assumed), which have
been observed by taking the same actions that are used as inputs to g in the supervised
learning loop, minimizing the KL-divergence can be reformulated as minimizing the
negative log likelihood of the observed samples under the learned distribution (2.46).
The proof of the equivalence is the following:

DKL(P (o)||Qθ(o)) = Eo∼P

[︃
log P (x)

Qθ(x)

]︃
= Eo∼P [− log Qθ(x)] + Eo∼P [log P (x)]

(4.13)

Since the last term does not depend on the learned parameters θ, it can be assumed as a
constant during optimization. With this simplification, the above equation can be used
as a surrogate loss term for learning the next-observation distribution model gθ.

The learned next-step observation distribution is represented as multivariate diagonal
normal distribution (described in Section 2.1.3, with the following parameters:

1. mean µN , where N is the observation dimension |O|, and B is the batch dimension

2. covariance as a diagonal matrix diag(ΣN×N )

The choice is supported by the central limit theorem [CB24], described in Section 2.1.3.
Given enough i.i.d samples, the mean of the samples converges in distribution to a
multivariate normal distribution.

To achieve this, the output dimension of the transition model Tθ is 2|O|. Each output
of the model is split in two even chunks, and the first is interpreted as the mean of the
distribution by applying a hyperbolic tangent function (2.41) scaled by the observation
space bounds. The standard deviation results from applying the differentiable softplus
activation function (2.38), clipped by hyperparameters minΣ and maxΣ.

For deterministic environments, however, the requirement can be relaxed. Since deter-
ministic environments imply a deterministic observation transition model, for any two
given histories ht and h′

t such that φ(ht) = φ(h′
t), the transition model must return the

same observation:

τ(φ(ht), at) = τ(φ(h′
t), at), ∀ht, h′

t ∈ H s.t. φ(ht) = φ(h′
t) (4.14)

Seeing as when targeting ZP in deterministic environments, a surrogate loss that enables
continuous regression over exact predictions is sufficient, the same surrogate loss (4.8) is
applied for observation-predictive abstractions when environments are deterministic.

Supervised learning for RNNs using SGD or similar stochastic gradient methods is
challenging. Due to the sequential nature of the models and the BPTT training algorithms
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applied over contiguous sequences of input-output pairs, the i.i.d. property is typically not
satisfied. Since the training algorithm relies on sampled sequences from the experience
dataset, BPTT cannot be used to train the LNN. Instead, T-BPTT is used, and the
choice of the initial hidden state for each sequence greatly influences the optimization
processes. [HS15] studied the effects of using zero-valued initial hidden states during
training, as opposed to storing the hidden state in the dataset. Zero-value initial hidden
states preserve the i.i.d. property of samples, while using stored hidden states inevitably
introduces correlation between samples and can destabilize the learning process due to
the distribution shift caused by the RNN parameters used during environment interaction,
which are outdated once a learning iteration occurs [AKLM21]. Learning with zero-valued
initial hidden states, however, does not exploit the temporal information contained in
the history of the sampled sequences, which is required for learning an AIS.

[KOD+19] introduces an approach called burn-in, where constant-length slices from the
beginning of the sampled sequences are used to initialize the hidden state for training.
Gradients are not allowed to flow through unfolding over the burn-in sequences. The
work also introduces a hybrid approach, where the burn-in of the RNN internal state
starts from stored hidden states. While this approach reintroduces the correlation and
distribution shift issues, the latter is mitigated by burning in the state of the network using
the same parameters as the ones used during the training iteration. All the approaches
are empirically compared using metrics such as recurrent state staleness and sample
efficiency.

Using the empirical results of [KOD+19] as a starting point, the hidden states of the
LNN computed during environment interaction are stored in the experience dataset.
During training, minibatches of sequences are sampled from the dataset {ao

⋃︁(ot, at, Δtt,
rt, ot+1)H

t=1}B
1 ∼ D, together with an initial hidden state z1 = φ(h1). Constant-length

sub-sequences are sliced from the beginning of the sampled sequences {(ot, at, Δtt, rt,
ot+1)T

t=1}B
1 , T < H. The observations and actions, together with the starting hidden

state, are used as sequence inputs to the encoder with detached parameters:

zT = φθ̄(hT ) = z1
⋃︂

φθ̄(o1:T , a0:T , Δt1:T ) (4.15)

θ̄ indicates that the parameters are detached from the computation graph.

Starting from zT , the sampled sequences oT +1:H , aT :H , ΔtT +1:H are fed through the LNN
encoder. The next-step observation model gθ outputs the parameters of the observation
distribution Q given zt, at, t ∈ [T : H]. The negative log likelihood surrogate objective
(4.13) is then used to achieve OP. Following variational inference-based algorithms such
as Dreamer [HPBL], free bits are employed to avoid the forward KL-divergence’s collapse
towards 0. This is achieved by clipping the surrogate loss below a certain threshold.

As a concrete example, let gθ parameterize a multivariate Gaussian distribution over the
observation space Δ(O) = N (µθ, Σθ) := Q(O). The final surrogate loss for training the
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next-step observation distribution model is:

Lpred(θ) = E{{ot,at,Δtt,rt,ot+1}H
t=T }B

1

[︄
H∑︂

t=T

ρt
(︂
max(1, log Q(φθ̄(ot))

)︂]︄
(4.16)

The targets for the update associated with the value function are also changed to TD(λ)
targets, computed using recursive bootstrapped λ-returns over the sampled sequences.
Eligibility traces are not required (unlike the online setting in TD(λ) method described in
Section 2.4.1) for credit assignment, since complete sequences are sampled. Let Qθ̄

λ(zt, at)
denote the λ targets, where at are actions sampled from the policy prior and zt is the
history at timestep t. Given a batch of sequences as before, targets are recursively
computed starting from the timestep H backwards using the following rule:

Rλ
t = rt + γ

(︂
(1 − λ)Qθ̄(zt+1, at+1) + λRλ

t+1
)︂

, t ∈ [T, H] (4.17)

The surrogate loss associated with learning the value function remains identical to
TD-MPC2, but the targets are changed to λ targets computed as above:

LQ(θ) = E{{ot,at,Δtt,rt,ot+1}H
t=1}B

1

[︄
H∑︂

t=0
ρt

(︂
DCE(Qθ(z̄t, at), Qλ

θ̄
(zt̄, πξ̄(z̄t)

)︂]︄
(4.18)

where z̄t = φθ(ht).

The final loss function for the observation-predictive LNN-TD-MPC2 is:

L(θ) = E{{ot,at,Δtt,rt,ot+1}H
t=1}B

1
[αpred · Lpred(θ) + αQ · LQ(θ) + αrew · Lrew(θ)] (4.19)

Proposition 4 of [SSSM22], and the equivalent Proposition 7 of [NES+], show that
observation-predictive abstractions imply self-predictive abstractions. However, matching
the observation distribution (OP) is a stronger condition to satisfy, especially given that
sampled minibatches are not i.i.d. when training RNNs. Depending on the task, targeting
OP might be infeasible.

4.3.3 Training Procedure and Inference Function
The training procedure is similar to the default TD-MPC2 procedure: adaptive optimiza-
tion of the world model and policy prior parameters using the Adam optimizer [KB17],
given surrogate losses computed on minibatches of trajectories uniformly sampled from an
experience dataset. The world model parameters θ, as well as the policy prior parameters
ξ are updated once per training procedure call. The changes stem from the surrogate loss
functions used for training the proposed models, the fixed sequence slices used for burning
in the encoder hidden state and the λ-targets used for training the value function. The
update procedure for the observation-predictive architecture is described in Algorithm 1,
whereas the update for the self-predictive approach is described in Algorithm 2.
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The inference step using the planner is identical to the TD-MPC2, and the planning
procedure is described in Algorithm 3. The changes stem only from how the world model
executes a forward step using the transition model Tθ, given an action. The forward
step for the observation-predictive architecture is described in Algorithm 5, and for the
self-predictive approach in Algorithm 4. Figure 4.5 illustrates the forwards step for both
models.

Algorithm 1 Observation-predictive LNN-TD-MPC2 update iteration
Require: LNN encoder φθ, next-step observation model fθ, reward model Rθ, value

model Qθ, policy prior πξ, dataset D, batch size B, burn-in index T , sequence end H ,
learning rate η, loss weights λpred, λrew, λQ, discount γ, TD factor λ, policy weights
απ, βπ

1: Sample minibatch {z1, (o, a, r, Δt)1:H}B ∼ D ▷ Sample sequences
2: zT ← φθ̄(o1:T , a1:T −1, Δt1:T , z1) ▷ Burn-in with frozen encoder
3: zT +1:H ← φθ(oT +1:H , aT :H , ΔtT :H , zT ) ▷ Encode full sequence
4: ôT +1:H ← fθ(zT :H−1, aT :H−1) ▷ Predicted observations

µ̂f
T +1:H , Σ̂f

T +1:H ← fθ(zT :H−1, aT :H−1) ▷ Predict observation distribution
5: r̂T +1:H ∼ Rθ(zT :H−1, aT :H−1) ▷ Reward prediction
6: Q̂T +1:H ∼ Qθ(zT :H−1, aT :H−1) ▷ Value prediction
7: Lpred(θ) ← ∥ôT +1:H − oT +1:H∥2

2 ▷ Observation loss (deterministic)
Lpred(θ) ← − log p(oT +1:H | N (µ̂f

T +1:H , Σ̂f
T +1:H)) ▷ Observation loss (stochastic)

8: Lrew(θ) ← DCE(r̂T +1:H , rT +1:H) ▷ Reward loss
9: LQ(θ) ← DCE(Q̂T +1:H , Rλ

T +1:H) ▷ Value loss
10: L(θ) ← λpredLpred(θ) + λrewLrew(θ) + λQLQ(θ) ▷ Total model loss
11: θ ← ADAM(∇θL(θ), α) ▷ Update world model
12: µπ

T :H−1, σπ
T :H−1 ← πξ(sg(zT :H−1)) ▷ Policy prior dist

13: âT :H−1 ∼ N (µπ
T :H−1, σπ

T :H−1) ▷ Sample actions
14: L(ξ) ← απQθ̄(sg(zT :H−1), âT :H−1) − βπH(N (µπ

T :H−1, σπ
T :H−1)) ▷ Policy loss

15: ξ ← ADAM(∇ξL(ξ), α) ▷ Update policy prior

Algorithm 2 Self-predictive LNN-TD-MPC2 update iteration
Require: LNN encoder φθ, dynamics model fθ, reward model Rθ, value model Qθ,

policy prior πξ, dataset D, batch size B, burn-in index T , sequence end H, learning
rate η, loss weights λpred, λrew, λQ, discount γ, TD factor λ, policy weights απ, βπ

4: ẑT +1:H ← fθ(zT :H−1, aT :H−1) ▷ Predicted next-states
5: µ̂f

T +1:H , Σ̂f
T +1:H ← fθ(zT :H−1, aT :H−1) ▷ Predict next-state distributions

7: Lcons(θ) ← ∥ẑT +1:H − zT +1:H∥2
2 ▷ Latent state consistency loss (deterministic)

Lcons(θ) ← − log p(zT +1:H | N (µ̂f
T +1:H , Σ̂f

T +1:H)) ▷ Latent state cons. loss (stoch.)
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Algorithm 3 Planning/inference step for TD-MPC2/LNN-TD-MPC2
Require: Starting latent state zt, forward dynamics model Tθ, reward model Rθ, value

model Qθ, policy prior πξ, trajectory rollout length Hplan, number of sampled trajec-
tories K, number of MPPI samples S, Number of MPPI iterations I, previous MPPI
solution mean µS

t−1
1: zt ← φθ(ot, at−1, zt−1) ▷ Encode current observation-action pair
2: zK

t ← [zt]⊤K ▷ Initialize K trajectories
3: for i = t to t + HΠ − 1 do
4: aK

i ∼ πξ(·|zi) ▷ Sample actions from policy prior
5: zi+1 ← Tθ(zi, ai) ▷ Forward dynamics step
6: end for
7: at+HΠ ← πξ(·|zt+HΠ)
8: A1:K ← a1:K ▷ Bootstrap MPPI with policy prior actions
9: zS

t ← [zt]⊤S ▷ Repeat start state for S samples
10: µS ← µS

t−1, ΣS ← 0 ▷ Initialize MPPI distribution
11: for i = 1 to I do
12: AK+1:S ∼ N (µS , ΣS) ▷ Sample actions from MPPI distributions
13: G1:S ← [0]S ▷ Initialize returns
14: for j = t to t + HΠ − 1 do
15: rS

j ∼ Rθ(zS
j , AS

j ) ▷ Compute reward
16: GS ← GS + rS

j ▷ Add to return
17: zS

j+1 ← Tθ(zS
j , AS

j ) ▷ Forward dynamics
18: end for
19: GS ← GS + Qθ(zS

t+HΠ
, AS

t+HΠ
) ▷ Add estimated return-to-go

20: ws ← (2.108)(GS) ▷ Weigh samples according to GS

21: µS , ΣS ← (2.109)(wS) ▷ Update MPPI distribution
22: end for
23: return argmaxa∈AS Gs ▷ Return action that leads to the best trajectory

Algorithm 4 Transition model Tθ for
self-predictive LNN-TD-MPC2
Require: Current information state zt,

current action at, LNN encoder φθ,
dynamics model fθ

1: return zt+1 ∼ fθ(·|zt, at) ▷ Sample
next-step information state

Algorithm 5 Transition model Tθ for
observation-predictive LNN-TD-MPC2
Require: Current information state zt,

current action at, LNN encoder φθ,
observation predictor model fθ

1: ôt+1 ∼ fθ(·|zt, at) ▷ Sam-
ple next-step observation prediction
return zt+1 ← φθ(ôt+1, at, zt) ▷ En-
code predicted observation and input
action
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Figure 4.5: Forward step for LNN-TD-MPC2. Blue indicates the observation-predictive
model, while red indicates the self-predictive model. Green represents a common data
path, while dashed lines denote one timestep forward.

4.3.4 Theoretical Bounds
The world model upper bound analysis referenced in Section 2.4.2 is extended to world
models with AIS encoder in [AHL16] and [FLRP+19]. Let ϵP

θ represent the upper bound
on the prediction error, which can be formulated as turning the history compression
conditions of ZP and OP into l1-norms bounded by a tolerance ϵP

θ :

max
H∈H

||T (·|h, a) − T (·|φ(h), a)||1 ≤ ϵT
φ (4.20)

where the probability distributions are over the latent space Z when φθ is a self-predictive
abstraction parameterized by θ, or the observation space O, when φθ is an observation-
predictive abstraction parameterized by θ. In the context of learning θ from a dataset D
using the LNN-TD-MPC2 training procedure of Algorithm 1, ϵP

φ is an upper bound for
the expected value of the prediction error under sampled trajectories from D. In this
case, φθ is also called an ϵ-sufficient history mapping, denoted as φϵ. Let φ∗ denote the
sufficient mapping that satisfies OP and ZP exactly.

Proposition 2 from [FLRP+19] states the following: for any two given histories such that
φθ(h1) = φθ(h2), the maximum difference in state-action value evaluation over the action
space, and given the learned state-action value model, can be bounded by the predictive
bound ϵP

φ :

max
a∈A

|Qθ(φ∗(h1), a) − Qθ(φ∗(h2), a)| ≤ ϵT
φ

Rmax
1 − γ

:= ϵQ
θ (4.21)

where Rmax = max R. The proposition is proven in [FLRP+19].

Let D denote in this context, the set of sampled sequences during training, and D∞
represent the sampled dataset in the limit (which is equivalent to the entire experience
dataset). Let πD

ξ denote the policy learned from the limited dataset D, and πD∞
ξ represent

the policy learned by sampling the entire experience dataset in the limit. Finally, let
V π∗

θ represent the theoretical optimal value function for the abstract MDP encoded by
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φθ, under the optimal policy π∗, and V
πD∞

ξ

θ a possible value function, using the policy
prior πξ learned from the asymptotical dataset D∞. Lemma 1 by [AHL16] provides the
following bound for the value estimate, in terms of the state-action value error ϵQ

θ from
above:

max
h∈H

|V πD∞
ξ

θ (φθ(h)) − V
πD∞

ξ

θ (φθ(h))| ≤ 2ϵQ
θ

(1 − γ)2 (4.22)

Plugging ϵQ
θ from (4.21) [FLRP+19] in (4.22) [AHL16], Theorem 1 from [FLRP+19] gives

an upper bound for the asymptotic bias of the theoretical value function associated with
the learned AIS, under the learned policy πξ, in terms of the theoretical optimal policy:

max
h∈H

|V πD∞
ξ

θ (φθ(h)) − V π∗
θ (φθ(h))| ≤ 2ϵT

φ Rmax

(1 − γ)3 (4.23)

Theorem 3 from the same work [FLRP+19] also provides a bound for the overfitting of
the learned model on the sampled experience. The overfitting of the model on the limited
dataset D is bounded by:

max
H∈H

(Q
πD∞

ξ

θ (φθ(H), πξ(·|φθ(H))) − Q
πD

ξ

θ (φθ(H), πξ(·|φθ(H))) ≤

≤ 2Rmax
(1 − γ)2

⌜⃓⃓⎷ 1
2n

ln
(︄

2|φ(H)||A|1+|φ(H)|

δ

)︄ (4.24)

with a probability ≥ 1 − δ. The proof is in Appendix A.2. of [FLRP+19].

4.3.5 Nomenclature and Hyperparameter Choice
The base TD-MPC2 algorithm is designed to be hyperparameter-free, including batch size,
MPPI population size, replay buffer size and learning rate. Some of the hyperparameters
are automatically chosen using task-dependent heuristics. The choices and the motivation
behind them are described in Appendix H from [HSW]. The practitioner is given a choice
of hyperparameter configurations, which includes the dimensions and the number of
hidden layers for the MLPs, as well as the number of Q-functions in the Q-ensemble.
Here, an additional architecture size is defined, which has fewer parameters than the
smallest TD-MPC2 configuration. The architecture configuration is denoted as light.
The architecture proposed in this chapter replaces the default encoder with the LNN
encoder, which only requires defining the number of hidden neurons and the size of the
latent vectors. Furthermore, the default values of some TD-MPC2 hyperparameters are
changed, to acommodate the proposed algorithm variants. The default length of the
sampled trajectories for training H = 3 is extended to H = 32 to facilitate training
the LNN with T-BPTT on longer sequences. The decaying term ρ used in the initial
surrogate loss functions (4.8), (4.9), (4.10), used to decay the error terms further along
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the sequences and focus on immediate accurate predictions, is now set to 1. The proposed
light configuration is summarized in Table 4.1.

Hyperparameter Fixed value

LNN hidden size 64

MLP hidden size 192

# Q-functions 2

Latent vector size 64

Table 4.1: Light architecture configuration.

LNN-TD-MPC2 defines extra hyperparameters. The planning horizon HΠ is decoupled
from the world model training horizon H. Furthermore, one can choose between the
LNN models to use: LTC or CfC. Finally, a choice between the observation-predictive
and the self-predictive models, as well as deterministic or stochastic predictions, can be
made by the user. As will be shown in Chapter 5, the choice of architecture depends on
the task. minΣ and maxΣ are hyperparameters representing the bounds for the learned
covariance of the next-step observation multivariate normal distribution in the stochastic
observation-predictive model.
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CHAPTER 5
Evaluation

This chapter focuses on establishing empirical tests for the following hypotheses:

1. LNNs are effective and sample-efficient history and state dynamics encoders in
MDPs and POMDPs. There is a high correlation between the internal state of the
liquid time-constant models and the underlying state of the environment.

2. Training LNNs using LNN-TD-MPC2 is stable and converges to returns comparable
to the ones achieved by TD-MPC2 for the given MDPs.

3. LNN-TD-MPC2 models solve and outperform standard TD-MPC2 in POMDPs
and SDMDPs.

4. LNN-TD-MPC2 performance scales with planning horizon, whereas TD-MPC2
does not.

5. The stochastic observation-predictive world model perform better in POMDPs
with perturbed observations or sparse rewards. The self-predictive model performs
better in fully-observable MDPs with complex dynamics.

6. The history encoder in LNN-TD-MPC2 correctly processes irregularly sampled
observations (see Section 2.4.3) and achieves better performance on task variants
with stochastic observation delay, compared to standard TD-MPC2.

5.1 Methodology
To test the above hypotheses in an empirical manner, three different robotics systems are
chosen, as mentioned in Section 4.1: Cartpole, Acrobot and Walker. Similarly, to test the
LNN-TD-MPC2 models’ capabilities of learning a model of the environment to control
these systems towards solving specific tasks, even in partially observable scenarios, a
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variety of scenarios are implemented. For validating the first hypothesis, fully observable
and partially observable variants of Cartpole are chosen, since the dynamical system
presents easily-derivable equations of motion, but controlling the system without a given
model is still challenging. The small state space further enables analysis of the correlation
hypothesis. For all other hypotheses, a suite of environments is chosen, and multiple trials
with different seeds for the random number generators are run to derive performance
statistics and rule out the hypothesis of the model overfitting to a specific randomness
source. All LNN-TD-MPC2 world models presented in Section 4.3 are evaluated for all
scenarios.

For each task, the following partially observable variants are defined:

1. <σ>
perturbed: observation noise sampled from a normal distribution with σ2 variance

2. <N>
delay observations are delayed by t steps, where t is sampled from a discrete uniform
distribution U [0, N)

Since cartpole is a simpler control problem to solve, the following additional partially
observable variants are defined:

1. remove-vel: velocity states are not included in the observations

2. <σ>
perturbed-flickering: observation noise sampled from a normal distribution with σ2 vari-
ance, as before; furthermore, a probability of flickering for each state (observations
are zeroed out for a timestep) is sampled from a normal distribution with σ = 0.2
standard deviation

For tasks with observation noise, all models are trained on the task variant with σ = 0.1.
This includes the cartpole-swingup<σ>

perturbed-flickering task, where the models are trained
with observation noise sampled from a normal distribution with σ = 0.1 and flickering
probability sampled from a normal distribution with σ = 0.2. The trained models are
then evaluated on observation spaces with increasing noise levels σ ∈ {0.1, 0.2, 0.3}.

To facilitate benchmarking, environment rewards are normalized to be in the range of
[0, 1], and the infinite-horizon MDPs are truncated after 1000 steps, leading to episodic
returns being defined in the range [0, 1000].

5.2 Setup
The simulation setup relies on dm-control [TTM+], a standardized benchmarking Python
library for continuous-control tasks. dm-control is an abstraction layer over environments
simulated using MuJoCo (Multi-Joint dynamics with Contact) [TET12], an open-source
C/C++ physics simulation engine. The structure of a Mujoco simulation is the following:
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• MJCF - XML extension used to define models

• mjModel - static data structure defined using MJCF, which represents the hierar-
chical structure of a robot, in terms of links, joints, sensors, actuators and physical
parameters.

• mjData - runtime instances of entities defined by a mjModel

• 3D interactive scene visualizer, rendered using OpenGL [SR07]

• Differentiation engine for forward and inverse dynamics [Tod14], with single-step
Euler integrator (2.56), 4th order Runge-Kutta integrator (2.55) and others

≪interface≫
Environment

+reset() : TimeStep

+step(action) : TimeStep

+observation_spec() : dict

+action_spec() : spec

+physics() : Physics

Physics

+data

+model

+timestep

+step()

+reset()

-check_divergence()

≪interface≫
Task

+initialize_episode(physics)

+get_observation(physics) : dict

+get_reward(physics) : float

+should_terminate(physics) : bool

TimeStep

-step_type : enum

-reward : float

-discount : float

-observation : dict

Figure 5.1: UML class diagram of the dm_control RL environment interface.

The dm-control offers a Python wrapper over the MuJoCo engine, which provides Python
bindings for the C/C++ MuJoCo API. Environments in dm-control implement the
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Figure 5.2: Execution flow of reset and step methods of the dm-control implementation
of the dm-env environment interface. Taken from [TTM+].

dm_env interface, an API that was designed to standardize RL environment implemen-
tations [MDA+19]. Figure 5.1 represents a UML class diagram of the main dm_env
interfaces and data structures. The description of the dm-control implementation of
the interface as a MuJoCo wrapper is defined in section 2 of [TTM+]. Crucially, the
separation between the physics layer (which interfaces with the Mujoco Python bind-
ings) and the higher-level environment layer (exposed to the practitioner) is maintained,
and the physics stepping (which forwards integrates the MuJoCo simulation) and the
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environment stepping are decoupled. One environment step call can invoke multiple
physics step calls, which allows the physics timestep to be kept small and the integration
to be numerically stable. The flowchart in Figure 5.2 illustrates the execution flow of
calls to the reset and step methods. The former initializes the system, the physics and
environment-specific data structures, while the latter forwards the simulation by one
execution step, given an action command. The library further offers modules for defining
custom systems, environments and tasks, as well as extensions such as variations with
corrupted observations or reward shaping.

The most relevant module of the dm-control library in the context of this chapter is the
control suite module, which implements a benchmark suite that standardizes popular
MuJoCo RL environments, such as those from Gymnasium [TKT+24] (including cartpole,
acrobot, and walker), as well as extra variations that are more difficult to solve. Rewards
are standardized to be in the range of [0, 1], and sparse rewards are implemented using a
smooth tolerance function around the discrete values of {0, 1}, which keeps the reward
function differentiable. Infinite-horizon tasks are truncated after 1000 steps, leading to
episodic returns of R ∈ [0, 1000]. This fits the environment definition proposed in the
methodology section in Section 5.1. A solution is considered optimal by the authors of
[TTM+] if R ≥ 800.

To test Hypothesis 6 , task variants of the type <N>
delay are created by implementing a

wrapper over the dm-control environment. This is facilitated by the Gymnasium wrapper
class [Fou25], which allows extending Gymnasium environments, including the class’s
members and the step and reset methods. The observations emitted by the environment,
together with their timestamps, are stored in a double-ended queue of capacity N . At
each call of the step method, the environment returns the i-th observation-timestamp pair
from the queue, with i ∼ U [1, 10]. This effectively implements SDMDPs with delayed
observations (see Section 2.4.3). The described environment is illustrated in Figure 5.3.

Figure 5.3: Environment wrapper where observation history is stored in a double-ended
queue. Observations are uniformly sampled from the queue, implementing stochastic
observation delay

The library also provides a benchmarking suite for standardized continuous-control agents,
with normalized action intervals of [−1, 1] and truncated episodes with fixed duration.
The aim is to provide uniform durations and returns across environments and tasks. All
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episodes are truncated after 1000 steps. Given that rewards are in the range [0, 1], the
theoretical maximum return achievable for any given environment is also 1000, which
matches the proposed reward and return ranges in Section 5.1. The authors of [TTM+]
define an optimality criterion for task solutions as achieving returns higher than 800.
While the library provides both image and proprioceptive observations, only the latter
are used in this evaluation. The control suite is documented in section 6 of [TTM+].

Evaluation scenarios are devised on the cartpole, acrobot and walker. In dm-control, a
distinction is made between domains (which represent the physical model) and the tasks
(complete instance of an MDP). For cartpole, the tasks associated with the formulation
in Section 4.1 are the swingup and swingup-sparse, with the initial orientation of the
pole being downwards. The latter task provides sparse rewards only: a reward of 1 per
timestep is received only when the pole angle is approximately upwards. Both tasks will
be included in the evaluation. For walker, the run task is used, which includes a weighed
forward velocity term in the reward function.

The algorithm variants are defined in terms of the world model used, the model size
and the planning horizon. The naming scheme used to distinguish the world models is
< LNN-variant >

<OP/ZP>
<det/stoch>, where LNN-variant ∈ {LTC, CfC}.

Table 6.1 in the Appendix lists the environments and tasks used in the scenario, their
state, observation and action spaces, the reward type (sparse or dense) and references to
the corresponding reward function, for dense rewards.

All models evaluated in this chapter have been trained on a local workstation equipped
with an NVIDIA RTX 5080 16 GB VRAM GPU.

5.3 Evaluating State Representation
This section focuses on validating Hypothesis 1 , which means establishing metrics for
evaluating the similarity between the learned state space encoded by the LNN and the
actual state space of the environment/system. For this analysis, the cartpole environment
is used, as the state space is small and equations of motion are well understood. Following
the learned-actual state space correlation analysis done in section 4.2.2 in from [HS18],
the correlation between each state of the system χ, χ̇, θ, θ̇ and each quadratic combination
of the latent vector variables is computed. Whereas the latent vector size in [HS18] is
equal to the number of states of the cartpole environment (4), this section aims to apply
the same analysis to arbitrary latent space sizes.

Given that the states of the system can be expressed as non-linear combinations of the
other states, the cart linear acceleration χ̈ and pole angular acceleration θ̈, finding the
quadratic combination of latent states which yields the highest correlation coefficient
for each (unobserved) state variable is sufficient as a non-linear combination that can
capture second-order dependencies. In practice, this is done by taking the building the
matrix ZT ×D where each line is of the form [z1, . . . , zn, z2

1 , . . . , z2
n], reducing the method
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to finding the best linear mapping between Z and the state matrix S = [χ, χ̇, θ, θ̇]1:T . T
represents the episode length, and D the size of the latent space.

At first hand, Ordinary Least Squares regression seems appropriate. Ordinary Least
Squares finds the weight matrix that minimizes the l2-norm between z and s in the
following manner:

min
W

||WZ − S||22 (5.1)

However, since all model sizes used in evaluation have latent space sizes larger than 4,
finding such a mapping is trivial (using least squares regression, for example), since Z
becomes close to singular. To avoid this, Ridge regression is used instead, which adds a
regularization term that penalizes large weights:

min
W

||WZ − S||22 + α||W ||22 (5.2)

W is then used to predict the four states of the system Ŝ, and the Pearson correlation
coefficient is computed using the following formula:

r =
∑︁

i

(︂
Si − S̄

)︂ (︂
Ŝi − S̄̂

)︂
√︃∑︁

i

(︂
Si − S̄

)︂2
√︃∑︁

i

(︂
Ŝi − S̄̂

)︂2
(5.3)

S̄ represents the mean of vector S.

The experiment scenario is CfCOP
det model of size 0.5 (meaning 64 hidden units), trained

using a data set of 50K environment steps, after which the algorithm converges towards
saturated returns. The cartpoleremove-vel task is used, in order to test the hypothesis
that the CfC-based encoder captures the dynamics of the system only from partially
observable state histories. The episode is split into two successive phases: the swing-up
phase, where the system is controlled to swing the pole upwards, and the balance phase,
where the pole is kept balanced in the upward orientation. The results are summarized
for the initialized and trained model in Figure 5.4a, 5.5a and 5.4b, 5.5b for the swing-up
and balanced state, respectively.

Another validation method is to use dimensionality reduction techniques to project
the latent state vectors and the actual state vectors to the 2D and plot the projected
data points. Following the analysis in section 4.1 from [ZZH+23], Uniform Manifold
Approximation and Projection (UMAP) [HM24] is used to project the matrices ZT ×N

and ST ×4 to the 2D space. The data points are then colored according to the natural
logarithm χ̇ and θ̇. If the hypothesis holds, then point clusters should be colored
similarly. Furthermore, the topology of the projected spaces should be similar (rotation
invariant). The results are shown for the initialized and trained model in Figure 5.6a, 5.7a
and 5.6b, 5.7b for the swing-up and balanced state, respectively.
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Finally, it is important to assess the one-step prediction error. In detOP model variants,
the loss function (4.7) is an upper bound for the surrogate loss used for deterministic
observation predictions. This property holds in deterministic environments. Furthermore,
as discussed in Section 2.4.2, and since the planner relies on trajectory sampling using the
predictive model, it is important to check the one-step prediction error, as it accumulates
along the rollouts. For the fully observable version of cartpole, Figure 5.8 and 5.9 show the
states at each timestep compared to the one-step state predictions in the first subfigure,
while the second subfigure plots predicted state rollouts of length H = 10 at each H
timesteps. It can be seen that the predicted states are close to the actual states of
the environment, indicating a small one-step prediction error. Results for one-step and
multi-step prediction error statistics over 10 episodes with different Random Number
Generator (rng) seeds are also included in Table 5.1 and 5.2.

Metric One-step prediction
mean/standard

deviation

Multi-step prediction
mean/standard

deviation

CfCOP
det 2e-05 ± 8.8e-8 1.22e-3 ± 1e-05

LTCOP
det 6e-4 ± 1e-05 1e-2 ± 7e-05

Table 5.1: Prediction error metrics for CfCOP
det and LTCOP

det on the fully observable cartpole
task.

Metric One-step prediction
mean/standard

deviation

Multi-step prediction
mean/standard

deviation

CfCOP
det 2.4e-5 ± 8.8e-8 1.2e-3 ± 8e-6

LTCOP
det 1e-4 ± 2.7e-7 1.3e-3 ± 7e-6

Table 5.2: Prediction error metrics for CfCOP
det and LTCOP

det on the partially observable
cartpoleremove-vel task.

The same does not hold for cartpoleremove-vel, since it is stochastic. Applying the same
force to the cart given two identical position observations can lead to different observation
states/targets, since the velocity states are not observable. If φ is an unbiased encoder,
the problem reduces to a deterministic MDP. As shown above, the LNN encoder manages
to generate latent embeddings that are highly correlated with the true environment
states. The upper bound analysis described in Section 4.3.4 does not hold here. Thus,
the prediction error is empirically analyzed.

Firstly, the time-series of observation prediction loss (4.19) associated with this scenario is
included in Figure 5.10, providing an estimate for the expected n-step error under the true
observation distribution. While not a true estimate (samples from the experience dataset
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are not i.i.d.), the figure at least shows that the mean squared error for next-observation
predictions given minibatches of sampled sequences is minimized, and the bias is small
(the error converges to ∼ 0.02).

The choice of the number of neurons used by the LNN encoder also influences the state
representations. To determine the minimum number of neurons required to model the
underlying state of the system, the sparsity of the hidden states is analyzed by computing
an effective rank for the hidden state matrices ZT ×D during training. The singular
values of the matrix Z are computed using Singular Value Decomposition (SVD), and a
distribution is defined over the singular values σ1:Q, Q = min(T, D) as follows:

pk = σk

||σ||1 , k ∈ [1, Q] (5.4)

where || · ||1 denotes the l1 norm. The effective rank of Z is then [RV07] computed as the
exponential of the entropy of the distribution:

erank(Z) = e
∑︁Q

k=1 pk log pk (5.5)

To analyze the impact of the number of LNN on learned representations, the effective rank
of Z is logged at each training timestep with different hidden neuron counts, using the
CfCOP

det architecture variant, on multiple environments cartpoleremove-vel, cartpoleσ=0.2
perturbed

and acrobot. The results are summarized in Figure 5.11 and 5.12.
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(a) Initialized model.

(b) After 120k training steps. Each plot represents the correlation between the best quadratic
combination of learned hidden states and the corresponding state of the system. During the
swingup phase, forces are applied to the sides of the cart to swing the pole upwards, so the cart
traverses the 2D plane in range [−1, 2], as shown in the χ plot. The velocity of the cart χ̇ also
varies in range [−4, 4]. The pole is swung towards 0◦, starting from 180◦. Thus, both cos α and
sin α are scattered across the [−1, 1] range. All correlation coefficients are close to 1, indicating
the capability of the LNN-based world model of learning the underlying system dynamics, even
with no velocity information.

Figure 5.4: Swingup phase of cartpoleremove-vel.
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(a) Initialized model.

(b) After 120k training steps. Again, correlation is high for all system states. This time, cos α is
clustered around 1, while sin α is clustered around 0, showing that the pole is balanced around
the angle α = 0◦. The angular velocity α̇ and cart velocity χ̇ are also clustered around 0.

Figure 5.5: Balance phase of the cartpoleremove-vel.
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(a) Initial model.

(b) After 120k training steps. On the left: points are colored according to the logarithm of the
cart velocity. On the right: points are colored according to the logarithm of the pole angular
velocity.

Figure 5.6: UMAP projection to 2D for hidden states and actual states, swingup phase
of cartpoleremove-vel.
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(a) Initial model.

(b) After 120k training steps.

Figure 5.7: UMAP projection to 2D for hidden states and actual states, balance phase of
cartpoleremove-vel.
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(a) Plot of one-step state predictions vs. actual states.

(b) Plot of 10-step state predictions vs. actual states.

Figure 5.8: State predictions vs. actual states over the runtime of an episode of cartpole
using an CfCOP

det model trained over 50K environment steps. Corresponding states and
predicted states are colored identically, and the latter are represented as dashed lines.
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(a) Plot of one-step state predictions vs. actual states.

(b) Plot of 10-step state predictions vs. actual states.

Figure 5.9: State predictions vs. actual states over the runtime of an episode of cartpole
using an LTCOP

det model trained over 50K environment steps. Corresponding states and
predicted states are colored identically, and the latter are represented as dashed lines.
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Figure 5.10: Observation prediction loss for CfCOP
det on cartpoleremove-vel over 50K envi-

ronment steps.
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(a) Effective rank of hidden state matrix of dimensions sequence length × number of neurons over
time during training. Using 64 neurons saturates the effective rank at ∼ 18, indicating sparse,
highly-correlated learned states.

(b) Episodic return during training for sizes 8, 16, 32 and 64. The 32 and 64 neuron configurations
yield the highest returns. Given that the effective rank associated with 32 neurons saturates at
∼ 9 early during training, a size larger than 32 is redundant for this task.

Figure 5.11: The effective rank of Z at each training timestep with different hidden
neuron counts, using the CfCOP

det architecture variant.
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(a) Effective rank of hidden state matrix of dimensions sequence length × number of neurons
over time during training. Using 8 neurons saturates the effective rank at ∼ 9 earlier, indicating
condensed representations that are close to the number of modelled states: 4 states for the agent,
mean and standard deviation for both noise Gaussian and flickering Gaussian.

(b) Episodic return during training for sizes 8 and 64 neurons. Using only 8 neurons leads to
convergence and more consistent returns during training.

Figure 5.12: The effective rank of Z at each training timestep with different hidden
neuron counts, using the CfCOP

det architecture variant with noise and flickering.
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5.4 Regression Testing
In this section, the stability training process of all model variants on a challenging MDP
is analysed. This connects back to Hypothesis 2 . The acrobot-swingup task is chosen
for this scenario. Since TD-MPC2 cannot learn an optimal solution for this task, the
chances of instability in the training process for the introduced models are higher in this
case. The hypothesis that learning a TD-MPC2 world model which uses an LNN-based
history encoder does not degrade the agent performance is assessed. In other words, no
regression is introduced.

Figure 5.13 illustrate relevant training plots for stability analysis. Oscillation in the value
loss associated with (4.18) would indicate high variance, caused by the following: the
value targets (4.17) computing using fresh samples from the experience dataset D are
out-of-distribution with respect to the estimated Qθ distribution (overfitting). Looking at
Equation 1 from [FLRP+19], the estimated value error is proportional to an overfitting
term and a bias term. Unless Qθ = Q∗ (the value estimate perfectly matches the optimal
value function), which is only theoretically possible in the limit after covering the entire
S × A space, an approximately constant value loss over time must indicate the bias,
which is upper bounded by the next-state prediction error [FLRP+19] (2.99).

The consistency loss is expected to have two distinct phases, similar to the two-phase
nature of an episode of each of the tasks selected for evaluation: the swingup-balance
phases in cartpole and acrobot, and the stand-gait phases in walker. Only first phase is
initially observed during environment interaction. As the behavior policy improves, the
experience dataset is diversified by the addition of transitions which include observations
from the second phase. Thus, for the deterministic models, the MSE surrogate consistency
loss (4.19) initially increases, and then proceeds to decay over time. Similarly, for the
stoch-OP models, the negative log likelihood loss (4.13) is expected to decay over time,
indicating that the learned distribution approaches the underlying next-observation
distribution. The continuous regression is not necessarily converging asymptotically to
0 for det-ZP, but rather to the asymptotic bias of the next-latent state predictor given
samples from the history encoder φ.

The pi_scale plot illustrates the running scale over the estimated Q values for the batches
of encoded ground-truth history sequences and sampled action sequences from the policy
prior. A rising plot indicates a high credit assigned by the model. A sudden decrease
indicates that the model accounts for the former overconfidence in the estimated returns.
A stagnant curve indicates a lack of further learning.

Finally, the norm of the gradients of the world model loss (4.11) w.r.t its parameters θ
is illustrated, in order to assess whether the exploding/vanishing gradients phenomena
occur during training. Similarly, the norm of the gradients associated with the policy
prior parameters ξ is also shown.

Figure 6.3 illustrates an episode of a solved variant of the cartpole-swingup task, with
frames sampled at different timesteps. Similarly, Figure 6.1 illustrates an episode of the
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Figure 5.13: Training plots for TD-MPC2, CfCOP
det and CfCZP

det on the acrobot_swingup
task. The y-axis in the consistency_loss and grad_norm plots is log-scale. The gradients
are stable for all models, and the steadiness of the value loss indicates an absence of
overfitting. The smooth decrease in policy loss indicates that the entropy is slowly
minimized, as the training of the policy parameters converges towards maximizing return
estimates. The running scale of the Q estimates is also increasing over time, especially
for the best-performing det-OP model.

solved acrobot-swingup task.
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5.5 Agent Performance Comparison on All Control Tasks
With Proprioceptive Inputs

This section presents performance scores for all model variants on the tasks described in
Section 5.1, providing evidence for Hypothesis 3 . Due to limited resources for training,
all models presented in this work are trained over 200K environment steps only. As
shown in the plots showing the episodic return for all tasks during training, however,
200K steps already lead to convergence. The models are tested against two baselines:
TD-MPC2 and DreamerV3 [HPBL], as two state-of-the-art MBRL algorithms. The
scores for the baselines are chosen as the scores reported in [HMa] by the authors of
[HSW], as they include achieved episodic returns for trained TD-MPC2 and DreamerV3
models after each 100 000 steps. To make the comparison as fair as possible, the 200
K-step checkpoints are chosen. Worth noting is that the baseline TD-MPC2 model has
approximately 5M learnable parameters and the DreamerV3 model has around 20M,
whereas the proposed models are much smaller (below 500K learnable parameters, as
described in Section 5.2).

Episodic returns achieved during training the proposed models on the fully-observable
tasks are shown in Figure 5.14, while the mean and standard deviation of returns over 10
episodes for all models and baselines, with unique rng seeds, are reported in Table 5.3
(shared seeds across models). Due to resource constraints, training runs that converge
early are stopped before reaching 200K training steps. The standard, 5M parameters
TD-MPC2 model still achieves returns on cartpole-swingup and walker-run, although
results with some of the proposed approaches are comparable. Notably, performance on
acrobot-swingup is improved with all LNN-TD-MPC2 models besides the OP

stoch models,
with an optimal performance achieved using CfCZP

det .

The benefits of using the LNN-based history encoders are highlighted by the results
on the partially observable task variants included in Table 5.4, 5.5 and 5.6. While not
all models reach the optimal scores for all tasks, the results nevertheless indicate that
LNN-TD-MPC2 is more robust. The stochastic model OP

stoch tends to decay in performance
the least, with increasing sensor noise variance. However, it also typically achieves
the lowest performance ceiling out of all LNN-TD-MPC2 variants. The difference in
performance is more clearly illustrated in Figure 5.15, which illustrate the robustness
added by the LNN encoder.

Another highlight is the sample-efficiency of the LTC-based models cartpole-sparse. The
authors of [HSW],[HMa] report a score of 1.0 after 100K training steps, whereas LTCOP

det
converges after approximately 50K steps even earlier, while LTCZP

det converges even earlier
- after just 50K steps.

93



5. Evaluation

Figure 5.14: Episodic returns over time during training the LNN-TD-MPC2 variants, on
the fully observable tasks.
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Model cartpole cartpole-
sparse

acrobotswingup walker-run

TD-MPC2 863.9 784.8 329.0 830.9

DreamerV3 906.5 258.6 (735.0
after 300K)

154.5 632.7

CfCZP
det 856.0 769.4±0.92 883.1±0.2 785.98 ± 16.14

CfCOP
det 880.0 ± 6.7 799.5±3.14 544.7±6.73 632.7 ± 34.12

CfCOP
stoch 856.0 ± 7.4 805.90 ± 5.20 263.26 ± 61.96 724.32 ± 16.03

LTCZP
det 822.04 ± 0.90 768.40 ± 0.97 769.29 ± 0.62 767.53 ± 24.48

LTCOP
det 860.0± 9.04 726.85 ± 82.04 284.80 ± 102.12 653.81 ± 13.59

LTCOP
stoch 824.35 ± 12.08 752.40 ± 23.98 536.36 ± 2.54 633.60 ± 40.63

Table 5.3: Performance across four key environments: cartpole, cartpole-sparse, acrobot-
swingup, and walker-run.

Model cartpoleremove-vel cartpoleσ=0.1
perturbed-
flickering

cartpoleσ=0.2
perturbed-
flickering

cartpoleσ=0.3
perturbed-
flickering

TD-MPC2 193.22 ± 13.68 378.82 ± 45.43 353.63 ± 76.27 365.71 ± 47.37

CfCZP
det 603.0 798.89 ± 50.64 742.19 ± 52.02 550.69 ± 76.55

CfCOP
det 868.27 ± 2.12 878.0 ± 34.07 756±70.0 645.49 ± 92.07

CfCOP
stoch 705.80 ± 103.31 825 ± 25.45 693.08 ± 54.02 600.22 ± 79.86

LTCZP
det 726.85 ± 82.04 780.85 ± 29.36 736.24 ± 74.14 677.99 ± 52.82

LTCOP
det 846.07 ± 2.65 824.35 ± 16.02 744.14 ± 36.91 471.47 ± 104.39

LTCOP
stoch 724.50 ± 63.09 804.30 ± 54.22 763.06 ± 55.91 721.52 ± 78.38

Table 5.4: Performance on cartpole-swingup variants: no velocity and with varying sensor
noise levels and sensor flickering.
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Model acrobotσ=0.1
swingup acrobotσ=0.2

swingup acrobotσ=0.3
swingup

TD-MPC2 90.50 ± 104.67 57.74 ± 55.10 74.80 ± 41.12

CfCZP
det 559.78 ± 28.61 448.90 ± 75.03 322.62 ± 113.33

CfCOP
det 564.55 ± 35.14 495.90 ± 48.82 374.15 ± 47.69

CfCOP
stoch 272.56 ± 93.26 285.83 ± 56.31 239.59 ± 161.22

LTCZP
det 468.84 ± 44.98 370.50 ± 51.94 281.79 ± 64.72

LTCOP
det 326.23 ± 72.63 307.21 ± 76.20 224.97 ± 121.64

LTCOP
stoch 263.19 ± 71.27 254.91 ± 111.96 201.62 ± 95.31

Table 5.5: Performance on acrobot-swingup under perturbations of varying noise levels.

Model walker-runσ=0.1
perturbed walker-runσ=0.2

perturbed walker-runσ=0.3
perturbed

TD-MPC2 581.92 ± 37.27 495.75 ± 38.88 387.69 ± 38.61

CfCZP
det 764.30 ± 15.06 734.35 ± 22.53 647.65 ± 38.56

CfCOP
det 589.87 ± 20.48 569.53 ± 36.58 519.73 ± 26.55

CfCOP
stoch 697.32 ± 17.28 672.14 ± 12.43 630.33 ± 27.61

LTCZP
det 714.06 ± 11.12 607.04 ± 19.83 546.43 ± 47.25

LTCOP
det 570.15 ± 20.48 454.38 ± 49.65 501.66 ± 39.56

LTCOP
stoch 642.81 ± 17.38 597.67 ± 32.84 485.32 ± 64.43

Table 5.6: Performance on walker-run under perturbations of varying noise levels.
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5.5. Agent Performance Comparison on All Control Tasks With Proprioceptive Inputs

Figure 5.15: Mean and standard deviation of returns achieved by TD-MPC2 and CfC-
based models, on each partially observable task with sensor noise.
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5.6 Comparison of Self-Predictive and
Observation-Predictive Models

Hypothesis 5 is validated by the results reported in Table 5.3, 5.4, 5.5 and 5.6. Observation-
predictive models perform better on tasks with sparse rewards (see cartpole-sparse
scores) and tasks with specific states omitted from observations, such as velocity (see
cartpoleremove-vel scores). The episodic returns during training for the sparse reward
task also reflect the advantage of the observation-predictive model in the absence of a
continuous reward signal. Furthermore, the stochastic models stoch-OP deal better with
the uncertainty introduced by sensor noise or flickering (see cartpoleσ

perturbed results),
and prove more robust under increasing noise variance. Figure 5.17 illustrates relevant
metrics during training the stoch-OP model on task cartpoleσ=0.1

perturbed. Specifically, the
variance of the parameterized next-step observation distribution decays during learning,
towards a value of ∼ 0.25. While this variance is higher than the variance of the normal
distribution, which provides noise samples for the observations, the task also artificially
flickers observations with probabilities sampled from a normal distribution of σ2 = 0.2.
This can explain the higher uncertainty of the predictive model. Similarly, the NLL of the
ground-truth observations under the learned distribution also decays over time, showing
that the learned distributions fit the underlying distributions. Figure 5.16 shows more
training plots for the stochastic model on the walker-run task, highlighting the stability
and convergence of the learning process.

However, as noted before, the stochastic observation-predictive model tends to hit a
performance ceiling on tasks with more complex dynamics. Furthermore, as reflected in
the training plots in Figure 5.14, the model requires more training samples to improve,
compared to all other approaches. Regarding the more complex dynamics of acrobot and
walker, training the LNN encoders for future observation predictions seems to hinder
the model performance, in contrast to the simpler goal of latent state consistency in
the self-predictive approaches. These results reflect and strengthen the argument from
[HSW], which states that reconstructive models are not required to solve continuous
control tasks.

On the other hand, the self-predictive models handle fully observable complex dy-
namics better, as reflected by results for harder continuous control problems such as
acrobot-swingup (which is unsolved by the baselines) and walker-run, included in Table 5.3.
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5.6. Comparison of Self-Predictive and Observation-Predictive Models

Figure 5.16: Training plots for CfCOP
stoch on walkerσ=0.1

perturbed.

(a) One-step observation distribution vari-
ance averaged over sampled batch during
training.

(b) One-step NLL of sampled ground-truth
observation batch over time. Values are
interpreted as densities instead of probabili-
ties, so values are allowed to be negative.

Figure 5.17: Relevant training plots for CfCOP
stoch on cartpoleσ=0.1

perturbed over 100K steps.
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5. Evaluation

5.7 Performance Comparison on Tasks with Irregularly
Sampled Observations

To evaluate the performance of LNN-TD-MPC2 on tasks with irregular time delays
in observations, the cartpole-swingup and walker-run tasks are adapted by introducing
stochastic observation delays (see Section 5.1) at different levels. For the former, the
following maximum values for the discrete random observation delay are used: 3, 6, 10.
Since the state space of the cartpole-swingup task is small, these larger steps are used
to highlight the difference in performance across the tested models. The walker-run
is comparatively more complex, in terms of state space dimensionality. Thus, smaller
increments in maximum random delays are used: 1, 2, 3.

The mean and standard deviation of episodic returns across 10 trials, achieved by the
baseline TD-MPC2 and LTCZP

det are highlighted in Figure 5.18. The stability of TD-MPC2
collapses on the walker-run, with increasing observation delays, while it maintains a
decent performance on cartpole-swingup. The LTC-based model efficiently constructs
state representations from irregularly-sampled observations, leading to more consistent
and stable returns, especially on the more complex walker-run task.

Figure 5.18: Mean and standard deviation of returns achieved by TD-MPC2 and LTCZP
det,

on cartpole-swingup and walker-run with various upper bounds on the introduced discrete
stochastic observation delay.
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5.8. Impact of Planning Horizon Length

5.8 Impact of Planning Horizon Length
To analyze the effect of increasing the planning horizon on agent performance, the CfCdet

ZP

model that solves the acrobot-swingup task (with the default planning horizon value of
10), is tested using different horizon lengths for 10 trials. Each trial is initialized with a
unique rng seed. The results are shown in Figure 5.19. While using a shorter planning
horizon greatly decreases the execution time required by the planner, the achieved returns
are also greatly diminished. On the other hand, using a Hplan value higher than the
default value of 10, such as 16, increases the variance of the collected returns across
trials, making the overall agent more inconsistent at solving the task. Furthermore, the
execution/inference time also increases, a further drawback for real-time systems.
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5. Evaluation

(a) Probability density functions of episodic returns for 10 episodes of acrobot-swingup,
using CfCdet

ZP and different planning horizon lengths. Extending the planning horizon to
10 clearly leads to increased consistent performance, even with an outlier return of ∼ 600.
Increasing the planning horizon beyond 10 leads to diminishing returns, as returns achieved
with Hplan = 16 present a much higher variance.

(b) Probability density functions of planner execution time for 10 episodes of acrobot-swingup,
using CfCdet

ZP and different planning horizon lengths. Execution time increases linearly with
the planning horizon.

Figure 5.19: Performance comparison of CfCdet
ZP on the acrobot-swingup task, using

different planning horizon length. Performance is defined in this case as achieved episodic
returns and the time complexity of the planner. The space complexity is identical, since
the number of model parameters and MPPI samples is identical across runs. Plotted
probability density functions are computed using kernel density estimation.
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CHAPTER 6
Conclusions

6.1 Summary of Findings
Designing end-to-end self-learning agents poses a great challenge for solving continuous
control tasks under noisy or flickering sensor data, especially when data arrives at irregular
timesteps. TD-MPC2, the state of the art MBRL algorithm, efficiently solves such tasks
under the assumption of fully observable states, and outperforms other algorithms on
standard control benchmarks in simulation. However, as shown in Chapter 5, Section 5.6,
this performance does not necessarily extend to partially observable task variants. This
thesis leverages LNNs to build sufficiently predictive state representations by encoding
the full history of observations and actions of the agent throughout an episode run, and
improves TD-MPC2 to tackle more challenging robotics tasks.

As shown in Section 5.3, the state representations of the proposed LNN-based models
have the potential to closely resemble the underlying states of the partially-observed
process. This is further reflected by the results on one-step and multi-step state prediction
tests, which illustrate a predicted trajectory that is close to the actual trajectory of the
controlled dynamical system.

General benchmarks on the fully observable tasks described in Section 4.1, 5.1, and
5.2 show that the proposed extensions to the TD-MPC2 algorithm achieve similar
performance to the baseline algorithm, which already outperforms the previous state of
the art DreamerV3. A key finding here is that the proposed self-predictive model achieves
optimal performance (as defined by the creators of the tasks) on acrobot-swingup, which
is unsolved by the baseline algorithms. Judging by results reported in [HPBL] and
[HSW], acrobot-swingup represents the most challenging task from the dm-control suite.
The time-constant adaptivity of LNNs allows the model to efficiently recover the state
dynamics that contribute to achieving higher rewards. Notably, the observation-predictive
model does not reach the same performance, even though it performs better than the
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baseline. Since the acrobot system is underactuated, one hypothesis is that predicting
the states is not as important for solving the task as is modeling the dynamics relevant to
properly control the system to reach the defined objective. In this sense, the TD-MPC2’s
intentional design of learning reward-centric latent models, the use of MPPI for planning,
as well as the expressivity of LNNs for capturing relevant dynamics, contribute towards
solving this particularly challenging task.

The findings reported in Section 5.6 suggest that the proposed extensions are more
equipped to tackle control tasks with sensor noise flickering. The performance ceiling
on the chosen tasks is higher than the one achieved by standard TD-MPC2, and the
proposed models are much more robust at increasing noise levels.

Finally, the capability of LNNs at processing inputs that arrive at irregular timesteps
allows the proposed approaches to achieve good performance on SDMDP variants of
the chosen tasks, whereas the performance of the standard TD-MPC2 collapses once
observations are delayed.

6.2 Future Work
While the performance of LNN-TD-MPC2 reported in this work is promising, the
evaluation scope is limited. Due to the scope induced by multiple model variants,
hyperparameter choice, time and computing resources, and number of trials required
for evaluating the hypotheses defined in Section 5.1, Chapter 5 focuses on assessing
performance on selected simulation environments under diverse scenarios. However, the
end-goal of deploying the proposed methods on hardware remains delegated to potential
future research. For this to occur, the sim-to-real gap has to be addressed - a non-trivial
challenge. Nevertheless, the sample efficiency and the relatively-high level of robustness
to uncertainty (in comparison to baselines) shown by LNN-TD-MPC2 in the limited
evaluation scope of Chapter 5 could extend to actual robotics systems - an exciting
potential avenue of research.

Some of the scores reported in Section 5.5, 5.6 suggest there is room for improvement
in the design and/or in the implementation of the proposed architectures. For example,
the stochastic observation-predictive model seems perfectly capable of capturing the
randomness induced by the artificially-added sensor noise in the cartpole-swingup and
walker-run tasks. However, the algorithm converges to suboptimal returns, below the
optimal scores of 800. While the achieved score is still higher than the baseline, the
simultaneous finding of successful convergence and suboptimal returns indicate possible
issues in the implementation. This will be investigated and addressed in future work.

Finally, the theoretical analysis hinted at in Section 4.3.4 can be extended, as it was
entirely based on previous analysis on bounds on approximate information state gen-
erators [SSSM22] [AHL16] [FLRP+19] [LXL+] [NES+]. For example, the deterministic
observation-predictive model(<LNN>OP

det) has no theoretical grounding, and only em-
pirical results validate the efficiency of the model in some scenarios. In fact, [NES+],
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[SSSM22] directly suggest that the next-step deterministic observation prediction is an
insufficient condition for efficient approximate information state generators, even in fully-
observable contexts. Furthermore, expected next-latent state predictions (<LNN>ZP

det)
are also not theoretically founded when applied to POMDPs. This remains an open
challenge in the domain, not just within the scope of this thesis.
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6. Conclusions

Task State
Space

Observation
Space

Action
Space

Reward
Type

Reward
Function

(if Dense)

cartpole
swingup

4D (χ, θ, χ̇,
θ̇ sin(θ))

5D (χ, cos θ,
sin θ, χ̇, θ̇)

1D (torque) Dense Pole
upright

angle, small
control

effort, low
angular
velocity,
and cart
centering

cartpole
swingup
sparse

4D (χ, θ, χ̇,
θ̇ sin(θ))

5D (χ, cos θ,
sin θ, χ̇, θ̇)

1D (torque) Sparse r = 1 if
cos(θ) >

0.95, else r
= 0

cartpole
swingup no

velocity

4D (χ, θ, χ̇,
θ̇ sin(θ))

3D (χ, cos θ,
sin θ)

1D (torque) Dense Pole
upright

angle, small
control

effort, low
angular
velocity,
and cart
centering

acrobot
swingup

4D
(θ1,2, θ̇1,2)

6D (cos θ1,2,
sin θ1,2, θ̇1,2)

2D Joint
torques

Dense End effector
in upright
position

with
tolerance

walker run ∼ 18D (θ1:7,
θ̇1:7, top
velocities
vx, vz, top
coord. ztop,
torso coord.

xtorso)

24D same as
state, joint

angles replaced
by cos and sin

6D (joint
torques)

Dense Positive
signal for
forward
velocity,
negative
signal for
colliding

with ground
and control

cost

Table 6.1: State, observation, and action spaces along with reward specifications for
selected dm_control tasks.108



6.2. Future Work

t=0.0 t=2.0 t=4.0

(a) Swingup phase of an episode of acrobot-swingup solved with CfCZP
det.

t=8.0 t=10.0 t=12.0

(b) Balance phase of an episode of acrobot-swingup solved with CfCZP
det.

Figure 6.1: Frames captured from an episode of the acrobot-swingup simulation.
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t=0.5 t=1.0 t=1.5 t=2.0

(a) Standing phase of an episode of walker-run solved with CfCZP
det.

t=2.5 t=3.0 t=7.0 t=7.5

(b) Running phase (alternate single-support/flight phases) of an episode of walker-run solved
with CfCZP

det.

Figure 6.2: Frames captured from an episode of the walker-run simulation.
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6.2. Future Work

t=0.0 t=2.0 t=4.0 t=6.0

(a) Swingup phase of an episode of cartpoleno-vel solved with CfCOP
det .

t=8.0 t=10.0 t=12.0 t=14.0

(b) Balance phase of an episode of cartpoleno-vel solved with CfCOP
det .

Figure 6.3: Frames captured from an episode of the cartpoleno-vel simulation.
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