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Kurzfassung

Optimaler Massentransport (OMT) ist eine Methode, um zu beschreiben, wie man die Werte
einer ersten gegebene Funktion f verschieben muss, um eine zweite gegebene Funktion
g zu erhalten. Wir können ein Ähnlichkeitsmaß zwischen f und g definieren, indem wir
messen, wieviel wir von f verschieben müssen, um g zu erhalten. Mithilfe dieses Maßes
können wir nun eine weitere Funktion bestimmen, die f und g so ähnlich wie möglich ist und
dementsprechend als Mischung der beiden Funktionen gesehen werden kann. Im klassischen
Fall ist OMT für nichtnegative, reellwertige Funktionen definiert. In dieser Arbeit erweitern
wir OMT auf Funktionen, die in die Menge der hermiteschen, positiv semidefiniten Matrizen
abbilden. Diese Funktionen repräsentieren beispielsweise multidimensionale Signale. Wir
betrachten Signale als stochastische Prozesse und sind an ihren statistischen Eigenschaften
interessiert, insbesondere an der Autokovarianz und Kreuzkovarianz. Der Satz von Herglotz
liefert einen Zusammenhang zwischen der Autokovarianz und dem Spektralmaß. Wir
erweitern die Aussage auf den multidimensionalen Fall, indem wir auch die Kreuzkovarianzen
einbeziehen. Wir zeigen, dass die Matrix der Kreuzspektralmaße positiv semidefinit und
daher ein Kandidat für die Methoden des OMT ist. Als Anwendung wollen wir mithilfe von
OMT in einem Raum mit einer Signalquelle und zwei Sensoren jenes Signal modellieren, das in
der Mitte der beiden Sensoren gemessen werden würde. Für diesen Zweck implementieren wir
OMT in MATLAB. In der Formulierung von OMT wird nach einem optimalen Weg gesucht,
um g aus f zu erhalten. Dementsprechend müssen wir nun ein konvexes Optimierungsproblem
lösen. Die Berechnung benötigt eine kurze Rechenzeit. Wir erhalten Ergebnisse, die den
tatsächlichen Messungen an der untersuchten Stelle entsprechen könnten und haben somit
eine vielversprechende Methode entwickelt, um Signale zu modellieren.



Abstract

Given two functions f and g, optimal mass transport (OMT) is a method of describing how
we can rearrange the values of f in order to obtain g. By considering how much we have to
rearrange to obtain g, we define a measure of similarity between f and g. This can be used
to determine a function that is as similar as possible to both f and g and hence represents
a mixture of the two functions. In the classical setting, OMT is defined for non-negative,
real-valued functions. In this thesis, we redefine optimal mass transport for functions that
map to the Hermitian, positive semi-definite matrices. These functions can represent, e.g.,
multidimensional signals. We consider signals as stochastic processes and are interested in
their statistical properties, in particular the autocovariance and cross-covariance. Herglotz’s
theorem provides a connection between autocovariance and spectral measure, however we
extend the statement to the multidimensional case by considering cross-covariances. We
show that the matrix of the cross-spectral measures is positive semi-definite and thus is
a candidate for the methods of optimal mass transport. As an application, a room with
a signal source and two sensors is given. We use OMT to model the signal that would
be measured in the middle of the two sensors. For this purpose, we implement OMT in
MATLAB. In the formulation of OMT, we need to find an optimal way of obtaining g from
f . Hence, this requires solving a convex optimization problem. The computation can be
done in a short time. We obtain results that could resemble actual measurements at the
considered location and hence we have developed a promising method of modeling signals.
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1 Introduction

Optimal mass transport (OMT) provides a way to rearrange the values of a given function f
in order to obtain another given function g. More precisely, given two non-negative functions
f, g : [a, b] → ❘

+
0 that satisfy

∫ b
a f(x) dx =

∫ b
a g(y) dy, we try to find a transport plan

m : [a, b]× [a, b] → ❘
+
0 satisfying

b∫
a

m(x, y) dy = f(x),

b∫
a

m(x, y) dx = g(y).

Loosely speaking, the value m(x, y) tells how much of f(x) we have to take from location x
and transport to location y. Based on [NGT14], we describe how we can extend OMT to
functions µ that map to the Hermitian, positive semi-definite matrices. In order to ensure
the existence of a transport plan, we have to redefine the properties of a transport plan
and therefor consider tensor products and corresponding mappings. Our new transport
plan will be a function m : [a, b] × [a, b] → Cn×n ⊗ Cn×n. Since the transport plan is not
unique, we want to find the best one, i.e., the transport plan that moves the least but still
satisfies the required constraints. For this purpose, we introduce the cost of each transport
plan and select the one with the lowest cost. Finding this optimal transport plan is a
convex optimization problem. If our given functions µ0 and µ1 are similar, we can find a
cheap transport plan, i.e., a transport plan that just moves a little. However, the optimal
transport plan of two very different µ0 and µ1 will have a high cost. Hence, the optimal
cost T2,λ(µ0, µ1) (i.e., the cost of the optimal transport plan) between µ0 and µ1 acts as a
measure of similarity between the two functions. Apart from the triangle inequality, T2,λ
satisfies all properties of a metric. We can use this measure of similarity to determine a
function µ0.5 that minimizes the sum

T2,λ(µ0, µ) + T2,λ(µ, µ1)

over all µ. This µ0.5 is as similar as possible to our given µ0 and µ1 and hence can be seen
as a mixture of them. Later, we want to apply these methods to multidimensional signals in
order to determine intermediate signals. But first, we need to discuss the theoretical basics
about signals.

We consider signals as stochastic processes. In this thesis, we only deal with discrete-time,
wide-sense stationary stochastic processes. We are interested in their statistical properties,
in particular in the autocovariance and cross-covariance. Herglotz’s theorem provides the
existence of a spectral measure, i.e., a measure F that satisfies

rXX(t) =

π∫
−π

exp(iωt) dF (ω)

1



1 Introduction

whereat rXX is the autocovariance function of a process X. In this thesis, we prove the
existence of a matrix F of complex measures satisfying

R(t) =

π∫
−π

exp(iωt) dF (ω),

whereat R is the covariance matrix. Furthermore, we prove that the matrix F ([ω1, ω2]) is
positive semi-definite for any [ω1, ω2] ⊆ [−π, π).

After showing that cross-spectral density functions of multidimensional signals can be
represented as Hermitian, positive semi-definite matrix-valued functions, we apply our OMT
methods. As an example, we consider a room with a source and two sensors. Knowing the
signals at the two sensors, we try to model the signal that would be measured in between the
two sensors. This corresponds to our aforementioned task of finding µ0.5 between given µ0

and µ1. We see that the computation can be done in reasonable time and yields reasonable
results.

A founding father of OMT was the French geometer Gaspard Monge. In the end of the 18th
century, he was considering a place where you could dig up soil and a construction where the
soil was needed. Since transportation was expensive, he asked for an optimal way to transfer
the soil to the construction, i.e., he wanted to know where exactly the soil extracted from
a certain location had to be transported to. In 1942, the later Nobel Prize winner Leonid
Kantorovich published a general formulation of OMT, without knowing about Monge’s work.
Some years later, Kantorovich work was connected to Monge’s formulation. That gave rise
to a new formulation of the OMT problem, namely the Monge–Kantorovich formulation.
See [Vil+08, Introduction - 3] and [KPT+17, p. 44].

Various literature sources were consulted in the preparation of this thesis. In addition to
the bibliography, we also want to mention the most frequently used literature here: The
description of the concept of OMT, in particular the concepts of matrix-valued OMT, is
based on the paper On Matrix-Valued Monge–Kantorovich Optimal Mass Transport by
Lipeng Ning, Tryphon T. Georgiou, and Allen Tannenbaum ([NGT14]). Advanced linear and
matrix algebra by Nathaniel Johnston ([Joh21]) offers precise but still colorful explanations
regarding linear algebra, e.g., tensor products. Stationary Stochastic Processes: Theory and
Applications by Georg Lindgren ([Lin12]) provides a good introduction to stochastic processes
and their spectral properties, in particular for continuous-time signals/stochastic processes.
German-speaking readers will find a detailed introduction to measure theory in Maß- und
Integrationstheorie by Jürgen Elstrodt ([Els18]). Real and Complex Analysis by Walter
Rudin ([Rud87]) was consulted for theorems and definitions regarding analysis. Probability
by Albert N. Shiryaev ([Shi96]) offers precise mathematical formulations regarding stochastic
processes and their spectral representation, e.g., Herglotz’s theorem.

In Chapter 2, we introduce OMT for non-negative, real-valued functions. In Chapter 3, we
redefine OMT for Hermitian, positive semi-definite matrix-valued functions. In Chapter 4, we
give an introduction to one-dimensional signals and their statistical properties. In Chapter 5,
we consider multidimensional signals. In Chapter 6, we use our methods from Chapter 3
and apply them to multidimensional signals that we have examined in Chapter 5.

2



2 Optimal mass transport

In this chapter, we want to introduce the concept of optimal mass transport (OMT), often
simply referred to as “optimal transport”. Given two functions f and g that satisfy some
assumptions, OMT tries to transport the values or “masses” of f in such a way that we
receive g. For example, f could indicate at which position how many goods are currently
located and g could indicate where the goods should be located after the transport. This
transport should be done in an optimal way, i.e., by transporting as little as possible. By
considering how “easy” it is to obtain g from f , we can deduce how similar f and g are. This
gives rise to even more exciting applications.

Nowadays, OMT plays an important role in signal processing, see e.g., [FSHE25] and
[PLE25]. [Vil03] and [Vil+08], authored by Fields medal winner1 Cédric Villani, offers a
very deep and mathematically profound introduction to OMT. Another publication that
includes both basic concepts and different applications of OMT in signal processing and
machine learning is [KPT+17].

The problem introduced in this thesis corresponds to the Monge-Kantorovich formulation.
However, in Section 2.3.2, we give a short introduction to the Monge formulation.

Before diving into definitions and mathematical details of OMT, we want to start with a
simple example.

2.1 Motivation

This section does not contain precise mathematical formulations or reasoning. Instead, it is
intended to give a first taste of the terms defined in Section 2.2.

Let us consider two discrete functions2 f, g : {1, 2, 3, 4} → ❘
+
0 with the property

4∑
x=1

f(x) =

4∑
y=1

g(y),

defined by Table 2.1. The symbol ❘+
0 denotes the non-negative real numbers. The bar

graph of this discrete function is shown in Figure 2.1.

x, y 1 2 3 4

f(x) 1 3 2 1
2

g(y) 2 3
2 1 2

Table 2.1: We define f and g by stating their values for each element in their domain.
1https://www.mathunion.org/imu-awards/fields-medal
2In order to match with later notation, the argument of f will be denoted as x and the argument of g will

be denoted as y.

3
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2 Optimal mass transport

1 2 3 4

f
(x
)

x
1 2 3 4

g
(y
)

y

Figure 2.1: Bar graph of f and g

We now want to find out how to deform the first function in order to obtain the second
function. Considering the value at each point as mass, we are asking how to move mass of f
in order to obtain g. One possible way is shown in Figure 2.2. A suitable way of moving
the mass from f so that we obtain g is called transport plan. Such a transport plan can
be seen as a function m : {1, 2, 3, 4} × {1, 2, 3, 4} → ❘

+
0 . The mass moved from x to a not

necessarily different y is denoted by m(x, y). In Figure 2.2, the values of the transport plan
correspond to the height of the moved bars and can be found in Table 2.2. As can be seen
in Figure 2.3, a transport plan needs to satisfy

4∑
y=1

m(x, y) = f(x),

4∑
x=1

m(x, y) = g(y) (2.1)

and an m : {1, 2, 3, 4} × {1, 2, 3, 4} → ❘
+
0 satisfying these equations is a transport plan.

1 2 3 4

f
(x
)

x
1 2 3 4

g
(y
)

y

m(1, 1)m(2, 2)

m(2, 1)

m(3, 3)

m(3, 4)

m(2, 4)

m(4, 4)
m(1, 1)m(2, 2)

m(2, 1)

m(3, 3)

m(3, 4)

m(2, 4)

m(4, 4)

Figure 2.2: Visualization of transport plan m.

Since the “total masses” of the two functions are the same, i.e.,

4∑
x=1

f(x) =

4∑
y=1

g(y),

it is not surprising that a transport plan exists. However, the transport plan m is not unique,
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2 Optimal mass transport

Transport plan m(x, y)

y = 1 y = 2 y = 3 y = 4

x = 1 1 0 0 0
x = 2 1 3

2 0 1
2

x = 3 0 0 1 1
x = 4 0 0 0 1

2

Table 2.2: Values of transport plan m. The mass moved from x to y corresponds to m(x, y).

i.e., there exist other $m ̸= m such that

$m : {1, 2, 3, 4} × {1, 2, 3, 4} → ❘
+
0

4∑
y=1

$m(x, y) = f(x),
4∑

x=1

$m(x, y) = g(y).

Since there is more than one transport plan, we want to select the most sensible one. I.e.,
we seek for a transport plan that moves as little as possible, both in terms of mass and
distance. We can implement this by defining costs of transport plans and select the one with
the lowest cost. The cost should penalize if we move a lot of mass, i.e., if m(x, y) has a high
value, and if we move the mass a long distance, i.e., if |x− y| has a high value. We introduce

cost(m) =
4∑

x=1

4∑
y=1

m(x, y)� �� �
How much

do we move?

· |x− y|2� �� �
How far

do we move it?

.

If we do not move anything at all, we have m ≡ 0 and hence the cost of m is zero. However,
if f ̸= g, then m will not be a transport plan, i.e., it will not satisfy (2.1).

2.2 Optimal mass transport

In this section, we will take our considerations of Section 2.1 and apply it to functions
defined on an interval. Hence, we need to consider integrals instead of sums. Our approach
is based on the Monge-Kantorovich formulation defined in [NGT14, Section II]. Later, in
Section 2.3.1, we will briefly introduce a slightly different version of the Monge-Kantorovich
formulation that deals with measures.

Let f, g : [a, b] → ❘
+
0 be two functions satisfying

b∫
a

f(x) dx =

b∫
a

g(y) dy. (2.2)

In the spirit of Section 2.1, we want to find a transport plan m, i.e., a function

m : [a, b]× [a, b] → ❘
+
0 ,

5



2 Optimal mass transport

1 2 3 4

f
(x
)

x

m(1, 1)
m(2, 2)

m(2, 1)

m(3, 3)

m(3, 4)

m(2, 4)

m(4, 4)

1

2

3

4

g(y)
y

m
(1
,1)

m
(2
,2)

m
(2
,1)

m
(3
,3)

m
(3
,4)

m
(2
,4)

m
(4
,4)

m(1, 1)

m(2, 2)

m(2, 1)

m(3, 3)

m(3, 4)m(2, 4) m(4, 4)

m(3, 1) m(4, 1)

m(1, 2) m(3, 2) m(4, 2)

m(1, 3) m(2, 3) m(4, 3)

m(1, 4)

T
ra

n
sp

o
rt

p
la
n

m

Figure 2.3: The height of each bar represents the value of the transport plan at this position.
The functions f and g are the “marginals” of the transport plan m.

satisfying

b∫
a

m(x, y) dy = f(x),

b∫
a

m(x, y) dx = g(y). (2.3)

Proposition 2.1. Let f, g : [a, b] → ❘
+
0 be two functions satisfying (2.2). There exists a

transport plan, i.e., there exists a function m : [a, b]× [a, b] → ❘
+
0 satisfying (2.3).

Proof. First, we define c ∈ ❘+
0 as

c :=

b∫
a

f(x) dx =

b∫
a

g(y) dy.

Let us now consider m : [a, b]× [a, b] → ❘
+
0 defined by

m(x, y) :=
f(x) · g(y)

c
.

6



2 Optimal mass transport

We have
b∫

a

f(x) · g(y)
c

dy =
f(x)

c
·

b∫
a

g(y) dy =
f(x)

c
· c = f(x),

b∫
a

f(x) · g(y)
c

dx =
g(y)

c
·

b∫
a

f(x) dx =
g(y)

c
· c = g(y).

Hence, m is a transport plan. ■

The transport plan defined in the proof of Proposition 2.1 corresponds to distributing the
value of each f(x), x ∈ [a, b] over all y ∈ [a, b], proportional to the value of g(y), see [Vil03,
Introduction - 1].

Since there is at least one transport plan, it makes sense to seek for the “best” of all
transport plans, i.e., the one that moves as little as possible in terms of distance and mass.
For this purpose, we define the cost of a transport plan as

b∫
a

b∫
a

d(x, y)m(x, y) dxdy

whereat d : [a, b]× [a, b] → ❘
+
0 is a function that gives the cost d(x, y) of moving one unit

of mass from the first argument x to the second argument y. It is not required that d is
a metric. However, since transport to a close point should be cheaper than transport to a
distant point, it makes sense that d behaves similarly to a metric. A common choice of d is
d(x, y) := |x− y|2, which we have also chosen in Section 2.1.

For f, g : [a, b] → ❘
+
0 satisfying (2.2) and d : [a, b]× [a, b] → ❘

+
0 , we define

Td(f, g) := inf
m∈M(f,g)

b∫
a

b∫
a

d(x, y)m(x, y) dxdy (2.4)

whereat M(f, g) denotes the set of all transport plans between f and g. Our function
Td(f, g) gives the cost of the best transport plan between f and g, i.e., the transport plan
with minimal cost. Hence, it acts as a measure of how easily we can transform f in order to
obtain g. Thus, it can be seen as a measure of similarity between f and g.

Considering d(x, y) := |x− y|2, we define

W2(f, g) :=

 inf
m∈M(f,g)

b∫
a

b∫
a

|x− y|2m(x, y) dxdy

1/2

. (2.5)

W2 is called the 2-Wasserstein metric, see [NGT14, Section II]. The name “Wasserstein
metric” might already reveal the statement of the following proposition, see [KPT+17, p.
46]3.

3The notation in [KPT+17] is slightly different, see Section 2.3.1. Considering functions whose integrals
are the same but not equal to 1, i.e., functions that are not probability densities, do not affect the metric
properties, see Remark 2.3.

7



2 Optimal mass transport

Proposition 2.2. Let c ∈ (0,∞) and let A be defined by

A =

f : [a, b] → ❘
+
0 ,

b∫
a

f(x) dx = c

 .

The 2-Wasserstein metric W2 : A×A → ❘
+
0 is a metric.

Hence, we have found a metric that allows us to measure the similarity of two functions
f, g ∈ A. We can use this metric to identify functions that are similar to f and g, but we
will discuss this idea in detail in Chapter 3.

Remark 2.3. In related literature, e.g., in [NGT14], it is often required that the integrals in
(2.2) need to be equal to 1. In that case, our functions are probability densities and many
statements become more elegant. For example, in the proof of Proposition 2.1, we could
ignore the factor c, since c = 1. However, by simply including such a scaling factor, all
formulated statements are true also for our case, i.e., for functions whose integrals are the
same but not necessarily equal to 1.

2.3 Other formulations of optimal mass transport

In this section, we want to give another version of the Monge-Kantorovich formulation.
Furthermore, we also want to give a very short introduction to the Monge formulation.

2.3.1 Monge-Kantorovich formulation by considering measures

In Section 2.2, we introduced a specific version of the Monge-Kantorovich formulation of
OMT, namely by considering f, g : [a, b] → ❘

+
0 and m : [a, b] × [a, b] → ❘

+
0 . In related

literature, e.g., [Vil03], we are not considering such functions on [a, b] but measures on [a, b],
i.e., functions on the Borel sets B([a, b]) of [a, b]. Instead of intervals [a, b], we can also
choose more general domains. We want to reformulate the Monge-Kantorovich formulation
according to [Vil03, Section 1.1.1].

Let (Ω0,Σ0, µ) and (Ω1,Σ1, ν) be two probability spaces and let d : Ω0 × Ω1 → ❘
+
0 be a

measurable function, e.g., a function that penalizes distance. Let Π(µ, ν) be the set of all
probability measures on Ω0 × Ω1 with marginals µ and ν, i.e.,

Π(µ, ν) :=
{
π : Σ0 × Σ1 → ❘

+
0 , π(A× Ω1) = µ(A), π(Ω0 ×B) = ν(B), A ∈ Σ0, B ∈ Σ1

}
.

The goal of OMT is finding the infimum

inf
π∈Π(µ,ν)

∫
Ω0×Ω1

d(x, y) dπ(x, y).

Using abuse of notation, we can characterize the measures π ∈ Π also by the constraint∫
Ω1

1 dπ(x, y) = dµ(x),
∫
Ω0

1 dπ(x, y) = dν(y),

8



2 Optimal mass transport

see [Vil03, Introduction - 1]. Considering Ω0 = Ω1 = [a, b] and f, g,m satisfying (2.2) and
(2.3), we have the relation

f(x) = dµ(x), g(y) = dν(y) i.e., µ(A) =

∫
A

f(x) dx, ν(B) =

∫
B

g(y) dy,

m(x, y) = dπ(x, y) i.e., π(A×B) =

∫
A×B

m(x, y) d(x, y),

see [KPT+17, p. 45]. The advantage of this “measure-version” of Monge-Kantorovich lies
in the fact that we can cover more general functions and integration over more general
domains, see [KPT+17, p. 46]. A “function” f satisfying (2.2) and containing a Dirac delta
distribution δ(x− s) could be realized in the sense of Section 2.3.1 by simply considering a
measure µ with µ(s) ̸= 0, s ∈ [a, b].

2.3.2 Monge formulation

Another and even older formulation of OMT is Monge’s formulation, see [KPT+17, p. 45].
Here, two non-negative functions f : Ω0 → ❘

+
0 , g : Ω1 → ❘

+
0 , Ω0,Ω1 ⊆ ❘d with∫

Ω0

f(x) dx =

∫
Ω1

g(y) dy

and a “distance” function d : Ω0 × Ω1 → ❘
+
0 , similar to Section 2.2, are given. Of course,

instead of Ω0,Ω1, we can also consider the domain [a, b]. The aim of Monge’s formulation is
finding the infimum

T (f, g) = inf
h∈~M(f,g)

∫
Ω0

d(x, h(x))f(x) dx

where

%M(f, g) :=

��h :

∫
x:h(x)∈B

f(x) dx =

∫
B

g(y) dy for any B ⊆ Ω1

�� . (2.6)

This formulation is more restrictive than the Monge-Kantorovich formulation, since for each
point x, we transfer the whole mass f(x) only to a single location y, namely to y = h(x), see
[KPT+17, p. 46]. Hence, it is not surprising that there are cases where there is a transport
plan with respect to Proposition 2.1 but no h ∈ %M(f, g) with respect to (2.6), see [KPT+17,
p. 45]. Thus, in the following, we are only considering the Monge-Kantorovich formulation.

2.4 Practical considerations regarding transport plans

In this section, the reader should get a first taste of implementation considerations. However,
we will not provide any proofs or precise mathematical explanations.

9



2 Optimal mass transport

In Section 2.1, we were considering discrete functions and used them as a motivation for
Section 2.2, where we were dealing with functions defined on an interval [a, b]. The fact
that we are using integrals instead of (weighted) sums has an effect on the structure of the
optimal transport plan.
Remark 2.4. Let f, g : {x1, x2, . . . , xk} → ❘

+
0 be two discrete functions and let the distance

between xj−1 and xj be constant for all j ∈ {2, . . . k}. If f = g, the optimal transport plan,
i.e., the transport plan with the lowest cost, is

m(x, y) =

{
1
Δ · f(x), x = y,

0, x ̸= y.

In this definition of m, the factor 1/Δ depends on the distance between the elements of the
domain. If we consider two functions f, g : [a, b] → ❘

+
0 and we have f = g, the optimal

“transport plan” would be the “function”

m(x, y) =

{
δ(0) · f(x), x = y,

0, x ̸= y.

whereat δ(.) denotes the Dirac delta distribution. Since m is not a function (at least in the
classical sense), there is no optimal transport plan m that maps from [a, b]× [a, b] to the
non-negative real numbers ❘+

0 . However, in (2.4), we are seeking for the infimum and not the
minimum. Hence, the non-existence of an optimal transport plan m : [a, b]× [a, b] → ❘

+
0 does

not necessarily lead to the non-existence of Td(f, g). However, considering the formulation
and notation in Section 2.3.1, there does exists a suitable π.

When numerically computing the optimal transport cost, we do not have to deal with
these considerations, as we will explain soon. But first, we want to define the discretization
of a function.

Definition 2.5 (Discretization). Let X be a set, f : [a, b] → X and n ∈ ◆. Consider
x1 = a, xn = b and xj ∈ [a, b] with xj−1 < xj for each j ∈ {2, . . . , n}. The discretization
fdis : {x1, . . . xn} → X of f is the function defined by

fdis(xj) = f(xj)

for each j ∈ {1, . . . , n}. Unless otherwise specified, we will only consider uniformly distributed
discretizations, i.e., we furthermore require xj − xj−1 = const, j ∈ {2, . . . , n}.

If we want to numerically compute the optimal transport plan between two functions
f, g : [a, b] → ❘

+
0 , we always consider discretizations fd, gd : {x1, . . . , xn} → ❘

+
0 instead of

our given f and g that are defined on a continuum. Hence, the integrals in (2.3) and (2.4)
are weighted sums instead of integrals. We will discuss this in more detail in Section 3.7.2.
Thus, our optimal transport plan does not contain any Dirac delta distributions.

In Figure 2.4 and Figure 2.5, we can see two functions f and g and the corresponding
optimal transport plan calculated by considering the discretizations of f and g with n = 80.
The transport plan is a function m : {x1 = 0, . . . , x80 = 1} × {x1 = 0, . . . , x80 = 1} → ❘

+
0 .

We can see that m(x, y) = 0 for most pairs (x, y) ∈ {x1, . . . , x80}×{x1, . . . , x80}. This is not
surprising, since the optimal transport plan of such a problem has support on a thin set, see
[NGT14, Section II, Section IV]. For a detailed and mathematically profound explanation of
this phenomenon, see [Vil03, Theorem 2.44] and the required preliminaries in [Vil03].
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Figure 2.4: Optimal transport plan between f and g (discretized with n = 80).
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Figure 2.5: 3D view of the transport plan of Figure 2.4.
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3 Optimal mass transport of matrix-valued
functions

In Chapter 2, we introduced optimal mass transport between two non-negative, real-valued
functions f, g : [a, b] → ❘

+
0 , [a, b] ⊆ ❘. In the current chapter, we want to consider a

different, even bigger class of functions. The considered functions will map to the Hermitian,
positive semi-definite n×n matrices, n ∈ ◆. We will see that the functions of Chapter 2 are
a subset of the functions of Chapter 3. However, we need to find a more general definition
of transport plan and cost.

The methods in this chapter, in particular in Section 3.1, Section 3.3, Section 3.4,
Section 3.5 and Section 3.6, are strongly based on the paper On Matrix-Valued Monge-
Kantorovich Optimal Mass Transport by L. Ning, T. Georgiou and A. Tannenbaum, see
[NGT14].

3.1 A modified version of optimal mass transport

First, we want to remind the reader of two definitions and two propositions, see [Joh21,
Section 1.1, Section 2.1, Section 2.2].

Definition 3.1 (Hermitian matrix). A matrix A ∈ Cn×n is called Hermitian matrix or
self-adjoint matrix if A = A∗, where A∗ is the conjugate transpose of A.

Considering Definition 3.1, we see that for each diagonal entry aii ∈ C, we have aii = aii.
Thus, all diagonal entries aii, i ∈ {1, . . . , n} of an Hermitian matrix are real-valued.

Proposition 3.2 (Eigenvalues of Hermitian matrices). Let A ∈ Cn×n be an Hermitian
matrix. All eigenvalues of A are real-valued.

If A ∈ Cn×n is an Hermitian matrix, then z∗Az is real-valued for any z ∈ Cn, see [Wer22].
Hence, the following definition is well-defined.

Definition 3.3 (Positive semi-definite matrix). Let A ∈ Cn×n be an Hermitian matrix. A
is called a positive semi-definite matrix, if we have

z∗Az ≥ 0 (3.1)

for all z ∈ Cn. If A is positive semi-definite, we denote this by A ⪰ 0. We denote the set of
all A ⪰ 0 of size n× n by Hn

+.

Proposition 3.4 (Eigenvalues of positive semi-definite matrices). Let A ∈ Cn×n be an
Hermitian matrix. A ⪰ 0 if and only if all eigenvalues of A are non-negative.

12



3 Optimal mass transport of matrix-valued functions

We now consider c ∈ (0,+∞) and

Fc :=

µ : [a, b] → Cn×n

|||||| µ(x) ∈ Hn
+,

b∫
a

tr(µ(x)) dx = c

 , (3.2)

i.e., the set of all functions that map from an interval [a, b] ⊆ ❘ to the Hermitian, positive
semi-definite matrices and have the additional property, that the integral of the trace of the
function is equal to c. The trace of an n× n matrix A is the sum of its n diagonal entries or,
equivalently, the sum of its n (not necessarily unique) eigenvalues, see e.g., [Axl24]. We can
interpret the trace of a matrix as the “mass” of the matrix, i.e., a scalar value, that indicates
how large the eigenvalues are. Hence, all functions in F have the same “total mass”, i.e., the
integrals of the sum of the eigenvalues of the matrix-values are the same.

For the case n = 1, we have H1
+ = ❘

+
0 and tr(µ(x)) = µ(x). Hence, the functions

considered in (2.2) can be seen as a special case of (3.2).
We now want to develop similar methods as in Chapter 2 for elements of Fc. So let

µ0, µ1 ∈ Fc. Following the idea of the previous chapter, we would now want to find
m : [a, b]× [a, b] → Hn

+ or at least m : [a, b]× [a, b] → Cn×n with

b∫
a

m(x, y) dy = µ0(x),

b∫
a

m(x, y) dx = µ1(y). (3.3)

In contrast to Chapter 2, such an m does not always exist, see [NGT14, Section III-B] or
Example 3.5.

Example 3.5. Let [a, b] ⊆ ❘ be an interval and consider two constant functions µ0, µ1,

µ0(x) =

(
1

b−a 0

0 0

)
, µ1(y) =

(
0 0
0 1

b−a

)
.

It can be readily verified that µ0, µ1 ∈ F1. We want to find m : [a, b] × [a, b] → Hn
+ such

that (3.3) is satisfied. Considering the first entry m11(x, y) of the matrix m(x, y), we want
in particular that

b∫
a

m11(x, y) dy =
1

b− a
,

b∫
a

m11(x, y) dx = 0.

It follows

b∫
a

b∫
a

m11(x, y) dydx =

b∫
a

1

b− a
dx = 1 ̸= 0 =

b∫
a

0 dy =

b∫
a

b∫
a

m11(x, y) dxdy

which contradicts Theorem of Fubini1, see e.g., [Els18, Chapter V, Theorem 2.1]. Thus,
there is no m : [a, b]× [a, b] → Hn

+ or m : [a, b]× [a, b] → Cn×n that satisfies (3.3).
1In order to be very stringent, we have to consider the Riemann integral as a Lebesgue integral.
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3 Optimal mass transport of matrix-valued functions

This example illustrates that it is not enough to just move the values (i.e. the matrices)
from x to y. However, it also shows that it might be useful to include the possibility of
rotating the matrix-values, so that we can obtain(

0 0
0 1

b−a

)
from rotating

(
1

b−a 0

0 0

)
.

Hence, we will try to find transport plans in a “bigger space”. For this purpose, we need to
examine tensor products.

3.2 Tensor products, Kronecker products, partial trace

In this section, we want to provide the required knowledge about tensor products and related
mathematical concepts. Tensor products are a very abstract concept and it is not easy to
depict them in a descriptive way. However, [Joh21] and [RAG05] offer introductions to
this topic worth reading. First, we want to give a general definition of tensor products, see
[Izm23, Definition 5.38].

Definition 3.6 (Tensor product). Let V,W,Z be vector spaces. The tensor product of V
and W is a vector space V ⊗W together with a map ϕ : V ×W → V ⊗W such that for
any bilinear map h : V ×W → Z there is a unique linear map $h : V ⊗W → Z such that
h = $h ◦ ϕ, see Figure 3.1.

V ×W V ⊗W

Z

ϕ

�hh

Figure 3.1: For each bilinear map h : V × W → Z there exists a unique linear map$h : V ⊗W → Z such that h = $h ◦ ϕ

In the following, we will denote the vector space V ⊗ W as a tensor product without
mentioning the map ϕ. It can be shown that for any vector spaces V,W , there exists a
tensor product V ⊗W and it is unique up to isomorphism, see [Joh21, Section 3.3.2]. Hence,
it makes sense to consider “the” tensor product of two vector spaces.

The elements of the tensor product are called tensors. For each v ∈ V,w ∈ W , the
element v ⊗ w := ϕ(v × w) is a tensor. Tensors of the form v ⊗ w are called decomposable
tensors or elementary tensors, see [RAG05, Chapter 14, p. 345] and [Joh21, Definition 3.3.1].
However, not every tensor is an elementary tensor, but every tensor can be written as a
linear combination of elementary tensors, see [Joh21, Theorem 3.3.1] and [RAG05, Chapter
14, p. 345].

Definition 3.6 might seem very abstract. However, if our considered vector spaces are of
the form Cn or Cn×m, the introduced objects are becoming more concrete. But first, we

14



3 Optimal mass transport of matrix-valued functions

need to introduce the Kronecker product A⊗B of two matrices A ∈ Cm×n and B ∈ Cp×q,
see [Joh21, Definition 3.1.1].

Definition 3.7 (Kronecker product). Let A ∈ Cm×n and B ∈ Cp×q be two matrices. The
Kronecker product A⊗B of A and B is the block matrix

A⊗B :=

�a11B . . . a1nB
...

. . .
...

an1B . . . annB

� ∈ C(m·p)×(n·q)

whereat ajk denotes the (j, k)-entry of A.

The symbol “⊗” in Definition 3.7 denotes something different than before, i.e., the
Kronecker product and not the tensor product. However, it is no coincidence that the
symbols coincide. Since we can interpret vectors in Cn as matrices with dimension (n, 1) or
(1, n), Definition 3.7 can be also used for two vectors v ∈ Cn, w ∈ Cm.

Let us consider vector spaces of the form V = Cn,W = Cm. The elementary tensors of
the tensor product Cn ⊗ Cm are up to isomorphism exactly the Kronecker products v ⊗ w
of v ∈ Cn, w ∈ Cm and the tensor product Cn ⊗ Cm is the vector space Cn·m, see [Joh21,
Section 3.3.2]. Since Ck×ℓ ∼= Ckℓ, analogous properties hold for vector spaces of the form
V = Cn×m,W = Cp×q.

We now want to define the partial trace, see [Joh21, Section 3.A.2]. In order to match
with our future notation, we only define it for tensors in Cn×n ⊗ Cn×n. We want to note
that Cn×n ⊗ Cn×n ∼= Cn2 ⊗ Cn2 ∼= Cn2n2 ∼= Cn2×n2 .

Definition 3.8 (Partial trace). We define the partial traces tr0 : Cn×n ⊗Cn×n → Cn×n and
tr1 : Cn×n ⊗ Cn×n → Cn×n by

tr0(A⊗B) := (tr⊗ In)(A⊗B) := tr(A)⊗ In(B) = tr(A) ·B
tr1(A⊗B) := (In ⊗ tr)(A⊗B) := In(A)⊗ tr(B) = tr(B) ·A

for all A,B ∈ Cn×n. Here, tr(M) denotes the well-known trace of a square matrix M and
In(M) denotes the identity of an n× n matrix M .

Although we have only defined the partial traces in an explicit way for elementary tensors,
i.e., tensors of the form A⊗B ∈ Cn×n ⊗Cn×n with A,B ∈ Cn×n, the partial traces are still
well-defined for each tensor in Cn×n ⊗ Cn×n, see [Joh21, Section 3.A.2].

Example 3.9. Let us consider the block matrix

A =

�A11 . . . A1n
...

. . .
...

An1 . . . Ann

� ∈ Cn2×n2
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3 Optimal mass transport of matrix-valued functions

whereat each block Ajk, j, k ∈ {1, . . . n}, is an n× n matrix. The partial traces tr0 and tr1
of A are

tr0

�A11 . . . A1n
...

. . .
...

An1 . . . Ann

� = A11 +A22 +A33 + · · ·+Ann ∈ Cn×n

tr1

�A11 . . . A1n
...

. . .
...

An1 . . . Ann

� =

�tr(A11) . . . tr(A1n)
...

. . .
...

tr(An1) . . . tr(Ann)

� ∈ Cn×n,

see [Joh21, Section 3.A.2].

We want to state a proposition, see [Joh21, Theorem 3.1.3].

Proposition 3.10. Let A,B ∈ Cn×n. If A,B ⪰ 0, then A⊗B ⪰ 0.

Proposition 3.11. Let A ∈ Cn2×n2 be a block matrix,

A =

�A11 . . . A1n
...

. . .
...

An1 . . . Ann

� ∈ Cn2×n2

whereat each block Ajk, j, k ∈ {1, . . . n}, is an n× n matrix.

(a) We have tr(tr0(A)) = tr(tr1(A)) = tr(A).

(b) If A ⪰ 0, then tr0(A) ⪰ 0.

(c) If A ⪰ 0, then tr1(A) ⪰ 0.

Proof. (a) This follows immediately from Example 3.9.

(b) For each z = (zT1 , . . . , z
T
n )

T ∈ Cn2 with zj ∈ Cn, j ∈ {1, . . . , n}, we have z∗Az ≥ 0.
Let j ∈ {1, . . . n}. For each w ∈ Cn, we have

w∗Ajjw = z∗Az ≥ 0, (3.4)

whereat z = (zT1 , . . . , z
T
n )

T with zj = w and zk = 0 ∈ Cn, k ̸= j. Hence, Ajj is positive
semi-definite and thus

∑n
j=1Ajj is positive semi-definite as well.

(c) See [Zha12, Theorem 2.1] in combination with Example 3.9.
■
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3 Optimal mass transport of matrix-valued functions

3.3 A transport plan

After our interlude in the world of tensors, we now want to come back to our quest for a
transport plan. So let us reconsider µ0, µ1 ∈ Fc. As already seen in Example 3.5, there is
not always an m : [a, b]× [a, b] → Hn

+ satisfying

b∫
a

m(x, y) dy = µ0(x),

b∫
a

m(x, y) dx = µ1(y).

Thus, we are now trying to find a function m that maps to a “bigger” space and has
similar properties as the transport plans in Chapter 2.

We attempt to find an m that maps to the tensor product space Cn×n ⊗ Cn×n ∼= Cn2×n2 .
In detail, we define a transport plan between µ0 ∈ Fc and µ1 ∈ Fc as a function m satisfying

1. m : [a, b]× [a, b] → Cn2×n2

2. m(x, y) ⪰ 0 for each x, y ∈ [a, b].

3. The integrals of the partial traces are µ0 and µ1, i.e.,

b∫
a

tr1(m(x, y)) dy = µ0(x),

b∫
a

tr0(m(x, y)) dx = µ1(y). (3.5)

Example 3.12. Let µ0, µ1 ∈ Fc and consider m : [a, b]× [a, b] → Cn2×n2 defined by

m(x, y) :=
1

c
(µ0(x)⊗ µ1(y)) .

Since µ0(x) and µ1(y) are positive semi-definite, 1
c (µ0(x)⊗µ1(y)) is also positive semi-definite,

see Proposition 3.10. Furthermore, we have

b∫
a

tr1

(
µ0(x)⊗ µ1(y)

c

)
dy =

1

c

b∫
a

µ0(x)tr(µ1(y))dy =
µ0(x)

c

b∫
a

tr(µ1(y))dy = µ0(x),

b∫
a

tr0

(
µ0(x)⊗ µ1(y)

c

)
dx =

1

c

b∫
a

tr(µ0(x))µ1(y)dx =
µ1(y)

c

b∫
a

tr(µ0(x))dx = µ1(y).

Hence, m : (x, y) �→ 1
c (µ0(x)⊗ µ1(y)) is a transport plan.

Since tensor products and partial traces are not very descriptive, the transport plan for
matrix-valued functions is not as intuitive as for real-valued functions. However, our new
definition of transport plans provides for any arbitrary functions µ0, µ1 ∈ Fc at least one
transport plan, see Example 3.12. Furthermore, equation (3.5) is strongly reminiscent to
(2.3) in Chapter 2.
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3 Optimal mass transport of matrix-valued functions

3.4 Transport cost

Since we just have shown that there always exists a transport plan (with respect to its
definition in the previous section), we are now interested in finding an optimal transport
plan. Similar to Section 2.2, we first introduce a cost that penalizes moving.

1. We want to consider how much we are moving from x ∈ [a, b] to y ∈ [a, b]. In
Section 2.2, m(x, y) indicated the amount of mass that we are moving from x to y.
Now, we consider

tr(m(x, y))

as the mass that is moved from x to y.

For example, if m(x, y) = 1
c (µ0(x)⊗µ1(y)), then tr(m(x, y)) = 1

c (tr(µ0(x)) · tr(µ1(y))),
see [Joh21, Theorem 3.1.3].

2. We want to consider how far we are moving from x ∈ [a, b] to y ∈ [a, b], so how far x
and y are apart. For this purpose, we consider the square of the euclidean distance,
i.e.,

|x− y|2.

3. We want to consider the directionality mismatch between tr1(m(x, y)) and tr0(m(x, y)).
Hence, we are asking if the values of the entries of the matrices tr1(m(x, y)) and
tr0(m(x, y)) are differently distributed with respect to the different entries.

For example, the matrices

A =

(
1 0
0 0

)
and B =

(
8
10 0
0 2

10

)
are both positive semi-definite and their highest values are at their top left entries A11

and B11, respectively. Hence, their directional mismatch is low. However, the highest
values of the two positive semi-definite matrices

A =

(
1 0
0 0

)
and B =

(
1
10

2
10

2
10

9
10

)
are clearly at different entries (i.e., at A11 and B22), hence their directional mismatch
is high.

This approach is also connected to the directional mismatch of the eigenvectors of the
matrices A and B.

We can quantify the mismatch by considering the squared Frobenius norm2 of the
difference of the two matrices tr1(m(x, y)) and tr0(m(x, y)). In order to not be affected

2The Frobenius norm ∥A∥F of a matrix A = (ajk)j∈{1,...,n},k∈{1,...,m} ∈ Cn×m is defined as the square root
of the sum of the squared absolute values of all entries, i.e., ∥A∥F = (

∑n
j=1

∑m
k=1 |ajk|2)1/2, see [Joh21].
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3 Optimal mass transport of matrix-valued functions

by the mass of the matrix (or the length of the eigenvectors), we normalize tr1(m(x, y))
and tr0(m(x, y)) by tr(m(x, y)).

For example, for m(x, y) = 1
c (µ0(x)⊗ µ1(y)), we have

tr0(m(x, y))

tr(m(x, y))
=

1

c
· tr(µ0(x)) · µ1(y)

tr(µ0(x)) · tr(µ1(y))
=

1

c
· µ1(y)

tr(µ1(y))

tr1(m(x, y))

tr(m(x, y))
=

1

c
· µ0(x) · tr(µ1(y))

tr(µ0(x)) · tr(µ1(y))
=

1

c
· µ0(x)

tr(µ0(x))

Considering both the squared Frobenius norm and the normalization, we get‖‖‖‖tr0(m(x, y))

tr(m(x, y))
− tr1(m(x, y))

tr(m(x, y))

‖‖‖‖2
F

We now want to combine these three different factors of moving cost and evaluate it for
all pairs (x, y) in [a, b] × [a, b]. This gives rise to our definition of the cost of a transport
plan m:

cost(m) =

b∫
a

b∫
a

���|x− y|2� �� �
distance

+λ ·
‖‖‖‖tr0(m(x, y))

tr(m(x, y))
− tr1(m(x, y))

tr(m(x, y))

‖‖‖‖2
F� �� �

direction

��� · tr(m(x, y))� �� �
mass

dxdy (3.6)

The scalar λ ∈ (0,+∞) acts as a weighting factor between the impact of the distance cost
and the directional cost. Similar to the examples in [NGT14, Section V], we will choose
λ = 1/10 when implementing the method in Chapter 6.

3.5 A distance between µ0 and µ1

Let c ∈ (0,+∞) and let µ0, µ1 ∈ Fc. Considering the cost of a transport plan m, see (3.6),
we now define

T2,λ(µ0, µ1) := inf
m∈M(µ0,µ1)

cost(m) (3.7)

whereat M(µ0, µ1) denotes the set of all transport plans between µ0 and µ1. In Example 3.12,
we have already shown that M(µ0, µ1) ̸= ∅. As in Chapter 2, we can interpret the cost of
the optimal transport plan between µ0 and µ1 as a measure of similarity or distance between
µ0 and µ1. For µ0, µ1 ∈ Fc, we have

1. Tλ,2(µ0, µ1) = Tλ,2(µ1, µ0)

2. Tλ,2(µ0, µ1) ≥ 0

3. Tλ,2(µ0, µ1) = 0 if and only if µ0 = µ1,
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3 Optimal mass transport of matrix-valued functions

see [NGT14, Section IV]3. However, the triangle inequality does not hold in general. Thus,
Tλ,2 is not a metric. We want to recall that the 2-Wasserstein metric in Section 2.2 was
indeed a metric.

To determine Tλ,2(µ0, µ1), we have to find an infimum of the costs of all transport plans.
Hence, finding Tλ,2(µ0, µ1) is an optimization problem. Next, we want to introduce a specific
class of optimization problems, see [BV09, Section 4.2.1].

Definition 3.13. An optimization problem is called convex if it is of the form

minimize
x

f0(x)

subject to fi(x) ≤ 0, i ∈ {1, . . .m}
hi(x) = 0, i ∈ {1, . . . p}

where f0, . . . , fm are convex functions and h1, . . . , hp are affine functions.

Convex optimization problems behave nicely: There are fast algorithms for solving convex
optimization problems and every local minimizer is also a global minimizer, see [BV09,
Section 1.2.1, Section 4.2.2].

The cost in (3.6) can be rewritten as

cost(m) =

b∫
a

b∫
a

|x− y|2 · tr(m(x, y)) + λ · ∥tr0(m(x, y))− tr1(m(x, y))∥2F
tr(m(x, y))

dxdy.

Since for each transport plan m, the partial traces tr0(m(x, y)) and tr1(m(x, y)) are positive
semi-definite and tr(tr0(m(x, y))) = tr(tr1(m(x, y))) = tr(m(x, y)) for each x, y ∈ [a, b],
see Proposition 3.11 (b),(c) and Proposition 3.11 (a), Tλ,2(µ0, µ1) is lower bounded by the
minimal value of the optimization problem

minimize
m0,m1,mtr

b∫
a

b∫
a

|x− y|2 ·mtr(x, y)) + λ · ∥m0(x, y)−m1(x, y))∥2F
mtr(x, y))

dxdy

subject to m0,m1 : [a, b]× [a, b] → Cn×n, mtr : [a, b] → ❘
+
0 ,

m0(x, y),m1(x, y) ⪰ 0 for each x, y ∈ [a, b], (3.8)
tr(m0(x, y)) = tr(m1(x, y)) = mtr(x, y) for each x, y ∈ [a, b],

b∫
a

m0(., y) dy = µ0,

b∫
a

m1(x, .) dx = µ1.

However, for an optimal solution �m0, �m1, �mtr of (3.8), the tensor �m := �m0 ⊗ �m1 is a valid
transport plan, i.e., �m ∈ M(µ0, µ1), and tr(�m(x, y)) = �mtr(x, y). Thus, the optimal cost of
our original problem (3.7) is the same as the optimal cost of our new optimization problem
(3.8).

3In [NGT14], we are only dealing with elements of F1. However, we can scale elements of Fc by 1/c, so
that they are elements of F1. This clearly has no effects on the three statements. Hence, the statements
are also valid for elements of Fc, c ∈ (0,+∞).
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3 Optimal mass transport of matrix-valued functions

The optimization problem (3.8) is convex, see [NGT14, Section III-D]. Hence, we can
efficiently find the optimal value of (3.8) and therefore also Tλ,2(µ0, µ1). In (3.7), we had to
optimize over positive semi-definite n2×n2 matrices. In (3.8), we are optimizing over positive
semi-definite n× n matrices. Thus, because of the lower dimensionality, the computational
effort is further reduced.

When implementing Tλ,2 in Chapter 6, we will therefore solve (3.8) instead of (3.7).

3.6 An intermediate function µ0.5

Given two functions µ0, µ1 ∈ Fc, we can determine a distance between f and g that measures
the degree of similarity, namely by computing Tλ,2(µ0, µ1). Next, we want to find a function
that is as similar as possible to both µ0 and µ1. Since we expect that this function is a
mixture between µ0 and µ1, we denote this function as µ0.5. In terms of formulas, we want
to determine µ0.5 ∈ Fc with

µ0.5 = argmin
µ∈Fc

(Tλ,2(µ0, µ) + Tλ,2(µ, µ1)
)
.

Finding µ0.5 is a convex optimization problem, see [NGT14, Section V-A]. Before discussing
if µ0.5 lies in the middle of µ0 and µ1 with respect to Tλ,2, we want to consider two examples:

Example 3.14. Let (X, d) be a metric space and x, y ∈ X. In particular, d satisfies the
triangle inequality. We have

d(x, x) + d(x, y) = d(x, y) + d(y, y) = d(x, y)
△
≤ d(x, z) + d(z, y)

for each z ∈ X. Thus, both z = x and z = y minimize the sum

d(x, z) + d(z, y).

Example 3.15. Let d2 : C×C → ❘
+
0 be the euclidean metric and let d22 : C×C → ❘

+
0 be

its square. We will not prove the following statement, but one can verify that d22 does not
satisfy the triangle inequality anymore and that the sum

d22(x, z) + d22(z, y)

gets minimized by z = (x+ y)/2, but not by z = x or z = y, assuming that x ̸= y. In fact,
z = (x+ y)/2 is the only minimizer.

In contrast to Example 3.14, Tλ,2 does not satisfy the triangle inequality. It also cannot
be written as the square of some metric, see [NGT14, Section IV], but we still hope that it
behaves similar as d22 in Example 3.15, i.e., that our minimizer µ0.5 lies in the middle of µ0

and µ1 (in terms of Tλ,2). When computing µ0.5 in Section 6.2, we have

Tλ,2(µ0, µ0.5)

Tλ,2(µ0, µ0.5) + Tλ,2(µ0.5, µ1)
= 0.500968,

Tλ,2(µ0.5, µ1)

Tλ,2(µ0, µ0.5) + Tλ,2(µ0.5, µ1)
= 0.499032.

Hence, at least in our example, we have Tλ,2(µ0, µ0.5) ≈ Tλ,2(µ0.5, µ1) and thus µ0.5 is indeed
in the middle of µ0 and µ1.
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3 Optimal mass transport of matrix-valued functions

3.7 Implementation and Coding

In this section, we discuss theoretical considerations on the numerical implementation of the
previous methods. Later, in Chapter 6, we will use MATLAB to compute solutions of given
problems and present them in plots.

3.7.1 Functions and dimensions

When implementing a function over an interval [a, b], we will not consider the function as a
“function”, i.e., a mapping of arbitrary points x ∈ [a, b] to its range, but as the collection of
the evaluation of its discretization, see Definition 2.5. Hence, a function f : [a, b] → ❘ is
represented by an n-dimensional vector [f(x1), . . . , f(xn)]. As already mentioned before, we
select uniformly distributed points xj , j ∈ {1, . . . n}.

We are dealing with matrix-valued functions, where each matrix has size 2 × 2. Thus,
these functions will be represented by 2× 2× n arrays. A function m : [a, b]× [a, b] → C2×2

will be represented by a 2× 2× n× n array, whereat each entry is a complex number.

3.7.2 Numerical integration

Let us consider f : [a, b] → C and a discretization fdis : {x1, . . . xn} → C of f . We want to
emphasize that {x1, . . . xn} ∈ [a, b] are uniformly distributed. When computing an integral,
we will use the following approximation

b∫
a

f(x)dx ≈
n∑

k=1

f(xk)Δx,

whereat

Δx :=
b− a

n
,

which is almost4 the (left) Riemann rule, see e.g., [Ger11, Section 2.1]. Finding m1 with

b∫
a

m1(x, y)dx = µ1(y)

corresponds to finding m1 with

Δx ·
n∑

k=1

m1(xk, y) = µ1(y).

However, in practice we simply try to find an %m1 with
n∑

k=1

%m1(xk, y) = µ1(y).

4The actual Riemann sum consists of n− 1 many summands with weight b−a
n−1

, but here we have n many
summands with weight b−a

n
. In practice, this difference can be neglected.
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3 Optimal mass transport of matrix-valued functions

Here, m1 and %m1 are related via

%m1 =
m1

Δx
.

For most of the calculation, it doesn’t matter if we consider m1 or %m1, as long as we use it
consistently. Only when interpreting the cost T2,λ, we need to reconsider if we are using m1

or %m1.

3.7.3 Optimization process

Computing T2,λ(µ0, µ1) and µ0.5 requires solving a convex optimization problem. There are
(at least) two methods to solve such a problem with MATLAB, namely the Optimization
Toolbox and the CVX framework. In this thesis, the author used MATLAB versions R2024a
and R2024b, CVX version 2.2 and MOSEK version 10.2.8. Hence, all following statements
were only tested with those versions. When using other versions, the following statements
might not be correct anymore.

Optimization Toolbox

The Optimization Toolbox5 of MATLAB allows solving convex optimization problems as well
as non-convex problems. However, there are some constraints that need to be considered:

• Clearly, the objective function and all inequality constraints have to be real-valued,
otherwise “minimizing” would not make sense. However, the optimization problem must
not contain any complex-valued variables at all, even if the objective function and all
inequality constraints are real-valued. E.g., the problem minRe(z)2 +2 · Im(z), z ∈ C,
is not supported.

Instead, complex variables must be split into real and imaginary parts, and both parts
need to be considered as independent, real-valued variables. Addition and subtraction
of two complex variables can be easily calculated by considering real part and imaginary
part separately. However, multiplication of two complex variables in terms of real and
imaginary part is more challenging.

• There is no command that explicitly ensures that a matrix-valued optimization variable
is positive semi-definite. Instead, this property must be required implicitly. One method
is to not search for the positive semi-definite optimization variable A itself, but to find
a lower-triangular matrix L (whose diagonal entries are not necessarily non-zero) with
the property A = LL∗, see [HJ13, Corollary 7.2.9 (Cholesky factorization)]. Hereby,
L∗ denotes the conjugate transpose of L.

• Some useful MATLAB commands are not supported when using optimization variables,
for example permute. However, reshape is supported and can be used to achieve
similar results as permute.

5Download and documentation: https://se.mathworks.com/products/optimization.html
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3 Optimal mass transport of matrix-valued functions

CVX package

CVX6 is a MATLAB-based package for convex optimization. The basic version (which
includes two solvers, namely SDPT3 and SeDuMi) can be downloaded for free. In addition
to a simple syntax, the package also has other interesting properties:

• Optimization variables can be complex-valued.

• Optimization variables can have the (explicit) constraint to be positive semi-definite.

• Many mathematical expressions need to be stated in terms of CVX-internal functions.
E.g., the command x^2 is not allowed but must be replaced with square(x).

• CVX can only deal with problems where every part is convex. E.g., the function
f(x) = 3x2 − x2 is clearly convex, but since −x2 is concave, CVX will not support
this function, i.e., it will not support 3*square(x)-square(x). Of course, in this
case the function can be easily reformulated as the “fully convex” function 2x2, i.e.,
2*square(x). However, such a reformulation is not always possible.

As already mentioned, CVX includes two free solvers. However, it also supports some
commercial solvers. The MOSEK7 solver is a commercial solver, but there are free academic
licenses. During the work on this thesis, a specific problem was calculated with both the
SDPT3 and the MOSEK solver. Solving the problem with SDPT3 took around half an
hour, however, the MOSEK-based solving could be done in less than 10 seconds. Thus, all
CVX-based codes in this thesis are using the MOSEK solver.

6Download and documentation: https://cvxr.com/cvx/
7Download and documentation: https://www.mosek.com/
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4 One-dimensional signals and their
statistical properties

In this chapter, we give an introduction to signals in terms of statistical signal processing. For
this purpose, we examine their statistical properties and observe an exciting representation
of the autocovariance.

In Chapter 3, we were dealing with OMT for matrix-valued functions. We established T2,λ
that helps us defining distances between two functions and finding intermediate functions.
In Chapter 6 we will use these methods as a tool for our problems. However, we have not yet
talked about the actual problems that we will deal with later. In Chapter 4 and Chapter 5,
we want to provide the mathematical foundation for the applications in Chapter 6. Thus,
those two chapters contain many definitions and theorems and are of theoretical nature.

4.1 Stochastic processes

When thinking about the word “signal”, many different meanings could come to your mind.
Some might think of audio signals. An audio signal can be seen as a function f : [t0, t1] → ❘

that gives the current deviation in air pressure at time point t ∈ [t0, t1], see [Kre23]. An
illustration can be found in Figure 4.1.

In statistical signal processing, we have a different approach. But first, we want to give
two definitions, see [Flo15].

Definition 4.1 (Stochastic process). Given a probability space (Ω,F ,P), a stochastic process
is any collection {X(t)}t∈T of random variables X(t), t ∈ T defined on this probability space.
If T = , we call {X(t)}t∈T a discrete-time stochastic process, if T = [0,+∞), we call it a
continuous-time stochastic process. We refer to the stochastic process {X(t)}t∈T as X.

Definition 4.2 (Realization of a stochastic process). Let {X(t)}t∈T be a stochastic process
on the probability space (Ω,F ,P) and let ω ∈ Ω. Let X(t)(ω) denote the realization of the
random variable X(t) with respect to ω. For ω ∈ Ω, the realization of the stochastic process
is the function

t �→ X(t)(ω)

In statistical signal processing, a signal is seen as a stochastic process, see [Sch91, Section
1.6]. A certain measurement of a signal, e.g., the function in Figure 4.1, corresponds to a
certain realization of that signal. However, statistical signal processing is not interested in
concrete realizations of a signal but in the statistical properties of the signal, see [Sch91].
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Figure 4.1: The graph shows the deviation in air pressure, while a colleague of the author
says the word “Leiwand”, which means “nice” in Viennese slang. This function
can be seen as a realization of a stochastic process.

4.2 Statistical terms and definitions

In the following, we will assume that all stochastic processes are discrete-time stochastic
processes. Unless otherwise stated, all stochastic processes will be complex-valued, i.e.,
X(t)(ω) ∈ C. Furthermore, all stochastic processes in Section 4.2 are sufficiently nice, i.e.,
all expected values used in the following definitions exist. After recapitulating the definition
of covariance, we want to give another definition, see [Shi96].

Definition 4.3. Let X1 and X2 be two random variables. Its covariance Cov(X1, X2) is
defined by

Cov(X1, X2) = E
(
(X1 − E(X1))(X2 − E(X2))

)
Definition 4.4 (Wide-sense stationary). Let {X(t)}t∈T be a discrete-time stochastic process.
We call X wide-sense stationary if, for all t1, t2, s ∈ ,

E
(
X(t1)

)
= E

(
X(t2)

)
Cov

(
X(t1 + s), X(t1)

)
= Cov

(
X(t2 + s), X(t2)

)
Hence, a wide-sense stationary process has a constant expected value, and the covariance

of X(t1) and X(t2) only depends on the lag between t1 and t2. In addition to our previous
assumptions, we will often assume that our considered stochastic processes are wide-sense
stationary and the expected value is 0, i.e., E(X(t)) = 0, t ∈ T . Under this assumption, we
want to provide more definitions, see [Par18].

Definition 4.5 (Autocovariance). Let {X(t)}t∈T be a discrete-time wide-sense stationary
stochastic process and let its expected value be 0. For t, s ∈ , the autocovariance rXX of X
is defined by

rXX(t) := E
(
X(s+ t)X(s)

)
. (4.1)
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4 One-dimensional signals and their statistical properties

Since X is wide-sense stationary, the expression in (4.1) is well-defined, i.e., it is independent
of s ∈ . Definition 4.5 might remind the knowledgeable reader of the autocorrelation of a
wide-sense stationary stochastic process. As the expected value of X is 0, the autocorrelation
and the autocovariance coincide.

4.3 Spectral representation

In the last section, we have defined the autocovariance rXX of a wide-sense stationary
stochastic process X with expected value of 0. The autocovariance can give important
information about the process X. In this section, we want to introduce a representation of the
autocovariance. We start with an important result, see [Shi96, Section VI-§1, 3. Theorem].

Theorem 4.6 (Herglotz). Let {X(t)}t∈T be a discrete-time, wide-sense stationary stochastic
process with expected value of 0. Let rXX be its autocovariance. There exists a finite measure
F on ([−π, π),B([−π, π))1 such that for every t ∈ , we have2

rXX(t) =

π∫
−π

exp(iωt) dF (ω). (4.2)

Definition 4.7 (Spectral measure). Let {X(t)}t∈T be a discrete-time, wide-sense stationary
stochastic process with expected value of 0. The measure F involved in (4.2) is called the
spectral measure.

Although they share the same name, the spectral measure defined in Definition 4.7 is not
the same as the spectral measure defined in functional analysis, e.g., in [WKB23, Definition
7.1.1].

The spectral measure F is uniquely defined by the autocovariance function rXX , see
[Shi96, Section VI-§1, Remark 1].

In fact, there are many different formulations of Theorem 4.6. Depending on its specific
formulation, the Wiener-Khinchin theorem provides a very similar statement to Theorem 4.6,
see e.g. [Gub06].

4.3.1 Lebesgue-Stieltjes integral

The integral in (4.2) is a Lebesgue integral with respect to the measure F . In many textbooks,
the authors are using integrals with respect to a nondecreasing, right-continuous function.
However, the exact meaning of this notation is often omitted. Because of that, proofs of
connected theorems (e.g. Theorem 5.8) might become “hand-wavy” and not rigorous. In this
subsection, we want to explain this frequently used notation.

The next two definitions and the next proposition are taken from [Shi96, Section II-§3]
and [Kus14, Section 6.2].

1B([−π, π)) denotes the Borel sets of the interval [−π, π). The Borel sets are a σ-algebra.
2In contrast to Definition 4.2, ω now denotes a frequency, i.e., a value in [−π, π), and not an element of the

probability space Ω.
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Definition 4.8 (Lebesgue-Stieltjes measure). A Lebesgue-Stieltjes measure on (❘,B(❘)) is
a measure µ such that for every bounded interval A ⊊ ❘, the measure µ(A) is finite.

If µ is a finite measure, we have µ(A) < ∞ for every not necessarily bounded A ∈ B(❘).
Hence, every finite measure on (❘,B(❘)) is a Lebesgue-Stieltjes measure.

Definition 4.9 (Generalized distribution function). A generalized distribution function is a
function G : ❘→ ❘ that is nondecreasing and right-continuous.

Proposition 4.10. There is a correspondence between Lebesgue-Stieltjes measures µ and
generalized distribution functions G by dint of

µ((a, b]) = G(b)−G(a). (4.3)

Given a generalized distribution function G, one can define µ by the right-hand side of (4.3).
Conversely, if a Lebesgue-Stieltjes measure µ is given, there exists a generalized distribution
function G such that (4.3) is satisfied. This G is unique up to an additive constant c.

Next, we want to define what integration with respect to a function G means, see [Shi96,
Section II-§6].

Definition 4.11 (Lebesgue-Stieltjes integral). Let G : ❘→ ❘ be a generalized distribution
function and let f be an integrable function. Let µ be the corresponding Lebesgue-Stieltjes
measure on (❘,B(❘)), as in Proposition 4.10. We define the Lebesgue-Stieltjes integral∫∞
−∞ f(x) dG(x) as the Lebesgue integral with respect to µ, i.e.,

∞∫
−∞

f(x) dG(x) :=

∞∫
−∞

f(x) dµ(x).

So far, all definitions and propositions in this subsection deal with measures µ on (❘,B(❘))
and functions G : ❘→ ❘. However, Remark 4.12 allows us to consider µ on ([a, b),B([a, b)))
and G : [a, b) → ❘, see [Shi96, Section VI-§1].

Remark 4.12. Let G : [a, b) → ❘ be a nondecreasing, right-continuous function and let
G(b) := limx→bG(x). We can extend G by

$G(x) :=

��
G(x), x ∈ [a, b),

G(a), x < a,

G(b), x ≥ b,

(4.4)

so we have $G|[a,b) = G. Let $µ be the measure on (❘,B(❘)) that corresponds to $G, see
Proposition 4.10. We have

$µ(A) = 0 for every A ∈ B(❘\[a, b)).
We now define the measure µ on ([a, b),B([a, b)])) by

µ(A) := $µ(A), A ∈ B([a, b)) (⊆ B(❘)).

28



4 One-dimensional signals and their statistical properties

Analogously, we can start with a measure µ on ([a, b),B([a, b)])) and extend it to a measure$µ on (❘,B(❘)) by

$µ(A) = {
µ(A), A ∈ B([a, b)),
0, A ∈ B(❘\[a, b)).

The corresponding generalized distribution function $G satisfies (4.4). We define G : [a, b) →
❘ as the restriction of $G to [a, b), i.e. G := $G|[a,b).

Hence, there is a correspondence between nondecreasing, right-continuous functions
G : [a, b) → ❘ and measures µ on ([a, b),B([a, b)])).

Thus, it make sense to consider Lebesgue-Stieltjes integrals with respect to G : [a, b) → ❘.
In the spirit of Definition 4.11 and Remark 4.12, we can reformulate Theorem 4.6 as

Theorem 4.13. Let {X(t)}t∈T be a discrete-time, wide-sense stationary stochastic process
with expected value of 0. Let rXX be its autocovariance. There exists a nondecreasing,
right-continuous function F : [−π, π) → ❘ such that for every t ∈ , we have

rXX(t) =

π∫
−π

exp(iωt) dF (ω).

In order to not overload the variable name F , let us for now denote the spectral measure,
see Definition 4.7, as Fm. As already mentioned, the corresponding nondecreasing, right-
continuous function is unique up to a constant. F : [−π, π) → ❘, uniquely defined by
F (ω) := Fm([−π, ω)), is a nondecreasing, right-continuous function that satisfies (4.3). This
gives rise to the next definition, see [Shi96, Section VI-§1].

Definition 4.14 (Spectral function). Let {X(t)}t∈T be a discrete-time, wide-sense stationary
stochastic process with expected value of 0. Let Fm be its spectral measure. The function
F : [−π, π) → ❘

+
0 defined by

F (ω) := Fm([−π, ω])

is called the spectral function of X.

For the spectral function F , it immediately follows that F (−π) = 0.

4.3.2 Spectral density

If the spectral function F is differentiable, we can state another representation of the
covariance function. In this subsection, we present this representation without further
reasoning. However, in Section 5.3, we will give a more rigorous explanation for a more
general situation. For this purpose, we need the concept of complex measure, thus we are
not proving it already now. The following result will immediately follow from Corollary 5.20.
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4 One-dimensional signals and their statistical properties

Proposition 4.15. Let {X(t)}t∈T be a discrete-time, wide-sense stationary stochastic
process with expected value of 0. Let rXX be its autocovariance, F the corresponding spectral
function and let λ be the Lebesgue measure. If F is differentiable with F ′ = f , we have

rXX(t) =

π∫
−π

f(ω) exp(iωt) dλ(ω).

for each t ∈ .

Definition 4.16 (Spectral density). With the notation of Proposition 4.15, we call f = F ′

the spectral density of the stochastic process X.
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5 Multidimensional signals

In Chapter 4, we have considered single stochastic processes {X(t)}t∈T , with X(t)(ω) ∈ C,
whereat ω ∈ Ω denotes an element of the probability space. Now, we want to consider
multiple stochastic processes {X1(t)}t∈T , . . . , {Xn(t)}t∈T . Since we can describe those
processes as a single vector-valued process

{X(t)}t∈T :=

������
���
X1(t)
X2(t)

...
Xn(t)

���
������

t∈T

, (5.1)

these processes are often described as “multidimensional stochastic processes”, “vector-valued
stochastic processes”, or simply as “vector process”, see e.g., [Lin12]. Hence, we call this
chapter “Multidimensional signals”. Another common name for these signals is vector-valued
signals. However, for the sake of clearer notation, we will consider multiple stochastic
processes {Xj(t)}t∈T with Xj(t)(ω) ∈ C, j ∈ {1, . . . , n}, ω ∈ Ω instead of a single stochastic
process {X(t)}t∈T with X(ω) ∈ Cn, as in (5.1).

5.1 Statistical terms and definitions

First, we want to extend the definitions of Section 4.2 to multiple stochastic processes, see
[Par18].

Definition 5.1 (Jointly wide-sense stationary). Let {X(t)}t∈T and {Y (t)}t∈T be two discrete-
time stochastic processes. We call X and Y jointly wide-sense stationary if they are individ-
ually wide-sense stationary and if, for all t1, t2, s ∈ ,

Cov
(
X(t1 + s), Y (t1)

)
= Cov

(
X(t2 + s), Y (t2)

)
.

Definition 5.2 (Cross-covariance). Let {X(t)}t∈T and {Y (t)}t∈T be two discrete-time jointly
wide-sense stationary stochastic processes, both with expected value of 0. The cross-covariance
rXY (t) of X and Y is defined as

rXY (t) := E
(
X(s+ t)Y (s)

)
. (5.2)

We define rY X(t) in an analogous way.

If two wide-sense stationary processes X and Y are jointly wide-sense stationary, their
cross-covariance Cov(X(t1), Y (t2)) only depends on the lag between t1 and t2. As X and
Y are jointly wide-sense stationary, equation (5.2) is well-defined, i.e., independent of the
choice of s ∈ .
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5 Multidimensional signals

Proposition 5.3. Let {X(t)}t∈T and {Y (t)}t∈T be two discrete-time jointly wide-sense
stationary stochastic processes, both with expected value of 0. The autocovariance and the
cross-covariance satisfy

rXY (−t) = rY X(t), rXX(−t) = rXX(t), rY Y (−t) = rY Y (t)

Proof. We will only prove the first identity. The other two identities then follow by considering
X = Y .

rXY (−t) = E
(
X(s− t)Y (s)

)
= E

(
Y (s)X(s− t)

)
= E

(
Y (s+ t)X(s)

)
= rY X(t)

■

Definition 5.4 (Covariance matrix). Let {X1(t)}t∈T , {X2(t)}t∈T , . . . , {Xn(t)}t∈T be dis-
crete-time, jointly wide-sense stationary stochastic processes with expected value of 0. The
covariance matrix is defined as

R(t) =

���
rX1X1(t) rX1X2(t) . . . rX1Xn(t)
rX2X1(t) rX2X2(t) . . . rX2Xn(t)

...
...

. . .
...

rXnX1(t) rXnX2(t) . . . rXnXn(t)

��� (5.3)

The diagonal of the covariance matrix consists of the autocovariances of each process Xj ,
whereat all other entries are the cross-covariances.

5.2 Herglotz theorem for multiple stochastic processes

The goal of this section is obtaining a “multiple process”-version of Herglotz theorem,
Theorem 4.6. First, we need to introduce complex measures, total variation and integration
with respect to a complex measure, see [Wer11, Section A.4] and [Rud87, Chapter 6].

Definition 5.5 (Complex measure). Let Σ be a σ-algebra. A function µ : Σ → C is called a
complex measure if µ is σ-additive.

Definition 5.6 (Total variation). Let µ be a complex measure on (X,Σ). The total variation
|µ| of µ is a finite measure on (X,Σ) defined by the supremum

|µ|(E) = sup

∞∑
i=1

|µ(Ei)|, E ∈ Σ

taken over all partitions (Ei)i∈◆ of E. A partition (Ei)i∈◆ of E is a countable collection of
elements of Σ such that

U
i∈◆Ei = E and Ei ∩ Ej = ∅, i ̸= j.

We want to emphasize that complex measures are mapping to the complex numbers but
not to +∞. In contrast, measures are mapping to [0,+∞] ⊈ C. Hence, not every measure is
also a complex measure. However, every finite measure is indeed a complex measure, since
the codomain of a finite measure is [0,+∞) ⊆ C. Next, we want to define integration with
respect to a complex measure, see [Wer11, Definition A.4.5].
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5 Multidimensional signals

Definition 5.7 (Integral with respect to a complex measure). Let µ be a complex measure
on (X,Σ) and let f be an integrable function with respect to |µ|. Let µRe and µIm be the
decomposition of µ in real part and imaginary part, i.e., µ = µRe + i · µIm. Let µ+

Re, µ
−
Re and

µ+
Im, µ

−
Im be the corresponding Jordan decomposition of µRe and µIm, respectively. We define

the integral by∫
f dµ =

∫
f dµ+

Re −
∫

f dµ−
Re + i ·

(∫
f dµ+

Im −
∫

f dµ−
Im

)
.

Let µ1, . . . , µn be complex measures and z1, . . . , zn ∈ C. Considering the definition of a
complex measure,

n∑
j=1

zjµj

is also a complex measure. If f is integrable with respect to µ1, . . . , µn, we furthermore have

n∑
j=1

zj

∫
f dµj(ω) =

∫
f d

 n∑
j=1

zjµj

(ω), (5.4)

see [Kal21, Fakta 18.3.16 - 5].
The next theorem and its proof is inspired by the first part of [Lin12, Theorem 7.1 (a)].

However, we are dealing with discrete-time processes instead of continuous-time processes.
Furthermore, the proof in [Lin12] does not elaborate what it means to consider a linear
combination of integrals with respect to different nondecreasing, right-continuous functions.
In this thesis, we try to provide a rigorous argumentation by considering complex measures.

Theorem 5.8. Let X1, X2, . . . Xn be n-many discrete-time, jointly wide-sense stationary
stochastic processes with expected value of 0 and let R : → Cn×n be their covariance matrix.
There exists a matrix F of complex measures Fjk, j, k ∈ {1, . . . n}, on ([−π, π),B([−π, π))
such that

R(t) =

π∫
−π

exp(iωt) dF (ω) (5.5)

for each t ∈ . Furthermore we have Fkj(A) = Fjk(A) for every j, k ∈ {1, . . . , n},
A ∈ B([−π, π)).

The notation in (5.5) means that for each Rjk with j, k ∈ {1, . . . , n}, there exists a complex
measure Fjk such that

Rjk(t) =

π∫
−π

exp(iωt) dFjk(ω). (5.6)
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5 Multidimensional signals

Proof. Since Rjj = rXjXj is an autocorrelation function, we can apply Herglotz’s Theorem 4.6
and obtain a finite measure Fjj , so in particular a complex measure, such that (5.6) is
satisfied. The main task of this proof is finding such a complex measure for Rjk, j ̸= k.

Consider the complex vector z = {z1, . . . zm} ∈ Cn and

Y (t) =
n∑

j=1

zjXj(t).

Y is a discrete-time, wide-sense stationary stochastic process with expected value of 0. Let
rz be its autocovariance function. Theorem 4.6 provides a finite measure Gz such that

rz(t) =

π∫
−π

exp(iωt) dGz(ω).

Furthermore, we have

rz(t) =E
(
Y (s+ t)Y (s)

)
= E

 n∑
j=1

zjXj(s+ t)
n∑

k=1

zkXk(s)


=E

 n∑
j=1

n∑
k=1

zjXj(s+ t)zkXk(s)

 = E

 ∑
j,k∈{1,...,n}

zjzkXj(s+ t)Xk(s)


=

∑
j,k∈{1,...,n}

zjzk · E
(
Xj(s+ t)Xk(s)

)
=

∑
j,k∈{1,...,n}

zjzkRjk(t)

Altogether, we have

rz(t) =
∑

j,k∈{1,...,n}
zjzkRjk(t) =

π∫
−π

exp(iωt) dGz(ω) (5.7)

for any z = {z1, . . . zn} ∈ Cn.
Next, let j, k ∈ {1, . . . , n} and consider v = {v1, . . . vn}, w = {w1, . . . wn} ∈ Cn defined by

vℓ =

��
1 if ℓ = j

1 if ℓ = k

0 else
and wℓ =

��
i if ℓ = j

1 if ℓ = k

0 else

We have

rv(t) = Rjj(t) +Rjk(t) +Rkj(t) +Rkk(t) =

π∫
−π

exp(iωt) dGv(ω)

rw(t) = Rjj(t) + i ·Rjk(t)− i ·Rkj(t) +Rkk(t) =

π∫
−π

exp(iωt) dGw(ω).
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5 Multidimensional signals

Subtraction of Rjj(t) and Rkk(t) yields

Rjk(t) +Rkj(t) =

π∫
−π

exp(iωt) dGv(ω)−Rjj(t)−Rkk(t) (5.8)

i ·Rjk(t)− i ·Rkj(t) =

π∫
−π

exp(iωt) dGw(ω)−Rjj(t)−Rkk(t). (5.9)

Considering (5.4), we can write the right-hand side of (5.8) as

π∫
−π

exp(iωt) dGv(ω)−
π∫

−π

exp(iωt) dFjj(ω)−
π∫

−π

exp(iωt) dFkk(ω)

=

π∫
−π

exp(iωt) d(Gv − Fjj − Fkk)(ω)

and the right-hand side of (5.9) as

π∫
−π

exp(iωt) dGw(ω)−
π∫

−π

exp(iωt) dFjj(ω)−
π∫

−π

exp(iωt) dFkk(ω)

=

π∫
−π

exp(iωt) d(Gw − Fjj − Fkk)(ω).

Adding line (5.8) and (5.9) with factor −i and i, respectively, gives

(5.8)− i · (5.9) = 2 ·Rjk(t)

=

π∫
−π

exp(iωt) d(Gv − Fjj − Fkk)(ω)− i ·
 π∫
−π

exp(iωt) d(Gw − Fjj − Fkk)(ω)


=

π∫
−π

exp(iωt) d(Gv − Fjj − Fkk)(ω) +

 π∫
−π

exp(iωt) d(−i · (Gw − Fjj − Fkk))(ω)


=

π∫
−π

exp(iωt) d(Gv − Fjj − Fkk − i · (Gw − Fjj − Fkk))(ω)

and

(5.8) + i · (5.9) = 2 ·Rkj(t)

=

π∫
−π

exp(iωt) d(Gv − Fjj − Fkk + i · (Gw − Fjj − Fkk))(ω).
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5 Multidimensional signals

Hence, there exist two complex measures

Fjk :=
1

2

(
Gv − Fjj − Fkk − i · (Gw − Fjj − Fkk)

)
, (5.10)

Fkj :=
1

2

(
Gv − Fjj − Fkk + i · (Gw − Fjj − Fkk)

)
, (5.11)

with

Rjk(t) =

π∫
−π

exp(iωt) dFjk(ω), (5.12)

Rkj(t) =

π∫
−π

exp(iωt) dFkj(ω).

Equation (5.10) and (5.11) show that Fkj = Fjk. ■

Similar to Definition 4.7 (spectral measure) and Definition 4.14 (spectral function), we
want to define the cross-spectral measure and cross-spectral function.

Definition 5.9 (Cross-spectral measure). Let Xj , Xk be discrete-time, jointly wide-sense
stationary stochastic processes with expected value of 0. The complex measure Fjk involved
in (5.12) is called the cross-spectral measure of Xj and Xk.

Definition 5.10 (Cross-spectral function). Let Xj , Xk be discrete-time, jointly wide-sense
stationary stochastic processes with expected value of 0 and let Fm,jk be the cross-spectral
measure of Xj and Xk. The function Fjk : [−π, π) → C defined by

Fjk(ω) = Fm,jk([−π, ω])

is called the cross-spectral function of Xj and Xk.

Since the cross-spectral measure is a complex measure, it is clear that the cross-spectral
function is in general a complex-valued function. In particular, the cross-spectral function is
not nondecreasing. The term “nondecreasing complex-valued function” does not even make
sense, because the complex numbers C are not an ordered field.

Next, we want to investigate whether matrix F has properties related to positive semi-
definiteness. But first, we need to state an important theorem, see [Els18, Section VIII-§2,
Theorem 2.26]. Mreg(X,B(X)) is the space of regular1 complex measures on (X,B(X)) and
C0(X) is the space of continuous functions in X that vanish at infinity. C ′

0(X) denotes its
dual space.

1For the following theorems it is in fact not required to know the exact definition of “regularity”, since all
complex measures we are dealing with are already regular complex measures. However, the interested
reader finds a definition in [Els18] or any other book about measure theory.
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5 Multidimensional signals

Theorem 5.11 (Representation theorem of Riesz for C ′
0(X)). Let X be a locally compact

Hausdorff space. Then

Φ : Mreg(X,B(X)) → C ′
0(X),

Φ(µ)(f) :=

∫
X

f dµ f ∈ C0(X), µ ∈ Mreg(X,B(X))

is an isomorphism with

∥Φ(µ)∥ = ∥µ∥,

whereat ∥µ∥ := |µ|(X).

Theorem 5.11 is also known as Riesz-Markov theorem, see e.g., [WKB23, Theorem 2.3.9].
If X is a compact space, we have C0(X) = C(X). Furthermore, we want to remind the
reader of Stone-Weierstraß’s theorem (complex version), see [Rud+64, Theorem 7.33] and
the required assumptions [Rud+64, Definition 7.28, Definition 7.30, Chapter 7].

Definition 5.12 (Algebra, Self-adjoint, Separating points, Vanishing at no point). A family
A of complex functions defined on a set E is said to be an algebra if f +g, fg, cf ∈ A for all
f, g ∈ A, c ∈ C. It is self-adjoint, if f ∈ A for all f ∈ A. It separates points, if for each pair
of distinct points x1, x2 ∈ E, x1 ̸= x2, there exists a function f ∈ A such that f(x1) ̸= f(x2).
It vanishes at no point, if for each x ∈ E, there exists a function f ∈ A such that f(x) ̸= 0.

Theorem 5.13 (Stone-Weierstraß (complex version)). Let A be an algebra of complex
continuous functions on a compact set K. If A is self-adjoint, separates points and vanishes
at no point of K, then A is dense in C(K) with respect to ∥.∥∞.

In the proof of Theorem 5.15 we will need the following lemma.

Lemma 5.14. Let µ be a complex measure on ([−π, π),B([−π, π)). We have µ = 0 if and
only if

π∫
−π

exp(iωt) dµ(ω) = 0

for all t ∈ .

Proof. If µ = 0, we clearly have

π∫
−π

exp(iωt) dµ(ω) = 0.

To show the other direction, we assume that µ ̸= 0 and show that there needs to be a t ∈ ,
such that

∫ π
π exp(iωt) dω ≠ 0. Considering the bijection ϕ : [−π, π) → T, ω �→ exp(iω) with

T := {z ∈ C : |z| = 1}, we can identify [−π, π) with T, see e.g., [Axl20, Section 11A]. Hence,
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5 Multidimensional signals

we can identify µ with a measure $µ on (T,B(T)) by setting µ(A) = $µ(exp(iA)). Since µ ̸= 0,
we also have $µ ̸= 0.

As a compact subset of C, T is a compact space, see [KH15, Proposition 12.11.2]. Now $µ
is regular, see [Els18, Chapter VIII, Corollary 1.12] and [Els18, Chapter VIII, Implications
2.22]. According to Theorem 5.11, there exists a function f ∈ C0(T) = C(T) such that∫

T

f(ω) d$µ(ω) ̸= 0.

We define

δ :=

||||||
∫
T

f(ω) d$µ(ω)
|||||| > 0.

As $µ ≠ 0 is a complex measure, we have |$µ|(T) ∈ (0,+∞). The span2 of the continuous
functions {h : T → C, z �→ zt, t ∈ } is a self-adjoint, point separating, at no point vanishing
algebra in C(T). Hence, according to Theorem 5.13, there exists a

g(ω) =

m∑
t=−m

zt · ωt, z−m, . . . , zm ∈ C

such that ∥f − g∥∞ < δ/(2 · |$µ|(T)). Furthermore, we have||||||
∫
T

f(ω) d$µ(ω)− ∫
T

g(ω) d$µ(ω)
|||||| =

||||||
∫
T

f(ω)− g(ω) d$µ(ω)
|||||| (1)
< |$µ|(T) · δ

2 |$µ|(T) =
δ

2

whereat inequality (1) holds because of Theorem 5.11 and its implication

|Φ($µ)(f − g)| ≤ ∥Φ($µ)∥ · ∥f − g∥∞ = ∥$µ∥ · ∥f − g∥∞ = |$µ|(T) · ∥f − g∥∞.

The inequality||||||
∫
T

f(ω) d$µ(ω)
||||||� �� �

=δ

=

||||||
∫
T

f(ω) d$µ(ω)− ∫
T

g(ω) d$µ(ω) + ∫
T

g(ω) d$µ(ω)
||||||

≤
||||||
∫
T

f(ω) d$µ(ω)− ∫
T

g(ω) d$µ(ω)
||||||� �� �

< δ
2

+

||||||
∫
T

g(ω) d$µ(ω)
||||||

shows that ||||||
∫
T

g(ω) d$µ(ω)
|||||| > δ

2

2The elements of this space are often called “trigonometric polynomials”, see e.g. [Rud87].
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which leads to

0 ̸=
∫
T

g(ω) d$µ(ω) = ∫
T

m∑
t=−m

zt · ωt d$µ(ω) = m∑
t=−m

zt ·
∫
T

ωt d$µ(ω).
Thus, there exists a t ∈  such that ∫

T

ωt d$µ(ω) ̸= 0.

As {h : T → C, ω �→ ωt, t ∈ } correspond to {h : [−π, π) → C, ω �→ exp(iωt), t ∈ }, we
found a t ∈  such that

π∫
−π

exp(iωt) dµ(ω) =
∫
T

ωt d$µ(ω) ̸= 0.

■

The next theorem and its corollary are based on the second part of [Lin12, Theorem 7.1 (a)],
which states a similar result for continuous-time stochastic processes. However, we elaborate3

the proof.

Theorem 5.15. Let X1, X2, . . . , Xn be discrete-time, jointly wide-sense stationary stochastic
processes with expected value of 0 and let F be the matrix involved in (5.5), i.e.,

F (A) =

�F11(A) · · · F1n(A)
...

. . .
...

Fn1(A) · · · Fnn(A)

� , A ∈ B([−π, π)).

Let [ω1, ω2] ⊆ [−π, π) be an interval. The matrix F ([ω1, ω2]) ∈ Cn×n is positive semi-definite.

Proof. Since Fkj(A) = Fjk(A) (see Theorem 5.8), F ([ω1, ω2]) is an Hermitian matrix. Let
z = {z1, . . . , z2} ∈ Cn. We want to show that

z∗F ([ω1, ω2])z ≥ 0. (5.13)

Similar to the proof of Theorem 5.84, we consider the stochastic process

Y (t) =

n∑
j=1

zjXj(t).

3In [Lin12] the proof is concentrated to “It is easy to see that ΔF (ω) has the stated properties. [...]”,
without stating any preliminaries as Lemma 5.14. In this thesis, we try to prepare the proof even for
people without the required sight.

4Due to technical reasons, we consider the process
∑

zjXj instead of
∑

zjXj as in Theorem 5.8.
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and its autocovariance rz and spectral measure Gz. Hence, we have

rz(t) =

π∫
−π

exp(iωt) dGz(ω).

Furthermore, we have

π∫
−π

exp(iωt) dGz(ω) = rz(t)
(1)
=

∑
j,k∈{1,...,n}

zjzkRjk(t)

= (z1, . . . zn)

�R11(t) · · · R1n(t)
...

. . .
...

Rn1(t) · · · Rnn(t)

�
�z1

...
zn

�
= (z1, . . . zn)

�
∫
exp(iωt) dF11(ω) · · · ∫

exp(iωt) dF1n(ω)
...

. . .
...∫

exp(iωt) dFn1(ω) · · · ∫
exp(iωt) dFnn(ω)

�
�z1

...
zn

�
(5.4)
=

π∫
−π

exp(iωt) d

�(z1, . . . zn)

�F11 · · · F1n
...

. . .
...

Fn1 · · · Fnn

�
�z1

...
zn

�
�

� �� �
Fz :=

(ω)

=

π∫
−π

exp(iωt) dFz(ω).

Equation (1) holds because of (5.7) and the fact that we considered Y =
∑

zjXj instead of
Y =

∑
zjXj . As a linear combination of complex measures, Fz is a complex measure. Since

π∫
−π

exp(iωt) d(Gz − Fz)(ω) = 0

for all t ∈ , Lemma 5.14 provides that Gz − Fz = 0, i.e., Gz = Fz. Hence, Fz is a measure
and

(z1, . . . zn)

�F11([ω1, ω2]) · · · F1n([ω1, ω2])
...

. . .
...

Fn1([ω1, ω2]) · · · Fnn([ω1, ω2])

�
�z1

...
zn

�
=

�(z1, . . . zn)

�F11 · · · F1n
...

. . .
...

Fn1 · · · Fnn

�
�z1

...
zn

�
� ([ω1, ω2]) = Fz([ω1, ω2]) ≥ 0

which shows that the matrix F ([ω1, ω2]) is positive semi-definite. ■
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Corollary 5.16. Let X1, X2, . . . Xn be discrete-time, jointly wide-sense stationary stochastic
processes with expected value of 0 and let F be the matrix of cross-spectral functions Fjk,
i.e., F : [−π, π) → Cn×n with

F (ω) =

�F11(ω) · · · F1n(ω)
...

. . .
...

Fn1(ω) · · · Fnn(ω)

� , ω ∈ [−π, π).

Let ω1 < ω2. The matrix ΔF (ω1, ω2) := F (ω2)− F (ω1) is positive semi-definite.

Proof. Let Fm be the matrix of the spectral measures and cross-spectral measures involved
in (5.5). Considering the definition of the spectral function and cross-spectral function, we
have ΔF (ω1, ω2) = F (ω2)− F (ω1) = Fm([ω1, ω2]). Theorem 5.15 yields that Fm([ω1, ω2]) is
positive semi-definite. Hence, ΔF (ω1, ω2) is positive semi-definite. ■

5.3 Spectral density

In this section, we want to consider a special case, namely that the spectral function F
is differentiable. We will see that this gives very useful properties. But first, we want to
discuss some theoretical background, see [Kal21, Definition 18.3.10].

Definition 5.17. Let ν be a measure on (X,Σ) and let µ be a measure or a complex measure
on (X,Σ). We call µ absolutely continuous with respect to ν if ν(A) = 0 implies µ(A) = 0
whereat A ∈ Σ. If µ is absolutely continuous with respect to ν, we will denote this by µ ≪ ν.

We will now formulate the Theorem of Radon-Nikodym, see [Kal21, Theorem 18.3.12].
However, we only consider the case that µ is absolutely continuous with respect to the
Lebesgue measure λ.

Theorem 5.18 (Radon-Nikodym). Let µ be a complex measure on (X,B(X)) and let λ be
the Lebesgue measure on (X,B(X)). We have µ ≪ λ if and only if there exists an integrable
function f such that µ = f · λ, i.e.

µ(A) =

∫
A

f dλ, for all A ∈ Σ. (5.14)

In this case, f is unique almost everywhere (with respect to λ) and is called density of µ with
respect to λ.

If µ ≪ λ, we can describe integrals with respect to µ as integrals with respect to λ, see
[Kal21, Fakta 18.3.16 - 3].

Proposition 5.19. Let λ be the Lebesgue measure on (X,B(X)), let µ be a complex measure
on (X,B(X)) with µ ≪ λ and let f be the density of µ with respect to λ as in 5.14. A
function g is integrable with respect to µ if and only if g · f is integrable with respect to λ
and we have ∫

X

g dµ =

∫
X

g · f dλ.
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5 Multidimensional signals

Let F : [−π, π) → C be the cross-spectral function of two processes X and Y , let F be
differentiable with F ′ = f and let Fm be the corresponding cross-spectral measure. Since
F is differentiable, it is also continuous. Hence, Fm is absolute continuous with respect to
λ. According to the Fundamental Theorem of Calculus for Lebesgue measures, see [Els18,
Theorem VII - 4.14], f is the density of Fm. Together with Proposition 5.19, we have

b∫
a

g(ω) dFm(ω) =

b∫
a

f(ω) · g(ω) dλ(ω).

for any integrable function g. Considering g(ω) = exp(iωt) gives rise to the following
corollary.

Corollary 5.20. Let X,Y be discrete-time, jointly wide-sense stationary stochastic processes
with expected value of 0 and let F be the cross-spectral function of X and Y . Let F be
differentiable with F ′ = f . We have

π∫
−π

exp(iωt) dF (ω) =

π∫
−π

f(ω) exp(iωt) dλ(ω) (5.15)

whereat the left-hand side is a Lebesgue-Stieltjes integral.

If we choose X = Y , Corollary 5.20 gives exactly the same result for the spectral function
instead of the cross-spectral function. The function f in (5.15) has a special name, see, e.g.,
[Lin12].

Definition 5.21 ((Cross-) spectral density). With the notation of Corollary 5.20, we call f
the cross-spectral density of X and Y . If X = Y , we call f the spectral density of X.

Corollary 5.20 reveals a very important result, namely that the autocovariance (cross-
covariance) is the Fourier transform of the (cross-) spectral density, if the (cross-) spectral
density exists. However, the (cross-) spectral density does not always exists. Hence, we
included this section only as a special case at the end of this chapter.

Finally, we want to adapt the results of the previous section to the special situation of the
current section.

Corollary 5.22. Let X1, X2, . . . Xn be discrete-time, jointly wide-sense stationary stochastic
processes with expected value of 0 and let Fjk : [−π, π) → ❘ (C), j, k ∈ {1, . . . n}, be their
(cross-) spectral functions. For each j, k ∈ {1, . . . , n}, let Fjk be differentiable with fjk := F ′

jk.
The matrix

f(ω) =

�f11(ω) · · · f1n(ω)
...

. . .
...

fn1(ω) · · · fnn(ω)

� , ω ∈ [−π, π). (5.16)

is positive semi-definite for each ω ∈ [π, π).

42



5 Multidimensional signals

Proof. Considering the matrix F of the (cross-) spectral functions and ΔF (ω1, ω2) =
F (ω2)− F (ω1) (see Corollary 5.16), we have

f(ω) = lim
δ→0

ΔF (ω, ω + δ)

δ
.

Corollary 5.16 yields F (ω, ω + δ)/δ ⪰ 0 for any δ > 0. Thus, the limit and therefore f(ω) is
positive semi-definite as well. ■

Definition 5.23 (Spectral density matrix). We call the matrix-valued function f involved
in (5.16) spectral density matrix.

In this chapter, we have extended Herglotz’s theorem to the multidimensional case by
proving the existence of a matrix F of complex measures that satisfies (5.5), see Theo-
rem 5.8. Using Lemma 5.14, we examined the structure of matrix F and proved its positive
semi-definiteness, see Theorem 5.15. If the corresponding (cross-) spectral functions are
differentiable, the matrix of the densities is also positive semi-definite, see Corollary 5.22.
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6 Modeling intermediate signals

In the previous chapters, we have gained basic knowledge about signals and their spectral
representation. Now, we want to apply OMT to solve problems regarding signals and their
spectral densities. We provide two examples that were solved numerically with MATLAB
and the CVX toolbox, see Section 3.7. Both codes were executed on a standard laptop
without GPU with a runtime of less than 15 seconds each. The number of sampling points
in the corresponding discretizations was n = 80.

6.1 Scaling

Before introducing concrete applications, we want to discuss how we can manipulate Hermi-
tian, positive semi-definite 2× 2 matrix-valued functions µ : [a, b] → H2

+ in order to receive
functions $µ ∈ Fc for some given c ∈ (0,+∞). Of course, the answer is scaling, however there
are at least two sensible scaling methods that preserve the positive semi-definiteness.

The most obvious method is defining

ctr :=

b∫
a

tr(µ(x)) dx

and $µ :=
c

ctr
µ.

It can be readily verified that $µ ∈ Fc, if µ(x) ⪰ 0 for each x.
Another method is defining two constants c0, c1 ∈ (0,+∞) such that

b∫
a

µ11(x)

c20
+

µ22(x)

c21
dx = c,

whereat

µ(x) =

(
µ11(x) µ12(x)
µ21(x) µ22(x)

)
.

We now define

$µ(x) := (
µ11(x)/c

2
0 µ12(x)/(c0c1)

µ21(x)/(c0c1) µ22(x)/c
2
1

)
.

Since µ(x) is positive semi-definite, µ11 and µ22 are non-negative, see Definition 3.3. The
determinant µ11µ22 − µ12µ21, which is the product of the eigenvalues, is non-negative. Thus,
one can show that both the trace and the determinant of $µ are non-negative and therefore$µ is positive semi-definite. Because of our choice of c0 and c1, $µ is an element of Fc.
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6 Modeling intermediate signals

6.2 N-dimensional signals

In Chapter 5, we considered multidimensional signals. In Corollary 5.22, we have seen that
for each ω ∈ [−π, π), the value f(ω) of the spectral density matrix of a multidimensional
signal is positive semi-definite. Given some c ∈ (0,+∞), we can scale f in order to receive
an element of Fc.

Given two n-dimensional signals X0 and X1 and their already scaled spectral density
matrices f0 ∈ Fc and f1 ∈ Fc, defined by (5.16), we now want to use the method of
Section 3.6 to obtain the spectral density matrix f0.5 of an “intermediate” signal X0.5. A
more concrete, special case of this situation will be discussed in Section 6.3.

To give an example, we now assume that two spectral density matrices f0, f1 ∈ F1 are
given. For this purpose, we are using µ0 and µ1 from the example in [NGT14, Section V-A].

f0(ω) :=

(
1 0

1
5 exp(−iω) 1

)
·
(

1
|a0(ω)|2 0

0 1
100

)
·
(
1 1

5 exp(iω)
0 1

)
,

f1(ω) :=

(
1 1

5
0 1

)
·
(

1
100 0
0 1

|a1(ω)|2

)
·
(
1 0
1
5 1

)
,

with

a0(ω) =

(
exp(2iω)− 9

5
cos

(π
4

)
exp(iω) +

81

100

)
·
(
exp(2iω)− 7

5
cos

(π
3

)
exp(iω) +

49

100

)
,

a1(ω) =

(
exp(2iω)− 9

5
cos

(π
6

)
exp(iω) +

81

100

)
·
(
exp(2iω)− 3

2
cos

(
2π

15

)
exp(iω) +

9

16

)
.

Figure 6.1 shows f0 and f1 together with f0.5, computed as in Section 3.6.
Since f0, f1, f0.5 are matrix-valued functions with complex entries, we cannot display

them in a single graph. However, our functions are mapping to the Hermitian matrices.
Hence, the diagonal entries fk,11, fk,22, k ∈ {0, 1, 0.5} are real-valued. Furthermore, the off
diagonal entries fk,12, k ∈ {0, 1, 0.5} are the complex conjugates of fk,21, k ∈ {0, 1, 0.5},
respectively. Thus, it is sufficient to only display the absolute value |fk,21| (= |fk,12|) and
the argument ∠fk,21 (= −∠fk,12). Therefore, Figure 6.1 displays fk,11, |fk,21|,∠fk,21 and
fk,22 for k ∈ {0, 1, 0.5}.
f0 and f1 are conjugate symmetric functions, i.e., f(−t) = f(t). Hence it is not surprising

that f0.5 is also a conjugate symmetric function. For this reason, we are computing and
plotting f0.5 only in the interval [0, π].

We can see that f0.5 is indeed a mixture of f0 and f1. The peak of f0.5 is located in the
middle of the peaks of f0 and f1 and the height of the peak is approximately the average
of the heights of the peaks of f0 and f1. In comparison, the most straightforward way of
computing a mixture of f0 and f1 would be taking the arithmetic average of each value,
i.e., defining $f0.5 := (f0 + f1)/2. However, this $f0.5 would have two peaks that are located
above/below the peaks of f0 and f1. Hence, our more complicated computation yields results
that better resemble an intermediate function between f0 and f1.

In the plot of ∠f0.5,21, we have an almost linear behavior in the interval [0, π/2]. However,
there are high oscillations in the interval [π/2, π]. We should not overrate this strange
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Figure 6.1: The plot on the top left shows the top left entries fk,11 of fk, the plot on the
bottom right shows the bottom right entries fk,22 of fk with k ∈ {0, 1, 0.5}.
These entries are real-valued. The bottom left entries fk,21 are the conjugate
transposed of the top right entries fk,12, k ∈ {0, 1, 0.5}. In the top right plot we
show their absolute values, in the bottom left plot we show their arguments. We
can see that f0.5 is indeed a mixture between f0 and f1 in all four entries.

behavior, since the absolute value |f0.5,21| in this interval is almost zero and the argument of
complex numbers that are almost zero is not very relevant.

6.3 Filtered signals

6.3.1 Theoretical setup

In this section, we consider a room with a source and two sensors, see Figure 6.2. The
source emits a signal X. The sensors receive signals Y0 and Y1, respectively. Since there is
some space between the source and the sensors and there might be, e.g., reflections from the
surrounding walls, signal Y0 and Y1 are different from signal X. However, there is still some
kind of correlation between the emitted signal and the received signals.

The aim of this section is finding an intermediate signal Y0.5 that would correspond to a
sensor that is located between sensor A and sensor B (gray dot in Figure 6.2).

A very common way of describing such a situation is modeling the interaction by considering
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6 Modeling intermediate signals

Source

Sensor A

Sensor B

Figure 6.2: A source is emitting a signal X, Sensor A and Sensor B are receiving (presumably)
slightly different signals Y0 and Y1. In the middle of the two sensors (gray dot),
we assume signal Y0.5.

room impulse functions. A detailed motivation can be found in [Smi08]. For this purpose,
we assume that there are two room impulse functions h0, h1 : → C satisfying

y0(t) = h0(t) ∗ x(t) and y1(t) = h1(t) ∗ x(t), (6.1)

for each outcome ω of the sample space Ω. The functions x : t → X(t)(ω), y0 : t →
Y0(t)(ω), y1 : t → Y1(t)(ω) are the realizations of X,Y1, Y2 with respect to ω. The symbol ∗
denotes the discrete convolution, i.e.,

h(t) ∗ x(t) := (h ∗ x)(t) :=
∞∑

k=−∞
h(k)x(t− k),

see [PM96, Section 2.3.4]. Since we have (6.1) for each outcome ω ∈ Ω, we can write

Y0(t) = h0(t) ∗X(t) and Y1(t) = h1(t) ∗X(t).

Let us assume that the (cross-) spectral densities fXX , fXkY , fY Xk
, fYkYk

, k ∈ {0, 1} of
X,Y0, Y1 exist. Furthermore, we denote the Fourier transforms of h0 and h1 as H0 and H1,
respectively. H0 and H1 are often called frequency responses, see e.g., [PM96, Section 4.4].
We have

fXYk
(ω) = Hk(ω)fXX(ω), fYkX(ω) = Hk(ω)fXX(ω), fYkYk

(ω) = |Hk(ω)|2fXX(ω)

for k ∈ {0, 1}, see [Pap91, Section 10.3]. For proving these statements, it might be helpful to
recall that the autocovariance and cross-covariance are the Fourier transforms of the spectral
density and cross-spectral density, respectively, see Section 5.3. We can now reformulate the
matrix of the (cross-) spectral densities as(

fXX(ω) fXYk
(ω)

fYkX(ω) fYkYk
(ω)

)
= fXX(ω) ·

(
1 Hk(ω)

Hk(ω) |Hk(ω)|2
)

� �� �
µk(ω):=

, k ∈ {0, 1}.
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6 Modeling intermediate signals

We have already discussed that the left-hand side of this equation is positive semi-definite. If
fXX(ω) ̸= 0 for all ω, we could deduce that µk(ω) is also positive semi-definite. However, we
can prove the positive semi-definiteness of µk(ω) without this constraint: We are assuming
Y0, Y1 ̸≡ 0, hence we have h ̸≡ 0 and H ̸≡ 0. Since the right columns of µ0(ω) and µ1(ω) are
multiples of the left columns with factor H0(ω) and H1(ω), respectively, µ0(ω) and µ1(ω)
are both of rank 1 and therefore have one eigenvalue of 0. As the traces, which are the sums
of the eigenvalues, of µ0(ω) and µ1(ω) are positive, the other eigenvalues must be greater
than zero. Thus, µ0(ω), µ1(ω) ⪰ 0 for each ω ∈ [−π, π].

In the spirit of Section 6.1, we can scale µ0(ω) and µ1(ω) such that

∞∫
−∞

tr(µ0(ω)) dω =

∞∫
−∞

tr(µ1(ω)) dω.

Now everything has been arranged for matrix-valued OMT.

6.3.2 Computation of the signal

We assume that two transfer functions %H0 and %H1 are already given. Let %H0, %H1 : [−π, π] → C
be defined as

%Hk(ω) =
exp(2iω)(

exp(iω)− pk
)(

exp(iω)− pk
) , k ∈ {0, 1},

with

p0 =
9

10
· exp

(π
6
i
)
, p1 =

9

10
· exp

(
2π

3
i

)
.

We do not want to give a detailed interpretation of our choice of %H0 and %H1. However, the
knowledgeable reader will recognize that %H0 and %H1 correspond to filters with poles p0, p0
and p1, p1, respectively. A profound interpretation and explanation can be found in [PM96].

We define H0 and H1 by scaling %H0 and %H1,

H0(ω) := 2π ·
%H0(ω)

π∫
−π

%H0(ν) dν

, H1(ω) := 2π ·
%H1(ω)

π∫
−π

%H1(ν) dν

.

The matrix-valued functions µ0, µ1 : [−π, π] → H2
+

µ0(ω) =

(
1 H0(ω)

H0(ω) |H0(ω)|2
)
, µ1(ω) =

(
1 H1(ω)

H1(ω) |H1(ω)|2
)
, (6.2)

are positive semi-definite for each ω ∈ [−π, π] and satisfy

π∫
−π

tr(µ0(ω))dω =

π∫
−π

tr(µ1(ω))dω = 4π.
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Hence, µ0, µ1 ∈ F4π, whereat

F4π :=

µ : [−π, π] → C2×2

|||||| µ(ω) ∈ H2
+,

π∫
−π

tr(µ(ω)) dω = 4π

 .

We can now use our methods from Chapter 3 to find an intermediate µ0.5 ∈ F4π,

µ0.5(ω) =

(
µ0.5,11 µ0.5,12

µ0.5,21 µ0.5,22

)
.

However, it would be favorable if there is an H0.5 such that µ0.5 is of the form

µ0.5(ω) =

(
1 H0.5(ω)

H0.5(ω) |H0.5(ω)|2
)
. (6.3)

In general, µ0.5 will not be of this form. Within the optimization problem of finding an
intermediate µ0.5, we can set the constraint that µ is of form (6.3). However, adding this
constraint will cause the optimization problem to be no longer convex. Instead, we try a
different approach.

1. First, we define

F4π,1 :=

µ : [−π, π] → C2×2

|||||| µ(ω) ∈ H2
+,

π∫
−π

tr(µ(ω)) dω = 4π, µ11(ω) = 1

 ,

so we add the affine constraint that the first entry µ11(ω) of µ(ω) is equal to 1 for all
ω ∈ [−π, π]. It can be readily verified that F4π,1 ⊆ F4π.

2. Using the method of Section 3.6, we determine $µ0.5 ∈ F4π,1 that minimizes the sum
T2,λ(µ0, µ) + T2,λ(µ, µ1) over all µ ∈ F4π,1. The function $µ0.5 is still the solution of a
convex optimization problem, since the additional constraint is an affine constraint,
see [BV09, Section 4.2.1].

3. Finally, we want to find H0.5 : [−π, π] → C such that(
1 H0.5

H0.5 |H0.5|2
)

and
($µ0.5,11 $µ0.5,12$µ0.5,21 $µ0.5,22

)
are “close” to each other. Hence, we define H0.5 by

H0.5 = argmin
H:[−π,π]→C

π∫
−π

‖‖‖‖$µ0.5(ω)−
(

1 H(ω)
H(ω) |H(ω)|2

)‖‖‖‖2
F

dω (6.4)

subject to
π∫

−π

tr

(
1 H(ω)

H(ω) |H(ω)|2
)

dω = 4π (6.5)
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whereat ∥.∥F denotes the Frobenius norm. Hence, H0.5 is the solution of another
optimization problem. However, this optimization problem is not convex (e.g., |H(ω)|2
is not affine). Nevertheless, we will consider any computed solution of the optimization
problem as H0.5, although we can not ensure that the solution is not just a local
minimum but also a global minimum. Furthermore, the optimization problem is not
very sophisticated, therefore we can solve it in a relatively short time. We define µH

by

µH(ω) :=

(
1 H0.5(ω)

H0.5(ω) |H0.5(ω)|2
)
. (6.6)

Given the two functions µ0, µ1 ∈ F4π (see (6.2)), we can therefore compute two different
intermediate functions µ0.5, µH ∈ F4π, whereat

• µ0.5 minimizes the sum T2,λ(µ0, µ0.5) + T2,λ(µ0.5, µ1), i.e., we have

T2,λ(µ0, µ0.5) + T2,λ(µ0.5, µ1) ≤ T2,λ(µ0, µ) + T2,λ(µ, µ1)

for each µ ∈ F4π. However, in general µ0.5 is not of form (6.3).

• µH is close to µ0.5 (with respect to (6.4)) and is of form (6.6). However, in general we
have

T2,λ(µ0, µH) + T2,λ(µH , µ1) > T2,λ(µ0, µ0.5) + T2,λ(µ0.5, µ1).

In order to determine how “bad” µH behaves with respect to T2,λ, we compute the relative
difference in distance, i.e.,

ΔT2,λ,Rel(µH , µ0.5) :=
T2,λ(µ0, µH) + T2,λ(µH , µ1)

T2,λ(µ0, µ0.5) + T2,λ(µ0.5, µ1)
≈ 1.03696.

The value of ΔT2,λ,Rel(µH , µ0.5) appears to be close to 1, thus it seems that we have found
a good approximation of µ0.5. However, since we have no knowledge about the reasonable
interpretation of the actual values of T2,λ, we are not able to confidently distinguish if an
approximation is good or bad.

Figure 6.3 compares µ0, µ1, µ0.5
1 and µH . As before, µ0.5 and also µH seem like reasonable

intermediate functions, although the height of their peaks are smaller than the height of the
peaks of µ0 and µ1. It seems that µH is the more reasonable intermediate function, since
the height of the peak of |µH,21| is closer to the height of the peaks of |µ0,21| and |µ1,21|
than the height of the peak of |µ0.5,21|. The reason for this lies in the fact that we have
the constraint (by construction) that |µH,21| =

√|µH,22|. Hence, it seems like the peak of
|µH,21| is lifted up compared to the peak of |µ0.5,21|. Since all our functions are conjugate
symmetric, we plot the graphs only in the interval [0, π]. In Figure 6.4, we compare the
transfer functions H0, H1 and H0.5.

1In the actual µ0.5 there is a lot of small oscillation. For this plot, we used a small regularization term to
get a smoother solution and hence a more meaningful comparison with the other functions. The value of
ΔT2,λ,Rel(µH , µ0.5) is based on the actual µ0.5.
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Figure 6.3: Using the same notation and arrangement of plots as in Figure 6.1, we see that
both µ0.5 and µH resemble a mixture of µ0 and µ1. However, the absolute values
of the off-diagonal entries in µH seem to be more reasonable than in µ0.5.

6.4 Optimal mass transport for complex-valued functions

In Chapter 2, we introduced the concept of OMT for non-negative, real-valued functions
f : [a, b] → ❘

+
0 , [a, b] ⊆ ❘. In Chapter 3, we were considering Hermitian, positive semi-

definite matrix-valued functions. The matrices were subsets of Cn×n, but since the matrices
were Hermitian, the diagonal entries were always real-valued. So if we consider matrices of
size 1× 1, those values of our functions are not complex-valued but real-valued.

We now want to ask if it is also possible to define OMT for complex-valued functions
f : [a, b] → C. In this case, we would expect that a corresponding transport plan is also
a complex-valued function, presumably in every entry. Considering the cost functions
(2.4) and (3.6), this would lead to a complex-valued cost. However, we cannot minimize
complex-valued costs.

Instead, we want to recapitulate our example in Section 6.3: After talking about the
theoretical setup, we considered two functions H0, H1 : [−π, π] → C and arranged them
in such a way, that we could use the methods of Chapter 3. Afterwards, we extracted an
intermediate function H0.5 : [−π, π] → C. Of course, we can also use this method in other
situations where two complex-valued functions are given.
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Figure 6.4: Based on the values in Figure 6.3, we use the fact that the bottom right entry
of µH corresponds exactly to |H| and the argument of the bottom left entry
of µH is the argument of H. Hence, we can compare H0, H1 and H0.5 both in
terms of absolute values and in terms of arguments, see left plot and right plot,
respectively.

Let [a, b] ⊆ ❘ and f0, f1 : [a, b] → C with

b∫
a

|f0(z)| dz =

b∫
a

|f1(z)| dz.

The functions µ0, µ1 : [a, b] → H2
+, defined by

µ0(z) =

(
1 f0(z)

f0(z) |f0(z)|2
)
, µ1(z) =

(
1 f1(z)

f1(z) |f1(z)|2
)
,

are elements of Fc (see (3.2)) for some c ∈ (0,∞). After adding the constraint µ11 = 1, we
can determine an intermediate function

µ0.5(z) =

(
1 µ21

µ21 µ22

)
.

Finally, we define f0.5 : [a, b] → C as

f0.5 = argmin
f0.5:[a,b]→C

b∫
a

‖‖‖‖µ0.5(z)−
(

1 f0.5(z)
f0.5(z) |f0.5(z)|2

)‖‖‖‖2
F

dz

subject to
b∫

a

tr

(
1 f0.5(z)

f0.5(z) |f0.5(z)|2
)

dz = c.

Thus, we have found a method to determine an intermediate, complex-valued function
f0.5 : [a, b] → C.

52



7 Discussion

In this thesis, we first introduced optimal mass transport in its basic form, see Chapter 2.
Based on [NGT14], we provided an extension of OMT to Hermitian, positive semi-definite
matrix-valued functions, see Chapter 3. In order to formulate it in a sensible way, we had
to consider the tensor product space Cn×n ⊗ Cn×n and introduce a new transport cost.
Although parts of the new formulation seem very abstract, the actual computation of an
optimal transport plan can be done in a fast and effective way, since we only need to solve a
convex optimization problem.

In Chapter 4 and Chapter 5, we were dealing with the theory of signals and its statistical
properties. A central statement was Herglotz’s theorem. We proved a multidimensional
version of Herglotz’s theorem and furthermore formulated and proved a statement about the
positive semi-definiteness of the cross-spectral measure matrix. A corresponding corollary
was later used in Chapter 6.

In Chapter 6, we used OMT of Hermitian, positive semi-definite matrix-valued functions
to find intermediate signals between two multidimensional signals. For this purpose, we were
not only considering the spectral density of each signal component but also the corresponding
cross-spectral densities. The plots of our computed solutions revealed that OMT indeed
provides realistic results for finding intermediate signals.

The first part of this thesis was understanding OMT and elaborating the paper On Matrix-
valued Monge-Kantorovich Optimal Mass Transport, see [NGT14]. In particular, the partial
traces and their related spaces required more precise descriptions.

The coding in MATLAB was very time-consuming, since it was not clear how to efficiently
implement the optimization process. Using the CVX toolbox was the first game changer,
installing the MOSEK solver finally enabled solving problems of our size. However, prior
efforts with the Optimization Toolbox did not lead to any useful results.

Another challenge was introducing signals in a profound mathematical way. Most literature
about this topic is dedicated to engineers and hence does not provide stringent proofs. A
similar statement to one of the main theorems of this thesis, Theorem 5.8, can be found in
[Lin12]. However, the given proof was not satisfying and hence we had to prove the theorem,
including the required lemma, by ourselves. However, this was a very joyful task.

An exciting property of this thesis is that many different areas of mathematics come into
play. The author was surprised by how many lecture notes from various courses he had
to consult while working on the thesis, although the topic of the thesis seems to be quite
application-oriented. In addition to basics from analysis and linear algebra, we also had to
deal with more abstract objects, e.g., tensor products, complex measures and statements
from functional analysis. Furthermore, stochastic processes were a central element of this
thesis. Finally, optimization and numerical mathematics came into play when implementing
the developed methods.
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7 Discussion

In this thesis, we have dealt with a wide variety of topics. However, there are many things
that could be examined further:

• In Section 6.2 and Section 6.3, we started with functions that are mapping to the
Hermitian, positive semi-definite matrices. In order to have elements of Fc for some
given c ∈ (0,+∞), we had to scale the functions, see Section 6.1. However, we did
not examine the (presumably unwanted) effects of the scaling. In particular, we can
ask for a way to rescale the results in order to equalize the corruption caused by the
scaling.

• In the definition of the transport cost, see (3.6), we used the parameter λ, which acted
as a weighting factor between the impact of distance cost and the impact of directional
cost. When computing the solutions in Chapter 6, we chose λ = 1/10, since this
value was also chosen in [NGT14]. However, we can consider different values of λ and
compare the results.

• In Chapter 6, we applied our methods to “concrete” examples. However, the examples
were still relatively theoretical1. The plausibility of the methods was checked by
evaluating the plots. In a next step, we can compare the results to real data. For
example, we can consider data of Room Impulse Response generators2 or set up
speakers and microphones in a real room and measure the corresponding signals.

• The classical OMT deals with real-valued functions. In Section 6.4, we introduced
a method of applying OMT to complex-valued functions. Next, we can look for
complex-valued problems and try to solve them with our new, fruitful method.

1Since the author is a student of Technical Mathematics, solving these examples was still one of the most
applied tasks he was doing within his studies.

2An implementation of a Room Impulse Response generator based on [AB79] can be found via https:
//www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator
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