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Kurzfassung

In der Softwareentwicklung besteht häufig der Bedarf, gezielt bestimmte Codebereiche
zu testen oder zu analysieren, ohne das gesamte Programm auszuführen. Dies wird
jedoch schwierig, wenn der ausgewählte Bereich von den umgebenden Definitionen
oder dem Kontext abhängt. In dieser Arbeit wird ein statisches Programm-Slicing-
Verfahren vorgestellt, das die isolierte Ausführung von Codeausschnitten ermöglicht, die
aus größeren Programmen extrahiert wurden. Die vorgestellte Methode identifiziert und
rekonstruiert ausschließlich jene Teilmengen des ursprünglichen Codes, die erforderlich
sind, um die Semantik eines ausgewählten Bereichs zu bewahren. Dadurch lässt sich das
Ergebnis unabhängig vom ursprünglichen Kontext ausführen. Der Ansatz basiert auf einer
rekursiven Abhängigkeitsanalyse durch Traversierung des abstrakten Syntaxbaums sowie
des Aufrufgraphen. Dabei werden sowohl direkte als auch transitive Beziehungen zwischen
Anweisungen aufgelöst. Ein Mechanismus zur Verfolgung von Variablenverwendungen
unterscheidet zwischen auflösbaren und nicht auflösbaren Elementen. Letztere werden der
Anwenderin oder dem Anwender über typgeprüfte Eingabeaufforderungen präsentiert. Die
finale Teilmenge wird mittels topologischer Sortierung und strukturierter Rekonstruktion
zu einem ausführbaren Skript umgebaut.

Der Ansatz wurde in dem Prototyp-Tool CodeDetective implementiert, das typisierte
Python Eingabeprogramme unterstützt und anhand einer Benchmark-Suite mit zehn
konzeptionellen Schwierigkeitsgraden evaluiert wurde. Die Evaluierung zeigt, dass das
System eine Genauigkeit von über 82% erreicht und damit deutlich besser abschneidet
als die Basis-Tools, denen es an Fähigkeiten zur Programmanalyse oder zur Verarbeitung
von Benutzereingaben fehlt und lediglich etwa 10% bzw. 30% erreichten. Diese Ergebnisse
verdeutlichen das Potenzial des Ansatzes, die isolierte Ausführung von Codeausschnitten
zu ermöglichen, selbst wenn die relevanten Abhängigkeiten über den ausgewählten Bereich
hinausgehen.
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Abstract

In software development, developers often need to test or inspect specific regions of code
without running the entire program. However, this becomes difficult when the selected
fragment depends on surrounding definitions or context. This thesis presents a static
program slicing approach for enabling the isolated execution of code snippets extracted
from larger programs. The proposed method identifies and reconstructs only a subset of
the original code that is required to preserve the semantics of a selected region, allowing
the result to execute independently of its original context. The approach performs
recursive dependency analysis by traversing the abstract syntax tree and call graph
of the program, resolving both direct and transitive relationships between statements.
A variable tracking mechanism distinguishes resolvable elements from unresolved ones,
which are presented to the user through type-validated input prompts. The final subset is
constructed into an executable script using topological sorting and structured rewriting.

The approach was implemented in the prototype tool CodeDetective, which supports typed
Python input programs and evaluated on a benchmark suite spanning ten conceptual
difficulty levels. The evaluation shows that the system achieves an accuracy score of over
82%, significantly outperforming baseline tools lacking program analysis or interactive
input handling, which reached only approximately 10% and 30%. These results highlight
the potential of the approach to enable isolated execution of code snippets, even when
dependencies span beyond the selected region.
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CHAPTER 1
Introduction

In modern software development, developers frequently interact with unfamiliar code,
whether sourced from online platforms, legacy systems, large-scale projects, or even their
own prior work. Understanding such code in context is often difficult, particularly when
the surrounding logic, dependencies, or runtime behaviour is not immediately visible.
This presents a significant challenge, as a deficiency of understanding may not only hinder
efficient collaboration among developers but can also act as a barrier to comprehending the
code thoroughly. Moreover, this lack of clarity increases the risk of introducing unintended
bugs and errors into projects, further complicating the development process and potentially
compromising the overall reliability of the software. Traditional approaches to comprehend
unfamiliar code involve debugging, writing extensive tests, or copying and executing
snippets in environments like Replit 1, an online interface for editing and running code
directly in the browser across multiple languages.

However, each of these methods comes with its own set of drawbacks [24, 28, 10].

Copying and executing code snippets outside the project context using online platforms
like Replit introduces complexities beyond just dependencies. It can be a cumbersome
and error-prone process to execute only a subset of code in isolation. This involves
manual tasks such as adjusting paths, declaring variables, modifying configurations, and
ensuring consistent settings.

While debugging is the key to understanding code flow and identifying errors, it becomes
increasingly challenging in large and nested projects. The complexity of nested functions,
dependencies, and asynchronous operations make traditional debugging tools less effective,
leading to long, laborious and cumbersome debugging sessions and increased cognitive
load for developers. For instance, consider a scenario where a developer is unsure
about the behaviour of a string operation and wants to inspect the following line of

1https://replit.com/

1
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1. Introduction

code const maskedNumber = last4Digits.padStart(fullNumber.length,
’*’); within a microservice architecture application. In order to examine this particular
line, the developer might be compelled to initiate a debugging session. However, this
requires a number of tasks, including starting connected services, compiling/building
dependencies, ensuring the correct configuration of the entire project, and navigating
through layers of code execution paths. Thus, initiating such a debugging session may be
deemed disproportionately cumbersome given the substantial overhead involved, making
it far less useful than the direct execution of the specific line under investigation.

In testing for code comprehension of a specific line, the effort associated with constructing
a comprehensive test suite can be impractical, especially when the sole purpose is to
quickly understand the operation of that line. This testing process lacks the agility
required for quick and ephemeral exploration of code. For instance, in scenarios where
developers need to comprehend a specific algorithm or logic in isolation, the overhead
of writing an exhaustive test for that particular line can outweigh the benefits of quick
comprehension. Consider again the example from above: a developer wants to investi-
gate the basic string manipulation functionality of the line const maskedNumber =
last4Digits.padStart(fullNumber.length, ’*’);. Now, imagine the idea
of creating a thorough test suite for this individual line. This would involve developing a
detailed set of test cases to thoroughly check how the code behaves in various scenarios.
However, given the simplicity of the operation, which involves padding the final four
digits of a number with asterisks, an extensive test suite might be considered overly
extensive.

To address this challenge, the thesis proposes a slicing-based approach for isolating
and executing selected code regions. Given a user-specified range of source lines, the
system analyses the program to determine all required dependencies. Variables that
are referenced but not defined within the selected region are treated as unresolved and
resolved through interactive user input, ensuring that the resulting code is executable.
The system then builds a self-contained program from the selected region and executes it
automatically, producing observable output based on the provided inputs.

This approach is realized in the form of a prototype implementation named CodeDetective,
targeting statically typed Python projects. The system integrates program analysis,
variable tracking, user interaction, and code reconstruction in a fully automated workflow.
Developers can specify a line or range of lines in a Python source file and the system
will extract and execute the corresponding slice, returning its result while preserving all
necessary dependencies and semantics.

The central research questions explored in this thesis are:

• RQ1 How can we build a program analyser that produces a subset of executable
code snippets from a source file?

• RQ2 How well does the developed tool perform in evaluating code snippets of
varying complexity and structure within controlled testing environments?
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The thesis begins with an overview of related work in Chapter 2, followed by background
on program representation and slicing in Chapter 3. Chapter 4 introduces the general
approach for isolating and executing code regions, while Chapter 5 describes the con-
crete implementation of this approach in the form of the prototype tool CodeDetective.
Chapter 6 outlines the evaluation methodology, and Chapter 7 presents and discusses
the results. The thesis concludes in Chapter 8 with a summary of findings and directions
for future work.
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CHAPTER 2
Related Work

Execution of individual code snippets have been investigated, among others, by Godefroid
in the context of software testing. In his paper "Micro execution" [11], Godefroid
introduces MicroX, a novel approach to unit testing by enabling the execution of isolated
code fragments without the need for a traditional test setup, such as a test driver or
predefined input data. It achieves this by compiling code into x86 assembly instructions
and executing them one by one, capturing all memory operations and intervening as
necessary.

Code Runner [20] is a Visual Studio Code extension that enables developers to execute
selected code snippets or entire code files in various programming languages, including
JavaScript, Python, and C++. While Code Runner facilitates code execution, it lacks
advanced program analysis capabilities. Specifically, it does not resolve dependencies
within the selected code, instead merely copying the code snippet into a new temporary
file for execution. This approach overlooks critical aspects of code comprehension and
execution, potentially leading to incomplete or inaccurate results. For instance, without
addressing dependencies, programs executed using Code Runner may fail or produce
unintended outcomes. Figure 2.1 illustrates an example of Code Runner in action.

Souza and Pradel [27] address the ongoing challenge of executing incomplete code,
including code snippets sourced from internet platforms or within large projects. They
introduce LExecutor, a learning-guided technique, in order to execute arbitrary code
snippets in an underconstrained way. The focus lies on preventing execution crashes due
to missing data. Thus, LExecutor uses a neural model to estimate appropriate values in
situations when the program would typically crash.

To assist with code comprehension during runtime, Lerner introduced Projection Boxes,
an innovative visualization technique designed to provide continual feedback on runtime
values within a Live Programming (LP) environment [22]. By allowing programmers to
selectively visualize subsets of program semantics, Projection Boxes mitigate information

5
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Figure 2.1: Code Runner example - Original code file (main.py) containing the se-
lected code line 3 (print(x)) alongside the temporary file tempCodeRunnerFile.py
which was automatically generated by Code Runner. The tempCodeRunnerFile.py
demonstrates that only the selected code was copied into a temporary file for execution,
without resolving dependencies within the selected code.

overload while accommodating individual user preferences. The study conducted in
the course of the paper indicates that Projection Boxes are effective for identifying and
understanding special operations, as well as for locating and fixing bugs.

In their paper ’Validating AI-Generated Code with Live Programming,’ Ferdowsi et al.
introduce LEAP (Live Exploration of AI-Generated Programs), a Python environment
that integrates live programming with an AI assistant to validate code snippets generated
by AI tools [8]. The study investigates how well LP addresses the challenge of validating
AI suggestions by reducing over- and under-reliance on AI-generated code. By utilizing
Projection Boxes as part of the LP environment, the authors demonstrate how LP lowers
the cost of validation by execution, making it more feasible for developers to validate AI
suggestions.

In a recent study [34], the concept of an instructive copilot as a programming assistant
has been introduced, aiming to provide instant explanations of generated code. The
tool Ivie (instantly visible in-situ explanations) offers concise AI-generated explanations
of newly generated code segments, assisting programmers in grasping unfamiliar APIs
and coding patterns present in the generated code. By seamlessly integrating with
programming assistants like GitHub Copilot, Ivie enhances code comprehension without
adding significant distraction or task load.

SpotFlow [16] introduces a novel paradigm in program analysis by facilitating the
extraction of runtime insights, including method calls, executed lines, variable states,
and exceptions, thereby enhancing code comprehension and debugging processes. By
operating at the method level and leveraging the sys.settrace function [4] and the inspect
module [3] from Python, SpotFlow enables fine-grained analysis, revolutionizing dynamic
program analysis for Python developers.

Frama-C [2] is a powerful tool for program analysis, providing a suite of static analysis
techniques for C and experimental C++ code. Its collaborative framework and over 27
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plug-ins empower software engineers with correct bug detection, functional specification
manipulation, and code adherence verification [7]. Focused on correctness and automation,
the combination of value analysis and slicing capabilities in Frama-C enables in-depth
code analysis, ensuring comprehensive understanding and assurance of software systems
[21].

While previous research has explored isolated code execution and comprehension, this
thesis approaches this challenge from a different perspective. Unlike existing methodolo-
gies such as MicroX, which focuses on executing code at the compiled assembly level, or
LExecutor, which addresses incomplete code execution by estimating missing values, our
work is designed for higher-level languages and emphasizes user interaction for providing
input values. Whereas Code Runner offers basic code execution functionalities without
considering dependencies or providing advanced program analysis features, our tool
incorporates program analysis to resolve dependencies and provide a more comprehensive
understanding of code behavior. While Frama-C and SpotFlow excel in program analysis,
particularly in static and dynamic analysis techniques, their approach diverges from
ours. They emphasize comprehensive code analysis across entire programs, whereas
our tool uniquely enables developers to isolate and execute specific portions of code,
offering targeted execution capabilities for focused analysis. Additionally, while tools
like Projection Boxes offer valuable capabilities within live programming environments,
our focus is on enabling developers to execute specific portions of code outside of such
environments. Unlike Ivie, which requires integration with specific programming assis-
tants and operates within specific IDEs like Visual Studio Code, our tool aims to be
a standalone solution, providing flexibility for developers across various development
environments. Additionally, while Ivie focuses solely on explaining code generated from
programming assistants, our tool targets a broader scope by enabling developers to
execute specific portions of code, regardless of their origin or generation method. With
the development of CodeDetective, our research aims to provide a specialized solution
for code exploration and comprehension in scenarios where users need to investigate and
understand individual code snippets efficiently and effectively.

7





CHAPTER 3
Background Information

This chapter provides an overview of fundamental concepts necessary for understanding
the proposed approach. It introduces different ways to represent source code, as well as
techniques for analysing and extracting relevant parts of a program.

Section 3.1 covers key program representations, including Abstract Syntax Tree (AST),
Dependency Graphs and Call Graphs, which are essential for structuring and analysing
source code. Section 3.2 introduces program slicing, a technique for isolating specific
parts of a program while preserving its intended behaviour.

3.1 Program Representation
Representing the source code is essential for various software engineering tasks such as
code classification, code clone detection or method name prediction. To facilitate these
tasks, different models are used to capture the syntactic and semantic structure of a
program. Among the most widely used representations are the Abstract Syntax Tree
(AST), Dependency Graph, and Call Graph, each serving a distinct role in analysing
software system[29]. The following subsections explain each of those models in more
detail. Subsection 3.1.1 provides more insights on AST, while subsection 3.1.2 discusses
dependency graphs and 3.1.3 focuses on call graphs.

3.1.1 AST - Abstract Syntax Tree
The Abstract Syntax Tree (AST) serves as a structured model of source code, capturing
its logical structure in a tree format. It is widely utilized in compilers, interpreters, and
automatic code generation tools. Each node signifies a different programming element,
such as expressions, statements, or declarations, while edges illustrate the relationships
between those elements. At the top of the tree is the root node, which serves as the
central entry point and typically corresponds to the entire program or the main construct
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3. Background Information

Figure 3.1: Abstract Syntax Tree - Illustration of an Abstract Syntax Tree represen-
tation of expression do i = i + 1; while(a[i]>v); [6].

being analysed. Branching from the root are child nodes, each representing smaller code
components, such as expressions, statements, or function calls. These child nodes may
further branch into more specific elements, forming a nested structure that mirrors the
logical flow of the program. At the lowest level, the leaf nodes serve as terminal elements,
representing fundamental components such as variables, constants, or operators [6, 15, 14].
Figure 3.1 illustrates an AST of code expression do i = i + 1; while(a[i]<v);.
The root is the do-while construct. The left subtree represents the loop body. The
body contains an assignment operation, where i is updated with the result of i + 1.
This is structured hierarchically, with the assignment operation breaking down into two
components: the left-hand side, which is the variable i, and the right-hand side, which
is an addition operation +. The addition itself further decomposes into its operands,
the variable i and the constant 1, forming a nested representation of the arithmetic
expression. The right subtree of the root node represents the loop condition, expressed
as a greater-than comparison (>), which checks whether an array element a[i] is greater
than v. This comparison consists of two parts: the left-hand side, which is an array
access operation [] retrieving the value stored at index i of array a, and the right-hand
side, which is simply the variable v.

The Python Abstract Syntax Tree [1] is a specific implementation of the general AST
concept, designed for the Python programming language. Like other ASTs, it represents
the syntactic structure of Python code as a tree, where each node corresponds to a
syntactic construct such as expressions, statements, or functions. The Python Abstract
Syntax Tree is generated using the built-in ast module, which parses Python source
code into a tree structure. This tree can then be analysed, transformed, or optimized,
allowing developers to inspect and manipulate Python code programmatically. Through

10



3.1. Program Representation

the ast module, it is possible to traverse the tree, modify individual nodes, or extract
information to facilitate tasks like static analysis or code refactoring.

3.1.2 Dependency Graph

A dependency graph is a directed graph that models the dependencies between various
elements in a system. These graphs are widely used in software engineering, database
systems, project management, and computational sciences, where they help visualize
relationships that dictate execution order, computation flow, or resource dependencies.
Each node in a dependency graph represents an entity, such as a function, module,
variable, or task, while directed edges indicate that one entity depends on another
[6, 9, 17].

The structure of a dependency graph is defined by different types of nodes. At the
highest level, root nodes represent independent entities that do not rely on any other
nodes, serving as the starting points in the dependency chain. From the root nodes,
dependencies propagate through intermediate nodes, which have both incoming and
outgoing edges, meaning they depend on some nodes while also serving as dependencies
for others. At the lowest level, leaf nodes have no outgoing edges, meaning they do not
influence any other nodes, but instead serve as final elements in the chain. The edges
connecting these nodes represent dependency relationships and determine the order in
which elements must be processed. A directed edge from node A to node B indicates that
A depends on B, implying that B must be resolved, computed, or executed before A.

Dependency graphs are widely used in software compilation, where they help determine
the order in which files or modules should be compiled. For example, if a program consists
of multiple source files that include one another, the compiler must first resolve files that
do not depend on any others before compiling dependent files [6].

Dependency Resolution

In dependency graphs, the relationships between elements dictate the order in which they
must be processed. However, resolving these dependencies in the wrong sequence can
lead to errors or inefficiencies. For example, in software compilation, a file that depends
on another must not be compiled before its dependency. To address this issue, topological
sorting is used to establish a valid processing order for the elements in a dependency
graph. A topological sort produces a linear ordering of nodes in a direct acyclic graph
such that for every directed edge from node A to node B, A appears before B in the order.
This guarantees that dependencies are always resolved before the elements that rely on
them [6].

One common way to perform a toplogical sort is using Depth-first search (DFS). The
DFS-based approach ensures that each node is added to the final order only after all of
its dependencies have been explored. The algorithm does the following [18, 5]:

11



3. Background Information

1. Traversal and Marking: The algorithm iterates over all nodes in the graph,
maintaining a set of visited nodes to track progress. When a node is encountered
for the first time, it is marked as visited.

2. Recursive Exploration: If the node has outgoing edges (i.e., dependencies), the
algorithm recursively visits each of the connected nodes before proceeding further.
This ensures that all dependencies are processed before the current node.

3. Post-Processing and Ordering: Once all dependencies of a node have been
visited, the node itself is added to a stack or a list that records the topological
order. This ensures that elements are added only after their dependencies have
been fully processed.

4. Final Ordering: After all nodes have been processed, the stack (which maintains
a reverse order) is reversed to obtain the correct topological ordering.

Algorithm 3.1 shows the pseudocode implementation of topological sort algorithm.

Algorithm 3.1: Pseudocode to perform topological sort using Depth-first search
(DFS) [18]

Input: A directed acyclic graph (DAG) G = (V, E)
Output: A topological ordering of the vertices in V

1 Initialize an empty stack S;
2 Initialize an empty set visited;
3 Function DFS(v):
4 if v ∈ visited then
5 return
6 end
7 Mark v as visited;
8 for each neighbor u of v do
9 if u /∈ visited then

10 DFS(u);
11 end
12 end
13 Push v onto stack S;
14 for each vertex v ∈ V do
15 if v /∈ visited then
16 DFS(v);
17 end
18 end
19 return stack S (in reversed order);

12



3.1. Program Representation

3.1.3 Call Graph
A call graph is a directed graph that represents the calling relationships between functions
or methods in a program. Each node in the graph corresponds to a function, and a
directed edge from one node to another indicates that the function represented by the
source node calls the function represented by the destination node. Call graphs are
essential tools for analysing program flow and understanding the structure of code. They
are widely used in fields like static analysis, optimization, and program comprehension
as they provide a clear visualization of how functions interact and depend on each other
[23, 26, 31, 13, 12].

In a typical call graph, the root node represents the entry point of a program (e.g., the
main function), while its child nodes represent functions that are invoked within the
program. These edges can also capture recursive relationships, where a function calls
itself, helping developers detect infinite recursion, dead code, or performance inefficiencies
[31].

Figure 3.2 illustrates an example of a call graph for a simple Java program. In this
example, the main function serves as the entry node, meaning it is the starting point
of execution when the program runs. From main, two functions are invoked: A and B,
creating two outgoing edges in the graph. Function A subsequently calls C, meaning
any execution that reaches A will also lead to the execution of C. Function B, on the
other hand, contains a recursive call, invoking itself within its own execution. This is
represented by a looped edge in the graph. The call graph visually represents these
relationships, showing how functions interact during program execution.

Figure 3.2: Call Graph - A call graph representing function calls in a Java program [31]
.

Practical Python Call Graphs (PyCG) [26] is a static analysis tool designed to generate
call graphs for Python code. It constructs these graphs by analysing function calls
without executing the program, making it valuable for code analysis and dependency
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3. Background Information

Figure 3.3: Program Slicing example - (a) The original program computes both sum
and product of the first n natural numbers. (b) The sliced program retains only the
computations relevant to the final value of product, removing unnecessary operations.
[30]

tracking. PyCG is particularly useful for exploring large codebases, identifying function
dependencies, and performing various types of static analysis. By using PyCG, developers
can visualize function interactions and gain deeper insights into the structure of their
Python applications.

3.2 Program Slicing
Program slicing is a technique in software engineering that extracts relevant parts of a
program based on a given criterion. Weiser [32] first introduced program slicing in 1981
as a method to simplify code while maintaining its intended functionality.

A slice is a reduced version of the original program that still produces the same results
for a specific subset of behaviour. Even though it is smaller, the slice remains executable
on its own and preserves the intended functionality of the extracted portion [32, 33, 30].

Figure 3.3 illustrates how program slicing simplifies code by discarding irrelevant compu-
tations while maintaining accuracy for the selected variable [30]. The original program
shown in Figure 3.3 (a) reads an integer n and calculates both the sum and the product
of the first n natural numbers. The program initializes two variables, sum and product,
and iterates from 1 to n, updating these values within a loop. Once the loop completes,
it prints both computed results. In contrast, Figure3.3 (b) displays a sliced version of
this program, where only the computations affecting product are preserved. The slicing
is performed with respect to the criterion (10, product), which indicates that we
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are analysing the value of product at line 10. As a result, all computations related to
sum have been removed, as they do not contribute to the final value of product [30].
This slicing is performed based, on the criterion (10, product), meaning the analysis
focuses on how product is computed at line 10.

There are two primary types of program slicing: static slicing and dynamic slicing. Static
slicing is performed without considering specific program inputs, making it useful for
general program analysis, security auditing, and software maintenance. Dynamic slicing,
on the other hand, focuses on a specific execution of the program by analysing how
statements interact under a given input. Unlike static slicing, which considers all possible
execution paths, dynamic slicing only includes the statements that actually affect the
computation for that particular input. This makes it especially useful for debugging,
as it helps developers understand how a specific result was produced without analysing
unnecessary parts of the code [33, 30].

Several techniques have been developed to perform program slicing efficiently. One of the
most widely used approaches is Program Dependence Graph (PDG)-based slicing, where
dependencies between program statements are explicitly modelled to enable accurate
slice extraction. PDG-based slicing captures both data dependencies (tracking variable
definitions and their uses) and control dependencies (tracking execution flow based on
conditions), making it a precise and effective method for analysing program behaviour
[25, 17, 33].

Program slicing can also be categorized into backward slicing and forward slicing. Back-
ward slicing identifies all statements that contribute to the value of a particular variable
at a given program point, making it particularly useful for debugging and impact analysis,
as it helps track the origin of a value by tracing dependencies back through the code.
Forward slicing, on the other hand, determines all statements affected by a specific
variable or computation, which is often used for program understanding and security
analysis, as it helps assess how changes to a variable propagate through a program[33, 30].

The applications of program slicing are extensive. In software debugging, slicing helps
developers isolate faulty code sections, reducing the time needed to locate and fix errors
[25, 30]. In performance optimization, it allows compilers to eliminate redundant or
dead code while maintaining correctness [33, 30]. Furthermore, slicing enhances software
maintenance and comprehension, enabling developers to extract and analyse only the
relevant parts of a large and complex codebase [30].
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CHAPTER 4
Approach

This chapter describes the general approach for isolating and executing selected regions
of code within a larger software project. The objective is to enable precise, dependency-
aware program slicing that extracts only the code relevant to a specific region under
investigation, while ensuring correctness and executability.

Given a program P consisting of multiple source files, the user specifies a target range
of lines, denoted as the region under investigation RUI ⊆ P . The approach analyses
the program to identify all statements required to execute RUI in isolation. Variables
referenced within RUI that are not defined within the selected range are treated as input
parameters and resolved by binding them to user-provided values. The process produces
a standalone executable slice PS ⊆ P that captures only the subset of code necessary for
executing the selected region, including reconstructed dependencies and runtime inputs.
This slice is then executed automatically and the resulting output is presented to the user

This process is divided into five conceptual phases:

1. Setup: Capture the selected region and prepare the program for analysis

2. Program Analysis: Determine all dependencies relevant to RUI

3. User Input Collection: Prompt for unresolved variable values and validate user
input

4. Code Generation: Reconstruct a minimal standalone program from the extracted
slice

5. Execution: Run the generated program to observe the behaviour of RUI

Figure 4.1 provides a visual overview of the overall workflow of the proposed approach.
It highlights the key phases within the system, the role of user interaction and the
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Figure 4.1: Overview of the overall workflow of the proposed approach. The process
begins with code selection and analysis, followed by dependency resolution, user input
collection, code generation and execution. External entities are shown as dotted boxes.

separation between internal processes and external entities such as the input program,
user input, and final output.

To support the explanation of the approach, the following two running examples are
introduced and referenced throughout the following sections.

Simple Example: This first example consists of two statements where a variable is
assigned and subsequently printed after being transformed through a string operation.
This minimal snippet demonstrates basic slicing and variable usage

1 message: str = "hello"
2 print(message.upper())

Listing 4.1: Simple Example

The region under investigation consists of line 2. The variable message is not defined
within this region, and therefore must be resolved as part of the slicing process by
requesting a value from the user.

Complex Example: The second example illustrates a more complex scenario, emphasiz-
ing interprocedural and cross-file dependencies. It involves user-defined classes, function
invocations, and import statements, with logic distributed across two separate modules.
This setup highlights how the tool resolves dependencies that span across functions and
files, offering a more realistic example of program slicing in practice.

1 class User:
2 def __init__(self, name: str, is_admin: bool):
3 self.name = name
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4 self.is_admin = is_admin
5
6 def has_admin_rights(self) -> bool:
7 return self.is_admin
8
9 def __str__(self) -> str:

10 return self.name

Listing 4.2: Complex example - File: user.py

1 from user import User
2
3 def log_access(user: User) -> None:
4 print(f"Access denied for: {user}")
5
6 def process_user(user: User) -> None:
7 if user.has_admin_rights():
8 print("Access granted")
9 else:

10 log_access(user)
11 print("processed user")
12
13 def log_access_attempt() -> None:
14 print("User attempted access")

Listing 4.3: Complex example - File: access_control.py

The Range Under Investigation in this example includes lines 7 to 10 within the
process_user function in the access_control.py file. The analysis must identify
the dependency on the User class defined in user.py, as well as the log_access
function declared on line 3. In addition, the variable user is not defined within the
selected code and must be supplied by the user at runtime.

4.1 Setup Phase
The slicing process begins with the identification of a region of interest and the preparation
of the program for structural analysis.

Let P denote the full program, organized as a finite set of source files F = {f1, f2, . . . , fn}.
The user provides a file frui ∈ F along with a continuous interval of line numbers
ls . . . le ⊆ Lines(frui), which defines the region under investigation. This region is
formalized as:

RUI = {s ∈ frui | line(s) ∈ [ls, le]}
where s ranges over the statements in the specified file.

During setup, a call graph is constructed to support interprocedural dependency resolution.
Let

GCG = (VCG, ECG)
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denote the call graph, where each vertex v ∈ VCG corresponds to a function or method,
and each edge (vi, vj) ∈ ECG represents a potential call from vi to vj .

This setup phase establishes the foundation for precise dependency analysis in subsequent
steps. The extracted region RUI, the program P and the call graph GCG serve as input
to the subsequent analysis phase.

4.2 Program Analysis
The Program Analysis phase is responsible for analysing the input program using
structured representations such as the Abstract Syntax Tree and the Call Graph. This
phase employs a static program slicing technique via a Dependency Graph (DG) to
extract relevant portions of code based on dependencies. The primary goal of program
analysis is to systematically track variable usage, infer types, and identify dependencies
between statements to later construct a minimal executable slice of the statements within
the RUI.

To achieve this, the input program is first parsed into an AST representation, which
provides a structured view of the syntax of the program. This representation serves as
the foundation for the slicing process.

The analysis method follows the static program slicing approach, implemented through a
Dependency Graph (DG). The dependencies associated with each statement are identified
and resolved recursively to build the slice. Additionally, a Variable Resolution Tracker
(VRT) is used to determine missing values necessary for execution. The VRT distinguishes
between resolved and unresolved variables:

• Resolved Variables: Variables that are assigned within the slice.

• Unresolved Variables (User Variables): Variables that are used within the
slice but not defined within RUI. These require user input for execution.

Algorithm 4.1 outlines the key steps involved in the program analysis process. The first
step is to initialize the Dependency Slicer S, which serves as the core component of the
slicing mechanism. During this initialization, among others, an empty Dependency Graph
DG and a Variable Resolution Tracker V RT are created. The DG is responsible for
capturing the dependencies between program statements, while the V RT tracks variables
used within the slice, distinguishing between those that are already resolved and those
that require user input.

Once the slicer is initialized, the second step involves iterating over each statement stmtc

within the RUI. Each statement is passed to the visit function visit(stmtc), which
determines how the statement should be processed. Within this function, the statement
type stmtt is identified and the corresponding handler H is instantiated. The handler is
responsible for processing stmtc according to its syntactic role in the program.
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Algorithm 4.1: Program Analysis Process
Input: Input Program P , RUI: single line l or range [ls, le]
Output: Dependency Graph DG and Variable Resolution Tracker V RT

/* Step 1: Initialize the Dependency Slicer */

Initialize Dependency Slicer S with empty DG and V RT ;

/* Step 2: Traverse the Statements in the Range under Investigation

(RUI) */

for each statement stmtc in RUI do
visit(stmtc) ;

end

/* Step 3: Recursive Analysis of Each Statement */

Function visit(stmtc):
Identify statement type stmtt ;
Retrieve appropriate handler H based on stmtt ;
H.handle(stmtc) ;

; // Defined within handler class H:

Function handle(stmtc):
Identify used variables Vu in stmtc ;
for each variable v ∈ Vu do

Add v to V RT , marked as resolved or unresolved ;
end
Identify dependencies D of stmtc ;
for each dependency d ∈ D do

Locate the previous statement stmtp d occurs in;
Add stmtp as a node in DG and link it to stmtc ;
visit(stmtp) ;

end

return (DG, V RT ) ;
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The third step is the core of the slicing process, in which the handler processes the
statement stmtc by extracting its relevant variables and dependencies. The handler first
identifies all variables used in the statement stmtc and updates the V RT accordingly.
Variables that are assigned a value within stmtc and stmtc is within RUI, are marked
as resolved, while those that are used but not assigned within stmtc or defined outside of
RUI remain unresolved and are classified as user variables that require external input.
Next, the handler identifies dependencies by determining which previous statements
stmtp contribute to the execution of stmtc. Each relevant previous statement stmtp

is added to the DG, and the visit function is called recursively to ensure that all
dependencies are traced back to their origins.

Through this recursive resolution of dependencies, the DG captures all statements
required to reconstruct an executable slice, while V RT identifies any unresolved values
that must be supplied by the user.

4.2.1 Initialization of the Dependency Slicer
Before the program analysis can begin, the Dependency Slicer S must be properly initial-
ized. The initialization phase sets up essential components, including the Dependency
Graph DG, Variable Resolution Tracker V RT , visited set, and recursion stack. Each of
these components serves a distinct purpose, ensuring that the slicer can correctly track
dependencies, resolve variable usages, and efficiently navigate the control flow of the
input program RT .

The procedure for initializing S involves the following steps:

1. Parse the source code into an Abstract Syntax Tree representation.

2. Normalize and transform import statements within the AST for accurate dependency
tracking.

3. Initialize the Dependency Graph DG and Variable Resolution Tracker V RT .

4. Set up the visited set and recursion stack for efficient traversal.

The remainder of this section outlines the initialization process in detail, covering both
preprocessing steps and the setup of internal data structures used by the slicer.

AST Preprocessing and Import Normalization

Before the slicing process begins, the input program is parsed into an Abstract Syntax
Tree, a structured representation of the source code. Each statement in the program
becomes an AST node, including import statements, which require normalization to
ensure analysability.

To facilitate accurate dependency analysis, import statements are normalized by applying
a transformation function T over the set I of import nodes extracted from the AST. This
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transformation rewrites each import into a canonical form by splitting compound imports
into separate statements, resolving relative imports into absolute imports, expanding
wildcard imports into explicit name-based imports and ensuring that every imported
symbol has an explicit alias, defaulting to the original name if none was provided.

Formally, the transformation function T : I → I ′ is defined as follows:

T (i) =

��������������������������������������

{ import n as a } if i = import n or i = import n as a

{ import nj as nj | j = 1, . . . , k } if i = import n1, . . . , nk

{ import nj as aj | j = 1, . . . , k } if i = import n1 as a1, . . . , nk as ak

{ from x import nj as nj | j = 1, . . . , k } if i = from x import n1, . . . , nk

{ from x import nj as aj | j = 1, . . . , k } if i = from x import n1 as a1, . . . , nk as ak

{ from x import s as s | s ∈ symbols(x) } if i = from x import ∗
{ from resolve(y) import nj as aj | j = 1, . . . , k } if i = from .y import n1, . . . , nk

where symbols(x) is the set of explicitly importable names defined in module x and
resolve(y) represents the absolute path resolution for a relative import.

Specifically, the transformations handle the following cases:

• A simple import such as import os is normalized to import os as os.

• Compound imports without explicit aliases are split into individual statements. For
example, import os, sys transforms into import os as os and import sys as sys.

• Compound imports with explicit aliases, such as import numpy as np, pandas as pd,
are preserved with aliases, but transformed into individual statements.

• Wildcard imports, such as from module import ∗, are expanded into explicit indi-
vidual statements for each name s ∈ symbols(module).

• Relative imports, like from .submodule import function, are converted into ab-
solute imports, for instance from package.submodule import function, where
resolve(·) denotes the resolution of relative paths to absolute module paths.

This normalization simplifies subsequent dependency analysis by ensuring that each
imported symbol is clearly and individually represented in the AST.

Dependency Graph DG

The Dependency Graph DG is a directed graph used to model the dependencies between
program statements. It is formally defined as:
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DG = (VDG, EDG)

where VDG is the set of vertices, each corresponding to a statement in the AST, i.e.,
v ∈ VDG represents a program statement. Each edge e ∈ EDG is formally defined as a
triplet (v1, v2, σ), where v1, v2 ∈ VDG and σ is a symbol that describes the anchor of
the dependency. The vertex v1 corresponds to the source statement (i.e., the statement
that a dependency originates from), and v2 is the target statement (i.e., the statement
the source vertex v1 depends on). Hence, the edge e indicates that v1 depends on v2,
meaning that the execution or semantics of v1 relies on information defined or established
by v2. The symbol σ expresses why the dependency exists. It identifies the relevant
construct that links the two statements. For example, if a variable is annotated with a
custom class type, an edge may exist from the AnnAssign node to the corresponding
ClassDef, with σ being the name of that class. Similarly, if a function f calls another
function g, there would be an edge from the body of f to the FunctionDef node of g,
labeled with σ = ”g”.

Variable Resolution Tracker V RT

The Variable Resolution Tracker V RT is a data structure used to track the resolution
states of variables throughout the program. It keeps track of whether a variable has been
defined or used, and whether its value is resolved or unresolved. Formally, the VRT is
defined as a tuple

V RT = (R, U)

where R is the set of resolved variables and U is the set of unresolved variables. At the
time of initialization, both sets are empty:

R = {} and U = {}.

A variable is considered resolved if it is assigned a value within the slice, meaning it is
defined in every execution path of the RUI. Conversely, a variable is marked as unresolved
if it is used within the slice but not defined therein, indicating that its value must be
provided externally. This distinction is fundamental for identifying variables that require
external input for the correct execution of the final slice. During the slicing process,
the VRT is dynamically updated to record variable definitions and usages as they are
encountered.

Visited Set and Recursion Stack

To efficiently traverse the AST statements relevant to the RUI and avoid redundant
processing, the Dependency Slicer employs two supporting data structures: the visted
set V isitedSet and the recursion stack RecursionStack.
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The visited V isitedSet set is defined as:

VisitedSet ⊆ VAST ,

where VAST is the set of all nodes (i.e., statements) in the AST. At initialization, the
visited set is empty:

VisitedSet = {}.

This set is used to record nodes that have already been processed, ensuring that each
node is visited only once during the analysis.

The recursion stack RecursionStack is a data structure that tracks the current chain of
recursive invocations during the AST traversal. It is formally considered as an ordered
list:

RecursionStack = [ ],

where the empty list indicates that no nodes are currently being processed. As the slicer
S traverses nested structures (such as functions or control-flow blocks), nodes are pushed
onto the recursion stack and subsequently popped once processing is complete. This
mechanism helps prevent infinite recursion and enables correct backtracking during the
dependency analysis.

Together, the visited set and recursion stack ensure that the slicer can efficiently and
correctly traverse the AST without redundant processing or cycles.

4.2.2 Slicing Traversal and Dependency Resolution
Once the Dependency Slicer S has been initialized, the slicing process begins by identifying
and resolving all dependencies relevant to the selected RUI. This process aims to construct
a minimal executable slice PS ⊆ P , where P is the original program and PS contains only
the statements necessary for the semantically correct execution of the selected range.

To compute this slice, the slicer recursively traverses the AST and determines which
program statements must be included. The traversal is managed through recursive
invocations of a function visit, which serves as the core of the slicing mechanism.

To ensure correctness and avoid redundant processing, the slicer maintains two key sets
throughout the traversal:

• The visited set V isitedSet ⊆ VAST , as defined in Section 4.2.1, which records all
statements that have already been processed.

• The recursion stack RecursionStack = [ v1, . . . , vm ], a list tracking the current
recursive path during the traversal.

The traversal is initiated on each statement s ∈ RUI. However, the process is not
limited to statements within the RUI, as resolving dependencies often requires analysing
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additional statements s′ ∈ VAST \RUI that influence the execution of the RUI. Each such
statement is passed to the visit function, which operates as shown in Algorithm 4.2

Algorithm 4.2: Recursive Visit Function
Input: Statement s ∈ VAST , current Dependency Slicer S = (DG, V RT, . . . )

1 if s ∈ V isitedSet or s ∈ RecursionStack then
2 return
3 end
4 Push s onto RecursionStack ;
5 Mark s as visited: V isitedSet ← V isitedSet ∪ {s} ;
6 Determine the type of s and dispatch to the corresponding handler H ;
7 H analyses s, identifies dependencies Ds = {s1, . . . , sk} ;
8 foreach si ∈ Ds do
9 Add edge (s, si, σi) to DG ;

10 visit(si) ; // Recursive call

11 end
12 Pop s from RecursionStack ;

The traversal is type-sensitive: for each statement s, the slicer dispatches control to a
dedicated handler H based on the AST node type of s. These handlers are responsible
for analysing the structure and semantics of each statement, extracting relevant variable
usages, and identifying dependencies.

Each handler contributes to two key aspects of slicing:

1. Variable Tracking: Analysing variable occurrences in s, updating the Variable
Resolution Tracker V RT = (R, U), depending on whether variables are assigned or
merely used.

2. Dependency Resolution: Identifying statements s′ that define values required by
s, and updating the Dependency Graph DG by adding edges (s, s′, σ) as discussed
in Section 4.2.1.

This logic is formalized in Algorithm 4.3, which illustrates the typical behaviour imple-
mented by a handler.
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Algorithm 4.3: Handler Logic for Statement s

Input: Statement s ∈ VAST , Dependency Slicer S = (DG, V RT = (R, U), . . . )
1 Identify the syntactic role of s (e.g., assignment, import, conditional, ...) ;
2 Infer variables in s and classify them as definitions or usages ;
3 foreach defined variable x in s do
4 Add x to R ;
5 Remove x from U if present ;
6 end
7 foreach used variable y in s such that y /∈ R do
8 Add y to U (unresolved variables) ;
9 end

10 foreach dependency s′ ∈ VAST referenced by s do
11 Add edge (s, s′, σ) to DG ;
12 visit(s′) ;
13 end

This recursive resolution mechanism ensures that all direct and transitive dependencies
of the RUIs are captured. Consequently, the constructed slice PS ⊆ P includes all
statements necessary for the semantically correct execution of the selected range.

Due to the scope of this work, only a selected set of statement types are handled explicitly,
including annotated assignments, function and class definitions, conditionals, expressions,
and imports. These cover the most common slicing scenarios. The handler-based
architecture is modular and extensible. New handlers can be added by following the
general logic formalized in Algorithm 4.3, adapting the behaviour to the semantics of the
specific statement type.

In addition to dependency tracking, each handler also performs type inference for all
variables encountered during traversal. For each variable added to the variable resolution
tracker, whether to the resolved set R or the unresolved set U , a type τ is inferred
based on type annotations, function signatures or constructor definitions. This type τ is
stored alongside each variable in the VRT, ensuring that every entry in R ∪ U carries an
associated type. These types are used in later phases to support typed user interaction
(see Section 4.3).

In the following subsections, we detail the behaviour of each supported handler. To
illustrate how the traversal and handler logic operate across multiple statement types in
practice, the final subsections walks through the complete slicing process for both the
simple and complex examples introduced in Section 4. These walkthroughs concretely
demonstrate how the dependency graph DG, the variable resolution sets R and U , and
the recursive invocation of handlers interact to construct the final slice.
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Annotated Assignments (AnnAssign)

An annotated assignment is a statement of the form:

x : τ = e

where x is a variable name, τ is a type annotation, and e is an expression.

The handler HAnnAssign performs the following steps:

1. The left-hand side variable x is treated as a definition. The handler adds x to
the resolved set R, provided x is assigned within the RUI and not used before its
assignment.

2. If x appears in a usage context prior to its assignment (e.g., in a condition or earlier
expression), it is instead added to U .

3. The right-hand side expression e is recursively analysed to extract variable usages:

• For each variable y occurring in e, if y /∈ R, then y is added to U .
• If y is an imported symbol, resolve the corresponding Import or ImportFrom

statement simp, add the edge (s, simp, y) to DG, and invoke visit(simp).
• If e involves a function call f(y1, . . . , yn), then:

– The arguments yi are marked as unresolved, unless already in R.
– A dependency is recorded to the function definition of f , i.e., (s, sf , f) ∈

EDG, where sf defines f .
– visit(sf ) is invoked to ensure that the referenced function is itself

analysed and its dependencies resolved.
• If e refers to a user-defined class C (e.g., as a type annotation or construc-

tor), resolve the corresponding ClassDef or Import statement sC , add the
dependency edge (s, sC , C) to DG, and invoke visit(sC).

This rule ensures that all variables and types referenced in an assignment are tracked,
and that dependent statements (functions, classes, imports) are recursively included in
the slice.

In the simple example from Listing 4.1, the assignment message: str = "hello"
on line 1 adds the variable message to R. Since the expression "hello" is a literal
and contains no references to other symbols, no additional dependencies are recorded.

To illustrate a more complex case, consider the annotated assignment user: User
= User(name, is_admin). Although not part of the complex example program in
Listing 4.3, this example demonstrates the full capabilities of the handler. The variable
user is added to R and the class User is referenced both in the type annotation and
the constructor call. Accordingly, a dependency edge (s, sUser, User) is added to DG,
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where sUser is the ClassDef or the corresponding Import statement that introduces
User. Subsequently, visit(sUser) is invoked to ensure that the referenced class is itself
analysed and its dependencies resolved. Additionally, the constructor arguments name
and is_admin are added to U , unless already present in R.

Expression Statements (Expr)

Expression statements (Expr) are standalone expressions that are not assigned to any
variable. They often include function calls for side effects, such as printing to the console
or logging.

When processing a statement s of type Expr, the handler HExpr performs the following
steps:

1. Analyse the expression e for variable usages and function calls:

• Each variable y used in e is checked against the resolved set R.
• If y /∈ R, it is added to the unresolved set U .

2. If y is an imported symbol, resolve the corresponding Import or ImportFrom
statement simp, add the edge (s, simp, y) to DG, and invoke visit(simp).

3. If e is a function call f(y1, . . . , yn):

• Each argument yi is added to U unless already present in R.
• A dependency edge (s, sf , f) is added to DG, where sf defines f .
• visit(sf ) is invoked to recursively analyse the function definition.

4. If e involves a method call x.m(), and x has a custom class type C:

• Resolve C to the corresponding ClassDef or Import statement sC .
• Add the dependency edge (s, sC , C) to DG.
• Invoke visit(sC).

This handler contributes primarily to usage tracking and the discovery of transitive
dependencies via function and method calls.

In the simple example from Listing 4.1, the expression print(message.upper())
on line 2 is an expression statement. Here, message is marked as unresolved U ←
U ∪ {message} since it appears in the RUI without its assignment. The call to upper()
is a method on a built-in type and does not introduce additional dependencies.

In the more complex example, the expression log_access(user) on line 10 in List-
ing 4.3 is handled as follows: The variable user is added to U unless already present in
R. A dependency edge (s, slog_access, log_access) is added to DG, where slog_access
is the definition of the log_access function (line 3). Subsequently, visit(slog_access)
is invoked to resolve transitive dependencies of that function.
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Import Statements

Import statements introduce external symbols into the local scope. They can take several
syntactic forms, such as import x, import x as y, or from m import x. All
import statements are normalized, as described in Section 4.2.1, into the canonical form:

import x as x or from m import x as x

This ensures uniform handling of imported symbols throughout the slicing process.

When processing a normalized import statement s, the handler HImport performs the
following steps:

1. Determine whether the imported module can be resolved to a local source file.

2. If resolvable, retrieve the corresponding AST and locate the defining statement
sdef of the imported symbol.

3. Add a dependency edge (s, sdef , x) to DG, where x is the imported symbol.

4. Invoke visit(sdef ) to transitively resolve dependencies associated with x.

If the imported module cannot be resolved (e.g., if it belongs to the standard library or
lacks accessible source code), the handler does not record a dependency edge or invoke
further traversal.

This handler enables the slicer to incorporate external source-level definitions introduced
through import statements.

As an example, consider the statement from user import User on line 1 in List-
ing 4.3. This introduces the symbol User into the current file. The handler locates the
ClassDef statement sUser in the imported file user.py (line 1), adds a dependency
edge (s, sUser, User) to DG, and invokes visit(sUser) to ensure its dependencies are
recursively analysed.

Function and Class Definitions (FunctionDef, ClassDef)

Function and class definitions encapsulate reusable program logic and data structures.
They frequently appear as dependency targets in function calls, parameter annotations,
inheritance structures, or internal references.

The handler HClassFunc performs the following steps when processing a statement
s ∈ VAST of type FunctionDef or ClassDef:

1. For function definitions:

• For each parameter pi in the function signature, infer its type annotation τi,
if present.
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• If τi refers to a user-defined class or imported symbol, identify the correspond-
ing defining statement sτi ∈ VAST , add a dependency edge (s, sτi , τi) ∈ EDG,
and invoke visit(sτi).

2. For class definitions:

• For each superclass B, identify the defining statement sB ∈ VAST , add
(s, sB, B) ∈ EDG, and invoke visit(sB).

3. Analyse the body of the function or class definition:

• Traverse annotations, assignments, and expressions to identify referenced
symbols (e.g., constructors, types, field accesses).

• For each referenced symbol x, identify its origin sx ∈ VAST , add a dependency
edge (s, sx, x) ∈ EDG, and invoke visit(sx).

4. Query the call graph GCG to identify all callees f1, . . . , fn that are transitively
invoked from within the body:

• For each callee fj , resolve its definition sfj
∈ VAST , add (s, sfj

, fj) ∈ EDG,
and invoke visit(sfj

).

5. Identify internal import statements located within the body (e.g., import inside a
function) and process them by invoking visit on their corresponding AST nodes
simp.

This handler ensures that definitions, referenced types, and transitive dependencies
introduced via function calls, class hierarchies, or annotations are fully tracked and
integrated into the dependency graph DG.

In the complex example in Listing 4.3, the function process_user defined on line 6 is
handled as follows:

• Its parameter user: User triggers resolution of the class User, leading to a
dependency edge (s, sUser, User) ∈ EDG, followed by a recursive call visit(sUser).

• The function body contains a call to log_access(user), triggering resolu-
tion of log_access to its definition on line 3, and adding the new edge
(s, slog_access, log_access) ∈ EDG to DG, followed by visit(slog_access).

Conditional Statements (If)

Conditional statements influence control flow and introduce branching logic based on
runtime conditions. They require careful treatment in slicing to ensure that all relevant
branches and condition expressions are properly analysed.

A generic if-statement has the following form:
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if e:

bodyif
else:

bodyelse

Here, e is the condition expression, and the two blocks represent the bodies of the if
and else branches, respectively. The else part may be omitted, or consist of a nested
if (elif).

The handler HIf processes a statement s ∈ VAST of type If as follows:

1. Instantiate three local variable resolution trackers, each represented as a tuple
T = (RT , UT ):

• Tcond = ({}, {}): tracks resolution in the condition expression e,
• Tif = ({}, {}): tracks resolution in the if branch,
• Telse = ({}, {}): tracks resolution in the else branch (if present).

These local trackers allow the handler to reason independently about resolution
behaviour in each branch. Variables are only added to the global resolved set R if
they are consistently resolved across all branches (i.e., present in both RTif and
RTelse if applicable). All other variables are added to U .

2. Analyse the condition expression e:

• For each variable y used in e, if y /∈ RTcond , then add y to UTcond .
• If e involves a function or method call (e.g., f(y1, . . . , yn) or x.m()):

– For each argument yi, add yi to UTcond unless yi ∈ RTcond .
– Locate the definition sf ∈ VAST of the function or method and add the

edge (s, sf , f) ∈ EDG.
– Invoke visit(sf ).

• If e references a class-defined attribute or method (e.g., x.m()) and x has type
C, resolve the class C, locate its definition sC ∈ VAST , add (s, sC , C) ∈ EDG,
and invoke visit(sC).

3. Analyse each body of the conditional:

• For each statement in the if body, invoke visit passing Tif.
• For each statement in the else body (if present), invoke visit passing

Telse.

The traversal distinguishes between fully and partially included conditionals:
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• If the entire if-statement lies within the RUI, its structure is preserved in the
final slice, and its child statements are treated as part of a grouped control
structure.

• If only parts of the body are within the RUI, the if structure itself is omitted,
and only the relevant sub-statements are included in the slice.

4. Merge the local resolution trackers into the global resolution state:

• A variable is added to the global resolved set R only if it appears in both RTif

and RTelse .
• All other variables recorded in any unresolved set UTcond , UTif , or UTelse are

added to the global unresolved set U .

This handler ensures that variable resolution remains sound across different control-flow
paths by applying branch-local resolution logic and integrating dependencies introduced
by variables, function calls, and type annotations in both condition and body statements.

In the complex example from Listing 4.3, the conditional statement on line 7 isanalysedd
as follows:

• The condition user.has_admin_rights() involves a method call. The variable
user is added to the unresolved set UTcond . Based on its type annotation, the class
User is identified, leading to a dependency edge (s, sUser, User) ∈ EDG, followed
by visit(sUser).

• The method has_admin_rights is part of User, so its resolution is handled
transitively via the visit to the class definition.

• In the if branch, the statement print("Access granted") is visited, but it
introduces no additional dependencies or variable references.

• In the else branch, the expression log_access(user) is encountered. The vari-
able user is added to UTelse , and a dependency edge (s, slog_access, log_access) ∈
EDG is introduced. The function definition slog_access is then visited.

• After all components of the conditional are processed, the unresolved sets UTcond ,
UTif and UTelse are merged into the global unresolved set U . The resulting global
unresolved set is therefore U = {user}. This ensures that all unresolved variables
are retained for later resolution via user input.

Slicing Walkthrough: Simple Example

The simple example, introduced in Section 4 and shown in Listing 4.4, contains the
following two statements:
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1 message: str = "hello"
2 print(message.upper())

Listing 4.4: Simple Example Program

The Range Under Investigation consists only of the call to print on line 2.

Initial State
Before traversal begins, the slicer is initialized as follows:

• Resolved variables: R = {}

• Unresolved variables: U = {}

• Dependency graph: DG = ({}, {})

Slicing Traversal
The slicer begins by applying the handler HExpr to this expression statement. The expres-
sion print(message.upper()) is analysed, and the variable message is identified
in a usage context. Since there is no prior assignment to message within the RUI and
it is not already in the resolved set R, it is added to the unresolved set:

U ← {message}

The method call message.upper() is a method on a built-in type (str) and does not
trigger any dependency resolution.

Final State
The final state looks like:

• Resolved variables: R = {}

• Unresolved variables: U = {message}

• Statements in the slice: PS = {s 2}

• Dependency graph: DG = ({}, {})

The unresolved variable message will later be classified as a user variable in the
transformation phase described in Section 4.3. Its concrete value will be provided
externally.
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Slicing Walkthrough: Complex Example

The complex example, introduced in Section 4, spans two modules:
1 class User:
2 def __init__(self, name: str, is_admin: bool):
3 self.name = name
4 self.is_admin: bool = is_admin
5
6 def has_admin_rights(self) -> bool:
7 return self.is_admin
8
9 def __str__(self) -> str:

10 return self.name

Listing 4.5: File: user.py

1 from user import User
2
3 def log_access(user: User) -> None:
4 print(f"Access denied for: {user}")
5
6 def process_user(user: User) -> None:
7 if user.has_admin_rights():
8 print("Access granted")
9 else:

10 log_access(user)
11 print("processed user")
12
13 def log_access_attempt() -> None:
14 print("User attempted access")

Listing 4.6: File: access_control.py

The RUI includes lines 7 to 10 in process_user.

Initial State
Before traversal begins, the internal state is initialized as follows:

• Resolved variables: R = {}
• Unresolved variables: U = {}
• Dependency graph: DG = ({}, {})

Slicing Traversal
The slicer applies the handler HIf to the conditional statement s on line 7,
if user.has_admin_rights(). The condition involves a method call and the vari-
able user appears in a usage context. Since it is neither defined within the RUI nor
previously resolved, it is added to the unresolved set:

UTcond ← {user}

35



4. Approach

From the parameter annotation in process_user, the class User is inferred as the
expected type for user. The corresponding import statement on line 1 is identified as
the defining statement sUser, resulting in the edge:

(s, sUser, User) ∈ EDG

This import is then visited, invoking visit(sUser). Within the import handler, the
definition of User is resolved to its class statement sclass and another dependency is
added:

(sUser, sclass, User) ∈ EDG

Finally, visit(sclass) is invoked. Since the entire class definition is included, the
method has_admin_rights is transitively available and no additional edge is required
at this point.

The slicer continues with the else branch on line 10, which contains a call to
log_access(user). The variable user appears again in a usage context and is added
to the branch-local unresolved set:

UTelse ← {user}
The function log_access is resolved to its definition on line 3 and the edge

(s, slog_access, log_access) ∈ EDG

is added. The corresponding function definition is then visited.

After both branches and the condition have been analysed, the local variable resolution
trackers

Tcond, Tif, Telse

are merged. No variable was defined in all branches, so the resolved set remains empty:

R ← {}
The variable user was referenced in both the condition and the else-branch, and is
therefore added to the global unresolved set:

U ← UTcond ∪ UTif ∪ UTelse = {user}

Final State

• Resolved variables: R = {}
• Unresolved variables: U = {user}
• Statements in the slice:

PS = {sif, slog_access, sUser, sclass}
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• Dependency graph edges:

(s, slog_access, log_access)
(s, sUser, User)
(sUser, sclass, User)

The unresolved variable user will later be classified as a user variable and provided
externally, as explained in Section 4.3. Figure 4.2 illustrates the dependency graph after
the slicing process.

If
access_control.py - line 7

FunctionDef log_access
access_control.py - line 3

ImportFrom User
access_control.py - line 1

ClassDef User
user.py - line 1

log_access User

User

Figure 4.2: Dependency graph constructed during slicing of the complex example.

4.3 User Interaction
After slicing completes, all variables in the unresolved set U are considered user variables,
meaning they are referenced within the RUI but have no definition in the selected region.
Instead of requiring these values to be hardcoded or manually passed in by the user, the
tool automatically prompts for input values during execution. This behaviour enables
focused execution by allowing users to provide only the minimal set of inputs required
for the selected computation. The ability to run the sliced program multiple times with
varying inputs offers valuable insight into isolated behaviours of the original code, without
the need to construct full test harnesses or invoke complex debugging sessions.

To handle this interaction, a dedicated input mechanism is utilized to request and validate
the values of variables in U . For each variable v ∈ U , an inferred type τ is determined
during slicing using available type annotations, constructor signatures or structural
inference. The input mechanism then generates a tailored prompt that enforces type
correctness by validating user responses against τ before incorporating the result into
the runtime execution context of the slice.
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Each variable v ∈ U is processed according to its associated type τ , and the interaction
logic is adapted accordingly. For primitive types such as int, str, float, and bool,
the user is prompted to enter a single value which is validated to ensure compatibility with
τ . For structured types including List, Set, Dict, and Tuple, the user is first asked to
specify the number of elements and then prompted for each individual value recursively,
with validation based on the component types. If τ is optional or a union of alternatives,
the user is asked whether to supply a value and, if applicable, which of the permissible
types to use. In cases where τ is a literal type, such as Literal["A", "B"], the user
selects a value from the predefined constant set. When τ refers to a user-defined class,
values for the required constructor arguments are collected interactively, with prompts
generated recursively for each parameter based on its type. The collected data is stored
in a structured form that can later be used to instantiate the class.

To illustrate the behaviour of this mechanism, consider the examples introduced in
Section 4.

In the simple example, the region under investigation includes a single statement:
1 print(message.upper())

Since the variable message has no definition in the sliced region and is not resolved
transitively, it is treated as a user variable with type str. The input handler prompts
the user to enter a string and validates the provided value. Suppose the user enters
"hello world". This value is recorded and later injected into the generated code as
shown in Listing 4.7.

In the complex example, the unresolved variable is user, whose type is inferred as User
based on its usage and annotations. The corresponding constructor is:

1 def __init__(self, name: str, is_admin: bool)

The input handler recursively collects the values for both fields, name and is_admin.
Assume the user provides "Mallory" for name and False for is_admin. These inputs
are structured into a class instantiation and later used to construct the variable user
within the main block of the generated code (Listing 4.8).

This user input phase guarantees that all unresolved variables are resolved to concrete
runtime values in a type-safe manner. The validation mechanism applies uniformly across
primitive values, nested data structures, and class instances, ensuring that all inputs
conform to the semantics and expectations of the original program.

4.4 Code Generation
Once unresolved variables have been resolved through user input (Section 4.3), the
extracted slice PS ⊆ P , obtained through dependency analysis, is now transformed into
a runnable program. This transformation phase converts the dependency-resolved slice
into a concrete collection of source files, suitable for direct execution.
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To ensure semantic correctness and runtime completeness, the code generation procedure
performs the following steps. First, it computes a topological order over the statements
in the slice using the dependency graph DG = (VDG, EDG), ensuring that each usage is
preceded by its corresponding definition. Second, it partitions these statements by file
and serializes them to source code in dependency-respecting order. Third, it emits the
output to new files, injecting user-provided values and wrapping the region of interest in
a callable function. Control flow constructs like if-statements are reconstructed when
only partial sub-statements are selected. Finally, all imports are updated to point to the
rewritten files, preserving cross-file linkage.

This process is shown in Algorithm 4.4 and detailed below.

Algorithm 4.4: Slice Extraction and Code Generation
Input: Dependency Graph DG = (VDG, EDG), Resolved User Variables U
Output: Mapping C : F → str

1 Let PS ← VDG ∪ (RUI \ VDG) ;
2 Partition PS = �

f∈F Vf , compute ≺DG and ≺files ;
3 Initialize C(f) ← "" ∀f ∈ F ;
4 foreach f ∈ F in order ≺files do

/* Global User Variable Injection */

5 foreach v ∈ U with Scope(v) = global ∧ File(v) = f do
6 Append v.name = v.repr_value() to C(f) ;
7 end

/* Statement Serialization and Conditional Reconstruction */

8 foreach s ∈ Vf in order ≺DG do
9 if s is partial if-statement then

10 Reconstruct s′ with only selected branches ;
11 end
12 Append code(s) or code(s′) to C(f) ;
13 end
14 ;

/* Wrapping the RUI in a Callable Function */

15 if f is the main file then
16 Wrap RUI in wrapped_code with v1, . . . , vk ∈ U as parameters ;
17 Append a main block with vi = repr_value(vi) and invocation ;
18 end

/* Import Rewriting */

19 Update all import statements in C(f) to match rewritten file paths ;
20 end
21 return C
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Inputs and Preliminaries

The input to the code generation phase consists of:

• The dependency graph DG = (VDG, EDG), where VDG ⊆ VAST contains all visited
statements and EDG ⊆ VDG × VDG × Σ captures the dependency edges.

• The unresolved variable set U , now resolved with concrete values through user
interaction.

• The user-selected range under investigation, RUI ⊆ VAST , which may include
nodes not in VDG.

The full program slice to be emitted is then defined as:

PS = VDG ∪ (RUI \ VDG)

Statement Ordering

Correct execution requires that all statements in PS are ordered such that definitions
precede their use. This is ensured by a topological sort over the dependency graph DG.
The induced partial order ≺DG is defined as:

(si, sj , σ) ∈ EDG ⇒ si ≺DG sj

This ensures that if statement si depends on statement sj , then sj appears before si in
the emitted output.

For example, the simple example introduced in Section 4 contains no dependency edges,
and the set VDG remains empty. The only required element is the unresolved variable
message, which is handled separately and does not influence the ordering of statements.
Hence, no topological sort is required.

In contrast, the complex example from Section 4 yields a non-empty dependency graph.
A topological sort yields the order shown below, where each statement must appear after
its dependencies:

if user.has_admin_rights() (access_control.py, line 7)

≺DG log_access (access_control.py, line 3)

≺DG import User (access_control.py, line 1)

≺DG class User (user.py, line 1)
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File Partitioning and Output Mapping
The sorted statements are grouped by source file. Let F be the set of files referenced in
PS . For each f ∈ F , define:

Vf = {s ∈ PS | File(s) = f}

A topological order is also computed over the file set to respect inter-file dependencies:

fi ≺files fj if ∃(si, sj , σ) ∈ EDG such that File(si) = fi, File(sj) = fj

The output is represented as a mapping C : F → str, where C(f) accumulates the
generated source code for file f .

For instance, in the simple example, only a single file is involved, so no cross-file sorting
is necessary: F = {simple.py}.

In the complex example, the class User from user.py is required by access_control.py,
due to the import in line 1. This results in the topological file order access_control.py ≺files
user.py, ensuring correct placement of statements during reconstruction.

Global User Variable Injection
All variables v ∈ U with global scope are declared at the top of their respective files. Let
Scope(v) = global and File(v) = f . Then:

C(f) ← C(f) ∥v.name = v.repr_value()

Here, v.name denotes the identifier of the variable and v.repr_value() produces its
serialized runtime value in the specific programming language syntax.

For example, in the simple example, the variable message is global and initialized as
message = "hello world" at the top of the generated file (Listing 4.7, line 1).

In contrast, the complex example involves only local user variables, so no declarations
are inserted during this phase.

Statement Serialization and Conditional Reconstruction
Statements in Vf are emitted in topological order. If s ∈ Vf is a compound if-statement
such that only a subset of its body or orelse branch is included in PS , it is reconstructed
to retain valid control flow:

if e : {si ∈ body(s) ∩ PS} else: {si ∈ orelse(s) ∩ PS}

where si denotes any sub-statement of the original conditional block. If the full structure
is included, the original form is preserved.
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In the simple example, the only relevant statement is a single print call, so this step
requires no reconstruction.

By comparison, the complex example includes an if-statement spanning lines 7 to 10.
Since the entire body and else-branch are included in PS , the conditional is retained in
its original form and inserted directly into the wrapped function.

Wrapping the RUI in a Callable Function
In the main file (i.e., the file that contains the RUI), all local user variables are passed as
parameters to a generated function named wrapped_code. The RUI is embedded as
the function body, and the values for the user variables are assigned in a standard main
block.

Let v1, . . . , vk ∈ U be the local user variables in the main file fmain. The generated
function is:

def wrapped_code(v1, . . . , vk) :
<RUI statements>

At the end of the file, the following entrypoint is appended:

main():

vi = repr_value(vi) ∀i ∈ [1, k]
wrapped_code(v1, . . . , vk)

The overall pattern is illustrated by the following sketch:
1 def wrapped_code(...):
2 <RUI statements>
3
4 if __name__ == ’__main__’:
5 <user variable initializations>
6 wrapped_code(...)

For example, the simple example generates the function wrapped_code() without
parameters (line 3) and a main block that directly invokes it (line 7).

For the complex example, the local variable user is passed as a parameter to
wrapped_code in line 6 and initialized in the main block on line 13. The call is then
issued in line 14, completing the wrapped execution setup.

Import Rewriting and Final Emission
All import statements in the generated files are rewritten to match the new paths of the
rewritten modules. This ensures that cross-file references remain valid and executable. Let
φ : OriginalPath → NewPath be a mapping from original module locations to rewritten
files. Each import line is updated as:

import m �→ import φ(m)
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This guarantees that inter-file references remain valid and that the resulting program is
self-contained and executable.

For example, in the complex example, line 1 of the output file updates the import to
from new_user import User, reflecting the location of the newly generated file.

Bringing all steps together, the resulting output for both the simple and the complex
example, illustrates how the reconstructed program files reflect the semantics of the sliced
region while eliminating unrelated code.

In the simple example, the resulting file, as shown in Listing 4.7, contains only the print
statement explicitly selected by the user, wrapped in a function and invoked from a
main block. The unresolved variable message is treated as a global user variable and
declared at the top of the file. No additional dependencies are introduced, and the slice
remains minimal.

In contrast, the complex example features multiple functions and class definitions, from
which only a subset is required for executing the selected code region. Listings 4.8 and 4.9
show the final emitted files. The class User, originally declared in user.py (line 1),
is preserved in the output new_user.py to satisfy cross-file dependencies. Meanwhile,
the main logic from access_control.py is isolated into a wrapped_code function
(line 6) and invoked from the main block (line 14) after initializing the required user
input (line 13). The slice correctly omits the call to log_access_attempt and the
final print statement from the original program (lines 13 and 11), which are unrelated to
the selected computation.

These listings illustrate that the slicing transformation correctly preserves program
behaviour for the selected region, capturing only relevant dependencies and user inputs
while omitting unrelated code.

1 message = "hello world"
2
3 def wrapped_code():
4 print(message.upper())
5
6 if __name__ == ’__main__’:
7 wrapped_code()

Listing 4.7: File new_simple_example.py – Generated Code for the Simple Example

1 from new_user import User
2
3 def log_access(user: User) -> None:
4 print(f"Access denied for: {user}")
5
6 def wrapped_code(user):
7 if user.has_admin_rights():
8 print("Access granted")
9 else:

10 log_access(user)
11
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12 if __name__ == ’__main__’:
13 user = User(name="Mallory", is_admin=False)
14 wrapped_code(user)

Listing 4.8: File new_access_control.py – Generated Code for the Complex
Example (Main File)

1 class User:
2 def __init__(self, name: str, is_admin: bool):
3 self.name = name
4 self.is_admin: bool = is_admin
5
6 def has_admin_rights(self) -> bool:
7 return self.is_admin
8
9 def __str__(self) -> str:

10 return self.name

Listing 4.9: File new_user.py – Generated Code for the Complex Example (Dependency
File)

4.5 Execution of the Generated Code
Following code generation (Section 4.4), the resulting slice is executed as a standalone
program. This step concludes the slicing workflow by executing the reconstructed code
using the provided user inputs and resolved dependencies.

Execution is initiated from the main file fmain, as defined in Section 4.4, which contains
the RUI. This file includes a main block that binds all unresolved variables U to their
user-provided values and calls the wrapped function containing the RUI.

The overall behaviour of the program is determined by the region under investigation,
the resolved variables U , and the dependency structure encoded in the graph DG. This
step provides the final output of the slicing process in the form of executable behaviour.

The execution outcome depends directly on the inputs provided by the user and the logic
included in the selected slice.

The behaviour of this phase is illustrated using both the simple and complex example
introduced earlier.

In the simple example (Section 4), the file new_simple_example.py contains the
global variable message, which was resolved by the user to "hello world". Upon
execution, the wrapped function is invoked, evaluating the single print statement:

1 print(message.upper())

This produces the output:
1 HELLO WORLD
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In the complex example (Section 4), the main file is new_access_control.py. The
user provided the values name = "Mallory" and is_admin = False for the unre-
solved variable user, which is instantiated in the main block. The call to
wrapped_code(user) triggers a conditional check:

1 if user.has_admin_rights():
2 print("Access granted")
3 else:
4 log_access(user)

Since the user input yields False for is_admin, the else branch is taken and the
function log_access is called, resulting in the printed output:

1 Access denied for: Mallory

The execution finalizes the workflow by producing a runnable program that accurately
reflects the intent and scope of the selected region.
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CHAPTER 5
CodeDetective

This chapter presents the concrete implementation of the slicing approach introduced
in Chapter 4, focusing on those aspects that require special consideration in practice.
Rather than restating the entire workflow, this chapter highlights the key implementa-
tion decisions, data structures, and supporting infrastructure that make the approach
executable. CodeDetective is implemented as a command-line tool written in Python,
designed for typed Python projects. It integrates external analysis libraries and builds
on open-source infrastructure to support static slicing, user interaction, and isolated
execution of the selected code region.

5.1 Foundation
CodeDetective builds upon the existing open-source framework Repository to Environment
(R2E) [19], which converts GitHub repositories into interactive execution environments
for testing and analysing code generation systems and programming agents at scale.
It extracts functions and methods from the repository, using Large Language Models
(LLM)s to create and run equivalence tests, and setting up an environment where the
generated code can be executed and evaluated. Our tool leverages its pat module, which
provides foundational program analysis capabilities, including Abstract Syntax Tree
(AST) processing and dependency analysis. We extend and adjust this framework to
support advanced program dependency slicing tailored to our use case. The original r2e
project is publicly available at https://github.com/r2e-project/r2e.

5.2 Command-Line Interface and Setup
The tool is invoked via a command-line interface. The user specifies three arguments:

• -program_path: Path to the root directory of the project
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• -file_under_investigation_path: Path to the file that contains the RUI

• -line_number_under_investigation: One or more line numbers marking
the RUI

An example call is shown below:

python codedetective.py
--program_path /home/user/project/
--file_under_investigation_path /home/user/project/example.py
--line_number_under_investigation 107-112

5.3 Repository Initialization
Upon execution, the tool clones the input project to a temporary working directory and
adjusts all internal paths accordingly. This guarantees that any analysis or transformation
is isolated from the original source.

To support interprocedural slicing, the tool constructs a static call graph of the entire
project. This is implemented using the pycg library [26], which analyses Python
code statically and generates a graph GCG = (VCG, ECG) where vertices correspond to
functions and methods and edges indicate possible call relationships. This call graph is a
crucial component for dependency analysis, as described in Section 4.2.

In addition to the call graph, a class registry is created during the setup phase. This
registry is a global mapping that indexes all user-defined classes by their fully qualified
name, consisting of module path and class name. Each entry maps to the AST node
representing the class and its source file.

The class registry plays a crucial role in resolving class-based dependencies during slicing.
For example, consider the complex case from Section 4, where the access_control.py
file contains the line 6:

1 def process_user(user: User) -> None:

Here, User refers to a class defined externally in user.py. During slicing, this reference
is resolved by consulting the class registry, which includes an entry of the form:

user.User → (ClassDef node, user.py)

This mapping enables the system to locate the class definition, analyse its structure if
needed, and ensure the appropriate import is reconstructed in the generated slice.

The registry is also used during runtime input collection (Section 4.3), where user-defined
classes may need to be instantiated. Constructor parameters are extracted from the
__init__ method of the class via its AST node, allowing recursive input prompts to be
generated.
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5.4 Variable Tracking and Resolution
To support dependency analysis and user input validation, the system maintains a central
data structure known as the Variable Usage Tracker (VUT).

The VUT collects all variable identifiers occurring in the program, along with their scope,
type, and usage sites.

The tracker is initialized during a preprocessing phase, where the entire Abstract Syntax
Tree of the program is scanned to extract variables referenced in each statement. Each
variable is recorded in the VUT and associated with:

• its syntactic scope (e.g., module, function, or class body)

• its usage sites {s1, s2, . . .} ⊆ P

• its data type τ , inferred from annotations, constructor arguments or context

The resulting structure maps each variable v to a tuple:

v �→ (τ, scope, {s1, s2, . . .})

For example, in the simple example from Section 4, the VUT contains an entry for
message:

message@global �→ (str,global, {line 1, line 2})

This indicates that message is a global variable of type str used on both lines.

In the complex example from Section 4, the variable user appears in two distinct scopes.
Accordingly, the VUT contains two separate entries:

user@log_access �→ (User,log_access, {line 3})

user@process_user �→ (User,process_user, {line 6, line 7, line 10})

This structure is consulted throughout the slicing process to support the variable tracking
step within each statement handler. Handlers query the VUT to identify all variables
referenced in a given statement and determine whether they are already resolved. Unre-
solved variables are added to the unresolved set U and their associated types τ guide the
input mechanism in generating appropriate prompts and validating the provided values
by the user.

These implementation details demonstrate how the abstract slicing model has been
translated into a working system. By grounding the theoretical phases of the approach in
concrete mechanisms, the resulting tool enables practical, dependency-aware execution
of selected code regions across Python projects.
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CHAPTER 6
Evaluation Methodology

This chapter describes the methodology used to evaluate CodeDetective. The evaluation
is designed to assess three key aspects: the accuracy of CodeDetective in executing code
in isolation, its performance compared to an existing tool and its conceptual differences
from similar approaches. To achieve this, we follow a structured evaluation process that
includes an iterative testing approach, comparative analysis and a conceptual discussion
of CodeDetective compared to similar existing tools.

The goal of the evaluation section is to answer the following evaluation questions:

1. EQ1: How accurate is CodeDetective at executing code in isolation? The
evaluation compares execution results with expected outputs to measure accuracy.

2. EQ2: How does CodeDetective perform compared to an existing tool
(Code Runner [20]) in terms of accuracy and success rate? The same test
cases are executed with both tools and their results are compared.

3. EQ3: How does CodeDetective conceptually differ from other similar
tools? The evaluation highlights differences in concepts of CodeDetective compared
to Code Runner and LExecutor [27].

6.1 Evaluation Process
To evaluate EQ1 and EQ2, we employ an iterative evaluation process in which test cases
are structured into levels of increasing complexity. Each test case is derived from a
synthetic benchmark project specifically created for this evaluation. Within this project,
a specific code range, the RUI, is selected for each test case. This range identifies the
statements under investigation and is carefully chosen to match the characteristics of a
specific difficulty level.
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The evaluation process consists of two main components:

• Measuring Execution Accuracy (EQ1): We measure the correctness rate of
CodeDetective by comparing its output to the expected result. If the actual output
matches the expected output, it is considered correct.

• Comparing Performance Against Code Runner (EQ2): We run the same
test cases through both CodeDetective and Code Runner. We compare their
success rates (whether the execution completes without errors) and correctness
rates (whether the output is correct).

By progressively increasing the complexity of test cases, we identify the limitations of
CodeDetective and determine how it performs relative to an established execution tool.

6.2 Difficulty Levels
The test cases used in this evaluation are categorized into ten conceptual levels, each
designed to target a specific slicing challenge. The levels progress from simple standalone
statements to complex scenarios involving interprocedural calls, external effects and user
input. Each new level introduces an additional execution challenge or feature, while
still incorporating the capabilities required in previous levels. This cumulative structure
ensures that CodeDetective is not only tested in isolated scenarios but also evaluated on
its ability to handle multiple interacting features.
Each of the first nine levels includes exactly five test cases, while the tenth level contains
seven due to the increased complexity at that stage.
The remainder of this section describes each level in detail, outlining its role within
the evaluation and the specific slicing challenges it introduces. Concrete test cases
representative of each level are discussed in Section 7.1 and the complete test cases and
code snippets listing can be found in the appendix A.

Level 1 – Basic Code Execution (Single & Multi-Line, No Dependencies)

Level 1 targets the most elementary cases of code slicing: isolated statements that are
syntactically and semantically self-contained. These include single-line print calls or basic
expressions involving literals and constants. The goal at this level is to verify whether
the slicer correctly preserves such statements in their entirety, without attempting to
infer or introduce extraneous dependencies. Although this level appears trivial, it serves
to confirm that the basic parsing and output generation mechanisms function correctly
in the absence of variable resolution or control structures.

Level 2 – Variable Dependencies and Simple Expressions

At Level 2, CodeDetective is evaluated in terms of its ability to resolve dependencies
between statements that exist within the selected region. This includes code where variable

52



6.2. Difficulty Levels

assignments precede expressions that rely on their values. The central requirement is
that the slicer preserve execution order and retain any prior statements that contribute
to the definition of later variables. This level confirms that basic data dependencies are
detected and resolved locally.

Level 3 – Handling Conditional Statements

Level 3 introduces conditional logic through constructs such as if, elif, and else
blocks, possibly in nested or chained form. CodeDetective must not only identify which
parts of the conditional structure are relevant to the region of interest but also include any
conditions that determine their execution. This includes variables used in the condition
expressions, which must be resolved even if they are not themselves part of the output.
The level emphasizes control-flow awareness, correct branch inclusion, and path-sensitive
dependency handling.

Level 4 – Functions (Simple and Complex)

Level 4 focuses on code that invokes locally or externally defined functions. These
functions may require arguments, return computed results, or include nested logic.
CodeDetective must recognize which functions are relevant based on the selected region
and include their full definitions accordingly. This level tests whether interprocedural
relationships are handled correctly and whether function calls are supported within sliced
output.

Level 5 – Modules and Imports

Code in Level 5 depends on symbols introduced via import statements. These may
originate from the standard library, third-party packages, or project-local modules. The
slicing process must determine which imported entities are actually referenced in the
selected region and retain the corresponding import statements. The challenge lies
in identifying only the necessary imports while omitting unused ones, and in handling
different styles of import declarations such as direct, aliased, or from-imports. Additionally,
CodeDetective must track any dependencies introduced through the use of imported
symbols.

Level 6 – Object-Oriented Code

Level 6 introduces object-oriented constructs, including class instantiation, attribute
access, and method calls. CodeDetective needs to ensure that all relevant class declarations
and their methods are retained to enable correct behaviour. This level assesses whether
the system can handle object lifecycles and include the structural components necessary
for execution, especially in the presence of inheritance or encapsulation.
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Level 7 – User Input (Primitive Types)

In Level 7, slicing operates on code that references unresolved primitive variables such as
integers, strings, booleans, or floats. These values are not defined within the selected
region but are required for correct execution. CodeDetective must therefore prompt the
user to provide inputs of the appropriate type, enforcing that the provided values match
the expected types. The goal is to assess whether undefined values can be detected
automatically and whether type validated input collection is supported during slicing.

Level 8 – User Input (Complex Types)

Level 8 extends the user input model to structured types, including collections such
as lists and dictionaries, as well as user-defined class instances. These more complex
values often require hierarchical input (e.g., populating multiple attributes or nested
structures). The slicing logic must identify the shape of the missing values and generate
appropriate input prompts or construction logic. This level evaluates whether complex
and user-defined types can be meaningfully reconstructed from unresolved values.

Level 9 – API Interactions

Level 9 introduces external communication through API requests. Test cases in this
category include constructing and sending HTTP requests and accessing the returned
response. CodeDetective needs to include the request logic and retain all statements
necessary to make and interpret the API call. This level tests whether external effects
such as network interaction are correctly preserved.

Level 10 – File and Database Access

Level 10 includes code that performs persistent I/O operations, such as file access or
database modification. These operations may rely on user-supplied paths or connection
parameters. The slicing process must retain all relevant file or database interaction logic,
including opened resources and manipulated content. This level combines the challenges
of external effect handling, input resolution, and program structure preservation under
I/O constraints.

6.3 Metrics
For EQ1, accuracy is evaluated using the correctness rate CR, which measures how often
the output of CodeDetective matches the expected result. The correctness rate CR is
defined as:

CR = Number of correctly executed test cases
Total test cases × 100

For EQ2, we compare the success rate SR and correctness rate CR of CodeDetective
against Code Runner. The success rate SR measures how many test case execute without
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errors. It is defined as:

SR = Number of successfully executed test cases
Total test cases × 100

6.4 Test Case Selection and Generation
Initially, the plan was to derive test cases from well-known open-source Python projects
available on GitHub1, including Black2, Flask3, and Scrapy4. These repositories
were also used in the evaluation of LExecutor [27], providing a diverse set of real-world
codebases.

However, during the preparation of the evaluation, it became clear that real-world projects
are not suitable as a foundation for a meaningful and fair evaluation of CodeDetective.
The current implementation of CodeDetective supports a defined and limited subset
of Python constructs, namely annotated assignment statements, import statements,
class and function definitions, expression statements, and if-statements. In real-world
codebases, however, it is extremely difficult to identify isolated code snippets that
exclusively use these supported statement types while also aligning with the scope and
constraints of individual test levels.

Beyond that, several other challenges emerged during preliminary test case selection from
real-world projects:

• Many real-world snippets do not produce clear outputs, making it difficult or
impossible to validate or compare execution correctness.

• Code snippets in these projects almost always rely on externally defined variables
or functions. While CodeDetective is capable of resolving such dependencies under
certain conditions, CodeRunner performs no such resolution and fails prematurely.
These failures are not caused by the actual conceptual challenge being tested, but
rather by the lack of necessary context. This prevents a fair and direct comparison.

• CodeDetective requires type-annotated Python code, but most open-source projects
do not use typing consistently. Adapting such code to meet the typing requirements
introduces significant risk of introducing unintended behaviour and compromises
the authenticity of the evaluation.

• Even when code snippets align with the intended focus of a test level (e.g., involving
conditional logic), they frequently include additional logic or unsupported statement
types. While the former complicates the isolation of specific behaviours, the latter
makes it impossible to use such snippets with CodeDetective, as it only supports a
restricted set of statements.

1https://github.com/
2https://github.com/psf/black
3https://github.com/pallets/flask
4https://github.com/scrapy/scrapy
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To overcome these issues, the evaluation uses a synthetic benchmark project5 specifically
created for this thesis. Each test case in the benchmark is designed to align with a
clearly defined difficulty level and is fully compatible with the technical requirements of
CodeDetective. This approach allows for:

• All test cases are built using only the statement types that CodeDetective supports,
avoiding execution failures caused by unsupported constructs.

• Every test case produces explicit output, making it possible to validate results and
compute accuracy and success metrics reliably.

• Each test case focuses on a single concept or challenge, such as various forms of
if-statements (e.g., different conditions, presence of elif/else, nesting, partial
selection, etc.), enabling more targeted and meaningful evaluation.

• The test cases are constructed in a way that provides both tools with the required
context, reducing failures caused by missing inputs and allowing a fairer comparison.

6.5 Conceptual Comparison (EQ3)
Beyond measuring execution accuracy, we analyse how CodeDetective conceptually differs
from other tools. Specifically, we compare it to LExecutor and Code Runner in terms of:

• Dependency resolution: Whether the tool resolves dependencies.

• Handling missing values: Whether the tool can handle missing values.

• Type annotation requirement: Whether the tool requires explicit type annota-
tions.

• Support incomplete code: Whether the tool can work on code snippets as input
project.

• Control missing values: Whether the tool provides mechanisms to let the user
control the value of missing values.

• Idempotency: Whether repeated executions yield the same output under identical
conditions.

• Multi-language support: Whether the tool is limited to Python or supports
multiple programming languages.

5https://github.com/Luiise/benchmark_project
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CHAPTER 7
Results and Discussion

7.1 Synthetic Benchmark Project and Test Cases
The evaluation is based on a synthetic benchmark project1 specifically created to support
the assessment of the proposed slicing approach realized by CodeDetective. The bench-
mark was designed to satisfy both the constraints of CodeDetective and the requirements
associated with the test levels. The project simulates a simplified access control system
composed of multiple interrelated modules and diverse Python constructs. Each module
contributes a specific functional aspect to the system, such as user modeling, access
evaluation, diagnostics, logging, and network interaction. The codebase is illustrative and
constructed to include only supported syntax elements, such as annotated assignments,
conditionals, class and function definitions, imports, and selected expressions. Addi-
tionally, it uses strictly typed Python, as required by CodeDetective. The benchmark
project is set up with a local venv, following common practices in Python development.
It provides a controlled environment for testing isolated code regions across a wide range
of slicing challenges.

The test cases are grouped into ten difficulty levels, as described in 6.2, each targeting a
specific slicing challenge such as function dependencies, module imports, control flow,
or user-provided input. To enable observable and verifiable behaviour, each test case
concludes with a print statement, allowing the produced output to be compared to the
expected result. Each test case is executed independently using CodeDetective.

For each difficulty level, this section demonstrates a representative test case that reflects
the slicing challenge described in Section 6.2. A complete summary of all test cases,
including file locations, line ranges, required inputs, and expected outputs, is provided in
Appendix A, along with the full code snippets used in the evaluation.

1https://github.com/Luiise/benchmark_project
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7.1.1 Level 1 – Basic Expressions without Dependencies
Level 1 provides an initial evaluation of the slicing system by examining self-contained
expressions that do not rely on external variables or function calls. These test cases
are independent from other code elements and require no user input or dependency
resolution.

A representative example, test case 1.3 is shown below:
1 print("[" + "create".upper() + "]" + " log entry")

This test case includes a string method call combined with concatenation. It demonstrates
that the slicer correctly retains isolated expressions even when involving basic string
operations.

7.1.2 Level 2 – Variable Dependencies and Expressions within Snippet
Level 2 evaluates whether the slicing system correctly resolves simple intra-function
dependencies and performs expression evaluation over intermediate variables.

A representative example, test case 2.3:
1 startup_ms: int = 1325
2 threshold: int = 1000
3 is_slow_boot: bool = startup_ms > threshold
4 print("Slow boot detected:", is_slow_boot)

This example uses internal variables and a boolean expression before producing output.
It tests the ability of CodeDetective to retain all relevant statements that contribute to a
computed result.

7.1.3 Level 3 – Handling Conditional Statements
Level 3 focuses on conditional structures and their resolution, including if-elif-else
constructs, nested conditions, and various condition expressions.

A representative example, test case 3.1:
1 role: str = "admin"
2 clearance: int = 2
3
4 if role == "admin":
5 if clearance >= 3:
6 print("Access level: Full admin")
7 else:
8 print("Access level: Partial admin")
9 elif role == "guest":

10 print("Access level: Guest")
11 else:
12 print("Access level: Unknown")

58



7.1. Synthetic Benchmark Project and Test Cases

This example features a full nested conditional structure. It demonstrates that the slicing
process must account for branching logic and only include the paths required by the
region under inspection.

7.1.4 Level 4 – Functions (Simple & Complex)
Level 4 focuses on test cases involving function calls across the program. It includes
chained calls, functions with arguments, return values, and recursion. These cases assess
whether the slicing process correctly follows interprocedural dependencies.

A representative example, test case 4.3:
1 formatted: str = format_name("Alice")
2 print("Welcome,", formatted)

This test case includes a call to a helper function and a subsequent use of its return value.
It evaluates the ability od CodeDetective to include the relevant function definition and
preserve interprocedural dependencies.

7.1.5 Level 5 – Imports (Standard, Third-Party, Project Files)
Level 5 evaluates the ability of CodeDetective to handle symbols imported from various
sources, including local modules, standard libraries and third-party packages. These
cases test resolution of external dependencies outside the current source file.

A representative example, test case 5.3:
1 user_id: str = "ID-001"
2 is_valid: bool = re.match(r"ID-\d{3}", user_id) is not None
3 print("Valid admin ID format:", is_valid)

This test case makes use of the re module from the standard library. It demonstrates
whether imports are properly resolved and retained when used in an expression.

7.1.6 Level 6 – Object-Oriented Constructs
Level 6 evaluates object-oriented features including class instantiation, inheritance,
method calls and attribute access. These test cases verify whether slicing preserves class
structure and related behaviour.

A representative example, test case 6.2:
1 guest: Guest = Guest("Bob")
2 guest.grant_temp_code("ABC123")
3 print("Guest has access:", guest.has_access())

This case involves object instantiation and method calls across a class hierarchy. It
checks whether the slicing process can correctly track class-based behaviour and include
necessary class and method definitions.
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7.1.7 Level 7 – User Input (Primitive Types)
Level 7 contains test cases that depend on unresolved variables of primitive types (e.g.,
int, str, bool, float). These inputs are expected to be provided by the user during
slicing and type-checked accordingly.

A representative example, test case 7.2:
1 if role == "admin" and is_verified and (login_hour >= 8 and login_hour <=

18):
2 print("Admin access granted during business hours")

This snippet references multiple primitive variables which are not defined locally. It
evaluates whether the tool correctly identifies these as unresolved inputs and integrates
user-provided values.

7.1.8 Level 8 – User Input (Complex Types)
Level 8 introduces user-provided variables of complex types, including List, Dict, Set,
Union, Literal and custom class instances. These cases evaluate how the system
handles structured and type-constrained input values.

A representative example, test case 8.3:
1 label: str = describe_user(user)
2 if user.is_admin:
3 print(label + " has elevated rights")
4 print(label + " has limited rights")

This test case depends on a structured user object with attributes accessed both directly
and via a helper function. It verifies whether custom object input and associated behaviour
is supported by CodeDetective.

7.1.9 Level 9 – API Interactions
Level 9 focuses on code that performs HTTP-based API interactions using either the
standard library or third-party modules. These test cases involve sending requests,
decoding responses, and producing observable output.

A representative example, test case 9.2:
1 url: str = f"https://jsonplaceholder.typicode.com/users/{user_id}"
2 response: HTTPResponse = urllib.request.urlopen(url)
3 body: str = response.read().decode("utf-8")
4 data: dict = json.loads(body)
5
6 if local_status == "denied":
7 print("Access denied and logged for", data["username"])
8 else:
9 print("Access granted and logged for", data["username"])
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This snippet demonstrates dynamic URL construction, external API access, and condi-
tional handling of data. It evaluates whether slicing supports network interactions and
response parsing.

7.1.10 Level 10 – File and Database Access
Level 10 focuses on test cases that perform persistent data operations, including file I/O
and database writes. This level evaluates the ability of CodeDetective to retain functional
behaviour across file paths, database backends, and structured writes.

A representative example, test case 10.1:
1 f: object = open(path, "r")
2 content: str = f.read()
3 print("File content:", content)

This example involves reading from a file path stored in a variable and printing the result.
It assesses whether I/O operations are preserved correctly, even when path variables are
externally defined.

7.2 EQ1 - CodeDetective Accuracy
EQ1 evaluates the accuracy of CodeDetective by assessing whether the output produced
by executing the generated program slices matches the expected result. Across all test
cases, CodeDetective achieved a correctness rate of 82.69%. Figure 7.1 visualizes the
accuracy per level, while Table 7.1 provides a numerical breakdown and lists the failing
test cases.

Level Total Cases Correct Cases Failing Cases Correctness Rate (%)
1 5 5 100.00
2 5 5 100.00
3 5 4 3.4 80.00
4 5 4 4.1 80.00
5 5 4 5.5 80.00
6 5 4 6.5 80.00
7 5 5 100.00
8 5 5 100.00
9 5 3 9.4, 9.5 60.00
10 7 4 10.1, 10.4, 10.6 57.14

Table 7.1: EQ1: CodeDetective accuracy score per test level.

CodeDetective achieved perfect accuracy in Levels 1, 2, 7, and 8. These levels test basic
expressions, both with and without intra-snippet dependencies and include user-provided
values of primitive and structured types. The results confirm that CodeDetective correctly
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preserves independent or self-contained statements, accurately resolves local variable
dependencies and successfully integrates missing values through validated user input.
Structured types such as objects, lists, dictionaries, and literals are handled correctly.
This demonstrates that the input prompts and reconstruction logic operate reliably even
for nested structures.

For Levels 3 through 6, CodeDetective correctly executed four out of five test cases per
level, each achieving a correctness rate of 80%.

Level 3 focuses on conditional control flow through if/elif/else structures. CodeDe-
tective correctly executed four of the five cases, showing that it can handle conditional
branches and include relevant clauses based on dependency analysis. The failure in test
case 3.4 resulted from a structurally incomplete selection, where only an elif clause
was included without its preceding if block, causing a SyntaxError. This failure
highlights a general limitation in handling structurally incomplete input regions, where
selected lines do not form a syntactically valid program segment. The slicing process is
designed to preserve relevant logic without attempting to repair invalid input selections.

Level 4 includes function definitions and interprocedural calls. CodeDetective succeeded
in most cases by resolving dependencies that span multiple functions and correctly
reconstructing call relationships. Only test case 4.1 produced unexpected output. In this
case, the region of interest consisted solely of a function definition, which was correctly
extracted. However, the slicer mistakenly duplicated the internal body statements as
additional top-level code in the reconstructed file. As a result, these statements were
executed unintentionally when the program was run, producing unexpected output.

Level 5 verifies that CodeDetective correctly resolves and tracks project-local function
and variable imports, as well as standard library usages. In cases involving third-party
dependencies not available in the slicing environment, however, execution fails with a
module import error. This was the case for test case 5.5, which required a package
not preinstalled in the environment of CodeDetective. However, such test cases can be
resolved by manually installing the required dependencies, which confirms that the failure
is not due to slicing logic but rather to environmental configuration.

Level 6 focuses on class-based object-oriented constructs. In four of the five test cases,
CodeDetective handled these constructs successfully, including correct instantiation of
objects, resolution of attributes and method calls, and proper handling of class inheritance.
The failure in test case 6.5 occurred because the selected region was located within a
class method, but the slicing process did not include the surrounding class definition. As
a result, references to self could not be resolved, causing execution to fail.

Level 9 achieved a correctness rate of 60.00% and focuses on code that interacts with
external APIs. In three of the five test cases, CodeDetective successfully reconstructed the
required logic for issuing HTTP requests and processing responses. These results confirm
that basic network communication and response handling are structurally supported by
the slicing mechanism. The same limitation affecting third-party libraries reappears in
test cases 9.4 and 9.5, both of which use the external HTTP client httpx. If this library
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Figure 7.1: EQ1: CodeDetective correctness rate per test level.

is unavailable during slice execution, a ModuleNotFoundError occurs. Nevertheless,
these test cases run correctly when httpx is installed, showing that API requests and
response handling are structurally supported by the slicing logic.

Level 10 covered both file I/O and database operations and achieved an accuracy score
of 57.14%, with results varying depending on how paths and connections were managed.
Test cases involving absolute paths or explicit resource setup executed correctly and
confirmed that CodeDetective supports persistent data access. In contrast, test cases
using relative file paths failed because the sliced code runs in a new context where
such paths are no longer resolvable. Execution of database operations depends on the
availability of a configured database and complete connection logic within the selected
region. Test case 10.4 failed due to a missing table in an SQLite database, while test
case 10.5 succeeded using identical logic with proper setup. The PostgreSQL test case
10.6 failed due to an unavailable driver library, but 10.7, which used the same logic
in a properly configured environment, executed successfully. Hence, these outcomes
demonstrate that external resource handling is supported when dependencies and setup
are included or satisfied externally.

7.3 EQ2 - Performance Comparison
The aim of EQ2 is to compare the performance, in terms of success rate and accuracy,
of CodeDetective against Code Runner (CR). Code Runner is a Visual Studio Code
extension which enables developers to execute selected code snippets. While it facilitates
code execution, it lacks advanced program analysis capabilities. Specifically, it does not
resolve dependencies within the selected code, instead merely copying the code snippet
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into a new temporary file for execution. In many real-world scenarios, however, code
snippets are embedded within function or class definitions and therefore reside in local
rather than global scopes. As a result, directly executing the copied code often leads to
IndentationError.

To explore whether this structural issue is the primary source of failure, an additional
baseline configuration called CR-global is considered. By placing the snippet in the global
scope, CR-global enables execution of code that would otherwise fail due to indentation,
while keeping the snippet itself unchanged. It does not provide dependency resolution or
input handling, but mitigates structural issues introduced by nested scopes.

The results of this comparative evaluation are summarized in Table 7.2. CodeDetective
achieved a correctness rate of 82.69% and a success rate of 84.61%, considerably out-
performing both CR and CR-global. Original CR reached only 9.62% in both metrics,
failing in nearly all test cases beyond Level 1. The CR-global variant achieved 28.85%
for both success and correctness, showing limited improvement in early levels, but no
significant gains beyond Level 3, particularly when dependencies or missing inputs are
involved.

Figure 7.2 and Figure 7.3 provide a visual comparison of success and correctness rates
across all levels. These bar charts illustrate the same performance trends observed
in the table, highlighting the sharp contrast between CodeDetective and the baseline
approaches.

Level CD-Succ CD-Corr CR-Succ CR-Corr CRG-Succ CRG-Corr
(%) (%) (%) (%) (%) (%)

1 100.00 100.00 80.00 80.00 100.00 100.00
2 100.00 100.00 00.00 00.00 100.00 100.00
3 80.00 80.00 00.00 00.00 80.00 80.00
4 80.00 100.00 20.00 20.00 20.00 20.00
5 80.00 80.00 0.00 0.00 0.00 0.00
6 80.00 80.00 0.00 0.00 0.00 0.00
7 100.00 100.00 0.00 0.00 0.00 0.00
8 100.00 100.00 0.00 0.00 0.00 0.00
9 60.00 60.00 0.00 0.00 0.00 0.00
10 57.14 57.14 0.00 0.00 0.00 0.00

Avg 84.61 82.69 9.62 9.62 28.85 28.85

Table 7.2: EQ2: Success rate (Succ) and correctness rate (Corr) comparison for CodeDe-
tective (CD), CodeRunner (CR), and CodeRunner with global insertion (CRG).

It is worth noting that across all systems and test levels, success and correctness rate
are nearly identical. A successful execution almost always produces the correct output,
which confirms that when a tool is able to run the sliced code without runtime errors,
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Figure 7.2: EQ2: Execution success comparison between CodeDetective, CodeRunner
and CR-global.

Figure 7.3: EQ2: Correctness comparison between CodeDetective, CodeRunner and
CR-global.
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the behaviour is highly likely to be semantically accurate. The only exception is test case
4.1 with CodeDetective, where the selected region included a function definition, but
body statements were mistakenly duplicated outside the function, causing unintended
output. This was discussed in Section 7.2.

In Levels 1 and 2, both CR-global and CodeDetective perform well, while CR fails in
several cases due to IndentationError caused by nested code structures. CR-global
resolved some of these by relocating the selected region into the global scope, eliminating
indentation-related failures in the early levels. This is particularly evident in Levels 2 and
3, where the correctness rate increases from 0% to 100% and 80%, respectively. These
improvements result entirely from eliminating indentation issues by relocating the code,
rather than from any enhanced handling of dependencies or input.

From Level 4 onward, the effectiveness of CR and CR-global declines significantly.
These test cases involve interprocedural logic, imports, or unresolved variables and both
baselines fail to include the necessary definitions and statements required for correct
execution. CodeDetective retains correct execution in most of these scenarios by resolving
dependencies beyond the selected region.

In Levels 7 and 8, where user input is required, both CR variants fail entirely. Since neither
approach can prompt for input or validate types, execution fails with a NameError or
similar exception. In contrast, CodeDetective detects unresolved values, prompts the user
for valid input and ensures type consistency prior to execution, achieving full correctness
in both levels.

Levels 9 and 10 further highlight the limitations of naive snippet execution in real-world
programs. Code snippets interacting with APIs or persistent storage typically depend on
imports, file paths, network access, or configured environments. Without a mechanism to
analyse and preserve those dependencies, both CR and CR-global are unable to execute
any of the relevant test cases. CodeDetective succeeds in several of these cases, showing
that execution is possible when the required configuration or environment is available.

To better understand error evolution between CR and CR-global, Figure 7.4 displays
a heatmap of error transitions. Figure 7.5 provides a complementary Sankey diagram.
Most errors in CR are IndentationError, which are partially resolved in CR-global
by placing the snippet at global scope. However, many of those transitions lead to new
NameError exceptions, indicating missing dependency resultion to constructs outside
the RUI. Only a limited number of cases transitioned to successful execution.

7.4 EQ3 - Conceptual Comparison
This evaluation question investigates how CodeDetective conceptually differs from two ex-
isting tools that support the execution of code snippets: Code Runner and LExecutor [27],
a research tool that enables the execution of incomplete Python code by dynamically
injecting values during runtime.
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7.4. EQ3 - Conceptual Comparison

Figure 7.4: EQ2: Heatmap showing the transition of CR errors under CR-global execution
context.

The comparison focuses on a set of conceptual criteria that distinguish the underlying
approaches of each tool. Table 7.3 presents which concepts are supported by each tool.

Concept Code Runner LExecutor CodeDetective
Dependency resolution ✗ ✗ ✓

Handling missing values ✗ ✓ ✓

Requires type annotations ✗ ✗ ✓

Supports incomplete code ✓ ✓ ✗

User control over values ✗ ✗ ✓

Idempotent output ✓ ✗ ✓

Multi-language support ✓ ✗ ✗

Table 7.3: Conceptual Comparison of CodeDetective with LExecutor and Code Runner

CodeDetective performs static dependency resolution based on program analysis. It
constructs a dependency graph from the selected code region and includes only the
minimal set of statements necessary for correct execution. Code Runner does not apply
any form of program analysis and instead executes the selected snippet in isolation,
without resolving references to definitions outside the selected code. LExecutor does not
resolve dependencies statically either, but allows execution to continue by dynamically
injecting values when missing definitions are encountered.

In terms of handling missing values, both LExecutor and CodeDetective enable execution
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7. Results and Discussion

Figure 7.5: EQ2: Sankey diagram showing the transition of CR errors under CR-global
execution context.

in the presence of undefined symbols. LExecutor handles this by intercepting runtime
errors and predicting suitable values using a trained neural model. CodeDetective prompts
the user for concrete values and validates them against inferred types. Code Runner
provides no mechanism for handling missing values and fails on unresolved references.

CodeDetective requires type annotations, which are used during variable tracking and to
enforce well-typed user inputs. Neither Code Runner nor LExecutor require annotations.

In terms of support for incomplete code, both LExecutor and Code Runner are more
flexible. They are capable of executing partial code snippets even when no complete
project context is available. CodeDetective, on the other hand, requires a complete and
syntactically correct typed program as input. It assumes that all referenced components
can be analysed and resolved using static analysis.

Only CodeDetective provides control over unresolved values. During execution, users are
prompted to provide concrete inputs that match the expected types, enabling controlled
experimentation and reproducibility. LExecutor synthesizes values automatically based
on model predictions, while Code Runner offers no input resolution mechanism at all.

The tools also differ in their execution consistency, particularly with respect to idempotent
behaviour. Both Code Runner and CodeDetective produce consistent results for the same
input, assuming no side effects. LExecutor, however, does not guarantee idempotent
output, as its prediction mechanism may yield different results across runs due to
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7.4. EQ3 - Conceptual Comparison

stochastic variation in the generated values.

Multi-language support is offered only by Code Runner, which supports several major
programming languages including Python, Java, JavaScript, and C++. LExecutor is
implemented specifically for Python and relies on language-specific instrumentation and
prediction models. CodeDetective is designed specifically for statically typed Python
programs and does not currently support other languages as well.
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CHAPTER 8
Conclusion and Future Work

This thesis proposed, CodeDetective, a slicing-based system for executing isolated re-
gions of Python code. The tool combines program slicing, dependency resolution, user
interaction, and code regeneration to enable seamless execution of code snippets outside
their original context. By reconstructing only the necessary dependencies and prompting
for unresolved input values, CodeDetective allows developers to explore arbitrary regions
of code without relying on the full execution context of the original program.

The central research questions guiding this work were concerned with both the feasibility
of building such a system and its effectiveness in practice.

• RQ1 How can we build a program analyser that produces a subset of executable
code snippets from a source file?

• RQ2 How well does the developed tool perform in evaluating code snippets of
varying complexity and structure within controlled testing environments?

Regarding RQ1, this thesis presents an approach that derives an executable subset
PS ⊆ P from a selected region of code, preserving its intended behaviour while enabling
isolated execution. The method performs recursive dependency analysis, which resolves
both direct and transitive dependencies by traversing the program and analysing control
and data flow relationships. A variable tracking mechanism is used to distinguish
resolvable from unresolved values. Missing inputs are presented to the user through
type-validated prompts, allowing them to provide the necessary values interactively
before execution. After all necessary elements have been identified, the extracted slice is
reconstructed into a standalone script using topological sorting and structured rewriting.
This process preserves the behaviour of the selected region while allowing the resulting
code to execute independently of its original surrounding context.
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8. Conclusion and Future Work

RQ2 investigated how well the tool performs on a range of code snippets with increasing
complexity. To evaluate this, a benchmark suite consisting of ten conceptual difficulty
levels was constructed, covering scenarios from simple expressions to advanced cases
involving missing inputs and external effects. The results showed that CodeDetective
achieves a correctness rate of over 80% across all test cases, significantly outperforming
baseline approaches such as CodeRunner and its global variant, which only reached nearly
10% and 30% respectively. In contrast to the baseline methods, CodeDetective succeeded
in executing a wide range of code regions that depended on additional context, including
function calls, user-provided values, or external side effects. These findings confirm that
dependency reconstruction and interactive variable resolution are critical for enabling
execution of code snippets that rely on contextual information beyond the selected region.

While CodeDetective demonstrates strong performance across a variety of test scenarios,
several limitations suggest promising directions for future work. The current implementa-
tion of CodeDetective is limited to a core subset of Python constructs handled by specific
statement handlers. Extending support to cover a broader range of language features,
such as loops and exception handling, would allow it to operate on more representative
and complex programs.

Additionally, CodeDetective requires the input program to be statically typed and relies
on type annotations to support variable resolution and input validation. Relaxing this
constraint or introducing fallback mechanisms for type inference would improve usability
in more diverse environments.

CodeDetective operates independently of the original runtime environment, so execution
may fail when code depends on relative file paths or unavailable third-party packages.
Future work could investigate strategies for environment-aware slicing and more robust
handling of external dependencies.

Finally, integrating CodeDetective into development environments such as Visual Studio
Code could improve usability. While the tool is currently used through a command-line
interface, embedding it into an IDE would allow developers to execute slices directly from
selected regions in the editor, making the tool more convenient to use during development.

In conclusion, this thesis introduced an approach to enabling isolated code execution
that combines program analysis with interactive input resolution. CodeDetective enables
execution of code snippets outside their original context by reconstructing dependencies
and prompting for unresolved values. While the tool already handles a wide range
of scenarios, future work may extend its language coverage, improve environmental
awareness and enhance accessibility through IDE integration.
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APPENDIX A
Code Snippets of Benchmark Test

Cases

This appendix provides a full overview of the benchmark test cases used for evaluation.
Each level is presented with:

• A table summarizing all test cases (including file, line range, concept, user input,
and expected output)

• The corresponding code snippet for each test case

Test cases are grouped by their difficulty level.

Level 1 – Basic Expressions without Dependencies
Table A.1 summarizes the test cases in this level.

The corresponding code snippets are shown below.

Test Case 1.1 (startup.py, line 3)
1 print("System is about to start.")

Test Case 1.2 (startup.py, line 6)
1 print("=" * 3 + " ACCESS SYSTEM v1.0 " + "=" * 3)

Test Case 1.3 (utils.py, line 17)
1 print("[" + "create".upper() + "]" + " log entry")
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A. Code Snippets of Benchmark Test Cases

ID File Line Concept Expected Output

1.1 startup.py 3 Simple single print statement System is about to
start.

1.2 startup.py 6 Single print statement with
string multiplication and con-
catenation

=== ACCESS SYSTEM v1.0
===

1.3 utils.py 17 Print with string method and
concatenation

[CREATE]log entry

1.4 access_
control.py

9–13 Triple-quoted multi-line string +-------------------+
| Access Control
Initialized |
+-------------------+

1.5 startup.py 13–15 Consecutive independent print
statements

Initializing
authentication
module...
Loading user access
profiles...
Establishing database
connection...

Table A.1: Test cases for Level 1 – Basic Expressions without Dependencies

Test Case 1.4 (access_control.py, lines 9–13)
1 print("""
2 +-----------------------------+
3 | Access Control Initialized |
4 +-----------------------------+
5 """)

Test Case 1.5 (startup.py, lines 13–15)
1 print("Initializing authentication module...")
2 print("Loading user access profiles...")
3 print("Establishing database connection...")

Level 2 – Variable Dependencies and Expressions within
Snippet
Table A.2 summarizes the test cases in this level.

The corresponding code snippets are shown below.

Test Case 2.1 (startup.py, line 20–22)
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ID File Line Concept Expected Output

2.1 startup.py 20-22 Independent assignment +
sequential print using that
value

System ready.
Welcome to the
system

2.2 startup.py 12-17 String transformation and
use across two variables

Initializing
authentication
module...
Loading user access
profiles...
Establishing
database
connection...
Done: BOOT COMPLETE

2.3 system_info.py 8-11 Internal variable dependency
and boolean comparison

Slow boot detected:
True

2.4 system_info.py 14-17 Boolean comparison across
defined constants

Admin quorum reached:
True

2.5 startup.py 32-34 Arithmetic and type conver-
sion

Boot completed in
1.385 seconds.

Table A.2: Test cases for Level 2 – Variable Dependencies and Expressions

1 welcome_message: str = "Welcome to the system"
2 print(f"System ready.")
3 print(f"{welcome_message}")

Test Case 2.2 (startup.py, line 12–17)
1 startup_message: str = "boot complete".upper()
2 print("Initializing authentication module...")
3 print("Loading user access profiles...")
4 print("Establishing database connection...")
5 boot_msg: str = f"Done: {startup_message}"
6 print(boot_msg)

Test Case 2.3 (system_info.py, line 8–11)
1 startup_ms: int = 1325
2 threshold: int = 1000
3 is_slow_boot: bool = startup_ms > threshold
4 print("Slow boot detected:", is_slow_boot)

Test Case 2.4 (system_info, lines 14–17)
1 current_admins: int = 3
2 required: int = 2
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A. Code Snippets of Benchmark Test Cases

3 has_enough_admins: bool = current_admins >= required
4 print("Admin quorum reached:", has_enough_admins)

Test Case 2.5 (startup.py, lines 32–34)
1 boot_time_ms: int = 1385
2 seconds: float = boot_time_ms / 1000
3 print("Boot completed in", seconds, "seconds.")

Level 3 – Handling Conditional Statements
Table A.3 summarizes the test cases in this level.

ID File Line Concept Expected Output

3.1 access_control.py 26-37 Full if/elif/else structure
with nested if

Access level:
Partial admin

3.2 access_control.py 26-31 Outer and inner if branch
only

-

3.3 access_control.py 26-33 Full outer if branch with
full inner if

Access level:
Partial admin

3.4 access_control.py 34-35 Isolated elif branch -

3.5 access_control.py 41-46 Complex condition Admin access
granted during
business hours

Table A.3: Test cases for Level 3 – Handling Conditional Statements

The corresponding code snippets are shown below.

Test Case 3.1 (access_control.py, lines 26–37)
1 role: str = "admin"
2 clearance: int = 2
3
4 if role == "admin":
5 if clearance >= 3:
6 print("Access level: Full admin")
7 else:
8 print("Access level: Partial admin")
9 elif role == "guest":

10 print("Access level: Guest")
11 else:
12 print("Access level: Unknown")
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Test Case 3.2 (access_control.py, lines 26–31)
1 role: str = "admin"
2 clearance: int = 2
3
4 if role == "admin":
5 if clearance >= 3:
6 print("Access level: Full admin")

Test Case 3.3 (access_control.py, lines 26–33)
1 role: str = "admin"
2 clearance: int = 2
3
4 if role == "admin":
5 if clearance >= 3:
6 print("Access level: Full admin")
7 else:
8 print("Access level: Partial admin")

Test Case 3.4 (access_control.py, lines 34–35)
1 elif role == "guest":
2 print("Access level: Guest")

Test Case 3.5 (access_control.py, lines 41–46)
1 role: str = "admin"
2 is_verified: bool = True
3 login_hour: int = 9
4
5 if role == "admin" and is_verified and (login_hour >= 8 and login_hour <=

18):
6 print("Admin access granted during business hours")

Level 4 – Functions (Simple & Complex)
Table A.4 summarizes the test cases in this level.

The corresponding code snippets are shown below.

Test Case 4.1 (startup.py, lines 11–17)
1 def boot_message() -> str:
2 startup_message: str = "boot complete".upper()
3 print("Initializing authentication module...")
4 print("Loading user access profiles...")
5 print("Establishing database connection...")
6 boot_msg: str = f"Done: {startup_message}"
7 print(boot_msg)
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A. Code Snippets of Benchmark Test Cases

ID File Line Concept Expected Output

4.1 startup.py 11-17 Simple function without ar-
guments

-

4.2 startup.py 38 Function chaining === ACCESS SYSTEM
v1.0 ===
Initializing
authentication
module...
Loading user access
profiles...
Establishing
database
connection...
Done: BOOT
COMPLETE

4.3 user_greeting.py 6-7 Function call with argument Welcome, [USER]
Alice

4.4 system_info.py 23-25 Function call with usage of
return value

== System uptime:
5h 32m ==

4.5 startup.py 46-47 Recursive function call Startup in: 3 2 1
0

Table A.4: Test cases for Level 4 – Functions (Simple & Complex)

Test Case 4.2 (startup.py, line 38)
1 start_system()

Test Case 4.3 (user_greeting.py, lines 6–7)
1 formatted: str = format_name("Alice")
2 print("Welcome,", formatted)

Test Case 4.4 (system_info.py, lines 23–25)
1 message: str = get_uptime_message()
2 decorated: str = "== " + message + " =="
3 print(decorated)

Test Case 4.5 (startup.py, lines 46–47)
1 result: str = count_down(3)
2 print("Startup in:", result)
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Level 5 – Imports (Standard, Third-Party, Project Files)
Table A.5 summarizes the test cases in this level.

ID File Line Concept Expected Output

5.1 system_info.py 28 Use of imported project-local
function

System ready: Ready

5.2 report.py 22-24 Use of imported project-local
variable

[LOG] Alice: login

5.3 utils.py 28-30 Use of standard library regex Valid admin ID
format: True

5.4 report.py 27-29 Use of standard library math
function

Reported CPU load:
72 %

5.5 report.py 16 Use of third-party library FORBIDDEN!

Table A.5: Test cases for Level 5 – Imports (Standard, Third-Party, Project Files)

The corresponding code snippets are shown below.

Test Case 5.1 (system_info.py, line 28)
1 print("System ready: ", system_ready)

Test Case 5.2 (report.py, lines 22–24)
1 username: str = "Alice"
2 action: str = "login"
3 print(format_log(username,action))

Test Case 5.3 (utils.py, lines 28–30)
1 user_id: str = "ID-001"
2 is_valid: bool = re.match(r"ID-d{3}", user_id) is not None
3 print("Valid admin ID format:", is_valid)

Test Case 5.4 (report.py, lines 27–29)
1 load_percent: float = 71.3
2 rounded: int = math.ceil(load_percent)
3 print("Reported CPU load:", rounded, "%")

Test Case 5.5 (report.py, line 16)
1 print(Fore.RED + "forbidden!".upper())
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A. Code Snippets of Benchmark Test Cases

Level 6 – Object-Oriented Constructs
Table A.6 summarizes the test cases in this level.

ID File Line Concept Expected Output

6.1 system_info.py 32-33 Object instantiation and
method call

User has access:
True

6.2 system_info.py 36-38 Subclass instantiation, state
mutation, and method call

Guest has access:
True

6.3 utils.py 36-38 Object passed as argument
and accessed inside a helper
function

Formatted user label:
[USER] Clara

6.4 utils.py 41-42 Method call defined in a sub-
class

Admin role: Admin -
cyber security

6.5 user.py 13 Attribute access through self
inside a class method

nan

Table A.6: Test cases for Level 6 – Object-Oriented Constructs

The corresponding code snippets are shown below.

Test Case 6.1 (system_info.py, lines 32–33)
1 user: User = User("Alice", is_admin=True)
2 print("User has access:", user.has_access())

Test Case 6.2 (system_info.py, lines 36–38)
1 guest: Guest = Guest("Bob")
2 guest.grant_temp_code("ABC123")
3 print("Guest has access:", guest.has_access())

Test Case 6.3 (utils.py, lines 36–38)
1 user: User = User("Clara", is_admin=False)
2 label: str = get_user_label(user)
3 print("Formatted user label:", label)

Test Case 6.4 (utils.py, lines 41–42)
1 admin: Admin = Admin("Alice", department="cyber security")
2 print("Admin role:", admin.get_role())

Test Case 6.5 (user.py, line 13)
1 print("Access granted to:", self.user)
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Level 7 – User Input (Primitive Types)

Table A.7 summarizes the test cases in this level.

ID File Line Concept User Input Expected Output

7.1 startup.py 16-17 Requires user vari-
able of type string

startup_message:
"Hello World!"

Done: Hello
World!

7.2 access_
control.py

45-46 Requires multi-
ple user variables
(string, float, bool)

is_verified
= True,
login_hour =
18, role =
"admin"

Admin access
granted during
business hours

7.3 report.py 11-19 Requires user vari-
able only defined in
one if branch

code = 404,
ok_str =
"okay"

Unknown status

7.4 report.py 35-37 Requires user vari-
able of type float,
uses math library

cpu = 12.4,
memory = 38.9

Total
system usage
(rounded): 52

7.5 access_
control.py

29-37 Requires user vari-
able of type string
and int

role = "guest",
clearance = 10

Access level:
Guest

Table A.7: Test cases for Level 7 – User Input (Primitive Types)

The corresponding code snippets are shown below.

Test Case 7.1 (startup.py, lines 16–17)
1 boot_msg: str = f"Done: {startup_message}"
2 print(boot_msg)

Test Case 7.2 (access_control.py, lines 45–46)
1 if role == "admin" and is_verified and (login_hour >= 8 and login_hour <=

18):
2 print("Admin access granted during business hours")

Test Case 7.3 (report.py, lines 11–19)
1 if code == 200:
2 ok_str = "OK"
3 print(ok_str)
4 return ok_str
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A. Code Snippets of Benchmark Test Cases

Test Case 7.4 (report.py, lines 35–37)
1 total: float = cpu + memory
2 rounded: int = math.ceil(total)
3 print("Total system usage (rounded):", rounded, "%")

Test Case 7.5 (access_control.py, lines 29–37)
1 if role == "admin":
2 if clearance >= 3:
3 print("Access level: Full admin")
4 else:
5 print("Access level: Partial admin")
6 elif role == "guest":
7 print("Access level: Guest")
8 else:
9 print("Access level: Unknown")

Level 8 – User Input (Complex Types)
Table A.8 summarizes the test cases in this level.

The corresponding code snippets are shown below.

Test Case 8.1 (access_control.py, lines 55–60)
1 if status == "granted":
2 print(f"Notification: Access granted for {username}")
3 elif status == "denied":
4 print(f"Notification: Access denied for {username}")
5 else:
6 print(f"Notification: Unknown status for {username}")

Test Case 8.2 (access_control.py, lines 63–66)
1 if isinstance(roles, str):
2 print("Single access role:", roles)
3 else:
4 print("Multiple access roles:", ", ".join(roles))

Test Case 8.3 (access_control.py, lines 18–22)
1 label: str = describe_user(user)
2 if user.is_admin:
3 print(label + " has elevated rights")
4 print(label + " has limited rights")
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Test Case 8.4 (report.py, lines 40–41)
1 top_user: User = max(access_counts, key=access_counts.get)
2 print("Top user:", top_user.username)

Test Case 8.5 (report.py, lines 44–47)
1 if user in allowed_users:
2 print("Access granted for", user.username)
3 else:
4 print("Access denied for", user.username)

Level 9 – API Interactions
Table A.9 summarizes the test cases in this level.

The corresponding code snippets are shown below.

Test Case 9.1 (newtwork.py, lines 10–14)
1 url: str = f"https://jsonplaceholder.typicode.com/users/{user_id}"
2 response: HTTPResponse = urllib.request.urlopen(url)
3 body: str = response.read().decode("utf-8")
4 data: dict = json.loads(body)
5 print("User email:", data["email"])

Test Case 9.2 (newtwork.py, lines 18–26)
1 url: str = f"https://jsonplaceholder.typicode.com/users/{user_id}"
2 response: HTTPResponse = urllib.request.urlopen(url)
3 body: str = response.read().decode("utf-8")
4 data: dict = json.loads(body)
5
6 if local_status == "denied":
7 print("Access denied and logged for", data["username"])
8 else:
9 print("Access granted and logged for", data["username"])

Test Case 9.3 (newtwork.py, lines 30–36)
1 url: str = "https://httpbin.org/post"
2 payload: dict = {"user": "admin", "action": "login"}
3 data: bytes = json.dumps(payload).encode("utf-8")
4 request = urllib.request.Request(url, data=data, method="POST", headers={

"Content-Type": "application/json"})
5 response = urllib.request.urlopen(request)
6 body: str = response.read().decode("utf-8")
7 result: dict = json.loads(body)
8 print("POSTed user:", result["json"]["user"])
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A. Code Snippets of Benchmark Test Cases

Test Case 9.4 (newtwork.py, lines 46–48)
1 response: Response = httpx.get("https://httpbin.org/get")
2 result: dict = response.json()
3 print("Your User-Agent was:", result["headers"]["User-Agent"])

Test Case 9.5 (newtwork.py, lines 40–42)
1 payload: dict = {"user": "admin", "event": "login"}
2 response = httpx.post("https://httpbin.org/post", json=payload)
3 print("Third-party POST status code:", response.status_code)

Level 10 – File and Database Access
Table A.10 summarizes the test cases in this level.

The corresponding code snippets are shown below.

Test Case 10.1 (utils.py, lines 45–47)
1 f: object = open(path, "r")
2 content: str = f.read()
3 print("File content:", content)

Test Case 10.2 (utils.py, lines 45–47)
1 f: object = open(path, "r")
2 content: str = f.read()
3 print("File content:", content)

Test Case 10.3 (utils.py, lines 45–47)
1 f: object = open(path, "r")
2 content: str = f.read()
3 print("File content:", content)

Test Case 10.4 (storage_sqlite.py, lines 7–14)
1 conn: sqlite3.Connection = sqlite3.connect(DB_PATH)
2 cursor: sqlite3.Cursor = conn.cursor()
3 inserted: int = cursor.execute(
4 "INSERT INTO access_log (username, status) VALUES (?, ?)",
5 (username, status)
6 ).rowcount
7 conn.commit()
8 print("Inserted rows:", inserted)
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Test Case 10.5 (storage_sqlite.py, lines 7–14)
1 conn: sqlite3.Connection = sqlite3.connect(DB_PATH)
2 cursor: sqlite3.Cursor = conn.cursor()
3 inserted: int = cursor.execute(
4 "INSERT INTO access_log (username, status) VALUES (?, ?)",
5 (username, status)
6 ).rowcount
7 conn.commit()
8 print("Inserted rows:", inserted)

Test Case 10.6 (storage_pg.py, lines 11–18)
1 conn: psycopg2.extensions.connection = psycopg2.connect(dbname=DB_NAME,

user=DB_USER, password=DB_PASS, host=DB_HOST, port=DB_PORT)
2 cursor: psycopg2.extensions.cursor = conn.cursor()
3 inserted: int = cursor.execute(
4 "INSERT INTO access_log (username, status) VALUES (%s, %s)",
5 (username, status)
6 )
7 conn.commit()
8 print("Inserted access event into PostgreSQL.")

Test Case 10.7 (storage_pg.py, lines 11–18)
1 conn: psycopg2.extensions.connection = psycopg2.connect(dbname=DB_NAME,

user=DB_USER, password=DB_PASS, host=DB_HOST, port=DB_PORT)
2 cursor: psycopg2.extensions.cursor = conn.cursor()
3 inserted: int = cursor.execute(
4 "INSERT INTO access_log (username, status) VALUES (%s, %s)",
5 (username, status)
6 )
7 conn.commit()
8 print("Inserted access event into PostgreSQL.")
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A. Code Snippets of Benchmark Test Cases

ID File Line Concept User Input Expected Output

8.1 access_

control.py

55-60 Requires user vari-
ables of type string
and Literal

status =
’granted’,
username =
"Alice"

Notification:
Access granted
for Alice

8.2 access_

control.py

63-66 Requires user vari-
able of Union type

roles =
["admin",
"developer",
"user"]

Multiple
access
roles: admin,
developer,
user

8.3 access_

control.py

18-22 Requires user vari-
able of custom type

user =
User(username
= "Alice",
is_admin =
True)

Alice (admin)
has elevated
rights

8.4 report.py 40-41 Requires user vari-
able of dict type
with custom class as
key

access_counts
=
{User(is_admin=
True,
username=
’Alice’): 100,
User(is_admin=
False,
username=
’Bob’): 20}

Top user:
Alice

8.5 report.py 44-47 Requires user vari-
able of set type with
custom class

allowed_users
= [User(
username="Alice",
is_admin=True),
User(username=
"Bob",
is_admin=False),
User(
username="clara",
is_admin=False)]
user = User(
username=
"Mallory",
is_admin=False)

Access granted
for Alice

Table A.8: Test cases for Level 8 – User Input (Complex Types)
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ID File Line Concept User Input Expected Output

9.1 newtwork.py 10-14 External API call
with user variable
using standard li-
brary

user_id = 3 User email:
Nathan@yesenia.net

9.2 newtwork.py 18-26 External API call
with conditional re-
sponse handling

user_id = 2,
local_status =
"denied"

Access denied
and logged for
Antonette

9.3 newtwork.py 30-36 External POST
API call using
standard library

- POSTed user:
admin

9.4 newtwork.py 46-48 GET request using
third-party library

- Your
User-Agent
was:
python-httpx/0.27.0

9.5 newtwork.py 40-42 POST request using
third-party library

- Third-party
POST status
code: 200

Table A.9: Test cases for Level 9 – API Interactions
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ID File Line Concept User Input Expected Out-
put

10.1 utils.py 45-47 Basic file write us-
ing internal file

logs/ access_
log.txt

File content:
[INFO] alice
logged in
[INFO] bob
accessed
secure file
[WARN] guest
denied access

10.2 utils.py 45-47 Write to a fully
resolved internal
path

/home/luise/
Programs/
benchmark_
project/
logs/
access_log
.txt

File content:
[INFO] alice
logged in
[INFO] bob
accessed
secure file
[WARN] guest
denied access

10.3 utils.py 45-47 External file sys-
tem write (outside
project boundary)

/tmp/
output.txt

File content:
[INFO] alice
logged in
[INFO] bob
accessed
secure file
[WARN] guest
denied access

10.4 storage_

sqlite.py

7-14 File-based rela-
tional DB write
using sqlite3 with-
out defined DB

username =
"Alice",
status =
"logged out"

Inserted
access
event into
PostgreSQL.

10.5 storage_

sqlite.py

7-14 File-based rela-
tional DB write
using sqlite3 with
definedn DB and
Table

username =
"Alice",
status =
"logged out"

Inserted
access
event into
PostgreSQL.

10.6 storage_pg.py 11-18 Remote DB write
using psycopg3
without database
setup

username =
"Alice",
status =
"logged out"

Inserted
access
event into
PostgreSQL.

10.7 storage_pg.py 11-18 Remote DB write
using psycopg3
with database
setup

username =
"Alice",
status =
"logged out"

Inserted
access
event into
PostgreSQL.

Table A.10: Test cases for Level 10 – File and Database Access
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Overview of Generative AI Tools
Used

1. DeepL1

• Usage: Used to translate the abstract and acknowledgements.
• Place of use: Abstract, acknowledgements.

2. ChatGPT2

• Usage: Used to rephrase sentences in order to improve readability and clarity.
• Place of use: Entire thesis.

1https://www.deepl.com/en/translator
2https://openai.com/index/chatgpt/
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