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Kurzfassung

Diese Arbeit untersucht geschlechts- und nationalitätsbasierte Diskriminierung in einem
Machine-Learning-Modell einer österreichischen Versicherungsgesellschaft. Ziel des Mo-
dells ist die Identifikation von Schadensfällen mit signifikanten Kostensteigerungen von
Entschädigungsansprüchen. Angesichts der Vorgaben des EU AI Act’s und österreichi-
scher Rechtsbestimmungen für diskriminierungsfreie algorithmische Systeme gewinnt die
Sicherstellung fairer Modelle zunehmend an Bedeutung. Diese Arbeit prüft, ob ein von
der Versicherung eingesetztes Light Gradient Boosting Machine (LightGBM)-Modell
diskriminierende Eigenschaften aufweist und erforscht Ansätze zur Bias-Reduzierung.

Nach einer umfassenden Literaturanalyse des aktuellen Forschungsstands zu algorithmi-
scher Fairness wurde ein Datensatz mit 450.000 Versicherungsschäden ausgewertet. Das
methodische Vorgehen umfasste eine Fairness-Analyse des LightGBM-Modells, die qualita-
tive Bewertung geeigneter Fairness-Metriken für den vorliegenden Anwendungsfall, sowie
die Implementierung verschiedener Bias-Minderungsverfahren, darunter In-Processing-
Techniken (FairGBM) und Post-Processing-Methoden (Reject Option Classification von
AIF360, Threshold Optimizer von Fairlearn sowie Equalized-Odds Post-Processing von
AIF360). Zuletzt wurde ein quantitativer Vergleich zwischen dem LightGBM-Modell und
den Bias-Minderungsverfahren durchgeführt, basierend auf Fairness-Metriken und den
Auswirkungen auf die Leistung des Vorhersagemodells.

Die Analyse des Baseline Modells deckte erhebliche Benachteiligungen weiblicher ge-
genüber männlichen Versicherungsnehmenden sowie nicht-österreichischer gegenüber
österreichischen Versicherungsnehmenden auf. Darüber hinaus zeigte das Modell eine
verminderte Leistung für Schadensfälle ohne eindeutige Geschlechts- oder Nationalitäts-
zuordnung. Während die eingesetzten Bias-Minderungsverfahren die Fairness-Metriken
erfolgreich verbesserten, gingen diese Verbesserungen erheblich zu Lasten der Vorhersage-
leistung des Machine-Learning-Modells.

Die Untersuchung verdeutlicht die Notwendigkeit systematischer Diskriminierungsprüfun-
gen bei Machine-Learning-Modellen, insbesondere in kritischen Anwendungsbereichen
wie dem Versicherungswesen. Obwohl Fairness-Optimierungstechniken diskriminierende
Strukturen mathematisch addressieren können, erweisen sich die erheblichen Beeinträch-
tigungen bei der Vorhersageleistung als hinderlich für den produktiven Einsatz. Dies
unterstreicht die fortbestehende Herausforderung, algorithmische Fairness mit betriebs-
wirtschaftlichen Anforderungen in Einklang zu bringen.
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Abstract

This thesis investigates potential gender and nationality-based discrimination in a real-
world insurance machine learning model designed to identify claims likely to “explode”
in compensation costs. With the EU AI Act and Austrian legal frameworks requiring
non-discriminatory algorithmic systems, ensuring fairness in insurance claim prediction
models has become critically important. The research examines whether a Light Gradient
Boosting Machine (LightGBM) model used by an Austrian insurance company exhibits
discriminatory behavior and explores methods to mitigate such bias.

Following a comprehensive literature review on algorithmic fairness state-of-the-art, this
study analyzed a dataset of 450,000 insurance claims provided by an Austrian insurance
company. Claims were classified as “explosive” if they required reserve increases exceeding
€100,000 or if reserve amounts grew by a factor of ten or more within one month of initial
reporting. The methodology included baseline fairness analysis of the current model,
qualitative assessment of appropriate fairness metrics for this use case, implementation
of various mitigation methods including in-processing (FairGBM) and post-processing
techniques (reject option classification by AIF360, threshold optimizer by Fairlearn, and
equalized odds post-processing by AIF360), and quantitative comparison of fairness
improvements against predictive performance impacts.

The baseline analysis revealed significant discrimination against female claimants com-
pared to male claimants and non-Austrian claimants compared to Austrian claimants.
Additionally, claims with unknown gender or nationality group membership showed
degraded prediction quality. While mitigation methods successfully improved fairness
metrics, these improvements came at a severe cost to predictive performance.

This research demonstrates the critical importance of evaluating machine learning mod-
els for potential discrimination, particularly in high-stakes applications like insurance.
Although fairness mitigation techniques can mathematically address discriminatory pat-
terns, the substantial trade-off with predictive performance renders them impractical for
real-world deployment in this case study, highlighting the ongoing challenge of balancing
algorithmic fairness with business utility.
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CHAPTER 1
Introduction

The pursuit of fairness and equality has been a central theme throughout human history,
with profound roots in philosophy and psychology. For centuries, scholars and thinkers
have grappled with questions of justice, discrimination, and bias in human decision-
making processes [MMS+21]. In recent decades, these fundamental questions have found
new relevance and urgency in the domain of machine learning and artificial intelligence
[PS22]. As algorithms increasingly influence critical aspects of our lives, from loan
approvals to hiring decisions, the pressing technological and ethical challenge arises to
ensure these systems operate fairly.
The insurance industry represents a particularly critical domain for the application and
evaluation of fair AI systems. On the one hand, insurance providers offer essential services
to modern societies. Motor insurance facilitates mobility, health insurance provides access
to medical care, and property insurance protects against catastrophic losses. These
services fulfill essential social needs and contribute to broader social welfare.
On the other hand, most insurers are commercial entities with profit-oriented objectives.
They must carefully calculate reserves, manage risk pools, and maintain financial viability
to continue providing their services. This commercial imperative necessitates sophisticated
risk assessment and pricing mechanisms, increasingly powered by AI and machine learning
technologies. Fair AI systems in insurance must navigate this duality, ensuring non-
discrimination while preserving the actuarial principles that enable insurers to operate
sustainably.
The field of algorithmic fairness, which emerged approximately fifteen years ago, has
rapidly evolved in response to the growing recognition of the potential harms that biased
AI systems can inflict [LO24]. With the accelerating integration of algorithms into daily
life, the adverse impacts of these technologies have moved from theoretical concerns to
practical realities that demand immediate attention. A concrete example of algorithmic
discrimination comes from the Austrian insurance sector, where AI systems used for
risk assessment have been found to encode socioeconomic biases [FDCE19]. These
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1. Introduction

systems were found to discriminate against individuals from lower-income neighborhoods
or with specific migration backgrounds when calculating premiums. Similarly, health
insurance algorithms have been found to underestimate the healthcare needs of Black
patients compared to White patients with similar health profiles [FDCE19]. Such
examples highlight how algorithmic bias can perpetuate and even amplify existing social
inequalities, even though they appear objective and data-driven.

The growing awareness of algorithmic bias has prompted significant regulatory responses,
particularly in Europe. The recently introduced European Union’s AI Act represents
a landmark legislative framework specifically designed to address the risks associated
with artificial intelligence systems, including those deployed in the insurance industry.
Non-compliance with the European Union AI Act regulations carries substantial penalties,
with up to €30 million or 6% of global annual turnover, whichever is higher [VB21]. These
stringent penalties underscore the seriousness with which regulators view algorithmic
fairness and indicate that insurance companies cannot afford to treat bias mitigation as
optional. Ensuring fairness in AI systems is not only a technical necessity but also a
regulatory imperative.

1.1 Problem Statement and Research Questions
Recent legal regulations, like the EU AI Act explicitly require companies to not only
design new AI systems with fairness considerations but also to retrospectively evaluate
existing systems for potential discrimination [aia]. In response to this challenge, an
Austrian insurance company has provided a case study from 2019, including a baseline
model and dataset, which is currently implemented in their business processes. This case
study, called ‘Explosive Claims’, employs machine learning to identify insurance claims
that ultimately result in significantly higher compensation costs than initially calculated.
The detailed methodology and dataset characteristics of this case study are elaborated in
Section 3.1.

Despite the clear regulatory mandate against discrimination in AI systems, as stipulated
in frameworks such as the General Data Protection Regulation [GDP] and the European
Union AI Act [aia], these regulations fall short of providing precise definitions of what
constitutes discrimination in algorithmic contexts. This definitional ambiguity creates a
substantial implementation gap: insurance companies are legally obligated to prevent
discrimination but lack clear guidance on how to operationalize fairness in their AI
systems.

The amount of published scientific literature on discrimination in AI systems has expanded
considerably in recent years, yet significant challenges persist in developing solutions that
are both robust and generalizable to real-world applications. A fundamental limitation in
this field is the scarcity of comprehensive benchmark datasets that reflect the complexity
of actual insurance operations [MMS+21]. The reliance on simplified datasets raises
profound questions about the external validity of research findings [QRI+22]. The gap
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between research environments and the multifaceted nature of real-world insurance
data creates significant uncertainty about whether the developed fairness strategies will
translate effectively to production environments.

The literature on algorithmic fairness presents numerous fairness metrics, each embodying
different philosophical and mathematical conceptualizations of fairness [CCG+22]. The
selection of inappropriate fairness metrics can lead to severe legal repercussions, as
dramatically illustrated in the widely cited COMPAS1 recidivism prediction case [KMR].
This case demonstrated how different fairness metrics led to contradictory conclusions
about the same system’s discriminatory impact. Even among computer scientists there
remains a striking lack of consensus about which constraints are most appropriate
[MMS+21]. This theoretical fragmentation creates significant barriers for insurance
practitioners seeking to implement fairness-aware systems in compliance with regulations.

Another evaluation challenge is the methodological question about bias mitigation
approaches. Insurance companies face the daunting task of selecting from numerous bias
mitigation techniques without clear guidance on their comparative efficacy in insurance-
specific contexts [PS22]. A critical shortcoming in current fairness literature is the frequent
neglect of model performance considerations. In real-world AI systems, particularly in
the insurance sector where predictive accuracy directly impacts business outcomes and
customer experiences, maintaining high model performance is non-negotiable. The
literature frequently presents fairness as a constraint to be satisfied, initially resulting in
accuracy degradation [LV22]. Commonly used strategies typically minimize discrimination
by adding penalty terms to loss functions, which restricts the model’s ability to use all
available information for prediction [CBJ+23, ZVGRG19, KAAS12]. Scientific work has
advanced to better understanding these tradeoffs, with some research challenging the
assumption that fairness necessarily reduces accuracy [DWY+20]. Despite this progress,
it remains unclear what constitutes the optimal balance between fairness and accuracy
objectives in real-world applications.

In conclusion, it is unclear whether the ‘Explosive Claims’ algorithm (unintentionally)
currently discriminates, how discrimination can be measured, and which measures can
be taken to mitigate discrimination.

From this problem statement, the overall goal and research questions of the master’s
thesis are derived:

Goal: Introducing fairness by mitigating discrimination in a real-world model from the
insurance industry.

Overall research question: How can fairness in the case study model be measured
and mitigated?

To successfully and efficiently address the above-mentioned problem, the following research
questions are answered:

1https://www.kaggle.com/, visited on 05/11/2025
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RQ1: To what extent does the current baseline model discriminate in the context of this
case study?

1.1 Which fairness metrics are most suitable to capture discrimination in the case
study?

1.2 What are the subgroups that are discriminated against in the case study?

RQ2: To what extent can fairness be improved through discrimination mitigation tech-
niques in comparison to the baseline?

2.1 To what extent can fairness be improved by implementing in-processing
mitigation techniques?

2.2 To what extent can fairness be improved by implementing post-processing
mitigation techniques?

RQ3: To what extent does the predictive performance decrease by introducing the above-
mentioned mitigation techniques, compared to baseline?

The solution will be regarded as successful if a model is found that effectively maximizes
fairness without compromising the baseline model performance. Additionally, it is
essential that all legal requirements are met throughout this process.

1.2 Structure of the Work
The diploma thesis structure addresses the specified research questions through the
following organization: Chapter 2 presents a comprehensive literature research on algo-
rithmic fairness, bias, and an in-depth examination of the term discrimination. Various
definitions, types, and potential sources of discrimination are explored. The complex
legal framework governing discrimination in AI systems under European and Austrian
law is thoroughly analyzed, and the concept of ’protected attributes’ is explained within
its legal context. In addition, specific work on algorithmic fairness in AI systems within
the insurance domain is analyzed in detail. The subsequent section discusses quantitative
measures for discrimination in AI models. Definitions of fairness metrics are explained,
and their limitations are reviewed. Following this, existing discrimination mitigation
strategies proposed in literature are described for application when discrimination is de-
tected in an AI model. These strategies are categorized into pre-processing, in-processing,
and post-processing methods, each receiving a brief description and critical assessment.

Chapter 3 begins with a detailed description of the real-world case study. Data char-
acteristics and protected attributes are examined, along with the subgroups present in
the dataset. A brief exploratory data analysis demonstrates the label distribution and
representation of subgroups. The baseline model is described in detail, including the
underlying algorithm and the parameter settings. The subsequent section details how
and which previously defined fairness metrics will be applied in the case study analysis.

4
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Given the hundreds of mitigation techniques available in literature, the next section of
the chapter explains in detail which mitigation methods will be implemented in this
case study. This section provides thorough explanations of the selected strategies, their
implementation approaches, and feature settings. The last section describes the metrics
applied to capture the predictive performance of the baseline model compared to the
mitigation methods.

Chapter 4 commences with a comprehensive fairness analysis of the baseline model
to address research question 1. Next, the baseline model is compared against various
mitigation strategies regarding both fairness (research question 2) and predictive model
performance (research question 3).

Chapter 5 summarizes the findings and addresses the research questions. The research,
legal framework, and case study analysis undergo critical assessment based on their
limitations, and potential future work is identified. The final section discusses the crucial
importance of this topic in the contemporary context, with references to current political
and societal developments.
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CHAPTER 2
Related Work

This chapter examines how discrimination manifests in artificial intelligence systems,
particularly within the insurance sector, and analyzes the applicable legal frameworks. It
then delves into various fairness metrics from the academic literature and breaks down
the wide range of methods available for mitigating discrimination.

An artificial intelligence system is defined as “machine-based system that is designed
to operate with varying levels of autonomy and that may exhibit adaptiveness after
deployment, and that, for explicit or implicit objectives, infers, from the input it receives,
how to generate outputs such as predictions, content, recommendations, or decisions that
can influence physical or virtual environments” [aia].

A machine learning model is defined as “an object (stored locally in a file) that has
been trained to recognize certain types of patterns. You train a model over a set of
data, providing it an algorithm that it can use to reason over and learn from those data”
[Micnd].

2.1 Algorithmic Fairness and Bias
Computer scientists aim to mitigate discrimination by promoting algorithmic fairness and
ensuring that AI applications operate impartially. To achieve this, fundamental questions
must be addressed: What does fairness mean in the particular context? How can fair
algorithms be developed? How can fairness be evaluated truthfully? These questions
often lead to overlapping interpretations and misunderstandings, as the notion of fairness
varies depending on the context [WXT+23].

There is no universal definition of fairness in artificial intelligence. Instead, there are
multiple, and at times conflicting, definitions [BHN23]. In the context of decision-making,
fairness is defined as the “absence of any prejudice or favoritism toward an individual
or a group based on their inherent or acquired characteristics” [SHD+19]. However,
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different cultural norms and interpretations of fairness contribute to the development of
diverse fairness frameworks [MMS+21]. Consequently, fairness must be evaluated on a
case-by-case basis, as its meaning can differ depending on the specific circumstances.
The existence of conflicting definitions underscores the complexity and challenges of
addressing fairness in AI systems.

Two primary sources of unfairness are often identified: bias within the data itself and
bias within the design of the algorithm [MMS+21]. Bias refers to the (un)intentional
skewing of AI systems, which can arise at various stages, including biased training data,
flawed algorithmic design, or the misinterpretation of model outcomes [OC20]. Bias is
both a cause and a source of discrimination in AI systems [SMHP24].

Extensive research has been conducted on algorithmic fairness over the past decade [OC20,
PS22]. However, the vast majority of studies propose generic, one-size-fits-all solutions
without considering the specific regulatory frameworks, unique data characteristics, or
protected attributes relevant to different domains [LO24]. These factors are essential in
determining how fairness can be effectively implemented, as different sectors face distinct
challenges, requiring tailored technical solutions. Figure 2.1 reveals the explosive growth
in algorithmic fairness research during the past decade, highlighting a more than twofold
increase in domain-specific studies within the last ten years.

The most studied domains are health, criminal justice, and employment. In contrast, the

Figure 2.1: Number of domain-specific papers over the last 15 years, sourced from [LO24]
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insurance sector falls under the ‘Other’ category, with only three out of 1,570 papers
addressing specific approaches for the insurance industry [LO24]. This highlights a
significant research gap and underscores the need for domain-specific approaches that
address both technological challenges and regulatory standards.

Most existing studies on algorithmic fairness in insurance focus on actuarial fairness,
primarily investigating discrimination risks in underwriting [LRTW22][Xa24][CHR25].
Others explore how fairness principles from insurance pricing can be applied to machine
learning, given the shared challenges of managing uncertainty, fairness, and accountabil-
ity [FW24]. Additionally, moral trade-offs between non-discrimination and predictive
accuracy in risk prediction have been examined, highlighting the complexity of balancing
fairness with actuarial precision [LC21].
Beyond fairness in underwriting, further studies have analyzed broader challenges arising
from AI-driven insurance models, including emerging regulatory concerns and technologi-
cal shifts [OR22]. The dilemma of choosing a suitable fairness metric is demonstrated
once in a fictional example about fraud detection in insurance claims [RD21].

In conclusion, although research on algorithmic fairness in data-driven insurance exists,
most studies concentrate on risk classification rather than exploring the specific implica-
tions of other machine learning algorithms. Addressing this gap is essential for developing
fair and context-aware AI-driven solutions within the insurance sector.

2.2 Establishing Discrimination
This section examines both the theoretical framework of discrimination as presented
in scholarly literature and the formal legal definitions established in Austrian and EU
legislation.

2.2.1 Types of Discrimination
The concept of discrimination is interpreted and perceived differently across disciplines,
including philosophy, psychology, computer science, and ethics, as well as by the general
public. Scientific literature [MMS+21] distinguishes between several kinds of discrimina-
tion:

• Direct discrimination occurs “where one person [or a group of people] is treated
less favorably than another is, has been, or would be treated in a comparable
situation on grounds of” a protected attribute [EUr00]. Protected attributes are
defined by EU law and explained in more detail in Section 2.3.
An extreme example of direct discrimination would be an insurer refusing motor
insurance to Bulgarian citizens based solely on EU statistics showing Bulgaria has
the highest road fatality rate1.

1https://transport.ec.europa.eu/, visited on 05/05/25
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• Indirect discrimination occurs when “an apparently neutral provision, criterion,
or practice would put persons of a protected group at a particular disadvantage com-
pared with other persons, unless that provision, criterion, or practice is objectively
justified by a legitimate aim and the means of achieving that aim are appropri-
ate and necessary” [EUr00]. In other words, indirect discrimination occurs when
decisions based on seemingly neutral attributes disproportionately disadvantage
protected groups.

In 2024, foreign-born residents constituted 45.4% of Vienna’s total population2.
Charging higher premium rates for residents with an 1150 zip code exemplifies
indirect discrimination based on ethnicity, as Rudolfsheim-Fünfhaus (15th district)
has the highest foreign-origin population at 56.1%.

• Systemic/institutional discrimination refers to “legal rules, policies, practices
or predominant cultural attitudes in either the public or private sector which create
relative disadvantages for some groups, and privileges for other groups” [UN 09].

An example of systemic discrimination is the gender pay gap, a widely recognized
and institutionalized form of inequality3. The gender pay gap may result in men
having better insurance coverage than women due to their financial advantage.

• Statistical discrimination occurs when visible characteristics are used to assign
individuals to demographic groups, with aggregate group traits replacing individ-
ual assessment [MMS+21]. This approach often perpetuates inequality between
demographic groups [O’N16].

Insurance companies typically charge young drivers higher motor insurance premi-
ums based on this demographic’s elevated accident rates. Consequently, even young
drivers with clean records and safe driving habits face higher premiums solely due
to their age group. This statistical discrimination penalizes individuals who defy
group stereotypes. Such discrimination is particularly relevant to this thesis, as ML
methods frequently leverage statistical correlations rather than causal relationships.

• Explainable discrimination occurs when differential treatment between groups
can be justified and explained [MMS+21], rendering it legal.

The previously mentioned example of higher motor insurance premiums for younger
drivers exemplifies this concept. Insurers can lawfully incorporate age into risk
assessment and pricing models when supported by actuarial or statistical data
[CfJC+20].

• Unexplainable discrimination refers to discrimination against a group or an
individual, which is not justifiable. It is often arbitrary, biased, or rooted in systemic
inequities [MMS+21].

2https://www.wien.gv.at/, visited on 05/06/25
3https://ourworldindata.org/, visited on 05/07/25
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2.2. Establishing Discrimination

In the Austrian insurance market, unexplainable discrimination could occur if an
insurer charged higher premiums to residents of Vienna’s 15th district (Rudolfsheim-
Fünfhaus) compared to the 19th district (Döbling) for identical home insurance
policies covering the same property values and risks, without any actuarial jus-
tification for the difference. Despite similar crime rates, fire risks, and flooding
probabilities between these districts, the company might base this pricing dispar-
ity solely on the higher proportion of residents with migration backgrounds in
Rudolfsheim-Fünfhaus. Since this pricing difference lacks statistical justification, it
constitutes illegal, unexplainable discrimination based on ethnic origin.

The various types of discrimination are not mutually exclusive categories but often overlap
and intersect. Consider this hypothetical scenario: An insurance company determines
motor insurance premiums based on vehicle-specific factors, such as car brand, model,
weight, manufacturing year, and engine capacity. In this hypothetical scenario, men
typically pay higher premiums than women, despite gender not being an explicit factor in
risk assessment, suggesting indirect discrimination. Further investigation demonstrates
that men predominantly drive faster, more expensive, and newer vehicles compared to
women. This indicates that seemingly neutral vehicle characteristics inadvertently serve as
proxies for gender. Should the insurer eliminate all vehicle-related factors to mitigate legal
exposure? Since these factors enable accurate risk assessment and support the company’s
profit-oriented business model, this decision-making process qualifies as explainable and
justifiable discrimination. Conversely, applying blanket premium increases to all male
policyholders solely based on gender would constitute direct, unjustifiable statistical
discrimination.

This thesis focuses on discrimination in the legal sense, particularly within the framework
of the European Union (EU) and Austrian insurance law.

2.2.2 Discrimination under EU and Austrian Law

Compared to other regions globally, the EU places significant emphasis on trustworthy
AI, resulting in a comprehensive regulatory landscape [WMR21]. EU legislation explicitly
prohibits two forms of discrimination: direct and indirect [EUr00]. As is typical in legal
contexts, certain carefully defined exceptions exist, which we will analyze in the following
section, with particular focus on the private insurance sector.

Protected Attributes
EU law establishes protected attributes (also known as sensitive attributes), which cannot
legally be used as grounds for discrimination. Such discrimination remains illegal even
when unintentional.
The European Union’s non-discrimination directives collectively prohibit discrimination
based on six protected attributes: age, disability, gender, religion or belief, racial
or ethnic origin, and sexual orientation [EUr00, rig12, UNI04].

11
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Insurance companies operate on the principle of risk classification to generate profit.
Consequently, in the insurance sector, EU non-discrimination directives only strictly
prohibit discrimination based on gender and ethnicity, without allowing any exceptions
[gen12, EUr00].

The following regulations and laws are relevant in the EU and Austria:

General Data Protection Regulation4(GDPR) [GDP]
According to Article 9 of the GDPR, processing special categories of personal data
is generally prohibited. Those include attributes such as racial or ethnic origin,
sex, religious or political beliefs, disability, age, biometric data, health data, or
sexual orientation. However, an exception applies either if individuals provide
explicit consent for the use of their sensitive data, if legal obligations mandate
the data processing, or if the primary purpose of the processing is to monitor,
detect, and mitigate discrimination. In addition, Article 22 of the GDPR prohibits
completely automated decisions, which means decisions made by computers or
algorithms without any human involvement. If protected attributes are included
in data processing, justification must be clear, and the use of such data should be
limited to what is strictly necessary to promote fairness.
In conclusion, fairness is not the main focus in the GDPR, but it calls for trans-
parency and general exclusion of personal data in automated decision-making.

The Directives on Equal Treatment of the European Union
The EU Equal Treatment Law is a set of regulations, directives, and case laws
for different areas of life, like employment or access to goods and services, with
additional regulations for financial service providers, including insurance companies.
Council Directive 2004/113/EC [UNI04] implements the principle of equal treat-
ment between men and women in the access to and supply of goods and
services. Following this, the Guidelines on the application of Council Direc-
tive 2004/113/EC to insurance [gen12] were issued, providing further detail
on the principle’s impact on the insurance premium calculation and establishing
no exceptions for legal discrimination on the grounds of gender in the insurance
business.
Furthermore, EU member states are subject to the Council Directive 2000/43/EC
[EUr00], also called the ’Anti-Racism Directive’, implementing the principle of
equal treatment between persons irrespective of racial or ethnic origin.
Again, there are no exceptions to discrimination on the grounds of race in the
insurance business.
Last but not least, Article 21 of the CHARTER OF FUNDAMENTAL
RIGHTS OF THE EUROPEAN UNION 2012/C 326/02 [rig12] determines
that non-discrimination is a fundamental right. Article 23 adds "equality between
women and men" to the fundamental rights in the European Union.

4https://dsgvo-gesetz.de/, visited on 05/06/25
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Gleichbehandlungsgesetz - GlBG [GlB]
While EU regulations apply directly within all member states, EU directives only
represent minimum standards. Member states are required to implement those
standards in their own legal systems with the freedom to decide how the regulatory
aim is to be achieved [DECG23, WXT+23].
Austria embedded the equality rulings derived from the EU directives in the
Austrian Equal Treatment Act, also specifying the difference between direct
and indirect discrimination.

EU Artificial Intelligence Act (EU AI Act) [aia]
The EU AI Act aims to prevent AI systems from discriminating based on character-
istics such as race, gender, age, disability, religion, or other protected categories. It
focuses on ensuring that AI systems are fair, transparent, and do not cause harm.
The AI Act introduces a risk-based framework to ensure that AI systems are used
responsibly. Depending on the risk category, AI systems are subject to specific rules,
especially in sensitive areas like employment, education, and insurance. Like the
GDPR, the EU AI Act does not mainly focus on fairness but implies transparent
regulations on AI systems. AI systems designed for evaluating risks and determining
pricing strategies for individuals in life and health insurance contexts are classified
as high-risk under Annex III of the regulatory framework. This designation subjects
these systems to additional regulatory requirements and operational limitations.

Ethics Guidelines for Trustworthy AI [DG19]
These guidelines are not legally binding but emphasize the importance of diver-
sity, non-discrimination, and fairness in AI systems. The guidelines advocate for
transparency in AI operations, enabling stakeholders to understand and challenge
decisions, thereby promoting fairness and preventing discrimination. By adhering
to these principles, the EU aims to foster AI developments that uphold ethical
standards and protect fundamental human rights.

In conclusion, EU legislation explicitly mandates that insurance AI systems must not
discriminate based on protected attributes like gender and ethnicity while requiring
transparency and continuous monitoring of these systems. However, the regulatory
framework notably lacks quantifiable metrics or mathematical definitions of fairness
[WMR21]. This absence creates a significant implementation gap when translating legal
anti-discrimination principles into algorithmic contexts. Developers and insurers must
therefore navigate between imprecise legal standards and the mathematical precision
required for technical implementation in AI systems.

2.3 Algorithmic Fairness Metrics
To address the absence of clear instructions on quantifiable fairness, data scientists
and researchers have developed various mathematical fairness metrics that attempt to
formalize anti-discrimination requirements into algorithmic constraints. When properly
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designed, algorithmic systems can enhance our ability to detect discriminatory patterns
[KLMS19], as they enable the application of well-defined metrics that formalize and
quantify fairness [MMS+21].

A thoughtful approach to fairness implementation demands critical consideration of
which metrics to employ, rather than defaulting to whichever measurement proves most
convenient or straightforward to compute. A systematic literature review identified
33 objective metrics for ethical AI [PCA24]. Thus, only a conscientious review can
identify which metrics are most suitable. This process is comparable to selecting a
suitable performance metric. Imagine a dataset with high class imbalance. If only 1%
of observations fall into class A, an AI model might achieve almost perfect accuracy by
predicting class B for all observations. In scenarios like fraud detection, it is however
crucial that the model does not miss the few, yet important, observations from class A.
Therefore, recall or precision needs to be evaluated as well.
Metrics that describe the fairness performance of an AI system are referred to as fairness
definitions or non-discrimination criteria [BHN23]. We will therefore use the terms
"fairness metric" and "fairness definition" synonymously.

Because of the vast amount of available fairness metrics in literature, they are commonly
categorized into group (or statistical) fairness, individual (or similarity-based) fairness,
and subgroup fairness [MMS+21, PCA24, CCG+22]. The following section describes the
respective definitions in more detail.

2.3.1 Fundamentals
For the remaining analysis, we assume the following notation:

• Let S ∈ {a, b} be a binary sensitive (or protected) attribute. S = a denotes the
group membership for the privileged group A (also called majority group) and
S = b the unprivileged group B (also called minority group).

• Let Y ∈ {0, 1} be the binary target variable.
Y = 0 represents a negative outcome, whereas Y = 1 represents a positive outcome.

• Let Ŷ ∈ {0, 1} be the binary predicted outcome variable by a machine learning
model.

• Let R ∈ [0, 1] be the prediction score of a machine learning model.

The joint distribution of those random variables allows us to explicitly decide whether or
not a fairness definition is satisfied [BHN23].

Table 2.1 describes possible prediction outcomes and respective notations, which are
commonly used to evaluate the fairness of ML models [RD21].

The following statistical measures are derived from the confusion matrix:
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True Class Predicted Class Notation

Y = 1 Ŷ = 1 True Positive (TP)
Y = 1 Ŷ = 0 False Negative (FN)
Y = 0 Ŷ = 0 True Negative (TN)
Y = 0 Ŷ = 1 False Positive (FP)

Table 2.1: Tabular representation of possible model prediction outcomes

Prevalence, also called positive base rate, represents the proportion of actual positives
relative to the total dataset.

Prevalence = TP + FN

TN + FP + TP + FN
(2.1)

True Positive Rate, also called recall or sensitivity, describes the proportion of cor-
rectly predicted positives relative to all actual positives.

TPR = TP

TP + FN
(2.2)

False Negative Rate, also called type 2 error, describes the proportion of actual
positives, which were misclassified as negative, relative to all actual positives. FNR
and TPR are complementary, as they together account for all actual positives.

FNR = FN

TP + FN
= 1 − TPR (2.3)

True Negative Rate, also called specificity, describes the proportion of correctly pre-
dicted negatives relative to all actual negatives.

TNR = TN

TN + FP
(2.4)

False Positive Rate, also called type 1 error, describes the proportion of actual nega-
tives, which were misclassified as positive, relative to all actual negatives. TNR
and FPR are complementary, as they together account for all actual negatives.

FPR = FP

TN + FP
= 1 − TNR (2.5)

False Omission Rate describes the proportion of actual positives, that were incorrectly
predicted as negatives, relative to all predicted negatives.

FOR = FN

TN + FN
(2.6)
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Negative Predictive Value describes the proportion of correctly predicted negatives,
relative to all predicted negatives. FOR and NPV are complementary, as they
together account for all predicted negatives.

NPV = TN

TN + FN
= 1 − FOR (2.7)

False Discovery Rate describes the proportion of actual negatives, that were incor-
rectly predicted as positives, relative to all predicted positives.

FDR = FP

TP + FP
(2.8)

Positive Predicted Value, also called precision, describes the proportion of correctly
predicted positives, relative to all predicted positives. FDR and PPV are comple-
mentary, as they together account for all predicted positives.

PPV = TP

TP + FP
= 1 − FDR (2.9)

2.3.2 Group Fairness
Group fairness aims to treat different groups, which are defined by one or several
distinct values of a sensitive attribute, equally [SMHP24]. Therefore, the above-described
classification performance metrics need to be equal across all groups [PCA24].

The comparison of metrics across all groups can be done using either (absolute) differences
or ratios [KPB+24, PCA24]. Ratios and relative values allow to determine the direction
of the discrimination and to account for extreme class imbalances. For any of the above-
mentioned classification performance metrics, the respective ratio R is calculated as
follows:

Ratio R = rateS=b

rateS=a
(2.10)

Throughout this analysis, ratios are consistently calculated with Group A (majority
group) in the denominator and Group B (minority group) in the numerator.

The direction of discrimination revealed by these metrics depends critically on their
contextual interpretation. When TPRR < 1, a clear disadvantage exists for the minority
group, the model identifies their positive outcomes less accurately than those of the
majority group. Conversely, the implications of FPRR < 1 require nuanced evaluation.
Whether a lower score FPR for the minority group represents preferential treatment
or systematic disadvantage hinges entirely on the specific domain context and the
consequences of false classifications within that environment. R = 1 represents perfect
parity, therefore perfect fairness [PS22, CDPF+17].
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The large number of group fairness metrics found in literature is commonly divided into
three non-discrimination criteria: independence, separation, and sufficiency [BHN23,
RD21, Žl17]. Table 2.2 illustrates the respective conditional independence statements
per non-discrimination criteria.

Criteria Independence Separation Sufficiency
Conditional independence statement Ŷ ⊥ S Ŷ ⊥ S|Y Y ⊥ S|Ŷ

Table 2.2: The three non-discrimination criteria from [BHN23]

The statements are to be understood as follows:

• Independence: Sensitive attribute S is unconditionally independent of the prediction
Ŷ . This means that the probability of receiving any particular prediction should
be the same across different demographic groups, regardless of the underlying
distribution of true outcomes.

• Separation: Sensitive attribute S is conditionally independent of the prediction Ŷ ,
given the true output value Y . This means that among all individuals who share
the same true label, the probability of receiving any particular prediction should
be equal across demographic groups.

• Sufficiency: Sensitive attribute S is conditionally independent of the true output
value Y , given the resulting prediction Ŷ . This means that among all individuals
who receive the same prediction from the model, the probability of having any
particular true label should be equal across demographic groups.

The following sections analyze the mathematical properties of fairness metrics for each
criterion, followed by an examination of their inherent trade-offs, which mathematically
prohibit the simultaneous satisfaction of all three non-discrimination criteria.

1. Independence

Fairness metrics that fall into the independence category only take into consideration the
sensitive attribute S and the model prediction Ŷ . In other words, the true output value
Y is irrelevant for determining whether or not algorithmic fairness is given.
The following metrics all examine the acceptance rate proportion P (Ŷ = 1) across
different sensitive groups. Each metric approaches this analysis from a unique perspective,
illuminating various dimensions of potential disparities [BHN23]. The acceptance rate is
the proportion of all predicted positives relative to the total dataset.

Acceptance Rate = TP + FP

TP + FP + TN + FN
(2.11)

The resulting conditional probability for independence is:

P (Ŷ = 1|S = a) = P (Ŷ = 1|S = b) (2.12)
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Several fairness metrics employ acceptance rate as their foundation, yet they diverge in
their specific computational approaches and mathematical formulations.

Disparate Impact is a popular fairness definition, which descends from the correspond-
ing law of the United States [U.S21]. It defines the "80% rule", which says that the
acceptance rate of one (unprivileged) group must not be less than 80% of the other
(privileged) group.
In other words, the likelihood of a positive outcome should be the same for group
A as for group B [MMS+21].

P (Ŷ = 1|S = b)
P (Ŷ = 1|S = a)

≥ 1 − ϵ (2.13)

Where ϵ = 0.2. For perfect fairness, the disparate impact needs to equal 1 with
ϵ = 0.0 [PS22, SMHP24].

Demographic Parity, also known as statistical parity, seeks to establish equivalent
acceptance rates across groups A and B [RD21]. While conceptually similar to
disparate impact, this metric quantifies disparity through an arithmetic difference
rather than a proportional ratio.

P (Ŷ = 1|S = a) = P (Ŷ = 1|S = b) (2.14)

Conditional Statistical Parity is a relaxation of demographic parity. It allows a set
of legitimate factors L to affect the prediction [RD21, CDPF+17]. The definition is
satisfied if members in both subgroups have equal acceptance rates while controlling
for a set of legitimate factors L [MMS+21]. The set of legitimate factors L consists
of variables that are considered ethically acceptable and legally permissible to
influence decisions.

P (Ŷ = 1|L = 1, S = a) = P (Ŷ = 1|L = 1, S = b) (2.15)

Conditional Statistical Parity (CSP) proves particularly suitable in scenarios such
as bank loan evaluations across racial demographics when adjusting for legitimate
determinants like income and credit history. A model adhering to CSP ensures that
any observed disparities in approval rates between racial groups stem exclusively
from differences in these economically relevant factors rather than discriminatory
practices. Omitting these legitimate variables from consideration could paradoxically
introduce unfairness by ignoring genuinely predictive financial indicators that
legitimately influence creditworthiness assessments.

Equal Selection Parity focuses on equal absolute numbers of favorable predictions
[RD21, SMHP24]. In other words, the objective is to have the same absolute
number of positive predictions for groups A and B, independent of their group sizes
[JSeS+24].
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Limitations of independence
Fairness metrics that fall into the independence category have the clear advantage of
being easy to compute, making them a popular choice among researchers [BHN23]. Ad-
ditionally, independent metrics are meaningful in real-world scenarios where true labels
depend on the sensitive attributes, but the origin of this inequality is discrimination
[SMHP24].
However, all the metrics discussed above completely ignore the error rates of a machine
learning model and focus solely on the acceptance rate. As a consequence, they may en-
courage the generation of false positives, which can negatively impact model performance
when optimizing for fairness.
Moreover, these metrics assume an equal claim to acceptance. Yet, the very need for
fairness checks suggests that researchers acknowledge some level of heterogeneity in
relevant factors. Consider a scenario where groups A and B represent male and female
applicants for 20 open nursery teaching positions. To satisfy independence metrics,
an equal number of male and female applicants would need to be accepted. If all 10
female applicants are highly qualified, whereas only 5 out of 10 male applicants meet
the qualifications, this approach would lead to an increased number of unqualified hires
among male applicants, ultimately harming their track record.

2. Separation

To overcome the above-mentioned weaknesses, the separation criterion extends indepen-
dence to be conditional on the actual target value Y [PS22]. Separation requires that
prediction Ŷ be conditionally independent of sensitive attribute S given the actual target
variable Y [BHN23]. In other words, the separation criterion is met when the proportion
of correct predictions (TN and TP ) is the same for all groups [RD21], which inherently
demands error rate parity.
There are several fairness metrics found in literature that fall into the separation category.

Equalized Odds aims for equal true positive rates (TPR) and equal false positive rates
(FPR) for both groups [HPS16]. This means that the probability of a person in
the positive class being correctly assigned a positive outcome and the probability
of a person in a negative class being incorrectly assigned a positive outcome should
both be the same for individuals independent of their group membership.

P (Ŷ = 1|S = a, Y = y) = P (Ŷ = 1|S = b, Y = y), y ∈ 0, 1 (2.16)

By definition, the equalized odds metric requires a binary outcome: a model either
satisfies the metric or it does not. Average Odds Difference can be used to
calculate how far a model deviates from achieving equalized odds.
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1
2(P (Ŷ = 1 | S = b, Y = 1, ) − P (Ŷ = 1 | S = a, Y = 1)+

P (Ŷ = 1 | S = b, Y = 0) − P (Ŷ = 1 | S = a, Y = 0)) (2.17)

Equal Opportunity is a relaxation of equalized odds and only requires the groups to
have equal true positive rates ([VR18, MMS+21].

P (Ŷ = 1|S = a, Y = 1) = P (Ŷ = 1|S = b, Y = 1) (2.18)

Mathematically, if a classifier has equal TPRs for both groups, the FNRs are also
equal [PCA24].

Predictive Equality focuses on the other condition of equalized odds. Here, only the
type 1 error (FPR) rate needs to be equal among both groups. [CDPF+17, RD21].

P (Ŷ = 1|S = a, Y = 0) = P (Ŷ = 1|S = b, Y = 0) (2.19)

Mathematically, if a classifier has equal FPRs for both groups, the TNRs are also
equal [PCA24].

Balance, also called mean difference, describes a metric that uses the predicted prob-
ability score instead of the class label and compares the average score for both
groups per class. It aims to reveal steadily lower scores in one (unpriviliged) group,
which might go unnoticed in the binary classification tasks [RD21].

E[Ŷ |S = a] = E[Ŷ |S = b] (2.20)

Where E represents the mean of prediction values Ŷ .

Treatment Equality is achieved when the ratio of false negatives to false positives is
equal for both groups [PS22].

FNS=a

FPS=a
= FNS=b

FPS=b
(2.21)

Limitations of separation
A classifier with perfect accuracy will inevitably satisfy the first three separation metrics
and, consequently, be considered entirely fair under the measure of equalized odds. This
suggests that improving fairness can also lead to improved accuracy [PS22]. Nevertheless,
separation metrics are often criticized for assuming that both groups have representative
and bias-free base rates (prevalence). However, an optimal predictive model may not
necessarily yield equal error rates across all groups, particularly when the prevalence
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value differs between them. Naturally, the group with fewer true positives is more likely
to have a higher number of false negatives, as the classifier may underpredict positives
due to their scarcity. Enforcing equal error rates in such cases can lead to a model with
worse predictive performance for one group than it could otherwise achieve.
Such disparities in base rates often stem from the historical marginalization and discrimi-
nation of certain groups, particularly minorities [BHN23]. By refining these separation
metrics, researchers and practitioners may be incentivized to collect more representative,
bias-free data.

3. Sufficiency

Sufficiency metrics guarantee that the predicted probability of an outcome remains
independent of group membership. This implies that individuals sharing the same
prediction score R should exhibit similar actual probability of the outcome across
different groups [VR18]. Thus, for each predicted score, the outcome is independent
of the group membership [PS22]. This is often formalized as calibration within groups
[BHN23]. At the individual level, this ensures that individuals from different groups, but
with identical predictions, have equal likelihoods of receiving the correct label [RD21].
However, sufficiency does not guarantee that individuals with the same prediction always
have the same actual outcome, only that their probabilities align correctly across groups.

Conditional Use Accuracy Equality (CUAE) ensures that the accuracy of predic-
tions within each predicted class (both positive and negative) is the same across
groups. In other words, both positive predicted value (PPV ) and negative predictive
value (NPV ) need to be equal for group A and B [RD21].

P (Y = 1 | S = a, Ŷ = 1) = P (Y = 1 | S = b, Ŷ = 1)
∧ P (Y = 0 | S = a, Ŷ = 0) = P (Y = 0 | S = b, Ŷ = 0) (2.22)

Predictive Parity is a relaxed version of CUAE, which only conditions the PPV to
be equal for both groups [RD21].

P (Y = 1|S = a, Ŷ = 1) = P (Y = 1|S = b, Ŷ = 1) (2.23)

Test Fairness, also called equal calibration or calibration by group [SMHP24, PS22],
aims for similar PPV s for both groups for any predicted probability value. There-
fore, disparities in predictions based solely on the sensitive attribute are prevented
for individuals with the same true outcome.

P (Y = 1|S = a, R = r) = P (Y = 1|S = b, R = r), ∀r ∈ R (2.24)
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This formulation states that the probability of the positive outcome given a predic-
tion score should be independent of the sensitive attribute. Equal calibration is
similar to predictive parity, except that it considers the fraction of correct positive
predictions for any value of the prediction score S. Test fairness focuses on fairness
in predictions Ŷ given the true outcome Y , whereas predictive parity focuses on
fairness in true outcomes Y given the predictions Ŷ .

Limitations of sufficiency
Equal calibration and predictive parity can conflict when the base rates (prevalence)
differ across groups. In such cases, sufficiency can result in a higher FPR for one group
or an increased FNR for another.

Limitations of Group Fairness

In conclusion, the three categorically different criteria equalize either the acceptance rate,
the error rates, or the outcome frequency of the prediction score [BHN23].
Data scientists without comprehensive knowledge of algorithmic fairness would intuitively
seek a universal solution that satisfies all fairness definitions at once. However, it has
been proven that it is impossible to satisfy more than one criterion simultaneously [RD21]
without certain constraints in place [KMR, PS22].

Independence and sufficiency are generally mutually exclusive. In most real-world datasets,
sensitive attribute S and target variable Y are not independent. Consequently, one group
has a higher positive base rate than the other. Satisfying independence would result in a
higher FPR for one group than the other. However, for the ML model to be fair (equally
calibrated), FPR and FNR should be similar across the groups. As a result, sufficiency
and independence cannot both hold [BHN23].

Independence and separation are also mutually exclusive when the target value Y is
binary. In the real world, most groups have different base rates, thus different proportions
of actual positives. In such cases, incompatibility can occur between satisfying equalized
odds (measure for separation) and demographic parity (measure for independence) [PS22].
Satisfying demographic parity would result in a higher FPR for one group or a higher
FNR for the other group. Equalized odds however, requires the same FPR and TPR
for both groups. Consequently, independence and separation cannot both hold.

Separation and sufficiency cannot be satisfied simultaneously if all possible prediction
outcomes (TP , TN , FP , FN) are non-zero for both groups. Ensuring that both groups
have the same error rate (satisfying treatment equality) might reduce how well predictions
match reality and therefore violate sufficiency measures, such as predictive parity or test
fairness [PS22].

Enforcing any two of the criteria simultaneously leads to degenerate solutions under too
many constraints. The incompatibility of fairness definitions leads to a moral dilemma
about which fairness definition is the correct one to evaluate and optimize. Deciding
which fairness metric is relevant will be further discussed in section 2.3.5.

22



2.3. Algorithmic Fairness Metrics

Group fairness metrics also receive criticism for being too simplistic, as they all build
on the confusion matrix values. Assuming S, Y , and Ŷ are binary, all metrics can be
calculated using only 8 values. However, those do not disclose the causes and mechanisms
that created the discrimination [BHN23].

Group fairness metrics, like equalized odds or statistical parity, require complete parity
per definition [HPS16]. However, achieving complete parity in reality is very unlikely.
Therefore, some researchers recommend determining a value for ϵ, which must not be
exceeded. For example, for equal opportunity, this would mean:

P (Ŷ = 1|S = b, Y = 1)
P (Ŷ = 1|S = a, Y = 1)

= 1 − ϵ (2.25)

The chosen value for ϵ depends on the specific context, regulatory requirements, and ethical
considerations applicable to the specific use case. Domain experts and stakeholders must
collaborate to establish acceptable fairness boundaries that balance technical capabilities
with real-world implications. The determination of appropriate thresholds should be
documented and justified transparently to ensure accountability in fairness assessments.

2.3.3 Individual Fairness
As the name implies, individual fairness focuses on individuals rather than on groups of
individuals. The basic idea is that individuals with similar characteristics should receive
similar predictions, independent of their group membership [PCA24, DHP+12]. Metrics
that fall into the individual fairness category are also called similarity-based measures
[VR18].

The need for individual fairness metrics arises from the limitation of group fairness
metrics. As discussed, independence can lead to a negative track record for one group
if an equal acceptance rate is forced despite an imbalance in base rates. Individuals
with a positive true outcome might receive a negative prediction to satisfy fairness rates,
whereas individuals with a negative true outcome generously receive a positive prediction.
Group fairness definitions do not provide any indication as to which individuals should
be selected [DHP+12].

Fairness Through Awareness (FTA) describes the idea that an algorithm is fair if it
gives similar predictions to similar individuals by considering meaningful differences
between them [DHP+12]. In other words, any two individuals who are similar with
respect to a well-defined similarity metric should receive a similar outcome [PS22].
FTA employs the Lipschitz condition to guarantee that the disparity in model
predictions between two individuals remains proportional to their measured sim-
ilarity. This mathematical constraint enforces a bounded, controlled change in
decision-making relative to differences in input data [DHP+12].
FTA requires a carefully chosen similarity metric, which defines what makes
individuals similar and determines fair comparisons in a specific AI application.
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The model predictions should not change drastically for small differences in input
features, preventing unfair sensitivity to minor variations. Individual fairness
emerges by ensuring that the difference in treatment between two individuals does
not exceed a multiple of their own differences. By explicitly defining similarity,
this approach ensures fair, justifiable, and stable decision-making while respecting
meaningful individual differences.

Limitations of FTA [Fle21]
Fairness through awareness faces fundamental challenges related to individual
fairness. Defining a similarity metric depends on human judgment, requiring
decisions on relevant features and acceptable similarity thresholds, which introduces
subjectivity and pre-existing moral choices about fairness. The dependence on
human judgment also increases the risk of encoding human biases and prejudice
into the fairness metric.
Additionally, measuring similarity across large datasets is computationally expensive,
limiting its practicality. Moreover, ensuring similar treatment does not guarantee
fairness, as a system could treat individuals equally yet still unjust.
Due to these challenges, FTA should not be seen as a definitive fairness measure
but rather as one tool among multiple approaches to address algorithmic bias
comprehensively.

Causal Fairness ensures fairness by modeling cause-and-effect relationships in the
data using causal graphs (directed acyclic graphs) to identify whether a sensitive
attribute has a direct or indirect influence on the model’s decision. It is typically
implemented through causal analysis and counterfactual reasoning, enabling the
differentiation between fair and unfair dependencies [BHN23].

To address unfair dependencies, causal methods attempt to identify and disregard
certain causal pathways that link sensitive attributes to decision outcomes using,
for example, a causal-based framework to detect and mitigate both direct and
indirect discrimination [ZWW17].

Counterfactual fairness is a specific approach within causal fairness that assesses
fairness by evaluating whether an individual’s prediction remains the same in a
hypothetical world where only their protected attribute is changed, while all other
relevant factors remain constant. This definition is based on the intuition that a
decision is fair if it does not change when an individual is placed in a different
demographic group [KLRS17]. However, generating meaningful counterfactuals
depends on a well-defined structural model, which is hard to construct in practice.

Limitations of causal fairness
A key challenge in applying causal fairness is that it requires knowledge of the
underlying causal structure, which is often unknown or difficult to infer accurately.
Different causal models can lead to vastly different conclusions, making it challeng-
ing to establish a definitive measure of fairness [CCG+22].
In addition, causal fairness methods are impractical for datasets with a large number
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of features, as modeling all possible attribute-value relationships becomes compu-
tationally expensive. Completely removing all causal links between a protected
attribute and the decision may lead to significant loss in model utility and predictive
accuracy [SMHP24].

2.3.4 Subgroup Fairness
Instead of comparing only generic demographic groups, such as men and women, subgroup
fairness requires more granular subgroups, such as young women or middle-aged men.
Subgroup fairness seeks to bridge the gap between group and individual fairness by
addressing their respective limitations. The idea is to use group fairness metrics for
evaluation while incorporating elements of individual fairness [MMS+21]. Therefore,
subgroup fairness ensures that the constraint holds over a diverse set of subgroups. This
approach helps detect hidden biases that may not be visible in traditional group fairness
metrics.

Limitations of subgroup fairness
It might be difficult to identify relevant subgroups, especially in high-dimensional data
where numerous overlapping subgroups exist. Consequently, it is computationally de-
manding to ensure fairness across all of them. Additionally, optimizing for fairness
across many subgroups increases the risk of overfitting, where the model becomes too
tailored to specific fairness constraints, potentially reducing the overall predictive model
performance. Another major issue is the presence of conflicting fairness constraints, as
different subgroups may have competing needs. Adjusting for fairness in one subgroup
might unintentionally introduce bias against another, making it difficult to balance
trade-offs effectively. Individual and group fairness can sometimes be incompatible as
well. There’s a trade-off between demographic parity and individual fairness, and they
cannot be satisfied simultaneously except in trivial degenerate solutions [DHP+12].

2.3.5 Deciding which fairness metric is relevant
Each fairness definition has its advantages and drawbacks, and real-world applications
often aim for at least similar outcomes across groups. A key consideration is whether
the consequence of an incorrect positive prediction is punitive or supportive. If punitive,
fairness measures should account for false positives to avoid wrongly penalizing individuals.
If supportive, they should prioritize false negatives to ensure those in need are not denied
assistance.

Maximizing profit requires companies to balance a reward for true positives and a
cost for false positives [JSeS+24], while also considering the consequences of incorrectly
classifying true positives as negatives. The choice of fairness metric ultimately depends
on the preferred error rate, which in turn is influenced by the consequences of incorrect
predictions. Decision trees provide a structured approach to operationalizing this choice
[JSeS+24, RD21].

Figure 2.2 provides a visual overview of fairness metrics.

25



2. Related Work

Figure 2.2: Group fairness metrics, adapted from [PS22]

Ultimately, fairness metrics must be evaluated within their legal, social, and ethical
contexts [PS22].

2.4 Discrimination Mitigation Methods
This section analyzes how the fairness definitions can be optimized algorithmically. The
general terms for improving fairness are discrimination mitigation or bias mitigation.
Throughout this work, the terms method, technique, and strategy are used interchangeably
to represent proposed solutions for fairness improvement. Research has identified over 340
publications until July 2022 addressing bias mitigation for ML classifiers [HCZ+24]. These
methods are often domain-specific, with each technique targeting a different problem in
different areas of machine learning [MMS+21].
Generally, algorithmic bias mitigation approaches can be categorized into three groups
[BHN23]:

• Pre-processing methods: Transform the input data (feature space) to remove
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underlying discrimination before model training.

• In-processing methods: Modify state-of-the-art ML algorithms to reduce dis-
crimination during model training.

• Post-processing methods: Adjust the outputs of trained models to remove
discriminatory patterns.

2.4.1 Pre-processing Methods
The main objective of pre-processing mitigation methods is to adjust the input data to
be uncorrelated to the protected attribute(s). As a result, it ensures independence not
only in the feature space but also for the training process [MMS+21].

Pre-processing techniques are further organized into the following categories [HCZ+24,
CH24, DL19]:

• Relabeling and Perturbation: Changing the true target labels (relabeling) or
the input features (perturbation).

• (Re)sampling: Changing the sample distribution by adding or removing samples
or by adjusting their effect on training (e.g., reweighing).

• Latent variables: Augmenting the training data with additional features that are
preferably unbiased.

• Fair representations: Learning a transformation of the training data so that bias
is reduced while maintaining as much information as possible.

Limitations of pre-processing mitigation techniques
Empirical comparisons have demonstrated that pre-processing methods typically perform
worse than in-processing and post-processing approaches [FSV+18]. Additionally, modify-
ing training data requires access to raw data, which is not guaranteed and computationally
expensive for complex ML models in real-world applications.

2.4.2 In-training Methods
In-processing methods aim to improve fairness directly during model training [WZLZ23].
By directly integrating fairness criteria into the optimization process and providing
in-training feedback, they ensure the model inherently balances prediction accuracy with
fairness considerations.

In-processing techniques are further organized into the following categories [HCZ+24,
CH24, DL19]:
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• Regularization and Constraints: Extending the learning algorithm’s loss func-
tion to penalize unfair outcomes (regularization) or establish specific bias thresholds
that cannot be exceeded during training (constraints).

• Adversarial Learning: Training a primary classifier that predicts ground truth
values and a competing adversary designed to detect fairness issues at the same
time. As a result, the classifier iteratively learns to make accurate predictions while
preventing the adversary from identifying discriminatory patterns in its outputs.

• Compositional: Training separate classifiers for different demographic groups,
maintaining high subgroup accuracy while achieving overall fairness. Predictions
are generated either by using group-specific models or through ensemble techniques
that combine outputs from multiple classifiers.

• Adjusted Learning: Modifying standard ML algorithms or developing entirely
new algorithms that include fairness awareness considerations.

Limitations of in-processing mitigation techniques
In-processing techniques require direct access and permission to modify the ML model
training process. In addition, certain approaches propose customized, model-specific im-
plementations, limiting their compatibility. They also result in significant computational
overhead, which increases training complexity and resource demands. Furthermore, some
approaches, such as adversarial methods, can compromise model interpretability and
reduce transparency in the decision-making process. Finally, in-processing methods can
result in more significant accuracy-fairness trade-offs, especially when fairness constraints
are strictly enforced throughout the training process [CBJ+23].

2.4.3 Post-processing Methods
Post-processing mitigation methods are applied after a classification model has been fully
trained. The trained classifier or the classification output is adjusted so that detected
discriminatory patterns in the outcome are reduced or eliminated. The main advantage
is compatibility with any black-box classifier, eliminating the need to access the original
data or the training pipeline. Methods in this category are often the only viable option
when practitioners only have access to the trained model without control over the training
or pre-processing [MMS+21].

Post-processing techniques are further organized into the following categories [HCZ+24,
CH24, DL19]:

• Input Correction: Modifying input data to an already trained model through pre-
processing techniques such as relabeling, perturbation, or representation learning.
Input correction approaches apply these transformations as an additional layer
before passing data through an already trained algorithm.
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• Classifier Correction: Constructing another classifier related to the initial
classifier, which yields fairer decisions. Because approaches in this category apply
modifications directly to the model, they are also called intra-processing.

• Output Correction: Modifying the predicted outcome, either by changing the
prediction threshold or predicted labels.

Limitations of Post-processing Methods
Post-processing techniques typically require access to protected attributes during infer-
ence, which becomes particularly problematic when working with discretized predictions
and can paradoxically result in legal concerns with anti-discrimination regulations. In
addition, these methods often lead to greater performance degradation compared to
in-processing approaches, as they sacrifice model accuracy by altering outputs that were
already optimized during training [CBJ+23]. Furthermore, post-processing techniques
cannot address discrimination issues embedded in the model’s learned representations or
originating from biased training data. Finally, these approaches risk introducing new
fairness problems when optimizing for specific metrics, and their uniform modifications
often fail to account for individual nuances, potentially increasing unfairness at the
individual level.

2.4.4 Choosing a suitable discrimination mitigation method
In conclusion, there is no one-size-fits-all solution for mitigating discrimination in AI
systems. Figure 2.3 shows the number of publications per category as described above.
Most research focuses on in-processing methods, while post-processing approaches have
received the least attention.

Choosing a suitable mitigation method depends on several factors. These include access to
the ML pipeline and protected attributes, the fairness definition in need of being optimized,
the importance of explainability and interpretability, and what legal requirements must be
met [SMHP24]. Finally, there is an inherent trade-off between fairness and accuracy that
requires careful consideration of performance requirements when implementing fairness
measures [KMR].

Figure 2.3: Number of publications per mitigation category, sourced from [HCZ+24]
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CHAPTER 3
Methodology

This chapter describes the real-world case study from an Austrian insurance company in
detail, including the dataset, baseline model, and model performance. The findings from
the literature research in Section 2 are then analyzed for suitability in this case study.
The implementation and interpretation of suitable fairness metrics and discrimination
mitigation methods are discussed to provide a comprehensive understanding of how
fairness is pursued in this thesis. Finally, the evaluation methods and metrics used to
scientifically answer the research questions from Section 1.1 are explained.

3.1 Case Study Description: Explosive Claims
The case study is provided by an Austrian insurance company, where it was originally
developed in 2022. However, judicial regulations (see Section 2.2.2) necessitate a revision
of already implemented projects to ensure compliance with relevant anti-discrimination
laws.

Private insurance companies need to continuously estimate and adjust their reserves
to ensure sufficient payment liquidity to cover all claims compensations. In Motor
Third Party Liability (MTPL) insurance, certain claims can lead to substantial payouts,
especially when severe injuries result in long-term disability of insured people. The case
study title ’Explosive Claims’ refers to claims that meet either of two criteria: those
requiring reserve increases exceeding €100,000 or those where the reserve amount grows
by a factor of ten or more when compared to the cut-off date (which is defined as one
month after the initial reporting date). When such a claim is identified, the reserves are
adjusted, and the insured person is immediately provided with the best possible care to
prevent long-term payouts.

This case study examines the development of an AI model to complement human decision-
making for rapid and accurate identification of explosive claims. Early detection benefits
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both parties: The insurance company can properly adjust reserves and maintain liquidity,
while policyholders receive timely remedy. The AI model must therefore reliably identify
explosive claims to enable prompt intervention.
At the same time, incorrectly identified explosive claims should be minimized to avoid
wasting company resources and generating unnecessary expenses. In addition, uncalled-
for supplementary checks for policyholders should be avoided, for example, when they
are asked to answer further questions or provide additional documents.
Consequently, the optimal AI model prioritizes recall over precision, but only to an extent
that maximizes operational efficiency while ensuring appropriate claims processing.

3.1.1 Data Characteristics and Protected Attributes

The Austrian insurance company provided the pre-processed dataset used to train the
initial baseline model. The raw data included structured information about the insured
person, as well as information about the accident in the form of unstructured claim reports
(PDF documents). The raw data was subject to numerous pre-processing steps before
reaching its final form for training. Since the raw data was not accessible for this thesis,
the pre-processed dataset serves as the starting point. The pre-processed dataset contains
encoded data and consists of 6,258 input features, also called feature space or input
attributes. Thereof, 258 attributes contain structured information about the respective
claim and policyholder, such as the date of the claim, the country where the claim
occurred, and the gender and nationality of the policyholder. Besides that, the dataset
includes 6,000 words or pairs of words (unigrams or bigrams) from the claim report,
retrieved using a bag-of-words model. These uni- and bigram columns contain integer
values representing the frequency of each word or word pair in the claim documentation.
Previous analyses have identified the occurrence of certain uni- or bigrams, such as
’Krankenwagen’ or ’schwer verletzt’, as an indication of an explosive claim.

Section 2.2.2 describes the Austrian and European laws applicable to this use case
and identifies relevant protected attributes. The analysis reveals that gender and
nationality are both considered protected attributes and must not be grounds for
discrimination. Consequently, these two attributes form the basis of the fairness analysis.

The dataset consists of claims reported between January 2010 and December 2021,
comprising 406,981 rows in total, with each row representing one claim. The dataset
was already split chronologically into training and test sets. Claims reported from 2010
through 2019 are used for training, while the remaining claims from 2020 and 2021 serve
as test set. This division results in 348,904 (85.73%) claims in the training set and 58,077
(14.27%) claims in the test set.
A value of 1 of the binary target variable Y indicates an explosive claim, while 0 indicates
a non-explosive claim.

Next, the data is explored with respect to the two protected attributes, label distribution,
and representation of subgroups.

32



3.1. Case Study Description: Explosive Claims

Protected Attribute: Gender

There are 3 distinct subgroups in the dataset: male, female, and unknown, encoded as 1.0,
2.0, and 3.0, respectively. The insurance company could not provide a clear explanation
for why some claims are allocated to policy holders with ’unknown’ gender designation.
This may be attributed to database errors or legacy data entry processes with missing
values. Additionally, Austrian legal changes have expanded gender categories: since
January 2019, a ’diverse’ gender entry has been permitted alongside ’female’ and ’male’.
Moreover, since September 2020, the options ’intersex’, ’open’, as well as deletion of the
gender entry from civil status records have also become available1.

Figure 3.1 demonstrates that both the training and test sets have similar gender distribu-
tions, with male policyholders accounting for 45% of all claims, while female policyholders
and those with undisclosed gender each represent approximately 27% of claims.

Figure 3.1: Gender distribution of insurance claims

Unfortunately, the overall distribution of policyholders or claims by gender was not
disclosed. Therefore, it cannot be determined whether this distribution accurately
represents the actual gender demographics within the insurance portfolio.

The dataset exhibits an extremely high class imbalance. The proportion of positive
outcomes in the overall dataset is only 0.0009 (0.0909%). A positive outcome in this case
study represents an explosive claim.
When comparing the label distributions by gender subgroup in Table 3.1, a similar class
imbalance ratio for all groups is observed.

1https://www.wien.gv.at/menschen/queer/, visited on 05/28/25
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Gender Label: 0 Label: 1 Total
Count Percentage Count Percentage

Male 186,422 99.90% 189 0.10% 186,611
Female 110,179 99.92% 90 0.08% 110,269
Unknown 110,010 99.92% 91 0.08% 110,101
Total 406,611 99.91% 370 0.09% 406,981

Table 3.1: Label distribution across gender subgroups

All subgroups reflect the overall high class imbalance ratio. Males have a marginally
higher proportion of the positive label 1 (0.10%) compared to females and unknown
(both 0.08%), but this difference is extremely small (0.02 percentage points).

Protected Attribute: Nationality

The dataset contains 102 distinct values for the nationality of the policyholder. However,
as Table 3.2 shows, the large majority (∼ 70%) of claims is reported by Austrian citizens
in both training and test set. Only 1.65% of the claims in the training set and 2.41%
in the test set are reported by non-Austrian policyholders. For 27% of the claims, the
policyholder’s nationality is unknown. The insurance company again provided no clear
explanation for this issue, which may result from database errors or legacy data entry
processes that failed to capture complete information.

Figure 3.2: Nationality distribution of insurance claims

Again, it is unknown whether this reflects the true distribution of MTPL insurance
policyholders by nationality.
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Table 3.2 demonstrates that each nationality subgroup reflects the overall label distribu-
tion, with explosive claims consistently representing approximately 0.09% of all claims
across categories.

Nationality Label: 0 Label: 1 Total
Count Percentage Count Percentage

Austrian 289,058 99.91% 273 0.09% 289,331
Non-Austrian 7,138 99.90% 7 0.10% 7,145
Unknown 110,415 99.92% 90 0.08% 110,505
Total 406,611 99.91% 370 0.09% 406,981

Table 3.2: Label distribution across nationality subgroups

Only 7,138 claims were reported by non-Austrian citizens, and thereof only 7 are explosive
claims. Consequently, both model training and fairness evaluation might turn out to be
challenging, depending on how many belong to the training and testing set, respectively.

In conclusion, the model will likely face challenges in accurately predicting explosive
claims due to the significant class imbalance and the resulting bias toward predicting
non-explosive claims. The scarcity of positive cases in the test set complicates thorough
fairness evaluation. Importantly, the analysis reveals consistent label distribution patterns
across gender and nationality subgroups, with no substantial differences observed between
these demographic categories. The different group sizes (especially for nationality) might
present an additional obstacle for fair model predictions.

3.1.2 Baseline model Description
The case study baseline model is a Light Gradient-Boosting Machine2 (LGBM or
LightGBM) [KMF+17] that predicts whether or not a claim will explode.
LGBM is an ensemble technique using multiple decision trees in a gradient boosting
framework. That means that the algorithm iteratively creates models, where each new
tree focuses on correcting errors made by previous trees by minimizing the negative
gradient of the loss function. In LGBM, Gini impurity serves as a criterion for selecting
split points of decision trees, measuring class distribution impurity to determine optimal
splitting points that maximize information gain. The final result is a weighted average
with shrinkage method lambda, where lambda acts as a regularization parameter that
reduces each tree’s contribution to prevent overfitting by scaling down predictions, thus
improving generalization to unseen data.

LightGBM speeds up the training process of conventional Gradient Boosting Decision
Trees (GBDT) by over 20 times while achieving almost the same accuracy and requiring
lower memory usage [KMF+17].

These advantages stem from four main techniques:
2https://pypi.org/project/lightgbm/, visited on 05/11/25
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1. Faster training through histogram-based splits (bin splitting). This approach
sacrifices some accuracy for a significant gain in speed.

2. Exclusive feature bundling reduces feature count by combining mutually ex-
clusive features. This speeds up tree building while slightly reducing accuracy for
dense rows. Thus, LGBM is capable of handling large-scale data efficiently.

3. Gradient-based one-side sampling (GOSS) reduces loss functions. It sorts
observations by gradient size and samples 20% from the largest gradients and 10%
from the smallest. This splitting method results in new trees with only 30% of
data, improving speed while maintaining accuracy.

4. Leafwise tree growth splits only one leaf at a time instead of depth-wise growth.
It selects the leaf with the highest information gain. Without deliberate constraint,
this creates unbalanced trees with varying branch depths until 100% purity is
achieved.

Table 3.3 describes the parameter settings3 used for the baseline model. The baseline
model uses a decision threshold of 0.5 and achieves a recall score of 50%, and a precision
score of 7.8%. The predictive performance is further discussed in Section 4.3.

3.2 Fairness Evaluation Metrics
This section presents the metrics applied during the fairness assessment and details
the discrimination mitigation methods implemented to improve fair outcomes. The
corresponding definitions were previously described in Sections 2.3 and 2.4.

As pointed out in Section 2.3, various definitions of fairness exist in scientific literature.
There is no scientific consensus on which metric captures discrimination in AI systems
best.
In order to scientifically answer RQ 1.1: "Which fairness metrics are most suitable to
capture discrimination in the case study?", a broad variety of metrics is computed based
on the baseline model classification output and evaluated for suitability. Critical factors
include relevant legal implications, business use case context, and the particular objective
of the AI model.

Section 2.3 not only described the metrics in detail but also pointed out their limitations.
Based on these constraints, not all metrics will be incorporated into the fairness evaluation
of the case study. Equal calibration metrics present significant challenges when applied
to datasets with extreme class imbalance. When one class appears rarely, calibration
becomes technically difficult due to insufficient samples for reliable probability estimation
across groups. This can result in a misleading impression of fairness, as the metric may
appear satisfied simply because the model rarely predicts the minority class for any

3https://lightgbm.readthedocs.io/, visited on 05/11/25
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Parameter Description Value
boosting_type Type of boosting algorithm ’gbdt’
colsample_bytree Fraction of features used for each tree 0.84
importance_type Method for feature importance ’split’
learning_rate Rate at which each tree contributes to up-

dates
0.151

max_depth Maximum depth of trees to prevent over-
fitting

5

min_child_samples Minimum samples required in a leaf node 4020
min_child_weight Minimum sum of instance weights in a leaf 0.001
min_split_gain Minimum gain required to split a node 0.0
n_estimators Number of boosting iterations 100
n_jobs Number of parallel threads used for train-

ing
-1

num_leaves Maximum number of leaves in one tree 4
objective Learning task and loss function ’binary’
reg_alpha L1 regularization term to control overfit-

ting
0.0

reg_lambda L2 regularization term to control overfit-
ting

0.0

subsample Fraction of data used for each boosting
iteration

1.0

subsample_for_bin Number of samples used to construct bins 200000
subsample_freq Frequency of subsampling during boosting 0
verbosity Controls logging output, -1 for no output -1
boost_from_average Adjusts initialization using mean target

value
False

feature_pre_filter Indicates if features are filtered before
training

False

lambda_l1 Strength of L1 regularization for feature
selection

3.0

lambda_l2 Strength of L2 regularization to reduce
overfitting

7.6

scale_pos_weight Balances weight of positive and negative
classes

131

Table 3.3: Baseline model parameters with descriptions from the official documentation.

group.
Furthermore, this thesis will not evaluate individual fairness metrics. Causal fairness
approaches, including counterfactual fairness, face substantial implementation limitations
when applied to large datasets without clear causal relationships. Without valid causal
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assumptions, the effectiveness of these definitions becomes severely limited. Implementing
’fairness through awareness’ in this case study would require extensive computational
and human resources, which companies would rarely commit to in practical scenarios.
Generally, the limitations of individual fairness outweigh any potential additional insights
these metrics might provide.
Subgroup fairness will also remain outside the scope of this evaluation. The nationality
subgroups already suffer from unequal representation in the dataset. Further subdividing
the non-Austrian group would yield statistically insignificant results that could not
support meaningful conclusions.

In conclusion, the following group fairness metrics will be computed and evaluated:

• Independence: Equal Selection Parity, Statistical Parity

• Separation: Treatment Equality, Balance, Equalized Odds, Equal Opportunity,
Predictive Equality

• Sufficiency: Conditional Use Accuracy Equality, Predictive Parity

The previous section has revealed the extreme class imbalance in the dataset. Certain
fairness metrics expose significant bias only after normalization, highlighting the impact
of class imbalance [KPB+24]. For all basic statistical measures discussed in Section 2.3.1,
their normalized variants are also computed. For any ratio R (see Equation 2.10), the
normalization is computed as follows:

Normalized Ratio = R

R + 1 (3.1)

The normalization of ratio values maps the original unbounded ratios to the interval
[0, 1], where 0.5 indicates equal rates between groups and values closer to the extremes
indicate greater disparity in rates. It is important to note that the interpretation of
normalized values depends on the specific metric being evaluated. The same normalized
value (e.g., 0.8) can have opposite fairness implications depending on whether TPRR is
examined (where higher values for the minority group may indicate better performance)
versus FORR (where higher values for the minority group may indicate harmful bias).
This context-dependent interpretation must be considered when analyzing results across
different fairness metrics.

The proposed normalization is mathematically equivalent to a logistic transformation of
the log-odds ratio. Specifically:

R

R + 1 = 1
1 + 1

R

= 1
1 + e− log(R) (3.2)

Equation 3.2 holds for R > 0, which is the case for all fairness ratios in this case
study. This connection to the logistic function, commonly used in machine learning
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for probability calibration4, provides theoretical grounding for the transformation. The
normalized ratio can be interpreted as a measure of the relative magnitude of disparity
between groups on a standardized scale.

While this normalization does not eliminate the need for metric-specific interpretation of
fairness implications, it provides a consistent framework for measuring and comparing the
magnitude of rate disparities across different algorithmic fairness metrics in the context
of extreme class imbalance.
In Section 4, both normalized and unnormalized fairness ratios will be systematically
compared and evaluated for their analytical suitability and statistical significance. The
bounded nature of normalized ratios enables more stable statistical comparisons across
metrics with different baseline rates. In addition, comparing both normalized and
unnormalized approaches allows for validation that observed fairness violations are robust
to the choice of measurement scale, thereby strengthening the reliability of the conclusions
about algorithmic bias in severely imbalanced datasets.

Some fairness metrics rely on absolute differences rather than ratios. Again, the normal-
ized variants are calculated to account for the extreme class imbalance. For example,
predictive equality requires the same FPR values across groups (see Equation 2.19). The
normalized variant is calculated as follows [KPB+24]:

Normalized Predictive Equality = |FPRS=b − FPRS=a|
max{FPRS=b, FPRS=a} (3.3)

Another critical matter is the fairness threshold from which a metric is considered
unfair. For this case study, the Austrian insurance company did not impose specific
fairness thresholds. Therefore, the fairness metrics are evaluated and compared without
tolerance threshold, as originally defined in literature [HPS16, BHN23].

3.3 Discrimination Mitigation Techniques
Discrimination mitigation methods in real-world business scenarios should be carefully
chosen to maximize profit for the company [BHN23]. Unfortunately, the Austrian
insurance company did not indicate quantitative amounts for the cost of false positives or
the reward for true positives. Therefore, it is difficult to calculate the optimal trade-off
threshold.
In order to decide which mitigation technique is most suitable, it is necessary to analyze
the meaning of false positives and negatives in the case study once more. False positives,
as well as false negatives, represent tangible costs to satisfy popular notions of algorithmic
fairness, which need to be weighed against each other. In this case study, false positives
mean that the model unnecessarily flags a low-risk claim as high-risk. This might lead to
undesirable actions, such as avoidable costs for medical treatments and more workload

4https://scikit-learn.org/stable/modules/calibration.html, visited on 06/01/25
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for insurance employees. The policyholder enjoys better caretaking on the other hand.
False negatives mean that the model fails to identify a high-risk claim that is likely to
explode. This results in high, unforeseen costs for the insurance company and worse
long-term conditions for the insured person.
In conclusion, false negatives result in worse consequences for both insurance company
and policyholder. Thus, the mitigation techniques should result in equal (low) false
negative rates, which means similar (high) true positive rates.

Although pre-processing mitigation methods fall outside the scope of this thesis, the
’fairness through unawareness’ (FTU) approach is incorporated into the analysis. FTA
describes a simple pre-processing approach that involves removing protected attributes
and their obvious proxies from the dataset before model training [MMS+21]. The
approach is based on the assumption that if a classifier cannot access protected attribute
values, it cannot directly discriminate based on them. While the baseline LGBM model
utilizes both gender and nationality as input features, all models in the fairness analysis
exclude these protected attributes from the training data. To distinguish between the
effects attributable to FTU and those resulting from other mitigation techniques, it is
essential to evaluate FTU independently. Solely using this method for discrimination
mitigation is widely criticized. It fails to prevent indirect discrimination, as models
can still infer the eliminated protected attributes from other seemingly neutral features
[DHP+12, SMHP24].

3.3.1 In-processing Mitigation Methods
In-processing methods aim to improve fairness directly during the model training
[WZLZ23]. There are more than 100 publications that discuss in-processing methods,
each introducing different approaches [HCZ+24]. There is no one-size-fits-all solution, and
each ML model requires individual analysis to identify suitable methods. Relevant criteria
are the type of prediction task, the ML model, the fairness definition, computational
constraints, the importance of model accuracy, and interpretability.

Based on those criteria, the following in-processing method was implemented and finally
evaluated against the baseline model to answer RQ 2.1: "To what extent can fairness be
improved by implementing in-processing mitigation techniques?"

Fair Gradient-Boosting Machine

Fair Gradient-Boosting Machine (FairGBM or FGBM) extends traditional gradient
boosting by incorporating fairness constraints directly into the gradient boosting model
training [CBJ+23].

FGBM solves a constrained optimization problem using the classic game-theoretic ap-
proach:

min
θ∈Θ

L(θ) subject to ci(θ) ≤ 0, i = 1, . . . , m (3.4)

Where L(θ)is the prediction loss and ci(θ) represents fairness constraints.
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This is reformulated as a minimax problem:

θ∗ = arg min
θ∈Θ

max
λ∈Rm

+
L(θ, λ) (3.5)

where:

• L(θ, λ) = L(θ) + ∑︁m
i=1 λici(θ), a Lagrangian function that combines the original

objective function with fairness constraints.

• θ∗ = Set of optimal parameters.

• arg minθ∈Θ = Finding the parameter values θ that minimize the following expression.

• maxλ∈Rm
+

= Maximum value with respect to λ.

• λ = Vector of non-negative Lagrange multipliers that control the trade-off between
minimizing error and satisfying the fairness constraints.

• m = Number of constraints.

In other words, the constrained optimization aims to minimize the prediction error
while satisfying fairness constraints across different demographic groups. The minimax
formulation allows the algorithm to balance model performance with fairness requirements.

The FGBM algorithm uses an iterative approach with interleaved steps of gradient descent
on parameters θ and gradient ascent on the Lagrange multipliers λ. This approach is
known as dual ascent learning framework. By alternating between these steps, the
algorithm converges to a solution that satisfies both the performance objective and the
fairness constraints. This dual ascent approach allows FGBM to effectively navigate the
trade-off between prediction accuracy and fairness requirements. Algorithm 3.1 describes
the training process of the FairGBM model.

FGBM addresses the challenge of non-differentiable fairness metrics by using differen-
tiable proxy functions. These proxies approximate the step-wise fairness constraints,
making them compatible with gradient-based optimization. This ’proxy-Lagrangian’
formulation allows the algorithm to simultaneously optimize for both model performance
and fairness requirements through standard gradient methods. It effectively overcomes
the primary obstacle in fair machine learning, where traditional fairness constraints lack
the smoothness needed for gradient-based training. The following fairness constraints
are available5:

• Equalize FNR, which is equivalent to equalizing TPR and therefore promotes equal
opportunity.

5https://github.com/feedzai/fairgbm, visited on 05/13/25
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Algorithm 3.1: FairGBM training pseudocode, adapted from [CBJ+23]
Input: T ∈ N, number of boosting rounds
L, L̃ : F × Rm

+ → R, Lagrangian and proxy-Lagrangian
ηf , ηλ ∈ R+, learning rates

1 Let h0 = arg minγ∈R L̃(γ, 0) ; // Initial constant "guess"
2 Initialize f ← h0;
3 Initialize λ ← 0;
4 for t ∈ {1, . . . , T} do
5 Let gi = ∂L̃(f,λ)

∂f(xi) ; // Gradient of proxy-Lagrangian w.r.t.

model

6 Let Δ = ∂L(f,λ)
∂λ ; // Gradient of Lagrangian w.r.t.

multipliers

7 Let ht = arg minht∈H
∑︁N

i=1(−gi − ht(xi))2 ; // Fit base learner
8 Update f ← f + ηf ht ; // Gradient descent
9 Update λ ← (λ + ηλΔ)+ ; // Projected gradient ascent

10 end
11 return h0, . . . , hT

• Equalize FPR, which is equivalent to equalizing TNR and therefore promotes
predictive equality.

• Equalize FNR and FPR simultaneously, therefore promoting equalized odds.

A great advantage of FGBM is the possibility to implement global constraints alongside
fairness constraints in the model. When dealing with class-imbalanced datasets where
achieving high overall accuracy might be misleading, particular performance targets
can be specified instead. For instance, in this case study the aim is to achieve equal
opportunity (equal TPR rates) while keeping false positives under control. This allows
building models that balance overall performance metrics with group-specific fairness
considerations in a comprehensive approach.

Other advantages of FGBM are:

• Tree-based models ensure preservation of interpretability.

• Often achieves better fairness-performance tradeoffs than post-processing methods.

• No extra memory requirements compared to standard LGBM.

• Any core LGBMClassifier parameter6 can be used with FairGBM as well7.
6https://lightgbm.readthedocs.io/, visited on 05/14/25
7The only exception is the objective parameter, which has to be set to constrained cross entropy loss

function. Any other standard non-constrained objective would result in using standard LGBM.
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Though FGBM requires roughly double the training time of standard LGBM, it performs
substantially faster than alternative fair ML approaches like Fairlearn8 [CBJ+23].

FairGBM is particularly suitable for this case study because of its specialized design
for GBDT models. This specialization makes it valuable for tabular data in high-stakes
domains where both accuracy and fairness are critical, like in the insurance case study.
The algorithm is supposed to achieve this dual objective remarkably well, maintaining
strong predictive performance while simultaneously satisfying fairness constraints.

For the fairness assessment, FGBM was applied (1) using the same parameters as the base-
line, only with additional fairness constraint parameters, and (2) using hyperparameter
tuning (HPT) to find optimal parameters to maximize fairness.

FairGBM can only constrain one protected attribute. Therefore, the model was run
separately for each protected attribute.

(1) FairGBM using same parameters as the baseline model
FairGBM praises itself for being especially suitable for imbalanced datasets [CBJ+23].
To test the statement, the baseline LGBM model was replaced with the FairGBM model.
While all core LGBM parameters from Table 3.3 remain unchanged, FairGBM requires
the definition of certain constraint parameters9, as described in Table 3.4.

Parameter Description Value
constraint_type Type of fairness constraint to use FNR
global_target_fpr Target rate for the global FPR constraint 0.01
global_constraint_type Type of global equality constraint to use FPR

Table 3.4: FairGBM Parameters with Descriptions

In other words, the fairness constraint is to optimize TPR ratio with at most a 1% FPR
ratio. The constraint parameters were chosen in good faith to achieve the fairest model
possible.

The method can handle any number of distinct values in the protected attribute groups.
Therefore, both gender and nationality attributes are divided into the three subgroups
that were previously described in Subsection 3.1, and the fairness constraint aims to
ensure fairness between all three groups simultaneously.

(2) FairGBM using hyperparameter tuning
To investigate whether different parameter settings result in even better fairness and
accuracy trade-off, comprehensive hyperparameter tuning (HPT) and selection were
conducted.
The process was suggested by the authors of FairGBM10 and adapted for this case study.
The HPT ran for 4 hours, separately for gender and nationality. While the algorithm

8https://fairlearn.org/, visited on 05/14/25
9https://github.com/feedzai/fairgbm, visited on 05/14/25

10https://pypi.org/project/hyperparameter-tuning/, visited on 05/13/25
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was tasked to maximize the overall recall score, it was simultaneously penalized if the
TPRR (comparison of recall per subgroup) was below a generous threshold of 0.5.
The optuna hyperparameter optimization resulted in the optimal parameters listed in
Table 3.5. Optuna11 is an open-source hyperparameter optimization framework that
uses efficient sampling algorithms to automatically search for optimal hyperparameter
configurations [ASY+19]. Further descriptions of the optimized parameters can be found
in Tables 3.3 and 3.4.

Parameter Value for Gender Value for Nationality
boosting_type gbdt gbdt
learning_rate 0.4764 0.1618
max_depth 47 58
min_child_samples 90 3513
n_estimators 2154 1374
num_leaves 18 17
reg_alpha 0.0348 0.0869
reg_lambda 0.0264 0.0219
verbosity -1 -1
scale_pos_weight 425.35 271.21
enable_bundle False False
multiplier_learning_rate 0.3875 0.4790
constraint_type FNR FNR

Table 3.5: FairGBM HPT optimal Parameters

3.3.2 Post-processing Mitigation Methods

This section gives a comprehensive description of the post-processing mitigation methods
applied in this thesis. Post-processing methods aim to adjust the outputs of trained
models to remove discriminatory patterns (see Section 2.4).

The post-processing discrimination mitigation methods are implemented and compared
to the baseline model to answer RQ 2.2: "To what extent can fairness be improved by
implementing post-processing mitigation techniques?"

Threshold Optimizer

The threshold optimizer12 is a component of the Fairlearn library13 for mitigating
fairness-related harms in ML systems. Threshold optimization is a post-processing
technique for binary classification that addresses fairness concerns by applying different

11https://optuna.org/, visited on 05/30/25
12https://fairlearn.org/v0.12/user_guide/mitigation/postprocessing.html, visited on 05/30/25
13https://fairlearn.org/, visited on 05/14/25
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decision thresholds to different demographic groups. The technique allows for balancing
performance metrics and fairness constraints [WDE+23].

The threshold optimizer allows improving the equal opportunity metric [HPS16] after
model training by post-processing the output of a scikit-learn14 compatible estimator. In
addition, it also allows optimizing various other fairness criteria, including demographic
parity and equalized odds.

The modified classifier is obtained by applying group-specific thresholds to the provided
estimator. For machine learning model M and protected attribute S, the optimizer
identifies a set of thresholds {ts} where s ∈ S. These thresholds are selected to optimize
a performance metric P subject to fairness constraints C. Performance objectives can be
accuracy, balanced accuracy, recall, or true negative rate.

Algorithm 3.2 explains the individual steps of the classifier.

Algorithm 3.2: Threshold Optimizer
Data: Machine learning model M , protected attribute S, performance objective

P , fairness constraints C
Result: Optimal thresholds T for each demographic group

1 Generate prediction scores R ← M(data);
2 Initialize threshold set T ← {};
3 foreach demographic group s defined by S do
4 Select subset of predictions Rs for group s;
5 Find optimal threshold ts that maximizes P subject to C;
6 T ← T ∪ {ts};
7 end
8 return T ;

For the case study, the following implementation settings apply: Find optimal thresholds
that maximize the recall (performance objective) of the LGBM baseline model while
subject to equalized opportunities (fairness constraint).

Reject Option Classification

Reject option classification (ROC) is a post-processing technique for bias mitigation
implemented in the AI Fairness 360 (AIF360) toolkit15. It promotes improving fairness
while maintaining classification accuracy [KKZ12].

ROC operates on the premise that classifier predictions near the decision boundary are
more likely to contribute to discrimination. By identifying instances in this critical region
and applying different decision rules based on sensitive attributes, the algorithm reduces

14https://scikit-learn.org/stable/, visited on 05/14/25
15https://github.com/AIF360/algorithms/postprocessing/reject_option_classification.py, visited on

05/30/25
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discrimination while preserving overall accuracy. In other words, it modifies predictions
of a pre-trained classifier for instances near the decision boundary based on protected
attributes.

Mathematically, the ROC works as follows: Given a classifier f with predictions ŷ ∈ [0, 1],
a protected attribute s ∈ {a, b} (where b denotes the unprivileged group), and true labels
y ∈ {0, 1}, ROC defines a critical region around the decision boundary:

Critical region: |ŷ − θ| ≤ θc

where θ is the classification threshold, and θc is the critical region width parameter.

The modified prediction function ŷ′ is defined as:

ŷ′ =

����������
1 if ŷ > θ + θc

1 if |ŷ − θ| ≤ θc and s = b

0 if |ŷ − θ| ≤ θc and s = a

0 if ŷ < θ − θc

In other words, the formulation favors the unprivileged group in the critical region by
assigning the favorable outcome. The ROC algorithm consists of the steps described in
Algorithm 3.3.

Algorithm 3.3: Reject Option Classification
Data: Training data, test data with protected attributes s
Result: Modified predictions ŷ′

1 Train a classifier f on training data;
2 Compute prediction scores ŷ for each instance in the test set;
3 Determine optimal classification threshold θ and critical region width θc;
4 for each instance (x, s) in test data do
5 Compute classifier score ŷ = f(x);
6 if ŷ > θ + θc then
7 Assign favorable outcome: ŷ′ = 1;
8 else if ŷ < θ − θc then
9 Assign unfavorable outcome: ŷ′ = 0;

10 else
11 if s = b then
12 Assign favorable outcome: ŷ′ = 1;
13 else
14 Assign unfavorable outcome: ŷ′ = 0;
15 end
16 end
17 end

The main advantages are:
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• It only modifies predictions for instances in the critical region and therefore mini-
mizes accuracy loss compared to methods that modify all predictions.

• It explicitly favors the underprivileged group in this region.

• Allows control over the fairness-accuracy trade-off through the critical region width
parameter.

The ROC approach has some limitations. First, it can only handle binary protected
attributes. Second, its optimization process is computationally expensive, as it requires
evaluating predictions for every instance in the dataset across multiple threshold configu-
rations, leading to longer processing times, especially with large datasets. In addition,
the AIF360 framework requires very specific dataset formatting.

Table 3.6 shows the parameter setting of the AIF360 ROC implementation in the case
study.

Parameter Description Value
low_class_thresh Smallest classification

threshold to use
0.01

high_class_thresh Highest classification
threshold to use

0.99

num_class_thresh Number of thresholds to
consider during optimization

100

metric_name Fairness metric to optimize Equal opportunity difference
metric_ub Upper bound for the fairness

metric
0.05

metric_lb Lower bound for the fairness
metric

-0.05

Table 3.6: ROC Parameter setting

These settings configure a post-processing fairness algorithm that evaluates 100 different
classification thresholds between 0.1 and 0.99 to optimize model predictions. The baseline
default threshold is 0.5. The algorithm specifically targets equal opportunity as its
fairness metric, ensuring that true positive rates across different protected groups remain
within a ±5% difference. A score of 0 represents perfect fairness as the TPR difference is
measured, not the TPR ratio.

Equalized odds post-processing

This bias mitigation technique solves a linear program to find a probabilistic transforma-
tion that maps the original classifier predictions to new predictions. The transformed
predictions should satisfy the equalized odds constraints while maximizing accuracy
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[HPS16, PRW+17]. Like ROC, it is also implemented in the AI Fairness 360 (AIF360)
toolkit16.

A classifier satisfies the equalized odds criterion if the predictions ŷ are conditionally
independent of the protected attribute S given the true label y. This requires that both
true positive rates and false positive rates are equal across the protected groups (see
Equation 2.16).

The equalized odds algorithm learns a probabilistic transformation represented by pa-
rameters ps,y and qs,y for each group s and true label y:

P (Ỹ = 1|Ŷ = 1, A = a, Y = y) = pa,y (3.6)
P (Ỹ = 1|Ŷ = 0, A = a, Y = y) = qa,y (3.7)

where Ỹ represents the transformed predictions.

The optimization problem is formulated as:

min
ps,y ,qs,y

∑︂
s,y

P (S = s, Y = y) · E[L(Ỹ , Y )|S = s, Y = y] (3.8)

s.t. P (Ỹ = 1|S = s, Y = y) = P (Ỹ = 1|S = s′, Y = y) ∀s, s′, y (3.9)

where L is a loss function measuring the prediction error.

The algorithm solves the above optimization problem by computing the group-specific
TPR and FPR of the original classifier. A linear program aims find the transformation
parameters that satisfy equalized odds. The learned transformation is then applied to
create fair predictions. The resulting process is described in Algorithm 3.4.

The main advantage of the equalized odds post-processing method is that it works on any
pre-trained classifier without requiring retraining. The method finds the optimal (most
accurate) transformation that satisfies equalized odds. In addition, it can be adjusted to
optimize for different cost functions.
In conclusion, unlike ROC or Threshold optimizer, equalized odds post-processing works
by learning group-specific randomized transformations. It can simultaneously equalize
both false positive and true positive rates and does not require access to the features or
model internals, only the predictions. The method requires no specific parameter setting.

3.3.3 Performance Evaluation
Due to the highly imbalanced nature of the dataset (0.01% positive cases), standard
accuracy can be misleading as it may appear artificially high by simply predicting the
majority class for all instances. Instead, Table 3.7 presents comprehensive performance
metrics agreed upon with the insurance company, including both standard accuracy for
completeness and alternative metrics more appropriate for imbalanced dataset assessment.

16https://aif360.readthedocs.io/, visited on 05/14/25
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Algorithm 3.4: Equalized odds post-processing
Data: Classifier f , training data with protected attributes (X, S, Y ), cost

function c
Result: Fair predictor f̃ satisfying equalized odds

1 Train classifier f on training data or use pre-trained model;
2 Compute prediction scores Ŷ = f(X);
3 for each group a ∈ A do
4 TPRs ← P (Ŷ = 1|S = s, Y = 1);
5 FPRs ← P (Ŷ = 1|S = s, Y = 0);
6 end
7 Define variables ps,y and qs,y for each group s and label y;
8 Construct linear program that minimizes expected cost while ensuring equal TPR

and FPR across groups;
9 Solve linear program to obtain optimal transformation parameters p∗

s,y and q∗
s,y;

10 foreach instance (x, s) do
11 Compute original prediction ŷ = f(x);
12 if ŷ = 1 then
13 ỹ ← Bernoulli(p∗

s,y)
14 end
15 else if ŷ = 0 then
16 ỹ ← Bernoulli(q∗

s,y)
17 end
18 end
19 return fair predictor f̃ ;

Balanced accuracy is the average of true negative rate (TNR) and true positive rate (TPR),
which provides equal weight to performance on both classes regardless of their prevalence.
Recall (TPR) is the proportion of actual positives correctly identified. Precision (PPV)
is the proportion of positive predictions that are actually correct. The F1 score is the
harmonic mean of precision and recall, providing a single metric that balances both
considerations.
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Metric Calculation

Accuracy T N+T P
T N+T P +F P +F N

Balanced Accuracy T NR+T P R
2

Recall TPR

Precision PPV

F1 score 2·P P V ·T P R
P P V +T P R

Table 3.7: Baseline model performance evaluation metrics
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CHAPTER 4
Results

This chapter describes the results of the fairness assessment on the explosive claims
case study. First, the baseline model is analyzed, and relevant fairness metrics, as
well as disadvantaged subgroups, are determined. Afterwards, the implementation of
different discrimination mitigation methods is evaluated based on the fairness metrics.
Finally, the impact of fairness strategies on the predictive performance is analyzed. The
complementary Python scripts, including all relevant code, are available on GitHub1 for
reproducibility.

4.1 Baseline Model
The dataset contains two protected attributes: gender and nationality. Thus, the fairness
assessment is conducted separately for each attribute and their respective subgroups.
While the focus of the gender analysis is on the female vs. male comparison, the claims
with ’unknown’ gender designation will also be evaluated (see Section 3.1.1 for further
description of the subgroups). To ensure no discrimination based on race or ethnicity,
the nationality subgroups (Austrian, non-Austrian, and unknown) should experience the
same level of fairness.

4.1.1 Gender
The confusion matrix values are analyzed separately for each subgroup in Table 4.1.
Section 3.1.1 already describes the extreme class imbalance, which might be even more
severe when the claims are split into training and test set.

The results show that all groups have at least some true explosive claims in the test set.
But since the group sizes and base rates are imbalanced, fairness metrics are essential to
evaluate parity.

1https://github.com/AnnabelRe/FairnessAnalysis, visited on 05/15/25
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Absolute frequencies Relative frequencies (%)
TN FP FN TP TN FP FN TP

Male 26,269 167 10 13 99.13 0.63 0.04 0.05
Female 15,766 90 6 4 99.39 0.57 0.04 0.03
Unknown 15,639 96 9 8 99.31 0.61 0.06 0.05

Table 4.1: Baseline model performance on gender test set

To decide which metrics are problematic in terms of discrimination, it is necessary to
compare them group-wise. Figure 4.1 shows the statistical measure ratios for the two
subgroups, male vs. female. The blue graph describes the original ratios, where values
close to 1 indicate parity. The green values describe the normalized ratios, where values
close to 0.5 indicate parity. The dotted graphs describe the respective parity.

Figure 4.1: Fairness ratios male vs. female, baseline model

The key findings are:

• PPVR, which compares the precision per group, reveals potential discrimination
against the female subgroup. That means that the proportion of positive predictions

52



4.1. Baseline Model

that are actually correct is smaller for females.

• FNRR, which compares the proportion of false negatives per group, is much higher
for the female subgroup, which means that actual positives are much more likely to
be misclassified as negatives.

• TPRR, which describes the correctly classified positives, is lower for the female
subgroup. As FNR and TPR are complementary, this means that the model fails
to predict actual positives for the female subgroup as well as for the male subgroup.

• The male subgroup has a higher prevalence (positive base rate) than the female
subgroup in the test set, which indicates an imbalance in the underlying distribution
of positives.

Figure 4.2 analyzes the impact on the chosen fairness metrics.

Figure 4.2: Comparison of treatment equality, statistical parity difference, and average
odds difference for male vs. female, baseline model

The key findings are:

• The normalization of values significantly emphasizes the disparity for all three
metrics.

• The positive treatment equality value shows that the female group receives more
false negatives than the male group.

• The original statistical parity difference is insignificant. Only when normalizing the
values does a moderate disparity show. It indicates that the female group has a
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13% lower probability of receiving a favorable outcome compared to the male group.
This suggests that overall decision outcomes are skewed in favor of the male group.

• The average odds difference of -0.0829 indicates that females have a lower chance
of receiving a true or false positive prediction compared to males.

The equal selection parity is -86.0, which means that the male subgroup has a total of 86
more positively predicted claims. This conforms with the previous findings, like disparity
in base rates.

The baseline model does not meet the strict fairness definitions that demand parity across
all groups, as shown in Table 4.2.

Metric Original Ratio Normalized Ratio
Equal Opportunity × ×
Predictive Equality × ×
Equalized Odds × ×
Conditional Use Accuracy Equality × ×
Predictive Parity × ×

Table 4.2: Evaluation of fairness metrics, male vs. female, baseline model

The comparison between the male and female groups remains the focus of this thesis.
The unknown subgroup should not experience a disadvantage compared to the other
groups. Figures 4.3 and 4.4 show both comparisons.

The key findings are:

• Both male and female groups have a lower prevalence score than the unknown
subgroup. This indicates a substantial imbalance in the underlying distribution
between the groups in the dataset. Especially the female subgroup experiences a
disadvantage, with the unknown subgroup having 71% higher representation in the
positive class.

• The model correctly classifies male positives better than unknown positives, which
however have an 18% higher true positive rate than the female group. The normal-
ized value indicates this is actually a relatively minor deviation from parity, which
might not warrant as much concern as the raw percentage suggests. The disparity
is reinforced by the FNRR finding, as claims from the female group are more likely
to be incorrectly classified as negative when they are actually positive.

• The FORR shows a strong, significant disparity among all groups. The unknown
group has a 51% higher false omission rate than both female and male groups. This
means that when predicted as negative, claims from the unknown group are much
more likely to actually be positive cases compared to the other groups.
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• The PPVR shows the most significant disparity among female vs. unknown metrics.
The unknown group has an 81% higher PPV (precision) compared to the female
group. That means that positive predictions of the unknown group are much more
likely to actually be positive cases.

In conclusion, the baseline model appears to be under-identifying positive cases for the
unknown group compared to the male group, despite the unknown group having a higher
prevalence of positive cases in the dataset. The model seems to systematically miss
positive cases for both the female and unknown groups, which could result in denied
benefits for the groups. Again, none of the fairness definitions from Table 4.2 are satisfied.

The equal selection parity (ESP) of male vs. unknown is -76.0, indicating that the
male group receives significantly more positive predictions than the unknown group
in absolute numbers. This probably reflects the underlying population size differences
between the groups rather than necessarily indicating algorithmic bias. The unknown
group receives 10 more absolute positive predictions than the female group, which is
significant considering they have very similar population sizes and generally only very
few positives.

Figure 4.4 shows minor differences for both comparisons of the original treatment equality
(TE). However, the normalized TE shows a significant imbalance in the ratio of false
negatives to false positives between the groups. The unknown group experiences a notably
different error distribution pattern. The large normalized TE values suggest significantly
different error patterns between groups, which could lead to disparate impacts. This
aligns with the findings of the ratio comparisons in Figure 4.3. TE normalization reveals

(a) Male vs. unknown (b) Female vs. unknown

Figure 4.3: Fairness ratios unknown vs. male and female, baseline model
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(a) Male vs. unknown (b) Female vs. unknown

Figure 4.4: Comparison of treatment equality, statistical parity difference, and average
odds difference for unknown vs. male and female, baseline model

a disparity over 10 times larger than the original value indicates. This dramatic difference
highlights how crucial normalization is for understanding the true magnitude of error
distribution imbalances.

The SPD for male vs. unknown is insignificant. However, the normalized value for female
vs. unknown reveals a substantial 10 percentage point difference in positive prediction
rates favoring the unknown group. This is a critical insight that would be completely
missed without normalization.

As Figure 4.3 hypothesizes, the male group has an advantage over the unknown group in
terms of combined true positive and false positive rates, which is reflected in the AOD
value. On the other hand, the chart reveals that the unknown group experiences better
predictive performance than the female group.

4.1.2 Nationality
There are three subgroups for nationality: Austrian, non-Austrian, and unknown. Sec-
tion 3.1 showed equally imbalanced label distribution for all subgroups. However, the
fairness analysis only takes into consideration the test set.

Absolute frequencies Relative frequencies (%)
TN FP FN TP TN FP FN TP

Austrian 40493 250 16 17 99.31 0.61 0.04 0.04
Non-Austrian 1392 7 0 0 99.50 0.50 0.00 0.00
Unknown 15789 96 9 8 99.31 0.60 0.06 0.05

Table 4.3: Baseline model performance on nationality test set

Table 4.3 reveals a significant challenge. The non-Austrian group has no actual positives
in the test set and, consequently, also no false negatives. Since the training-test-split
is done chronologically, there is no possibility to modify this. As a consequence, a
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number of basic statistical measures and fairness definitions that rely on those values
cannot be calculated and evaluated. A positive base rate of 0 alone indicates a strong
disadvantage for the non-Austrian group and that it suffers from significant representation
disadvantages compared to the other groups.

Since meaningful group fairness metrics like equalized odds cannot be calculated for
the Austrian vs. non-Austrian comparison, the comparison between the Austrian and
unknown groups remains the focus of the nationality fairness assessment. Figures 4.5
and 4.6 show the result of the fairness analysis.

Figure 4.5: Fairness ratios Austrian vs. unknown, baseline model

The key findings are:

• The unknown group has a significant 32% higher representation in the positive
class. This leads to a 21% higher positive predictive value.

• The unknown group has a 44% higher false omission rate than the Austrian group.
This means when predicted as negative, claims from the unknown group are much
more likely to actually be positives.

57



4. Results

Figure 4.6: Comparison of treatment equality, statistical parity difference, and average
odds difference for Austrian vs. unknown, baseline model

• Despite the unknown group having a higher prevalence in the positive class, the
model is less likely to correctly identify positives of the unknown group, leading to
a higher false negative rate.

• While there’s a large absolute difference in positive predictions (ESP = -163), this
doesn’t translate to a proportional difference (SPD ≈ 0), suggesting the difference
might be due to group size variations.

• The large normalized TE value (0.32) is especially concerning, indicating substan-
tially different error patterns between groups that could lead to disparate impacts
(e.g., disparate FORR).

Again, none of the strict fairness definitions in Table 4.4 are met.

Metric Original Ratio Normalized Ratio
Equal Opportunity × ×
Predictive Equality × ×
Equalized Odds × ×
Conditional Use Accuracy Equality × ×
Predictive Parity × ×

Table 4.4: Fairness metrics Austrian vs. unknown, Baseline model
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4.1.3 Summary
In conclusion, the fairness assessment of the baseline model has revealed substantial
disparities among the subgroups of protected attributes, gender and nationality.

More precisely, the female subgroup suffers great disadvantages compared to the male
and unknown groups. The model misclassifies actual positives as negatives for the female
group at a larger rate than for the other groups, which results in a lower TPRR (and
higher FNRR). The nationality subgroups also exhibit significant fairness challenges. The
non-Austrian group experiences a disadvantage in representation and therefore cannot
even be reliably compared to the other nationality subgroups. This situation highlights a
fundamental limitation of group fairness metrics when dealing with extreme imbalances
or zero base rates in one group.

Even though the unknown subgroup shows an advantage in terms of positive base rate
and positive predicted value in both gender and nationality analysis, the model seems to
make better predictions for the other groups. That results in a significant disparity in
treatment equality (error rates) and especially the FORR.

The baseline model evaluation demonstrates that fairness metrics based on absolute
differences, such as equal selection parity and balance, prove inadequate for this particular
case study. Due to the substantial disparity in group sizes across the dataset, these
metrics produce potentially misleading conclusions about algorithmic fairness.

In conclusion, none of the strict fairness definitions are satisfied for any group comparison.
The following chapter analyzes the impact of various mitigation methods on the fairness
scores.

4.2 Discrimination Mitigation Methods
After evaluating the baseline model, establishing appropriate fairness metrics, and
identifying disadvantaged subgroups, various discrimination mitigation methods are
implemented and evaluated. This section aims to find significant results to answer
research question 2: "To what extent can fairness be improved through discrimination
mitigation techniques in comparison to baseline?"
First, in-processing methods are implemented by replacing the baseline LGBM model
with appropriate fair models. Afterwards, post-processing methods are evaluated.

4.2.1 In-Processing Mitigation Methods
The broad concept of in-processing mitigation methods are explained in Section 2.4.
The detailed technical implications of the applied methods are described in Section 3.3.
The following section describes the key findings from the comparison of the baseline
model and the applied in-processing mitigation methods. The aim is to improve fairness
considerations by directly integrating fairness criteria into the optimization process and
providing in-training feedback.
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Besides the selected in-processing method, the comparison also includes one pre-processing
mitigation method: Fairness through unawareness (FTU), see Section 3.3. The comparison
is essential for a comprehensive understanding of the different strategies, since all of the
mitigation methods are based on the FTU outcome.

Gender

This analysis aims to explore potential interventions that could reduce or eliminate the
documented algorithmic bias against the female demographic group.
Figure 4.7 provides an overview of the adjusted fairness ratios per mitigation method. It
shows that especially the FairGBM model with hyperparameter tuning achieves great
fairness scores close to the perfect parity value of 1.0 for unnormalized values, and 0.5 for
normalized values. Generally, the normalized values highlight the improved performance
of all fair models compared to the baseline model. The FTU method shows only very
little variance from the baseline model, thus their graphs are overlapping.

(a) Original fairness ratios (b) Normalized fairness ratios

Figure 4.7: Fairness ratios male vs. female, in-processing mitigation methods

Figure 4.8 confirms that both FGBM versions perform significantly better than the FTU
mitigation, which barely shows any improvement from the baseline model.

Table 4.5 gives the impression that the FairGBM model with baseline parameters is the
best model in terms of fairness.

The result is the same for the normalized fairness values. The only exception is the
FGBM model without HPT, for which normalized metrics cannot be calculated due to
divisions by zero. This result highlights the importance of a thorough analysis, including
the evaluation of normalized values. What seems to be a successful mitigation comes
with hidden side effects, which will be further analyzed in Sections 4.3 and 5.1. It
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(a) Original fairness differences (b) Normalized fairness differences

Figure 4.8: Comparison of treatment equality, statistical parity difference, and average
odds difference for male vs. female, in-processing mitigation methods

Metric FTU FairGBM FairGBM with HPT
Equal Opportunity × ✓ ✓
Predictive Equality × ✓ ×
Equalized Odds × ✓ ×
Conditional Use Accuracy Equality × ✓ ×
Predictive Parity × ✓ ×

Table 4.5: Fairness metrics male vs. female, in-processing mitigation methods

is crucial to acknowledge that fairness metrics, particularly ratio-based measures, can
achieve seemingly perfect scores while concealing fundamental performance deficiencies.

In conclusion, when considering fairness metrics alone (such as ratios and differences),
both versions of FGBM demonstrate significantly superior performance compared to the
baseline model. Thus, the in-processing mitigation strategies yield great success.

While the main focus remains on comparing the male subgroup to the female subgroup,
both groups are individually compared to the unknown subgroup as well. In summary,
the main findings are:

• Both group comparisons (male vs. unknown and female vs. unknown) result in the
same conclusion: The FGBM model without HPT yields the best fairness results,
whereas the FTU model shows no significant difference from the baseline model.

• The FGBM model with HPT shows by far the worst fairness results. The model
predicts disproportionately more positives for the male and female groups. Conse-
quently, the unknown group has a much higher TNR and a lower FPR and FDR.
Both original and normalized values reveal that the model fails to predict any true
positives for the unknown group. See Figures 1 and 4 in Annex A for more details.
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In conclusion, it is important to recognize that a single mitigation strategy may not treat
all demographic groups equitably, often producing varying results across different group
comparisons. This heterogeneity highlights the necessity of a comprehensive evaluation
including a variety of fairness metrics and comparison approaches.

Nationality

As established in the baseline analysis, the non-Austrian subgroup has no true positives
in the test set. Consequently, only a fraction of fairness metrics can be calculated. Nev-
ertheless, the FGBM model without HPT achieves successful results again, as displayed
in Table 4.6. More fairness metrics and comparison ratios are detailed in Annex A,
Figure 6.

Metric FTU FairGBM FairGBM with HPT
Equal Opportunity × ✓ ×
Predictive Equality × ✓ ×
Equalized Odds × ✓ ×
Conditional Use Accuracy Equality × ✓ ×
Predictive Parity × ✓ ×

Table 4.6: Fairness metrics Austrian vs. non-Austrian, in-processing mitigation methods

The comparison of the Austrian vs. unknown group described in Figures 4.9 and 4.10
results in the following key findings:

• The FTU model shows no significant difference from the baseline model.

• The FGBM model with HPT predicts disproportionately more positives for the
unknown group than for the Austrian group. Consequently, the unknown group
has a much higher TPR but also a higher FPR.

• The FGBM model without HPT shows slightly better fairness results than FTU
and the baseline model, except for the declined false omission rate ratio.

These values result in the same satisfaction of the fairness definitions as shown in Table 4.6.
Again, the normalized metrics for FGBM without HPT cannot be calculated due to
divisions by zero.

The results for the non-Austrian vs. unknown group comparison are inconclusive due to
the unfavorable positive base rate.

In conclusion, the fairness analysis of the nationality subgroups proves to be very
challenging, but the FGBM model without HPT successfully delivers fair results (except
for FORR).
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(a) Original fairness ratios (b) Normalized fairness ratios

Figure 4.9: Fairness ratios Austrian vs. unknown, in-processing mitigation methods

(a) Original fairness differences (b) Normalized fairness differences

Figure 4.10: Comparison of treatment equality, statistical parity difference, and average
odds difference for Austrian vs. unknown, in-processing mitigation methods

4.2.2 Post-Processing Mitigation Methods

This section summarizes the findings of the implemented post-processing mitigation
methods. Unlike the strategies evaluated in the section before, post-processing methods
address fairness concerns only after the model training. The outputs of trained models are
modified so that fairness is improved. The following strategies are compared: threshold
optimizer, reject option classifier (ROC), and equalized odds post-processing (EOdds).
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Gender

Both Figures 4.11 and 4.12 reveal that the ROC did not change the baseline model
prediction at all. The only metric that differs when comparing the two outcomes is
balance, simply because the baseline LGBM model outputs prediction scores contrary to
the binary labels of the ROC output.
Furthermore, both EOdds and the threshold optimizer show fairer results compared to
baseline. Especially the statistical parity difference of 0 shows no favoring of one group
regarding predicting the positive label. The average odds difference is also 0, which
means that both groups receive the same ratio of TPR and FPR. However, EOdds results
in a declined FORR compared to the baseline.

(a) Original fairness ratios (b) Normalized fairness ratios

Figure 4.11: Fairness ratios male vs. female, post-processing mitigation methods

These findings result in the fairness metrics depicted in Table 4.7.

Metric Threshold Reject Option Equalized Odds
Optimizer Classification

Equal Opportunity ✓ × ✓
Predictive Equality ✓ × ✓
Equalized Odds ✓ × ✓
Conditional Use Accuracy Equality × × ✓
Predictive Parity × × ✓

Table 4.7: Fairness metrics, male vs. female, post-processing mitigation methods

The calculation of fairness metrics using normalized values presents a technical challenge
for EOdds post-processing metrics, as they cannot be computed due to zero denominators
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(a) Original fairness differences (b) Normalized fairness differences

Figure 4.12: Comparison of treatment equality, statistical parity difference, and average
odds difference for male vs. female, post-processing mitigation methods

in their formulas. This computational limitation is significant and suggests that despite
seemingly positive outcomes, there are underlying complexities worth investigating during
the model prediction evaluation phase in Section 4.3.

The evaluation of the unknown group is similar. The ROC reflects the same results as
the baseline model, whereas the threshold optimizer and EOdds show an improvement in
fairness.

Nationality

Figures 4.13 and 4.14 summarize the findings of the post-processing mitigation strategies.

(a) Original fairness ratios (b) Normalized fairness ratios

Figure 4.13: Fairness ratios Austrian vs. unknown, post-processing mitigation methods
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(a) Original fairness differences (b) Normalized fairness differences

Figure 4.14: Comparison of treatment equality, statistical parity difference, and average
odds difference for Austrian vs. unknown, post-processing mitigation methods

The key findings are:

• ROC produces similar results to the baseline model, except for the FPRR, which
indicates a much higher amount of false positives for the Austrian group.

• Threshold optimizer achieves TPRR parity and perfect fairness difference metrics.

• All mitigation methods improve the treatment equality compared to the baseline
model, which means that the error rate is more equal.

• ROC and EOdds show a declined value for SPD and AOD, which is likely due to a
proportionally large amount of incorrectly predicted positives (FP) for the Austrian
subgroup.

These findings result in the fairness metrics depicted in Table 4.8.

Metric Threshold Reject Option Equalized Odds
Optimizer Classification

Equal Opportunity ✓ × ×
Predictive Equality ✓ × ×
Equalized Odds ✓ × ×
Conditional Use Accuracy Equality × × ×
Predictive Parity × × ×

Table 4.8: Fairness metrics Austrian vs. unknown, post-processing mitigation methods

For the Austrian vs. non-Austrian and unknown vs. non-Austrian comparison, both ROC
and EOdds failed to complete the task. This is due to the missing true positives, which
are a strict requirement for the algorithms. The threshold optimizer at least improves
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the baseline model in terms of predictive equality, which means that both groups have
the same FPR (equal type 1 error rate).

4.3 Performance Evaluation
This section compares the predictive output of the baseline LGBM model to the modified
outputs of the mitigation strategies. The aim is to identify the effect of the improvement in
fairness on the predictive performance. All performance metrics described in Section 3.3.3
range from 0 to 1, with 1 describing the best possible performance.

The baseline model employs a classification threshold of 0.5, where prediction scores
above this value yield a positive label (1), while scores at or below this threshold result
in an negative label (0). The baseline model achieves an accuracy score of 99.35%, which
is not necessarily informative in datasets with high class imbalance, though. Thus, the
other performance metrics, like balanced accuracy, recall, precision, and F1 score, provide
better insights. Especially the recall score should not drop lower than the baseline model
result of 50%, since already half of the very few positives are misclassified as negative.
Only 6.61% of predicted positives of the baseline model are actually positive, indicating
many false positives and a very low precision score. Consequently, the F1 score also
shows poor overall performance (11.68%). However, in this case study, false negatives
impose higher costs on the insurance company than false positives. Section 3.1 provides
further details on the consequences of FNs and FPs.
In conclusion, despite the high overall accuracy, the model’s performance on the positive
class is poor, as evidenced by the modest balanced accuracy, low precision, and particularly
weak F1 score. This serves as an indication that the model struggles with the extreme
class imbalance.

Figure 4.15 shows the predictive performance of the mitigation strategies applied to
optimize fairness between the male and female gender groups. Both FTU and ROC
perform identically or at least very similarly to the baseline model. The FGBM and
EOdds models both show a recall of 0, which indicates no correctly predicted positives.
In fact, both models predict the negative class for all claims, which results in almost
perfect accuracy but very poor recall, precision, and F1 score.
The threshold optimizer applies a different solution to the fairness optimization by
predicting all claims as explosive. Thus, it is the only strategy that achieves perfect recall
for correctly predicting all true positives. The trade-off is a low (balanced) accuracy,
precision, and F1 score.
The FGBM with HPT also achieves a desirable higher recall score than the baseline
model, but with the same negative trade-offs as the threshold optimizer.

ROC and EOdds show different results for the comparison of the unknown group because
those strategies require the sensitive attribute to have binary values. Thus, the post-
processing methods were optimized individually per pair of subgroups. ROC shows the
same results as the baseline model again, whereas EOdds performs better by at least
predicting some positives, but still even worse than the baseline.
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Figure 4.15: Performance metrics by model type for gender

Figure 4.16 shows the predictive performance of the mitigation strategies applied to
optimize fairness within the nationality groups. Since ROC and EOdds fail to modify the
algorithm for the non-Austrian group, Figure 4.16 shows the results of the comparison of
the Austrian vs. unknown group for those two mitigation strategies.

The findings are similar to the gender evaluation. FTU, ROC, and EOdds result in the
same performance scores as the baseline model described above. FGBM without HPT
fails to predict any positives and therefore has a recall score of 0. The threshold optimizer
predicts the positive class for all claims, thus correctly predicting 100% of positives. Due
to the high class imbalance, this still results in an accuracy score of 0 and also very poor
scores for the other performance metrics. FairGBM with HPT fails to exceed the baseline
recall score and generally performs worse than the baseline model.
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Figure 4.16: Performance metrics by model type for nationality

69





CHAPTER 5
Summary

The last chapter summarizes and critically evaluates the findings from Chapter 4 to address
the research questions established in Chapter 1. In addition, the constraints inherent
in the case study methodology, research design, and implemented mitigation strategies
are examined. The chapter concludes by underscoring the fundamental significance of
algorithmic fairness within AI systems in contemporary society.

5.1 Conclusion
In this thesis, the subject of algorithmic fairness and discrimination was discussed,
and a real-world machine learning model from the insurance industry was tested for
discrimination. To do so, suitable fairness metrics had to be identified, and various
discrimination mitigation strategies were evaluated.
The research questions from Section 1.1 were answered in the course of this fairness
analysis.

RQ1: To what extent does the current baseline model discriminate in the
context of this case study?

A thorough literature research was conducted to establish what discrimination means in
a legal and technical context. In addition, existing insurance domain-specific research
was analyzed for relevance and related work. It was found that the case study is
complex, both in terms of dataset and legal framework. The legal analysis revealed
that both gender and nationality are protected attributes that must not be grounds for
discrimination. In addition, the EU AI Act requires transparent documentation of the
design and implementation of the AI model.

RQ 1.1: Which fairness metrics are most suitable to capture discrimination
in the case study?
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This research question requires a qualitative evaluation of the respective fairness metrics
and their suitability for the use case. The comprehensive literature research resulted
in dozens of potential fairness metrics, each with a different focus. On the one hand,
there are group fairness metrics, which are further divided into separation, independence,
and sufficiency. On the other hand, individual fairness metrics try to put the focus on
the individual fairness rather than the group fairness. Subgroup fairness metrics aim to
combine both approaches to overcome the respective limitations.
For this case study, measuring individual fairness and subgroup fairness was found to be
too computationally expensive and complex. The dataset includes over 400,000 insurance
claims, each having over 6,000 columns.
Out of the 11 group metrics introduced in Section 2.3, the following nine were used for
the baseline model fairness evaluation:

• Independence: Equal Selection Parity, Statistical Parity.

• Separation: Treatment Equality, Balance, Equalized Odds, Equal Opportunity,
Predictive Equality.

• Sufficiency: Conditional Use Accuracy Equality, Predictive Parity.

Due to the high class imbalance, the normalized value was calculated for all relative
metrics in addition and proved very valuable. The main goal of the thesis was to
successfully predict the few positives equally for all subgroups, thus satisfying equalized
opportunity while maintaining a relatively low FN and FP rate.

The baseline evaluation demonstrated that metrics based on absolute differences, such as
balance and equal selection parity, prove inadequate when analyzing datasets character-
ized by significant class imbalance. Furthermore, binary fairness criteria that demand
exact parity (like equalized odds or conditional use accuracy equality) yield only binary
satisfaction states, limiting their interpretability and actionability. As a result, this re-
search found that relative measures expressed as ratios or proportional differences provide
the most interpretable and practically applicable framework for assessing algorithmic
fairness in this context, as they enable direct comparison of disparities across different
demographic groups regardless of baseline rate variations.

RQ 1.2: What are the subgroups that are discriminated against in the case
study?

The fairness analysis of the baseline model reveals that the female group has a lower
probability of receiving a favorable outcome and a higher probability of incorrectly
classifying positives as negatives compared to the male and unknown groups. In addition,
the female subgroup shows the lowest prevalence score and SPD, which means that it
has the least amount of actual and predicted positives.

The distribution of claims in the nationality subgroup is highly imbalanced. The non-
Austrian subgroup is barely represented and has no actual explosive claims in the test
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set. Thus, it is impossible for the non-Austrian subgroup to achieve fairness levels equal
to the other groups.
Even though the unknown subgroup has a higher prevalence score and PPV than the
Austrian group, the model fails to correctly predict positives as well as for the Austrian
group.

RQ2: To what extent can fairness be improved through discrimination miti-
gation techniques in comparison to baseline?

This research question aims to identify to what extent the implementation of in-processing
and post-processing mitigation methods affects the fairness metrics. The chosen mitigation
methods should eliminate the disadvantages that were identified in the context of the
previous RQ.

RQ 2.1: To what extent can fairness be improved by implementing in-
processing mitigation techniques?

The FGBM model with baseline parameters successfully modifies the predictions during
model training so that the most valuable fairness metrics, like equalized opportunity, are
satisfied for all 6 group pairings of this fairness analysis. When hyperparameter tuning is
applied to the FGBM, equalized opportunity is only satisfied for the male vs. female
comparison. In addition, fairness metrics that measure proportional differences generally
showed a much closer value to 0 for both FGBM versions when optimized for the gender
attribute.

RQ 2.2: To what extent can fairness be improved by implementing post-
processing mitigation techniques?

Three different post-processing mitigation methods were implemented to modify the
baseline model output to improve the group fairness metrics. The reject option classifi-
cation generally produces no significantly different predictions from the baseline model.
EOdds outperforms the baseline model for all gender comparisons, except for a drop
in the FORR performance. The threshold optimizer managed to satisfy some metrics
like predictive equality for all group comparisons. ROC and EOdds failed to optimize
the equal opportunity metric for non-Austrian comparisons due to the missing actual
explosive claims in the non-Austrian test subset.

Tables 5.1 and 5.2 present the outcomes of various bias mitigation strategies, evaluated
using binary fairness criteria that yield only two possible states: satisfied or violated.
The original LGBM baseline model exhibited fairness violations across all binary metrics
assessed.

RQ3: To what extent does the predictive performance decrease by introducing
the above-mentioned mitigation techniques, compared to baseline?

The baseline model has a recall score of 50%, which should not decrease any further
by implementing fairness measures, according to the insurance company. Section 4.3
describes the predictive performance after implementing the respective fairness mitigation
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Metric FTU FGBM FGBM Threshold ROC EOdds
with HPT Optimizer

Equal Opportunity × ✓ ✓ ✓ × ✓
Predictive Equality × ✓ × ✓ × ✓
Equalized Odds × ✓ × ✓ × ✓
CUAE × ✓ × × × ✓
Predictive Parity × ✓ × × × ✓

Table 5.1: Fairness metrics male vs. female for all mitigation methods

Metric FTU FGBM FGBM Threshold ROC EOdds
with HPT Optimizer

Equal Opportunity × ✓ × ✓ × ×
Predictive Equality × ✓ × ✓ × ×
Equalized Odds × ✓ × ✓ × ×
CUAE × ✓ × × × ×
Predictive Parity × ✓ × × × ×

Table 5.2: Fairness metrics Austrian vs. unknown for all mitigation methods

methods. Both gender and nationality comparisons yield the same conclusion: None of
the mitigation methods lead to an improvement in the predictive performance. At most,
they do not worsen. FTU and ROC show no difference in performance from the baseline
model, as well as EOdds for nationality. The threshold optimizer and FGBM with HPT
exceed the baseline model in terms of recall score, but even a higher recall score does not
outweigh the significantly worse accuracy score. FGBM without HPT outperforms the
baseline model in terms of accuracy, but the recall score of 0% eliminates the method
from further pursuit.

Overall goal: Introducing fairness to a real-world model from the insurance
industry
In conclusion, the overall goal was successfully accomplished. Mitigation methods were
found that significantly improve the fairness and mitigate discrimination. However, the
negative impact on the predictive performance was too serious to select a strategy for the
future. Nevertheless, the FTU mitigation method should definitely be implemented, even
if there was no change in fairness or performance metrics. Using protected attributes
during model training should be avoided.

To create a comprehensive summary, the advantages and disadvantages of each mitigation
method are briefly described below.

FTU
The model did not show significant changes in both fairness metrics and performance
metrics. I recommend applying FTU in the future to avoid using protected attributes for
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model training.

FGBM without HPT
The FGBM model with baseline parameters predicts the negative class for all claims.
Although it therefore satisfies some fairness metrics, the negative impact on the predictive
performance metrics is too significant to further pursue this strategy.

FGBM with HPT
The FGBM model with HPT succeeds in improving some fairness metrics compared to
the baseline model. However, the model incorrectly predicts too many positives and
therefore yields a significantly worse accuracy score than the baseline model. This model
demonstrates the greatest versatility among all mitigation strategies, as it enables the
optimization of various fairness metrics alongside global constraints while maintaining
full optimization of all LGBM parameters. Therefore, further hyperparameter tuning
should be conducted until a satisfying trade-off between fairness and recall is found.

Threshold Optimizer
The Fairlearn threshold optimizer perfectly complies with its initial requirement: Find
optimal thresholds that maximize recall (performance objective), while subject to equal-
ized opportunities (fairness constraint). Unfortunately, it does not offer the option to
set an additional constraint on a maximal false positive rate and consequently simply
predicts the positive class for all claims. This mitigation method has the great advantage
that it can be applied to any model outcome. Therefore, I recommend extending the
available code from the Fairlearn library with additional fairness constraints to ensure
generalization for any ML model.

Reject Option Classifier
The ROC mitigation method does not significantly change the fairness or performance
metrics compared to the baseline model. The algorithm has the great disadvantage that
it has to iterate through every single prediction and decide whether or not the prediction
label should be flipped. That process is time-consuming compared to the other mitigation
strategies, which often need less than a second to produce output. I therefore do not
recommend using this strategy for any future fairness analysis.

Equalized Odds post-processor
This mitigation method does not offer tailored parameter settings. Therefore, trying to
optimize equalized odds in this case study is a self-fulfilling prophecy, and the algorithm
simply predicts the negative class for all claims, which results in equal true and false
positive rates of 0. I do not recommend this mitigation method for the future, due to its
simplified approach and the limited choice of fairness metric to be optimized.

5.2 Limitations and Future Work
Implementing fairness in AI systems presents significant real-world challenges, particu-
larly in balancing stakeholder objectives, profitability, ethical considerations, and legal
requirements. Maintaining human oversight remains crucial, as fairness determinations
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are inherently subjective and metric-based assessments cannot fully capture contextual
fairness.
The dataset characteristics represent significant challenges throughout this thesis. The
subdivision of demographic groups requires careful methodological consideration. The
nationality-based analysis encountered limitations due to the small sample size of non-
Austrian claimants and absence of explosive claims in the test set. Continuous monitoring
and analysis of new claims data would provide more robust insights over time. In addition,
the high class imbalance makes accurate interpretation of fairness and performance metrics
difficult.
This thesis initiates fairness assessment post-preprocessing, as access to raw claim reports
was unavailable. Future work could extend this analysis to earlier stages, employing
fair NLP word embedding methods [MMS+21] to eliminate potential discrimination
patterns within the original documentation. Selecting appropriate mitigation strategies
proved challenging, as no universal solution exists. The process involves considerable
trial and error, compounded by the inherent trade-offs between different fairness met-
rics—optimizing for one metric often compromises another. Future research could focus
more intensively on comparative evaluation of mitigation techniques and methods for
balancing these trade-offs. A promising direction for future research could involve the
combination of in-processing and post-processing mitigation strategies. While this thesis
focused on comparing each approach independently against the baseline model, combin-
ing a fairness-aware training methodology with sophisticated post-processing techniques
could potentially enhance fairness outcomes while maintaining an acceptable trade-off
with predictive performance. Nevertheless, it is important to acknowledge that such a
combined approach would necessitate substantial human effort in implementation and
fine-tuning. Given the additional computational and operational overhead, the practical
adoption of such hybrid approaches in real-world scenarios might be limited by efficiency
constraints and resource considerations.
This research did not define acceptable tolerance ranges for fairness metrics like equalized
odds. As a result, many of the metrics demanded perfect parity, which is rarely achievable
in real-world scenarios. For future work, I recommend establishing reasonable thresholds
around the ideal parity score of 1, allowing fairness criteria to be considered satisfied
even when results show minor deviations from perfect equality. While resource-intensive
approaches like individual fairness assessment may be impractical in business contexts,
group fairness metrics should be evaluated with appropriate caution. The insurance
industry’s potential to impact individuals’ financial and health outcomes makes non-
discrimination particularly critical, not only ethically but also financially, given potential
regulatory penalties.
Generally, the scope of this thesis was rather extensive. Future studies could benefit from
a more focused approach, perhaps examining a single protected attribute or concentrating
only on baseline model fairness evaluation, which would permit a more thorough analysis.
Similarly, a dedicated investigation into discrimination mitigation techniques alone would
enable more precise parameter optimization and potentially yield superior results.
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A key critique emerges from the current legislative situation in Austria. Laws prohibiting
discrimination require greater specificity in the AI context. Current regulations such as
GDPR and the AI Act remain vague regarding concrete fairness requirements. Future
regulations should provide clear thresholds, metrics, or guidelines for measuring and
ensuring fairness in algorithmic systems. The development of fair AI systems requires
bridging the conceptual and linguistic divide between legal expertise and computer science.
While lawyers provide the ethical framework necessary for AI development, technical
understanding remains crucial for crafting effective regulations.

Only through interdisciplinary collaboration can we bridge the significant divide between
legal, technical, and organizational approaches to algorithmic fairness. At minimum,
companies deploying AI systems should be able to clearly identify which fairness definitions
and mitigation strategies will ensure compliance with legal regulations. The EU’s existing
requirements remain excessively context-dependent, subjective, and susceptible to varying
judicial interpretations, which makes them resistant to automated verification approaches
[WMR21].

5.3 The Critical Importance of Fairness in AI Systems
We currently face a critical juncture: will AI be leveraged to reinforce existing inequalities,
or will it serve as a tool for creating a more equitable society? This choice carries
profound implications. The path forward requires a proactive rather than reactive
approach to algorithmic fairness, embedding equity considerations from the earliest stages
of development rather than attempting retrofits. Understanding the historical context
of discrimination and its social manifestations is essential, as we cannot address future
challenges without comprehending our past.

Europe currently has the unique opportunity to lead in ethical AI development, especially
as the United States faces political resistance to diversity and inclusion initiatives.
Recent developments have shown concerning trends, such as the elimination of terms
related to equity and justice from federal communications and educational materials1.
These include words such as “equal opportunity”, “gender”, “race”, “discrimination”,
“bias”, “underrepresented”, “systemic”, “social justice”, “inequality”, “minorities”, and
“disparity”.
The urgency of addressing these challenges cannot be overstated. The democratization
of AI, which means ensuring its benefits reach all of society, is not merely a technical
priority but a moral imperative that will shape our collective future.

Data scientists must extend their focus beyond eliminating statistical discrimination to
acknowledge and address how machine learning systems can perpetuate and amplify
structural discrimination. While statistical bias can be measured and mitigated through
technical means (as shown in this thesis), structural discrimination operates through
deeper societal patterns that may be inadvertently encoded into training data, model

1https://www.nytimes.com/, visited on 05/16/25

77

https://www.nytimes.com/interactive/2025/03/07/us/trump-federal-agencies-websites-words-dei.html


5. Summary

architectures, and deployment practices. The responsibility extends beyond traditional
fairness metrics to encompass a broader understanding of how ML systems interact
with and potentially reshape social structures. This shift represents not just a technical
evolution but a fundamental reimagining of the data scientist’s ethical responsibilities in
society.

This call for a more holistic approach to AI ethics is not isolated but part of a growing
movement toward responsible technology development. The Digital Humanism Initiative2

at TU Wien exemplifies this shift, advocating for technology that serves human values
and dignity. The establishment of dedicated academic venues further demonstrates
this momentum: the ACM Conference on Fairness, Accountability, and Transparency
(FAccT)3, founded only five years ago, has rapidly become a premier forum for examining
fairness, accountability, and transparency in socio-technical systems. Its European
counterpart, the European Workshop on Algorithmic Fairness (EWAF)4, reflects the
global nature of these concerns.
These efforts collectively signal a paradigm shift toward viewing AI development as
inherently intertwined with questions of justice, equity, and human flourishing.

2https://caiml.org/dighum/, visited on 05/30/25
3https://facctconference.org/, visited on 05/30/25
4https://2025.ewaf.org/, visited on 05/30/25
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Annex A

(a) Original fairness ratios (b) Normalized fairness ratios

Figure 1: Fairness ratios male vs. unknown, in-processing mitigation methods

(a) Original fairness differences (b) Normalized fairness differences

Figure 2: Comparison of treatment equality, statistical parity difference, and average
odds difference for male vs. unknown, in-processing mitigation methods
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(a) Original fairness ratios (b) Normalized fairness ratios

Figure 3: Fairness ratios female vs. unknown, in-processing mitigation methods

(a) Original fairness differences (b) Normalized fairness differences

Figure 4: Comparison of treatment equality, statistical parity difference, and average
odds difference for female vs. unknown, in-processing mitigation methods
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(a) Original fairness ratios (b) Normalized fairness ratios

Figure 5: Fairness ratios Austrian vs. non-Austrian, in-processing mitigation methods

(a) Original fairness differences (b) Normalized fairness differences

Figure 6: Comparison of treatment equality, statistical parity difference, and average
odds difference for Austrian vs. non-Austrian, in-processing mitigation methods
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Overview of Generative AI Tools
Used

In the context of research, writing, and analysis of this thesis, the following generative
AI tools were employed to enhance productivity and ensure quality:

• Claude Sonnet 45 by Anthropic: Used for the creation of LaTeX code, rephrasing
statements to ensure grammatical correctness and eliminate spelling mistakes, as
well as generating Python code for data visualizations and analysis.

• ChatGPT GPT-4.1 mini6 by OpenAI: Utilized for rephrasing statements to
ensure grammatical correctness and eliminate spelling mistakes.

• NotebookLM7 by Google: Used in its browser version to generate podcast-style
audio summaries of research papers for enhanced comprehension and review.

Despite the use of these generative AI tools, they were employed solely in a supportive
capacity for inspiration and assistance, with all output thoroughly reviewed and adjusted.
All ideas presented in this thesis are either original contributions from me or properly
attributed to their respective sources through accurate citations.

5https://claude.ai, visited on 05/30/25
6https://chat.openai.com, visited on 05/30/25
7https://notebooklm.google.com, visited on 05/30/25
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