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Kurzfassung

E-Commerce-Plattformen haben sich zu integralen Bestandteilen des täglichen Lebens ent-
wickelt und erfordern fortschrittliche Retrieval-Systeme, um eine optimale Benutzererfah-
rung zu gewährleisten. Traditionelle Methoden zur lexikalischen Term-Übereinstimmung,
wie BM25, haben Schwierigkeiten mit semantischen Nuancen und scheitern daran, effektiv
zu generalisieren, wenn kontextuelles Verständnis erforderlich ist. Embedding-basierte
Retrieval-Modelle (EBR) beheben diese Einschränkungen, sind jedoch durch den Bedarf
an umfangreichen, überwachten Datensätzen eingeschränkt.

Diese Arbeit untersucht die Nutzung von Large Language Models (LLMs) zur Generierung
synthetischer Produktsuchanfragen, um angereicherte Trainingsdatensätze für EBR-
Systeme zu erstellen. Durch die Feinabstimmung von BART-Modellen werden synthetische
Datensätze generiert, um eine zweisäulige neuronale Retriever-Architektur zu trainieren.
Dieser Ansatz wird mit traditionellen BM25-Methoden und vortrainierten, auf LLM
basierenden Retrievern anhand von Metriken wie NDCG und Precision@k verglichen.

Die Ergebnisse zeigen Verbesserungen in der Genauigkeit und Relevanz von Retrievals
und demonstrieren die Wirksamkeit synthetischer Daten zur Bewältigung von Herausfor-
derungen bei der Datenknappheit. Diese Arbeit etabliert ein Framework zur Integration
von LLMs in moderne Retrieval-Architekturen für Produktsuchen im E-Commerce.
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Abstract

E-commerce platforms have become integral components of daily life, requiring advanced
retrieval systems to ensure an optimal user experience. Traditional lexical term matching
methods, such as BM25, struggle with semantic nuances and fail to generalize effectively
for tasks that require contextual understanding. Embedding-based retrieval (EBR)
models address these limitations but are hindered by the need for extensive supervised
datasets.

This thesis investigates the use of Large Language Models (LLMs) to generate synthetic
product search queries, creating enriched training datasets for EBR systems. Using
fine-tuned BART models, synthetic datasets are generated to train a two-tower neural
retriever architecture. This approach is compared against traditional BM25 methods and
pre-trained LLM-based retrievers using metrics such as NDCG and Precision@k.

The findings reveal improvements in retrieval accuracy and relevance, demonstrating the
efficacy of synthetic data in addressing challenges of data scarcity. This work establishes
a framework for integrating LLMs with modern retrieval architectures in the search for
e-commerce products.
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CHAPTER 1
Introduction

In recent years, online shopping has become an integral part of daily life, with major
e-commerce platforms like eBay, Amazon, Taobao, and JD attracting hundreds of millions
of active users each day and facilitating billions of transactions [44, 76, 95]. The scale
and frequency of these interactions highlight the need for effective and efficient search
and recommendation systems to enhance user experience and satisfaction.

Traditionally, lexical term-matching algorithms such as BM25 [73] have been the corner-
stone of retrieval systems due to their efficiency. However, these algorithms often fall
short when it comes to retrieving relevant passages that do not share lexical overlap with
the user’s query, and they cannot be fine-tuned for specific downstream tasks [16, 45].
To address these limitations, embedding-based retrieval (EBR) models have emerged as a
leading trend in the industry. EBR models leverage semantic embeddings to capture the
meaning of queries and documents, allowing for more accurate and contextually relevant
matches [40].

Despite their advantages, EBR systems require large amounts of supervised training data,
which can be a significant barrier to their implementation [42, 51]. This thesis aims to
overcome this challenge by utilizing Large Language Models (LLMs) to generate synthetic
product search queries. By creating a comprehensive dataset of synthetic queries, we
can train neural retriever models more effectively. The performance of these models
will be evaluated against a zero-shot lexical term-matching baseline, such as BM25, to
demonstrate the efficacy of synthetic data in enhancing EBR systems.

Traditional embedding-based retrieval systems utilize a single-tower approach, where
one neural network is responsible for learning embeddings for both product information
and query text [10]. In contrast, our approach adopts a two-tower model, employing
separate neural networks for queries and products. This architecture allows for more
precise control over the relevance between query-product pairs [40]. Research indicates
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1. Introduction

that two-tower models generally achieve higher accuracy and greater system efficiency
compared to single-tower models [10, 56].

The innovative approach of leveraging LLMs for synthetic query generation not only
addresses the data scarcity issue but also holds the potential to significantly improve the
accuracy and relevance of search results in e-commerce platforms. This thesis will explore
the generation process, the training of a two-tower retriever on synthetic data, and the
comparative evaluation against traditional lexical methods, ultimately contributing to
the advancement of recommender systems in the realm of online shopping.

1.1 Problem Statement
In the domain of product search, the performance of retrieval systems is crucial for
enhancing user experience on e-commerce platforms. Embedding-based recommender
systems have emerged as a state-of-the-art approach. However, their effectiveness is
heavily reliant on large amounts of supervised training data, which is often limited in
real-world applications. This scarcity of data presents a significant challenge to the
deployment and performance of embedding-based recommender systems.

To address this issue, the primary focus of this thesis is to mitigate the challenge of
data scarcity in product search by generating synthetic training data. We propose
fine-tuning LLMs to create synthetic search queries that correspond to existing product
descriptions. These synthetic queries will serve as a rich source of training data, enabling
the development of a robust retrieval system.

The objective of this work is to demonstrate that a two-tower neural retriever, trained
on synthetically generated data, can outperform traditional BM25 [73] algorithms. By
leveraging the advanced capabilities of Transformers [83] and the architectural benefits of
two-tower models, we aim to establish a new benchmark in product search performance,
ultimately leading to more accurate and relevant search results for users on e-commerce
platforms.

1.2 Key Research Questions

• RQ1a: How can synthetic query generation using LLMs bridge the data scarcity
gap in training embedding-based retrievers?

• RQ1b: How accurately do synthetic search queries generated by a fine-tuned
BART model correspond to their respective product descriptions, as measured by
cosine similarity of embedding vectors, ROUGE scores, and qualitative data quality
assessments?

• RQ2: What architectural design choices (e.g., layer and normalization strategies)
optimize the integration of synthetic data for semantic product retrieval, as measured
by Accuracy?

2



1.3. Contributions

• RQ3: Under what conditions do synthetic data retriever outperform or complement
traditional lexical methods like BM25, as measured by NDCG@10?

1.3 Contributions
This thesis makes significant advancements in the domain of product search and retrieval
systems, contributing to the state-of-the-art in the following key areas:

• Analysis of Encoder-Decoder Architectures: Conducts a comprehensive
theoretical analysis of transformer-based encoder-decoder architectures, including
BART, and explored word embedding methodologies, specifically the Alibaba GTE
model. This analysis synthesizes current natural language processing theories to
underpin the design and fine-tuning of a two-tower deep retrieval system, thereby
enhancing the understanding and application of advanced transformer architectures
in information retrieval contexts.

• Novel Synthetic Query Generation Approach: Proposes a novel methodology
for generating synthetic search queries tailored specifically to e-commerce product
descriptions by fine-tuning a BART-based language model. Unlike previous studies
that adapted BART for question-answering tasks, this approach customizes the
model to handle the unique demands of product search. This results in a substantial
dataset of synthetic query-product pairs that enhances the training and performance
of deep retrieval models in product search applications.

• Evaluation of Dataset Quality: Introduces evaluation strategies for assessing
the quality of synthetic positive pair datasets, including both quantitative and
qualitative metrics. This analysis examines the reliability and effectiveness of
LLM-generated data in retrieval tasks.

• Development of Advanced Retrieval Models with TensorFlow Recom-
menders: Constructs a state-of-the-art deep retrieval model utilizing TensorFlow
Recommenders. The model integrates a pre-trained sentence encoder and is fine-
tuned on the synthetic dataset, achieving enhanced retrieval performance.

• Comprehensive Performance Analysis: Conducts a detailed comparative
evaluation of the fine-tuned two-tower retrieval model against BM25 and pre-
trained LLM-based retrievers on the Test QREL (NIST) dataset (4.1). Performance
metrics such as NDCG and Precision@k are employed to highlight improvements
and trade-offs between advanced neural retrieval models and traditional methods.

Significance of the Study
Addressing these questions will bridge the gap between traditional and modern retrieval
techniques, in a narrow application domain. The insights gained from this research
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1. Introduction

will inform the development of product search systems, leveraging synthetic data and
advanced neural architectures.

1.4 Methodology
The methodological approach follows a common data science methodology called CrossIn-
dustry Standard Process for Data Mining (CRISP-DM) [26], in addition to a Literature
Review. The steps in the context of this thesis are:

1. Literature Review
Chapter 2 systematically explains the evolution of Information Retrieval from
traditional term-matching methods to advanced neural approaches. It highlights
the limitations of earlier systems, the development of probabilistic models like
BM25, and the transformative impact of deep learning and data augmentation in
modern IR systems.

2. Language Model Understanding
Chapter 3 delves into Large Language Models (LLMs), their underlying architecture,
advancements, and applications, focusing on the transformative impact of LLMs like
GPT and BART on natural language processing (NLP). This gives an introduction
in the experiment setup.

3. Data Understanding and Experiment Setup
Chapter 4 outlines the experiment setup for the study, detailing the datasets,
preprocessing methods, training environment, evaluation metrics, and baseline
model used to support the research.

4. Modeling
In Chapters 5 and 6, we detail the process of fine-tuning BART to generate extensive
corpora of synthetic query-product pairs, addressing the challenge of insufficient
training data for an EBR. We then outline our approach to constructing a two-
tower retriever, including a comprehensive explanation of its architecture and
hyperparameters.

5. Evaluation
In Chapter 6, we evaluate our retriever model using a test set comprising relevant
and irrelevant query-product pairs. We compare its performance against both a
BM25 model and a zero-shot embedding model.

6. Deployment
Deployment is not covered as part of this thesis.

4



CHAPTER 2
Background

Information Retrieval (IR) is integral to daily human activities through its application
in various practical domains, such as web search engines, question-answering systems,
personal assistants, chatbots, and digital libraries. The primary aim of IR is to locate
and retrieve information pertinent to a user’s query. Given that multiple records may
be relevant, the results are typically ranked based on their relevance score to the user’s
query [27].

2.1 Sparse and Dense Retrieval
Traditional text retrieval systems represent queries and documents as sparse vectors
where dimensions correspond to vocabulary terms, and values reflect term importance
(e.g., frequency) [27]. They largely depend on matching terms between the query and
the documents. The representation is high-dimensional and there is no training required
for such models. However, these term-based retrieval systems face several limitations,
including issues with polysemy, synonymy, and lexical gaps between the query and the
documents [15]. BM25 is a typical sparse retriever that will be introduced later.

The integration of deep learning methodologies has significantly advanced traditional text
retrieval systems. Neural network-based systems map the input to dense, low-dimensional
vectors (e.g. 768 dimensions) via training [27]. For fine-tuning query-document relevance
pairs are typically used. Convolutional neural networks [34] and recurrent neural networks
[24] have notably enhanced the performance of IR by enabling more sophisticated
feature extraction and sequential text modelling. Subsequent developments, such as the
Transformer architecture [83] and pre-trained language models, have further revolutionized
IR systems. These approaches leverage semantic and contextual representations of queries
and documents, addressing lexical mismatches and improving relevance estimation through
large-scale language understanding [27].

5



2. Background

2.2 BM25
The BM25 (Best Matching 25) algorithm is a probabilistic information retrieval model
based on the probabilistic relevance framework [73, 27]. It is widely used for document
retrieval tasks due to its effectiveness in ranking documents by their relevance to a given
query [27].

The BM25 ranking function is defined as follows:

score(D, Q) =
n�

i=1
IDF(qi) · f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1 − b + b · |D|
avgdl)

(2.1)

where:

1. score(D, Q) is the relevance score of document D for query Q.

2. qi represents the i-th query term in Q.

3. f(qi, D) denotes the frequency of the term qi in document D.

4. |D| is the length of document D in terms of the number of words.

5. avgdl is the average document length in the corpus.

6. k1 and b are hyperparameters. k1 typically ranges between 1.2 and 2.0, and b is
usually set around 0.75.

7. IDF(qi) is the inverse document frequency of the term qi.

The term frequency f(qi, D) is adjusted by the document length to avoid bias towards
longer documents. This adjustment is performed using the denominator, which includes
the parameters k1 and b. The parameter b controls the scaling relative to the average
document length avgdl. Specifically, k1 regulates the saturation of term frequency, where
higher values of k1 allow higher frequencies to contribute more to the score until a
saturation point is reached. The parameter b modifies the extent of document length
normalization, with a value of 1 indicating full normalization by document length and
a value of 0 indicating no normalization. The IDF component reduces the impact of
common terms while enhancing the importance of rare terms, which is essential for
distinguishing relevant documents from irrelevant ones.

2.2.1 Inverse Document Frequency (IDF)
Inverse Document Frequency (IDF) is a statistical measure used in information retrieval
and text mining to evaluate how important a word is to a document in a collection or
corpus. The importance increases proportionally to the number of documents in the

6



2.2. BM25

corpus that contain the word and is offset by the frequency of the word in the document
[73].

The intuition behind IDF is that terms that occur in many documents are less informative
than those that occur in a few. For instance, common words like “the”,“is” and “and”
are not useful for distinguishing between relevant and non-relevant documents.

IDF can be mathematically defined as:

IDFi = log


N

dfi


(2.2)

where: N is the total number of documents in the corpus and dfi (document frequency)
is the number of documents containing the term i.

The logarithm is used to dampen the effect of terms that are too frequent. Variants of
this formula may add 1 to both N and dfi to avoid division by zero and to ensure the
IDF value is always positive.

In the BM25 formula, IDF is crucial because it adjusts the weight of a term based on
its frequency across the entire document collection. A term with a high IDF score is
rare and potentially very informative, while a term with a low IDF score is common
and less informative. By combining TF (term frequency) and IDF, BM25 can provide a
balanced scoring mechanism that considers both the relevance of a term within a specific
document and its importance within the entire corpus [73].

Consider a corpus of 1000 documents. If the term “information” appears in 10 documents,
the IDF for “information” would be:

IDFinformation = log
1000

10


= log(100) = 2

If another term “retrieval” appears in 500 documents, its IDF would be:

IDFretrieval = log
1000

500


= log(2) ≈ 0.301

Thus, “information” has a higher IDF score than “retrieval”, indicating it is more specific
and likely more informative.

2.2.2 Example on BM25
Let’s assume we have the following:

1. A corpus with 4 documents.

2. A query Q containing the terms {t1, t2}.

7



2. Background

3. The following term frequencies (TF) for terms t1 and t2 in each document:

Document TF(t1) TF(t2)
D1 3 0
D2 0 2
D3 1 1
D4 2 3

4. Document lengths:
Document Length

D1 100
D2 150
D3 200
D4 50

5. The document frequencies (DF) for terms t1 and t2 are:

DF (t1) = 3, DF (t2) = 3

6. We choose the parameters k1 = 1.5 and b = 0.75.

The IDF for each term is calculated as follows:

IDF (t1) = log
�

N−DF (t1)+0.5
DF (t1)+0.5 + 1


= log

�
4−3+0.5

3+0.5 + 1


= log
�

1.5
3.5 + 1


= log(1.4286) ≈

0.3567

IDF (t2) = log
�

N−DF (t2)+0.5
DF (t2)+0.5 + 1


= log

�
4−3+0.5

3+0.5 + 1


= log(1.4286) ≈ 0.3567

For document D1:

BM25(D1, Q) = IDF (t1) · tf1D1 · (k1 + 1)
tf1D1 + k1 · (1 − b + b · Length

avgdl )
+

IDF (t2) · tf2D1 · (k1 + 1)
tf2D1 + k1 · (1 − b + b · Length

avgdl )

The average document length (avgdl) is: avgdl = 100+150+200+50
4 = 125

= 0.3567 · 3 · (1.5 + 1)
3 + 1.5 · (1 − 0.75 + 0.75 · 100

125)
+ 0.3567 · 0 · (1.5 + 1)

0 + 1.5 · (1 − 0.75 + 0.75 · 100
125)

= 0.3567 · 3 · 2.5
3 + 1.5 · (1 − 0.75 + 0.6) + 0

8



2.2. BM25

= 0.3567 · 7.5
3 + 1.5 · 0.85

= 0.3567 · 7.5
4.275

= 0.3567 · 1.753

≈ 0.625

Repeating similar calculations for D2, D3, and D4:

For document D2:

BM25(D2, Q) = 0.3567· 0 · (1.5 + 1)
0 + 1.5 · (1 − 0.75 + 0.75 · 150

125)
+0.3567· 2 · (1.5 + 1)

2 + 1.5 · (1 − 0.75 + 0.75 · 150
125)

= 0.479

For document D3:

BM25(D3, Q) = 0.3567· 1 · (1.5 + 1)
1 + 1.5 · (1 − 0.75 + 0.75 · 200

125)
+0.3567· 1 · (1.5 + 1)

1 + 1.5 · (1 − 0.75 + 0.75 · 200
125)

= 0.562

For document D4:

BM25(D4, Q) = 0.3567· 2 · (1.5 + 1)
2 + 1.5 · (1 − 0.75 + 0.75 · 50

125)
+0.3567· 3 · (1.5 + 1)

3 + 1.5 · (1 − 0.75 + 0.75 · 50
125)

= 1.331

Summary of BM25 Scores

Document BM25 Score
D1 0.625
D2 0.479
D3 0.562
D4 1.331

Thus, based on the BM25 scores, the ranking of the documents in response to the query
Q would be:

D4 > D1 > D3 > D2

9



2. Background

2.2.3 Improvements to BM25
Several improvements to BM25 have been proposed to address its limitations and enhance
its performance [80]. These include BM25L, BM25+, BM25-adpt and BM25T.

BM25L

BM25’s document length normalization tends to favour shorter documents over longer
ones. To address this problem, Lv and Zhai introduce the BM25L [47] function. Their
derivation begins with an adjusted version of BM25 that avoids negative values and
differs only in the IDF component:

rsvq =
�
t∈q

log


N + 1
dft + 0.5


· (k1 + 1) · tftd

k1
�
(1 − b) + b · Ld

Lavg


+ tftd

(2.3)

They re-arrange to get

rsvq =
�
t∈q

log


N + 1
dft + 0.5


· (k1 + 1) · ctd

k1 + ctd
(2.4)

where

ctd = tftd

1 − b + b ·
�

Ld
Lavg

 (2.5)

For BM25L, Lv and Zhai aim to adjust the ctd component to prevent excessive penalization
of long documents. They achieve this by adding a positive constant, δ, which shifts the
function to better accommodate larger document lengths (i.e., small numbers in the
denominator, resulting in more favourable scores for long documents). The final BM25L
equation is expressed as:

BM25L =
�
t∈q

log


N + 1
dft + 0.5


· (k1 + 1) · (ctd + δ)

k1 + (ctd + δ) (2.6)

where δ is a small positive constant, typically 0.5 [47].

BM25+

BM25+ [49] is another enhancement to prevent the penalization of long documents.
They lower-bound the contribution of a single term occurrence, ensuring that each term
occurrence contributes at least a constant amount to the retrieval status value.

10



2.2. BM25

BM25+ =
�
t∈q

log


N + 1
dft


·
 (k1 + 1) · tftd

k1
�
(1 − b) + b · Ld

Lavg


+ tftd

+ δ

 (2.7)

where δ is typically set to 1 across collections [49].

BM25-adpt

In the work on BM25 [48], Lv and Zhai note that using a global k1 for all query terms is
likely to be less effective than employing term-specific k1 values. They aim to identify
these term-specific k1 values directly from the index, enhancing the ranking function’s
transferability across different collections without the need for re-training.

They address this issue by applying information gain and divergence from randomness
theory. They begin with the probability of observing at least one occurrence of a term,
given zero or more occurrences and the query:

p(1|0, q) = dfr + 0.5
N + 1 (2.8)

they derive the probability of seeing one more occurrence as:

p(r + 1|r, q) = dfr+1 + 0.5
dfr + 1 (2.9)

from which the information gain at any point in the function can be computed as the
change from r to r + 1 occurrences, minus the initial probability:

Gr
q = log2


dfr+1 + 0.5

dfr + 1


− log2


dfr+1 + 0.5

N + 1


(2.10)

dfr is more complex. Rather than using term frequency, tftd, values, they define dfr

based on the result of the length normalized term frequency. They do that by defining
dfr as:

dfr =

����
|Dt | ctd≥r−0.5| r > 1
dft r = 1
N r = 0

(2.11)

that is, for the base case of r = 0, the number of documents in the collection is used;
when r = 1, the document frequency is used; in all other cases, |Dt|ctd≥r−0.5|, the number
of documents, |Dt|, containing the term, t, that have a length normalized occurrence
count, ctd, greater than r (once rounded).
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To compute k1, they align the information gain function to the BM25 score function and
solve for k1 giving the term specific k

′
1.

k
′
1 = arg min

k1

T�
i=0

�
Gr

q

G1
q

− (k1 + 1) · r

k1 + r

2

(2.12)

They can compute k
′
1 entirely from the index because all parameters are there – but

they suggest pre-computing these values and storing them in the index, one per term.
Finally, k

′
1 gets substituted into the term frequency component of BM25, and the IDF

score replaced by G1
q .

BM25-adpt =
�
t∈q

G1
q · (k′

1 + 1) · tftd

k
′
1 ·

�
(1 − b) + b ·

�
Ld

Lavg


+ tftd

(2.13)

2.3 Neural Information Retrieval
Neural-based approaches for semantic retrieval, including those utilizing Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), have been proposed
to enhance the effectiveness of information retrieval systems [25]. Figure 2.1 shows the
typical design for such a dense retriever, where the idea is to independently represent text
documents and queries in a continuous vector space, enabling the use of neural network-
based similarity measures, such as cosine similarity or dot-product, to rank documents by
their relevance to a given query [50, 40, 27]. Moreover, these neural methods can learn
complex non-linear representations of text data, improving the performance of retrieval
models [50, 34, 23, 44, 95].

Attention-based mechanisms, such as the Transformer architecture [83], have further
advanced the ability of IR systems to focus on important parts of the query and doc-
uments for matching [90]. Additionally, pre-trained language models like BERT [16],
RoBERTa [45] and GTE [41] have significantly enhanced IR systems by offering a better
understanding of the semantics and context of natural language queries and documents.

In recent years, word embeddings have become a popular method for representing docu-
ments and queries in IR systems due to their ability to capture semantic meaning. These
embeddings are dense, continuous representations of words that significantly improve
the effectiveness of IR systems. Various approaches have leveraged word embeddings
for different IR tasks. For instance, some methods use word embeddings combined with
Fisher Vector aggregation to represent documents and queries [13]. Other approaches
use bilingual word embeddings for cross-lingual IR [85], and some focus on representing
short texts using word embeddings [33]. Additionally, dual embedding spaces have been
explored to represent documents and queries more effectively [53], while some techniques
use word embeddings to represent context and potential responses in natural language
generation [28].
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Figure 2.1: Dual-Encoder Architecture

A particularly noteworthy method is the use of pre-trained transformer-based models
for text encoding. One approach for question-answering problems, called “DC-BERT”
[97], employs two BERT models: an online BERT that encodes the question once, and
an offline BERT that pre-encodes and caches document encodings. Another method [93]
involves using a neural retrieval component and a cross-attention component to generate
responses based on retrieved passages, with data augmentation methods proposed to
enhance model performance.

Additionally, some research has explored the use of approximate nearest neighbour search
and negative contrastive learning for dense text retrieval. For example, the ANCE [91]
method employs a neural network to encode documents and queries, applying approximate
nearest neighbour search and negative contrastive learning to rank documents. Other
studies [27] have proposed methods for training dense retrieval models efficiently using
a combination of hard and soft negative sampling and optimizing the balance between
retrieval and generation components. Further advancements include a global weighted
self-attention network for web search and optimized training approaches for open-domain
question answering using dense passage retrieval, all contributing to improved effectiveness
in their respective areas.

2.3.1 Comparison with Lexical Term-Matching Models

As previously explained, models like BM25 have been the backbone of information
retrieval systems for decades. They rely on the exact matching of query terms within
documents to compute relevance scores. In contrast, contemporary deep learning-based
retrieval models utilize neural networks to capture semantic meanings and relationships
between queries and documents, enabling a more nuanced understanding of user intent.
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Term-matching models cannot handle synonyms or paraphrased expressions, and they
also fail to understand context or user intent beyond exact terms. For example, if the user
search query is “cheap running shoes” and the product title is “affordable jogging sneaker”,
BM25 will predict low relevance due to the lack of exact term matches. A language model
like BERT will predict a high relevance score by recognizing synonyms such as “cheap” ≈
“affordable”. Additionally, when dealing with complex queries, BM25 may not effectively
differentiate between products when the exact terms are missing. For instance, when
searching for “quadcopter with FPV capabilities”, a deep learning model understands
that “quadcopter” is a type of drone and “FPV” stands for “First-Person-View”.

2.4 State of the Art Retrieval Models in Product Search
E-commerce search faces unique challenges compared to web search, such as shorter, less
structured text and the importance of considering extensive historical user behaviors [2].
While lexical matching engines, which rely on exact query term matches, are still crucial
for their reliability, they struggle to account for user-specific interests and the semantic
nuances of queries [27, 51, 42].

With the advent of deep learning, companies like Amazon [76] and JD [95] have devel-
oped two-tower embedding-based retrieval systems to enhance product relevance and
personalization. These systems, including one implemented by Taobao [40], capture the
relationship between query semantics and user behavior, initially showing significant
improvements in various metrics. However, EBR systems face issues with the controlla-
bility of search relevance, often failing to match query terms precisely, leading to user
complaints and problematic search results [25].

To address this, a relevance control module is introduced to filter products based on exact
matching signals before they proceed to the ranking stage. Despite improving relevance,
this approach often discards about 30% of candidates, wasting computing resources and
reducing system performance [40]. The main challenge now is to refine the EBR model
to retrieve more relevant products and increase the number of candidates for the ranking
stage, thereby enhancing the overall effectiveness of the search system.

2.4.1 Taobao Search
Li et al. [40] introduced a Multi-Grained Deep Semantic Product Retrieval (MGDSPR)
system, designed to simultaneously model query semantics and historical behaviour data
to retrieve highly relevant products. The general structure of MGDSPR is depicted in
Figure 2.2. They begin by defining the problem, followed by a detailed explanation of
the two-tower model, which consists of a user tower and an item (product) tower.

They first formulate the retrieval problem by introducing the following notations. Let
U = {u1, ..., uu, ...uN } denote a collection of N users Q = {q1, ..., qu, ..., qN } denote
the corresponding queries, and I = {i1, ..., ii, ..., iM } denote a collection of M items
(products). Also, they divide the user u’s historical behaviours into three subsets according
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Figure 2.2: General architecture of the proposed Multi-Grained Deep Semantic Product
Retrieval model (MGDSPR) [40]

to the time interval from the current time t: real-time (denoted as Ru = {iu
1 , ..., iu

t , ..., iu
T ,

before the current time step), short-term denoted as Su = {iu
1 , ..., iu

t , ..., iu
T }, before Ru

and within ten days) and long-term sequences (denoted as Lu = {iu
1 , ..., iu

t , ..., iu
T }, before

Su and within one month), where T is the length of the sequence.

They now define the task. Given the historical behaviors (Ru, Su, Lu) of a user u ∈ U ,
once he/she submits query qu at time t, their goal is to return a set of items i ∈ I that
fulfil his/her search request. Typically, they predict the top-K item candidates from I
at time t based on the scores z between the user (query and behavior) and the items,
expressed as:

z = 𭟋(φ(qu, Ru, Su, Lu), ψ(i)),

where 𭟋(·) represents the scoring function, φ(·) is the query and behaviors encoder, and
ψ(·) is the item encoder. They utilize a two-tower retrieval model for efficiency, with 𭟋
instantiated as the inner product function. The following sections describe the design of
the user and item towers, respectively.

User Tower

Queries in Taobao search are usually in Chinese and often short. After query segmentation,
the average length is less than three words. Therefore, a multi-granular semantic unit
is proposed to capture the meaning of queries from multiple semantic granularities and
enhance their representation (e.g., individual words, word pairs, or segments). Given
a query segmentation result qu = {wu

1 , . . . , wu
n}, where each wu = {cu

1 , . . . , cu
m}, and its
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historical query qhis = {qu
1 , . . . , qu

k } ∈ Rk×d, six granular representations Qmgs ∈ R6×d

can be obtained by concatenating the unigram mean-pooling q1_gram, 2-gram mean-
pooling q2_gram, word segmentation mean-pooling qseg, word segmentation sequence
qseg_seq, historical query words qhis_seq, and mixed qmix representations. Mean pooling
is a technique to combine multiple vector representations into a single fixed-dimensional
vector by averaging them [12]. For example when unigram mean-pooling the word “dress”
you compute the embeddings for each character and average them.
User behaviors are captured through their history of items clicked or bought. Taking the
user’s short-term behaviors Su as an example, iu

t ∈ Su denotes the user’s click on item i
at time t, where each item i is described by its ID and side information 𭟋 (e.g., category,
brand, shop). Each input item iut ∈ Su is defined by:

ef
i = Wf · xf

i iu
t = concat({ef

i |f ∈ 𭟋}) (2.14)

where Wf is the embedding matrix, xf
i is a one-hot vector, and ef

i ∈ R1×df is the
corresponding embedding vector of size df .
To retrieve products relevant to the current user’s query while preserving personalized
characteristics, the multi-granular semantic representation Qmgs and personalized repre-
sentations (Hreal, Hshort, Hlong) are combined as the input to a self-attention mechanism,
dynamically capturing the relationship between them. A “[CLS]” token is added at
the first position of the input I = {[CLS], Qmgs, Hreal, Hshort, Hlong}, and the output is
regarded as the user tower’s representation Hqu ∈ R1×d:

Hqu = Self_Attfirst([[CLS], Qmgs, Hreal, Hshort, Hlong]) (2.15)

Item Tower

In [40] they use the item ID and title to obtain the item representation Hitem. Given
the representation of item i’s ID, ei ∈ R1×d, and its title segmentation result Ti =
{wi1, . . . , wiN }, Hitem ∈ R1×d is calculated as follows:

Hitem = e + tanh
�

Wt ·
�N

i=1 wi

N


, (2.16)

where Wt is the transformation matrix. They empirically find that applying LSTM
[30] or Transformer [83] to capture the context of the title is not as effective as simple
mean-pooling since the title is often composed of keywords and lacks grammatical
structure.

2.4.2 Ebay Search
This approach to product recommendations [88] involves training a two-tower deep
learning model that simultaneously generates user embeddings and item embeddings.
The architecture of this model is illustrated in Figure 2.3 and is detailed below.
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Inspired by the work of Covington et al. [14], the task of generating recommendations is
defined as a classification problem utilizing softmax probability.

P (si|U) = eγ(vi,u)�
j∈V eγ(vj ,u) , (2.17)

where:

1. u ∈ RD is a D-dimensional vector for the embedding of user U

2. vi ∈ RD is a D-dimensional vector for the embedding of item si

3. γ is the affinity function between user and item

4. V represents all items available on eBay. As V could contain billions of items, it is
infeasible to perform a full-size softmax operation. Negative sampling is used to
limit the size of V

Figure 2.3: Model architecture with recurrent user representation [88]

User Tower

A user’s activity on an e-commerce platform includes various actions such as viewing items,
making search queries, adding items to the cart, and more. These actions provide valuable
signals for generating personalized recommendations. Wang et al. [88] incorporate multi-
modal user activities into the model, focusing on item viewing and search queries as
representatives of item-based and query-based events.

For item-based events, they map each item szi to its embedding vzi and concatenate it
with a 4-dimensional vector ezi representing the event type. For search queries, each
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query is modeled as a “pseudo-item” with the query text replacing the item title and the
dominant query category (predicted using a separate model) replacing the item category.

The vector representation for each user event zi is:

E(zi) = concat(vzi , ezi) (2.18)

With Continuous Bag-of-Events Representation, the model aggregates all event embed-
dings into a single vector by averaging them. An MLP layer with L layers, H hidden
dimensions, and ReLU activation functions generates the D-dimensional user embedding
u:

ũ = MLP
�

1
n

n�
i=1

E(zi)


, u = ũ

∥ũ∥ (2.19)

To incorporate the ordering of user events, the model uses a Gated Recurrent Unit (GRU).
The GRU processes the sequence of event embeddings, with update rules defined as:

rt = σ(Wrxt +Urht−1), ut = σ(Wuxt +Uu(rt ⊙ht−1)) h̃t = tanh(Wxt +U(rt ⊙ht−1))

ht = (1 − ut) ⊙ ht−1 + ut ⊙ h̃t

The user embedding u is generated by averaging the output vectors from all GRU steps:

ũ = 1
n

n�
i=1

li, u = ũ

∥ũ∥ (2.20)

This recurrent representation captures the order of user activities.

Item Tower

For title and aspect features, raw text is tokenized into embeddings of size Dtext using
the Continuous-Bag-of-Words (CBOW) [52] approach. The vocabulary for titles consists
of approximately 400K tokens specific to eBay item titles. Aspect features come from
a production database with around 100K tokens. Category values are mapped into an
embedding space of size Dcategory using a lookup table. All embedding tables are trained
from scratch with random initialization [88].

The item feature embeddings zi are concatenated and passed through a Multi-Layer
Perceptron (MLP) with L hidden layers, H hidden dimensions, and ReLU activation to
generate a D-dimensional item embedding vi:

zi = concat(ztitlei, zaspecti, zcategoryi), ṽi = MLP(zi), vi = ṽi

∥ṽi∥ (2.21)

The item embedding vi is normalized to unit length [88].
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2.5 Data Augmentation for Information Retrieval
Another significant challenge in developing neural models for information retrieval (IR)
is the scarcity of domain-specific training data. Creating high-quality datasets manually
is arduous as it necessitates obtaining queries from real users. Although there are a lot of
datasets from diverse domains ranging from Wikipedia, scientific publications, news and
many more [5, 37, 84, 75], according to the BEIR Benchmark [78] in-domain performance
cannot predict how well a model will generalize. Many neural retriever that outperformed
BM25 on an in-domain evaluation, performed poorly on other datasets. Datasets need
diverse pooling strategies for fair assessment [78].

To address this issue, data augmentation methods have been employed to increase the
amount of training data, thereby aiding the learning process of data-driven models. In
low-resource settings, small-scale language models (LMs) have been utilized to generate
synthetic data for various natural language processing (NLP) tasks [18, 35]. Fadaee
et al. [18] discuss data augmentation in a low-resource Neural Machine Translation
(NMT) context, particularly focusing on generating synthetic data to improve translation
performance. They observed increases in BLEU [65] scores of up to 2.9 points over the
baseline model, demonstrating that their augmentation approach substantially improved
translation accuracy. This is achieved by generating novel contexts for rare words, which
allowed the model to better generalize to unseen words and phrases. Kobayashi et al.
[35] used contextual augmentation, via a bi-directional language model, to improve the
model’s accuracy across six benchmark datasets. For example, it improved performance on
sentiment analysis tasks (SST2, SST5) and question classification (TREC) over baseline
models without augmentation. The improvement is more significant than with synonym-
based augmentation. Recent studies demonstrate that large pre-trained language models
can generate task-specific synthetic data to address low-resource scenarios, with quality
validated through downstream performance improvements. For text classification, models
fine-tuned on limited labeled data generate class-conditioned sentences, which are filtered
via classifier-based curation to improve accuracy [3]. In relation extraction, GPT-2-
generated training examples for biomedical relations enhance BERT-based classifiers
by up to 11 F1 points [62]. For commonsense reasoning, generative augmentation with
diversity-aware selection improves both in-distribution accuracy and out-of-distribution
robustness [92]. Similarly, GPT-2-simulated user-agent dialogues trained on limited
human annotations achieve significant gains in low-resource dialogue systems [54]. These
results indicate that synthetic data quality is “reasonable” when it measurably mitigates
data scarcity and improves task-specific metrics like F1, accuracy, and generalization.

In the realm of information retrieval, dense retrievers have demonstrated comparable
performance to BM25 on certain datasets when pre-trained exclusively on documents
without relevance labels (unsupervised) [69, 31, 58]. These methods involve creating
synthetic pairs from the raw documents. This is done by looking at overlapping spans.
If the span is “Vienna” we create a query by taking a snippet from one document, like
“Vienna is the capital of...”, other documents that include the same span are then positive
pairs while others are negative pairs.

19



2. Background

In [7], documents are randomly sampled from various collections, and GPT-3’s Curie
model [8] is employed to generate questions based on these documents. Two prompt
templates are utilized: Vanilla, which involved randomly choosing pairs of documents
and relevant questions from the MS MARCO [5] training dataset, and Guided by Bad
Questions (GBQ), which used MS MARCO questions as examples of “bad” questions
and manually created more complex “good” questions. The generated questions are
filtered based on their relevance to the documents, retaining the top 10,000 pairs for
training. BM25 is used for initial retrieval, followed by reranking using the monoT5 [61]
model adapted for text ranking. Retrievers fine-tuned on the synthetic data outperformed
BM25 and some self-supervised dense retrieval methods. The experiment demonstrated
the effectiveness of using large LMs to generate synthetic training data for IR tasks. The
synthetic data helped in adapting retrievers to specific domains, addressing the challenge
of limited domain-specific training data.

In [42], the core idea involves using a sequence-to-sequence (seq2seq) model for synthetic
query generation, addressing the challenge of obtaining labeled training data. The
authors utilized BART [39], a pre-trained Transformer-based seq2seq model, for query
generation. The model is fine-tuned on MS MARCO [5] positive query-passage pairs
to learn query generation from passages. The model is then applied to passages from
English Wikipedia to generate synthetic query-passage pairs. For each passage, 10
synthetic queries are generated using nucleus sampling with a probability p = 0.95, and
the top 5 queries based on likelihood scores are retained, resulting in a dataset named
WIKIGQ, comprising 110 million synthetic query-passage pairs. The retrieval models,
initialized with BERT-base, are pre-trained on the WIKIGQ dataset. This pre-training
involves a two-tower architecture, where query and document embeddings are constructed
separately, and the dot product of these embeddings measures similarity. The experiments
demonstrate that the synthetic queries significantly improve retrieval performance, with
models pre-trained on synthetic data often outperforming those trained on real data in
zero-shot settings. Key findings in [7] indicate that models trained on synthetic data can
outperform classical retrieval methods, such as BM25, and even surpass models trained
on real datasets. Synthetic data enhances both performance and robustness, allowing
retrieval models to generalize better to unseen data. For example, in non-Wikipedia
domains like ANTIQUE and BIOASQ, models fine-tuned with domain-specific synthetic
data displayed substantial improvements, suggesting that synthetic data helps bridge
domain gaps and adapts models to target contexts effectively.

Additionally, Ma et al. [51] utilize an encoder-decoder architecture with Transformer
layers for question generation [83]. The encoder creates a representation of a passage, while
the decoder formulates a plausible question that the passage could answer. The trained
model is then applied to target domain passages to produce synthetic question-passage
pairs. Inputting target domain passages creates noisy but relevant question-passage pairs.
Ma et al. [51] reveal that the augmented data aids models in adapting across different
domains and even improves retrieval performance close to that of supervised models in
certain cases. The study also introduces a hybrid approach combining BM25 (term-based)
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and neural models, which leverages the strengths of both methods to enhance retrieval
results. This approach shows significant gains in specialized domains, such as biomedical
literature, where traditional models struggle without domain-specific supervision

2.6 Summary
Information retrieval bridges users with relevant data through systems like search engines
and chatbots. Traditional sparse retrieval methods, such as BM25, rely on lexical term
matching and probabilistic frameworks to rank documents. While effective and efficient,
these models struggle with semantic nuances, synonymy, and polysemy. Enhancements
like BM25L, BM25+, and BM25-adpt address limitations such as document length bias
and term-specific parameter tuning, improving robustness across diverse corpora.

Neural retrieval models, powered by deep learning, have revolutionized IR by encoding
queries and documents into dense vector spaces. Architectures like dual encoders,
transformers, and pre-trained language models (e.g., BERT, RoBERTa) capture semantic
and contextual relationships, overcoming lexical gaps. Applications in e-commerce, such
as Taobao’s Multi-Grained Deep Semantic Product Retrieval and eBay’s two-tower
recommendation system, demonstrate how neural models integrate user behavior and
multi-modal data to deliver personalized results. These systems balance efficiency (via
pre-encoding) and relevance, though challenges like controllability persist.

Data scarcity remains a critical hurdle, particularly in domain-specific and multilingual
settings. Synthetic data generation, using large language models (e.g., GPT-3, BART)
to augment training corpora, has proven effective. Techniques like query generation and
contrastive learning with synthetic pairs enable models to generalize across domains,
achieving performance comparable to supervised methods. Hybrid approaches, combining
sparse and dense retrievers, further enhance robustness, underscoring the synergy between
classical and modern paradigms in advancing IR systems.
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CHAPTER 3
Large Language Models

Large Language Models (LLMs) are a subset of artificial intelligence (AI) models designed
to understand and generate human language. They employ deep learning techniques,
particularly neural networks, to process and produce text that is contextually relevant and
coherent [11]. These models are trained on extensive amounts of textual data, enabling
them to capture the intricacies of language, including syntax, semantics, and even some
aspects of pragmatics. Large Language Models, such as GPT (Generative Pre-trained
Transformer) [11], BERT (Bidirectional Encoder Representations from Transformers) [16],
and BART (Bidirectional and Auto-Regressive Transformers) [39], have revolutionized
the field of natural language processing (NLP). They are typically constructed using
transformer architecture [83], which allows them to manage the complexity and variability
of human language.

3.1 Transformers
The deep learning field is undergoing a significant transformation due to the rapid
evolution of Transformer models. These models have not only set new benchmarks in
Natural Language Processing (NLP) but have also expanded their impact across various
aspects of artificial intelligence [16, 83].

Transformer models are distinguished by their unique attention mechanisms and ability to
process data in parallel, leading to unprecedented accuracy and efficiency in understanding
and generating human language [16, 83].

Transformers were initially developed to address the challenge of sequence transduction,
or neural machine translation, which involves converting an input sequence into an output
sequence [83]. This capability to transform sequences is the reason behind their name,
“Transformers”.
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At the time of the Transformer model introduction, Recurrent Neural Networks (RNNs)
were the preferred approach for handling sequential data, characterized by a specific
order in its input.

3.1.1 The shift from RNNs to Transformers
RNNs [30] function similarly to a feed-forward neural network but process the input
sequentially, one element at a time.

Transformers were inspired by the encoder-decoder architecture found in RNNs. However,
instead of using recurrence, the Transformer model is entirely based on the attention
mechanism [83].

Besides improving RNN performance, Transformers have introduced a new architecture
to solve many other tasks, such as text summarization, image captioning, and speech
recognition.

RNNs face two main problems for NLP tasks:

1. They process input data sequentially, which does not leverage modern GPUs
designed for parallel computation, resulting in slow training.

2. They become ineffective when elements are distant from each other due to the
potential loss of information over long sequences.

The shift from RNNs like LSTM to Transformers in NLP is driven by these issues and
Transformers’ ability to address them through the attention mechanism. Attention
allows the model to focus on specific words, regardless of their distance and it enhances
performance speed by enabling parallel computation.

3.1.2 Model Architecture
When considering a Transformer (Figure 3.1) for language translation as a simple black
box, it takes a sentence in one language, such as English, as an input and outputs its
translation in German.

The encoder maps an input sequence of symbol representations (x1, . . . , xn) to a sequence
of continuous representations z = (z1, . . . , zn). Given z, the decoder then generates
an output sequence (y1, . . . , ym) of symbols one element at a time. At each step, the
model is auto-regressive [24], consuming the previously generated symbols as additional
input when generating the next. The Transformer follows this architecture using stacked
self-attention and point-wise, fully connected layers for both the encoder and decoder.

Encoder

The encoder serves as a crucial element within the Transformer architecture, primarily
tasked with converting input tokens into contextualized representations. Unlike preceding
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Figure 3.1: Global structure of Encoder-Decoder

models, which processed tokens in isolation, the Transformer encoder captures the context
of each token relative to the entire sequence [83]. This structural overview is depicted in
Figure 3.2.

The embedding process is performed exclusively in the bottom-most encoder. The encoder
initiates by transforming input tokens-whether words or subwords-into vectors through
embedding layers [83, 16]. These embeddings capture the semantic meaning of the tokens,
converting them into numerical vectors.

Each encoder receives a list of vectors, each with a fixed size of 512 [83]. In the bottom
encoder, these vectors represent the word embeddings, while in subsequent encoders,
they are the outputs from the encoder directly below them.

Since Transformers do not have a recurrence mechanism like RNNs, they use positional
encodings added to the input embeddings to provide information about the position of
each token in the sequence [16]. This allows the model to understand the position of
each word within the sentence.

It is suggested to use a combination of various sine and cosine functions to create
positional vectors, enabling the use of positional encoding for sentences of any length
[83]. Each dimension is represented by unique frequencies and offsets of the wave, with
values ranging from -1 to 1, effectively representing each position [19].

The Transformer encoder is composed of a stack of identical layers, with the original
Transformer model featuring six layers [83]. Each encoder layer transforms input sequences
into continuous, abstract representations that encapsulate information learned from
the entire sequence. This process includes residual connections around each sublayer,
followed by layer normalization. The output of each sub-layer is given by LayerNorm(x+
Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer itself.

Within the encoder, the multi-headed attention mechanism employs self-attention. This
mechanism allows the model to associate each word in the input with other words,
enabling the encoder to focus on different parts of the input sequence as it processes each
token. For instance, the model can learn to link the word “are” with “you”.
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Figure 3.2: Encoder Architecture

As shown in Figure 3.4, the attention scores are computed using three components:

• The query, a vector representing a specific word or token from the input sequence.

• The key, also a vector corresponding to each word or token in the input sequence.

• The value, associated with a key, used to construct the output of the attention
layer.

When a query and a key have a high attention score, the corresponding value is emphasized
in the output. The self-attention module allows the model to capture contextual informa-
tion from the entire sequence. Queries, keys, and values are linearly projected h times,
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Figure 3.3: Encoder - Input Embedding

and attention is performed in parallel on each projected version, yielding h-dimensional
output values.

Figure 3.4: Multi-Headed Self-Attention Mechanism

Once the query, key, and value vectors are processed through a linear layer, a dot product
matrix multiplication between the queries and keys creates a score matrix. This matrix
indicates the emphasis each word should place on others. Higher scores mean greater
focus. These scores are scaled down by dividing by the square root of the dimension of
the query and key vectors to ensure stable gradients.

A softmax function is then applied to the adjusted scores to obtain attention weights,
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Figure 3.5: Attention mechanism - Matrix Multiplication

resulting in probability values between 0 and 1. The softmax function emphasizes higher
scores while reducing lower ones, enhancing the model’s ability to determine which words
should receive more attention [83]. These weights are multiplied by the value vector,
resulting in an output vector where only words with high softmax scores are preserved.
This output vector is then fed into a linear layer for further processing, yielding the final
output of the attention mechanism.

Each sub-layer in the encoder layer is followed by normalization and residual connections
to mitigate the vanishing gradient problem, allowing for deeper models. This process is
repeated after the feed-forward neural network as well. The normalized residual output
then passes through a pointwise feed-forward network, consisting of two linear layers
with a ReLU activation in between.

Once processed, the output loops back and merges with the input of the pointwise feed-
forward network, followed by another round of normalization. This ensures everything
is well-adjusted for subsequent steps. The final encoder layer output consists of vectors
that represent the input sequence with rich contextual understanding, which are then
used as input for the decoder in the Transformer model [83].

Decoder

The decoder is responsible for generating text sequences. Similar to the encoder, the
decoder comprises sub-layers, including two multi-headed attention layers, a pointwise
feed-forward layer, residual connections, and layer normalization after each sub-layer.
These components function similarly to the encoder’s layers but with a unique twist:
each multi-headed attention layer in the decoder has a distinct role [19].

The final stage of the decoder’s process involves a linear layer acting as a classifier,
followed by a softmax function to calculate the probabilities of different words. The
Transformer decoder is specifically designed to generate outputs by decoding the encoded
information step by step.

The decoder operates in an auto-regressive manner, starting its process with a start token.
It utilizes a list of previously generated outputs as its inputs, along with the encoder
outputs that are rich with attention information from the initial input [83].

Figure 3.6 depicts the sequential decoding process, continuing until the decoder produces a
token that marks the end of the output generation. The first two layers, comprising output
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Figure 3.6: Decoder Architecture

embeddings and positional encodings, are similar to those in the encoder. Each layer
in the decoder consists of three key components. The masked self-attention mechanism,
while similar to the encoder’s self-attention, has a critical distinction: it prevents positions
from attending to future positions. This ensures that each word in the sequence is not
influenced by tokens that come later. For example, when calculating attention scores
for the word “are”, it is essential that “are” does not access information from “you”, the
next word in the sequence. This masking enforces that predictions at any given position
can only rely on outputs from preceding positions [19].
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Figure 3.7: Encoder-Decoder Attention

In the second multi-headed attention layer of the decoder (Figure 3.7), we observe a
unique interaction between the encoder and decoder components. Here, the outputs from
the encoder serve as both queries and keys, while the outputs from the first multi-headed
attention layer of the decoder serve as values. This setup aligns the encoder’s input with
the decoder’s, enabling the decoder to identify and emphasize the most relevant parts of
the encoder’s input.

Like the encoder, each layer of the decoder contains a fully connected feed-forward
network, which is applied to each position individually and in the same way across all
positions [83].

In the transformer’s data processing pipeline, the final stage involves passing through a
linear layer that acts as a classifier. The size of this classifier matches the total number
of classes, which corresponds to the number of words in the vocabulary. For example, if
there are 100 unique classes representing 100 different words, the classifier will produce
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an output array of 100 elements.

This output is then passed through a softmax layer, which converts the values into
probability scores ranging between 0 and 1. The word with the highest probability is
chosen as the model’s predicted next word in the sequence. Additionally, a normalization
step is applied after each sub-layer (such as masked self-attention, encoder-decoder
attention, and feed-forward network) and incorporates a residual connection around it
[83].

The output of the final layer is converted into a predicted sequence, usually through a
linear layer followed by a softmax function to produce probability distributions over the
vocabulary. As the decoder operates, the newly generated output is added to the list
of inputs, allowing the decoding process to proceed. This cycle repeats until the model
predicts a special token that marks the end of the sequence. The token with the highest
probability is selected as the final class, commonly represented by an end token [19].

Figure 3.8 shows the complete architecture.

3.2 BART

This model pre-trains by combining bidirectional and auto-regressive transformers. BART
functions as a denoising autoencoder using a sequence-to-sequence model, making it
versatile for numerous end tasks. The pre-training process involves two stages: first, the
text is corrupted using an arbitrary noising function, and second, the model learns to
reconstruct the original text. It utilizes a standard Transformer-based neural machine
translation architecture, which, despite its simplicity, generalizes BERT (with its bidi-
rectional encoder), GPT (with its left-to-right decoder), and other recent pre-training
methods [39].

A significant advantage of BART’s design is its flexible noising capability, allowing for
arbitrary transformations to the original text, including changes in length. Lewis et al.
[39] evaluate various noising techniques and find that the best performance comes from
randomly shuffling the order of the original sentences and employing a novel in-filling
scheme. This in-filling method replaces arbitrary length spans of text with a single
mask token, extending the original word masking and next sentence prediction objectives
of BERT by requiring the model to reason about sentence length and make extensive
transformations [39].

The model demonstrates high effectiveness when fine-tuned for text generation and
performs well on comprehension tasks. It matches RoBERTa’s [45] performance on
GLUE [86] and SQuAD [68] with similar training resources and sets new state-of-the-art
results in abstractive dialogue, question answering, and summarization tasks. Notably, it
improves performance by 6 ROUGE points over previous work on the XSum dataset [57].

Figure 3.9 compares the differences of BERT [16] and GPT [8] to the BART model.
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Figure 3.8: Transformer architecture

• BERT: Random tokens are replaced with masks, and the document is encoded
bidirectionally. Missing tokens are predicted independently, which means BERT
cannot be easily used for generation [39].

• GPT: Tokens are predicted auto-regressively, enabling GPT to be used for genera-
tion. However, words can only condition on leftward context, preventing it from
learning bidirectional interactions [39].

• BART: Inputs to the encoder do not need to be aligned with decoder outputs,
allowing arbitrary noise transformations. In this case, a document is corrupted by
replacing spans of text with mask symbols. The corrupted document is encoded
with a bidirectional model, and the likelihood of the original document is calculated
with an auto-regressive decoder. For fine-tuning, an uncorrupted document is input
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Figure 3.9: A semantic comparison of BART with BERT and GPT

to both the encoder and decoder, and representations from the final hidden state
of the decoder are used [39].

3.2.1 Architecture
BART is a denoising autoencoder that reconstructs a corrupted document back to its
original form. It is built as a sequence-to-sequence model featuring a bidirectional encoder
for the corrupted text and a left-to-right auto-regressive decoder. During pre-training,
we optimize the negative log-likelihood of the original document [39].

It employs the standard sequence-to-sequence Transformer architecture as described in
[83], with the ReLU activation functions replaced by GeLUs (Gaussian Error Linear
Units) [29], and parameters initialized from N(0, 0.02). The activation function is XΦ(x),
where Φ(x) is the cumulative distribution function of the standard Gaussian [29]. BART’s
base model includes 6 layers of encoders and decoders, while the large model has 12
layers. The architecture is similar to BERT [16], with two primary differences:

1. Each layer of BART’s decoder incorporates cross-attention over the encoder’s final
hidden layer, akin to the transformer sequence-to-sequence model.

2. BERT includes an additional feed-forward network before word prediction, which
BART omits. Overall, BART contains about 10% more parameters than a similarly
sized BERT model.

Pre-training BART

BART is trained by corrupting documents and then optimizing a reconstruction loss,
specifically the cross-entropy between the decoder’s output and the original document.
Unlike traditional denoising autoencoders that are designed for specific noising schemes,
it can handle any type of document corruption. The transformations used in [39] are
summarized in Figure 3.10

1. Token Masking: Similar to BERT, random tokens are sampled and replaced with
[MASK] tokens.
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Figure 3.10: Transformations for noising the input documents

2. Token Deletion: Random tokens are removed from the input. Unlike token
masking, the model must identify the positions of the missing inputs.

3. Text Infilling: Several spans of text are sampled, with span lengths drawn from
a Poisson distribution (λ = 3). Each span is replaced by a single [MASK] token.
0-length spans result in the insertion of [MASK] tokens. Text infilling trains the
model to predict the number of tokens missing from a span.

4. Sentence Permutation: The document is divided into sentences based on full
stops, and these sentences are shuffled randomly.

5. Document Rotation: A token is chosen at random, and the document is rotated
to start with that token. This task trains the model to recognize the beginning of
the document.

3.2.2 Fine-tuning BART
The representations generated by BART can be employed for various downstream tasks.

Sequence Classification Tasks

For sequence classification, the input is passed through both the encoder and decoder,
and the final hidden state of the last decoder token is input into a new multi-class linear
classifier. This is similar to the CLS token in BERT, but an additional token is appended
to enable the decoder’s representation to attend to the complete input [39].

Token Classification Tasks

For token classification the entire document is processed through the encoder and decoder,
with the top hidden state of the decoder used as the word representation for classification
[39].

Sequence Generation Tasks

BART’s auto-regressive decoder allows for direct fine-tuning for sequence generation
tasks such as abstractive question answering and summarization. The encoder receives
the input sequence, and the decoder generates outputs auto-regressively, leveraging the
denoising pre-training objective [39].
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Machine Translation

While previous research [17] demonstrated improvements by using pre-trained encoders,
benefits from pre-trained decoders were minimal. [39] proposes utilizing the entire
BART model, both its encoder and decoder as a unified pre-trained decoder for machine
translation.

To achieve this, the original BART encoder embedding layer is replaced with a newly
initialized encoder tailored to handle foreign language inputs. This new encoder can
employ a different vocabulary from BART’s original model. The system is trained
end-to-end, enabling the new encoder to effectively transform foreign words into a format
that BART can de-noise into fluent English.

1. Initial Phase: Most of BART’s parameters are frozen. Only the newly initialized
source encoder, BART’s positional embeddings, and the self-attention input projec-
tion matrix of BART’s first encoder layer are updated. The training is guided by
backpropagating the cross-entropy loss from BART’s output.

2. Fine-Tuning Phase: All model parameters are further trained for a small number
of additional iterations to refine the translation quality.

3.3 GTE
GTE is a general text embedding model trained using multi-stage contrastive learning 1.
It was developed and is maintained by the Institute for Intelligent Computing at Alibaba
Group [41]. The model is widely referenced in current research [41, 55, 96]. On the
Hugging Face Massive Text Embedding Benchmark (MTEB) Leaderboard, the GTElarge

model secured 19th place for English retrieval tasks and is downloaded over 2 million
times monthly 2. MTEB evaluates 309 text embedding models (for the English language)
across 58 datasets and 8 different tasks in 112 languages. Despite requiring only 1.62 GB
of memory, GTElarge supports sequences up to 8192 tokens, making it a resource-efficient
option compared to higher-ranked models, while still offering the complexity needed for
building a two-tower retriever tailored to our requirements.

The model training consists of unsupervised pre-training and supervised fine-tuning.
Both stages employ the learning objective of contrastive learning.

3.3.1 Model Architecture
The model is a deep Transformer encoder [83], which can be initialized with a pre-trained
language model such as BERT [16]. It adheres to a standard dual-encoder architecture,
applying mean pooling on top of the contextualized token representations produced by
the language model [41].

1https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5, last seen: 10.15.2024
2https://huggingface.co/spaces/mteb/leaderboard, last seen: 10.15.2024
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Formally, given a text sequence x = (x1, . . . , xn) consisting of n tokens, an embedding
model E transforms the text into a low-dimensional dense vector x = E(x) ∈ Rd.
To achieve this, we first use a language model to obtain deep contextualized token
representations:

h = LM(x) ∈ Rn×d (3.1)

Subsequently, we apply mean pooling across the first dimension to derive the final text
representation:

x = 1
n

n�
i=1

hi ∈ Rd (3.2)

These text representations are learned using a contrastive objective, which differentiates
between semantically similar and dissimilar text pairs [41]. This training process requires
positive and negative pairs in the format (q, d+, d−), where q is a query, d+ is a relevant
document, and D− = {d−, . . . , d−

n } is a set of irrelevant documents. A commonly used
contrastive objective is the InfoNCE loss [82]:

Lcl = − log exp(s(q, d+)/τ)
exp(s(q, d+)/τ) + �n

i=1 exp(s(q, d−
i )/τ)

(3.3)

In this context, s(q, d) measures the similarity between two text segments q and d by
calculating the vector distance between their embeddings, q = E(q) and d = E(d).
To obtain high-quality text embeddings that can generalize across a variety of tasks,
it is essential to use a large and diverse dataset of text pairs from different formats
and domains [41]. This dataset is then used to train the model through an enhanced
contrastive loss method in multiple stages. The objective is to minimize the distance
between similar pairs in the embedding space while maximizing the distance between
dissimilar pairs, improving the overall quality of the learned representations.

3.3.2 Pre-training Data
Building upon prior research [60, 59, 87], this model is pre-trained using naturally
occurring text pairs extracted from diverse sources. To enhance the generalizability
of the embedding model, Zhang et al. [41] utilize a wide range of text pair sources,
including web pages (e.g., CommonCrawl, ClueWeb), scientific articles (e.g., arXiv,
SemanticScholar), community QA forums (e.g., StackExchange), social media platforms
(e.g., Reddit), knowledge repositories (e.g., Wikipedia, DBPedia), and code repositories
(e.g., StackOverflow, GitHub). They also take advantage of hyperlinks present in certain
datasets for extracting text pairs. In total, approximately 800M text pairs were used for
the unsupervised pre-training phase [41].

3.3.3 Fine-tuning Data
During the supervised fine-tuning phase, Zhang et al. [41] employ smaller datasets
with human-annotated relevance between two text segments, along with optional hard
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negatives generated by an additional retriever to create text triples [41]. To address both
symmetric tasks (e.g., semantic textual similarity) and asymmetric tasks (e.g., passage
retrieval), they compile data from a wide range of tasks and domains, such as web
search (e.g., MS MARCO), open-domain QA (e.g., NQ), natural language inference (e.g.,
SNLI), fact verification (e.g., FEVER), and paraphrasing (e.g., Quora). In total, they
use approximately 3 million text pairs for fine-tuning, drawing from training datasets
used in prior work [22, 21, 4].

3.3.4 Training
In the initial phase of unsupervised pre-training, data sources can vary significantly
in terms of the number of available training instances. To mitigate this imbalance, a
multinomial distribution is employed to sample data batches from different sources,
considering the size of each source. Let the complete pre-training dataset D consist of m
distinct subsets D1, ..., Dm, with the size of each subset denoted as Ni = |Di|. During
each training iteration, the probability of sampling data from the i-th subset Di is given
by:

pi = nα
i�m

j=1 nα
j

(3.4)

where they set α = 0.5 in this work [41]. Additionally, to prevent the model from learning
task-specific shortcuts for distinguishing data, all instances within a batch are ensured to
come from the same task.

Instead of reusing the contrastive loss objectives outlined in [32], this model adopts an
enhanced contrastive learning objective that is bidirectional and extends the pool of
negative samples by incorporating both in-batch queries and documents. This approach
can be seen as a combination of the loss variants proposed in [66, 72].

Given a batch of positive text pair samples B = {(q1, d1), (q2, d2), . . . , (qn, dn)}, the model
utilizes an improved contrastive loss in the following form:

Licl = − 1
n

n�
i=1

log exp(s(qi, di)/τ)
Z

(3.5)

where the partition function is defined as:

Z =
�

j

exp(s(qi, dj)/τ) +
�
j ̸=i

exp(s(qi, dj)/τ) +
�

j

exp(s(qj , di)/τ) +
�
j ̸=i

exp(s(qj , di)/τ)

(3.6)
Here, the first two terms handle the query-to-document contrast, while the last two terms
address the reverse (document-to-query) contrast. The model uses cosine similarity as
the distance metric:

s(q, d) = q · d
∥ q ∥2 · ∥ d ∥2

(3.7)

The temperature parameter τ is set to 0.01 [41].
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3.3.5 Evaluation
For the unsupervised text retrieval task, the model is evaluated using the BEIR benchmark
[77] for zero-shot retrieval. BEIR is a diverse information retrieval benchmark comprising
retrieval tasks from various formats and domains. When evaluated on 15 datasets, the
base-sized model (built on BERTbase with 110M parameters) significantly outperforms
other models like SimCE, Contriever, and E5 on the recall@100 metric. The base model’s
performance is comparable to E5large (330M parameters). For the MTEB benchmark [55],
the model is tested across 56 English datasets, covering seven different tasks, including
text classification, text retrieval, and text reranking. In the unsupervised evaluation
setting, the model outperforms E5 by a considerable margin. Moreover, in the supervised
setting, the model surpasses OpenAIada−002 [41].
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CHAPTER 4
Experiment Setup

We provide a detailed description of the datasets employed in our experiments and the
preprocessing steps taken to prepare the data for model training. We will also discuss
the training environment, including the hardware and software configurations used.

4.1 Datasets
The dataset utilized in this research is derived from the Text Retrieval Conference
(TREC) for product search [9] and is based on the ESCI dataset [70]. This dataset is a
comprehensive collection of challenging Amazon search queries and their corresponding
results, which has been publicly released to encourage research aimed at enhancing the
quality of search results. The dataset is structured around three key tasks essential for
improving the user experience in product search:

• Query-Product Ranking: Given a user-defined query and the top 40 products
retrieved by a commercial search engine, this task focuses on ranking these products
such that the more relevant products are positioned higher than the less relevant
ones.

• Multi-class Product Classification: This task involves classifying a set of
products returned for a specific query into one of the following categories: exact
match, substitute, complement, or irrelevant.

• Product Substitute Identification: Here, the objective is to identify potential
substitutes for a given product from a list of candidates.

Table 4.1 provides an overview of the various datasets considered in this thesis.
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Type Num Records Format
Collection 1,661,907 tsv: docid, Title, Description
Query to Query ID 30,734 tsv: qid, query
Test Queries 186 tsv: qid, query
Train QREL (ESCI) 392,119 tsv: qid, 0, docid, relevance label
Dev QREL (ESCI) 169,952 tsv: qid, 0, docid, relevance label
Test QREL (NIST) 115,490 tsv: qid, 0, docid, relevance label
Training Triples (Query, Positive, Negative Pairs) 20,888 json: qid, query, positive passages, negative passages

Table 4.1: TREC Datasets

1. Collection: Comprises raw product documents, each annotated with a unique ID,
title, and descriptive metadata.

2. Query to Query ID / Test Queries: Assigns a unique identifier to textual search
queries, enabling systematic referencing in evaluation datasets.

3. QREL Datasets: Provides graded relevance judgments (0–3) for query-document
pairs, indicating their semantic alignment.

4. Training Triples: Encodes labeled query-product pairs (relevant vs. irrelevant) in
JSON format for supervised model training.

Our work focuses on information retrieval and synthetic data generation, and since
product descriptions are crucial for those tasks, we chose to explore the Collection more
in detail.

4.2 Data Exploration
The title length distribution (Figure 4.1) reveals a prominent concentration of titles
within the 0–250 character range, underscoring a preference for brevity and conciseness in
product naming conventions. Kernel density estimation (KDE) highlights a distinct mode
at 200 characters, though this global maximum corresponds to a narrow interval (196–200
characters) encompassing over 46,000 products. This granularity discrepancy between
the histogram binning and KDE smoothing suggests the need for careful interpretation
of distributional trends. While outliers with titles exceeding 250 characters exist, their
scarcity reinforces the dominance of succinct titles.

In contrast, description lengths exhibit a heavy-tailed distribution, with most entries
clustered below 2,000 characters but extending to extreme values ( 50,000 characters).
This asymmetry reflects diverse descriptive practices: while many products use concise
summaries, a non-trivial subset employs exhaustive detail, likely for technical or feature-
rich items. Such variability poses scalability challenges for computational models, as
excessively long descriptions may necessitate resource-intensive processing and memory
allocation.
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Figure 4.1: Distribution of Text Lengths

Notably, some titles and descriptions are repeated multiple times across different products.
To analyze these repetitions, we identify the top 10 most frequent phrases in both titles
and descriptions, as presented in Tables 4.2 and 4.3, respectively.

The most common title is “Hanes Men’s Sweatshirt, EcoSmart Fleece Hoodie, Cotton-
Blend Fleece Hooded Sweatshirt, Plush Fleece Pullover Hoodie”, appearing 83 times in the
dataset. This high frequency suggests that certain popular products are listed multiple
times, possibly due to variations in size, color, or other attributes not captured in the
dataset.

We observe that the most common description is “From the manufacturer”, occurring
9,510 times. This generic phrase likely serves as a placeholder or introduction to the
manufacturer’s details, but without substantive product-specific information.

Other frequently repeated descriptions include:

• “Product Description” with 6,607 occurrences.

• Variations like “Product Description Read more”, “Product Description Read more
Read more”, and so on, suggesting truncated or placeholder content.

• A lengthy, templated description appearing 1,622 times, which seems to be a
standard marketing blurb reused across multiple products.

The prevalence of such generic or repetitive descriptions implies that many product
entries lack unique descriptive content, which could impact the quality of any textual
analysis performed on the dataset.

4.2.1 Text Preprocessing
There are 38,556 missing values in the product title and 222,913 in the product description
fields. All records with both fields undefined need to be removed.
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Title Count
Hanes Men’s Sweatshirt, EcoSmart Fleece Hoodie, Cotton-Blend Fleece Hooded Sweatshirt, Plush Fleece Pullover Hoodie 83
Gloria Vanderbilt Women’s Amanda Classic High Rise Tapered Jean 82
Crocs Unisex-Adult Classic Clogs (Best Sellers) 66
Women’s Totally Shaping Pull-On Skinny Jeans (Standard and Plus) 65
Hanes Men’s Sweatshirt, EcoSmart Fleece Crewneck Sweatshirt, Cotton-Blend Fleece Sweatshirt, Plush Fleece Pullover Sweatshirt 63
Levi’s Men’s 511 Slim Fit Jeans (Regular and Big & Tall) 62
adidas Women’s Adilette Comfort Sandals Slide 52
Crocs Unisex-Child Classic Clogs 51
Amazon Essentials Women’s Classic-Fit Short-Sleeve Crewneck T-Shirt, Pack of 2 49
Timberland Men’s White Ledge Mid Waterproof Ankle Boot 46

Table 4.2: Top 10 Titles

Description Count
From the manufacturer 9510
Product Description 6607
Product Description Read more 3081
Product Description Read more Read more 2366
Product Description Read more Read more Read more 1800
From the manufacturer Read more 1726
From the manufacturer Previous page Outfit Your Superfan Disney designs Make everyday a Disney day with designs
for the whole family - exclusive to Amazon Outfit Your Occasions Women’s looks Dresses and more, in fresh styles
to match all your moments. Outfit Your Vibe New styles for him Easygoing or buttoned up, find the tops and bottoms
you need for all that you do. Outfit Your Little One The baby scene Keep them in cuteness. Shop new styles, available
in adorable. Next page 1 DISNEY X AE 2 WOMEN 3 MEN 4 KIDS/BABY

1622

Product Description This pre-owned or refurbished product has been professionally inspected and tested to work and
look like new. How a product becomes part of Amazon Renewed, your destination for pre-owned, refurbished
products: A customer buys a new product and returns it or trades it in for a newer or different model. That product is
inspected and tested to work and look like new by Amazon-qualified suppliers. Then, the product is sold as an Amazon Renewed product
on Amazon. If not satisfied with the purchase, renewed products are eligible for replacement or refund under the Amazon Renewed
Guarantee. Product Description This pre-owned or refurbished product has been professionally inspected and tested to work and look like
new. How a product becomes part of Amazon Renewed, your destination for pre-owned, refurbished products: A customer buys a
new product and returns it or trades it in for a newer or different model. That product is inspected and tested to work and look like
new by Amazon-qualified suppliers. Then, the product is sold as an Amazon Renewed product on Amazon. If not satisfied with the
purchase, renewed products are eligible for replacement or refund under the Amazon Renewed Guarantee.

1130

From the manufacturer Previous page Next page 996
From the manufacturer Read more Read more 980

Table 4.3: Top 10 Descriptions

Our analysis further identified repetitive phrases in product descriptions (Table 4.3),
which we deemed irrelevant for retrieval tasks. To enhance data quality, we curated
an exclusion list of non-informative phrases and removed all matching products from
the dataset (exclusion criteria available in the GitHub repository1). We then merged
product titles and descriptions into a unified product_text column through concatenation.
Following this preprocessing pipeline, the refined Collection dataset comprises 980,974
products, stored in TSV format as p_collection.tsv.

We merge the Training Triples and Train QREL datasets to generate a unified set of
high-confidence positive pairs, stored as query_product.tsv. To ensure training quality, we
exclude pairs with relevance scores ≤ 1, retaining only those with the highest relevance
scores (2 and 3). This filtering strategy minimizes noise from marginally relevant
examples, enabling the BART model to focus on robust query-product relationships
during fine-tuning. The final curated dataset contains 226,438 high-relevance pairs.

1https://github.com/lukasthekid/enhanced-product-search-llm
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Baseline Preprocessing Stage

As introduced in several studies [51, 42, 27, 41], BM25 serves as a good baseline model.
But before feeding the model we build a text-preprocessing pipeline involving several
key steps to clean and standardize the text data, which is crucial for improving the
performance of NLP models [81].

Firstly, we perform stop word removal. Stop words, such as “and”, “the”, and “is”,
are common words that carry little meaningful information for many NLP tasks [81].
Removing these words helps reduce noise and improves the efficiency of the model. We
use the nltk [6] module in Python to remove english stopwords.

Next, we apply lemmatization, a process that reduces words to their base or root form
(lemma). For example, the word “running” is reduced to “run”. Lemmatization helps
in normalizing the text, ensuring that different forms of a word are treated as a single
entity. We use the WordNetLemmatizer from the nltk module.

Tokenization is another essential step in our preprocessing pipeline. It involves breaking
down the text into individual words or tokens. For instance, the phrase “Hello world!”
is tokenized into [“Hello”, “world”, “!”]. Tokenization helps in analyzing the text at a
granular level, making it easier to process [81].

We also convert all tokens to lowercase. This step ensures uniformity in the text data,
preventing the model from treating words like “Hello” and “hello” as different entities.
Lowercasing is a common practice in NLP to maintain consistency [81].

Finally, we remove punctuation marks such as commas, periods, and exclamation marks
from the token list. Punctuation often does not contribute to the meaning of the text
in a way that is useful for many NLP tasks, and its removal helps in reducing the
dimensionality of the text data [81].

4.3 Training Environment

For smaller tasks, such as exploring datasets, text preprocessing, we utilize a MacBook
Pro 2021 equipped with 32 GB RAM and an M1 Max Chip. We also build and evaluate
our baseline model on the MacBook, since it does not require a GPU. For computationally
intensive tasks, such as training large language models (LLMs), we leverage the TU.it
dataLab2 GPU Cluster. This setup includes access to a NVIDIA A100 GPU with 80GB
of GPU memory and 64 CPU cores. Additionally, we use a NVIDIA-Tesla V100 GPU
with 32GB of memory for running Jupyter Notebooks on the cluster. The maximum job
time is 7 days.

2https://www.it.tuwien.ac.at/services/netzwerk-und-server/datalab, last seen:
10.18.2024
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4.4 Evaluation Metrics
Here we will discuss the metrics that we use during development, tuning and evaluation.

4.4.1 Discounted Cumulative Gain (DCG)
The inclusion of position-based relevance considerations in this metric underscores its
importance in our context. It assigns greater significance to relevant items positioned
higher in the list. Normalized Discounted Cumulative Gain (NDCG) is especially pertinent
to our case because it accommodates scenarios where relevance is a dynamic measure
[89].

NDCG prioritizes highly relevant items appearing at the forefront of the list, aligning
well with the primary objective of a recommender system to present the most relevant
items first. Its “normalized” nature entails scaling the scores between 0 and 1, facilitating
comparisons of performance across various queries or systems [89].

Furthermore, when evaluating synthetic queries, we can assess the product rankings
achieved using these queries. The objective of these queries is to retrieve the relevant
product from which the query is derived, making this metric applicable to this aspect of
the work as well.

The DCG at a particular rank ‘p‘ is calculated as:

DCGp =
p�

i=1

reli
log2(i + 1) (4.1)

where rel_i is the relevance of the item at rank i. The denominator is a discount factor
that gives less weight to items at lower ranks.

Ideal Discounted Cumulative Gain (IDCG): This is the maximum possible DCG through
position p, if all relevant items were ranked first. It’s calculated in the same way as DCG,
but with the items sorted in descending order of relevance [89].

The NDCG at a particular rank p is then calculated as:

nDCGp = DCGp

IDCGp
(4.2)

This gives a value between 0 and 1, where 1 means the items are perfectly ranked
according to relevance [89].

4.4.2 Precision@k
Precision@k [79], also denoted as P@k, is a common evaluation metric in information
retrieval that measures the accuracy of the top k retrieved documents. It is defined as
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the proportion of relevant documents among the top k retrieved documents. Formally, it
can be expressed as:

P@k = |Relevant Documents ∩ Retrieved Documents@k|
k

(4.3)

where:

• Relevant Documents is the set of documents that are relevant to the query.

• Retrieved Documents@k is the set of top k documents retrieved by the system.

• | · | denotes the cardinality of a set.

The metric P@k ranges from 0 to 1, where 1 indicates perfect precision (i.e., all k
retrieved documents are relevant) and 0 indicates no relevant documents among the top
k retrieved.

4.4.3 Cosine Similarity
Cosine similarity is utilized to measure the similarity between two non-zero vectors [67].
In the context of word embeddings, it assesses the similarity between two pieces of text,
such as a product description and a generated query.

Cosine similarity quantifies the cosine of the angle between two vectors in an n-dimensional
space. For two vectors A and B, the cosine similarity is defined as:

Cosine Similarity = cos(θ) = A · B
∥A∥∥B∥ (4.4)

where A · B represents the dot product of vectors A and B. ∥A∥ and ∥B∥ denote the
magnitudes (or Euclidean norms) of vectors A and B. θ is the angle between the two
vectors.

The value of cosine similarity ranges from -1 to 1. A value of 1 indicates that the two
vectors are identical, 0 indicates that the vectors are orthogonal (i.e., no similarity), and
-1 indicates that the vectors are diametrically opposed [67].

Calculation Steps:

1. Convert the product description and generated query into their respective word
embeddings. This involves using a pre-trained model, such as Sentence-BERT [71],
to transform the text into numerical vectors.

2. Calculate the dot product of the two vectors.

3. Compute the magnitudes (Euclidean norms) of both vectors.
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4. Divide the dot product by the product of the magnitudes to obtain the cosine
similarity score.

4.4.4 ROUGE Score
ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [43] comprises a collection
of metrics designed to evaluate tasks involving automatic text generation, especially
summarization. It compares a machine-generated summary or text to one or more
reference summaries or texts produced by humans. In our case, we only use this metric
for tuning our BART model, thus this score is not as relevant as the others. ROUGE
scores quantify the overlap between the generated text and reference text based on
n-grams, sequences of words, and pairs of words. Specifically, ROUGE-1 assesses the
overlap of unigrams, while ROUGE-2 evaluates the overlap of bigrams. ROUGE-L
measures the longest common subsequence between the generated text and the reference
text. By computing ROUGE scores for the generated queries and comparing them to
the reference queries, one can quantitatively measure the model’s performance. This
evaluation aids in determining how effectively the generated queries encapsulate the
essence and intent of the product descriptions [43]. We calculate this score between
ground truth queries from the QRELDEV (4.1) dataset and machine-generated queries.

4.5 Implementing the Baseline Model
Our implementation is based on the ATIRE BM25 described in [80] and is available on
GitHub3.

When the BM25 class is initialized with a corpus of documents, several attributes are
established to store important information about the corpus. These attributes include the
size of the corpus (corpus_size), the average document length (avgdl), document frequen-
cies (doc_freqs), inverse document frequencies (idf ), and document lengths (doc_len).
If a tokenizer is provided, the corpus is tokenized using the _tokenize_corpus method,
which utilizes parallel processing to expedite the tokenization process.

The _initialize method processes the corpus to compute essential statistics. It iterates
over each document in the corpus, counting the total number of documents (corpus_size)
and the length of each document. These lengths are stored in doc_len, and the average
document length is calculated (avgdl). For each document, the method calculates the
frequency of each term and stores these frequencies in doc_freqs. Additionally, the
method tracks how many documents each term appears in (nd), which is crucial for
calculating the inverse document frequency (IDF).

The BM25Okapi class, which extends the BM25 class, introduces specific parameters for
the BM25 formula, such as k1, b, and ϵ. It overrides the _calc_idf method to calculate
the IDF for each term. The IDF is computed using the formula:

3https://github.com/lukasthekid/enhanced-product-search-llm, last seen:
10.18.2024
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idf(t) = log


N − nt + 0.5
nt + 0.5


(4.5)

where N is the total number of documents and nt is the number of documents containing
the term t. This calculation adjusts the weight of terms based on their distribution across
the corpus.

If any IDF values are negative (which can occur for very common terms), they are
adjusted to a small positive value using ϵ to prevent skewing the scoring process.

To score documents against a query, the get_scores method is utilized. This method
initializes a score array for all documents. For each query term, it calculates a score for
each document using the BM25 formula:

score(q, d) =
�
t∈q

idf(t) · f(t, d) · (k1 + 1)
f(t, d) + k1 · (1 − b + b · |d|

avgdl)
(4.6)

where f(t, d) is the term frequency of term t in document d, |d| is the document length,
avgdl is the average document length, and k1 and b are tuning parameters.

Scores for each query term are summed to obtain a final score for each document.

The get_top_n method receives a search query, a set of documents contained in a
pandas DataFrame, and a parameter k that specifies the number of recommendations
to be returned. Within this method, the score is computed for each query-product pair,
appended to the DataFrame, and then sorted in descending order, ensuring that the
products with the highest scores are listed first.

4.5.1 Hyperparameter Tuning
To perform hyperparameter tuning, we utilize the ParameterGrid from scikit-learn [64].
This tool allows us to define a grid of parameters and generates all possible combinations of
parameter values, making it particularly useful for grid search. By exhaustively searching
through a specified parameter space, we aim to find the optimal set of parameters for
our model. As previously mentioned, the hyperparameters we use for our BM25 retriever
are k1, b, and ϵ. We employ the following grid:

k1 : [1.2, 1.5, 1.8] b : [0.6, 0.75, 0.9] ϵ : [0.1, 0.25, 0.5]

Since this retriever does not need any training, we only use the validation dataset
(QRELDEV ). Remember that this set matches one query to multiple products with a
relevance score between 0 and 3. For each parameter combination, we randomly sample
10 queries from that dataset and evaluate. For each query we retrieve the ground truth
ranking from the dataset (e.g. one query matches to 10 products). We then take the

47



4. Experiment Setup

same set of possible products and calculate the BM25 scores on that given query and
compare the ranking. In each run, we evaluate 10 retrievals. If the NDCG score achieved
is higher than the previous best, we save the parameter combination as the new best
outcome. The best NDCG score achieved during tuning is 0.7686, with the parameters
b = 0.9, ϵ = 0.1 and k1 = 1.2. The best Precision@10 achieved is 0.78.
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CHAPTER 5
Synthetic Query Generation

To generate synthetic data we fine-tune BART [39], as this has already been used in
similar tasks [51, 42]. BART is particularly effective when fine-tuned for text generation
due to its encoder-decoder (seq2seq) architecture [39].

We load the pre-trained BARTlarge model from Huggingface1. It uses 12 layers in
each encoder and decoder and a hidden size of 1024. For fine-tuning we use PyTorch
2.4.0+cu121 [63]. While the mechanisms behind the BART model are highlighted in
Chapter 3, here we will focus on the implementation that are also on GitHub. This
model is developed on the TU.it dataLab Slurm Cluster by using batch jobs.

5.1 Fine-tuning BART
Fine-tuning refers to adapting a pre-trained model to a specific task using task-relevant
data. For this we use our previously generated positive pairs dataset (examples in Table
5.1). We first transform our relevant query product pairs into a Huggingface Dataset,
tokenize the dataset and split it into training and test sets using a 95/5 split. We
allocate 95% of the dataset for training and validation across multiple epochs, while the
remaining 5% is reserved as data for hyperparameter tuning and testing (50:50). 10% of
the training data is set aside for validation purposes. So in total, we train on 190,591
positive pairs, use 21,177 pairs for epoch evaluation, 5,661 pairs for hyperparameter
tuning and 5,484 pairs for testing. The tokenization process includes truncation and
padding to ensure uniform input sizes, which is critical for training transformers efficiently.
Training arguments, such as the number of epochs, learning rate, and batch size, are
defined using Seq2SeqTrainingArguments. Training is carried out using Seq2SeqTrainer,
which is configured with the model, training arguments, datasets, tokenizer, and a custom
callback for resource tracking. The training process is timed and logged, with the custom

1https://huggingface.co/facebook/bart-large, last seen: 10.07.2024
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5. Synthetic Query Generation

callback function logging CPU and memory usage at regular intervals, as well as elapsed
time and training metrics. This information is saved to a log file at the end of training.
The sequence-to-sequence training is tailored for text generation tasks like summarization
or translation. Our task of search query generation is similar to summarization, as it
involves capturing the most important product attributes in a query.

query product_text relevance

bmouo kids case for new ipad 10.2

LTROP Kids Case with Adorable Robot Back Design - Fits to New iPad 9th/8th/7th Generation
10.2-inch(2021/2020/2019) iPad 10.2"" Case, Kids Case for iPad 10.2-inch 2021(9th Generation)/2020
(8th Generation) /2019 (7th Generation), Shock-Proof Handle Stand Shoulder Strap iPad 10.2 Case
for Kids Compatible Model: iPad 9th Generation 2021 10.2-inch (Model: A2602 A2603 A2604 A2605)
iPad 8th Generation 2020 10.2-inch ( Model : A2428, A2429, A2430, A2270 ) iPad 7th Generation 2019
10.2-inch ( Model : A2197, A2200, A2198 ).
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Duffel Bag, Length 50 In, Width 30 In, Depth 30 In, Diameter 30 In, Material Canvas, Color Black
Duffel Bag, Length 50 In, Width 30 In, Depth 30 In, Diameter 30 In, Material Canvas, Color Black
From the manufacturer Zippered Canvas Duffle Bag Available in Black or OD Outdoor Everything T
exsport - Authentic Adventure Gear- has been proud to provide outdoor enthusiasts with family camping
equipment for over 70 years!
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crew socks unicorn

From the brand Merry Christmas Previous page Funny Slouch Socks For Women Visit the Store Funny
Food Socks Visit the Store Gifts for Her and Him Visit the Store Funny Crew Socks Visit the Store
Funny Kids Socks Visit the Store SOCKFUN socks combine a unique design style with high quality,
premium materials ensure our novelty socks are durable, comfortable, and breathable.
Let our exquisitely designed socks fill your everyday life with fun, laughter and love.
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Table 5.1: Positive Query Product Pairs

For tokenization, the product descriptions are tokenized with a max_input_length of
1024, while the target search queries are tokenized with a max_output_length of 64.
The fine-tuning process involves updating the model’s parameters to minimize the loss
between the predicted and actual target sequences.

1. Forward Pass: The Encoder processes the tokenized product descriptions and
passes them to the Decoder, which generates the predicted search queries token by
token. During training, the Decoder uses the previous actual token as input for the
next prediction, which facilitates faster convergence.

2. Loss Calculation: Cross-entropy loss [39] is used to measure the difference between
the predicted token probabilities and the actual tokens. Padded tokens are ignored
during loss computation (masked tokens) to avoid their impact. The loss function
is expressed as:

Loss = −
N�

i=1
yi · log(ŷi) (5.1)

where yi is the actual token (one-hot-encoded) and ŷi is the predicted probability
for that token.

3. Backpropagation: Gradients of the loss with respect to each model parameter
are computed, and the parameters are updated using the AdamW [46] optimizer
along with the calculated gradients. The parameters are updated according to the
following equation:

θnew = θold − η · ∇θL (5.2)
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where θ denotes the model parameters, η is the learning rate, and ∇θL represents
the gradient of the loss with respect to the parameters. AdamW combines Adam
with weight decay, which applies a penalty proportional to the magnitude of the
weights to the loss function, reducing the risk of overfitting [46]. A learning rate
scheduler is also employed to start with a higher learning rate and decrease it
gradually for more stable training.

The model is trained for 10 epochs, where each epoch represents a full pass through the
training dataset. After each epoch, the model is evaluated on the validation set. The
dataset is divided into batches for efficient computation, using a batch size of 32, which
balances memory usage and convergence speed. Evaluation is also performed after every
epoch to monitor model performance on unseen data, with the model generating search
queries for the product descriptions in the validation set. Checkpointing is implemented,
saving the model weights at the end of each epoch, and the best weights are loaded based
on the lowest validation loss. The model is trained on an A100 GPU, with an initial
learning rate of 2 · 10−5. The entire fine-tuning process took 31 hours to complete. Figure
5.1 illustrates the performance metrics throughout the training process.

Figure 5.1: BART Training and Evaluation Metrics
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5.1.1 Hyperparameter Tuning
To understand the parameters that can be chosen during inference. We present a listing
of the most important ones:

1. num_beams: Specifies the number of beams used during the beam search. A
higher number of beams typically results in more accurate and diverse queries as the
model considers more potential sequences. However, it also increases computational
complexity and time. For query generation, using a higher value helps ensure that
the generated queries are of high quality and relevant to the product description.

2. no_repeat_ngram_size: Ensures that no n-grams of the specified size are
repeated in the generated sequence. For example, if set to 2, the model will
avoid repeating bigrams (two-word sequences). This is particularly useful in query
generation to avoid redundancy and make the queries more diverse and natural-
sounding.

3. top_k: Sets the number of highest-probability candidates to consider at each step
in the generation process. For instance, if top_k is set to 50, only the top 50 token
candidates are considered for the next token in the sequence. This helps generate
more focused and relevant queries by avoiding low-probability tokens that could
make the queries nonsensical.

4. top_p: Defines the cumulative probability threshold. For example, if top_p is
set to 0.95, the model considers only the smallest set of tokens whose combined
probability is 95%. This approach allows for more dynamic and context-sensitive
query generation, balancing diversity and relevance.

5. temperature: Lower values (e.g., 0.7) make the model more confident and conser-
vative by sharpening the probability distribution, often leading to more predictable
and repetitive queries. Higher values (e.g., 1.0 or above) make the model more ran-
dom and creative by flattening the distribution, encouraging more diverse outputs.
For query generation, an optimal temperature ensures a balance between creativity
and relevance.

6. length_penalty: Influences the preference for longer or shorter sequences. A
value greater than 1.0 penalizes shorter sequences and encourages longer ones, while
a value less than 1.0 does the opposite. In query generation, adjusting the length
penalty helps generate queries of appropriate length, ensuring they are neither too
brief nor unnecessarily verbose.

7. num_return_sequences: Sets the number of unique query sequences to generate
per input description. Generating multiple sequences can provide a variety of queries
for the same product description, which is useful for applications like search engine
optimization or improving the diversity of search results.
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In our approach, we choose three parameters—num_beams, top_p, and tempera-
ture—which yield a total of 36 possible combinations. Evaluating all these combinations
on our A100 GPU takes 29 hours and 38 minutes, even though we run three evaluations in
parallel. Due to this significant computational cost, we do not explore further parameter
combinations.

For each configuration, we generate queries for 5,661 products. To optimize the quality
of the generated queries, we evaluate each parameter set using metrics such as semantic
similarity and ROUGE scores. The parameters are tuned using a test dataset that the
model has not seen during training (including epoch evaluation). For each product in
this dataset, a single ground truth query is provided, which we use to compute similarity
scores against the generated queries. Specifically, we calculate the average semantic
similarity between the product text and the generated queries using cosine similarity,
and we compute an overall average of ROUGE-1, ROUGE-2, and ROUGE-L scores by
comparing each generated query to its corresponding reference query. These metrics are
then averaged across all products for each parameter combination.

Finally, we calculate a weighted score using the formula:

1.5 · (average ROUGE score) + (average cosine similarity score) (5.3)

According to our evaluation metrics, the best query generation performance is achieved
with the configuration: num_beams: 5, top_p: 0.9, and temperature: 0.8.

5.2 Negative Sampling
As we begin to utilize our model for generating relevant query-product pairs, it becomes
necessary to develop a strategy for creating irrelevant pairs as well. This process is known
as negative sampling [94]. In our methodology, we employ random sampling: we first
generate a positive query-product pair and then randomly select another product to pair
with the same query as an irrelevant match. We label these pairs with a 1 for relevance
and a 0 for irrelevance.

This method may not yield optimal results since it can produce negative pairs that
are too straightforward for the model to differentiate effectively. In future work, hard
negative sampling techniques could be utilized [94]. However, the implementation of
more sophisticated approaches is beyond the scope of this diploma thesis.

5.3 Generating Synthetic Datasets
A key objective of this thesis is also to produce a substantial synthetic dataset of positive
and negative query-product pairs. To achieve this, we leverage our fine-tuned BART
model to generate large-scale datasets. These datasets consist of query-product pairs
annotated with a relevance label, where relevant pairs are assigned a label of 1 and
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non-relevant pairs are assigned a label of 0. Such datasets are critical for training
and evaluating information retrieval systems, including search engines on e-commerce
platforms.

The product collection is divided into four equal parts, each representing 25% of the
product descriptions. This division facilitates parallel processing and optimizes computa-
tional resource usage. Each partition is used to generate a separate dataset, resulting in
four large datasets. For each product description within a partition, up to five synthetic
queries are generated using the fine-tuned BART model. The model accepts the product
description as input and produces likely search queries that users might employ to locate
the product. These generated queries are paired with their corresponding product descrip-
tions and labelled with a relevance score of 1, representing relevant query-product pairs.
Additionally, for each generated query, we randomly select a product description from an
unrelated product and pair it with the query, labelling these pairs with a relevance score
of 0, indicating non-relevant pairs. This approach implements negative sampling, which
is crucial for training models to differentiate between relevant and non-relevant items.
The positive and negative pairs are combined into a single DataFrame. Furthermore,
a separate dataset containing only positive pairs is created, using 40% of the product
collection. This dataset includes the generated queries and their respective product
descriptions and can be utilized for tasks where negative sampling is unnecessary or for
additional fine-tuning. Any duplicate pairs produced by the model are removed.

So, our primary objective is to generate synthetic queries for each product in the
Collection dataset. To accomplish this, we create five tab-separated files, each containing
approximately 920,000 positive and 920,000 negative pairs. Processing each subset requires
10 hours on an A100 GPU, and we designate these subsets as Synthetic Pairs 1 to 5.
However, we do not utilize this extensive dataset of around 9 million pairs for training
due to memory constraints on our GPU Cluster. Additional details are provided in Table
5.2.

For training our dense retriever model, we use a different dataset consisting solely of
positive pairs. This dataset, named Synthetic Positive Pairs, includes 1.45 million pairs
and takes 7 hours to generate. We produce 1,450,042 queries across 392,390 products,
averaging 3.7 queries per product. Further information can be found in Table 5.3.

5.4 Data Quality Evaluation
In this section, we assess the quality of our synthetically generated data. As discussed in
[20], conventional metrics such as BLEU and ROUGE are often inadequate for this task,
as they prioritize sentence-level matches rather than capturing the broader distribution of
generated text. To address these limitations, recent studies [20, 36, 74] have incorporated
TF-IDF analysis, embedding similarity measures, and human reviews of sampled data
to provide a more comprehensive evaluation. Following this methodology, we adopt a
similar approach to evaluate the quality of our generated dataset.
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query product_text relevance
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Table 5.2: Synthetic Pairs Dataset

query product_text

black light for cars interior
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House Dress S-XXL From the brand Previous page Women House Dress Button Down
Nightshirt Women Satin Robe Couple Sleepwear for Christmas Christmas Pajamas Set
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Chef Works Men’s Hartford Chef Coat
Brimming with confidence, the Hartford stands ready to tackle everyday tasks.
From the grandest project to the tiniest minutia, Hartford is your day-in-and-day-out hero.
It feels executive, even if the price point doesn’t. Brimming with confidence, the Hartford
stands ready to tackle everyday tasks. From the grandest project to the tiniest minutia,
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Table 5.3: Synthetic Positive Pairs Dataset

First, we begin by comparing the unique vocabularies found in the queries and prod-
uct_text. The Query Vocabulary Size comprises 53,701 unique words, indicating a
moderate variety in the types of products that users are searching for. In contrast, the
Product Text Vocabulary Size includes 1,821,431 unique words, suggesting that
product descriptions are quite extensive and provide detailed information across a wide
range of products.

The Vocabulary Diversity Ratio stands at 0.029, indicating that for every unique
term in the queries, there are approximately 34 unique terms in the product descriptions.
This low ratio highlights that the language used in product descriptions is considerably
more extensive and varied compared to that in queries. In the context of recommendation
systems, this suggests that users typically use more concise and direct language, whereas
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product descriptions tend to be more elaborate. This discrepancy could affect the
precision of information retrieval.

To accommodate this difference in language complexity, we have set the maximum output
length of our model to 64 tokens. This decision is based on our analysis of the Query
ID to Query dataset, where the longest query contains 29 tokens. By allowing up to 64
tokens for synthetic queries, we aim to generate longer queries that can capture more
detailed product information.

5.4.1 TF-IDF Evaluation

Next, we randomly (with state) select 100,000 observations from our Synthetic Positive
Pairs dataset and apply TF-IDF vectorization to both the query and product_text columns.
We then calculate the cosine similarity between each query and its corresponding product
description to assess their semantic alignment. The resulting average cosine similarity
of approximately 0.1784 suggests a low level of semantic relevance between queries and
product descriptions. This indicates some alignment in the usage of significant terms, yet
there remains substantial potential for enhancing the synthetic queries to more accurately
capture the content and context of the associated product texts.

5.4.2 Semantic Similarity

To go beyond simply matching words, we use our pretrained embedding model, GTElarge−en−v1.5,
to convert the text into numerical vectors. We then calculate the cosine similarity for
each pair of texts and create a distribution to visualize these similarities (Figure 5.2).
Due to memory limitations on our cluster, we randomly (with state) select 20% of the
total data.

On average, the cosine similarity is 0.644. This means that, typically, the pairs of texts
share a moderate to high level of meaning. This result suggests that our method for
generating synthetic query-product pairs is effective in producing relevant matches. The
median similarity score is 0.652, which is very close to the average, indicating that the
data is fairly evenly distributed.

Looking at the 75th percentile, the similarity score is 0.709. This high value shows that
a large portion of the pairs have strong semantic alignment. Most of the synthetic pairs
clustered around similarity scores between 0.6 and 0.7. This peak is in line with our
expectations for positive query-product pairs, where we aim for high but not perfect
similarity.

There is a slight tail in the distribution extending to lower similarity values (below 0.5),
which means that some pairs are less relevant. However, this portion is small, indicating
that our generation process rarely produces low-quality pairs.
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Figure 5.2: Synthetic Pairs Cosine Similarity Distribution

5.4.3 Qualitative Observations
Analysis Criteria

To evaluate relevance, we apply the following qualitative criteria:

1. Query-Product Semantic Similarity: The product description should contain
key terms from the query and align semantically.

2. Specificity Matching: Products should match specific terms in the query (e.g.,
“sds max chisel” should retrieve tools with similar specifications).

3. User Intent Fulfillment: The product should align with the intended use
suggested by the query, avoiding unrelated items.

Since we conduct a manual quality assessment, we select only 100 pairs at random from
the Synthetic Positive Pairs dataset, using a fixed seed for reproducibility. Below, we
provide several examples of relevant matches and mismatches, and then summarize our
observations based on the review of these 100 pairs.

High Relevance Examples

• Query: “humidifier without filter”
Product Description: “Raydrop Cool Mist 2.2L Humidifiers for Bedroom...”
This pair demonstrates a strong match as the product addresses the key requirement
of being a humidifier, with specifications that likely match user expectations.
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• Query: “step in bike trailer coupler”
Product Description: “Burley Bee, 1 and 2 Seat Lightweight, Kid Bike Trailer...”
The product description directly matches the query, suggesting a high likelihood of
relevance. This alignment with specific user needs increases retrieval quality.

Potential Misalignment Examples

• Query: “open when letters kit”
Product Description: “BUSINESS AND LEGAL 500 LETTER TEMPLATES:
A BOOK...”
Although the product includes “letters,” it does not appear to fulfill the implied
intent of the query, which likely refers to personal or gift-style “open when” letters.
Thus, it may be marked relevant but does not fully meet user expectations.

• Query: “garden gate”
Product Description: “Zippity Outdoor Products WF29012 Black Metal Gate...”
The product aligns with the garden gate theme, but additional details such as size
or material (e.g., “metal gate”) could provide a clearer alignment with user intent.

The analysis of the sample pairs reveals several insights:

• Relevance Variation: Not all query-product pairs labeled as relevant truly meet
the relevance criteria. Some pairs are fully relevant, others partially, and some are
irrelevant.

• Specificity Matters: Queries with specific attributes (e.g., "SDS Max," "pink")
require precise product matches. Mismatches in key attributes lead to irrelevance.

• Synthetic Generation Limitations: The synthetic process may not capture
nuanced differences between similar products (e.g., "SDS Max" vs. "SDS Plus") or
may overlook essential attributes.

The synthetically generated query-product pairs exhibit a mixture of relevance levels.
While some pairs are appropriate and valuable for product search applications, others are
not sufficiently aligned with the query intent. For the dataset to be effective in training
and evaluating product search models, it is crucial to ensure that the synthetic generation
process accurately captures query nuances and matches products accordingly.

5.5 Summary
In this chapter, we presented a comprehensive methodology for generating synthetic
query-product pairs to enhance the training and evaluation of information retrieval
systems within e-commerce platforms. Leveraging the robust capabilities of the BART
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(Bidirectional and Auto-Regressive Transformers) model, specifically the pre-trained
BARTlarge variant, we successfully fine-tuned the model to generate relevant and diverse
search queries based on extensive product descriptions.

The fine-tuning process, utilizing a substantial dataset of over 190,000 positive pairs,
demonstrated the effectiveness of BART’s encoder-decoder architecture in capturing
the intricate relationships between product attributes and user search intents. Through
meticulous hyperparameter tuning, we optimized the model to balance relevance and
diversity in the generated queries, achieving notable improvements in semantic similarity
and ROUGE scores. The selection of optimal parameters, such as num_beams =
5, top_p = 0.9, and temperature = 0.8, underscored the importance of fine-grained
adjustments in enhancing query quality.

The generation of large-scale synthetic datasets, encompassing approximately nine million
pairs, underscores the scalability of our approach. Despite computational constraints
limiting the immediate utilization of the entire dataset, the creation of a dedicated
subset of 1.45 million positive pairs for the dense retriever model illustrates the practical
applicability of our methodology in real-world scenarios.

Data quality evaluations, encompassing vocabulary analysis, TF-IDF assessments, se-
mantic similarity measurements, and qualitative reviews, provided a multifaceted under-
standing of the synthetic data’s effectiveness. While quantitative metrics indicated a
moderate to high level of semantic alignment, qualitative assessments revealed variations
in relevance, particularly in cases requiring precise attribute matching. These findings
emphasize the inherent challenges in synthetic data generation, such as capturing subtle
contextual nuances and ensuring comprehensive alignment with user intents.
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CHAPTER 6
Two-Tower Retriever Model

A dual encoder architecture consists of two independent encoders, each responsible for
transforming an input (such as text) into an embedding, with the model being optimized
based on similarity measures in the embedding space. This approach has demonstrated
strong performance across various tasks, including information retrieval and question
answering [23, 32]. A notable advantage of this model is its ease of deployment, as the
embedding index can be updated dynamically for new or modified documents and passages
without requiring the encoders to be retrained [23]. This contrasts with generative neural
networks used in question answering, which need retraining when presented with new
data, making dual encoders more adaptable to changes.

There are several valid configurations for dual encoders. As outlined in Table 6.1, earlier
research highlights two primary types: Siamese Dual Encoders (SDE) and Asymmetric
Dual Encoders (ADE). In SDEs, both encoders share parameters, while in ADEs, some
or none of the parameters are shared [23]. In practice, asymmetry between the two
encoders is often required, particularly when the inputs to the two towers differ. In our
approach, we use a Dual Encoder architecture with shared initial layers but separate
subsequent layers. This design allows each tower to learn representations specific to
queries or products, with distinct dense layers capturing domain-specific features for
each.

Model Architecture
DPR [32] Asymetric
DensePhrases [38] Asymetric
SBERT [71] Siamese
ST5 [60] Siamese

Table 6.1: Existing off-the-shelf dual encoders
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We leverage TensorFlow [1] to construct a deep retrieval model, designed to capture com-
plex patterns through its architecture. In general, deeper models can learn more intricate
relationships than shallower models. Our model is built upon the GTELARGE−EN−V 1.5
sentence encoder, which generates pretrained embeddings for synthetic search queries and
product information—formed by concatenating product titles with descriptions. Neural
networks are then constructed on top of this embedding layer to fine-tune the model
specifically for product search. In contrast, a shallow model, such as one with a single
layer and no activation function, might capture only the simplest associations between
search queries and products.

However, the complexity of deeper models brings certain challenges. First, they are
computationally intensive, requiring greater memory and processing resources for both
training and inference. Additionally, deeper models generally require more training data
to avoid overfitting and to ensure they learn generalizable patterns rather than merely
memorizing examples. Finally, training deep models can be challenging, necessitating
careful attention to hyperparameters such as regularization and learning rate to ensure
effective learning.

Optimizing the architecture of a real-world recommender system involves a nuanced
balance of intuition and precise hyperparameter tuning. Key factors, including model
depth and width, activation functions, learning rates, and optimizers, can significantly
influence performance. This complexity is further compounded by the gap between offline
and online performance metrics, underscoring that the choice of optimization objective
can be as crucial as the model itself.

6.1 Training Process
Although developing and optimizing larger models presents challenges, the substantial
performance improvements they offer often justify the effort. In this study, we demonstrate
the construction of deep retrieval models using TensorFlow Recommenders 1. To accelerate
training and address memory constraints, we initially precompute embeddings for our
query-product pairs and store them separately. This pre-processing step, which requires
approximately six hours on a V100 GPU, facilitates a more efficient training process.

Our objective is to learn embeddings such that the inner product (or cosine similarity)
between a query embedding and its corresponding relevant item embedding is maximized,
while the similarity with irrelevant items is minimized.

• Let Q denote the set of all possible queries.

• Let P denote the set of all possible products.

• Each query q ∈ Q is represented by features xq ∈ Rdq .
1https://www.tensorflow.org/recommenders last seen: 10.24.2014
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• Each product p ∈ P is represented by features xp ∈ Rdp .

• The embedding dimension is denoted as de.

We define the Query Tower as a function fq : Rdq → Rde , parameterized by θq, which
maps query features to embeddings:

eq = fq(xq; θq) (6.1)

Similarly, the Product Tower is defined as a function fp : Rdp → Rde , parameterized by
θp, which maps product features to embeddings:

ep = fp(xp; θp) (6.2)

To ensure the embeddings lie on the unit hypersphere, we perform L2 normalization:

eq ← eq

∥eq∥2
, ep ← ep

∥ep∥2
(6.3)

The similarity between a query and a product is then measured using the dot product of
their embeddings:

s(q, p) = e⊤
q ep (6.4)

Because the embeddings are L2-normalized, the similarity score s(q, p) lies within the
interval [−1, 1].
We approach the task by identifying the appropriate product p for each given query q. The
candidate pool includes all products from the positive pairs dataset. Our retrieval model
functions implicitly, meaning that any query-product pair not present in the dataset
is considered a negative pair that the model should not retrieve. In the TensorFlow
retrieval framework, we generate pairs by combining each query with every candidate
product and apply a cross-entropy loss function. This system manages both positive and
negative pairs, effectively utilizing a binary cross-entropy approach. The true labels are
represented as one-hot encoded vectors, where a value of 1 indicates a positive pair and 0
denotes a negative pair.
For a specific positive pair consisting of query i and candidate j, the dot product s(i, j)
is expected to be higher than the scores of any negative pairs. We then apply softmax
normalization across all candidates to determine the probability of the positive candidate:

P (j|i) = exp(s(i, j))�
k exp(s(i, k)) (6.5)

The loss function is structured to push the model to increase the probability of the correct
candidate j, thereby reducing the cross-entropy loss defined as L = − log P (j|i).

63



6. Two-Tower Retriever Model

6.2 Architecture
To identify the most effective architecture, we tested various layer sizes and activation
functions on a smaller portion of our dataset. Specifically, we selected the first 100,000
entries from the Synthetic Positive Pairs dataset. This subset was divided into 80%
for training and 20% for epoch evaluation. For each query, we retrieved potential
matches from the pool of products within the Synthetic Positive Pairs dataset and then
verified whether the relevant pair was included in the retrieved list. Each architectural
configuration underwent training for five epochs, and the best-performing model achieved
a top-100 accuracy of 0.201.

As illustrated in Figure 6.1, we utilize our GTELARGE−EN−V 1.5 model to generate
precomputed embeddings with dimensions of (1,1024). These embedding vectors are then
fed into the respective towers. Both the query and product towers share an identical
architecture, consisting of a Dense layer with 128 units and an ELU activation function,
followed by a Linear layer of the same size. Finally, we normalize the vectors. In our
approach, the magnitude of the vectors is not critical, and by normalizing them, the dot
product effectively becomes the cosine similarity metric, as previously described. Our
model combines the QueryModel and ProductModel and defines the training objective
using tfrs.tasks.Retrieval. This task handles the loss function and the evaluation with
top-k accuracy. This metric measures how often the true candidate is among the top
K candidates for a given query. Additionally, we use an optimizer (Adagrad) with an
exponential decay learning rate starting at 0.1.

6.2.1 Training Evaluation
With the retriever architecture now in place, we proceed to examine our entire Synthetic
Positive Pairs dataset. Our embedding analysis revealed that some of the generated
question-product pairs were irrelevant (see Figure 5.2). To mitigate this, we initiate
a filtering process to remove potentially irrelevant pairs. As discussed in Section 5.3,
we discovered that 25% of the pairs had a similarity score below 0.585. The median
similarity score was 0.652, closely matching the mean score of 0.6436. Additionally, 75%
of the pairs scored below 0.709 in similarity.

To systematically assess the effects of various similarity thresholds, we developed several
SYNGET (Synthetic Fine-Tuned GET Retriever) models, each incorporating different
cutoff values for the Synthetic Positive Pairs dataset:

• SYNGET-U : This model retains all pairs without applying any filtering.

• SYNGET-0.6, SYNGET-0.7, and SYNGET-0.8 : These models exclude pairs with
similarity scores below 0.6, 0.7, and 0.8, respectively.

This approach also limits the dataset size for each model. The unrestricted model is
trained on 1,160,065 synthetic pairs, whereas SYNGET-0.8 is trained on only 42,300
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Figure 6.1: Two Tower Architecture

pairs (Table 6.2). When evaluating the models on the Test QREL (NIST) set, we will
assess their performance on unseen, non-synthetic pairs.

Our goal is to determine how varying levels of pair filtration influence performance. All
models are trained on an NVIDIA A100 GPU over 50 epochs. Each model utilizes 80% of
the synthetic data for training and the remaining 20% for epoch validation. We do not use
a separate test set, as the models are evaluated against each other using real-world labeled
query-product pairs. The training performance of each model was analyzed to identify
the optimal cutoff value that achieves a balance between relevance and comprehensiveness
in the retrieved pairs. Table 6.2 details the dataset sizes employed by each model during
training. We hypothesize that the model with the highest cutoff may overfit the synthetic
data, as the pool of possible candidates diminishes when applying stricter filters to the
dataset.

Model Training Pairs Evaluation Pairs Candidates
SYNGET-0.8 42 300 10 576 35 177
SYNGET-0.7 330 861 82 716 214 006
SYNGET-0.6 817 160 204 290 362 648
SYNGET-U 1 160 065 290 017 392 390

Table 6.2: SYNGET retriever development datasets
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In a production setting, the retriever is required to select from a vast pool of products
rather than being limited to a small subset with known relevance. To address this,
we introduce an additional model, SYNGET-0.8 AC, which applies the same filtering
approach but retrieves from the full pool of 980,974 candidates. This approach is intended
to help the retriever identify highly relevant pairs across the entire dataset, as training
exclusively on the smaller subset could potentially hinder the model’s performance.

Figure 6.2: SYNGET Accuracy Comparison

Figure 6.2 presents the top-100 accuracy of each model on the evaluation dataset after
each epoch. The SYNGET-U model incorporates all synthetic pairs without any filtering.
As shown in the figure, this model consistently exhibits the lowest validation accuracy
across all 50 training epochs. This observation suggests that the inclusion of noisy or
irrelevant pairs in the training dataset significantly hinders the model’s ability to learn
meaningful patterns and effectively retrieve relevant items.

Accuracy SYNGET-0.8 SYNGET-0.8 AC
Top-100 0.65 0.38
Top-50 0.53 0.285
Top-10 0.28 0.13
Top-5 0.19 0.08

Table 6.3: Top-k accuracy of SYNGET-0.8 models after 50 epochs

Among all models, SYNGET-0.8 implements the strictest filtering criteria and demon-
strates superior performance, achieving the most stable validation accuracy with a peak
around 0.8. Despite a minor performance drop post epoch 30, it’s worth noting that this
model’s training is limited to a smaller, potentially more distinguishable candidate set.
In comparison, SYNGET-0.8 AC exhibits lower top-100 accuracy but shows consistent
improvement throughout all 50 epochs, culminating in a score of 0.38. This model’s
approach involves learning relevant pairs from the complete candidate pool while consid-
ering unknown combinations as irrelevant. As shown in Table 6.3, the model trained on
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the restricted candidate pool achieves evaluation metrics approximately double those of
the AC model.

6.3 Evaluation
We now evaluate our Two Tower Retriever against the BM25 baseline. The evaluation
is conducted on an unseen set of 115,490 query-product relevance pairs corresponding
to 186 distinct queries. The candidate pool comprises our full collection dataset, which
consists of 980,974 products. No thresholds are applied, ensuring that all models face the
same level of difficulty. As previously mentioned, our evaluation focuses on the NDCG@k
metric in conjunction with the Precision@k metric. This combination is particularly
suitable as we utilize categorical relevance scores ranging from 0 to 3. For precision,
any score above 0 is classified as relevant, given the majority of pairs are labeled as
0 (non-relevant). The NDCG metric further incorporates the ranking order, resulting
in higher scores when the top-k retrieved items are ranked by relevance, with items
scoring 3 appearing first. In addition to the BM25 baseline, we assess the performance of
GTElarge−en−v1.5 and MiniLML6−v2

2 without any fine-tuning.

Model NDCG@10 Precision@5 Precision@10
Okapi BM25 0.664 0.688 0.581
GTE Large v1.5 0.617 0.680 0.597
MiniLM L6 v2 0.584 0.647 0.576
SYNTGET-0.8 AC 0.660 0.711 0.635
SYNGET-0.8 0.564 0.626 0.564
SYNGET-0.7 0.220 0.329 0.314
SYNGET-0.6 0.169 0.262 0.259
SYNTGET-U 0.165 0.239 0.243

Table 6.4: Model Evaluation on Test Set

6.3.1 Analysis of the Retriever Evaluation
Table 6.4 and Figure 6.3 present the retrieval performance of several models. In Section
3.3 we stated why GTE was chosen for fine-tuning. Therefore, we decide to include the
pretrained GTE and the MiniLm-L6-v2 models in our comparison. In the referenced
MTEB leaderboard these models rank at place 19 and 139 while a BM25 algorithm ranks
at place 182 3, so they seem to be relevant models for our evaluation.

At a first glance, Okapi BM25 appears as a strong baseline, achieving an NDCG@10 of
0.664 and a Precision@5 of 0.688, though its Precision@10 drops to 0.581. This suggests
that while BM25 is effective at ranking and retrieving the most relevant items at the

2https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2, last seen:
02.20.2025

3https://huggingface.co/spaces/mteb/leaderboard, last seen: 10.15.2024
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Figure 6.3: Evaluation Metrics for Different Models

very top, its performance is somewhat diminished as more items are considered in the
precision calculation.

In contrast, the neural models built upon synthetic positive pairs reveal how alterations
in training data quality, affected by varying similarity cutoff thresholds, influence overall
performance. Notably, the SYNTGET-0.8 AC model shows competitive results with an
NDCG@10 score of 0.660, a Precision@5 of 0.711, and a Precision@10 of 0.635. The fact
that this model, which uses a strict filtering criterion (a cutoff of 0.8) on the synthetic
dataset and is evaluated on the full candidate pool, performs almost on par with BM25
in terms of NDCG and even surpasses it in precision metrics is indicative of the benefits
of high-quality, filtered training data. This performance implies that a more rigorous
filtration process, which removes lower similarity pairs, can lead to a model that more
accurately identifies highly relevant query-product pairs when compared to versions that
use less strict filtering.

On the other hand, models with less stringent filtering thresholds, such as SYNGET-
0.7 and SYNGET-0.6, exhibit significantly poorer performance. Their lower metrics
across the board indicate that including a larger volume of synthetic pairs with lower
similarity scores introduces noise that hampers the model’s ability to accurately discern
relevance in unseen, real-world data. The unfiltered model, SYNGET-U, which is trained
on the full spectrum of synthetic data without any similarity-based exclusion, also
underperforms considerably. This underscores a critical insight: the quality of synthetic
pairs is paramount. Without filtering, the inclusion of irrelevant or low-quality training
pairs can severely undermine model performance.
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CHAPTER 7
Conclusion

7.1 Summary
This thesis explores the enhancement of embedding-based product search systems by
leveraging Large Language Models (LLMs) for synthetic query generation. Traditional
lexical term-matching algorithms, such as BM25, often struggle with retrieving relevant
documents in cases where queries and documents lack lexical overlap. Embedding-based
retrieval (EBR) models address this challenge but are heavily reliant on large volumes of
supervised training data, which is often unavailable.

The core contribution of this work is the fine-tuning of LLMs, specifically BART, to
generate synthetic queries based on product descriptions. This approach creates a rich
dataset of query-product pairs, facilitating the training of a two-tower neural retriever
model. The two-tower architecture, which encodes queries and products separately,
enables precise matching and demonstrates superior performance compared to traditional
single-tower models.

Experiments conducted in this thesis compare the performance of the proposed synthetic-
data-trained retriever against BM25 and zero-shot LLM-based retrievers. Results indicate
improvements in retrieval performance when it comes to NDCG and precision, showcasing
the potential of synthetic data to overcome data scarcity challenges.

This research contributes to advancements in the field of information retrieval by providing
insights into the integration of LLMs and synthetic data for product search tasks.

7.2 Discussion
While our experiments demonstrate that filtering synthetic query-product pairs can
improve retrieval performance, the fine-tuned retriever still falls short of consistently
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surpassing a classical baseline like BM25. Several factors may contribute to these
limitations, both stemming from the nature of the synthetic data and the inherent
complexity of the product search domain.

Firstly, the generation of synthetic data relies on a language model (BART) trained to
produce plausible queries for given products. Although these queries can appear coherent
and product-related, they often fail to capture the nuanced relevance criteria that real
users apply. This discrepancy can manifest in subtle ways: queries may be syntactically
plausible but semantically misaligned with actual user intent, resulting in a fine-tuned
retriever that struggles when confronted with authentic, more diverse user queries. The
presence of irrelevant or weakly aligned synthetic pairs—even those passing a relatively
high similarity threshold—can dilute the signal in the training data, leading the model
to learn patterns that do not generalize well.

Secondly, the product descriptions themselves are rich, varied, and domain-specific,
encompassing extensive vocabularies and technical specifications. Synthetic queries tend
to focus on broad attributes or frequently occurring terms, often failing to reflect the
complexity and diversity of user preferences and niche product attributes. Consequently,
the retriever may learn representations that work reasonably well for queries resembling
the synthetic training examples but break down under more specialized, less frequently
encountered search intents. This gap between the synthetic and real-world distributions
inevitably constrains the achievable improvements.

Thirdly, the embedding-based retriever’s reliance on semantic vector representations
can inadvertently magnify discrepancies introduced during synthetic data generation.
While lexical methods like BM25 excel at matching surface-level terms, embedding-
based methods aim to model deeper semantic relationships. If the synthetic data does
not faithfully encapsulate genuine semantic distinctions—due to noise in generation,
imperfect filtering thresholds, or insufficient negative sampling strategies—then the
resulting embeddings may cluster around superficial signals rather than truly meaningful
differentiations. This leads to weaker retrieval performance when presented with complex
or ambiguous queries that demand a richer semantic understanding.

Finally, despite careful filtering of synthetic pairs, the chosen cutoff thresholds may not
be universally optimal. Overly conservative filtering risks discarding valuable training
examples, shrinking the effective data size and potentially limiting model generalization.
Conversely, lenient filtering allows too many low-quality pairs, reducing training efficacy.
Striking the right balance remains non-trivial, and suboptimal filtering strategies may
constrain the model’s ability to outperform robust, well-established baselines.

7.3 Future Work

This thesis demonstrated the potential of synthetic query generation using Large Language
Models and its application to enhancing embedding-based retrieval systems. While the
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results are promising, several avenues for future research remain unexplored and warrant
further investigation.

1. Future research could investigate alternative approaches to synthetic data gen-
eration, utilizing a wider array of large language models (e.g., GPT-series, T5)
and employing more advanced fine-tuning methodologies. Additionally, integrating
targeted data augmentation strategies that emphasize specific linguistic attributes,
such as idiomatic expressions or industry-specific terminology, may enhance the
model’s robustness and its capacity for domain adaptation.

2. This thesis evaluated the quality of synthetic data using indirect metrics like
improvements in retrieval performance. Future studies should aim to develop more
comprehensive evaluation metrics that directly measure semantic fidelity, linguistic
diversity, and contextual relevance of synthetic queries. Such metrics would provide
a more nuanced understanding of the effectiveness of synthetic data across various
retrieval tasks.

3. Leveraging large language models to generate challenging negative samples presents
a promising avenue for enhancing synthetic data generation in retrieval tasks. By
creating hard negatives, models can improve their ability to distinguish between
relevant and irrelevant information, thereby increasing the overall accuracy and
robustness of retrieval systems.

4. Combining embedding-based models with traditional retrieval techniques, such as
BM25, offers a fertile ground for innovative research. Future work could explore
the development of hybrid systems that dynamically integrate the strengths of both
lexical and semantic retrieval methods. Utilizing synthetic data in these hybrid
models could further boost performance, particularly in scenarios where individual
retrieval approaches may fall short.
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