
Semi-supervised federated
learning based intrusion

detection in a heterogeneous
industrial IoT setting

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Dominik Rieser, BSc
Matrikelnummer 11721035

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ. Prof. Dr. Schahram Dustdar
Mitwirkung: Dr. Andrea Morichetta

Wien, 29. April 2025
Dominik Rieser Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Semi-supervised federated
learning based intrusion

detection in a heterogeneous
industrial IoT setting

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Dominik Rieser, BSc
Registration Number 11721035

to the Faculty of Informatics

at the TU Wien

Advisor: Univ. Prof. Dr. Schahram Dustdar
Assistance: Dr. Andrea Morichetta

Vienna, April 29, 2025
Dominik Rieser Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Dominik Rieser, BSc

I hereby declare that I have written this Diploma Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.
I further declare that I have used generative AI tools only as an aid, and that my own
intellectual and creative efforts predominate in this work. In the appendix “Overview of
Generative AI Tools Used” I have listed all generative AI tools that were used in the
creation of this work, and indicated where in the work they were used. If whole passages
of text were used without substantial changes, I have indicated the input (prompts) I
formulated and the IT application used with its product name and version number/date.

Vienna, April 29, 2025
Dominik Rieser

v

Danksagung

Zunächst möchte ich meinem Betreuer Schahram Dustdar sowie meinem Co-Betreuer
Andrea Morichetta für ihre Unterstützung während dieser Arbeit danken. Die Diskussions-
und Feedbackrunden mit Andrea haben mich stets auf dem richtigen Weg gehalten und
mir wertvolle Lektionen vermittelt.

Darüber hinaus möchte ich meinen tiefsten Dank an meine Eltern, Hermann und Sabine,
aussprechen, die mich auf meinem Weg immer unterstützt und ermutigt haben. Ich bin
euch für alles, was ihr für mich getan habt, ewig dankbar.

Abschließend möchte ich meinen Brüdern David und Lukas danken, die mir im Laufe
meines Lebens Motivation, Inspiration und Unterstützung gegeben haben und immer für
mich da waren. Ein besonderer Dank auch für euer wertvolles Feedback zu dieser Arbeit.

vii

Acknowledgements

First, I would like to thank my advisor Schahram Dustdar and co-advisor, Andrea
Morichetta, for their support throughout this work. The discussion and feedback sessions
with Andrea always kept me on the right path and provided me with many valuable
lessons.

Furthermore, I want to express my deepest gratitude to my parents, Hermann and
Sabine, who always supported and encouraged me along the way. I am forever grateful
for everything you have done for me.

Lastly, to my brothers David and Lukas, who have always provided me with motivation,
inspiration, and encouragement throughout my life. A special thank you also for providing
valuable feedback on this thesis.

ix

Kurzfassung

Der Aufstieg von Industrie 4.0 hat die Entwicklung hochvernetzter intelligenter Systeme
vorangetrieben, wobei Machine Learning (ML) zunehmend in anomaliebasierten Intrusion
Detection Systemen (IDS) in Industrial-Internet-of-Things (IIoT)-Umgebungen eingesetzt
wird. In diesem Kontext hat sich Federated Learning (FL) als dezentraler Ansatz etabliert,
der Sicherheit und Datenschutz verbessert, indem ML-Modelle auf verteilten Geräten
trainiert und die Ergebnisse auf einem zentralen Server aggregiert werden, ohne dabei
lokale Daten zu übertragen. Traditionelle Ansätze wie Federated Averaging (FedAvg)
stoßen jedoch in heterogenen Umgebungen auf Herausforderungen, insbesondere hin-
sichtlich der ineffizienten Ressourcennutzung und einer erhöhten Anfälligkeit gegenüber
Denial-of-Service (DoS)-Angriffen aufgrund der zugrunde liegenden synchronen Aggrega-
tion. Asynchronous Federated Learning (AFL) bietet eine vielversprechende Alternative,
indem es Probleme in Zusammenhang mit Geräteunzuverlässigkeit, Aggregationseffizi-
enz und Konvergenzgeschwindigkeit mindert. Trotz dieser Entwicklungen adressieren
bestehende Federated Learning-basierte IDS Frameworks die Heterogenität der Geräte in
IIoT-Umgebungen weiterhin unzureichend.
Diese Arbeit schlägt ein verbessertes Federated Learning Framework für heterogene
Umgebungen vor, mit besonderem Fokus auf die Erkennung von DoS-Angriffen. Zur
Unterstützung des Übergangs zu einer heterogenen Systemarchitektur wird eine struktu-
rierte Methodik erstellt, die als Grundlage für die Entwicklung des Frameworks dient.
Diese Methodik wird auf ein bestehendes Federated Learning-basiertes Intrusion Detec-
tion Framework angewandt, und ein umfassendes Architekturdesign wird präsentiert,
das eine einheitliche Systembereitstellung auf heterogenen Edge-Geräten, asynchrone
Modellaggregation, dynamischen Datenumgang, Backup-Mechanismen sowie eine zentrale
Modellevaluierung umfasst. Die vorgeschlagene Lösung wird in einem kleinen, hetero-
genen IIoT-Testumfeld bezüglich System- und Modellleistung empirisch evaluiert. Die
Ergebnisse zeigen, dass unser Framework Leerlaufzeiten signifikant reduziert, die Update-
Rate erhöht und zusätzliche systemseitige Widerstandsfähigkeit gegenüber DoS-Angriffen
bietet sowie die Modellleistung und die Konvergenzrate verbessert.

xi

Abstract

The rise of Industry 4.0 has driven the development of highly interconnected intelligent
systems, with Machine Learning (ML) increasingly utilized in anomaly-based intrusion
detection systems (IDS) in Industrial Internet of Things (IIoT) settings. In this context,
Federated Learning (FL) has emerged as a decentralized approach that enhances security
and privacy by training ML models on distributed clients and aggregating the results
on a central server without sharing the underlying local data. However, traditional
federated learning methods, such as Federated Averaging (FedAvg), face challenges in
heterogeneous environments, including inefficient resource utilization and vulnerability to
Denial of Service (DoS) attacks caused by the underlying synchronous aggregation. Asyn-
chronous Federated Learning (AFL) presents a promising alternative, mitigating issues
related to device unreliability, aggregation efficiency, and convergence speed. Despite
these advancements, existing federated-learning-based anomaly detection frameworks
still inadequately address device heterogeneity in IIoT settings.
This thesis proposes an improved federated learning framework for heterogeneous envi-
ronments, with a particular focus on DoS attack detection. To guide the transition to a
heterogeneous system architecture, we develop a structured methodology that serves as
the foundation of our framework development. We apply this methodology to an existing
federated-learning-based intrusion detection framework and present a comprehensive
architectural design that features uniform system deployment on heterogeneous edge
devices, asynchronous model aggregation, dynamic data utilization, backup mechanisms,
and a centralized model evaluation. The proposed solution is empirically evaluated in a
small-scale, heterogeneous IIoT testbed with respect to system and model performance.
Results demonstrate that our framework significantly reduces idle times, increases update
rates, and provides additional system-level resilience against DoS attacks, while also
improving model performance and convergence rate.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Problem Statement and Motivation . 1
1.2 Research Questions . 2
1.3 Methodology . 3
1.4 Focus . 4
1.5 Thesis Structure . 4

2 Background 5
2.1 Denial of Service Attacks . 5
2.2 Industrial Internet of Things . 5
2.3 Intrusion Detection . 7
2.4 Federated Learning . 8

3 Related Work 15

4 Architecture Design 19
4.1 Transition From Homogeneous to Heterogeneous System Architectures 19
4.2 Baseline Architecture Review . 20
4.3 Architecture Design of the Heterogeneous Framework 22

5 Implementation 27
5.1 Dependency Upgrades and Uniform System Deployment 27
5.2 Asynchronous Model Aggregation . 28
5.3 Dynamic Data Handling and Backup Mechanism 28

6 Evaluation 31
6.1 Quantitative Performance Metrics . 31
6.2 Experiment Environment . 32

xv

6.3 Baseline Framework Evaluation . 32
6.4 Heterogeneous Framework Evaluation 36
6.5 Summary . 38

7 Limitations 41

8 Conclusion 43

9 Future Work 45

Overview of Generative AI Tools Used 47

List of Figures 49

List of Tables 51

Acronyms 53

Bibliography 55

CHAPTER 1
Introduction

1.1 Problem Statement and Motivation
Through the revolution of Industry 4.0, where devices are interconnected more than
ever, intelligent systems have emerged that are capable of advanced analytics and
decision-making [BMD23]. Machine learning is frequently used in modern anomaly-based
Intrusion Detection Systems (IDSs) to detect ongoing attacks and enable timely responses.
Federated learning [MMR+17] has emerged as an advancement in distributed machine
learning, promising security and privacy-preserving characteristics. Especially in an
Industrial Internet of Things (IIoT) setting, where security and privacy are central
concerns, federated learning can be used to reduce the overhead of sending massive
amounts of heterogeneous data to a central server [BMD23]. Federated learning allows
distributed clients to train a machine learning model on a local dataset, share the resulting
model parameters with a central server, which aggregates and builds a global model, and
finally use the updated model for future training. The use of federated learning not only
minimizes the risk of exposing confidential and sensitive information over the Internet
but also reduces bandwidth costs and latency issues [BMD23].

However, traditional federated learning approaches, such as Federated Averaging (FedAvg)
[LHY+19], face challenges in heterogeneous environments, as they typically update the
remote model in a synchronous manner once all federated devices complete their training
[XQXG23]. This leads to resource utilization limitations due to the need to wait for slow
devices, also known as stragglers, before aggregation in each training round [XQXG23].

Furthermore, FedAvg has been shown to have limitations with respect to Denial of
Service (DoS) attacks [DCS24]. This includes the convergence rate, as FedAvg uses
an inefficient client selection process in emergency situations [DCS24]. In the context
of Intrusion Detection System (IDS), it is crucial to employ systems that are able to
effectively handle DoS attacks, especially zero-day attacks. A short convergence time is

1

1. Introduction

essential for quickly distributing an updated global model that includes the newly gained
DoS attack information [Rou21].

Asynchronous federated learning emerges as a promising solution to some of the chal-
lenges regarding heterogeneous environments, in particular the unreliability of devices,
aggregation efficiency and resource utilization [XQXG23]. The asynchronous aggregation
approach allows the server to aggregate the model as soon as individual clients share local
updates and to initiate a new training round on the respective client. As a result, the
need to wait for stragglers is eliminated, reducing idle times and increasing the update
rate [XQXG23].

Current approaches in federated-learning-based anomaly detection in an IIoT setting
fail to address device heterogeneity, as shown in the works of [BMD23] and [APMS22].
In response, this thesis proposes an improved framework using promising solutions
presented in recent research, such as asynchronous federated learning, to optimize the
system architecture for heterogeneous environments, while emphasizing on DoS attack
detection. For this purpose, we utilize a small-scale heterogeneous IIoT testbed in which
the federated framework is deployed and evaluated. To guide our process, we define a
methodology for the transition from a homogeneous to a heterogeneous environment.

1.2 Research Questions
The aim of this thesis is to provide scientifically justified answers to following research
questions:

• RQ1: What is a representative methodology to transition a homogeneous
federated intrusion detection system architecture to a heterogeneous
environment?

This question is answered by providing a structured process of reviewing an existing
system architecture regarding selected patterns and design decisions, applying these
pattern while identifying potential limitations, drawbacks and trade-offs, as well as
effectively evaluating the introduced architecture.

• RQ2: What are the design implications of applying this methodology to
an existing synchronous federated learning framework when focusing on
effectively handling DoS attacks?

To answer this question, we apply the proposed methodology on a preliminary devel-
oped framework, selecting patterns and design decisions which enable us to mitigate
DoS attacks while showcasing limitations and balancing trade-offs. We publish the
implementation as an open-source framework, facilitating future research on this
and adjacent topics.

2

1.3. Methodology

• RQ3: How do synchronous and asynchronous federated-learning-based
intrusion detection systems compare with respect to model and system
performance?
We answer this question by empirically evaluating the baseline (synchronous) and
proposed (asynchronous) framework in a small-scale, heterogeneous IIoT testbed,
showcasing the performance differences in heterogeneous environments and validating
the effectiveness of our design approach.

1.3 Methodology
The goal of this thesis is to propose a framework for federated learning in a heterogeneous
environment, with a focus on DoS attack detection. We select a novel framework proposed
by Bekbulatova et al. [BMD23] as the baseline for our improvement efforts and intend
to utilize a small-scale, heterogeneous IIoT testbed for evaluating our work.
We achieve this goal through the process of answering our research questions. This
process can be structured into five stages:

1. Relevance: In this stage, we justify the relevance of the problem through a
literature review. The result is a report on the topics of federated-learning-based
anomaly detection, federated learning in heterogeneous environments, asynchronous
federated learning approaches, and relevant key architectural design aspects and
patterns, based on state-of-the-art literature.

2. Architecture Design: Based on the literature review, we define a methodology
guiding our transition process from a homogeneous federated intrusion detection
system architecture to a heterogeneous environment. Through this structured
process we design the system architecture of our proposed framework. The result
is a comprehensive architectural design that addresses device heterogeneity and
ensures robustness against DoS attacks.

3. Implementation: This stage covers the adaptation of the existing system based
on our architecture design. The result is a well-documented implementation, ready
to be published as an open-source framework to facilitate future research.

4. Evaluation: In this stage, the developed framework is empirically evaluated against
the baseline with respect to the system and model performance using key metrics.
The evaluation provides a validated comparison demonstrating the improvements
of our framework over the baseline.

The expected results of this thesis, along with the answers to the research questions,
should enable future researchers to adapt traditional synchronous federated-learning-
based intrusion detection systems for heterogeneous device environments. The proposed
framework specifically addresses limitations related to device heterogeneity and DoS
attack mitigation in existing approaches.

3

1. Introduction

1.4 Focus
The focus of this work is on the system architecture of federated-learning-based intrusion
detection systems in heterogeneous environments. Although the underlying machine
learning model is the foundation for our proposed framework, model optimization itself is
beyond the scope of this thesis. While heterogeneous environments generally encompass
both data and device heterogeneity, our improvement efforts specifically target device
heterogeneity. Addressing data heterogeneity in federated learning constitutes a complex
research area that would significantly broaden the scope of this work and is therefore
not considered. Additionally, this thesis concentrates on Denial of Service (DoS) attack
mitigation, with other attack types only briefly discussed. Extending the framework
to support multi-anomaly classification, including sophisticated attacks, represents an
important next step, but it is outside the scope of this work and is suggested for future
research.

1.5 Thesis Structure
This thesis is structured as follows. Chapter 2 provides an overview of the underlying
concepts, including DoS attacks, IIoT, IDS, and federated learning. In Chapter 3, results
of the literature review on federated-learning-based anomaly detection, federated learning
in heterogeneous environments, asynchronous federated learning approaches, and relevant
key architectural design aspects and patterns are presented. Chapter 4 first defines
a methodology for the transition process from homogeneous to heterogeneous system
architectures in federated learning. Based on this methodology, the existing framework is
reviewed, and the architecture of our improved framework is designed, addressing device
heterogeneity and DoS attacks. Chapter 5 presents details regarding the implementation
of our framework based on the previously introduced architecture design. In Chapter
6, the proposed framework is empirically evaluated against the baseline and the results
are presented. In Chapter 7, limitations of the proposed framework are examined and
discussed, and Chapter 8 summarizes the main contributions and findings of this work.
The thesis concludes with Chapter 9 by identifying potential avenues for future research.

4

CHAPTER 2
Background

2.1 Denial of Service Attacks
Most commonly, Denial of Service (DoS) is used to impair a computer or network resource
from legitimate use [LT01]. Early attack schemes of DoS attacks involved sending packets
from a single source computer to a single destination computer and over time, this has
evolved to more sophisticated attacks involving multiple distributed sources against single
or multiple targets, classified as Distributed Denial of Service (DDoS) attacks [LT01].

Common approaches for DoS attacks are sending streams of packets to a victim to
consume key resources in order to make the service unavailable for legitimate use or
sending malformed packets to confuse an application to force it to freeze or reboot [MR04].
According to Mirkovic et al. [MR04], attackers generally recruit agent machines through
automated exploitation of security holes and infecting vulnerable machines with the
attack code. The compromised agents are then often used to automatically recruit new
agents and send attack packets to the victim. Through spoofing of the unregulated source
address field, attackers are able to hide the identity of compromised machines. The goals
of DoS or DDoS attacks can be manyfold, ranging from personal reasons, prestige to
material gain or political motives [MR04].

Especially in times of conflict or war, DDoS attacks have become more prominent in order
to damage and impair the opponent [TÇES25]. For example, in the recent Ukraine-Russia
conflict, there have been reported DDoS attacks from both sides attacking many different
sectors such as government, news, finance, business and travel [TÇES25].

2.2 Industrial Internet of Things
In [SHH+20], Internet of Things is described as the interconnection between vast amount
of devices. These devices range from simple sensors to complex controllers and home

5

2. Background

appliances, enabling many new applications, including services to enhance and automate
daily tasks. For Serror et al. [SHH+20], the crucial part about these devices is that
they are internet-connected, thus exchanging data with other devices and services. They
further state that the reason for this emergence is the decrease of costs for hardware
and software, thus making it available to private homes and allowing for a multitude
of distributed devices working together. Over time, the domain of IoT spread to the
industrial sector, where connecting previously isolated devices led to the fourth industrial
revolution, Industry 4.0, also called IIoT [SHH+20].

However, according to Serror et al. [SHH+20], it has been shown that for its users, IoT
bears substantial security and privacy risks. They explain this with either completely
disregarding or poorly implementing security features, as well as not rolling out security
updates and having vulnerabilities unpatched. Since the broad audience of IoT applica-
tions consists of users without a deeper knowledge of networks and internet security, these
users often do not know how to configure their network properly to decrease security
risks [SHH+20]. IoT devices are thus often targeted in botnet attacks such as Bashlite or
Mirai [MAF+18, SHH+20].

Research in the security domain of Industry 4.0 also shows that IIoT devices are just as
likely as IoT devices to be prone to security risks and vulnerabilities [WHA+16, SWW15,
SSH+18]. Furthermore, attacks on industrial devices are oftentimes far more disastrous
than attacks on private IoT devices, as can be seen in the attacks on the German steel mill
in 2014 [LAC14] or the Ukrainian power grid in 2015 [WOGS17]. A key difference for IoT
and IIoT devices according to Serror et al. [SHH+20] is that IIoT devices have a much
longer lifetime, namely up to 10-30 years in contrast to consumer devices with an average
lifetime of 3-5 years. Thus, they infer that IIoT devices are required to adapt to changing
environments regarding security management and regularly patching vulnerabilities. In
addition, IIoT environments are typically larger than consumer environments, making it
more difficult to maintain a secure network architecture [SHH+20].

IoT attacks can be classified depending on a layered architecture model, as often described
in recent research [MYAZ15, YWY+17]. According to Serror et al. [SHH+20], this model
consists of perception, network and architecture layer, each with different scopes, common
attacks and distinctive countermeasures. In the perception layer physical or impersonation
attacks can occur, where attackers are either gaining physical access to the device or
create a false identity through spoofing. Prominent attacks in the network layer are
Man-in-the-Middle (MitM) and routing attacks. Serror et al. [SHH+20] state that in
MitM attacks, an attacker can gain access to sensitive information through interception
of communication between two parties. The application layer focuses on the software of
the IoT devices and is especially challenging to secure because new vulnerabilities can
be introduced through software changes. Common attacks in this layer are malicious
code injection and data leakage. Serror et al. [SHH+20] further state there exist attacks,
such as DoS, which can be found in multiple layers. According to them, the primary
goal of DoS attacks on the perception layer is to interrupt the communication or sensing
abilities of targeted IoT devices. On the other hand, the objective of DoS attacks on

6

2.3. Intrusion Detection

the network layer is to disconnect devices that are responsible for the communication
infrastructure, e.g. routers, while on the application layer its target is to flood critical
services with requests [SHH+20].

Countermeasures for securing IIoT can be implemented with different approaches, from
cryptography and authentication, patch management, service isolation, network moni-
toring and intrusion detection to awareness, training and assessment in the corporate
culture [SHH+20]. In the following section intrusion detection will be explored in-depth.

2.3 Intrusion Detection
According to Serror et al. [SHH+20], IDSs have been a crucial security measure to detect
ongoing attacks enabling timely responses. One of its key applications is to deal with
zero-day vulnerabilities, i.e. a vulnerability that is unknown to the vendor and for which
there is no security patch available [Rou21, SHH+20]. Serror et al. [SHH+20] state that
IDSs require efficient network-based monitoring in real-time, while not interfering with
crucial processes. Because of the inherent tasks in IIoT environments, regular network
traffic patterns can be examined and thus creating new possibilities in anomaly and
intrusion detection [SHH+20]. Serror et al. [SHH+20] examine that using a model of the
industrial process can further reduce the detection error rate and categorize such systems
as process-aware intrusion detection systems.

According to Khraisat et al. [KGVK19], IDSs can be classified as signature-based or
anomaly-based. In signature-based detection a pattern of an attack or threat is used
to compare and match it against captured events. They state that is a simple but
effective method, often used for detecting already known attacks, but struggles especially
with unknown attacks and keeping the patterns up to date. Anomaly-based intrusion
detection systems on the other hand, which compare the normal and expected behavior
profiles against observed events, are most effective for new and unforeseen vulnerabilities
[KGVK19].

Instead of classifying by detection method, another way to classify IDSs is based on the
input data sources [KGVK19]. According to Khraisat et al. [KGVK19], the two main
types in this category are Host-based Intrusion Detection Systems (HIDS) and Network-
based Intrusion Detection Systems (NIDS). HIDSs monitor data from host systems like
operating systems, windows server logs, firewall logs and application system audits. They
are effective for handling insider threats that do not involve network traffic. NIDSs,
on the other hand, analyze network traffic through network packet capture to detect
external threats early. A limitation of NIDS, according to Khraisat et al. [KGVK19],
exists in high bandwidth environments, where they might not be able to monitor all data
in a network due to the sheer volume of data passing through the network. One possible
approach to mitigate this limitation is to deploy the NIDS at multiple positions in the
network, and additionally use HIDS and firewalls in order to provide protections against
both internal and external attacks [KGVK19].

7

2. Background

2.4 Federated Learning
Federated learning is an advancement in distributed machine learning first introduced
in 2017 by McMahan et al.[MMR+17], which allows collaboratively training a model
on many distributed clients. In contrast to distributed machine learning, which can
generally be categorized as centralized, decentralized and fully distributed, FL is designed
for environments where data privacy is crucial, whereas distributed machine learning
often assumes cloud or data center environments [XQXG23]. Examples for such privacy-
preserving environments are mobile phones or IIoT settings. In Federated learning, each
client holds its own dataset on which the model is trained and shares the resulting
model parameters to a central server [BMD23]. The central server then aggregates the
results and builds a global model and distributes the new model to the clients for future
training. A major advantage of this approach is the inherently privacy preserving nature
of federated learning due to the reduction of transmitted data to the central server and
sharing only model updates [XQXG23, BMD23]. The use of federated learning reduces
the vulnerabilities of transferring confidential and sensitive data over the internet and
further decreases bandwidth costs and latency issues [BMD23].

According to Kairouz et al. [KMA+21], a typical federated training process is orchestrated
by a server and involves a repetition of the following steps:

• Client selection: The server selects a subset of clients that meet eligibility
requirements. These requirements could be set in a way to not interfere with normal
operations, for example, if the device is in use or under heavy load. Additionally,
for mobile applications, a mobile phone might only be eligible if it is connected to
power.

• Broadcast: In this step the participating clients download the current model
weights from the server.

• Client computation: The clients now execute the training program locally on
their respective dataset and update the local model.

• Aggregation: All updates from participating clients are collected and aggregated
by the server.

• Model update: The server locally computes a new model based on the aggregated
results from the clients.

An expectation which often does not hold true in real world applications is that in
federated learning, datasets across nodes are independent and identically distributed, also
referred to as IID [XQXG23]. According to Xu et al. [XQXG23], in practice, datasets
usually deviate from this expectation, which gives rise to a number of challenges across
federated learning approaches. As an example, they describe a federated system across
multiple hospitals. IID would assume that disease cases in one hospital show similarities

8

2.4. Federated Learning

to disease cases in another hospital and could be regarded as the same data. Non-IID
however assumes the diversity of such disease cases, which is often the case in real-world
scenarios [XQXG23].

The first and widely adopted and prevalent algorithm in federated learning is FedAvg
[LHY+19]. It runs Stochastic Gradient Descent (SGD) on a subset of clients in parallel
and then averages the results on the central server. According to Xu et al. [XQXG23],
as FedAvg inherently updates the remote model in a synchronous manner after all
federated devices complete their training, this leads to challenges if the edge devices are
not homogeneous. Because a new round only starts after a previous round has been
completed on all other participating devices, slow devices, also known as stragglers,
create a bottleneck on the system, leading to resource utilization limitations [XQXG23].
Xu et al. [XQXG23] further state that this challenge is not limited to heterogeneous
devices, but is also apparent in heterogeneous data environments, where the training data
distribution is uneven across devices. Additionally, it has been shown that the current
node selection algorithm is inefficient, as it often causes not selecting competent devices
for a participation round [XQXG23].

In regards to effective threat detection, especially for DDoS attacks, Doriguzzi et al.
[DCS24] argue, that FedAvg does not satisfy two crucial requirements. First, a short
convergence time is needed to reach the desired accuracy and to quickly distribute the
global model to clients with newly gained DDoS attack information. FedAvg does not
differentiate how each client’s data influences the global model’s accuracy and assigns the
same amount of computation to all clients. According to Doriguzzi et al. [DCS24], this
can lead to training rounds that do not substantially increase the accuracy of the system.
Secondly, since FedAvg uses weighted averaging, it favors clients with large datasets
and thus can not successfully adapt to detect attacks only seen in small training sets,
assuming a non-IID environment [DCS24].

2.4.1 Asynchronous Federated Learning

Asynchronous Federated Learning (AFL) emerges as a promising solution to some of the
challenges mentioned in 2.4, in particular unreliability of devices, aggregation efficiency
and resource utilization [XQXG23]. In contrast to FL, AFL does not wait for a full round
of training to be completed, but rather aggregates the model upon each reception of local
updates, thus improving aggregation efficiency, and then either instantly initiates a new
training round on this particular device or schedules a task for the future [XQXG23].
Resource utilization is also improved due to the reduction of idle times on clients in
heterogeneous environments [XQXG23]. This approach and the comparison between
traditional Federated Learning is visualized in Figure 2.1, showing that the global model
is updated much more frequently and there is no waiting period for faster devices finishing
their training round earlier than slower ones.

9

2. Background

Figure 2.1: Comparison between Asynchronous Federated Learning and Synchronous
Federated Learning workflows on heterogeneous devices [XQXG23].

2.4.2 Architectural Design Aspects and Patterns
According to Xu et al. [XQXG23], due to the non-IID nature of federated learning, a
distinction can be made between Horizontal Federated Learning (HFL) and Vertical
Federated Learning (VFL), based on how data is allocated across devices with respect
to the sample space and feature space, as visualized in Figure 2.2. They state that in
horizontal FL, the feature space of the clients is the same, whereas the sample space
differs. In vertical FL, clients have the same sample space but a different feature space.
Horizontal data partitioning allows federated learning systems to deploy the same model
architecture on each device to train their local model [STT23]. On the other hand, with
vertical partitioning it is possible to aggregate distinct features and provide updated
gradients without accessing sensitive information [XQXG23].

According to Zhang et al. [ZBO20], the most common architecture for federated learning
systems is a centralized, client-server approach. In this setting there exists a single
server orchestrating all clients. The server initiates training on participating devices,
aggregates the resulting model updates and deploys the global model [ZBO20]. Zhang et
al. [ZBO20] argue, that this approach exhibits a smooth and elegant model transmission
and is easily customizable, thus making it especially interesting for small systems as
it is fairly easy to set up. They state that it does, however, show scalability issues for
higher number of clients and is a single point of failure. An example of a centralized
aggregation architecture is FedAvg, and many other proposed frameworks in recent years
build upon this approach [LHZ+22]. Figure 2.3 shows a visualization of this and the

10

2.4. Federated Learning

Figure 2.2: Comparison between Horizontal Federated Learning (HFL) and Vertical
Federated Learning (VFL), visualized by [XQXG23].

following architectures, created by Zhang et al. [ZBO20].

According to Liu et al. [LHZ+22], a step towards decentralization can be found in
hierarchical aggregation architectures, in which multiple servers are employed to reduce
the model transfer time between server and clients. They state that this architecture still
builds upon a global server, but uses regional server to aggregate results from its cluster.
Regional servers aggregate results and send them to the global server, which returns a
global model of all aggregated regional results to distribute to the clients. This approach
is used for applications with large regional differences between devices, for example, in a
mobile environment. In this case, the regional servers are deployed at cell base stations,
where mobile phones can be connected [LHZ+22].

According to Zhang et al. [ZBO20], there also exists an architecture which can be
categorized between hierarchical and fully decentralized, the regional architecture. It is
similar to hierarchical in that it uses regional servers to aggregate results from its edge
cluster, but it does not involve a global aggregation server. The main advantages of this
approach are to eliminate the central server, as it is a single point of failure, and increase
system robustness, as well as computational efficiency [ZBO20].

Zhang et al. [ZBO20] further state that a fully decentralized architecture does not rely
on any aggregation servers and aggregates the results at the edge nodes. According to
them, with this approach, the number of performance bottlenecks from global servers
is minimized and the autonomy and adaptability is maximized at the cost of coordina-
tion difficulties. As each node operates independently and aggregates the results from
neighboring nodes, it is challenging to achieve global knowledge and collective tasks
[ZBO20].

Patterns can be employed at multiple stages of the federated learning life cycle on both
the server and the client device, from client management, model management, model
training to model aggregation [LLZ+22]. The work by Lo et al. [LLZ+22] provides an
overview of 14 patterns found in recent research and real-world applications. In the
following sections, some of those most relevant to our use case will be described in more
detail.

11

2. Background

Figure 2.3: Different types of architectures from centralized to decentralized. Visualized
by [ZBO20]

A client registry, employed at the global server, can be used to maintain information on
all devices in the federated environment [LLZ+22]. According to Lo et al. [LLZ+22], this
pattern is useful for distributing training tasks and keeping track of available and active
nodes. Especially in federated settings, where continuous connectivity and availability
are not guaranteed, clients can fail or drop out at any moment. In a synchronous learning
setting this is crucial, as the server needs to know when a round is completed. A client
registry thus allows for a more maintainable and reliable system, because it allows the
server to manage connected and disconnected nodes, as well as providing information
on problematic nodes [LLZ+22]. However, a drawback of this approach is that client
information held at the sever may cause data privacy issues, which could potentially lead
to the deduction of individual user usage patterns [LLZ+22].

12

2.4. Federated Learning

Figure 2.4: A visualization of the client selector pattern by Lo et al. [LLZ+22].

A pattern that is also based on the evaluation of information from individual clients is the
client selector, as seen in Figure 2.4 [LLZ+22]. According to Lo et al. [LLZ+22], it can
use certain information, such as available resources, data quality, and model performance,
from individual clients to determine which clients should be selected for the next training
task. They further state that in an environment with massive amounts of clients, the
server can select only the best fitting clients, which reduces communication costs with
low-quality devices and additionally increases model and system performance. Similarly
to a client registry, it is prone to data privacy issues and the loss of potentially essential
data [LLZ+22]. However, they state that in a setting where each client device’s local
data is equally essential, it is difficult to use a client selector effectively without losing
data from weaker clients.

According to Lo et al. [LLZ+22], in the context of model management, a pattern to
reduce communication cost is the message compressor. As the system scales up in
terms of client devices, more communication for model updates occurs between the server
and the clients. The authors further state that in order to avoid this becoming a critical
bottleneck, messages between client and server can be compressed before transmission.
For example, Google proposes two update approaches called structured update and
sketched update to increase communication efficiency [LLZ+22].

Due to inherently non-IID environments in real life, a heterogeneous data handler
can solve the issues of skewed data through data volume and data class addition, while
maintaining local data privacy [LLZ+22]. Lo et al. [LLZ+22] state that the handler
generates augmented data on the client until the volume is balanced across all devices
and the classes in the datasets are equal. This is achieved by periodically gaining

13

2. Background

information from other devices without accessing their data directly. Although it increases
the performance and generality of the model, the computational cost of dealing with
heterogeneous data is substantial and should not be disregarded [LLZ+22].

According to Lo et al. [LLZ+22], an asynchronous aggregator specifically tackles
the challenges of heterogeneous device environments. They further state that as each
device has different computational resources and thus different model training times,
conventional federated learning settings with a synchronous model aggregator show
increased waiting times until all updates are returned and a model aggregation can be
performed. With the use of an asynchronous aggregator, global model updates occur
as soon as a model update is received from a client and consequently, a new round of
training is initiated instantly. However, a drawback of this approach is the model bias,
as each global model update does not include all local model updates and additionally,
computationally better clients send more updates and thus might be favored [LLZ+22].

In addition to proprietary federated learning frameworks, such as NVIDIA Clara Train,
there exist several open-source federated learning frameworks, such as Flower1, TensorFlow
Federated2, FATE3, and PySyft4. Each framework has its peculiarities and offers specific
features. According to [KYF+20], differentiating characteristics can be observed in
supported operating systems, documentation, settings, data types and partitioning,
modes, and protocols. The decision should therefore be made in the context of the use
case and the objectives of the application.

1https://flower.ai/
2https://www.tensorflow.org/federated
3https://github.com/FederatedAI/FATE
4https://github.com/OpenMined/PySyft

14

CHAPTER 3
Related Work

The work by Bekbulatova et al. [BMD23] is closely related to this work, as it is used as
the baseline for our work with the goal in mind to improve upon the proposed approach re-
garding the heterogeneity of edge devices in a real-life testbed and mitigating DoS attacks
in the system. The recently published paper presents a framework for semi-supervised
anomaly detection in an Industrial IoT setting. It shows that the use of federated instead
of centralized learning is a promising approach with highly valuable security and pri-
vacy preserving characteristics, while having minimal performance differences. However,
the benchmarks are run in a virtual homogeneous environment on a single machine
disregarding any kind of device heterogeneity. Furthermore, it only focuses on a single
kind of attack, Denial of Service (DoS), although the underlying dataset also contains
Command Injection, Reconnaissance and Backdoor attacks. It was developed using the
federated learning framework Flower [BTM+20] and uses Deep-SAD [RVG+19] as its
deep learning model. As anomaly detection is usually treated as an unsupervised learning
problem, the authors of Deep-SAD argue that in practice there often exists a small set
of labeled samples and thus they provide this model for semi-supervised anomaly detection.

The underlying dataset used by Bekbulatova et al.[BMD23], as well as in this work, is
WUSTL-IIOT-2021 [M. 21]. It simulates an industrial water supervision system consist-
ing of data from a water tank, sensors, actuators, and the underlying Modbus network, in
which different cyber-attacks are performed in the span of 52 hours [BMD23]. Table 3.1
shows general information about the dataset. It contains 1,194,464 data samples, in which
87,016 samples represent attacks and 1,107,448 represent normal traffic. Table 3.2 shows
the distribution of traffic samples. The total attack traffic is 7.28%, of which 89.98%
represent DoS traffic. This was deliberately designed imbalanced, to closer represent
real-life environments, as DoS attacks are usually traffic intensive, while attacks such as
command injection or backdoor only occur in a small number of traffic data [M. 21]. The
41 selected features were defined as being common in network flows and changing during

15

3. Related Work

Dataset WUSTL-IIoT
Number of observations 1,194,464

Number of features 41
Number of attack samples 87,016
Number of normal samples 1,107,448

Table 3.1: Specifics of the WUSTL-IIOT Dataset. [M. 21]

Traffic type Percentage (%)
Normal Traffic 92.72

Total Attack Traffic 7.28
Command Injection Traffic 0.31

DoS Traffic 89.98
Reconnaissance Traffic 9.46

Backdoor Traffic 0.25

Table 3.2: Traffic types and respective percentages in the WUSTL-IIOT Dataset. [M. 21]

Figure 3.1: Normalized importance of the five most impactful features in WUSTL-IIoT
Dataset [M. 21].

attacks [M. 21]. According to the authors of the dataset [M. 21], although all features
show importance during attacks and are relevant for training, the five most impactful
features are Source Port (Sport), Mean flow (mean), Total Percent Loss (pLoss), Source
Loss (SrcLoss) and Destination Port (Dport), as seen in Figure 3.1. The importance
coefficient represents the normalized importance of the 41 features.

16

In this thesis [Gaj24], Gajanin studied the transition from centralized learning to fed-
erated learning, specifically in a non-IID environment. It provides a structured and
formal methodology highlighting challenges in this process, as well as providing some
countermeasures. The author conducts a case study in the area of human activity
recognition regarding classes such as walking, sitting or bicycling. It shows that device
heterogeneity and variations in local label and feature distributions decrease the per-
formance and stability in model training [Gaj24]. Gajanin [Gaj24] further shows that
especially for asynchronous federated learning, which addresses the challenge of device
heterogeneity, non-IID environments show negative effects due to the frequent updates
after each client causes a global model update. Gajanin [Gaj24] extended the Flower
framework to implement asynchronous federated learning and provided the work as an
open-source implementation on Github.

Doriguzzi et al.[DCS24] propose a framework called FLAD (adaptive Federated Leaning
Approach to DDoS attack detection), providing an enhancement of FedAvg for cyberse-
curity application in non-IID environments with highly sensitive information. It allows
assigning more computation to members whose attack profiles are harder to learn without
sharing test data with a central entity. Additionally, their system allows for dynamic
scenarios, in which new attack profiles must be taken into account in the trained models.
Doriguzzi et al.[DCS24] show that FLAD offers better performance in terms of convergence
time and accuracy. FLAD is validated using CIC-DDoS2019, a dataset of network activ-
ity with 13 types of DDoS attacks, provided by the University of New Brunswick [DCS24].

The work by Aouedi et al. [APMS22] proposes a federated semi-supervised learning
scheme to ensure that local private data is not sent to a remote entity while also
detecting attacks with a high accuracy. For their work, two IIoT datsets are used,
including a popular benchmark dataset for security research with data from a gas pipeline.
However, their approach also does not account for any device heterogeneity, as it is
also run on a single machine and utilizes the synchronous model aggregation algorithm
FedAvg, making it prone to stragglers when applied in a more heterogeneous environment.

A systematic survey regarding federated learning in edge computing was conducted
by Abreha et al. [AHS22], describing the current state of federated learning in edge
computing, recent advancements, open problems and also addressing research being done
in the field of heterogeneity management and future research directions. It shows that
there already exist potential solutions to device heterogeneity in federated learning which
can potentially be employed in future research [AHS22]. For example, FedProx [LSZ+20]
was proposed as a variation of FedAvg, which associates tasks with the available resources
on each device based on the work that needs to be performed. In that way, FedProx
provides a solution to the device heterogeneity challenge while still running synchronously
[AHS22, LSZ+20].

17

3. Related Work

Xu et al. [XQXG23] conducted a survey specifically focusing federated learning in hetero-
geneous device environments in an asynchronous manner. They show that synchronous
aggregation methods in synchronized federated learning settings encounter resource
utilization limitations due to the need to wait for slow devices (stragglers). It sum-
marizes existing asynchronous federated learning approaches not only regarding device
heterogeneity, but also data heterogeneity, security and privacy. One key conclusion is
that there currently do not exist sufficient real-life evaluation testbeds for asynchronous
federated learning using heterogeneous devices [XQXG23].

18

CHAPTER 4
Architecture Design

In this chapter, we first define a structured process for the architectural transition from
a homogeneous federated learning system architecture to a heterogeneous environment
based on the literature review conducted in chapter 2. We then review the baseline
system with respect to relevant architectural design aspects and patterns, with the focus
on heterogeneous device environments and DoS attack mitigation. Based on our findings,
we propose the architectural design of the improved framework, introducing a uniform
system deployment on heterogeneous edge devices, asynchronous model aggregation,
dynamic data utilization, backup mechanisms, and centralized model evaluation.

4.1 Transition From Homogeneous to Heterogeneous
System Architectures

Based on the literature review, we define the following methodology for transitioning a
homogeneous federated system architecture to a heterogeneous environment:

1. Review the baseline regarding relevant patterns and design aspects

2. Show potential limitations, drawbacks, and trade-offs

3. Apply derived modifications

4. Evaluate the improved framework against the baseline

Step 1 aims to gain a deeper understanding of the system architecture based on relevant
design aspects and patterns found in research. The goal of Step 2 is to find limitations,
drawbacks, and trade-offs with respect to the underlying environment and use case. In
Step 3 proposed solutions are applied to the baseline, aiming to provide an improved

19

4. Architecture Design

framework mitigating previous limitations regarding the heterogeneity. The purpose of
Step 4 is to empirically evaluate the improved framework against the baseline using key
metrics and justify, as well as validate the design choices. This structured process aims
to guide us in the design and evaluation of our work.

4.2 Baseline Architecture Review
The work of Bekbulatova et al. [BMD23], as described in chapter 3, compares semi-
supervised network anomaly detection in traditional centralized learning to a federated
setting. The framework can be classified as horizontal FL and the general architecture can
be categorized into a centralized, client-server approach. This is the standard approach
achieved with the federated learning framework Flower [BTM+20]. The framework
consists of a server and multiple clients, where each client consists of a SuperNode
and a ClientApp, and the server consists of a SuperLink and ServerApp. SuperNodes
and SuperLink are long-running processes responsible for communication between the
federation. The SuperLink is a process on the server side that forwards task instructions
to SuperNodes and receives task results from SuperNodes. SuperNodes are processes that
connect to the SuperLink, asking for tasks, executing tasks, and returning results to the
SuperLink. The actual project-specific code lies in the ServerApp and ClientApp, both
short-lived processes, containing all custom aspects of a federated system, such as client
selection and configuration, result aggregation, local model training and evaluation, as
well as pre- and post-processing. Flower also allows for multi-tenancy, meaning each
client can have multiple ClientApps and the server can have multiple ServerApps, where
depending on the run, different setups can be used in the same federation. The work by
Bekbulatova et al. makes use of the basic Flower setup, without multi-tenancy.

The server in Flower additionally acts as a client registry (see section 2.4.2), as it needs
information on all connected devices. As all available Flower aggregation strategies
are synchronous (at least at the time of conducting this work), the Flower server only
aggregates the results after receiving the result of each individual participating client.
The aggregation model used in the work of Bekbulatova et al. [BMD23] is FedAvg, the
most popular aggregation approach found in recent research, which has been described
in section 2.4.

The federated setup for the experiments in the baseline framework consists of five clients
and one server, running locally on a single machine. A visualization of this setup can
be seen in 4.1. All clients in this IIoT scenario utilize the same model configuration,
where each client has both labeled and unlabeled data and an equal subset of the IIoT
dataset, as well as a roughly same proportion of labeled and unlabeled data. Since
all clients run on a single machine, this framework does not account for any device
heterogeneity. All clients finish their tasks in roughly the same amount of time, making
the synchronous aggregation algorithm FedAvg seem very efficient without any idle
times on the clients. However, in a real federated setting, devices are not homogeneous
and have different computational power, from GPU and CPU capabilities, to memory

20

4.2. Baseline Architecture Review

Figure 4.1: Baseline architecture as used by [BMD23].

storage and network connection, which ultimately leads to varying task execution times
between clients. Handling heterogeneous clients is a crucial part of edge computing and
federated learning, where edge devices range from small sensors to mobile phones and
general-purpose computers.

Although possible within Flower, the baseline framework does not use any advanced
client selection algorithm. The number of clients is set initially when the server is created,
and all clients are receiving training and evaluation tasks on each round. The server
does not start distributing training tasks until the set number of clients are registered.
Furthermore, the server first initialized the global model with randomized weights. While
a training round is ongoing, the server waits until all clients respond with results. After
receiving all results, it distributes the new averaged global model and initiates the
evaluation, which are tasks sent to all clients to start the evaluation. Each client then
tests the current local model on its local dataset, specifically on the test split. The split
of the dataset in the baseline framework is 60%/40% between train and test data. The
evaluation in the baseline produces ten metrics on the model. The main metrics used for
evaluating the proposed framework are AUC-PR and AUC-ROC. AUC-PR is a metric
for calculating the area under the Precision-Recall (PR) curve, while AUC-ROC is used

21

4. Architecture Design

to calculate the area under the Receiver Operating Characteristic (ROC) [BMD23].

Although anomaly detection with respect to DoS attacks is shown to be very accurate
in the works of Bekbulatova et al.[BMD23], the proposed system is not able to handle
actual DoS attacks on the federated environment itself due to two limitations. First, the
synchronous aggregation, as it is currently implemented, does not allow for any failing
nodes. As soon as a device shuts off from the federation, the system will be in an error
state and entirely blocking the federated operation, because the server needs all clients to
be available for a training round and aggregates the results only when all clients returned
their respective results. Additionally, since DoS attacks usually heavily impair and slow
down single devices, in a situation where the device does not completely fail, it still slows
down the aggregation due to the server waiting for all client results. Especially in a
zero-day-attack, time is crucial in order to find and respond to attacks in minimal time.

The second limitation of the proposed system is lost data in case of client failure due to
DoS attacks. Each device has its respective local dataset on which training and evaluation
are performed. This is generally the case with federated learning, but in a scenario in
which each client’s data is essential and needed for an accurate global model, losing the
dataset of a device in case of failure might not be desirable. In a DoS aware environment,
finding a solution which still allows the use of the client’s data despite being attacked
would enhance the resilience of the system.

The current system also does not support any new client data. The Flower Client is
instantiated with the dataset at startup and even though the underlying tables can
change, any new data is disregarded and is not loaded into the Flower Client for its
duration. In an environment where it is crucial to respond to new attacks as soon as
possible, feeding new data into the clients and adapting the model to changing attack
schemes, making use of newly available data is essential.

4.3 Architecture Design of the Heterogeneous Framework
In this section we are proposing an architecture counteracting some of the limitations
we discussed in the previous baseline review. We focus our improvement efforts on the
heterogeneity of devices and on effectively mitigating DoS attacks on the federated system.
Figure 4.2 shows a visualization of our proposed architecture design.

In order to further evaluate our system regarding the heterogeneity of devices, we set
up a real-life testbed in a physical network consisting of three devices with varying
computational capabilities. We argue that three different devices are sufficient to show
the limitations of using a synchronous aggregator. To gain further insights, we would
need to scale the number of devices in the testbed to a degree that is not feasible for this
work. For example, since only a single server is involved, having thousands of devices
simultaneously communicating with the server creates a bottleneck that can lead to
performance issues or complete failure of the system. In systems with a high number
of devices, hierarchical or regional architectures can be employed to counteract this

22

4.3. Architecture Design of the Heterogeneous Framework

Figure 4.2: Architecture design of our heterogeneous framework.

challenge. As this is not the focus of this work, we will continue with a single centralized
server as used by Bekbulatova et al. [BMD23], but suggest this area as a subject for
future research.

Because manually installing the required dependencies on multiple devices with different
operating systems is cumbersome, the second improvement we propose is to "dockerize"
the system. Docker1 makes use of operating-system-level virtualization and is a popular
and widely-used product in software development to package software and run them in
so-called containers, regardless of the host system. The containers include everything
the software needs to run, thus no manual installation of dependencies is needed on each
client, which is especially useful when deploying software to heterogeneous environments.

To counteract inefficiencies regarding stragglers and the unreliability of nodes with
synchronous aggregation, we propose the use of an asynchronous aggregator on the
server. Asynchronous federated learning is not yet widely adopted, and federated learning
frameworks such as Flower do not support asynchronous aggregation out of the box.
However, we argue that it is a vital part in heterogeneous environments due to its
possibilities to handle stragglers and deal with failing nodes. During a DoS attack, in
which there is a high chance that nodes become unavailable, it is crucial to employ a
system that is resilient enough to handle failing nodes.

We argue that in a real-life, industrial IoT setting, devices producing data, such as small
sensors, are often not capable of training computationally intensive machine learning

1https://www.docker.com/

23

4. Architecture Design

models. Additionally, it is crucial to adapt to changing environments and training
models on new data allows for quick adaptations and responses when confronted with
zero-day attacks and changing attack schemes. To accommodate this, we separate the
data creation and data storage on the client devices. Federated clients are still working
on their local dataset, but the production of data might be on separate devices. We
introduce the Distributor, a separate entity acting as the data producer for all clients,
as seen in Figure 4.2. To allow clients to receive data in real-time, we make use of the
open-source event streaming platform Kafka2, providing a high-throughput, low-latency
solution for real-time data. Kafka allows for subscribing and publishing to events through
so-called topics. On startup, federated clients connect to the distributor, which then in
turn creates a new topic for this client. The distributor streams new data on each client
topic, and the clients update their local dataset with the received data.

In order to handle DoS attacks more effectively and the fact that through our previous
changes we separated the creation of data from local datasets, we further propose a
self-healing system in case of node failures through backup clients. A backup client can be
started as soon as the system detects that a client in the federation fails to operate in an
acceptable manner. To achieve this, we further utilize the before introduced Distributor.
Additionally, it keeps track of all connected devices in the federation and reacts quickly,
if a failure is detected. All clients and backups initially connect to the Distributor at
startup and send health pings in a set interval. The Distributor saves the last health
ping received from each client, and in case a client does not send an additional health
ping in a pre-defined time span, it will initiate the backup plan. The backup client then
acts as a Flower Client and replaces the failing node. Through our data separation
step as mentioned before, backup clients connect to the data stream of the replaced
client and save it to their local dataset. Local datasets could further be replicated in a
distributed manner to prevent data loss from failing nodes, but for our work, we simulate
this behavior by providing initial datasets to each client and backup.

Figure 4.3, shows a flow chart of all entities interacting with our proposed Distributor.
The Distributor first creates the distributor topic, on which backups and client register.
After a backup registers with its generated id, the Distributor saves that for future
communication. After a client registers, the Distributor creates a client specific topic,
on which it will stream new data and create the first health entry. It spawns a new
data thread if it does not already exist and sends batches of data on the client topic in
predefined intervals. Additionally, the Distributor checks the last health ping of each
client to determine when a node is failing. If the time span exceeds a predefined threshold,
it will initiate the backup using the first available backup, then removing it from the
backup list. Finally, it stops the data thread for the failed client. After registering on the
distributor topic, the client has two repeating tasks. First, it listens on the client-specific
topic for new data and appends received data to the local dataset and secondly, it sends
a health ping on the distributor topic in a predefined interval. A backup registers on the
distributor topic and waits until a backup message is received. After receiving a message,

2https://kafka.apache.org/

24

4.3. Architecture Design of the Heterogeneous Framework

Figure 4.3: Flow chart of entities interacting with the Distributor.

it will initiate the backup, meaning running the client program. After that, it acts as an
additional client in the federated environment.

To show how backups are initiated, Figure 4.4 visualizes this scenario. In this example,
Client 1 first registers with both Server and Distributor, and receives new data on its
client specific topic and regularly sends health pings. It receives a training message from
the Server and starts training. During training, it becomes unavailable (e.g. because of
a DoS attack). After some time, the health check threshold is exceeded for this client,
thus the Distributor initiates a backup by sending a backup message with the client ID,
1 in this case, since Client 1 failed. The backup starts the client program and connects
to the Server and Distributor, and after that acts as a healthy Client 1.

The final improvement we propose in this work is an additional centralized evaluation.
This change is mostly motivated by the asynchronous aggregator, which allows the
server to get an accurate representation of the global model after each client update.
However, this approach does offer additional possibilities in aggregation improvements.
For example, having a local validation dataset, which is not part of any client data, could
be used to determine whether a client update improves the global model. If it increases
the model accuracy, it is embedded in the global model, otherwise it is discarded. As
implementing such behavior would exceed the scope of this project, it will not be further
discussed, but it will be listed for future research.

25

4. Architecture Design

Figure 4.4: Sequence diagram of backup initiation.

26

CHAPTER 5
Implementation

In this chapter we describe and discuss aspects of our framework implementation. The
architecture design, as described in the previous chapter, is the basis of our implementation
approach. We discuss the introduction of the uniform system deployment, the integration
of an asynchronous model aggregation within Flower and our approach to implement
dynamic data handling and a backup mechanism in our framework. Our implementation
is available as an open-source repository on Github1.

5.1 Dependency Upgrades and Uniform System
Deployment

The first step of our implementation process consists of updating the framework regarding
its dependencies, including the upgrade of the python version to 3.12.2 and the Flower
version to 1.14.0, resulting in minor changes to the client instantiation. In order to
facilitate the deployment of our system on multiple heterogeneous devices with different
operating systems, eliminating the need to manually install required dependencies on
each device was the logical next step. To "dockerize" our system, we used a base image
containing the conda2 package manager, due to a few complications with the dependency
installation using pip3. In our extended image, necessary dependencies are installed and
entry point scripts are provided to start the nodes upon container creation. Additionally,
we provide docker-compose4 files for various setup configurations within the testbed,
which results in a single command needed for our experiments.

1https://github.com/Riesal11/Deep-SAD-FL
2https://anaconda.org/anaconda/conda
3https://pypi.org/project/pip/
4https://docs.docker.com/compose/

27

5. Implementation

5.2 Asynchronous Model Aggregation
Although the Flower framework is, as of conducting this thesis, bound to synchronous
model aggregation methods and does not support asynchronous aggregation, its underlying
architecture allows for extensive customization. To this end, it is possible to create
custom Server, Strategy, ClientManager, and History classes to implement an
asynchronous approach within the Flower Server. In this work, Gajanin [Gaj24]
adapted the Flower Server to support asynchronous federated learning and evaluated
their work in the context of human activity recognition within non-IID data environments.
His implementation of the Strategy is based on Fedasync[XKG19], which builds on
mixing alpha as a parameter while aggregating the models, dictating the weight each
model (global vs. new local model) holds. This parameter is then multiplied by the
sample proportion of the client to normalize the magnitude of the update [Gaj24]. As this
implementation by Gajanin [Gaj24] was published as an open-source implementation and
is currently under review for integration within the Flower Framework, we utilized and
integrated this approach for our use case and thus, made no changes to the Strategy.
Our main adaptations after integrating this asynchronous approach in our framework
referred to the Server to allow new registered clients to start training during the
federated learning process, fostering our changes regarding DoS attack mitigation and
system resilience. In contrast to the implementation of Gajanin [Gaj24], our data
configuration takes place at the client side and we removed server-side data handling of
the clients. We made further changes regarding the centralized (server-side) evaluation,
which initially evaluated the global model periodically, to now evaluate upon the reception
of model updates from clients.

5.3 Dynamic Data Handling and Backup Mechanism
Adapting to changing environments and training models on new data is crucial when
confronted with zero-day-attacks. Based on our design decisions to separate data creation
and data storage on client devices, we identified Apache Kafka5 to accommodate this
decision through the introduction of event streams. An edge node where data is created
can connect to a topic specific to a Flower Client, where it then publishes new data.
The Flower Client subscribes to its topic and continuously appends the received data
to the local dataset. We simulate this behavior by introducing the Distributor. The
Distributor leans on the idea of a client registry and a client selector and is a process
that manages active clients and initiates the backup mechanism. On startup, it creates a
general distributor_topic on which the communication between the Distributor
and clients take place, and two Threads, the listener for the distributor_topic and
a HealthThread. It registers itself on this topic through a KafkaConsumer, while
a client registers as a KafkaProducer. In Kafka, messages must be of type byte,
thus we use binascii6 for our (de)serializers. Whenever a client registers, a new topic

5https://kafka.apache.org/
6https://docs.python.org/3/library/binascii.html

28

5.3. Dynamic Data Handling and Backup Mechanism

Package Version
flower 1.14.0
torch 2.4.1

torchvision 0.19.1
numpy 1.26.4
pandas 2.2.3

scikit-learn 1.6.1
kafka-python-ng 2.2.2

Table 5.1: Core python packages and respective version numbers used in our implemen-
tation.

client_$CLIENTID_topic and a DataThread is created for the simulation of new
data. Then it periodically sends a batch of data from a client-specific local dataset through
a KafkaProducer on the respective client topic, which in our experiment was set to 100
new messages every 5 seconds. In order to split the full dataset accounting now for subsets
which will be streamed during the experiment, we created a DataPartitioner, that,
depending on the number of clients and parameters such as stream_split_fraction
and server_validation_fraction, produces the local client datasets, respective
datasets Distributor, in addition to the server validation set. In our current setup,
the backup clients also initially contain a local dataset for the sake of easier evaluation.
On startup, a backup client connects to the distributor by generating an ID and starts
a PollingThread to wait for a backup request. When receiving a backup request
with a client ID, it executes the client program and acts as a regular client, including
connecting to the respective client topic. The Distributor has a dictionary for the
health check, consisting of client ID and the last health ping received from that client.
Values get updated through initial registration of clients and a regular messages on the
distributor_topic, where health is the key and the respective client ID the value
of the message.

For clarity and reproducibility, we used python 3.12.2 for our framework implementation.
The main python packages, alongside their version numbers, are summarized in Table
5.1.

29

CHAPTER 6
Evaluation

In this chapter, we evaluate our proposed framework against the baseline. First, we
define the metrics we use to effectively compare the two frameworks. Then we describe
the environment in which the experiments are run and present the evaluation of our
baseline as well as the evaluation of our improved framework. Finally, we summarize the
results and takeaways.

6.1 Quantitative Performance Metrics
We use AUC-PR and AUC-ROC as model performance metrics, as these were the
main metrics used to evaluate the baseline framework by Bekbulatova et al. [BMD23].
AUC-PR represents the area under the Precision-Recall (PR) curve, while AUC-ROC is
a metric that constitutes the area under the Receiver Operating Characteristics (ROC)
curve [BMD23]. The ROC curve is a graph that illustrates the performance by plotting
true positive rate against the false positive rate at each threshold, and through calculating
the Area Under Curve (AUC) it is possible to quantitatively compare different models
[KGG14]. The PR curve, on the other hand, plots the precision (positive predictive
values) against the recall (true positive rate).

In addition to AUC-PR and AUC-ROC, we include two more metrics for evaluating
the model performance, the F1-score of the normal class and the F1-score of the
anomalous class. The main reason for this decision, besides its popularity, is to gain
further insights on the normal, non-anomalous class and the anomalous class, especially
when comparing the frameworks regarding DoS and other attacks. The F1-score is defined
as the harmonic mean of precision and recall [B+19].

The main metrics we identified for the comparison of the aggregation methods between
the baseline and our proposed framework regarding the heterogeneity of the client devices
are the percentage idle time and the update rate of the clients. We define idle time as

31

6. Evaluation

the time not spent in a working or failure state (startup, training, testing, disconnected)
as a percentage of the total active time. We further define the update rate as total
model updates received by the server per straggler update, where the straggler is the
slowest client device in the federation. As both idle time and update rate are dependent
on dataset size, our refined definitions allow us to compare the results more accurately
across environments. For our proposed framework, we additionally introduce the backup
time, which we define as the time it takes the system until a backup is ready for training,
starting from the moment the disconnect of a client occurs.

6.2 Experiment Environment
The devices used for the following experiments consist of one desktop computer, one
laptop, and one Raspberry Pi 4 Model B. The desktop computer runs on a Windows
11 Home OS, an AMD Ryzen 7 3700X @ 3.60GHz CPU, a NVIDIA GeForce RTX 3060
Ti GPU, and 16 GB of RAM. The laptop runs on a Windows 10 Pro OS, an Intel Core
i5-7200U @ 2.50GHz CPU, an Intel HD Graphics 620 GPU, and 16 GB of RAM. The
Raspberry Pi 4 Model B runs on Raspberry Pi OS, a Cortex-A72 @ 1.80GHz CPU, no
GPU, and 4 GB of RAM. All devices are connected to the same local network.

All of our experiments use the CPU as our computation device in federated learning
and we run all entities in Docker containers, contrary to the experiments conducted
by Bekbulatova et al. [BMD23]. The main reason for using CPU as the computation
device is being able to run a federated client on devices without a GPU, such as a
Raspberry Pi. This makes the system more accessible in IIoT environments if the results
show acceptable performances. Using a Docker environment in which our system is run
decouples it from the actual host setup, such as operating system, and lets us deploy our
system on different host environments without the need of manual setups on each device.
Additionally, we use three client devices in each experiment, while Bekbulatova et al.
used five. When running an experiment locally, we always use the desktop computer for
all three clients. For experiments in the heterogeneous testbed, Client 1 always represents
the desktop computer, Client 2 the laptop and Client 3 corresponds to the Raspberry
Pi. The underlying dataset for the experiments is the same as in the baseline framework,
the WUSTL-IIOT-2021 dataset [M. 21]. Each training round consists of 50 epochs.

6.3 Baseline Framework Evaluation
To evaluate our work, we first establish the baseline since our setup differs from the
one used by Bekbulatova et al.[BMD23]. To do that we compare a local experiment
against an experiment in our heterogeneous testbed. For each experiment we run it once
with the anomalous class consisting only of DoS attacks and once with the anomalous
class consisting of all attacks (DoS, Command Injection, Backdoor, Reconnaissance).
Model performance results are visualized in Figure 6.1, where blue colors indicate the
local setup with only DoS attacks, red colors the federated setup with only DoS attacks,

32

6.3. Baseline Framework Evaluation

Figure 6.1: Visualization of the model performance of the baseline framework in a local
setup (local_*) and a setup using our heterogeneous testbed (fed_*), including results
from training exclusively on DoS attacks (*_dos) and training on all types of attacks
(*_all_atk).

green colors the local setup with all types of attacks and the yellow colors the federated
setup with all types of attacks. When comparing local_dos to fed_dos, we can see that
in the first round, the federated setup performs worse than the local setup across all
performance metrics. The most notable differences are at the AUC-PR and the F1-score
of the anomalous class, where values between 0.74 and 0.77 are recorded. Although
the F1-score of the normal class is worse in fed_dos compared to the other setups, it
still shows very high values (0.984) in the first round. While still showing differences,
all setups have an increased model performance in round 2 and by round 3, all setups
seem to be converging, showing exceptional results. Overall, the setups including all
attacks (local_all_atk and fed_all_atk) show better model performances than their DoS
counterparts in most cases, suggesting that the models are very good at identifying the
additional attacks as anomalous even after a single round of training. However, these
results do not show how good the model is at identifying specific attacks, since we still
use binary classification between the normal and anomalous class.

In addition to the model performance, we evaluate the baseline regarding its activity
times in a heterogeneous environment. We run the baseline in our testbed with two
dataset sizes. In the first experiment, we use the full dataset at each client, and in the
second we spread the dataset across clients so each holds a third of the total dataset. We
measured average and total training, testing, and idle times as well as the percentage idle

33

6. Evaluation

Full dataset Client 1 Client 2 Client 3
Average training time per round (s) 589.45 1004.01 4570.37
Average testing time per round (s) 7.25 8.63 44.42

Average idle time per round (s) 4010.38 3609.53 0.21
Total training time (s) 1768.35 3012.04 13711.12
Total testing time (s) 21.75 25.89 133.26

Total idle time (s) 12031.14 10828.59 1.09
Percentage idle time (%) 85.63 77.07 0.01

Table 6.1: Statistics of activity periods of the baseline framework in our heterogeneous
testbed using the full dataset at each client.

Reduced dataset Client 1 Client 2 Client 3
Average training time per round (s) 223.54 323.69 1491.79
Average testing time per round (s) 2.05 2.74 14.61

Average idle time per round (s) 770.68 709.94 0.09
Total training time (s) 670.63 971.06 4475.38
Total testing time (s) 6.15 8.22 43.82

Total idle time (s) 3853.39 3549.69 0.45
Percentage idle time (%) 80.30 73.99 0.01

Table 6.2: Statistics of activity periods of the baseline framework in our heterogeneous
testbed using a reduced, exclusive dataset at each client, corresponding to a third of the
total dataset.

time. The results are shown in Table 6.1 and Table 6.2. In the case of the full dataset,
the total time for the three training rounds was 14048 seconds (3.90 hours). Client 3
needs 4570 seconds on average for a training round consisting of 50 training epochs, while
it needs 44 seconds for testing and has almost no idle time. Client 1 on the other hand
needs 589 seconds for a training round and is idle for 4010 seconds each round, totaling
an idle time of 12031 seconds over three rounds and resulting in a percentage idle time of
85% (3.34 hours). As expected, the results for the reduced dataset are lower and we see
similar but slightly lower values for the percentage idle time compared to the previous
case. The server receives 1 update from each client until Client 3 finishes, thus resulting
in an update rate of 3.

Figure 6.2 shows a visual representation of activity periods for each client, as well as a
zoomed-in version of the first round. We can see that the startup time using the full
dataset is 176 seconds. The server initiates the federated training round as soon as
the three clients are connected and Client 1 already finishes its training task after 773
seconds. Client 2 finishes soon after (1211 seconds), but both have to wait until Client 3
finishes its round (after 4783 seconds) until the server receives all updates and initiates
the testing task. The testing periods for Client 1 and Client 2 are not properly visible
in the figure due to their short duration, but they always occur at the same time as

34

6.3. Baseline Framework Evaluation

Figure 6.2: Visualization of the activity periods (Startup, Train, Test) of the baseline
framework using the full dataset at each client, while highlighting idle periods in het-
erogeneous environments. The figure on top shows the timeline for the full experiment
(14048 seconds), the bottom figure shows a zoomed-in version of the first round (4828
seconds), including training start and end time marks for each client.

Client 3. Figure 6.3 shows the activity periods for each client using the reduced dataset,
resulting in a total runtime of 4797 seconds. From these results, we can clearly observe
that in heterogeneous environments, the slowest device slows down the entire system in
the baseline framework, resulting in high idle times for devices with more computing
resources.

35

6. Evaluation

Figure 6.3: Visualization of the activity periods (Startup, Train, Test) of the baseline
framework using the reduced, exclusive dataset at each client. The total runtime of the
experiment amounts to 4797 seconds.

6.4 Heterogeneous Framework Evaluation
For the evaluation of our proposed framework we adjusted the dataset sizes due to the
additional entities requiring a split of the dataset. An exclusive portion of the data
resides at the server, as well as a portion of each client’s data resides at the distributor
for data streaming. The total client dataset is evenly split among the clients. We use
a server validation fraction of 0.2 of the total dataset and a stream split fraction of
0.2 of each client’s data. This results in an individual local client set fraction of 0.192.
Approximately at the 1000 second mark, Client 2 is shut down, which initiates the
backup behavior.

In addition to the federated evaluation as seen in 6.1, for our proposed framework
evaluation we include a centralized evaluation at the server. As mentioned before, the
server now possesses an exclusive dataset, which is not used by any clients, and performs
an evaluation after each model update. Figure 6.4 visualizes the results of the model
performance of our proposed framework. The federated evaluation shows exceptional
results across all four metrics even after a single round of training. The lowest score for
AUC-PR is 99.63% (Client 3 Round 2) and the highest score is 99.98% (Client 1 Round
1). In the case of AUC-ROC, the lowest recorded score is 99.98% (Client 1 Round 5),
while the highest score, achieved by multiple clients, is 100.00%. The recorded F1-scores
of the normal class range from 0.99970 (Client 2 Round 1) to 0.99988 (Client 1 Round
4). The lowest score for the F1-score of the anomalous class is 0.9958 (Client 2 Round
1) and the highest score is 0.9983 (Client 1 Round 4). These results show that within
our environment, our proposed asynchronous setup not only converges faster, but also
performs better than the synchronous baseline setups. The centralized (server-side)
evaluation also shows very good results, but the model does not seem to be as consistent

36

6.4. Heterogeneous Framework Evaluation

Figure 6.4: Visualization of the model performance of our proposed asynchronous
framework in our heterogeneous testbed, including a centralized (server-side) and federated
(client-side) evaluation approach.

as the federated (client-side) evaluations. The results vary between resembling the same
performance as obtained in the federated evaluation and being slightly lower. The most
noticeable differences can be observed in the AUC-PR graph, where the results range
from 89.93% to 99.99%.

The update rate of our proposed framework cannot be easily compared to the baseline
framework without some caveats. Since the dataset for each individual client is lower
than in the baseline framework, the training periods are generally shorter, and therefore
the model update rates are higher. Nevertheless, since the frameworks are run on the
same resources, we can gain insights by comparing update rates relative to the bottleneck
client (Client 3). While Client 1 and Client 2 send a single update to the server until
Client 1 sends an update using the synchronized aggregation method, Client 1 sends
three updates and Client 2 sends two updates until the first update from Client 3 is
received. Between the first and second updates from Client 3 we can observe the same
behavior, although Client 2 is replaced by a backup client in the process.

Figure 6.5 shows a visualization of the activity periods in the proposed framework using
the asynchronous aggregation method. Idle times between training rounds are eliminated
for Client 1 and Client 2, allowing them to finish up to three training rounds and model
updates in the time Client 3 finishes one training round. After approximately 1000
seconds, Client 2 simulates a disconnect from the federation. The federated system is

37

6. Evaluation

Figure 6.5: Visualization of the activity periods (Startup, Train, Test) in our proposed
framework, highlighting the increased update rate in the asynchronous approach. Client
2 disconnects after approximately 1000 seconds and is replaced by a backup client after
105 seconds.

unaffected by this incident and initiates the backup behavior after the last health check
received from Client 2 exceeds the threshold (30 seconds). Backup 1 is selected to take
its place and finishes two rounds of training until the system terminates. By the time
Client 3 finishes its first training round, the server received three updates from Client 1
and two updates from Client 2, resulting in an update rate of 6. Similarly, the update
rate at the mark of the second straggler update is also 6, despite the fact that Client 2
disconnects and is replaced by a backup client. The time it took the system until the
backup client was ready for training, previously defined as the backup time, was 105
seconds, of which 60 account for the start time of the client program.

6.5 Summary
We conducted an empirical evaluation of the baseline framework and the proposed
framework regarding system and model performance in a small-scale, heterogeneous
IIoT testbed. Based on Figure 6.1 we find that in the baseline framework, the local
setup outperforms the federated setup across multiple model performance metrics in the
first round and after three rounds, all setups show excellent results. Tables 6.1 and 6.2
provide statistics of the baseline regarding training, testing, and idle times of federated
clients using different dataset sizes. We observe percentage idle times of up to 85.63%,
showing that clients with more computing resources are heavily underutilized while
having to wait for slow clients. Figures 6.2 and 6.3 visualize the activity periods for each
client in the baseline framework, as well as a zoomed-in version of the first round. The
results of the model performance of our proposed framework, as seen in Figure 6.4, show
that within our environment, our proposed asynchronous framework not only converges

38

6.5. Summary

Baseline Framework Proposed Framework
Percentage Idle Time (%) up to 85.63 up to 0.38

Update Rate 3 6
Backup Time (s) not supported 105

System Deployment manual Docker container
Data Loading at startup before training
Dynamic Data not supported through data streams

Centralized Evaluation not supported after each client update
local, fed fed eval, cen eval

AUC-PR lowest (%) 89.02, 77.17 99.63, 89.93
AUC-PR highest (%) 99.90, 99.87 99.98, 99.91
AUC-ROC lowest (%) 99.75, 93.32 99.98, 99.62
AUC-ROC highest (%) 100.00, 100.00 100.00, 99.99

F1-Score (normal) lowest 0.9981, 0.9838 0.9997, 0.9988
F1-Score (normal) highest 0.9997, 0.9998 0.9998, 0.9998

F1-Score (anomalous) lowest 0.9746, 0.7475 0.9958, 0.9825
F1-Score (anomalous) highest 0.9962, 0.9985 0.9983, 0.9984

Table 6.3: Differences between baseline framework and proposed framework regarding
system performance, supported features and model performance. For the baseline
model performance, results from local_dos (local) and fed_dos (fed) are included. For
the proposed framework, results from federated evaluation (fed eval) and centralized
evaluation (cen eval) are included.

faster, but also performs better than the synchronous baseline setups using federated
evaluation. We also highlight that there exist differences between federated (client-side)
and centralized (server-side) model evaluation. Figure 6.5 visualizes the activity periods
of the clients in our proposed framework using the asynchronous aggregation method and
backup mechanism, showing the elimination of idle times, increased update rates and the
resilience of the system in case of client failures, such as DoS attacks. We summarize the
differences between the baseline framework and our proposed framework in Table 6.3.

39

CHAPTER 7
Limitations

In our framework, backup clients already contain a local dataset when they take the
place of a failed client. Starting with an empty dataset would increase the time until
the backup is at a model performance close to where the client was before failure. To
this end, some recent amount of data could be stored for each client with the goal of
keeping enough data in case a failure happens such that the backup has an acceptable
initial model performance. However, this would potentially contradict the principle of
federated learning, which builds on its privacy-preserving characteristics in the sense
of utilizing local datasets on clients without sharing data with a central entity. In that
case, a trade-off between a fully decentralized data storage and additional flexibility,
availability, and resiliency of the system has to be made.
Although the outcomes of the evaluation show excellent results regarding the model
performance of the framework, using a model that is capable of achieving close to
100% accuracy detecting DoS attacks after a single round makes the model evaluation
challenging. Since machine learning models usually show some variance and there is
not much improvement after each update, it is difficult to observe the impact of the
increased update rate in our asynchronous federated learning approach. We included
some evaluation of additional attacks, but it did not change the performance in significant
magnitudes, perhaps partly due to still being a binary classification and DoS being the
majority attack type of the dataset. Choosing a harder problem space for the model (e.g.
multi-label classification or sophisticated attacks) potentially yields meaningful findings
in that area.
Furthermore, a limitation of asynchronous federated learning, as employed in our frame-
work, is that it shows a strong bias towards clients with shorter training times, as they
contribute to global model updates much more frequently. This can either be due to
computational resources, as in our case, or the size of the underlying client dataset. In
heterogeneous and non-IID environments, this bias introduces a series of complications
and necessary considerations, which have become a central focus of recent research.

41

CHAPTER 8
Conclusion

The evolution of Industry 4.0 has led to the emergence of highly interconnected devices
and intelligent systems capable of advanced analytics and decision-making. Machine
learning has become a key component of anomaly-based Intrusion Detection Systems
(IDSs), while federated learning has emerged as a promising approach that enhances
security and privacy. In Industrial Internet of Things (IIoT) environments, federated
learning is leveraged to reduce communication overhead of sending massive amounts of
heterogeneous data to a central server. Traditional approaches in federated learning, such
as Federated Averaging (FedAvg), have been shown to face challenges in heterogeneous
environments and Denial of Service (DoS) attack detection due to their synchronous model
aggregation, leading to resource utilization limitation and a reduced convergence rate.
Especially in zero-day-attacks, a short convergence time is essential to quickly distribute
updated global models that include newly gained DoS attack information. Asynchronous
federated learning emerges as a promising solution to address challenges in heterogeneous
environments, particularly issues related to device unreliability, aggregation efficiency, and
resource utilization. Nevertheless, current federated-learning-based anomaly detection
approaches in IIoT environments fail to address device heterogeneity and system resiliency
against DoS attacks.

In this thesis, we propose a novel framework for federated learning that optimizes
the system architecture for heterogeneous environments, while focusing on DoS attack
detection. To guide our transition from a homogeneous federated intrusion detection
system architecture to a heterogeneous environment, we develop a methodology based
on key architectural design principles and patterns, resulting in a structured process
serving as the foundation of our framework development. Through this methodology,
an existing federated-learning-based intrusion detection framework is established and
reviewed, resulting in a comprehensive architectural design for our proposed framework,
including a uniform system deployment on heterogeneous edge devices, asynchronous
model aggregation, dynamic data utilization, backup mechanisms, and centralized model

43

8. Conclusion

evaluation. We then apply the changes according to our architecture design and develop
a well-documented implementation to be published as an open-source framework. Finally,
to demonstrate our improvements, we empirically evaluate the framework against the
baseline in a small-scale, heterogeneous IIoT testbed with respect to system and model
performance using key metrics.

The experimental results from the baseline framework show that devices with more
computing resources are heavily underutilized, experiencing idle times up to 85% of the
total experiment duration, highlighting the need for optimization of resource utilization
in a heterogeneous environment. The introduction of asynchronous model aggregation
eliminates idle times, and provides increased update rates, as well as resilience against DoS
attacks. Furthermore, the proposed backup mechanism enhances DoS attack mitigation
by enabling backup clients to promptly replace unresponsive clients. With respect to
the model performance, our framework not only converges faster, but outperforms the
baseline in AUC-PR, AUC-ROC and F1 scores in the federated evaluation.

44

CHAPTER 9
Future Work

We conclude this thesis by identifying potential avenues for future research that expand
upon the proposed framework and related areas.

Our work utilizes a small-scale heterogeneous IIoT testbed consisting of three devices. In
this scenario, communication with single entities, such as the Server and Distributor,
does not lead to limitations, but could potentially become a bottleneck when scaling the
number of clients in the federated environment. We suggest that this area be further
researched and potential approaches explored to identify challenges in a more realistic
deployment scenario in large-scale applications.

The introduction of centralized evaluation on the server yields additional possibilities
in future evolutions of the framework. Approaches could be investigated that utilize
the local validation dataset on the server to employ a precise model update selection
process and determine the quality of individual client updates. Especially in the case of
non-IID environments, this could potentially lead to significant improvements in model
performance.

In our work, data streams are utilized for the inclusion of new data. Changing envi-
ronments and capitalizing on new information is a central aspect of edge computing
and federated learning. Potential avenues for future research include investigating the
impact of stale data, determining the amount of data required for effective training, and
addressing client drift in continuous federated learning. This architecture could further
be used to increase the resilience of the system with respect to backup mechanisms, where
portions of fresh data are stored and utilized by backups in the event of client failure.

Although the model converges faster in asynchronous federated learning, it shows a strong
bias towards clients with shorter training periods. Developing feasible bias elimination
approaches would constitute significant advancements in asynchronous federated learning
and would improve the applicability of this framework in bias-sensitive environments.

45

9. Future Work

The underlying dataset used in this work includes various attack types. While this
thesis focuses on binary classification and DoS attack detection, additional research could
explore multi-label classification and sophisticated attacks. Extending the framework
to support other types of attacks could yield significant results and insights, advancing
anomaly detection toward a wider range of attack types in real-world applications.

46

Overview of Generative AI Tools
Used

ChatGPT (Model 4o)1 was used for some parts of this thesis for the purposes of
correcting grammar and providing suggestions for improved phrasing of content that has
already been written.

1https://chatgpt.com/

47

List of Figures

2.1 Comparison between Asynchronous Federated Learning and Synchronous
Federated Learning workflows on heterogeneous devices [XQXG23]. 10

2.2 Comparison between Horizontal Federated Learning (HFL) and Vertical
Federated Learning (VFL), visualized by [XQXG23]. 11

2.3 Different types of architectures from centralized to decentralized. Visualized
by [ZBO20] . 12

2.4 A visualization of the client selector pattern by Lo et al. [LLZ+22]. 13

3.1 Normalized importance of the five most impactful features in WUSTL-IIoT
Dataset [M. 21]. 16

4.1 Baseline architecture as used by [BMD23]. 21
4.2 Architecture design of our heterogeneous framework. 23
4.3 Flow chart of entities interacting with the Distributor. 25
4.4 Sequence diagram of backup initiation. 26

6.1 Visualization of the model performance of the baseline framework in a local
setup (local_*) and a setup using our heterogeneous testbed (fed_*), including
results from training exclusively on DoS attacks (*_dos) and training on all
types of attacks (*_all_atk). 33

6.2 Visualization of the activity periods (Startup, Train, Test) of the baseline
framework using the full dataset at each client, while highlighting idle periods
in heterogeneous environments. The figure on top shows the timeline for the
full experiment (14048 seconds), the bottom figure shows a zoomed-in version
of the first round (4828 seconds), including training start and end time marks
for each client. 35

6.3 Visualization of the activity periods (Startup, Train, Test) of the baseline
framework using the reduced, exclusive dataset at each client. The total
runtime of the experiment amounts to 4797 seconds. 36

6.4 Visualization of the model performance of our proposed asynchronous frame-
work in our heterogeneous testbed, including a centralized (server-side) and
federated (client-side) evaluation approach. 37

49

6.5 Visualization of the activity periods (Startup, Train, Test) in our proposed
framework, highlighting the increased update rate in the asynchronous ap-
proach. Client 2 disconnects after approximately 1000 seconds and is replaced
by a backup client after 105 seconds. 38

50

List of Tables

3.1 Specifics of the WUSTL-IIOT Dataset. [M. 21] 16
3.2 Traffic types and respective percentages in the WUSTL-IIOT Dataset. [M. 21] 16

5.1 Core python packages and respective version numbers used in our implemen-
tation. 29

6.1 Statistics of activity periods of the baseline framework in our heterogeneous
testbed using the full dataset at each client. 34

6.2 Statistics of activity periods of the baseline framework in our heterogeneous
testbed using a reduced, exclusive dataset at each client, corresponding to a
third of the total dataset. 34

6.3 Differences between baseline framework and proposed framework regarding
system performance, supported features and model performance. For the
baseline model performance, results from local_dos (local) and fed_dos (fed)
are included. For the proposed framework, results from federated evaluation
(fed eval) and centralized evaluation (cen eval) are included. 39

51

Acronyms

AFL Asynchronous Federated Learning. 9

DoS Denial of Service. 1–4

FedAvg Federated Averaging. 1, 9

HFL Horizontal Federated Learning. 10

HIDS Host-based Intrusion Detection Systems. 7

IDS Intrusion Detection System. 1, 4

IDSs Intrusion Detection Systems. 1, 7

IIoT Industrial Internet of Things. 1–4, 6

MitM Man-in-the-Middle. 6

NIDS Network-based Intrusion Detection Systems. 7

VFL Vertical Federated Learning. 10

53

Bibliography

[AHS22] Haftay Gebreslasie Abreha, Mohammad Hayajneh, and Mohamed Adel
Serhani. Federated learning in edge computing: a systematic survey. Sensors,
22(2):450, 2022.

[APMS22] Ons Aouedi, Kandaraj Piamrat, Guillaume Muller, and Kamal Singh. Feder-
ated semisupervised learning for attack detection in industrial Internet of
Things. IEEE Transactions on Industrial Informatics, 19(1):286–295, 2022.

[B+19] Daniel Berrar et al. Performance measures for binary classification., 2019.

[BMD23] Veronika Bekbulatova, Andrea Morichetta, and Schahram Dustdar. FL-
SERENADE: Federated Learning for SEmi-supeRvisEd Network Anomaly
DEtection. A Case Study. In 2023 IEEE Intl Conf on Dependable, Autonomic
and Secure Computing, Intl Conf on Pervasive Intelligence and Computing,
Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science
and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pages
1072–1079. IEEE, 2023.

[BTM+20] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-
Marques, Yan Gao, Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro
Porto Buarque de Gusmão, et al. Flower: A friendly federated learning
research framework. arXiv preprint arXiv:2007.14390, 2020.

[DCS24] Roberto Doriguzzi-Corin and Domenico Siracusa. Flad: adaptive federated
learning for ddos attack detection. Computers & Security, 137:103597, 2024.

[Gaj24] Rastko Gajanin. Navigating the Transition from Centralized to Federated
Learning with Non-IID Data: A Human Activity Recognition Case Study.
PhD thesis, Technische Universität Wien, 2024.

[KGG14] Jens Keilwagen, Ivo Grosse, and Jan Grau. Area under precision-recall curves
for weighted and unweighted data. PloS one, 9(3):e92209, 2014.

[KGVK19] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman.
Survey of intrusion detection systems: techniques, datasets and challenges.
Cybersecurity, 2(1):1–22, 2019.

55

[KMA+21] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham
Cormode, Rachel Cummings, et al. Advances and open problems in federated
learning. Foundations and trends® in machine learning, 14(1–2):1–210, 2021.

[KYF+20] Ivan Kholod, Evgeny Yanaki, Dmitry Fomichev, Evgeniy Shalugin, Evgenia
Novikova, Evgeny Filippov, and Mats Nordlund. Open-source federated
learning frameworks for iot: A comparative review and analysis. Sensors,
21(1):167, 2020.

[LAC14] Robert M Lee, Michael J Assante, and Tim Conway. German steel mill cyber
attack. Industrial Control Systems, 30(62):1–15, 2014.

[LHY+19] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua
Zhang. On the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189, 2019.

[LHZ+22] Ji Liu, Jizhou Huang, Yang Zhou, Xuhong Li, Shilei Ji, Haoyi Xiong, and
Dejing Dou. From distributed machine learning to federated learning: A
survey. Knowledge and Information Systems, 64(4):885–917, 2022.

[LLZ+22] Sin Kit Lo, Qinghua Lu, Liming Zhu, Hye-Young Paik, Xiwei Xu, and Chen
Wang. Architectural patterns for the design of federated learning systems.
Journal of Systems and Software, 191:111357, 2022.

[LSZ+20] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems, 2:429–450, 2020.

[LT01] Neil Long and Rob Thomas. Trends in denial of service attack technology.
CERT Coordination Center, 648(651):569, 2001.

[M. 21] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and R. Jain. WUSTL-
IIOT-2021 Dataset for IIoT Cybersecurity Research, St. Louis, USA, October
2021.

[MAF+18] Artur Marzano, David Alexander, Osvaldo Fonseca, Elverton Fazzion,
Cristine Hoepers, Klaus Steding-Jessen, Marcelo HPC Chaves, Ítalo Cunha,
Dorgival Guedes, and Wagner Meira. The evolution of bashlite and mirai
iot botnets. In 2018 IEEE Symposium on Computers and Communications
(ISCC), pages 00813–00818. IEEE, 2018.

[MMR+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and statistics, pages 1273–
1282. PMLR, 2017.

56

[MR04] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos
defense mechanisms. ACM SIGCOMM Computer Communication Review,
34(2):39–53, 2004.

[MYAZ15] Rwan Mahmoud, Tasneem Yousuf, Fadi Aloul, and Imran Zualkernan. In-
ternet of things (iot) security: Current status, challenges and prospective
measures. In 2015 10th international conference for internet technology and
secured transactions (ICITST), pages 336–341. IEEE, 2015.

[Rou21] Yaman Roumani. Patching zero-day vulnerabilities: an empirical analysis.
Journal of Cybersecurity, 7(1):tyab023, 2021.

[RVG+19] Lukas Ruff, Robert A Vandermeulen, Nico Görnitz, Alexander Binder, Em-
manuel Müller, Klaus-Robert Müller, and Marius Kloft. Deep semi-supervised
anomaly detection. arXiv preprint arXiv:1906.02694, 2019.

[SHH+20] Martin Serror, Sacha Hack, Martin Henze, Marko Schuba, and Klaus Wehrle.
Challenges and opportunities in securing the industrial internet of things.
IEEE Transactions on Industrial Informatics, 17(5):2985–2996, 2020.

[SSH+18] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael
Gidlund. Industrial internet of things: Challenges, opportunities, and di-
rections. IEEE transactions on industrial informatics, 14(11):4724–4734,
2018.

[STT23] Lavanya Shanmugam, Ravish Tillu, and Manish Tomar. Federated learn-
ing architecture: Design, implementation, and challenges in distributed ai
systems. Journal of Knowledge Learning and Science Technology ISSN:
2959-6386 (online), 2(2):371–384, 2023.

[SWW15] Ahmad-Reza Sadeghi, Christian Wachsmann, and Michael Waidner. Security
and privacy challenges in industrial internet of things. In Proceedings of the
52nd annual design automation conference, pages 1–6, 2015.

[TÇES25] Nasim Tavakkoli, Orçun Çetin, Emre Ekmekcioglu, and Erkay Savaş. From
frontlines to online: examining target preferences in the russia–ukraine
conflict. International Journal of Information Security, 24(1):1–15, 2025.

[WHA+16] Jacob Wurm, Khoa Hoang, Orlando Arias, Ahmad-Reza Sadeghi, and Yier
Jin. Security analysis on consumer and industrial iot devices. In 2016 21st
Asia and South Pacific design automation conference (ASP-DAC), pages
519–524. IEEE, 2016.

[WOGS17] David E Whitehead, Kevin Owens, Dennis Gammel, and Jess Smith. Ukraine
cyber-induced power outage: Analysis and practical mitigation strategies. In
2017 70th Annual conference for protective relay engineers (CPRE), pages
1–8. IEEE, 2017.

57

[XKG19] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934, 2019.

[XQXG23] Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. Asynchronous
federated learning on heterogeneous devices: A survey. Computer Science
Review, 50:100595, 2023.

[YWY+17] Yuchen Yang, Longfei Wu, Guisheng Yin, Lijie Li, and Hongbin Zhao. A
survey on security and privacy issues in internet-of-things. IEEE Internet of
things Journal, 4(5):1250–1258, 2017.

[ZBO20] Hongyi Zhang, Jan Bosch, and Helena Holmström Olsson. Federated learning
systems: Architecture alternatives. In 2020 27th Asia-Pacific Software
Engineering Conference (APSEC), pages 385–394. IEEE, 2020.

58

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement and Motivation
	Research Questions
	Methodology
	Focus
	Thesis Structure

	Background
	Denial of Service Attacks
	Industrial Internet of Things
	Intrusion Detection
	Federated Learning

	Related Work
	Architecture Design
	Transition From Homogeneous to Heterogeneous System Architectures
	Baseline Architecture Review
	Architecture Design of the Heterogeneous Framework

	Implementation
	Dependency Upgrades and Uniform System Deployment
	Asynchronous Model Aggregation
	Dynamic Data Handling and Backup Mechanism

	Evaluation
	Quantitative Performance Metrics
	Experiment Environment
	Baseline Framework Evaluation
	Heterogeneous Framework Evaluation
	Summary

	Limitations
	Conclusion
	Future Work
	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	Acronyms
	Bibliography

