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The pseudopotential two-phase Lattice Boltzmann method is used to study a flow with condensation and evap-
oration through slits ranging between 8 to 24 nm in width by applying a pressure gradient. The slits are about
700 nm long. The fluid described by the Carnahan-Starling equation of state is in the form of a vapor upstream of
the pore. For the smaller applied pressure gradient, the vapor flows through the slit. However, for higher values
of the pressure gradient, as the gas flows through the slit, the fluid condenses, and consequently, liquid flows
through the slit. The liquid may leave the slit, or it evaporates. Here, the condition at the interface between the
liquid and the gaseous flow region, where mass transfer by evaporation takes place, is investigated. The pressure
difference across the curved meniscus is consistent with the Young-Laplace equation and nearly independent of
the mass flow rate. However, the curvature of the interface depends on the strength of the fluid-wall interaction.
The curvature of the meniscus and effects influencing the curvature play an important role in the process. Con-
sidering the temperature field in the transport process reveals that different boundary conditions for the domain

influence the mass flow rate. Heating the slit from the downstream side decreases the mass flow rate.

1. Introduction

The transport of fluids in nanopores under nonequilibrium con-
ditions has been studied extensively in both experiments and theory
(Wang and Aryana, 2021; Huang et al., 2021; Song et al., 2020; Yu et al.,
2018; Namadchian et al., 2022). Membrane separations have great po-
tential in this area (Phan et al., 2020). By operating under specific condi-
tions and taking advantage of the adsorption and capillary condensation
phenomena, which result in selectivity and high permeability, the po-
tential for gas separations increases considerably inside the nanoporous
structure (Yabunaka and Fujitani, 2022; Deng et al., 2023). It is worth
noting that under these operational conditions, the transportation of va-
pors takes place within the pressure range where capillary condensation
occurs.

To date, the study of fluid transport at the nanoscale has involved
experimental investigations, improved thermodynamic models, and nu-
merical simulations. Uchytil et al. (2003, 2005) examined the perme-
ation of butane and isobutane through Vycor nanoporous glass. They
attempted to demonstrate a correlation between the inlet and exit
bulk pressure conditions and the observed experimental permeation
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behavior. It was assumed that these conditions have an impact on the
state of the fluid within the nanoporous medium.

The existing limitations of the experimental apparatus restrict us
from confirming and exploring these conditions at a microscopic level.
Nonetheless, there were several attempts to connect these states to
measurable quantities such as flux, pressure, and mesoporous structure
through transportation models. Loimer et al. (2011, 2023) employed
a combination of the Hagen-Poiseuille model, which describes liquid
flow, and the Knudsen diffusion model, which describes gas flow, to
clarify situations where there is a two-phase flow within anodized alu-
mina membranes. However, it is important to note that this study fo-
cuses on capturing the effects of capillary condensation, where viscous
flow dominates the transport mechanism. A more accurate description
of gaseous flow, including the Knudsen effect, remains to be explored
in future work. If liquid flows through part of the pore, the effect of
the interface between the liquid and the gaseous flow region usually
dominates the flow.

Recently, the comprehension of the thermodynamics of fluids within
the nanoconfined mesoporous materials has significantly improved,
mainly concerning capillary transitions, owing to the improvements
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in molecular simulation techniques (Monson, 2012; Sun et al., 2020).
Numerical simulation in this scale allows for investigating many fluid
types across a wide range of pressure or temperature conditions. While
molecular dynamic simulation is effective at uncovering novel phenom-
ena on the nanoscale by modeling the movement of each molecule, it is
computationally expensive. Besides the method that operates at a molec-
ular level, classical density functional theory (DFT) is also effective in
conducting theoretical examinations of the thermodynamic properties
of fluids within nanopores. Li and Firoozabadi (2009) integrated DFT
and the Peng-Robinson equation of state (EOS) to simulate the interfa-
cial tension of pure substances and binary mixtures. Jin and Firoozabadi
(2016), Li et al. (2014), and Liu et al. (2018) applied DFT to analyze the
adsorption and behavior of confined phases in nanoslits. The results in-
dicated a suppressed critical temperature and an increased critical den-
sity, which are qualitatively in line with findings from molecular sim-
ulations. Furthermore, dynamic mean field theory has been developed
to extend this method, allowing for the study of nanofluid transport
(Edison and Monson, 2013, 2012). Rathi et al. (2019) used dynamic
mean field theory and molecular dynamics to examine the transporta-
tion of condensable fluids in nanoporous membranes under nonequilib-
rium conditions. A single-slit pore represented the model to simplify the
complexity of the transport mechanism. The study compared the dynam-
ics of a system that began in an initial equilibrium state to that of ap-
proaching another equilibrium or nonequilibrium state. This approach
allowed for an evaluation of the transportation process in a controlled
and decoupled environment.

To account for the effects of confinement, researchers have devel-
oped modified EOS that incorporate additional parameters or modifica-
tions to the existing parameters. For example, one approach is to shift
the critical point of the EOS to account for the effect of confinement
(Zarragoicoechea and Kuz, 2004). This is because confinement can al-
ter the thermodynamic properties of the fluid and shift the value of the
critical point. Another approach is to couple the capillary pressure to
the EOS, which allows for the effects of the pore size and shape on the
fluid behavior to be considered (Liu et al., 2018).

We can understand the physics behind flow and transport at a micro-
scale using molecular dynamics (MD) simulations. However, simulating
more complex fluids or larger systems becomes difficult due to the ex-
pensive computational cost and complexities required for MD force field
simulations. Additionally, while molecular-level research offers valu-
able insights into confined phase behavior, applying this knowledge
to thermodynamic models to make predictions is challenging. To ad-
dress these issues, one potential solution is to use insights gained from
MD simulations to create a mesoscopic computational model. The pos-
sible method needs to adequately capture the physics at a small scale
and allow for the scaling of the system from a microscopic to a macro-
scopic level. As a mesoscopic approach, the lattice Boltzmann Method
(LBM) will enable us to directly bridge the gap between microscale ki-
netics and macroscale properties (Bao and Guo, 2024; Pasieczynski and
Chen, 2020; Albernaz et al., 2015). Compared to DFT, the LBM can
capture the dynamic phase transition process and requires less com-
putational time than MD or Monte Carlo simulations (Huang et al.,
2021). Among the several two-phase LBM approaches available, the
pseudopotential model is a popular choice due to its simplicity and
ability to implement interactive forces directly through pseudopoten-
tial functions (Areshi et al., 2024). Yuan and Schaefer (2006) linked
various equations of state to pseudopotential functions and simulated
phase behavior for real gases. Although the original pseudopotential
model is not thermodynamically consistent (Huang et al., 2021), many
studies have used modified versions of the model to simulate confined
phase behavior (Sodagar-Abardeh et al., 2023). To investigate how con-
fined phase behavior affects the transport of methane in slit nanopores,
Wang and Aryana (2021) used a modified EOS in combination with a
multi-relaxation time LBM. They estimated the transport properties by
examining the mass flux profiles. Recently, machine learning techniques
such as Symbolic Regression and Genetic Programming have been em-
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ployed to develop surrogate models that capture complex physical be-
haviors with simplified analytical expressions. These approaches offer
high accuracy, interpretability, and the potential to uncover underlying
physical laws from simulation or experimental data (Khadem and Rey,
2021; Khadem et al., 2014).

Following our previous work on the equilibrium phase behavior of
fluids in confined nanopores, in the present work we employ a thermal
two-phase lattice Boltzmann method to study the transport phenom-
ena of condensable gas in nanoporous membranes under nonequilib-
rium conditions by allowing variations of the temperature. To the best of
our knowledge, this is the first time the lattice Boltzmann approach has
been used to accurately capture the nonequilibrium steady state prop-
erties of pressure-driven two-phase flow transport within a slit confine-
ment. Building upon our previous study (Sodagar-Abardeh et al., 2023),
we conducted a comparative investigation of the dynamics of a system
starting from an initial equilibrium state approaching a nonequilibrium
(or an equilibrium) state. Specifically, we investigated the effect of the
nanoslit width and the temperature fields on the mass flow rate. We
also evaluated the deviation of gas pressure at the downstream menis-
cus with respect to the equilibrium state when there is a flow across
the meniscus. Our findings offer insights into the transport of fluids in
nanopores and can also be extended to more complex nanoporous me-
dia, such as media with parallel pore network structures.

2. Model description
2.1. Double distribution two-phase lattice Boltzmann method

The double distribution two-phase lattice Boltzmann method (DD-
TLBM) is a simulation technique that can model fluid flow and temper-
ature fields in a two-phase system. This method uses two sets of distri-
bution functions, where one of them represents the velocity of the fluid
and the density which connects to the pressure through EOS. The other
distribution function can represent various physical quantities, such as
temperature or concentration, depending on the specific application be-
ing modeled. In the case of a two-phase flow problem involving heat
transfer, the second distribution can be used to represent the tempera-
ture field (Qin et al., 2019).

2.1.1. First distribution function: Density field

The first distribution function of DD-TLBM calculates the macro-
scopic characteristics of a fluid flow by tracking the changes in the
probability distribution function of density at each lattice. This discrete
distribution function is governed by the following equation (Sodagar-
Abardeh et al., 2023):

fi(r+¢Ant+ Ar) = (1 _ Al
T

)f,-(r,t)+ %ffq(r,t)+Afi. )
The probability distribution function f;(r,7) in the above relation is as-
sociated with the discrete velocity vector c; of the lattice located at r
and time 7. In Eq. (1), f’.eq(r, t) is the equilibrium distribution function,
which is fully defined in Eq. (4), and z represents the relaxation time.
The change in the equilibrium distribution function caused by an ex-
ternal body force is represented by Af;, and this transformation is de-
tailed in Eq. (7). The macroscopic density and velocity of the fluid can
be calculated by evaluating the zeroth and first moments of the density
distribution function, respectively,

n

p(r,t) = z £, )
i=0
ute ) = Z0D) ®
p(r,1)

In Eq. (2), n refers to the number of directions in which the probability
function can stream, and this equation represents the zeroth moment
of the density distribution function. As previously stated in Eq. (1), the
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symbol ffq(r, t) represents the equilibrium distribution function, which
is defined by

(¢;-u@n) (¢ 'u(l‘af))z u(r, 1) - u(r, 1)

2 4 2
s 2¢] 2¢;

7,0 = p(r. o, 1+

C))

The equilibrium distribution function, expressed in Eq. (4), includes
the weighting factor w; and the speed of sound in the lattice space c,.
Numerical simulations in the present work were conducted in a two-
dimensional domain and nine-directions known as the D2Q9 scheme
for the density field. For this scheme, the weighting coefficients and the
discrete velocity vectors are provided by

16 . _,
3 = ~2mm(0,0) i=0

o, = % i=1:4, ¢=3(x10,0.41) i=1:4 )
1 -5 (x1,+1) i=5:8
36

Where the tuples (x,y) represent the direction in Cartesian x- and y-
coordinates. The relationship between the relaxation time and the fluid
viscosity as one of the macroscopic properties can be determined using
a multi-scale Chapman-Enskog expansion, which is expressed as

At
VLBM =cS2<r— 7) (6)

Here, the kinematic viscosity of the fluid in the lattice unit is denoted by
v M- Although a single-relaxation-time scheme is used, different values
of the relaxation time r are applied for the liquid and vapor phases,
denoted by 7, and ,,,, respectively. In the interfacial region, where
the density transitions smoothly between phases, a linear interpolation
is used to assign an effective relaxation time based on the local density.
The exact difference method, proposed by (Kupershtokh and Medvedev,
2006), is used to incorporate external forces into the current model.
By applying this approach, the change in the equilibrium distribution
function resulting from the external body force is added to the right-
hand side of Eq. (1), as given by

Afy = £, 1), (u+ Au)r, ) — £ (p(r, ), u(r, ). %)

When the external body force is included during the time increment, it
leads to a change in velocity, which is represented as

At Ftotal (r.1)

B

Au(r,t) =
p(r.0) ®
Ftolal(r7 t) — Fg(l‘, I) + Fcohesive(r’ l‘) + Faclhesive(r7 t).

Here, F'°? represents the total external force, which is composed of
the cohesive force (fluid-fluid interaction) represented by Feohesive the
adhesive force (fluid-solid interaction) represented by F2dhesive and the
gravitational force represented by F4. The actual fluid velocity can be
calculated using the equation

At Ftolal(r, 1)

urca](rs ) =u(r,?)+ 2(0.1)

©)]

2.1.2. Interaction forces: Phase transition and wettability

In the pseudopotential Lattice Boltzmann method, it is assumed that
a particle exists at each lattice location. Interaction forces between these
pseudo-particles of the working fluid are modeled and allow the model
to describe phase transition. The interaction forces between lattices
representing different materials will enable us to describe wettability.
Egs. (10) and (11) illustrate the cohesive force between fluid-fluid par-
ticles and the adhesive force between fluid-solid particles, respectively,

n
i 2
Fcoheslve(r’ t) = _ﬁGcohesivel’/(r’ t) Z a)F ( |ci| )l[/(l‘ + C,—At, t)ci
i=1

1 _ n
L e Y0 (Jef ) (e b, (10)
i=1
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9
FadheSive(r»I) = —Gadhesive V(I 1) z a)F(|Ci|2)S(l‘ + CiAt,l)C,-. an

i=1

Regarding the relation for the cohesive interaction, the strength of the
fluid-fluid interaction is represented by G_gp.ive> While the tunable pa-
rameter f is used to increase the isotropic order, and of denotes the
weighting factor. Notably, only cohesive interactions between parti-
cles in the nearest adjacent lattices are considered. For D2Q9, G esive
has a constant value of 1, and the weighting factors are given by
@¥(0) =0, oF(1) = % and w¥ (0) = 11—2 The isotropic order of the interac-
tion force in the first distribution of DD-TLBM has an impact on the fluid
density at lower temperatures, particularly close to an interface where
the gradient of density is large, according to Huang et al. (2021). To
align the model’s predictions with classical thermodynamics relations,
the constant § needs to be adjusted appropriately.

The cohesive force’s value at the domain’s entrance and exit should
be approximated to implement the boundary conditions properly. Based
on Eq. (10), the value of the potential function y(x) for the neighbor
nodes (y(x + 1) and w(x — 1)) should be known to approximate the co-
hesive interaction. The interaction force must be computed differently at
those boundaries when using boundary conditions (e.g., constant pres-
sure) because three nodes (for the D2Q9 arrangement) are unavailable.
In the present model, the forward and backward space derivation is im-
plemented in the numerical model to approximate the cohesive force
at the entrance and exit. To implement the cohesive interaction for the
interior nodes, the first-order space derivative of the potential function
w(x) is evaluated in an isotropic central scheme (second-order accuracy)
as follows:

oy 1 1
x> 5(‘/’[+1,j -y )+ E(Wi+l,j+l = Vit F Wil j-1 — Wio1j-1)-
oy 1 1
oy FWijr = Vi) + S Wiy = Wisn o1 Vst — Wienj-1)-

12

For the inlet boundary nodes, the isotropic forward scheme is used in
the x direction as follows:

oy 1 1
x 3 W Vi) + W W~ Vi

=3y o1 AW o — Wi j-1)- 13)

For the outlet boundary nodes, the isotropic backward scheme is used
in x direction as follows:

oy 1 1
il §(3Wi,j —4yi v+ 5(3%,]41 =4y Vi

+ 3w o1 =AW o1+ Wi j-1)- as

With regards to the adhesive force given in Eq. (11), the adhesive
strength is characterized by G,gpeive» Which is determined by aligning
the density ratio, defined as the ratio of the density near the wall to that
at the slit centerline. A common approach to determine this constant in-
volves calibrating the results from the Lattice Boltzmann Method against
those from Molecular Dynamics simulations under identical pressure
and temperature conditions (Wang and Aryana, 2021). Additionally,
by modifying this constant, the DD-TLBM model can produce different
contact angles. The index function .S(r + ¢;At,7) is defined as 1 for solid
nodes and O for fluid nodes. In Egs. (10) and (11), the potential function
is denoted by ;).

In the present model, the fluid pressure is expressed by

1
P(r,0) = c2p(r,1) + EGCOhCSiVCcoy/Z(r, 1), 15)
where the constant G, determines the strength of interaction, and

the value of ¢, for the D2Q9 scheme is 6. Moreover, in this study
the Carnahan-Starling EOS is used as a non-ideal EOS to describe the
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Fig. 1. a) Schematic of domain and boundary conditions for the numerical simulations. b) Equilibrium density distribution: red represents the liquid phase, blue
represents the vapor phase, serving as the initial condition for the nonequilibrium solver.
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Fig. 2. An illustration depicting the validation case that simulates the evaporation of the fluid within a nanotube for the adhesive strength G,

pressure within the fluid field. This non-ideal EOS is expressed as
P, ORT (1 + (bp(x, 1)/4) + (bp(r, 1) /4 — (bp(x,1)/4)*)

P(r,t
x-0 (1 = (bp(r,10/4)°

— ap*(r,0), (16)

where the pressure, absolute temperature, and gas constant are rep-
resented by P, T, and R, respectively. The repulsion parameter,
b (0.18727RT,/p,), and the attraction parameter, a (0.4963R>T?/p,), are
set to 4 and 1, respectively. The reduced pressure and temperature in
lattice unit is p, = 0.00442 and T, = 0.094, respectively. From Eq. (16),
the pressure can be computed at each lattice node. Substituting the pres-
sure in Eq. (15), we can calculate the potential function y(r,) at each
lattice node as follows,

D) = < 5 < p(e, ORT(1 + ((bp(r, 1/4) + (bp(x,1)/4) — (bp(x,1)/4)°)

(1 = (bp(r,0/4))°
0.5
— apz(l‘, T) - C?p(l', t))/GcohesiveCO> .

a7)

2.1.3. Second distribution function: Temperature field

In the thermal two-phase Lattice Boltzmann method, the second set
of distributions representing the temperature field is related to the first
distribution, i.e., the density field, through the EOS. Assuming that there
is no heat dissipation due to viscosity, the governing equation for the
second distribution function of DD-TLBM model can be expressed in the
following manner (Zarghami and Van den Akker, 2017; Kamali et al.,
2013; Zarghami et al., 2015):

(r + ¢ ALT+ AD) — g(r.1) = ?(gi(r, N — g9, 0) + ol G, (18)
14

400

aso s00 sso 600 630 700 800

=04.

adhesive

Here g; denotes the thermal distribution function, 7, is the thermal re-
laxation time, G®*! is an external source term, and gf" denotes the equi-

librium thermal distribution function given by

] |

Here, T(r,1) = Z?:o g;(r, 1) is the temperature of each lattice at time 7.

By using the D2Q5 scheme in the current DD-LBM model, one can
simulate the nonisothermal two-phase flow transport phenomena in
nanochannels while keeping the computational cost manageable. The
D2Q5 model uses five discrete velocities to represent the probability of
finding the temperature of a specific lattice on the domain. “’,T repre-
sents the thermal weighting factor for the i-th discrete velocity,

{

The weighting factors are chosen such that the moments of the thermal
distribution function are conserved during the streaming and collision
steps of the DD-TLBM model.

Utilizing the Chapman-Enskog expansion method, it is possible to
derive the continuum energy equation corresponding to the thermal dis-
tribution function in the form of

G- ureal(r’ ]
2
Cs

g, =T, No] [1 + (19)

0,0
(1,0),0,+1)

i=0
i=1:4

= (20)

i

AN =W =

oT(r, 1)
o

+ U - VI, 1) = V- (VT (X, 1)) + €+ G = T(@x, )V - Uy
(2D

In the above relation, the thermal diffusivity is denoted as «, and ¢ is
an unwanted term that arises due to the presence of the force term in
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Fig. 3. Comparison between numerical simulation and analytical model regarding the evaporation of a fluid in a nanochannel.
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Fig. 4. Visualization of a droplet evaporating at constant pressure for different iterations. Velocity vectors are drawn along lines of constant temperature.

Eq. (9) (Zarghami and Van den Akker, 2017),

¢, - F(r,t
£= (L - l)w.chT(r,t)'—(), (22)
27, ! 2
g N
where ¢, stands for specific heat capacity at constant volume.
However, the macroscopic thermal energy equation reads
aT ou; T (dv\ DP "
92 VT =V - (kVT u———(—)— . (23
ey ot + PCpUscal ( )+‘rt,/ axj v\or /), Dr +0 (23)

In the above relation 7; ; and Q" stand for the force per unit area act-
ing on a surface (stress) and the heat sink or source per unit volume,
respectively. The continuum equation, Eq. (21), reproduces the balance
equation for thermal energy if dissipation and the pressure term, the
second and third term of the RHS of Eq. (23), respectively, can be ne-
glected. These conditions are met for the flow of liquid, but to reproduce
the Joule-Thomson effect for the adiabatic flow with friction through a
duct, both the dissipation and the pressure terms in Eq. (23) must be
concluded.

The term that accounts for phase change is referred to as o, and it
can be defined as follows Zarghami and Van den Akker (2017):

d
o= phhiqﬁ’(p)d—lt), (€2

where hy, represents the enthalpy associated with a phase change pro-
cess (e.g., enthalpy of vaporization). The marker function ¢(p) is defined
based on the density of the fluid. This function takes a value of zero in
the vapor phase and one in the liquid phase and increases linearly with

density for values in between,

9(p) = 20 25)
Pliq ~ Pvap
The term ¢ can be considered as the amount of heat per unit volume
supplied from external sources (¢ = Q""").
Finally, the energy conservation relation for multiphase flows with
phase change at the macroscopic level can be represented as follows:

£+ureal'VT=m+L

. 26
at pe, pe, (26)

When comparing Eq. (26) with Eq. (21), one can observe that
Eq. (21) has unwanted components that must be adjusted to replicate the
macroscopic energy (Eq. (26)). Consequently, the external source term
in Eq. (18) is specified as a correction (Zarghami and Van den Akker,
2017), which is given by
VAV o

ey [N

The liquid-vapor interface properties n (such as thermal diffusivity)

are calculated by:

G =TV Uy — V- (aVT) + —e. @7

1 =1 = §(p)1nyyp + P(P)1iq- (28)

By using this equation, the properties of the interface change mono-
tonically within the interface region. This means that they change
gradually and consistently in a specific direction. This equation allows
for the calculation of various properties of the interface, indicating
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Fig. 5. a) Pressure, b) Temperature distribution along the centerline at different times.

that the properties of the interface vary smoothly and continuously
within the interface region. Unless otherwise noted, the simulations uti-
lize the following values for the thermal diffusivities and specific heats
of the liquid and vapor: ajgiq = 1073, dyypor = 1072, ¢, jiquia = 5.1, and
Cpvapor = 2-50 (Zarghami and Van den Akker, 2017). The kinematic vis-

cosity of the liquid and the vapor are defined as v, = cf(r,iq - %)

and vy,, = cf(rmp - % ), respectively. Our model’s working fluid is car-
bon dioxide at a reduced temperature around 7, = 0.8 (T ~ 243 K). By
choosing the relaxations for the vapor and the liquid to be z,,, = 1 and
;4 = 0.75, respectively, the viscosity ratio is vy,,/vjiq = 2, which is close
to the physical ratio. The density ratio is controlled by the value of the
domain temperature and pressure through the equation of state, and for
the temperature and pressure range studied in our work, this ratio is
around 40.

The same discrete distribution without external parameters is con-
sidered the governing equation for the solid nodes. Since the velocity
of the solid nodes is zero, conduction is the only heat transfer mech-
anism. In this study, we assumed that the thermal conductivity of the
solid nodes is 50 times that of the liquid phase.

2.2. Determining the domain, boundary conditions, and initialization

This section describes the domain geometry, initial condition, and
boundary conditions. A two-dimensional domain with a size of N, x
N, = 32 x 800 lattices is used to describe a nanoslit. As shown in Fig. 1a,
small inlet and outlet bulk regions are utilized to prescribe the inlet
and outlet boundary conditions to the slit. In these bulk regions, peri-
odic boundary conditions are applied in the transversal direction. From
x = 20 to 780, the domain is restricted with walls that have changeable



Sodagar-Abardeh and Loimer

Chemical Engineering Science 316 (2025) 121935

1 T T I ‘
A\ . == = : Analytical h;, = 0.3
0.9 PN L. Analytical hy, = 0.2 |
A \.\ ——— Analytical hy, = 0.1
‘ R ~\.\ ] Numerical hy, = 0.3
0.8 ¥ ~. ¢4 Numerical hy, = 0.2 ||
» NS ® Numerical hy, = 0.1
\ he 8
PincS
o7 \ ™~
N ¢ S
0.6 = 4 N
. "
D? P \ T
5z 05 = + g
D} ' } AN
0.4 A o i
. ¥ |
o\ ‘\ I~
0.3 LN ’\:\\
YN 0\
0.2 Lo ¢ I~
: N
L S
~
0.1 oo
® N
o~
O 1 1
0 1 2 3 4 5 6
Iterations «10%4
(a)
T T T
— = = Analytical T, =0.85
Analytical T, = 0.87
——— Analytical T, = 0.9
+ Numerical T, = 0.85 [
[ ] Numerical T, = 0.87
* Numerical T, = 0.9
D2
D2

*i7
-/
*/
Vs

Iterations

(b)

%104

Fig. 6. Comparison between the simulation and D? law for (a) different enthalpies of vaporization at the boundariy temperature 7, = 0.9 and (b) different boundary

temperatures with 4, = 0.1.

thicknesses to consider the effect of nanoslit width. The halfway bounce-
back boundary condition is employed for solid nodes next to fluid nodes,
which stands for a nonslip boundary on the macroscopic scale. By com-
bining this boundary with the halfway specular boundary condition, one
can add the effect of slip on the wall (Succi, 2002). Regarding the initial-
ization, essentially the slit, i.e., the sub-domain located between x = 20
and x = 780, was initialized as liquid while the rest was initialized as gas
nodes. At the interface, the densities were smoothed out (Huang et al.,
2011),

— Py X abs {tanh [W] — tanh [@] }

P
PP =g+ —

(29)

In the above relation, p; and p, are the initial gas and liquid densities
from Maxwell construction, and W is the width of the initial interface,

which is equal to 5. After initialization, a constant temperature was pre-
scribed for the entire domain. After 50,000 iterations, isothermal equi-
librium was reached, see Fig. 1b. It is worth mentioning that the equi-
librium pressure of the gaseous side is regarded as the capillary pres-
sure. Consequently, the nonequilibrium extrapolation scheme is applied
to the inlet and outlet boundaries to provide the constant pressure as
the boundary conditions . In this regard, to maintain a constant inlet
and outlet bulk pressure, the Neumann boundary condition is employed
on the velocity to estimate the undetermined distributions of f; at the
inlet and outlet boundaries. Next, a new equilibrium distribution func-
tion, ff’Zew, is calculated by the C-S EOS for the local lattices to achieve
the desired density taking into account the initial pressure and current
temperature. At the outlet, the temperature from which the density is
calculated is either set equal to the upstream temperature for the dia-
batic description or is determined from the Joule-Thomson coefficient
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Fig. 7. Visual representations demonstrating fluid density within a nanopore under different equilibrium and nonequilibrium states. a) Fluid distribution according
to Lee and Hwang (1986). Adapted with permission from Rathi et al., Langmuir 35, 5702 (2019). Copyright 2019 American Chemical Society. b) Present work.
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Fig. 8. Effect of the inlet pressure on the shape of upstream and downstream menisci and the length of the liquid phase at the nonequilibrium steady states for

Pou; = 0.37. The range of adhesive strength is shown on the left.

for the adiabatic description. Lastly, the unknown distribution functions
are calculated as follows Fei et al. (2022):

fiunknown - fi R (30)

inew [

where £ is the equilibrium distribution corresponding to the undeter-
mined directions of the boundary nodes.

Regarding the thermal boundary conditions, the adiabatic boundary
is considered for the solid nodes restricting the domain to prevent heat
transfer in the perpendicular direction. Concerning the thermal bound-
ary condition for the exit nodes, based on the adiabatic prediction, the
Neumann thermal boundary condition is applied to avoid heat transfer.
For the diabatic description, the temperature at the outlet is specified
and adjusted to match the upstream temperature at negative infinity
(Loimer et al., 2011). From applying the energy equation upstream of

the slit (Loimer et al., 2019), for both descriptions, an exponential func-
tion is introduced to describe the temperature boundary layer preceding
the nanoslit from negative infinity to the entrance of the nanoslit. For
the solid nodes, a constant thermal conductivity that is 20 times higher
than that of the liquid nodes is assumed. Furthermore, to provide the
nonequilibrium steady state condition, 1,500,000 iterations were car-
ried out for each simulation.

2.3. Conversion between lattice units and physical units

From dimensional analysis, in order to convert four basic quantities
(mass, length, time, temperature) from lattice units to physical units,
relations for four independent quantities must be used. In this study,
the C-S EOS is used, which contains the parameters ap,, bp, and the
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Fig. 10. Pressure variation along the center line from upstream to downstream
for Ggnegive = 0.58 and Ggpeqve = 0.40 at the relative inlet pressure p;,, = 0.98 and
the relative outlet pressure p,, , = 0.37.

specific gas constant Rp,. However for the C-S EOS, the critical pressure
Pephs the critical temperature T, p, and Rp, are related to apy, and bp, by

0.4963R°T2,. 0.1873RT, p,
apy = —, bpn = —. (31)
Pc.ph Pc,ph

While in lattice units, a, b, and R are chosen arbitrarily to be 1, 4, and
1, respectively. Hence, from the connections of a, b, and R between
physical and lattice units, we have three equations. The fourth is pro-
vided by the surface tension. For instance, taking carbon dioxide as
the working fluid with physical properties equal to T, p, = 304.1282 K,
Pepn =7.3773 MPa and R_p, = 0.18892 Jg~! K~! and following the pro-
cedure for unit conversion, see e.g. (Wang et al., 2022), the conversion
coefficients between lattice length and physical length for different do-
main temperatures are presented in Table 1. As can be seen in Table 1,
one lattice extends over less than one nm, hence one lattice may contain
only two or three molecules of carbon dioxide in a dense packing. Since
the lattice-Boltzmann method can be regarded as continuum descrip-
tion, the lattice spacing can be seen as the resolution of the continuum
solution. However, with respect to the approximation of the adhesive

Table 1
Lattice unit-physical length conversion coefficients at different tem-
peratures for carbon dioxide as the working fluid.

T, Thomain(K) (N /m) o gm(lattice unit) LP(nm/lattice)
0.7 21288 0.0173 0.0159 0.652
0.8  243.30 0.01047 0.00815 0.770
09 27371 0.0043839  0.00312 0.842

force, Fadhesive  the lattice spacing corresponds to the physical reach of
the adhesive force between the wall and fluid particles.

3. Validation
3.1. Evaporation from a capillary tube due to a pressure reduction

In order to verify the accuracy of the current numerical model for
quasi-isothermal evaporation caused by pressure differences, we con-
ducted a simulation of evaporation in a capillary nanotube and com-
pared the outcomes to an analytical solution when the vapor mass flow
rate is restricted by viscous friction, cf. Cueto-Felgueroso et al. (2018).

The simulated nanotube has a length of 800 lattices and a width
of 32 lattices, with the left side being open for evaporation, as
shown in Fig. 2. According to the analytical model, the diffusive
scaling of the evaporative flux over time is expressed as rm(r) =
(O.SDv(psle"iscus _ peut)/(p{neniscus _ pgleniscuS))O-St—O.S’ where p{neniscus’
pensens and p9" are the liquid density, vapor density at the meniscus,
and the vapor density at the outlet boundary, respectively. The densities
of transition, p‘v“e“i““S and p{“em““s, are derived from density profiles
that are measured along the channel axis using the Lattice unit. The
diffusivity D, is defined as follows:

2

Py 8T, 3 3 >]

D, ="L|-6+ 2 . (32)
Y ”r[ 3(3—13,)(,0,« 3_pr

Regarding the numerical simulation, first, the capillary is filled with
liquid at a reduced temperature of T, = 0.8. Once the system is in equi-
librium, the pressure at the left boundary is reduced to 0.36 times
the equilibrium gas pressure. Here, for the simulation of carbon diox-
ide, T, = 0.8 corresponds to T' = 243.3 K, the saturation pressure p , =
1.52 M Pa, and the equilibrium pressure p., = 1.4 M Pa. For iteration
100,000 of Fig. 2, the density and the kinematic viscosity of the lig-
uid are 1217 kg/m? and 5.13 x 10~8 m? /s, respectively. The density and
the kinematic viscosity of the gaseous phase at the left boundary are
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Fig. 11. Effect of the mass flow rate on the pressure difference across the
downstream meniscus for different materials with different range of adhesive
strengths with p,, . = 0.37. a) With respect to 2¢/(radius of curvature at equilib-
rium), b) With respect to 2¢/(measured radius of curvature at nonequilibrium).

27.48 % and 1.026 x 10~7 m?/s, respectively. We examined different
contact angles, indicated by various adhesive force strengths, for the
solid walls. The relationship between mass flow rate and time is plotted
using the variables in the lattice unit for the analytical model. As shown
in Fig. 3, our simulation results match the analytical solution reason-
ably well. However, there is a higher deviation between the simulation
and analytical results for the first few iterations and stronger adhesive
strength. The larger deviation is probably due to the larger deviation of
the velocity profiles from the parabolic shape in the shorter gas-filled
region, as can be seen at the top of Fig. 2. The derivation of Eq. (32) is
based on the assumption of a parabolic velocity profile throughout the
entire gas-filled region. Only for a long enough gas flow section is this
assumption valid.

3.2. Evaporation of a droplet due to a temperature difference

The analytically traceable evaporation of a droplet into a gaseous en-
vironment is reproduced to validate the simulation of the phase change
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process caused by a temperature difference. To do this, a droplet with
35 lattice radius is used in the center of a domain with a mesh size
of 150 x 150 for the simulation. Once the droplet reaches equilibrium
at 7, = 0.8, the temperature of the boundaries is increased, creating a
temperature difference that causes evaporation. Fig. 4 shows the color-
coded density field of an evaporating droplet at four instances in time.
Velocity vectors are drawn in the figure along lines of constant tempera-
ture. The specific arrangement and implementation details of the D2Q9
LBM setup could lead to a velocity field that is not perfectly radial, as
can be seen in Fig. 4. Close to the droplet the velocity vectors point-
ing to the corners seem to be larger than the velocity vectors normal
to the boundary. Close to the boundary, the tendency in the velocity
distribution seems to be reverse, see the leftmost and the rightmost im-
ages in Fig. 4. Also, the temperature distribution is not completely radi-
ally symmetric, see the isotherms in Fig. 4. Such imperfections have also
been observed in other computations of an evaporating droplet (Alber-
naz et al., 2015; Zarghami and Van den Akker, 2017; Fei et al., 2022).
To address the possible cause of the imperfections seen in Fig. 4, we
have conducted further investigations, including an analysis of bound-
ary conditions and a revision of our discretization scheme for the en-
ergy equation. These additional studies are detailed in the Support-
ing Information and suggest that the anisotropy in the radially sym-
metric problem stems from the discretization scheme used for energy
equation.

The D? law provides an analytical solution for droplet evapora-
tion caused solely by diffusion based on Eq. (33). According to this
analytical prediction, the droplet temperature and the vapor pressure
must remain constant during evaporation. As the temperature at the
boundaries increases, the vapor is heated and results in diffusion-driven
evaporation,

Ly
e

init

1

L 8a;pit
Dl |5+ d | =p2 [Lim i
P 2 Ddrop it 2

— 258 101 + Sp).
Pliquid

(33)

In the given equation, L, represents the length of the domain, Dy,
is the diameter at a specific instant, and the subscript i refers to the
interface. Additionally, .Sp is a non-dimensional parameter known as
the Spalding number, Sp = C,(Tyoundary — Tarop)/ P1y> where hy, is the spe-
cific enthalpy of vaporization. The center line’s pressure and tempera-
ture distributions for different time steps with the boundary condition
described earlier are illustrated in Fig. 5. Fig. 5a reveals that, despite
the bulk regions’ constant pressure during evaporation, there are pres-
sure variations across the interface. This suggests that the mechanical
stability condition is not met around the interface. This issue occurs
in the lattice Boltzmann methods when a force is applied to introduce
the nonideal EOS. An important observation from the simulations is
that the droplet’s pressure increases as the iterations progresses due
to the Young-Laplace equation and the decreasing radius with time.
Since the temperature of the droplet stays constant, the surface tension
does not change. Therefore, a decrease in the droplet’s radius causes
an increase in the pressure inside the droplet. Additionally, Fig. 5b dis-
plays the temperature distributions at various times. It is apparent that
the droplet’s temperature remains constant during the evaporation pro-
cess. Figs. 6a and b exhibit the time-dependent behavior of the droplet’s
normalized squared diameter under different temperatures of the do-
main boundaries and various latent heat values. The numerical out-
comes are compared with the D? law, and the findings demonstrate good
agreement.

Fig. 6b depicts the findings obtained at different temperatures of the
domain boundaries for h;, = 0.1. The graph reveals that an increase in
the surrounding temperature results in faster evaporation of the droplet.
Fig. 6a illustrates a comparison between the numerical results and the
D, law at a surrounding temperature of 7, = 0.9 and various latent heats.
The data demonstrate that an increase of the enthalpy of vaporization
leads to a decrease in the rate of evaporation since more energy is re-
quired to transform the liquid into vapor.
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3.3. Steady state nonequilibrium phase distribution inside a nanopore for
different bulk conditions

Efforts have been made to link experimentally measurable quantities
such as mass flow rate, pressure, and nanoporous structure to the bulk
conditions of the media endpoints via the transport models (Choi et al.,
2001). Lee and Hwang (1986) tried to depict the possible states (illus-
trated in Fig. 7a) through a combination of continuum models. They

11

assumed that a group of parallel cylindrical capillaries could represent
the porous structure and employed the Knudsen diffusion model for gas
flow. Darcy’s model for flow through porous media was used to simulate
the flow of condensate, which reduces to the Hagen-Poiseuille model if
a group of cylindrical capillaries represents the porous medium, and
Gilliland’s hydrodynamic flow model was used to simulate the surface
flow. Our model used the same range of bulk pressure boundary condi-
tions regarding the saturation and capillary pressures as the reference
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Fig. 14. Effect of the temperature field on the mass flow rate for the for the solid material with the adhesive range G

Poutr = 0.37.

points to represent different states. In this regard, we introduce the rela-
tive pressure, which is described as p, = p/p, for the relative capillary
pressure, relative inlet and outlet bulk pressures. As can be observed
in Fig. 7b, the density distribution is the same for all situations com-
pared to the study by Lee and Hwang (1986). Moreover, investigation on
phase equilibrium of methane in nanopores under the effect of adsorp-
tion by Huang et al. (2021) indicates that mesopores are entirely filled
once the vapor starts to nucleate at sufficiently high relative vapor pres-
sures of pure fluid. This result is comparable with the case illustrated in
Fig. 7b(3) and a(3), where p;, , equals p, -

4. Result and discussion

4.1. The effect of the nanopore width on the mass flow rate; isothermal
consideration

During the transient simulation, the liquid-vapor interface progres-
sively develops and ultimately stabilizes under the influence of the inlet
and outlet pressure boundary conditions, leading either to a steady in-
terface configuration or to a purely gas-phase flow. The pressure differ-
ence between the upstream and the downstream menisci is responsible
for the increase in mass flow during capillary condensation. In a case
where the inlet and outlet bulk pressures are the same and greater than
the capillary pressure, the radii of curvature of both menisci are equal,
hence, the pressure difference across both menisci are the same. How-
ever, as shown in Figs. 8 and 9 which represent the flow through slits
made of different solid materials, when the relative inlet bulk pressure
Pin; @pproaches one while the relative outlet pressure remains constant
with p,, . = 0.37, the radius of curvature of the upstream meniscus in-
creases significantly compared to that of the downstream meniscus. Con-
sequently, the pressure difference across the downstream meniscus be-
comes much greater than the pressure difference across the upstream
meniscus, resulting in a substantial additional pressure difference that
increases the mass flow rate. For the solid material with larger range of
adhesive strength (Fig. 8), the effect of capillary condensation on the
mass flow rate increase occurs for a smaller relative inlet pressure com-
pared to that with smaller range of adhesive strength (Fig. 9). Addition-
ally, the solid material with the larger adhesive strength range causes
the downstream menisci radius to be smaller, which can be related to
the length of the liquid phase at the steady state.

12

adhesive = 0.4 — 0.62 and the relative outlet pressure

Fig. 10 displays the pressure variation along the centerline from
the upstream to downstream for the relative inlet pressure p;, . = 0.98.
For the solid surface with G, =0.58, the density and the kine-
matic viscosity of liquid is 1177 kg/m? and 5.13 x 108 m? /s, respec-
tively. The density of the gas varies between 78.5 kg/m> close to the
meniscus at the pressure P = 1.3376 M Pa and 27.48 kg/m? at the pres-
sure P = .5624 M Pa for the outlet. The kinematic viscosity of the gas re-
mains approximately constant and is 1.026 x 10~7 m?/s. The pressure dif-
ference across the downstream meniscus for the larger adhesive strength
is significantly greater than the case with smaller adhesive strength,
which is consistent with the size of the meniscus curvature. As soon as
steady state is achieved, i.e., there is a constant mass flow rate through-
out the channel, the menisci stay fixed and maintain their shape.

Fig. 11a displays the numerically obtained pressure difference across
the downstream meniscus with respect to the equilibrium pressure dif-
ference for the equilibrium contact angle. There is a two-phase flow
inside the nanoslit, i.e., the flow configuration is that depicted in
Fig. 7b(2). At the equilibrium state, there is a relation between the ad-
hesive strength and the contact angle (Sodagar-Abardeh et al., 2023),
and one can measure the contact angle by having the value of the adhe-
sive strength. Consequently, the equilibrium pressure difference along
the downstream interface can be calculated with the Young-Laplace re-
lation Ap = o cos 8/slit width. Fig. 11a shows two effects. One, when
the mass flow rate is zero, i.e., for a stationary two-phase state in a
nanochannel, the pressure difference across the meniscus obtained nu-
merically is smaller than the Young-Laplace pressure Apy ;.- With in-
creasing the adhesive strength, i.e., decreasing contact angle and de-
creasing radius of curvature, the deviation increases (Sodagar-Abardeh
et al., 2023). The second effect shown by Fig. 11a is the decrease of
pressure difference ratio with increasing mass flow rate. Fig. 11a also
shows the pressure difference ratio is close to 1 for the solid material
with the smaller range of adhesive strength G,y = 0.2 — 0.38, the
green square, while this ratio is below 0.96 for the material with the
higher range of adhesive strength G gcsive = 0.4 — 0.62, the black circle.
The pressure difference determined numerically could decrease with in-
creasing mass flow rate either because the Young-Laplace’s equation
is not obeyed, or because the interface is deformed. In simulations of
two-phase flow, accurately representing the interface is crucial. One
useful characteristic of the current model, which is a type of diffusive-
interface model, is its capability to automatically adapt the interface
between the two phases and calculate the curvature of the interface, as
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illustrated in Fig. 12. To test the reasons for the change in pressure differ-
ence ratio, the shapes of the interfaces (from the numerical simulation)
were traced, see Fig. 12. After determining the coordinations of points
along an interface, the circle that best fits the points is determined us-
ing the least square method. Subsequently, the radius of curvatures is
obtained, and the Young-Laplace equation can be evaluated with these
curvatures, App gpiace.cquivalent- £18- 11b plots the ratio of the numerically
obtained pressure difference to Apy ypjace cquivatent> the pressure difference
according to the shape of the meniscus. The ratio is very close to one
in all the cases, and it is independent of the mass flow rate and the
contact angle. It only shows a small noise about its approximate contact
value of 1.045. Hence, increasing mass-transfer deforms the meniscus
and Young-Laplace’s equation remains valid.

The capillary pressure is one of the criteria used to describe the
nonequilibrium steady state condition (Fig. 7b). Following our previ-
ous work (Sodagar-Abardeh et al., 2023), to estimate the equilibrium
gas pressure of a curved interface, which represents capillary pressure
in this study, one should consider the effect of the inlet bulk pressure,
the chemical features of the solid material, the nanochannel width, and
the domain temperature. For the two-dimensional isothermal descrip-
tion, by changing the width of the nanopore, the value of the capil-

lary pressure changes. By comparing Figs. 8 and 9, it is evident the
chemical features of a solid material significantly influence both the
beginning of capillary condensation and the steady-state liquid length
within the nanopore. Fig. 13 illustrates how the mass flow rate is af-
fected by changes in the width of a nanoslit. If the width of the nanoslit
increases, the mass flow rate will also increase when the inlet pressure
is far less than the saturation pressure. Additionally, the incline of the
line displaying the relationship between mass flow rate and pressure ra-
tio becomes steeper with increasing the slit width, suggesting a more
significant contribution from the viscous flow. Our previous research
(Sodagar-Abardeh et al., 2023) has demonstrated that an increase in
nanopore diameter results in a shift of the capillary pressure toward the
saturation bulk pressure. As a result, the relative inlet pressure value re-
quired for capillary condensation to occur increases for larger pore sizes.
This shifts the kink point toward one for nanoslit with larger width. For
example the minimum relative inlet pressure for the slit with 30 lat-
tices width to experience capillary condensation is about p;, . = 0.96,
while this value for the case with 20 lattices width is about p;, , = 0.92.
Capillary pressure causes higher pressure difference at the downstream
meniscus in nanopores with a smaller diameter. This can explain why for
the same range of relative inlet pressures, the mass flow rate through a
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smaller nanopore is greater than ones with a larger diameter. In Fig. 13,
there is a range of relative inlet pressure between 0.84 and 0.88 where
the mass flow rate of a nanoslit with ten lattices width is higher than
that with 14 lattices width.

4.2. Effect of the temperature field on the mass flow rate

After considering the influences of different parameters on the mass
flow rate for the isothermal prediction, this section investigates the ef-
fect of the outlet temperature reduction and the temperature boundary
layer on the mass flow rate. For the adiabatic downstream boundary con-
dition, i.e., (0T /0x) oyt = 0, the outlet temperature is determined from
integrating the Joule-Thomson coefficient 4, of a specific substance,

1)
LBM _ LBM ; pLBM
T = / My AP

LBM
T ~ Toutlet
P1

inlet

(34)

Determining the outlet temperature makes it possible to calculate the
temperature-dependent properties at the outlet. The outlet temperature
is always lower than the inlet temperature when a vapor flows through
a porous membrane because the Joule-Thomson coefficient for vapors,
i.e., for a gaseous phase below the critical temperature, is always posi-
tive. By determining the temperature of the downstream side with the
mentioned procedure (see Fig. 14), after reaching the steady state for the
equilibrium calculation (considering the periodic boundaries for inlet
and outlet and isothermal condition), the energy population is coupled
with the density distribution function to evaluate the effect of the tem-
perature reduction on the mass flow rate in the adiabatic description.
Zou and He (1997) boundary conditions are employed to implement the
fixed temperature and heat flux boundary conditions. Furthermore, the
adiabatic condition is considered for the walls restricting the domain as
the thermal boundary conditions. It should be noted that the density and
energy populations are related through the EOS, which describes the re-
lationship between the thermodynamic properties of the fluid. Fig. 14
displays the effect of the outlet temperature reduction on the mass flow
rate for the adiabatic, isothermal, and diabatic descriptions. Based on
the adiabatic prediction, the point at which the mass flow rate experi-
ences a kink is shifted towards a smaller relative inlet pressure. How-
ever, for the diabatic description, the capillary condensation happens
for larger relative inlet pressure. In Fig. 14, when the relative inlet pres-
sure is approximately 0.88, capillary condensation causes an increase in
the mass flow rate in the adiabatic analysis. The adiabatic prediction for
a relative inlet pressure of p;, . ~ 0.94 p, indicates a mass flow rate that
is 80 % larger compared to the isothermal analysis. The shift of the loca-
tion where evaporation occurs can be attributed to the effect of temper-
ature field. Fig. 15 shows the temperature and pressure distribution for
Pin; = 0.97 according to the isothermal, adiabatic and diabatic descrip-
tions. It is important to note that the radius of the upstream meniscus
in the isothermal prediction is larger than the radius of the upstream
curve in the adiabatic and diabatic descriptions; see the density contour
plotted in Fig. 15c. As a result, for the mentioned relative inlet pressure,
the pressure difference across the upstream meniscus increases for the
adiabatic prediction compared to the isothermal description, as shown
in the pressure distribution plotted in Fig. 15, leading to a decrease in
the mass flow rate. However, with the adiabatic downstream boundary
condition, the temperature reduction, see Fig. 15b, is a reason to in-
crease the mass flow rate. Regarding the computation with the diabatic
boundary condition, the temperature at the inlet of the nano-slit is larger
than that of the isothermal description; see Fig. 15b. Additionally, the
diabatic analysis’s pressure difference across the inlet meniscus is larger
than that of the isothermal description; see Fig. 15a. Consequently, the
mass flow rate decreases in the diabatic description compared to the
isothermal prediction for the same relative inlet pressure.

5. Conclusion

This study utilized the thermal two-phase lattice Boltzmann method
to investigate nanoscale fluid dynamics and phase change phenomena
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within confined nanoslits. The situation at the downstream meniscus
was specifically investigated, and it was found that the pressure dif-
ference across the meniscus decreases with increasing mass flow rate.
However, a geometrical analysis of the downstream meniscus shows
that the decrease of the pressure is entirely due to a different shape
of the meniscus with a larger radius of curvature. Regardless of mass
transfer across the meniscus, the Young-Laplace equation is very well
obeyed at the interface for all flow situations. The radius of curvature is
influenced by the adhesive strength and the formation of an adsorbed
layer downstreams of the meniscus, showing that the lattice Boltzmann
method presented here is able to simulate a flow where surface tension
and fluid-wall interactions are of importance.

The effects of temperature conditions could also be reproduced with
the method presented here. Under adiabatic conditions at the down-
stream boundary, the kink point where the mass flow rate increases
moves to smaller inlet pressure while for diabatic boundary conditions,
i.e, the outlet temperature is set equal to the inlet temperature, the kink
point occurs for larger relative inlet pressures.

Other effects that are known from classical continuum descriptions
were also observed using the lattice Boltzmann method: With decreas-
ing slit width, the effect of condensation on the mass flow rate be-
comes larger. Regarding the effect of adhesive strength, stronger adhe-
sive forces change the meniscus curvature by effectively decreasing the
contact angle, leading to increased capillary pressure and subsequent
enhancements in the length of the liquid phase.
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\begin {equation}\label {eqn:governing} f_{i}\left (\mathbf {r}+\mathbf {c}_i \Delta t, t+\Delta t\right )=\left (1-\frac {\Delta t}{\tau }\right ) f_{i}(\mathbf {r}, t)+\frac {\Delta t}{\tau } f_{i}^{\mathrm {eq}}(\mathbf {r},t) + \Delta f_{i}.\end {equation}


$f_{i}(\mathbf {r},t)$


$\mathbf {c}_{i}$


$\mathbf {r}$


$t$


$f_{i}^{\mathrm {eq}}(\mathbf {r},t)$


\begin {align}\label {eqn:equilibrium} f_{i}^{\mathrm {eq}}(\mathbf {r}, t)=\rho (\mathbf {r}, t) \omega _{i}\left [1+\frac {\left (\mathbf {c}_i \cdot \mathbf {u}(\mathbf {r}, t)\right )}{c_{s}^{2}}+\frac {{\left (\mathbf {c}_i \cdot \mathbf {u}(\mathbf {r}, t)\right )}^{2}}{2 c_{s}^{4}}+\frac {\mathbf {u}(\mathbf {r},t) \cdot \mathbf {u}(\mathbf {r}, t)}{2 c_{s}^{2}}\right ].\end {align}


$\tau $


$\Delta f_{i}$


\begin {equation}\label {eqn:EDM} \Delta f_{i} = f_{i}^{\mathrm {eq}} (\rho (\mathbf {r},t),(\mathbf {u}+\Delta \mathbf {u})(\mathbf {r},t))- f_{i}^{\mathrm {eq}} (\rho (\mathbf {r},t),\mathbf {u}(\mathbf {r},t)).\end {equation}


\begin {equation}\label {eqn:zeroth_moment} \rho (\mathbf {r}, t)=\sum _{i=0}^{n} f_{i}(\mathbf {r}, t),\end {equation}


\begin {equation}\label {eqn:first_moment} \mathbf {u}(\mathbf {r}, t)=\frac {\sum _{i=0}^{n} \mathbf {c}_i f_{i}(\mathbf {r}, t)}{\rho (\mathbf {r}, t)}.\end {equation}


$n$


$f_{i}^{\mathrm {eq}}(\mathbf {r},t)$


$\omega _i$


$c_s$


$D2Q9$


\begin {equation}\label {eqn:weight_factors} \omega _{i}= \left \{\begin {array}{@{}ll@{}} \displaystyle \frac {16}{36} & i=0 \\[4pt] \displaystyle \frac {4}{36} & i=1:4 \\[4pt] \displaystyle \frac {1}{36} & i=5:8 \end {array}\right ., \hspace {2mm} \mathbf {c}_i= \left \{\begin {array}{@{}ll@{}} {-2mm}(0,0) & i=0 \\[4pt] (\pm 1,0),(0,\pm 1) & i=1:4 \\[4pt] (\pm 1,\pm 1) & i=5:8 \end {array}\right .\end {equation}


\begin {equation}\label {eqn:Chapman_Enskog} \nu _{\mathrm {LBM}}=c_{s}^{2}\left (\tau -\frac {\Delta t}{2}\right ).\end {equation}


$\nu _{\mathrm {LBM}}$


$\tau $


$\tau _{\mathrm {liq}}$


$\tau _{\mathrm {vap}}$


\begin {equation}\label {eqn:Total_force} \begin {array}{@{}l@{}} \Delta \mathbf {u}(\mathbf {r},t)= \frac {\Delta t \; \mathbf {F}^{\mathrm {total}}(\mathbf {r},t) }{\rho (\mathbf {r}, t)}, \\[4pt] \mathbf {F}^{\mathrm {total}}(\mathbf {r},t)= \mathbf {F}^{\mathrm {g}}(\mathbf {r},t)+\mathbf {F}^{\mathrm {cohesive}}(\mathbf {r},t)+\mathbf {F}^{\mathrm {adhesive}}(\mathbf {r},t). \end {array}\end {equation}


$\mathbf {F}^{\mathrm {total}}$


$\mathbf {F}^{\mathrm {cohesive}}$


$\mathbf {F}^{\mathrm {adhesive}}$


$\mathbf {F}^g$


\begin {equation}\label {eqn:actual_fluid_velocity} \mathbf {u}_{\mathrm {real}} (\mathbf {r},t) = \mathbf {u}(\mathbf {r},t)+ \frac {\Delta t \; \mathbf {F}^{\mathrm {total}}(\mathbf {r},t) }{2\rho (\mathbf {r},t)}.\end {equation}


\begin {equation}\label {eqn:adhesive_force} \mathbf {F}^{\mathrm {adhesive}}(\mathbf {r},t)=-G_{\text {adhesive }} \psi (\mathbf {r}, t) \sum _{i=1}^{9} \omega ^{\mathbf {F}} \left (\left |\mathbf {c}_i\right |^{2}\right ) S\left (\mathbf {r}+\mathbf {c}_i \Delta t, t\right ) \mathbf {c}_i.\end {equation}


$G_{\mathrm {cohesive}}$


$\beta $


$\omega ^{\mathbf {F}}$


$G_{\mathrm {cohesive}}$


$\omega ^{\mathbf {F}}(0)=0,\:\omega ^{\mathbf {F}}(1)=\frac {1}{3},\: \text {and} \: \omega ^{\mathbf {F}}(0)=\frac {1}{12}$


$\beta $


$\psi (x)$


$\psi (x+1)$


$\psi (x-1)$


$\psi (x)$


$G_{\mathrm {adhesive}}$


$S(\mathbf {r}+\mathbf {c}_i\Delta t,t)$


$\psi _{\mathrm {(\mathbf {r},t)}}$


\begin {equation}\label {qen:Pressure} P(\mathbf {r},t)=c_{s}^{2} \rho (\mathbf {r},t)+\frac {1}{2} G_{\mathrm {cohesive}} c_{0} \psi ^{2}(\mathbf {r}, t),\end {equation}


$G_{\mathrm {cohesive}}$


$c_0$


$D2Q9$


\begin {align}P(\mathbf {r}, t)=&\frac {\rho (\mathbf {r}, t)RT\left (1+\left (b\rho (\mathbf {r},t)/4\right )+{\left (b\rho (\mathbf {r},t)/4\right )}^{2}-{\left (b\rho (\mathbf {r},t)/4\right )}^{3}\right )}{{\left (1-\left (b\rho (\mathbf {r},t)/4\right )\right )}^{3}}\nonumber \\ &-a \rho ^{2}(\mathbf {r},t), \label {eqn:CS_EOS}\end {align}


$P$


$T$


$R$


$b \;(0.18727RT_{\mathrm {c}} / p_{\mathrm {c}})$


$a \; (0.4963 R^2 T^2_{\mathrm {c}} / p_{\mathrm {c}})$


$4$


$1$


$p_{\mathrm {c}}=0.00442$


$T_{\mathrm {c}}=0.094$


$\psi (\mathbf {r},t)$


\begin {equation}\label {thermal_LBM_distribution} g_i(\mathbf {r}+\mathbf {c}_i\Delta t, t+\Delta t)-g_i(\mathbf {r},t)=\frac {\Delta t}{\tau _g}(g_i(\mathbf {r},t)-g_i^{\mathrm {eq}}(\mathbf {r},t))+\omega _i^T G^{\mathrm {ext}}.\end {equation}


$g_i$


$\tau _g$


$G^{\mathrm {ext}}$


$g_i^{eq}$


\begin {equation}\label {equilibrium_thermal_LBM_distribution} g_i^{\mathrm {eq}}(\mathbf {r},t)=T(\mathbf {r},t) \omega _i^{\mathrm {T}} \left [1+\frac {\mathbf {c}_i \cdot \mathbf {u}_{\mathrm {real}}(\mathbf {r},t)}{c_s^2}\right ].\end {equation}


$T(\mathbf {r},t)=\sum _{i=0}^{n} g_i(\mathbf {r},t)$


$t$


$\omega _i^T$


$i$


\begin {equation}\label {eqn:thermal_weight_factors} \omega _{i}^T= \left \{\begin {array}{@{}ll@{}} \displaystyle \frac {1}{3} & i=0 \\[4pt] \displaystyle \frac {1}{6} & i=1:4 \end {array}\right . \hspace {2mm} \mathbf {c}_i= \left \{\begin {array}{@{}ll@{}} (0,0) & i=0 \\[2pt] (\pm 1,0),(0,\pm 1) & i=1:4 \end {array}\right .\end {equation}


\begin {equation}\label {continuum_energy_Chapman-Enskog} \frac {\partial T(\mathbf {r},t)}{\partial t} + \mathbf {u}_{\mathrm {real}}\cdot \nabla T(\mathbf {r},t) = \nabla \cdot \left (\alpha \nabla T(\mathbf {r},t)\right ) +\varepsilon +G^{\mathrm {ext}} - T(\mathbf {r},t)\nabla \cdot \mathbf {u}_{\mathrm {real}}.\end {equation}


$\alpha $


$\varepsilon $


\begin {equation}\label {unwanted_term} \varepsilon = (\frac {1}{2\tau _g}-1)\omega _{i}^T c_{\nu } T(\mathbf {r},t) \frac {\mathbf {c}_i \cdot \mathbf {F}(\mathbf {r},t)}{c^2_s},\end {equation}


$c_{\nu }$


\begin {equation}\label {macroscopic_conservation} \rho c_p \frac {\partial T}{\partial t} + \rho c_p \mathbf {u}_{\mathrm {real}}\cdot \nabla T = \nabla \cdot (k \nabla T)+\tau _{i,j} \frac {\partial u_i}{\partial x_j}- \frac {T}{\nu } \left (\frac {\partial \nu }{\partial T}\right )_p \frac {DP}{Dt}+Q^{\prime \prime \prime } .\end {equation}


$\tau _{i,j}$


$Q^{\prime \prime \prime }$


$\sigma $


\begin {equation}\label {factor_phase_change} \sigma =\rho h_hi \phi ^{\prime }(\rho ) \frac {\mathrm {d}\rho }{\mathrm {d}t},\end {equation}


$h_{\mathrm {\phi }}$


$\phi (\rho )$


\begin {equation}\label {marker_phase_change} \phi (\rho )=\frac {\rho -\rho _{\mathrm {vap}}}{\rho _{\mathrm {liq}}-\rho _{\mathrm {vap}}}.\end {equation}


$\sigma $


$\sigma =Q^{\prime \prime \prime }$


\begin {equation}\label {macroscopic_energy_phase_change_final} \frac {\partial T}{\partial t} + \mathbf {u}_{\mathrm {real}}\cdot \nabla T = \frac {\nabla \cdot k \nabla T}{\rho c_p} + \frac {\sigma }{\rho c_p}.\end {equation}


\begin {equation}G^{\mathrm {ext}} = T\nabla \cdot \mathbf {u}_{\mathrm {real}} - \nabla \cdot \left (\alpha \nabla T\right ) + \frac {\nabla \cdot k \nabla T}{\rho c_p} + \frac {\sigma }{c_p} - \varepsilon . \label {Xeqn27-27}\end {equation}


$\eta $


\begin {equation}\eta = [1 - \phi (\rho )]\eta _{\mathrm {vap}} + \phi (\rho )\eta _{\mathrm {liq}}. \label {Xeqn28-28}\end {equation}


$\alpha _{\mathrm {liquid}} = 10^{-3}$


$\alpha _{\mathrm {vapor}} = 10^{-2}$


$c_{\mathrm {p, liquid}} = 5.1$


$c_{\mathrm {p, vapor}} = 2.50$


$\nu _{\mathrm {liq}}=c_{s}^{2}\left (\tau _{liq}-\frac {\Delta t}{2}\right )$


$\nu _{\mathrm {vap}}=c_{s}^{2}\left (\tau _{vap}-\frac {\Delta t}{2}\right )$


$T_r\approx 0.8$


$T\approx 243\;K$


$\tau _{vap}=1$


$\tau _{liq}=0.75$


${\nu _{\mathrm {vap}}}/{\nu _{\mathrm {liq}}}=2$


$N_x \times N_y = 32 \times 800$


$x = 20$


$x=20$


$x=780$


\begin {equation}\label {eqn:Initialization} \rho (x,y)= \rho _{g} + \frac {\rho _{l}-\rho _{g}}{2} \times \mathop {\mathrm {abs}} \left \{ \tanh \left [ \frac {2(x-20)}{W} \right ]-\tanh \left [\frac {2(x-780)}{W} \right ] \right \}.\end {equation}


$\rho _l$


$\rho _g$


$W$


$f_i$


$f_{i,new}^{eq}$


\begin {equation}\label {eqn:Pressure_constant} f_i^{unknown} = f_i + f_{i,new}^{eq}-f_i^{eq},\end {equation}


$f_ i^{eq}$


$a_{\mathrm {Ph}}$


$b_{\mathrm {Ph}}$


$R_{\mathrm {Ph}}$


$p_{\mathrm {c,Ph}}$


$T_{\mathrm {c,Ph}}$


$R_{\mathrm {Ph}}$


$a_{\mathrm {Ph}}$


$b_{\mathrm {Ph}}$


\begin {equation}a_{\mathrm {Ph}} = \frac { 0.4963 R^2 T_{\mathrm {c,Ph}}^2 }{p_{\mathrm {c,Ph}}},\
b_{\mathrm {Ph}} = \frac {0.1873R T_{\mathrm {c,Ph}} }{p_{\mathrm {c,Ph}}}. \label {Xeqn31-31}\end {equation}


$T_{\mathrm {c,Ph}}=304.1282~K$


$p_{\mathrm {c,Ph}}=7.3773~MPa$


$R_{\mathrm {c,Ph}}=0.18892 ~Jg^{-1}K^{-1}$


$T_{\mathrm {r}}$


$T_{\mathrm {domain}}(K)$


$\sigma _{\mathrm {ph}}(N/m)$


$\sigma _{\mathrm {LBM}}(lattice\:unit)$
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$\mathbf {F}^{\mathrm {adhesive}}$


$G_{\mathrm {adhesive}}=0.4$


$\dot {m}(t) =$


${\left (0.5 D_{\mathrm {\nu }} (\rho _{\mathrm {v}}^{\mathrm {meniscus}} - \rho _{\mathrm {v}}^{\mathrm {out}})/(\rho _{\mathrm {l}}^{\mathrm {meniscus}} - \rho _{\mathrm {v}}^{\text {meniscus}})\right )}^{0.5} t^{-0.5}$
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$\rho _{\mathrm {v}}^{\mathrm {meniscus}}$


$\rho _{\mathrm {v}}^{\mathrm {out}}$
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$D_\nu $


\begin {equation}\label {eqn:capillary_evaporation} D_{\nu } = \frac {\rho _r^2}{\mu _r} \left [-6 + \frac {8T_r}{3(3-\rho _r)} \left (\frac {3}{\rho _r} - \frac {3}{3-\rho _r}\right )\right ].\end {equation}


$T_r = 0.8$


$T_r=0.8$


$T=243.3\;K$


$p_{\mathrm {sat}}=1.52 \; MPa$


$p_{\mathrm {eq}}=1.4 \; MPa$


$1217\;{kg}/{m^3}$
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$27.48\;\frac {Kg}{m^3}$


$1.026\times 10^{-7}\;{m^2}/{s}$


$35$


$150 \times 150$


$T_r=0.8$


$D^2$


\begin {equation}\label {eqn:D2_law} D_{\mathrm {drop}}^2\left [\frac {1}{2}+\ln \frac {L_{\mathrm {d}}}{D_{\mathrm {drop}}}\right ] = D_{\mathrm {init}}^2\left [\frac {1}{2}+\ln \frac {L_{\mathrm {d}}}{D_{\mathrm {init}}}\right ]-\frac {8\alpha _{\mathrm {i}} \rho _{\mathrm {i}}t}{\rho _{\mathrm {liquid}}}\ln (1+Sp).\end {equation}


$L_{\mathrm {d}}$


$D_{\mathrm {drop}}$


$Sp$


$Sp=C_p(T_{\mathrm {boundary}}-T_{\mathrm {drop}})/h_{\mathrm {lv}}$


$h_{\mathrm {lv}}$


${\mathrm {D}}^2$


$T_r=0.9$


$h_{lv} = 0.1$


$D^2$


$h_{\mathrm {lv}} = 0.1$


$D_2$


$T_r = 0.9$


$p_{\mathrm {r}}=p/p_{\mathrm {sat}}$


$p_{\mathrm {in,r}}$


$p_{\mathrm {out,r}}$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {in,r}}$


$p_{\mathrm {out,r}} = 0.37$


$G_{\mathrm {adhesive}}=0.58$


$G_{\mathrm {adhesive}}=0.40$


$p_{\mathrm {in,r}}=0.98$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {in,r}}=0.98$


$G_{\mathrm {adhesive}}=0.58$


$1177\; {kg}/{m^3}$


$5.13\times 10^{-8}\;{m^2}/{s}$


$78.5 \; {kg}/{m^3}$


$P=1.3376 \; MPa$


$27.48 \; {kg}/{m^3}$


$P=.5624 \; MPa$


$1.026\times 10^{-7}\;{m^2}/{s}$


$p_{\mathrm {out,r}}=0.37$


$2\sigma $


$2\sigma $


$\Delta p={\sigma \cos \theta }$


$\Delta p_{\mathrm {Laplace}}$


$G_{\mathrm {adhesive}}=0.2-0.38$


$G_{\mathrm {adhesive}}=0.4-0.62$


$G_{\mathrm {adhesive}}=0.4-0.62$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {out}}=p_{\mathrm {in}}=p_{\mathrm {cap}}$


$\Delta p_{\mathrm {Laplace, equivalent}}$


$\Delta p_{\mathrm {Laplace, equivalent}}$


$G_{\mathrm {adhesive}}=0.4-0.62$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {in,r}}=0.96$


$p_{\mathrm {in,r}}=0.92$


$({\partial T}/{\partial x})_{\mathrm {outlet}}=0$


$\mu _{JT}$


\begin {equation}\label {eqn:reduced_outlet_temperature} T_{\mathrm {inlet}}^{\mathrm {LBM}}-T_{\mathrm {outlet}}^{\mathrm {LBM}}= \int _{p_1}^{p_2}\mu ^{\mathrm {LBM}}_{JT} \, dP^{\mathrm {LBM}}.\end {equation}


$G_{\mathrm {adhesive}}=0.4-0.62$


$p_{\mathrm {out,r}}=0.37$


$\mathrm {p_{in,r}} \approx 0.94 \; \mathrm {p_{sat}}$


$80 \; \%$


$p_{\mathrm {in,r}}=0.97$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {in,r}}=0.97$

