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 a b s t r a c t

The pseudopotential two-phase Lattice Boltzmann method is used to study a flow with condensation and evap-
oration through slits ranging between 8 to 24nm in width by applying a pressure gradient. The slits are about 
700nm long. The fluid described by the Carnahan-Starling equation of state is in the form of a vapor upstream of 
the pore. For the smaller applied pressure gradient, the vapor flows through the slit. However, for higher values 
of the pressure gradient, as the gas flows through the slit, the fluid condenses, and consequently, liquid flows 
through the slit. The liquid may leave the slit, or it evaporates. Here, the condition at the interface between the 
liquid and the gaseous flow region, where mass transfer by evaporation takes place, is investigated. The pressure 
difference across the curved meniscus is consistent with the Young-Laplace equation and nearly independent of 
the mass flow rate. However, the curvature of the interface depends on the strength of the fluid-wall interaction. 
The curvature of the meniscus and effects influencing the curvature play an important role in the process. Con-
sidering the temperature field in the transport process reveals that different boundary conditions for the domain 
influence the mass flow rate. Heating the slit from the downstream side decreases the mass flow rate.

1.  Introduction

The transport of fluids in nanopores under nonequilibrium con-
ditions has been studied extensively in both experiments and theory 
(Wang and Aryana, 2021; Huang et al., 2021; Song et al., 2020; Yu et al., 
2018; Namadchian et al., 2022). Membrane separations have great po-
tential in this area (Phan et al., 2020). By operating under specific condi-
tions and taking advantage of the adsorption and capillary condensation 
phenomena, which result in selectivity and high permeability, the po-
tential for gas separations increases considerably inside the nanoporous 
structure (Yabunaka and Fujitani, 2022; Deng et al., 2023). It is worth 
noting that under these operational conditions, the transportation of va-
pors takes place within the pressure range where capillary condensation 
occurs.

To date, the study of fluid transport at the nanoscale has involved 
experimental investigations, improved thermodynamic models, and nu-
merical simulations. Uchytil et al. (2003, 2005) examined the perme-
ation of butane and isobutane through Vycor nanoporous glass. They 
attempted to demonstrate a correlation between the inlet and exit 
bulk pressure conditions and the observed experimental permeation
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behavior. It was assumed that these conditions have an impact on the 
state of the fluid within the nanoporous medium.

The existing limitations of the experimental apparatus restrict us 
from confirming and exploring these conditions at a microscopic level. 
Nonetheless, there were several attempts to connect these states to 
measurable quantities such as flux, pressure, and mesoporous structure 
through transportation models. Loimer et al. (2011, 2023) employed 
a combination of the Hagen-Poiseuille model, which describes liquid 
flow, and the Knudsen diffusion model, which describes gas flow, to 
clarify situations where there is a two-phase flow within anodized alu-
mina membranes. However, it is important to note that this study fo-
cuses on capturing the effects of capillary condensation, where viscous 
flow dominates the transport mechanism. A more accurate description 
of gaseous flow, including the Knudsen effect, remains to be explored 
in future work. If liquid flows through part of the pore, the effect of 
the interface between the liquid and the gaseous flow region usually 
dominates the flow.

Recently, the comprehension of the thermodynamics of fluids within 
the nanoconfined mesoporous materials has significantly improved, 
mainly concerning capillary transitions, owing to the improvements 
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in molecular simulation techniques (Monson, 2012; Sun et al., 2020). 
Numerical simulation in this scale allows for investigating many fluid 
types across a wide range of pressure or temperature conditions. While
molecular dynamic simulation is effective at uncovering novel phenom-
ena on the nanoscale by modeling the movement of each molecule, it is 
computationally expensive. Besides the method that operates at a molec-
ular level, classical density functional theory (DFT) is also effective in 
conducting theoretical examinations of the thermodynamic properties 
of fluids within nanopores. Li and Firoozabadi (2009) integrated DFT 
and the Peng-Robinson equation of state (EOS) to simulate the interfa-
cial tension of pure substances and binary mixtures. Jin and Firoozabadi 
(2016), Li et al. (2014), and Liu et al. (2018) applied DFT to analyze the 
adsorption and behavior of confined phases in nanoslits. The results in-
dicated a suppressed critical temperature and an increased critical den-
sity, which are qualitatively in line with findings from molecular sim-
ulations. Furthermore, dynamic mean field theory has been developed 
to extend this method, allowing for the study of nanofluid transport 
(Edison and Monson, 2013, 2012). Rathi et al. (2019) used dynamic 
mean field theory and molecular dynamics to examine the transporta-
tion of condensable fluids in nanoporous membranes under nonequilib-
rium conditions. A single-slit pore represented the model to simplify the 
complexity of the transport mechanism. The study compared the dynam-
ics of a system that began in an initial equilibrium state to that of ap-
proaching another equilibrium or nonequilibrium state. This approach 
allowed for an evaluation of the transportation process in a controlled 
and decoupled environment.

To account for the effects of confinement, researchers have devel-
oped modified EOS that incorporate additional parameters or modifica-
tions to the existing parameters. For example, one approach is to shift 
the critical point of the EOS to account for the effect of confinement 
(Zarragoicoechea and Kuz, 2004). This is because confinement can al-
ter the thermodynamic properties of the fluid and shift the value of the 
critical point. Another approach is to couple the capillary pressure to 
the EOS, which allows for the effects of the pore size and shape on the 
fluid behavior to be considered (Liu et al., 2018).

We can understand the physics behind flow and transport at a micro-
scale using molecular dynamics (MD) simulations. However, simulating 
more complex fluids or larger systems becomes difficult due to the ex-
pensive computational cost and complexities required for MD force field 
simulations. Additionally, while molecular-level research offers valu-
able insights into confined phase behavior, applying this knowledge 
to thermodynamic models to make predictions is challenging. To ad-
dress these issues, one potential solution is to use insights gained from 
MD simulations to create a mesoscopic computational model. The pos-
sible method needs to adequately capture the physics at a small scale 
and allow for the scaling of the system from a microscopic to a macro-
scopic level. As a mesoscopic approach, the lattice Boltzmann Method 
(LBM) will enable us to directly bridge the gap between microscale ki-
netics and macroscale properties (Bao and Guo, 2024; Pasieczynski and 
Chen, 2020; Albernaz et al., 2015). Compared to DFT, the LBM can 
capture the dynamic phase transition process and requires less com-
putational time than MD or Monte Carlo simulations (Huang et al., 
2021). Among the several two-phase LBM approaches available, the 
pseudopotential model is a popular choice due to its simplicity and 
ability to implement interactive forces directly through pseudopoten-
tial functions (Areshi et al., 2024). Yuan and Schaefer (2006) linked 
various equations of state to pseudopotential functions and simulated 
phase behavior for real gases. Although the original pseudopotential 
model is not thermodynamically consistent (Huang et al., 2021), many 
studies have used modified versions of the model to simulate confined 
phase behavior (Sodagar-Abardeh et al., 2023). To investigate how con-
fined phase behavior affects the transport of methane in slit nanopores, 
Wang and Aryana (2021) used a modified EOS in combination with a 
multi-relaxation time LBM. They estimated the transport properties by 
examining the mass flux profiles. Recently, machine learning techniques 
such as Symbolic Regression and Genetic Programming have been em-

ployed to develop surrogate models that capture complex physical be-
haviors with simplified analytical expressions. These approaches offer 
high accuracy, interpretability, and the potential to uncover underlying
physical laws from simulation or experimental data (Khadem and Rey, 
2021; Khadem et al., 2014).

Following our previous work on the equilibrium phase behavior of 
fluids in confined nanopores, in the present work we employ a thermal 
two-phase lattice Boltzmann method to study the transport phenom-
ena of condensable gas in nanoporous membranes under nonequilib-
rium conditions by allowing variations of the temperature. To the best of 
our knowledge, this is the first time the lattice Boltzmann approach has 
been used to accurately capture the nonequilibrium steady state prop-
erties of pressure-driven two-phase flow transport within a slit confine-
ment. Building upon our previous study (Sodagar-Abardeh et al., 2023), 
we conducted a comparative investigation of the dynamics of a system 
starting from an initial equilibrium state approaching a nonequilibrium 
(or an equilibrium) state. Specifically, we investigated the effect of the 
nanoslit width and the temperature fields on the mass flow rate. We 
also evaluated the deviation of gas pressure at the downstream menis-
cus with respect to the equilibrium state when there is a flow across 
the meniscus. Our findings offer insights into the transport of fluids in 
nanopores and can also be extended to more complex nanoporous me-
dia, such as media with parallel pore network structures.

2.  Model description

2.1.  Double distribution two-phase lattice Boltzmann method

The double distribution two-phase lattice Boltzmann method (DD-
TLBM) is a simulation technique that can model fluid flow and temper-
ature fields in a two-phase system. This method uses two sets of distri-
bution functions, where one of them represents the velocity of the fluid 
and the density which connects to the pressure through EOS. The other 
distribution function can represent various physical quantities, such as 
temperature or concentration, depending on the specific application be-
ing modeled. In the case of a two-phase flow problem involving heat 
transfer, the second distribution can be used to represent the tempera-
ture field (Qin et al., 2019).

2.1.1.  First distribution function: Density field
The first distribution function of DD-TLBM calculates the macro-

scopic characteristics of a fluid flow by tracking the changes in the 
probability distribution function of density at each lattice. This discrete 
distribution function is governed by the following equation (Sodagar-
Abardeh et al., 2023): 

𝑓𝑖
(

𝐫 + 𝐜𝑖Δ𝑡, 𝑡 + Δ𝑡
)

=
(

1 − Δ𝑡
𝜏

)

𝑓𝑖(𝐫, 𝑡) +
Δ𝑡
𝜏
𝑓 eq
𝑖 (𝐫, 𝑡) + Δ𝑓𝑖. (1)

The probability distribution function 𝑓𝑖(𝐫, 𝑡) in the above relation is as-
sociated with the discrete velocity vector 𝐜𝑖 of the lattice located at 𝐫
and time 𝑡. In Eq. (1), 𝑓 eq

𝑖 (𝐫, 𝑡) is the equilibrium distribution function, 
which is fully defined in Eq. (4), and 𝜏 represents the relaxation time. 
The change in the equilibrium distribution function caused by an ex-
ternal body force is represented by Δ𝑓𝑖, and this transformation is de-
tailed in Eq. (7). The macroscopic density and velocity of the fluid can 
be calculated by evaluating the zeroth and first moments of the density 
distribution function, respectively, 

𝜌(𝐫, 𝑡) =
𝑛
∑

𝑖=0
𝑓𝑖(𝐫, 𝑡), (2)

𝐮(𝐫, 𝑡) =
∑𝑛
𝑖=0 𝐜𝑖𝑓𝑖(𝐫, 𝑡)
𝜌(𝐫, 𝑡)

. (3)

In Eq. (2), 𝑛 refers to the number of directions in which the probability 
function can stream, and this equation represents the zeroth moment 
of the density distribution function. As previously stated in Eq. (1), the 
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symbol 𝑓 eq
𝑖 (𝐫, 𝑡) represents the equilibrium distribution function, which 

is defined by

𝑓 eq
𝑖 (𝐫, 𝑡) = 𝜌(𝐫, 𝑡)𝜔𝑖

[

1 +

(

𝐜𝑖 ⋅ 𝐮(𝐫, 𝑡)
)

𝑐2𝑠
+

(

𝐜𝑖 ⋅ 𝐮(𝐫, 𝑡)
)2

2𝑐4𝑠
+

𝐮(𝐫, 𝑡) ⋅ 𝐮(𝐫, 𝑡)
2𝑐2𝑠

]

.

(4)

The equilibrium distribution function, expressed in Eq. (4), includes 
the weighting factor 𝜔𝑖 and the speed of sound in the lattice space 𝑐𝑠. 
Numerical simulations in the present work were conducted in a two-
dimensional domain and nine-directions known as the 𝐷2𝑄9 scheme 
for the density field. For this scheme, the weighting coefficients and the 
discrete velocity vectors are provided by 

𝜔𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

16
36

𝑖 = 0
4
36

𝑖 = 1 ∶ 4
1
36

𝑖 = 5 ∶ 8

, 𝐜𝑖 =
⎧

⎪

⎨

⎪

⎩

−2𝑚𝑚(0, 0) 𝑖 = 0

(±1, 0), (0,±1) 𝑖 = 1 ∶ 4

(±1,±1) 𝑖 = 5 ∶ 8

(5)

Where the tuples (x,y) represent the direction in Cartesian x- and y-
coordinates. The relationship between the relaxation time and the fluid 
viscosity as one of the macroscopic properties can be determined using 
a multi-scale Chapman-Enskog expansion, which is expressed as 

𝜈LBM = 𝑐2𝑠
(

𝜏 − Δ𝑡
2

)

. (6)

Here, the kinematic viscosity of the fluid in the lattice unit is denoted by 
𝜈LBM. Although a single-relaxation-time scheme is used, different values 
of the relaxation time 𝜏 are applied for the liquid and vapor phases, 
denoted by 𝜏liq and 𝜏vap, respectively. In the interfacial region, where 
the density transitions smoothly between phases, a linear interpolation 
is used to assign an effective relaxation time based on the local density. 
The exact difference method, proposed by (Kupershtokh and Medvedev, 
2006), is used to incorporate external forces into the current model. 
By applying this approach, the change in the equilibrium distribution 
function resulting from the external body force is added to the right-
hand side of Eq. (1), as given by 
Δ𝑓𝑖 = 𝑓 eq

𝑖 (𝜌(𝐫, 𝑡), (𝐮 + Δ𝐮)(𝐫, 𝑡)) − 𝑓 eq
𝑖 (𝜌(𝐫, 𝑡),𝐮(𝐫, 𝑡)). (7)

When the external body force is included during the time increment, it 
leads to a change in velocity, which is represented as 

Δ𝐮(𝐫, 𝑡) = Δ𝑡 𝐅total(𝐫,𝑡)
𝜌(𝐫,𝑡) ,

𝐅total(𝐫, 𝑡) = 𝐅g(𝐫, 𝑡) + 𝐅cohesive(𝐫, 𝑡) + 𝐅adhesive(𝐫, 𝑡).
(8)

Here, 𝐅total represents the total external force, which is composed of 
the cohesive force (fluid-fluid interaction) represented by 𝐅cohesive, the 
adhesive force (fluid-solid interaction) represented by 𝐅adhesive, and the 
gravitational force represented by 𝐅𝑔 . The actual fluid velocity can be 
calculated using the equation 

𝐮real(𝐫, 𝑡) = 𝐮(𝐫, 𝑡) + Δ𝑡 𝐅total(𝐫, 𝑡)
2𝜌(𝐫, 𝑡)

. (9)

2.1.2.  Interaction forces: Phase transition and wettability
In the pseudopotential Lattice Boltzmann method, it is assumed that 

a particle exists at each lattice location. Interaction forces between these 
pseudo-particles of the working fluid are modeled and allow the model 
to describe phase transition. The interaction forces between lattices 
representing different materials will enable us to describe wettability. 
Eqs. (10) and (11) illustrate the cohesive force between fluid-fluid par-
ticles and the adhesive force between fluid-solid particles, respectively,

𝐅cohesive(𝐫, 𝑡) = −𝛽𝐺cohesive𝜓(𝐫, 𝑡)
𝑛
∑

𝑖=1
𝜔𝐅

(

|

|

𝐜𝑖||
2
)

𝜓
(

𝐫 + 𝐜𝑖Δ𝑡, 𝑡
)

𝐜𝑖

−
1 − 𝛽
2

𝐺cohesive

𝑛
∑

𝑖=1
𝜔𝐅

(

|

|

𝐜𝑖||
2
)

𝜓2(𝐫 + 𝐜𝑖Δ𝑡, 𝑡
)

𝐜𝑖, (10)

𝐅adhesive(𝐫, 𝑡) = −𝐺adhesive 𝜓(𝐫, 𝑡)
9
∑

𝑖=1
𝜔𝐅

(

|

|

𝐜𝑖||
2
)

𝑆
(

𝐫 + 𝐜𝑖Δ𝑡, 𝑡
)

𝐜𝑖. (11)

Regarding the relation for the cohesive interaction, the strength of the 
fluid-fluid interaction is represented by 𝐺cohesive, while the tunable pa-
rameter 𝛽 is used to increase the isotropic order, and 𝜔𝐅 denotes the 
weighting factor. Notably, only cohesive interactions between parti-
cles in the nearest adjacent lattices are considered. For D2Q9, 𝐺cohesive
has a constant value of 1, and the weighting factors are given by 
𝜔𝐅(0) = 0, 𝜔𝐅(1) = 1

3 , and 𝜔
𝐅(0) = 1

12 . The isotropic order of the interac-
tion force in the first distribution of DD-TLBM has an impact on the fluid 
density at lower temperatures, particularly close to an interface where 
the gradient of density is large, according to Huang et al. (2021). To 
align the model’s predictions with classical thermodynamics relations, 
the constant 𝛽 needs to be adjusted appropriately.

The cohesive force’s value at the domain’s entrance and exit should 
be approximated to implement the boundary conditions properly. Based 
on Eq. (10), the value of the potential function 𝜓(𝑥) for the neighbor 
nodes (𝜓(𝑥 + 1) and 𝜓(𝑥 − 1)) should be known to approximate the co-
hesive interaction. The interaction force must be computed differently at 
those boundaries when using boundary conditions (e.g., constant pres-
sure) because three nodes (for the D2Q9 arrangement) are unavailable. 
In the present model, the forward and backward space derivation is im-
plemented in the numerical model to approximate the cohesive force 
at the entrance and exit. To implement the cohesive interaction for the 
interior nodes, the first-order space derivative of the potential function 
𝜓(𝑥) is evaluated in an isotropic central scheme (second-order accuracy) 
as follows:
𝜕𝜓
𝜕𝑥

≈ 1
3
(𝜓𝑖+1,𝑗 − 𝜓𝑖−1,𝑗 ) +

1
12

(𝜓𝑖+1,𝑗+1 − 𝜓𝑖−1,𝑗+1 + 𝜓𝑖+1,𝑗−1 − 𝜓𝑖−1,𝑗−1).

𝜕𝜓
𝜕𝑦

≈ 1
3
(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗−1) +

1
12

(𝜓𝑖+1,𝑗+1 − 𝜓𝑖+1,𝑗−1 + 𝜓𝑖−1,𝑗+1 − 𝜓𝑖−1,𝑗−1).

(12)

For the inlet boundary nodes, the isotropic forward scheme is used in 
the x direction as follows:
𝜕𝜓
𝜕𝑥

≈ 1
3
(−3𝜓𝑖,𝑗 + 4𝜓𝑖+1,𝑗 − 𝜓𝑖+2,𝑗 ) +

1
12

(−3𝜓𝑖,𝑗+1 + 4𝜓𝑖+1,𝑗+1 − 𝜓𝑖+2,𝑗+1

− 3𝜓𝑖,𝑗−1 + 4𝜓𝑖+1,𝑗−1 − 𝜓𝑖+2,𝑗−1). (13)

For the outlet boundary nodes, the isotropic backward scheme is used 
in x direction as follows:
𝜕𝜓
𝜕𝑥

≈ 1
3
(3𝜓𝑖,𝑗 − 4𝜓𝑖−1,𝑗 + 𝜓𝑖−2,𝑗 ) +

1
12

(3𝜓𝑖,𝑗+1 − 4𝜓𝑖−1,𝑗+1 + 𝜓𝑖−2,𝑗+1

+ 3𝜓𝑖,𝑗−1 − 4𝜓𝑖−1,𝑗−1 + 𝜓𝑖+2,𝑗−1). (14)

With regards to the adhesive force given in Eq. (11), the adhesive 
strength is characterized by 𝐺adhesive, which is determined by aligning 
the density ratio, defined as the ratio of the density near the wall to that 
at the slit centerline. A common approach to determine this constant in-
volves calibrating the results from the Lattice Boltzmann Method against 
those from Molecular Dynamics simulations under identical pressure 
and temperature conditions (Wang and Aryana, 2021). Additionally, 
by modifying this constant, the DD-TLBM model can produce different 
contact angles. The index function 𝑆(𝐫 + 𝐜𝑖Δ𝑡, 𝑡) is defined as 1 for solid 
nodes and 0 for fluid nodes. In Eqs. (10) and (11), the potential function 
is denoted by 𝜓(𝐫,t).

In the present model, the fluid pressure is expressed by 

𝑃 (𝐫, 𝑡) = 𝑐2𝑠 𝜌(𝐫, 𝑡) +
1
2
𝐺cohesive𝑐0𝜓

2(𝐫, 𝑡), (15)

where the constant 𝐺cohesive determines the strength of interaction, and 
the value of 𝑐0 for the 𝐷2𝑄9 scheme is 6. Moreover, in this study 
the Carnahan-Starling EOS is used as a non-ideal EOS to describe the
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Fig. 1. a) Schematic of domain and boundary conditions for the numerical simulations. b) Equilibrium density distribution: red represents the liquid phase, blue 
represents the vapor phase, serving as the initial condition for the nonequilibrium solver.

Fig. 2. An illustration depicting the validation case that simulates the evaporation of the fluid within a nanotube for the adhesive strength 𝐺adhesive = 0.4.

pressure within the fluid field. This non-ideal EOS is expressed as

𝑃 (𝐫, 𝑡) =
𝜌(𝐫, 𝑡)𝑅𝑇

(

1 + (𝑏𝜌(𝐫, 𝑡)∕4) + (𝑏𝜌(𝐫, 𝑡)∕4)2 − (𝑏𝜌(𝐫, 𝑡)∕4)3
)

(1 − (𝑏𝜌(𝐫, 𝑡)∕4))3

− 𝑎𝜌2(𝐫, 𝑡), (16)

where the pressure, absolute temperature, and gas constant are rep-
resented by 𝑃 , 𝑇 , and 𝑅, respectively. The repulsion parameter, 
𝑏 (0.18727𝑅𝑇c∕𝑝c), and the attraction parameter, 𝑎 (0.4963𝑅2𝑇 2

c ∕𝑝c), are 
set to 4 and 1, respectively. The reduced pressure and temperature in 
lattice unit is 𝑝c = 0.00442 and 𝑇c = 0.094, respectively. From Eq. (16), 
the pressure can be computed at each lattice node. Substituting the pres-
sure in Eq. (15), we can calculate the potential function 𝜓(𝐫, 𝑡) at each 
lattice node as follows,

𝜓(𝐫, 𝑡) =
(

2

(

𝜌(𝐫, 𝑡)𝑅𝑇 (1 + (
(

𝑏𝜌(𝐫, 𝑡)∕4) + (𝑏𝜌(𝐫, 𝑡)∕4)2 − (𝑏𝜌(𝐫, 𝑡)∕4
)3)

(1 − (𝑏𝜌(𝐫, 𝑡)∕4))3

− 𝑎𝜌2(𝐫, 𝑡) − 𝑐2𝑠 𝜌(𝐫, 𝑡)
)

∕𝐺cohesive𝑐0

)0.5

. (17)

2.1.3.  Second distribution function: Temperature field
In the thermal two-phase Lattice Boltzmann method, the second set 

of distributions representing the temperature field is related to the first 
distribution, i.e., the density field, through the EOS. Assuming that there 
is no heat dissipation due to viscosity, the governing equation for the 
second distribution function of DD-TLBM model can be expressed in the 
following manner (Zarghami and Van den Akker, 2017; Kamali et al., 
2013; Zarghami et al., 2015): 

𝑔𝑖(𝐫 + 𝐜𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑔𝑖(𝐫, 𝑡) =
Δ𝑡
𝜏𝑔

(𝑔𝑖(𝐫, 𝑡) − 𝑔
eq
𝑖 (𝐫, 𝑡)) + 𝜔𝑇𝑖 𝐺

ext . (18)

Here 𝑔𝑖 denotes the thermal distribution function, 𝜏𝑔 is the thermal re-
laxation time, 𝐺ext is an external source term, and 𝑔𝑒𝑞𝑖  denotes the equi-
librium thermal distribution function given by 

𝑔eq𝑖 (𝐫, 𝑡) = 𝑇 (𝐫, 𝑡)𝜔T
𝑖

[

1 +
𝐜𝑖 ⋅ 𝐮real(𝐫, 𝑡)

𝑐2𝑠

]

. (19)

Here, 𝑇 (𝐫, 𝑡) = ∑𝑛
𝑖=0 𝑔𝑖(𝐫, 𝑡) is the temperature of each lattice at time 𝑡.

By using the D2Q5 scheme in the current DD-LBM model, one can 
simulate the nonisothermal two-phase flow transport phenomena in 
nanochannels while keeping the computational cost manageable. The 
D2Q5 model uses five discrete velocities to represent the probability of 
finding the temperature of a specific lattice on the domain. 𝜔𝑇𝑖  repre-
sents the thermal weighting factor for the 𝑖-th discrete velocity, 

𝜔𝑇𝑖 =

⎧

⎪

⎨

⎪

⎩

1
3

𝑖 = 0
1
6

𝑖 = 1 ∶ 4
𝐜𝑖 =

{

(0, 0) 𝑖 = 0
(±1, 0), (0,±1) 𝑖 = 1 ∶ 4

(20)

The weighting factors are chosen such that the moments of the thermal 
distribution function are conserved during the streaming and collision 
steps of the DD-TLBM model.

Utilizing the Chapman-Enskog expansion method, it is possible to 
derive the continuum energy equation corresponding to the thermal dis-
tribution function in the form of 
𝜕𝑇 (𝐫, 𝑡)
𝜕𝑡

+ 𝐮real ⋅ ∇𝑇 (𝐫, 𝑡) = ∇ ⋅ (𝛼∇𝑇 (𝐫, 𝑡)) + 𝜀 + 𝐺ext − 𝑇 (𝐫, 𝑡)∇ ⋅ 𝐮real.

(21)

In the above relation, the thermal diffusivity is denoted as 𝛼, and 𝜀 is 
an unwanted term that arises due to the presence of the force term in 
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Fig. 3. Comparison between numerical simulation and analytical model regarding the evaporation of a fluid in a nanochannel.

Fig. 4. Visualization of a droplet evaporating at constant pressure for different iterations. Velocity vectors are drawn along lines of constant temperature.

Eq. (9) (Zarghami and Van den Akker, 2017), 

𝜀 = ( 1
2𝜏𝑔

− 1)𝜔𝑇𝑖 𝑐𝜈𝑇 (𝐫, 𝑡)
𝐜𝑖 ⋅ 𝐅(𝐫, 𝑡)

𝑐2𝑠
, (22)

where 𝑐𝜈 stands for specific heat capacity at constant volume.
However, the macroscopic thermal energy equation reads 

𝜌𝑐𝑝
𝜕𝑇
𝜕𝑡

+ 𝜌𝑐𝑝𝐮real ⋅ ∇𝑇 = ∇ ⋅ (𝑘∇𝑇 ) + 𝜏𝑖,𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝑇
𝜈

( 𝜕𝜈
𝜕𝑇

)

𝑝

𝐷𝑃
𝐷𝑡

+𝑄′′′. (23)

In the above relation 𝜏𝑖,𝑗 and 𝑄′′′ stand for the force per unit area act-
ing on a surface (stress) and the heat sink or source per unit volume, 
respectively. The continuum equation, Eq. (21), reproduces the balance 
equation for thermal energy if dissipation and the pressure term, the 
second and third term of the RHS of Eq. (23), respectively, can be ne-
glected. These conditions are met for the flow of liquid, but to reproduce 
the Joule-Thomson effect for the adiabatic flow with friction through a 
duct, both the dissipation and the pressure terms in Eq. (23) must be 
concluded.

The term that accounts for phase change is referred to as 𝜎, and it 
can be defined as follows Zarghami and Van den Akker (2017): 

𝜎 = 𝜌ℎℎ𝑖𝜙
′(𝜌)

d𝜌
d𝑡
, (24)

where ℎϕ represents the enthalpy associated with a phase change pro-
cess (e.g., enthalpy of vaporization). The marker function 𝜙(𝜌) is defined 
based on the density of the fluid. This function takes a value of zero in 
the vapor phase and one in the liquid phase and increases linearly with 

density for values in between, 

𝜙(𝜌) =
𝜌 − 𝜌vap
𝜌liq − 𝜌vap

. (25)

The term 𝜎 can be considered as the amount of heat per unit volume 
supplied from external sources (𝜎 = 𝑄′′′).

Finally, the energy conservation relation for multiphase flows with 
phase change at the macroscopic level can be represented as follows: 
𝜕𝑇
𝜕𝑡

+ 𝐮real ⋅ ∇𝑇 = ∇ ⋅ 𝑘∇𝑇
𝜌𝑐𝑝

+ 𝜎
𝜌𝑐𝑝

. (26)

When comparing Eq. (26) with Eq. (21), one can observe that 
Eq. (21) has unwanted components that must be adjusted to replicate the 
macroscopic energy (Eq. (26)). Consequently, the external source term 
in Eq. (18) is specified as a correction (Zarghami and Van den Akker, 
2017), which is given by 

𝐺ext = 𝑇∇ ⋅ 𝐮real − ∇ ⋅ (𝛼∇𝑇 ) + ∇ ⋅ 𝑘∇𝑇
𝜌𝑐𝑝

+ 𝜎
𝑐𝑝

− 𝜀. (27)

The liquid-vapor interface properties 𝜂 (such as thermal diffusivity) 
are calculated by: 
𝜂 = [1 − 𝜙(𝜌)]𝜂vap + 𝜙(𝜌)𝜂liq. (28)

By using this equation, the properties of the interface change mono-
tonically within the interface region. This means that they change 
gradually and consistently in a specific direction. This equation allows
for the calculation of various properties of the interface, indicating 
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Fig. 5. a) Pressure, b) Temperature distribution along the centerline at different times.

that the properties of the interface vary smoothly and continuously 
within the interface region. Unless otherwise noted, the simulations uti-
lize the following values for the thermal diffusivities and specific heats 
of the liquid and vapor: 𝛼liquid = 10−3, 𝛼vapor = 10−2, 𝑐p,liquid = 5.1, and 
𝑐p,vapor = 2.50 (Zarghami and Van den Akker, 2017). The kinematic vis-
cosity of the liquid and the vapor are defined as 𝜈liq = 𝑐2𝑠

(

𝜏𝑙𝑖𝑞 −
Δ𝑡
2

)

and 𝜈vap = 𝑐2𝑠
(

𝜏𝑣𝑎𝑝 −
Δ𝑡
2

)

, respectively. Our model’s working fluid is car-
bon dioxide at a reduced temperature around 𝑇𝑟 ≈ 0.8 (𝑇 ≈ 243 𝐾). By 
choosing the relaxations for the vapor and the liquid to be 𝜏𝑣𝑎𝑝 = 1 and 
𝜏𝑙𝑖𝑞 = 0.75, respectively, the viscosity ratio is 𝜈vap∕𝜈liq = 2, which is close 
to the physical ratio. The density ratio is controlled by the value of the 
domain temperature and pressure through the equation of state, and for 
the temperature and pressure range studied in our work, this ratio is 
around 40.

The same discrete distribution without external parameters is con-
sidered the governing equation for the solid nodes. Since the velocity 
of the solid nodes is zero, conduction is the only heat transfer mech-
anism. In this study, we assumed that the thermal conductivity of the 
solid nodes is 50 times that of the liquid phase.

2.2.  Determining the domain, boundary conditions, and initialization

This section describes the domain geometry, initial condition, and 
boundary conditions. A two-dimensional domain with a size of 𝑁𝑥 ×
𝑁𝑦 = 32 × 800 lattices is used to describe a nanoslit. As shown in Fig. 1a, 
small inlet and outlet bulk regions are utilized to prescribe the inlet 
and outlet boundary conditions to the slit. In these bulk regions, peri-
odic boundary conditions are applied in the transversal direction. From 
𝑥 = 20 to 780, the domain is restricted with walls that have changeable 
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Fig. 6. Comparison between the simulation and D2 law for (a) different enthalpies of vaporization at the boundariy temperature 𝑇𝑟 = 0.9 and (b) different boundary 
temperatures with ℎ𝑙𝑣 = 0.1.

thicknesses to consider the effect of nanoslit width. The halfway bounce-
back boundary condition is employed for solid nodes next to fluid nodes, 
which stands for a nonslip boundary on the macroscopic scale. By com-
bining this boundary with the halfway specular boundary condition, one 
can add the effect of slip on the wall (Succi, 2002). Regarding the initial-
ization, essentially the slit, i.e., the sub-domain located between 𝑥 = 20
and 𝑥 = 780, was initialized as liquid while the rest was initialized as gas 
nodes. At the interface, the densities were smoothed out (Huang et al., 
2011),

𝜌(𝑥, 𝑦) = 𝜌𝑔 +
𝜌𝑙 − 𝜌𝑔

2
× abs

{

tanh
[

2(𝑥 − 20)
𝑊

]

− tanh
[

2(𝑥 − 780)
𝑊

]}

.

(29)

In the above relation, 𝜌𝑙 and 𝜌𝑔 are the initial gas and liquid densities 
from Maxwell construction, and 𝑊  is the width of the initial interface, 

which is equal to 5. After initialization, a constant temperature was pre-
scribed for the entire domain. After 50,000 iterations, isothermal equi-
librium was reached, see Fig. 1b. It is worth mentioning that the equi-
librium pressure of the gaseous side is regarded as the capillary pres-
sure. Consequently, the nonequilibrium extrapolation scheme is applied 
to the inlet and outlet boundaries to provide the constant pressure as 
the boundary conditions . In this regard, to maintain a constant inlet 
and outlet bulk pressure, the Neumann boundary condition is employed 
on the velocity to estimate the undetermined distributions of 𝑓𝑖 at the 
inlet and outlet boundaries. Next, a new equilibrium distribution func-
tion, 𝑓 𝑒𝑞𝑖,𝑛𝑒𝑤, is calculated by the C-S EOS for the local lattices to achieve 
the desired density taking into account the initial pressure and current 
temperature. At the outlet, the temperature from which the density is 
calculated is either set equal to the upstream temperature for the dia-
batic description or is determined from the Joule-Thomson coefficient 
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Fig. 7. Visual representations demonstrating fluid density within a nanopore under different equilibrium and nonequilibrium states. a) Fluid distribution according 
to Lee and Hwang (1986). Adapted with permission from Rathi et al., Langmuir 35, 5702 (2019). Copyright 2019 American Chemical Society. b) Present work.

Fig. 8. Effect of the inlet pressure on the shape of upstream and downstream menisci and the length of the liquid phase at the nonequilibrium steady states for 
𝑝out,r = 0.37. The range of adhesive strength is shown on the left.

for the adiabatic description. Lastly, the unknown distribution functions 
are calculated as follows Fei et al. (2022): 

𝑓 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝑖 = 𝑓𝑖 + 𝑓
𝑒𝑞
𝑖,𝑛𝑒𝑤 − 𝑓 𝑒𝑞𝑖 , (30)

where 𝑓 𝑒𝑞𝑖  is the equilibrium distribution corresponding to the undeter-
mined directions of the boundary nodes.

Regarding the thermal boundary conditions, the adiabatic boundary 
is considered for the solid nodes restricting the domain to prevent heat 
transfer in the perpendicular direction. Concerning the thermal bound-
ary condition for the exit nodes, based on the adiabatic prediction, the 
Neumann thermal boundary condition is applied to avoid heat transfer. 
For the diabatic description, the temperature at the outlet is specified 
and adjusted to match the upstream temperature at negative infinity 
(Loimer et al., 2011). From applying the energy equation upstream of 

the slit (Loimer et al., 2019), for both descriptions, an exponential func-
tion is introduced to describe the temperature boundary layer preceding 
the nanoslit from negative infinity to the entrance of the nanoslit. For 
the solid nodes, a constant thermal conductivity that is 20 times higher 
than that of the liquid nodes is assumed. Furthermore, to provide the 
nonequilibrium steady state condition, 1,500,000 iterations were car-
ried out for each simulation.

2.3.  Conversion between lattice units and physical units

From dimensional analysis, in order to convert four basic quantities 
(mass, length, time, temperature) from lattice units to physical units, 
relations for four independent quantities must be used. In this study, 
the C-S EOS is used, which contains the parameters 𝑎Ph, 𝑏Ph and the 
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Fig. 9. Effect of the inlet pressure on the shape of upstream and downstream menisci and the length of the liquid phase (location of the menisci) at the nonequilibrium 
steady states for 𝑝out,r = 0.37. The range of adhesive strength is shown on the right.

Fig. 10. Pressure variation along the center line from upstream to downstream 
for 𝐺adhesive = 0.58 and 𝐺adhesive = 0.40 at the relative inlet pressure 𝑝in,r = 0.98 and 
the relative outlet pressure 𝑝out,r = 0.37.

specific gas constant 𝑅Ph. However for the C-S EOS, the critical pressure 
𝑝c,Ph, the critical temperature 𝑇c,Ph and 𝑅Ph are related to 𝑎Ph and 𝑏Ph by 

𝑎Ph =
0.4963𝑅2𝑇 2

c,Ph

𝑝c,Ph
, 𝑏Ph =

0.1873𝑅𝑇c,Ph
𝑝c,Ph

. (31)

While in lattice units, a, b, and R are chosen arbitrarily to be 1, 4, and 
1, respectively. Hence, from the connections of a, b, and R between 
physical and lattice units, we have three equations. The fourth is pro-
vided by the surface tension. For instance, taking carbon dioxide as 
the working fluid with physical properties equal to 𝑇c,Ph = 304.1282 𝐾, 
𝑝c,Ph = 7.3773𝑀𝑃𝑎 and 𝑅c,Ph = 0.18892 𝐽𝑔−1𝐾−1 and following the pro-
cedure for unit conversion, see e.g. (Wang et al., 2022), the conversion 
coefficients between lattice length and physical length for different do-
main temperatures are presented in Table 1. As can be seen in Table 1, 
one lattice extends over less than one nm, hence one lattice may contain 
only two or three molecules of carbon dioxide in a dense packing. Since 
the lattice-Boltzmann method can be regarded as continuum descrip-
tion, the lattice spacing can be seen as the resolution of the continuum 
solution. However, with respect to the approximation of the adhesive 

Table 1 
Lattice unit-physical length conversion coefficients at different tem-
peratures for carbon dioxide as the working fluid.
𝑇r 𝑇domain(𝐾) 𝜎ph(𝑁∕𝑚) 𝜎LBM(𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑢𝑛𝑖𝑡) 𝐿𝑃l(𝑛𝑚∕𝑙𝑎𝑡𝑡𝑖𝑐𝑒)

 0.7  212.88  0.0173  0.0159  0.652
 0.8  243.30  0.01047  0.00815  0.770
 0.9  273.71  0.0043839  0.00312  0.842

force, 𝐅adhesive, the lattice spacing corresponds to the physical reach of 
the adhesive force between the wall and fluid particles.

3.  Validation

3.1.  Evaporation from a capillary tube due to a pressure reduction

In order to verify the accuracy of the current numerical model for 
quasi-isothermal evaporation caused by pressure differences, we con-
ducted a simulation of evaporation in a capillary nanotube and com-
pared the outcomes to an analytical solution when the vapor mass flow 
rate is restricted by viscous friction, cf. Cueto-Felgueroso et al. (2018).

The simulated nanotube has a length of 800 lattices and a width 
of 32 lattices, with the left side being open for evaporation, as 
shown in Fig. 2. According to the analytical model, the diffusive 
scaling of the evaporative flux over time is expressed as 𝑚̇(𝑡) =
(

0.5𝐷ν(𝜌meniscus
v − 𝜌outv )∕(𝜌meniscus

l − 𝜌meniscusv )
)0.5𝑡−0.5, where 𝜌meniscusl , 

𝜌meniscus
v , and 𝜌outv  are the liquid density, vapor density at the meniscus, 
and the vapor density at the outlet boundary, respectively. The densities 
of transition, 𝜌meniscus

𝜈  and 𝜌meniscus
l , are derived from density profiles 

that are measured along the channel axis using the Lattice unit. The 
diffusivity 𝐷𝜈 is defined as follows:

𝐷𝜈 =
𝜌2𝑟
𝜇𝑟

[

−6 +
8𝑇𝑟

3(3 − 𝜌𝑟)

(

3
𝜌𝑟

− 3
3 − 𝜌𝑟

)]

. (32)

Regarding the numerical simulation, first, the capillary is filled with 
liquid at a reduced temperature of 𝑇𝑟 = 0.8. Once the system is in equi-
librium, the pressure at the left boundary is reduced to 0.36 times 
the equilibrium gas pressure. Here, for the simulation of carbon diox-
ide, 𝑇𝑟 = 0.8 corresponds to 𝑇 = 243.3 𝐾, the saturation pressure 𝑝sat =
1.52𝑀𝑃𝑎, and the equilibrium pressure 𝑝eq = 1.4𝑀𝑃𝑎. For iteration 
100,000 of Fig. 2, the density and the kinematic viscosity of the liq-
uid are 1217 𝑘𝑔∕𝑚3 and 5.13 × 10−8 𝑚2∕𝑠, respectively. The density and 
the kinematic viscosity of the gaseous phase at the left boundary are 
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Fig. 11. Effect of the mass flow rate on the pressure difference across the 
downstream meniscus for different materials with different range of adhesive 
strengths with 𝑝out,r = 0.37. a) With respect to 2𝜎/(radius of curvature at equilib-
rium), b) With respect to 2𝜎/(measured radius of curvature at nonequilibrium).

27.48 𝐾𝑔
𝑚3  and 1.026 × 10−7 𝑚2∕𝑠, respectively. We examined different 

contact angles, indicated by various adhesive force strengths, for the 
solid walls. The relationship between mass flow rate and time is plotted 
using the variables in the lattice unit for the analytical model. As shown 
in Fig. 3, our simulation results match the analytical solution reason-
ably well. However, there is a higher deviation between the simulation 
and analytical results for the first few iterations and stronger adhesive 
strength. The larger deviation is probably due to the larger deviation of 
the velocity profiles from the parabolic shape in the shorter gas-filled 
region, as can be seen at the top of Fig. 2. The derivation of Eq. (32) is 
based on the assumption of a parabolic velocity profile throughout the 
entire gas-filled region. Only for a long enough gas flow section is this 
assumption valid.

3.2.  Evaporation of a droplet due to a temperature difference

The analytically traceable evaporation of a droplet into a gaseous en-
vironment is reproduced to validate the simulation of the phase change 

process caused by a temperature difference. To do this, a droplet with 
35 lattice radius is used in the center of a domain with a mesh size 
of 150 × 150 for the simulation. Once the droplet reaches equilibrium 
at 𝑇𝑟 = 0.8, the temperature of the boundaries is increased, creating a 
temperature difference that causes evaporation. Fig. 4 shows the color-
coded density field of an evaporating droplet at four instances in time. 
Velocity vectors are drawn in the figure along lines of constant tempera-
ture. The specific arrangement and implementation details of the D2Q9 
LBM setup could lead to a velocity field that is not perfectly radial, as 
can be seen in Fig. 4. Close to the droplet the velocity vectors point-
ing to the corners seem to be larger than the velocity vectors normal 
to the boundary. Close to the boundary, the tendency in the velocity
distribution seems to be reverse, see the leftmost and the rightmost im-
ages in Fig. 4. Also, the temperature distribution is not completely radi-
ally symmetric, see the isotherms in Fig. 4. Such imperfections have also 
been observed in other computations of an evaporating droplet (Alber-
naz et al., 2015; Zarghami and Van den Akker, 2017; Fei et al., 2022). 
To address the possible cause of the imperfections seen in Fig. 4, we 
have conducted further investigations, including an analysis of bound-
ary conditions and a revision of our discretization scheme for the en-
ergy equation. These additional studies are detailed in the Support-
ing Information and suggest that the anisotropy in the radially sym-
metric problem stems from the discretization scheme used for energy
equation.

The 𝐷2 law provides an analytical solution for droplet evapora-
tion caused solely by diffusion based on Eq. (33). According to this 
analytical prediction, the droplet temperature and the vapor pressure 
must remain constant during evaporation. As the temperature at the 
boundaries increases, the vapor is heated and results in diffusion-driven
evaporation,

𝐷2
drop

[

1
2
+ ln

𝐿d
𝐷drop

]

= 𝐷2
init

[

1
2
+ ln

𝐿d
𝐷init

]

−
8𝛼i𝜌i𝑡
𝜌liquid

ln(1 + 𝑆𝑝). (33)

In the given equation, 𝐿d represents the length of the domain, 𝐷drop
is the diameter at a specific instant, and the subscript i refers to the 
interface. Additionally, 𝑆𝑝 is a non-dimensional parameter known as 
the Spalding number, 𝑆𝑝 = 𝐶𝑝(𝑇boundary − 𝑇drop)∕ℎlv, where ℎlv is the spe-
cific enthalpy of vaporization. The center line’s pressure and tempera-
ture distributions for different time steps with the boundary condition 
described earlier are illustrated in Fig. 5. Fig. 5a reveals that, despite 
the bulk regions’ constant pressure during evaporation, there are pres-
sure variations across the interface. This suggests that the mechanical 
stability condition is not met around the interface. This issue occurs 
in the lattice Boltzmann methods when a force is applied to introduce 
the nonideal EOS. An important observation from the simulations is 
that the droplet’s pressure increases as the iterations progresses due 
to the Young-Laplace equation and the decreasing radius with time. 
Since the temperature of the droplet stays constant, the surface tension 
does not change. Therefore, a decrease in the droplet’s radius causes 
an increase in the pressure inside the droplet. Additionally, Fig. 5b dis-
plays the temperature distributions at various times. It is apparent that 
the droplet’s temperature remains constant during the evaporation pro-
cess. Figs. 6a and b exhibit the time-dependent behavior of the droplet’s 
normalized squared diameter under different temperatures of the do-
main boundaries and various latent heat values. The numerical out-
comes are compared with the 𝐷2 law, and the findings demonstrate good
agreement.

Fig. 6b depicts the findings obtained at different temperatures of the 
domain boundaries for ℎlv = 0.1. The graph reveals that an increase in 
the surrounding temperature results in faster evaporation of the droplet. 
Fig. 6a illustrates a comparison between the numerical results and the 
𝐷2 law at a surrounding temperature of 𝑇𝑟 = 0.9 and various latent heats. 
The data demonstrate that an increase of the enthalpy of vaporization 
leads to a decrease in the rate of evaporation since more energy is re-
quired to transform the liquid into vapor.
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Fig. 12. Contours of the downstream interface for the material with the range of adhesive strength 𝐺adhesive = 0.4 − 0.62 and 𝑝out,r = 0.37. With increasing upstream 
pressure, the radius of curvature of the meniscus increases (solid lines). The dash-dotted line indicates the radius of curvature for stationary state (𝑝out = 𝑝in = 𝑝cap).

Fig. 13. Influence of the nano-slit pore width on the mass flow rate for the solid material with the adhesive range 𝐺adhesive = 0.4 − 0.62 and the relative outlet pressure 
𝑝out,r = 0.37.

3.3.  Steady state nonequilibrium phase distribution inside a nanopore for 
different bulk conditions

Efforts have been made to link experimentally measurable quantities 
such as mass flow rate, pressure, and nanoporous structure to the bulk 
conditions of the media endpoints via the transport models (Choi et al., 
2001). Lee and Hwang (1986) tried to depict the possible states (illus-
trated in Fig. 7a) through a combination of continuum models. They 

assumed that a group of parallel cylindrical capillaries could represent 
the porous structure and employed the Knudsen diffusion model for gas 
flow. Darcy’s model for flow through porous media was used to simulate 
the flow of condensate, which reduces to the Hagen-Poiseuille model if 
a group of cylindrical capillaries represents the porous medium, and 
Gilliland’s hydrodynamic flow model was used to simulate the surface 
flow. Our model used the same range of bulk pressure boundary condi-
tions regarding the saturation and capillary pressures as the reference 
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Fig. 14. Effect of the temperature field on the mass flow rate for the for the solid material with the adhesive range 𝐺adhesive = 0.4 − 0.62 and the relative outlet pressure 
𝑝out,r = 0.37.

points to represent different states. In this regard, we introduce the rela-
tive pressure, which is described as 𝑝r = 𝑝∕𝑝sat for the relative capillary 
pressure, relative inlet and outlet bulk pressures. As can be observed 
in Fig. 7b, the density distribution is the same for all situations com-
pared to the study by Lee and Hwang (1986). Moreover, investigation on 
phase equilibrium of methane in nanopores under the effect of adsorp-
tion by Huang et al. (2021) indicates that mesopores are entirely filled 
once the vapor starts to nucleate at sufficiently high relative vapor pres-
sures of pure fluid. This result is comparable with the case illustrated in 
Fig. 7b(3) and a(3), where 𝑝in,r equals 𝑝out,r .

4.  Result and discussion

4.1.  The effect of the nanopore width on the mass flow rate; isothermal 
consideration

During the transient simulation, the liquid-vapor interface progres-
sively develops and ultimately stabilizes under the influence of the inlet 
and outlet pressure boundary conditions, leading either to a steady in-
terface configuration or to a purely gas-phase flow. The pressure differ-
ence between the upstream and the downstream menisci is responsible 
for the increase in mass flow during capillary condensation. In a case 
where the inlet and outlet bulk pressures are the same and greater than 
the capillary pressure, the radii of curvature of both menisci are equal, 
hence, the pressure difference across both menisci are the same. How-
ever, as shown in Figs. 8 and 9 which represent the flow through slits 
made of different solid materials, when the relative inlet bulk pressure 
𝑝in,r approaches one while the relative outlet pressure remains constant 
with 𝑝out,r = 0.37, the radius of curvature of the upstream meniscus in-
creases significantly compared to that of the downstream meniscus. Con-
sequently, the pressure difference across the downstream meniscus be-
comes much greater than the pressure difference across the upstream 
meniscus, resulting in a substantial additional pressure difference that 
increases the mass flow rate. For the solid material with larger range of 
adhesive strength (Fig. 8), the effect of capillary condensation on the 
mass flow rate increase occurs for a smaller relative inlet pressure com-
pared to that with smaller range of adhesive strength (Fig. 9). Addition-
ally, the solid material with the larger adhesive strength range causes 
the downstream menisci radius to be smaller, which can be related to 
the length of the liquid phase at the steady state.

Fig. 10 displays the pressure variation along the centerline from 
the upstream to downstream for the relative inlet pressure 𝑝in,r = 0.98. 
For the solid surface with 𝐺adhesive = 0.58, the density and the kine-
matic viscosity of liquid is 1177 𝑘𝑔∕𝑚3 and 5.13 × 10−8 𝑚2∕𝑠, respec-
tively. The density of the gas varies between 78.5 𝑘𝑔∕𝑚3 close to the 
meniscus at the pressure 𝑃 = 1.3376𝑀𝑃𝑎 and 27.48 𝑘𝑔∕𝑚3 at the pres-
sure 𝑃 = .5624𝑀𝑃𝑎 for the outlet. The kinematic viscosity of the gas re-
mains approximately constant and is 1.026 × 10−7 𝑚2∕𝑠. The pressure dif-
ference across the downstream meniscus for the larger adhesive strength 
is significantly greater than the case with smaller adhesive strength, 
which is consistent with the size of the meniscus curvature. As soon as 
steady state is achieved, i.e., there is a constant mass flow rate through-
out the channel, the menisci stay fixed and maintain their shape.

Fig. 11a displays the numerically obtained pressure difference across 
the downstream meniscus with respect to the equilibrium pressure dif-
ference for the equilibrium contact angle. There is a two-phase flow 
inside the nanoslit, i.e., the flow configuration is that depicted in 
Fig. 7b(2). At the equilibrium state, there is a relation between the ad-
hesive strength and the contact angle (Sodagar-Abardeh et al., 2023), 
and one can measure the contact angle by having the value of the adhe-
sive strength. Consequently, the equilibrium pressure difference along 
the downstream interface can be calculated with the Young-Laplace re-
lation Δ𝑝 = 𝜎 cos 𝜃/slit width. Fig. 11a shows two effects. One, when 
the mass flow rate is zero, i.e., for a stationary two-phase state in a 
nanochannel, the pressure difference across the meniscus obtained nu-
merically is smaller than the Young-Laplace pressure Δ𝑝Laplace. With in-
creasing the adhesive strength, i.e., decreasing contact angle and de-
creasing radius of curvature, the deviation increases (Sodagar-Abardeh 
et al., 2023). The second effect shown by Fig. 11a is the decrease of 
pressure difference ratio with increasing mass flow rate. Fig. 11a also 
shows the pressure difference ratio is close to 1 for the solid material 
with the smaller range of adhesive strength 𝐺adhesive = 0.2 − 0.38, the 
green square, while this ratio is below 0.96 for the material with the 
higher range of adhesive strength 𝐺adhesive = 0.4 − 0.62, the black circle. 
The pressure difference determined numerically could decrease with in-
creasing mass flow rate either because the Young-Laplace’s equation 
is not obeyed, or because the interface is deformed. In simulations of 
two-phase flow, accurately representing the interface is crucial. One 
useful characteristic of the current model, which is a type of diffusive-
interface model, is its capability to automatically adapt the interface 
between the two phases and calculate the curvature of the interface, as
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Fig. 15. Comparison between the isothermal, adiabatic and diabatic descriptions at 𝑝in,r = 0.97 and 𝑝out,r = 0.37 for: a) the pressure distribution along the centerline, 
b) the temperature distribution along the centerline, and c) the density contours and the meniscus shapes, d) the temperature fields.

illustrated in Fig. 12. To test the reasons for the change in pressure differ-
ence ratio, the shapes of the interfaces (from the numerical simulation) 
were traced, see Fig. 12. After determining the coordinations of points 
along an interface, the circle that best fits the points is determined us-
ing the least square method. Subsequently, the radius of curvatures is 
obtained, and the Young-Laplace equation can be evaluated with these 
curvatures, Δ𝑝Laplace,equivalent . Fig. 11b plots the ratio of the numerically 
obtained pressure difference to Δ𝑝Laplace,equivalent , the pressure difference 
according to the shape of the meniscus. The ratio is very close to one 
in all the cases, and it is independent of the mass flow rate and the
contact angle. It only shows a small noise about its approximate contact 
value of 1.045. Hence, increasing mass-transfer deforms the meniscus 
and Young-Laplace’s equation remains valid.

The capillary pressure is one of the criteria used to describe the 
nonequilibrium steady state condition (Fig. 7b). Following our previ-
ous work (Sodagar-Abardeh et al., 2023), to estimate the equilibrium 
gas pressure of a curved interface, which represents capillary pressure 
in this study, one should consider the effect of the inlet bulk pressure, 
the chemical features of the solid material, the nanochannel width, and 
the domain temperature. For the two-dimensional isothermal descrip-
tion, by changing the width of the nanopore, the value of the capil-

lary pressure changes. By comparing Figs. 8 and 9, it is evident the 
chemical features of a solid material significantly influence both the 
beginning of capillary condensation and the steady-state liquid length 
within the nanopore. Fig. 13 illustrates how the mass flow rate is af-
fected by changes in the width of a nanoslit. If the width of the nanoslit 
increases, the mass flow rate will also increase when the inlet pressure 
is far less than the saturation pressure. Additionally, the incline of the 
line displaying the relationship between mass flow rate and pressure ra-
tio becomes steeper with increasing the slit width, suggesting a more 
significant contribution from the viscous flow. Our previous research 
(Sodagar-Abardeh et al., 2023) has demonstrated that an increase in 
nanopore diameter results in a shift of the capillary pressure toward the 
saturation bulk pressure. As a result, the relative inlet pressure value re-
quired for capillary condensation to occur increases for larger pore sizes. 
This shifts the kink point toward one for nanoslit with larger width. For 
example the minimum relative inlet pressure for the slit with 30 lat-
tices width to experience capillary condensation is about 𝑝in,r = 0.96, 
while this value for the case with 20 lattices width is about 𝑝in,r = 0.92. 
Capillary pressure causes higher pressure difference at the downstream 
meniscus in nanopores with a smaller diameter. This can explain why for 
the same range of relative inlet pressures, the mass flow rate through a 
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smaller nanopore is greater than ones with a larger diameter. In Fig. 13, 
there is a range of relative inlet pressure between 0.84 and 0.88 where 
the mass flow rate of a nanoslit with ten lattices width is higher than 
that with 14 lattices width.

4.2.  Effect of the temperature field on the mass flow rate

After considering the influences of different parameters on the mass 
flow rate for the isothermal prediction, this section investigates the ef-
fect of the outlet temperature reduction and the temperature boundary 
layer on the mass flow rate. For the adiabatic downstream boundary con-
dition, i.e., (𝜕𝑇 ∕𝜕𝑥)outlet = 0, the outlet temperature is determined from 
integrating the Joule-Thomson coefficient 𝜇𝐽𝑇  of a specific substance, 

𝑇 LBM
inlet − 𝑇 LBM

outlet = ∫

𝑝2

𝑝1
𝜇LBM𝐽𝑇 𝑑𝑃 LBM. (34)

Determining the outlet temperature makes it possible to calculate the 
temperature-dependent properties at the outlet. The outlet temperature 
is always lower than the inlet temperature when a vapor flows through 
a porous membrane because the Joule-Thomson coefficient for vapors, 
i.e., for a gaseous phase below the critical temperature, is always posi-
tive. By determining the temperature of the downstream side with the 
mentioned procedure (see Fig. 14), after reaching the steady state for the 
equilibrium calculation (considering the periodic boundaries for inlet 
and outlet and isothermal condition), the energy population is coupled 
with the density distribution function to evaluate the effect of the tem-
perature reduction on the mass flow rate in the adiabatic description. 
Zou and He (1997) boundary conditions are employed to implement the 
fixed temperature and heat flux boundary conditions. Furthermore, the 
adiabatic condition is considered for the walls restricting the domain as 
the thermal boundary conditions. It should be noted that the density and 
energy populations are related through the EOS, which describes the re-
lationship between the thermodynamic properties of the fluid. Fig. 14 
displays the effect of the outlet temperature reduction on the mass flow 
rate for the adiabatic, isothermal, and diabatic descriptions. Based on 
the adiabatic prediction, the point at which the mass flow rate experi-
ences a kink is shifted towards a smaller relative inlet pressure. How-
ever, for the diabatic description, the capillary condensation happens 
for larger relative inlet pressure. In Fig. 14, when the relative inlet pres-
sure is approximately 0.88, capillary condensation causes an increase in 
the mass flow rate in the adiabatic analysis. The adiabatic prediction for 
a relative inlet pressure of pin,r ≈ 0.94 psat indicates a mass flow rate that 
is 80 % larger compared to the isothermal analysis. The shift of the loca-
tion where evaporation occurs can be attributed to the effect of temper-
ature field. Fig. 15 shows the temperature and pressure distribution for 
𝑝in,r = 0.97 according to the isothermal, adiabatic and diabatic descrip-
tions. It is important to note that the radius of the upstream meniscus 
in the isothermal prediction is larger than the radius of the upstream 
curve in the adiabatic and diabatic descriptions; see the density contour 
plotted in Fig. 15c. As a result, for the mentioned relative inlet pressure, 
the pressure difference across the upstream meniscus increases for the 
adiabatic prediction compared to the isothermal description, as shown 
in the pressure distribution plotted in Fig. 15, leading to a decrease in 
the mass flow rate. However, with the adiabatic downstream boundary 
condition, the temperature reduction, see Fig. 15b, is a reason to in-
crease the mass flow rate. Regarding the computation with the diabatic 
boundary condition, the temperature at the inlet of the nano-slit is larger 
than that of the isothermal description; see Fig. 15b. Additionally, the 
diabatic analysis’s pressure difference across the inlet meniscus is larger 
than that of the isothermal description; see Fig. 15a. Consequently, the 
mass flow rate decreases in the diabatic description compared to the 
isothermal prediction for the same relative inlet pressure.

5.  Conclusion

This study utilized the thermal two-phase lattice Boltzmann method 
to investigate nanoscale fluid dynamics and phase change phenomena 

within confined nanoslits. The situation at the downstream meniscus 
was specifically investigated, and it was found that the pressure dif-
ference across the meniscus decreases with increasing mass flow rate. 
However, a geometrical analysis of the downstream meniscus shows 
that the decrease of the pressure is entirely due to a different shape 
of the meniscus with a larger radius of curvature. Regardless of mass 
transfer across the meniscus, the Young-Laplace equation is very well 
obeyed at the interface for all flow situations. The radius of curvature is 
influenced by the adhesive strength and the formation of an adsorbed 
layer downstreams of the meniscus, showing that the lattice Boltzmann 
method presented here is able to simulate a flow where surface tension 
and fluid-wall interactions are of importance.

The effects of temperature conditions could also be reproduced with 
the method presented here. Under adiabatic conditions at the down-
stream boundary, the kink point where the mass flow rate increases 
moves to smaller inlet pressure while for diabatic boundary conditions, 
i.e, the outlet temperature is set equal to the inlet temperature, the kink 
point occurs for larger relative inlet pressures.

Other effects that are known from classical continuum descriptions 
were also observed using the lattice Boltzmann method: With decreas-
ing slit width, the effect of condensation on the mass flow rate be-
comes larger. Regarding the effect of adhesive strength, stronger adhe-
sive forces change the meniscus curvature by effectively decreasing the 
contact angle, leading to increased capillary pressure and subsequent 
enhancements in the length of the liquid phase.
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\begin {equation}\label {eqn:governing} f_{i}\left (\mathbf {r}+\mathbf {c}_i \Delta t, t+\Delta t\right )=\left (1-\frac {\Delta t}{\tau }\right ) f_{i}(\mathbf {r}, t)+\frac {\Delta t}{\tau } f_{i}^{\mathrm {eq}}(\mathbf {r},t) + \Delta f_{i}.\end {equation}


$f_{i}(\mathbf {r},t)$


$\mathbf {c}_{i}$


$\mathbf {r}$


$t$


$f_{i}^{\mathrm {eq}}(\mathbf {r},t)$


\begin {align}\label {eqn:equilibrium} f_{i}^{\mathrm {eq}}(\mathbf {r}, t)=\rho (\mathbf {r}, t) \omega _{i}\left [1+\frac {\left (\mathbf {c}_i \cdot \mathbf {u}(\mathbf {r}, t)\right )}{c_{s}^{2}}+\frac {{\left (\mathbf {c}_i \cdot \mathbf {u}(\mathbf {r}, t)\right )}^{2}}{2 c_{s}^{4}}+\frac {\mathbf {u}(\mathbf {r},t) \cdot \mathbf {u}(\mathbf {r}, t)}{2 c_{s}^{2}}\right ].\end {align}


$\tau $


$\Delta f_{i}$


\begin {equation}\label {eqn:EDM} \Delta f_{i} = f_{i}^{\mathrm {eq}} (\rho (\mathbf {r},t),(\mathbf {u}+\Delta \mathbf {u})(\mathbf {r},t))- f_{i}^{\mathrm {eq}} (\rho (\mathbf {r},t),\mathbf {u}(\mathbf {r},t)).\end {equation}


\begin {equation}\label {eqn:zeroth_moment} \rho (\mathbf {r}, t)=\sum _{i=0}^{n} f_{i}(\mathbf {r}, t),\end {equation}


\begin {equation}\label {eqn:first_moment} \mathbf {u}(\mathbf {r}, t)=\frac {\sum _{i=0}^{n} \mathbf {c}_i f_{i}(\mathbf {r}, t)}{\rho (\mathbf {r}, t)}.\end {equation}


$n$


$f_{i}^{\mathrm {eq}}(\mathbf {r},t)$


$\omega _i$


$c_s$


$D2Q9$


\begin {equation}\label {eqn:weight_factors} \omega _{i}= \left \{\begin {array}{@{}ll@{}} \displaystyle \frac {16}{36} & i=0 \\[4pt] \displaystyle \frac {4}{36} & i=1:4 \\[4pt] \displaystyle \frac {1}{36} & i=5:8 \end {array}\right ., \hspace {2mm} \mathbf {c}_i= \left \{\begin {array}{@{}ll@{}} {-2mm}(0,0) & i=0 \\[4pt] (\pm 1,0),(0,\pm 1) & i=1:4 \\[4pt] (\pm 1,\pm 1) & i=5:8 \end {array}\right .\end {equation}


\begin {equation}\label {eqn:Chapman_Enskog} \nu _{\mathrm {LBM}}=c_{s}^{2}\left (\tau -\frac {\Delta t}{2}\right ).\end {equation}


$\nu _{\mathrm {LBM}}$


$\tau $


$\tau _{\mathrm {liq}}$


$\tau _{\mathrm {vap}}$


\begin {equation}\label {eqn:Total_force} \begin {array}{@{}l@{}} \Delta \mathbf {u}(\mathbf {r},t)= \frac {\Delta t \; \mathbf {F}^{\mathrm {total}}(\mathbf {r},t) }{\rho (\mathbf {r}, t)}, \\[4pt] \mathbf {F}^{\mathrm {total}}(\mathbf {r},t)= \mathbf {F}^{\mathrm {g}}(\mathbf {r},t)+\mathbf {F}^{\mathrm {cohesive}}(\mathbf {r},t)+\mathbf {F}^{\mathrm {adhesive}}(\mathbf {r},t). \end {array}\end {equation}


$\mathbf {F}^{\mathrm {total}}$


$\mathbf {F}^{\mathrm {cohesive}}$


$\mathbf {F}^{\mathrm {adhesive}}$


$\mathbf {F}^g$


\begin {equation}\label {eqn:actual_fluid_velocity} \mathbf {u}_{\mathrm {real}} (\mathbf {r},t) = \mathbf {u}(\mathbf {r},t)+ \frac {\Delta t \; \mathbf {F}^{\mathrm {total}}(\mathbf {r},t) }{2\rho (\mathbf {r},t)}.\end {equation}


\begin {equation}\label {eqn:adhesive_force} \mathbf {F}^{\mathrm {adhesive}}(\mathbf {r},t)=-G_{\text {adhesive }} \psi (\mathbf {r}, t) \sum _{i=1}^{9} \omega ^{\mathbf {F}} \left (\left |\mathbf {c}_i\right |^{2}\right ) S\left (\mathbf {r}+\mathbf {c}_i \Delta t, t\right ) \mathbf {c}_i.\end {equation}


$G_{\mathrm {cohesive}}$


$\beta $


$\omega ^{\mathbf {F}}$


$G_{\mathrm {cohesive}}$


$\omega ^{\mathbf {F}}(0)=0,\:\omega ^{\mathbf {F}}(1)=\frac {1}{3},\: \text {and} \: \omega ^{\mathbf {F}}(0)=\frac {1}{12}$


$\beta $


$\psi (x)$


$\psi (x+1)$


$\psi (x-1)$


$\psi (x)$


$G_{\mathrm {adhesive}}$


$S(\mathbf {r}+\mathbf {c}_i\Delta t,t)$


$\psi _{\mathrm {(\mathbf {r},t)}}$


\begin {equation}\label {qen:Pressure} P(\mathbf {r},t)=c_{s}^{2} \rho (\mathbf {r},t)+\frac {1}{2} G_{\mathrm {cohesive}} c_{0} \psi ^{2}(\mathbf {r}, t),\end {equation}


$G_{\mathrm {cohesive}}$


$c_0$


$D2Q9$


\begin {align}P(\mathbf {r}, t)=&\frac {\rho (\mathbf {r}, t)RT\left (1+\left (b\rho (\mathbf {r},t)/4\right )+{\left (b\rho (\mathbf {r},t)/4\right )}^{2}-{\left (b\rho (\mathbf {r},t)/4\right )}^{3}\right )}{{\left (1-\left (b\rho (\mathbf {r},t)/4\right )\right )}^{3}}\nonumber \\ &-a \rho ^{2}(\mathbf {r},t), \label {eqn:CS_EOS}\end {align}


$P$


$T$


$R$


$b \;(0.18727RT_{\mathrm {c}} / p_{\mathrm {c}})$


$a \; (0.4963 R^2 T^2_{\mathrm {c}} / p_{\mathrm {c}})$


$4$


$1$


$p_{\mathrm {c}}=0.00442$


$T_{\mathrm {c}}=0.094$


$\psi (\mathbf {r},t)$


\begin {equation}\label {thermal_LBM_distribution} g_i(\mathbf {r}+\mathbf {c}_i\Delta t, t+\Delta t)-g_i(\mathbf {r},t)=\frac {\Delta t}{\tau _g}(g_i(\mathbf {r},t)-g_i^{\mathrm {eq}}(\mathbf {r},t))+\omega _i^T G^{\mathrm {ext}}.\end {equation}


$g_i$


$\tau _g$


$G^{\mathrm {ext}}$


$g_i^{eq}$


\begin {equation}\label {equilibrium_thermal_LBM_distribution} g_i^{\mathrm {eq}}(\mathbf {r},t)=T(\mathbf {r},t) \omega _i^{\mathrm {T}} \left [1+\frac {\mathbf {c}_i \cdot \mathbf {u}_{\mathrm {real}}(\mathbf {r},t)}{c_s^2}\right ].\end {equation}


$T(\mathbf {r},t)=\sum _{i=0}^{n} g_i(\mathbf {r},t)$


$t$


$\omega _i^T$


$i$


\begin {equation}\label {eqn:thermal_weight_factors} \omega _{i}^T= \left \{\begin {array}{@{}ll@{}} \displaystyle \frac {1}{3} & i=0 \\[4pt] \displaystyle \frac {1}{6} & i=1:4 \end {array}\right . \hspace {2mm} \mathbf {c}_i= \left \{\begin {array}{@{}ll@{}} (0,0) & i=0 \\[2pt] (\pm 1,0),(0,\pm 1) & i=1:4 \end {array}\right .\end {equation}


\begin {equation}\label {continuum_energy_Chapman-Enskog} \frac {\partial T(\mathbf {r},t)}{\partial t} + \mathbf {u}_{\mathrm {real}}\cdot \nabla T(\mathbf {r},t) = \nabla \cdot \left (\alpha \nabla T(\mathbf {r},t)\right ) +\varepsilon +G^{\mathrm {ext}} - T(\mathbf {r},t)\nabla \cdot \mathbf {u}_{\mathrm {real}}.\end {equation}


$\alpha $


$\varepsilon $


\begin {equation}\label {unwanted_term} \varepsilon = (\frac {1}{2\tau _g}-1)\omega _{i}^T c_{\nu } T(\mathbf {r},t) \frac {\mathbf {c}_i \cdot \mathbf {F}(\mathbf {r},t)}{c^2_s},\end {equation}


$c_{\nu }$


\begin {equation}\label {macroscopic_conservation} \rho c_p \frac {\partial T}{\partial t} + \rho c_p \mathbf {u}_{\mathrm {real}}\cdot \nabla T = \nabla \cdot (k \nabla T)+\tau _{i,j} \frac {\partial u_i}{\partial x_j}- \frac {T}{\nu } \left (\frac {\partial \nu }{\partial T}\right )_p \frac {DP}{Dt}+Q^{\prime \prime \prime } .\end {equation}


$\tau _{i,j}$


$Q^{\prime \prime \prime }$


$\sigma $


\begin {equation}\label {factor_phase_change} \sigma =\rho h_hi \phi ^{\prime }(\rho ) \frac {\mathrm {d}\rho }{\mathrm {d}t},\end {equation}


$h_{\mathrm {\phi }}$


$\phi (\rho )$


\begin {equation}\label {marker_phase_change} \phi (\rho )=\frac {\rho -\rho _{\mathrm {vap}}}{\rho _{\mathrm {liq}}-\rho _{\mathrm {vap}}}.\end {equation}


$\sigma $


$\sigma =Q^{\prime \prime \prime }$


\begin {equation}\label {macroscopic_energy_phase_change_final} \frac {\partial T}{\partial t} + \mathbf {u}_{\mathrm {real}}\cdot \nabla T = \frac {\nabla \cdot k \nabla T}{\rho c_p} + \frac {\sigma }{\rho c_p}.\end {equation}


\begin {equation}G^{\mathrm {ext}} = T\nabla \cdot \mathbf {u}_{\mathrm {real}} - \nabla \cdot \left (\alpha \nabla T\right ) + \frac {\nabla \cdot k \nabla T}{\rho c_p} + \frac {\sigma }{c_p} - \varepsilon . \label {Xeqn27-27}\end {equation}


$\eta $


\begin {equation}\eta = [1 - \phi (\rho )]\eta _{\mathrm {vap}} + \phi (\rho )\eta _{\mathrm {liq}}. \label {Xeqn28-28}\end {equation}


$\alpha _{\mathrm {liquid}} = 10^{-3}$


$\alpha _{\mathrm {vapor}} = 10^{-2}$


$c_{\mathrm {p, liquid}} = 5.1$


$c_{\mathrm {p, vapor}} = 2.50$


$\nu _{\mathrm {liq}}=c_{s}^{2}\left (\tau _{liq}-\frac {\Delta t}{2}\right )$


$\nu _{\mathrm {vap}}=c_{s}^{2}\left (\tau _{vap}-\frac {\Delta t}{2}\right )$


$T_r\approx 0.8$


$T\approx 243\;K$


$\tau _{vap}=1$


$\tau _{liq}=0.75$


${\nu _{\mathrm {vap}}}/{\nu _{\mathrm {liq}}}=2$


$N_x \times N_y = 32 \times 800$


$x = 20$


$x=20$


$x=780$


\begin {equation}\label {eqn:Initialization} \rho (x,y)= \rho _{g} + \frac {\rho _{l}-\rho _{g}}{2} \times \mathop {\mathrm {abs}} \left \{ \tanh \left [ \frac {2(x-20)}{W} \right ]-\tanh \left [\frac {2(x-780)}{W} \right ] \right \}.\end {equation}


$\rho _l$


$\rho _g$


$W$


$f_i$


$f_{i,new}^{eq}$


\begin {equation}\label {eqn:Pressure_constant} f_i^{unknown} = f_i + f_{i,new}^{eq}-f_i^{eq},\end {equation}


$f_ i^{eq}$


$a_{\mathrm {Ph}}$


$b_{\mathrm {Ph}}$


$R_{\mathrm {Ph}}$


$p_{\mathrm {c,Ph}}$


$T_{\mathrm {c,Ph}}$


$R_{\mathrm {Ph}}$


$a_{\mathrm {Ph}}$


$b_{\mathrm {Ph}}$


\begin {equation}a_{\mathrm {Ph}} = \frac { 0.4963 R^2 T_{\mathrm {c,Ph}}^2 }{p_{\mathrm {c,Ph}}},\
b_{\mathrm {Ph}} = \frac {0.1873R T_{\mathrm {c,Ph}} }{p_{\mathrm {c,Ph}}}. \label {Xeqn31-31}\end {equation}


$T_{\mathrm {c,Ph}}=304.1282~K$


$p_{\mathrm {c,Ph}}=7.3773~MPa$


$R_{\mathrm {c,Ph}}=0.18892 ~Jg^{-1}K^{-1}$


$T_{\mathrm {r}}$


$T_{\mathrm {domain}}(K)$


$\sigma _{\mathrm {ph}}(N/m)$


$\sigma _{\mathrm {LBM}}(lattice\:unit)$


$LP_{\mathrm {l}}(nm/lattice)$


$\mathbf {F}^{\mathrm {adhesive}}$


$G_{\mathrm {adhesive}}=0.4$


$\dot {m}(t) =$


${\left (0.5 D_{\mathrm {\nu }} (\rho _{\mathrm {v}}^{\mathrm {meniscus}} - \rho _{\mathrm {v}}^{\mathrm {out}})/(\rho _{\mathrm {l}}^{\mathrm {meniscus}} - \rho _{\mathrm {v}}^{\text {meniscus}})\right )}^{0.5} t^{-0.5}$


$\rho _{\mathrm {l}}^{\text {meniscus}}$


$\rho _{\mathrm {v}}^{\mathrm {meniscus}}$


$\rho _{\mathrm {v}}^{\mathrm {out}}$


$\rho _{\nu }^{\mathrm {meniscus}}$


$\rho _{\mathrm {l}}^{\mathrm {meniscus}}$


$D_\nu $


\begin {equation}\label {eqn:capillary_evaporation} D_{\nu } = \frac {\rho _r^2}{\mu _r} \left [-6 + \frac {8T_r}{3(3-\rho _r)} \left (\frac {3}{\rho _r} - \frac {3}{3-\rho _r}\right )\right ].\end {equation}


$T_r = 0.8$


$T_r=0.8$


$T=243.3\;K$


$p_{\mathrm {sat}}=1.52 \; MPa$


$p_{\mathrm {eq}}=1.4 \; MPa$


$1217\;{kg}/{m^3}$


$5.13\times 10^{-8}\;{m^2}/{s}$


$27.48\;\frac {Kg}{m^3}$


$1.026\times 10^{-7}\;{m^2}/{s}$


$35$


$150 \times 150$


$T_r=0.8$


$D^2$


\begin {equation}\label {eqn:D2_law} D_{\mathrm {drop}}^2\left [\frac {1}{2}+\ln \frac {L_{\mathrm {d}}}{D_{\mathrm {drop}}}\right ] = D_{\mathrm {init}}^2\left [\frac {1}{2}+\ln \frac {L_{\mathrm {d}}}{D_{\mathrm {init}}}\right ]-\frac {8\alpha _{\mathrm {i}} \rho _{\mathrm {i}}t}{\rho _{\mathrm {liquid}}}\ln (1+Sp).\end {equation}


$L_{\mathrm {d}}$


$D_{\mathrm {drop}}$


$Sp$


$Sp=C_p(T_{\mathrm {boundary}}-T_{\mathrm {drop}})/h_{\mathrm {lv}}$


$h_{\mathrm {lv}}$


${\mathrm {D}}^2$


$T_r=0.9$


$h_{lv} = 0.1$


$D^2$


$h_{\mathrm {lv}} = 0.1$


$D_2$


$T_r = 0.9$


$p_{\mathrm {r}}=p/p_{\mathrm {sat}}$


$p_{\mathrm {in,r}}$


$p_{\mathrm {out,r}}$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {in,r}}$


$p_{\mathrm {out,r}} = 0.37$


$G_{\mathrm {adhesive}}=0.58$


$G_{\mathrm {adhesive}}=0.40$


$p_{\mathrm {in,r}}=0.98$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {in,r}}=0.98$


$G_{\mathrm {adhesive}}=0.58$


$1177\; {kg}/{m^3}$


$5.13\times 10^{-8}\;{m^2}/{s}$


$78.5 \; {kg}/{m^3}$


$P=1.3376 \; MPa$


$27.48 \; {kg}/{m^3}$


$P=.5624 \; MPa$


$1.026\times 10^{-7}\;{m^2}/{s}$


$p_{\mathrm {out,r}}=0.37$


$2\sigma $


$2\sigma $


$\Delta p={\sigma \cos \theta }$


$\Delta p_{\mathrm {Laplace}}$


$G_{\mathrm {adhesive}}=0.2-0.38$


$G_{\mathrm {adhesive}}=0.4-0.62$


$G_{\mathrm {adhesive}}=0.4-0.62$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {out}}=p_{\mathrm {in}}=p_{\mathrm {cap}}$


$\Delta p_{\mathrm {Laplace, equivalent}}$


$\Delta p_{\mathrm {Laplace, equivalent}}$


$G_{\mathrm {adhesive}}=0.4-0.62$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {in,r}}=0.96$


$p_{\mathrm {in,r}}=0.92$


$({\partial T}/{\partial x})_{\mathrm {outlet}}=0$


$\mu _{JT}$


\begin {equation}\label {eqn:reduced_outlet_temperature} T_{\mathrm {inlet}}^{\mathrm {LBM}}-T_{\mathrm {outlet}}^{\mathrm {LBM}}= \int _{p_1}^{p_2}\mu ^{\mathrm {LBM}}_{JT} \, dP^{\mathrm {LBM}}.\end {equation}


$G_{\mathrm {adhesive}}=0.4-0.62$


$p_{\mathrm {out,r}}=0.37$


$\mathrm {p_{in,r}} \approx 0.94 \; \mathrm {p_{sat}}$


$80 \; \%$


$p_{\mathrm {in,r}}=0.97$


$p_{\mathrm {out,r}}=0.37$


$p_{\mathrm {in,r}}=0.97$

