Supporting Information

Description of confined nanoflow transport considering the effects of capillary condensation and heat transfer by means of a two-phase lattice Boltzmann model

Javad Sodagar-Abardeh* and Thomas Loimer[†]
Institute of Fluid Mechanics and Heat Transfer, Vienna University of Technology, Austria.

I. INVESTIGATION OF ANISOTROPY IN RADIALLY SYMMETRIC FLOW FILED

To address the imperfections observed in the velocity field of the droplet evaporation as the validation case, see section III B and Fig. 4, we (i) increased the size of the computational domain to move the boundary conditions away from the droplet and (ii) have introduced a new discretization scheme for the first order space derivative and Laplacian known as the isotropic central scheme with second-order accuracy for the discretization of energy equation.

A. Anisotropy investigation in a larger simulation box

The computational domain was made three times larger in the linear dimension, a box of 450×450 instead of 150×150 was used. Fig. 1 displays the anisotropy observed in simulations using a larger box while keeping the droplet size the same. This figure clearly shows that the anisotropy is especially noticeable around the droplet during evaporation.

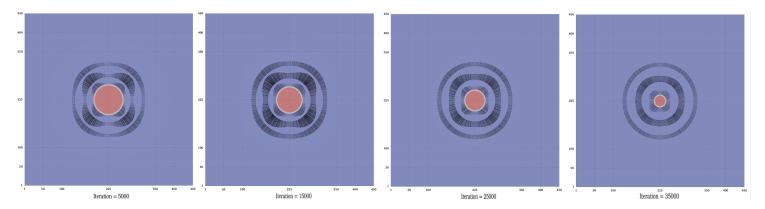


FIG. 1: Visualization of a droplet evaporating at constant pressure across different iterations. Velocity vectors are shown along circles centered on the droplet.

B. Isotropic scheme discretization to improved isotropy

A new discretization scheme for the space derivatives and Laplacian in the energy equation was implemented. The new scheme employs an isotropic central difference method with second-order accuracy. Below are the formulas used for 2D Simulation [1]:

First-order Space Derivatives:

$$\frac{\partial \phi}{\partial x} \approx \frac{1}{3} [\phi(i+1,j) - \phi(i-1,j)] + \frac{1}{12} [\phi(i+1,j+1) - \phi(i-1,j+1) + \phi(i+1,j-1) - \phi(i-1,j-1)] \tag{1}$$

^{*} javad.sodagar@tuwien.ac.at

[†] thomas.loimer@tuwien.ac.at

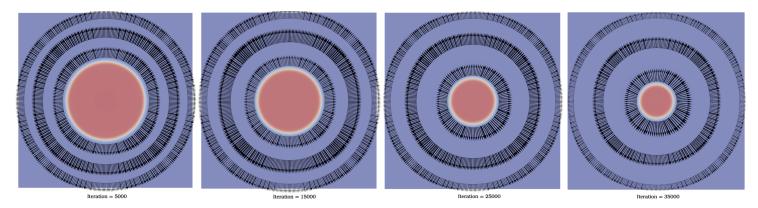


FIG. 2: Visualization of a droplet evaporating at constant pressure for different iterations. Velocity vectors are shown along circles centered on the droplet.

$$\frac{\partial \phi}{\partial y} \approx \frac{1}{3} [\phi(i,j+1) - \phi(i,j-1)] + \frac{1}{12} [\phi(i+1,j+1) - \phi(i+1,j-1) + \phi(i-1,j+1) - \phi(i-1,j-1)] \tag{2}$$

Laplacian:

$$\nabla^2 \phi \approx \frac{2}{3} [\phi(i+1,j) + \phi(i,j+1) + \phi(i-1,j) + \phi(i,j-1)] + \frac{1}{6} [\phi(i+1,j+1) + \phi(i+1,j-1) + \phi(i-1,j+1) + \phi(i-1,j-1)] - \frac{10}{3} \phi(i,j)$$

$$(3)$$

Fig. 2 illustrates the results of simulations using the new discretization method for the energy equation with the original box size. The figure demonstrates a considerable improvement in isotropy compared to the previous method.

^[1] F. Qin, Hybrid Lattice Boltzmann Modeling of Drying of Colloidal Suspensions in Micro-porous Structures, Ph.D. thesis, ETH Zürich (2020).