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Kurzfassung

IP-basierte Netzwerke werden verwendet, um Computersysteme weltweit zu verbinden,
wobei enorme Datenmengen generiert werden. Die Analyse dieser Daten ist entschei-
dend für das Verständnis der Funktionsweise von Netzwerken und somit ein zentraler
Aspekt der Cybersicherheit und des Netzwerkengineerings, welche es Forschern ermöglicht,
Netzwerk-Intrusion-Detection (NID) durchzuführen, Netzwerkbeschränkungen zu verste-
hen und zukünftige Erweiterungen des Netzwerks zu planen. Verschiedene Werkzeuge wie
z.B.: Zeek, Snort und Wireshark, wurden zu diesem Zwecke entwickelt. Diese Werkzeuge
werden auch zum Labelling von IP-Traffic verwendet: entweder durch Aggregation in
Flows oder durch Labelling einzelner Pakete. Daraus resultierende Labels entbehren
jedoch oft einer angemessenen Begründung und liefern keine aussagekräftigen Einblicke,
um tiefergehende Phänomene und Aspekte von IP-Traffic zu verstehen.
Daher ist das Hauptziel dieser Arbeit, bestehende Labels von NID-Systemen und Daten-
sätzen zu analysieren und zu untersuchen, wie sie verbessert werden können. Zu diesem
Zweck wurde FlowBreaker, ein neues Werkzeug zur Beschreibung von IP-Traffic, das auf
Zeek aufbaut, entworfen und entwickelt. Die Benutzerfreundlichkeit und Performance
von FlowBreaker wurden anhand des TII-SSRC-23 Benchmark-Datensatzes und eines
echten Traffic-Samples aus dem MAWI-WIDE-Projekts evaluiert.
Die Ergebnisse dieser Evaluation zeigen, dass FlowBreaker in der Lage ist, die Labels des
TII-SSRC-23-Datensatzes zu replizieren und dabei zusätzliche Informationen, Begründun-
gen und Aspekte für ein tiefergehendes Verständnis der Labels zu bieten. Darüber hinaus
bietet dieses Tool ein neues Framework, das benutzt werden kann um tiefergehende
wissenschaftliche Arbeiten und Experimente durchzuführen.
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Abstract

IP-based networks are used to connect computer systems across the globe, generating
enormous volumes of data in the process. Analysing this data is vital to understanding
the inner workings of networks and thus a central aspect of cybersecurity and network
engineering.
This allows researchers to perform Network Intrusion Detection (NID), understand
network constraints, and plan for future expansions. Different tools—such as Zeek, Snort
and Wireshark—exist for this purpose. These tools are also used to label traffic: either
by aggregating it into flows, or by labeling individual packets. However, such labels often
lack a proper justification and fail to provide meaningful insight to deeply understand
traffic phenomena and situations.
Therefore, the main objective of this thesis is to analyse existing labels of NID systems
and datasets and explore how they can be improved. For this purpose, FlowBreaker—a
new tool for describing traffic built upon Zeek—was designed and developed. FlowBreaker
usability and performance are evaluated using the TII-SSRC-23 benchmark dataset and
a real traffic sample from the the MAWI WIDE project collection.
Evaluation results show how FlowBreaker is able to replicate the labels of the TII-
SSRC-23 dataset while providing enriched information, justification, and keys for the
deep understanding of traffic captures. On the other hand, it provides a highly useful
description of real-life data for further analysis. Furthermore, the new tool significantly
improves upon user experience when compared to pre-existing solutions, thus providing
a very suitable framework for scientific research and experimentation.
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CHAPTER 1
Introduction

Modern computer systems are often connected to the internet. While this allows access
to other networks and makes global communication possible, it also creates an attack
surface for malicious actors. This raises the question of how to prevent intrusions and
attacks by these actors. For this, two conditions have to be met: The communication
must be observable, and indicators to discriminate benign from malicious connections
must be present. This can either be achieved on the fly by analysing every packet1 as it is
received, or by capturing all packets during a given time frame and analysing them later.
In this thesis we focus on the second case, also known as forensic or offline analysis. In
addition to attack detection and prevention, analysis of network traffic is also necessary
to detect bottlenecks and the influence of certain services on network usage. This is
especially vital when building or expanding a network architecture. This thesis revolves
around how traffic can be analysed, focusing on how certain parameters of network traffic
can be used for threat detection.

1.1 Background - IP Traffic Analysis
The internet is built on the Open Systems Interconnection (OSI) model, which consists
of seven layers, with the first layer addressing signalling across a physical medium, e.g.,
wires, optical fibers or 5G, and the seventh layer addressing the (end user) application,
e.g., a web browser. There are several protocols involved in the OSI model, this thesis
mainly addresses the 3rd and 4th layer, specifically the IP stack and the Internet Control
Message Protocol (ICMP), User Datagram Protocol (UDP) and Transmission Control
Protocol (TCP) protocols that are built upon it. Higher level protocols are addressed
when applicable.
With IP traffic being split into packets, a single packet does not provide much information

1A packet is the smallest unit of data exchanged between two machines in a communication network.
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1. Introduction

by itself. When grouping these packets together, however, it becomes possible to shed
more light on the connection’s contents, purpose and intention. These grouped packets
form a flow, which can be labelled based on several characteristics, such as: duration,
origin IP:Port, destination IP:Port, protocol used and service used. If these flows are
then analysed in a statistical/heuristic manner based on their individual parameters,
connections and their associated hosts can be further classified as benign or malicious.
Significant effort has already been put in the labelling and analysis of network traffic.
One of the main approaches is Flow-based Intrusion Detection. Instead of performing
detection based on individual packets and their signatures (comparing them to known
malicious contents), packets are aggregated into flows, and classification is performed
based on higher level parameters. This has the benefit of providing more overview than
individual packet analysis, while saving resources(6).
However, capturing large amounts of packets is difficult and can lead to data loss,
as buffers in capturing devices are not infinite. To perform flow based analysis, first
aggregation has to take place, which can overwhelm the resources of the hardware used.
This makes it necessary to investigate how packets can be aggregated directly, ideally
without performing computation heavy post-analysis (7).

To analyse network traffic, several tools exist, in this thesis the following ones are
used: Wireshark is an open source tool for packet analysis, featuring a Graphical User
Interface (GUI). It offers options to manually filter and search for packets. Snort
employs a rule-based approach to filter packets and is more aimed at detecting and
preventing network intrusion based on pre-defined rule sets. Suricata is an open-source
network intrusion detection and prevention system, similar to Snort. Although it supports
outputting traffic captures, it is more focused on monitoring entire networks. Zeek is
an open source traffic analysis tool, which is also able to operate on traffic captures.
It is modular, very versatile and offers detailed output. Zeek serves as the main tool
used in this thesis. These analysis tools are complicated to set up and often provide
complex and unsynthesised reports that are difficult for users to interpret. Our thesis
focuses on how to leverage the information provided by these tools to generate high-value
traffic labelling. In contrast to the common approach of labelling flows individually, the
approach in this work is to describe network traffic from a host perspective (either by
source or destination host).

1.2 Motivation - Why build something new?
Systems based on the Internet Protocol (IP) protocol are used in almost every field
of research and daily life. This makes them a valuable target for attackers looking to
extract information, steal resources, or compromise the entire system. Thus, Intrusion
Detection System (IDS) and Intrusion Prevention System (IPS) are necessary to prevent
these attacks or, at least, perform damage control. However, attack detection is not the
only point of interest in research in this field. With the internet serving as the de facto
standard for consuming news and media in the modern age, a lot of thought has to be put
into designing networks. To achieve this, researchers must be able to obtain an overview
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of the traffic contained within. While achieving this overview is certainly possible with
existing tools and solutions, the process is far from straightforward, often making their
use frustrating. The excess of quantitative information or the deficiency of qualitative
information obscures the real nature of the phenomena occurring in communications
and makes it difficult to understand them. The consequence is that a high amount of
pre-existing knowledge on network and OSI related protocols is required to work with
the output of the aforementioned solutions. This also affects experts and researchers, and
may even promote irrelevant, erratic, ineffective and inefficient practices. The reason that
these problems have not been adequately addressed is, among others, that researchers
working with network traffic are usually familiar and experienced with specialised tools.
However, the diversification of technical and scientific work and its spread across various
technological areas implies that, for example, the specialist in data analysis is often not
an expert in network traffic and vice versa. The current technical situation requires
lowering the barriers to entry and offering greater transparency on such technical aspects
to a wider (also technical) public. Thus, initiatives that can greatly promote research in
network analysis include:

1. Research on how existing solutions implement labelling and how existing measure-
ments can be used to create more informative labels.

2. Explorations on how a simpler and more user-friendly solution for summarising
network traffic can be provided.

The intention of these objectives is to help create a framework that can be used by a
broader range of users while also leading to deeper and higher quality research.

1.3 Research Questions and Goals
With the scenario stated above in mind, the research questions can be set accordingly:

1. How can we label network traffic so that the information provided offers high quality
descriptive knowledge, particularly in relation to network attacks?

2. How can we use existing and established tools in the Network Intrusion Detection
System (NIDS) field to obtain qualitatively enriched traffic-labels?

3. To what extent do qualitatively enriched traffic-labels favour post-analysis and a
deeper evaluation of classification and detection algorithms?

3
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In order to answer these questions, three goals were set to be achieved over the course
of the thesis:

1. To establish a set of minimum criteria for the summarised and qualitative description
of network traffic pieces or flows. These should be suitable for the construction
of NIDS dataset benchmarks, in a way that it favours the creation of meta-data,
pre-analysis and post-analysis.

2. To develop a tool capable of integrating an existing NIDS (in our case, Zeek) to
obtain high quality descriptive analysis summaries and enriched traffic-labels.

3. To show to what extent the availability of enriched traffic-labels enables a more
discriminating and precise traffic classification from a statistical approach.

1.4 Methodology
The research questions and goals described above are addressed in this thesis according
to the following methodology:

1. Exploration of the state of the art, existing methods and tools for the description
and identification of traffic classes in the NIDS field.

2. Study of the type of labels provided by popular NIDS datasets benchmarks.

3. Design and development of a tool (FlowBreaker) that wraps Zeek to generate
descriptive analysis summaries and enriched traffic-labels. This tool is designed
under requirements of clarity, modularity, compatibility, ease of use and extensibility,
and works in offline forensic conditions with captures in Packet Capture (PCAP)
and Packet Capture Next Generation (PCAPNG) formats.

4. Design and development of a test environment that enables the evaluation of the
discriminating capacity of traffic labelling from a statistical approach.

5. Evaluation of FlowBreaker with NIDS dataset benchmarks (TII-SSRC-23) and
real-life captures from backbone networks (MAWI).

To summarise, the intent is to first explore existing ways of traffic analysis, and then
improve upon them. This is achieved by selecting existing tools for labelling traffic,
namely Zeek and using them as a basis for a new tool. This new tool (FlowBreaker) is
then tested with existing NIDS datasets - followed by an analysis of the results.
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1.5 Terminology
In this work, the following terms are used in the context of network traffic:

• Flow A flow is defined as a set of IP packets that have the same common properties
(32). A prominent example is the five-tuple consisting of source IP, destination IP,
source port, destination port and protocol.

• Connection In this work the term connection is used to describe flows. The term
defines a custom class, which encapsulates several identifying features — most
notably the five commonly used to describe flows. The term originates from Zeek’s
“conn.log”, which is used to list connections, as described in Section 3.3.3.

• Labelling In this work, we consider that “labelling” implies any kind of qualitative
description of a packet, flow or aggregated piece of traffic that can serve as a basis
for further classification and identification. For instance, a label may describe
whether a flow is benign or malicious, whether it belongs to a specific class of
attack, or to an attack variant with particularities whose notification is relevant for
post-analysis, monitoring or the characterization/profiling by experts.

5





CHAPTER 2
Related Work

2.1 Discussing Labelled Datasets in NIDS
2.1.1 An Introduction to Traffic Labelling
In data-oriented fields, the process of Labelling consists of adding relevant information
to a data object, with the goal of providing a way to identify this object, or put it into
context using said information (1). When it comes to Traffic Labelling, these data objects
represent network traffic (e.g. packets or packets aggregated into flows). This labelling
process can be broken down into a classification problem, namely differentiating normal
traffic from malicious activities (2).
Labelling this data is also a process fundamentally different from (real-time) intrusion
detection: Since there is no live system/network in need of protection, labelling is not
time critical and misclassifications do not have such a damaging impact (i.e. runtimes
are allowed to be arbitrary and an undetected threat does not cause immediate harm),
although labelling is expected to be as accurate as possible to ensure its usefulness.
Furthermore, the scope is different, with real-time detection classifying all traffic in a
network (to reliably detect any threat), while labelling can also focus on a subset of
traffic, e.g. to create a dataset for a specific type of attack (2).
There are several approaches to labelling network traffic, which can be broadly split up
into two categories: Human-Guided Labelling and Automatic Labelling. Table 2.1 serves
as a non exhaustive overview of these two categories and their subcategories. As the name
implies, Human-Guided Labelling describes techniques in which the traffic is labelled
under the supervision of a human. This can be further split into Manual Labelling, in
which a researcher assigns labels to traffic traces by hand and Human-Assisted Labelling,
in which parts of the labelling processed are performed by Machine Learning (ML).
A key aspect in Human-Guided is that the human does not control the network environ-
ment and thus cannot artificially generate or inject traffic (8). Since Manual Labelling
does not scale, most efforts concentrate on either simplifying the task by providing
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additional tools, or by introducing ML into the loop.
In Human-Assisted Labelling, we will distinguish between two main approaches: Machine
Learning and Active Learning. ML by itself, can be used to label datasets but is highly
sensitive to the training data used. The two main approaches consist of supervised- and
unsupervised training, which simply distinguish whether the ML system is working with
a dataset that has labels assigned to it or if it creates its own labels during the training
process by finding and recognising patterns. The main downside of ML is the need of
relevant, high quality training data, which is hard to find in the NIDS field, with details
of this problem discussed in Section 2.1.2. Note that this is an oversimplification of ML,
as ML by itself is outside the scope of this thesis.
“Active Learning” (AL), works by using a ML system to assign labels to unlabelled data.
Whenever no clear distinction is possible, e.g. in edge cases, the system can query an
“oracle”, which knows the correct label (from the perspective of the ML system). In this
case, the oracle is a human researcher, tasked with deciding which label to assign to
the data points. These labelled data points are then reintroduced into the ML system
to enhance its accuracy in labelling data. The ML system is then run again on new
unlabelled data, and the cycle continues (9).
This approach has been extended into Smart Labelling, in which AL is combined with vi-
sual interactive labelling. This approach utilises a visual interface that presents statistical
data through box plots, scatter plots, and other graphical representations. Additionally,
it suggests the next potential candidate for labelling, which is most likely best suited
to improve the model’s performance. The key idea is to integrate the human ability of
pattern-recognition into the AL approach, by allowing the researcher to directly chose
relevant data points/instances (10).
The counterpart to Human-Guided Labelling, is Automatic Labelling. The key difference
to the former is that the researcher now has complete control over the environment, with
the possibility to inject and modify the traffic, as well as the network itself. Two of the
main approaches are Injection Timing and Behavioural Profiles. As the name suggests,
Injection Timing is based upon the idea that the traffic type is observable at any given
timeslot. By leveraging this, malware traffic can be introduced at a given timeslot t1 and
terminated at 2nd timeslot t2, with the resulting time window labelled as malicious in
the resulting dataset (3).
The Behavioural Profiles approach consists of breaking down a network into smaller
components (profiles), which are usually based on mathematical distributions — e.g. how
much traffic is generated at a given time frame. These profiles are agnostic to the network
they are used in and can thus be placed in different topologies. The labelling process in
itself is very straightforward: Assume that a specific profile N generates normal traffic
and another profile M generates malicious traffic. If N is active, the resulting traffic is
labelled as “Normal”, if M is active, as “Malicious” (4).
To summarise, human input is still necessary for many approaches and new approaches
tend to focus on reducing the human effort necessary — either by creating automated
systems or by providing new tools for researchers to use. Table 2.1 offers an overview of
the main labelling approaches for Network Traffic.
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Method Sub-method Description
Human-Guided Labelling • Manual Labelling Labels assigned manually by re-

searcher
• Human-Assisted

◦ Tool supported Labels assigned by researcher, using
(graphical) statistical tools

◦ Active Learning Labels assigned by machine learning,
refined by researcher input

◦ Machine Learning
▷ Supervised Training data is labelled
▷ Unsupervised Training data is unlabelled

Automatic Labelling • Injection Timing Malicious traffic injected at specific
timestamps

• Behavioral Profiles Network elements simplified into be-
havioral profiles (benign/malicious)

Table 2.1: Network Traffic Labelling Methods — A short summary of the main
approaches/methods and their subcategories

2.1.2 Quality of NIDS Datasets
As discussed in Section 2.1.1, there are various methods for producing labelled datasets.
However, the quality of these datasets greatly depends on the method used and is often
unsatisfactory. With datasets being used as a benchmark or to train and develop new
detection systems, their quality directly impacts the end result. The quality of a dataset
is hard to quantify, but can be measured using several factors, including: Data Diversity,
Dependency of Features, Correctly assigned Labels, Missing/Duplicate Labels and Bias.
Furthermore, NIDS datasets suffer from their high specialization — a given traffic capture
never contains an exhaustive list of all possible network and traffic configurations. This
means that choices made during the creation of a given dataset heavily impact its
representation in different scenarios. In addition, many of the most popular datasets
used for NIDS are created under synthetic conditions (5). While this is not a problem in
itself, it can introduce bias and also diverge from a real life scenario, thus not accurately
portraying the attack (12). This is especially true when synthetic intrusion datasets are
used to model production networks since they simply fail to capture the complexity and
uncertainty of these larger networks. (5)
While the inapplicability to real-life systems is an inherent problem of synthetic datasets,
popular datasets also suffer from other problems. One of the most notable problems
in existing datasets is the poor data quality, coupled with the unclear composition —
i.e. datasets contain duplicate data, some events appear too frequently or too scarcely
and the samples are unrepresentative. Other issues include poor provenance and over-
summarisation, which means that it is unclear how the dataset was created and features
can be omitted/missing — this makes it hard to assess the origin data and its applicability
(11). These issues are often prominent in existing public datasets used for NIDS (12).

9
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The lacking quality of existing datasets raises the question of why these issues have
not been addressed by the NIDS community. The answer is a combination of various
difficulties inherent to the field. As already mentioned, many datasets are synthetic —
the reason why little real data is available boils down to the criticality of these systems.
Enterprise systems are subject to privacy laws and restrictions, making it difficult to
impossible to simply capture uncensored traffic within these networks. Furthermore,
threats constantly change and datasets quickly become outdated (11) (12). Combine this
with the need of manual labelling and it becomes apparent that creating a representative,
high quality and relevant dataset poses a great challenge.

2.1.3 Future Directions in NIDS
With these problems regarding quality and methodology in mind, we can now turn to
the future prospects in the NIDS field. It is evident that the general quality of datasets
is low and this has a variety of consequences on research performed with/on them.
As already mentioned in Section 2.1.1, the human element is crucial for obtaining high
quality labels. Since this involves a high amount of labour, the general trend is to reduce
effort and introduce automation. This is either done by leveraging Machine Learning,
which itself depends on quality datasets, or by providing new tools to aid researchers in
portraying traffic (9). Other approaches try to bypass the inherent difficulties associated
with using pre-existing traffic captures by providing the user with the possibility to create
personalised datasets by utilising existing traffic captures. One example of this provides
a framework for generating NIDS datasets, that works by taking real traces, sanitising
them (thus removing identifiable information) and mixing them with real malware traffic.
This traffic is then fed into another tool which takes the generated output and provides a
feature list and labels to be used in an ML approach (13). Another approach also relies
on the user to provide background traffic and subsequently merge malicious attack traffic
into said background traffic. The way traffic is injected can be customised by the user
through the use of an Application Programming Interface (API), instead of just blindly
injecting it, i.e. taking a step further than simple Injection Timing (14). The intention
here is to solve the problem of outdated, irrelevant and out of scope datasets, so the user
can create their own NIDS dataset tailored to a specific use case.
With these tools at least partially relying on existing traffic captures, the analysis,
labelling and description process of these captures will remain relevant in the foreseeable
future. This also leads into the next topic, which discusses how traffic is captured and
analysed, as well as NIDS and Network Intrusion Prevention System (NIPS) and how
they operate to detect and prevent threats.

10
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2.2 Working with Network Traffic
Network traffic can either be live monitored or analysed by extracting it from traffic
captures. Traffic analysis/monitoring is necessary for a number of reasons: Either to
detect anomalies, e.g. attacks taking place, or to simply monitor network activity; for
example, to impose limitations on certain hosts. Furthermore, analysing traffic is vital
for understanding network constraints and planning future expansions of the network.
Common tools for capturing traffic are: tcpdump, Wireshark, tshark or SmartSniff.
Whereas well-known tools with traffic monitoring and logging capabilities are: Zeek,
Suricata, Snort, ntop/ngrep. In cloud and distributed traffic capture settings we find
approaches like AWS VPC Traffic Mirroring, Google Cloud Packet Mirroring or Microsoft
Azure Network Watcher. But cloud environments go far beyond the scope of this thesis.
This section is intended to give an overview of the different methods used for capturing
and analysing traffic, either by live surveillance or post-processing. Furthermore, different
tools for traffic analysis are discussed.

2.2.1 Capturing Network Traffic
In order to work with network traffic, it must first be captured using appropriate software.
This software, e.g. Wireshark, tcpdump, then monitors a network interface, e.g. the
Local Area Network (LAN) port of the PC it is running on, and logs every IP packet
it sees on this interface. There are two disadvantages however. Running locally, it is
only possible to log traffic routed from or to the local host. Additionally, most modern
protocols use encryption, meaning that the payload is end-to-end encrypted using Secure
Sockets Layer (SSL)1. Without the encryption key, it is not possible to read the actual
data being transmitted. The first problem can be solved by monitoring traffic at a central
spot, e.g. a router. Furthermore, more sophisticated software such as Suricata, Snort or
Zeek can be used for network wide logging. The second problem cannot be solved (at
least not without breaching a lot of security), but it is often also not necessary to be
able to decrypt the actual payloads. The reason is that IP packet headers (also headers
of protocols in the transport layer, e.g. TCP, UDP, ICMP) usually contain enough
information to understand the purpose of the traffic. This is why we concentrate on
interpreting such unencrypted data together with aggregated statistics. The most popular
way to store traffic captures at packet-level is through PCAP and PCAPNG format files
(Section 2.2.2), which is a natural format for most traffic analysis tools, particularly if we
refer to forensic or offline analysis (Section 2.2)

2.2.2 PCAP & PCAPNG files
PCAP “Packet Capture” files make use of the pcap API, which itself consists of the
libpcap project (28), that provides a framework for low-level network monitoring. This
framework is then used by higher-level applications, such as Wireshark, to capture
network traffic. After doing so, these applications output a pcap file, containing the raw

1SSL is a protocol for encrypting traffic and ensuring data integrity between hosts.
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packet data, as well as additional logging information. The original pcap format was later
extended into PCAPNG, with NG standing for “Next Generation”, providing additional
fields such as user comments, network card information etc.(29). For all intents and
purposes, PCAP and PCAPNG are used interchangeably in this thesis. With PCAPs
being binary data and not human-readable, they first need to be processed before working
on them (30).

2.2.3 Network Intrusion Detection
There are several different fields of traffic analysis: IDS, as the name implies, serves to
monitor a network and raise an alert when it detects an intrusion. Apart from logging
and passively monitoring network traffic, it does not interact with the network. An
IPS goes a step further and actively filters traffic on the network. The goal here is to
perform the same goal as an IDS but act on a raised alarm directly to prevent damage.
Finally, there is post analysis, which works on pcap files or flow records. Especially
when using online NIDS, it is common not to work with pcaps due to their large size
but rather directly capture traffic as flows using flow records. Tools that capture flows
instead of all packets are: sFlow, Netflow and IPFIX. They operate by either sampling
individual packets and using them as representation for the entire flow, thus reducing
bandwith (sFlow)2, or by aggregating packets that share the same key details (source,
destination, ports, protocol, etc.) and saving them as a flow after the connection has
been terminated (Netflow/IPFIX)3. To reduce complexity, this thesis focuses exclusively
on traffic captured in pcaps.

2.3 Tools for Capturing and Describing Network Traffic
There are several tools for capturing and analysing network traffic. This section addresses
a selection of the available solutions and introduces how one of them (Zeek) is used as a
starting point for developing a new tool.

2.3.1 Wireshark
Wireshark (34) is one of the most popular, if not the most popular, open-source network
packet analyser. It comes with a GUI and is cross-platform compatible. It can work on
existing pcaps or live capture traffic directly and export it to a pcap. It is feature-rich
and provides filtering options as well as visual representations of those filters. Wireshark
offers the ability to quickly figure out what is going on in a network or in a traffic capture,
but does not provide intrusion detection or any alarms in that regard. It is rather suited
for short manual searches and less for automatisation. Furthermore, Wireshark, upon
opening a pcap file, reads its entire contents into memory, meaning that for large pcaps
it becomes unresponsive and prone to freezing on normal machines.

2sFlow was introduced in RFC 3176 (31).
3Netflow was introduced by Cisco, later superseded by IPFIX in RFC 5101 (32) and included in the

IETF standard track.
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2.3.2 Snort
Snort (35) is an open-source network intrusion detection system. It works by using
a series of pre-defined rules describing malicious network traffic and matches packets
in the network to those rules. This makes it suitable as an IDS, or as an IPS, with
Snort being deployed inline to stop detected packets. While Snort is open source, it
offers a “Snort Subscriber Ruleset” provided to customers of Cisco, in addition to the
“Community Ruleset” which is maintained by the Snort community - with the former
being more sophisticated. The intrusion detection mode of Snort is highly configurable
and adaptable. In addition to this main feature, Snort also offers a sniffer mode which
simply reads packets off the network and displays them to the console and a logger mode,
which writes captured packets to disk. Like Wireshark, Snort is able to work with pcaps.

2.3.3 Suricata
Suricata (39) is an open-source network intrusion detection and prevention system,
similar to Snort. It is mainly targeted at monitoring an entire network, but also supports
outputting pcap files, either on condition or capturing all traffic. Its detection system
works on inspection by signature, rulesets, Indicator of Compromise (IoC) matching (e.g.
domains, fingerprints, hashes) and Lua4 scripts. It is thus also highly customisable but
requires a significant amount of effort to be configured properly.

2.3.4 Zeek
Zeek (40), formerly known as Bro, is a passive open-source traffic analyser. It can
be operated from the command line and provides its own Turing-complete scripting
language, offering a framework for working with network traffic. It is highly customisable
and able to directly work with pcaps. By writing custom scripts, it is also possible to
directly control how the tool processes and monitors traffic. When analysing a pcap,
Zeek generates detailed reports containing every connection it processed. These logs
can then be easily ported to other tools or further analysed manually. In addition to its
scripting language, Zeek is also modular, meaning that future support for new protocols
can be patched in and the analysis of existing protocols can be fine-tuned and modified.
Finally, Zeek is also very resource-efficient and able to run on basic hardware.

2.4 Zeek as a Basis for Informative Labelling
Pcap files are encoded in binary and thus are not easy to parse into other formats.
Since they usually capture all packets present on a network interface, it is necessary to
preprocess them, before being able to parse individual packet information. However,
this is only one step before analysis can take place. The packets have to be aggregated
into flows first, as individual packet inspection is very time- and resource consuming.

4Lua (33) is an an embeddable scripting language
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Therefore, an existing program needs to be chosen for performing the task of preprocessing
pcaps and outputting the data in a structured manner. Afterwards, the now structured
data can be analysed and summarised into a final result.

2.4.1 Why Zeek
Out of the options above, the one that proved to be the most viable was Zeek. The
reason for this is that Zeek already implements a very detailed logging system and just
needs to be configured on what to log. This way it is possible to process a pcap through
Zeek by just providing a startup script listing all the modules that Zeek has to execute.
After finishing its analysis, Zeek then outputs a well structured “conn.log”, listing all
connections made and further .log files for each submodule, e.g. “dns.log”. This improves
modularity, making it possible to easily change direction in terms of scope, without
having to rebuild everything from scratch. When looking at the other options, Wireshark
does not implement such an output system, while Snort and Suricata are more focused
on providing logs on potential threats that they have already identified.

2.4.2 The Benefits of Zeek
One upside of Zeek is its ease of use compared to Snort and Suricata. Being a Command
Line Interface (CLI) utility, apart from a startup script, it does not take much to provide
an output to a given pcap. However, the biggest advantage is its comprehensive and easy
to follow documentation (41). It describes how Zeek’s scripting language works, how the
output files are structured, what each entry means and how to interpret it. Furthermore,
Zeek is fully open source, without any business license, it instead opts for an approach of
complete accessibility. This means that it will remain usable in the future, without being
impacted by potential business decisions.

2.4.3 The Drawbacks of Zeek
Zeek is built for Unix — while this makes sense for its use case, it is very hard to have it
run on other operating systems. This means that, in order to process pcap files, it is
best to do so on a Linux machine and then either proceed on this machine or port the
results to the operating system on which one wishes to perform further analysis. Another
drawback is that the high configurability and scripting may overwhelm users, and no
GUI is provided. These issues can be somewhat mitigated by building a wrapper around
Zeek with Docker and providing a simple-to-use frontend for users.

2.5 Existing Ways of Traffic Classification
To understand the current state of traffic labels and how they can be interpreted, it
is necessary to highlight the different output formats of the solutions presented above.
This section concentrates on providing a short overview, with more detail added in the
chapters Methodology and Evaluation.
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2.5.1 Zeek
As mentioned above, Zeek gives a very detailed account of network traffic by grouping
packets into flows and then displaying these flows in a formatted manner. If Zeek is
configured to detect anomalies, they are saved in the “notice.log”. Listing 2.1 shows a
sample entry, which includes a timestamp, a reason why this notification was raised,
followed by the source IP causing the anomaly and the actions taken (in this case a notice
was written). Moreover a time frame is defined, preventing this notice from being raised
again within that frame. Additionally, an email address for notification of the event can
be specified.

{" t s ":"2025 −01 −01T05 : 0 0 : 00 . 47 53 98Z" ,
" note " : " Traceroute : : Detected " ,
"msg " : " 6 4 . 8 8 . 1 1 0 . 5 7 seems to be running

t r a c e r o u t e us ing icmp " ,
" s r c " : " 6 4 . 8 8 . 1 1 0 . 5 7 " ,
" a c t i o n s " : [ " Not ice : :ACTION_LOG" ] ,
" email_dest " : [ ] ,
" suppress_for " : 3 6 0 0 . 0 }

Listing 2.1: Zeek Example Output

The details of how Zeek’s system is used, with a more in depth explanation, can be found
in Section 3.2 In general, Zeek is very flexible in its output but the flows it generates still
need to be post-processed to provide an overview.

2.5.2 Snort
Similar to Zeek, Snort also provides an alert system. The difference is that Zeek is more
targeted at analysis, while Snort is equipped to intercept packets in real time. This
is apparent in Listing 2.2(60), in which Snort detected an arbitrary code execution5

attempt.

{ " timestamp " : "07/16 −09:23 :39 .153899" ,
"pkt_num" : 5 ,
" proto " : "TCP" ,
" pkt_gen " : " stream_tcp " ,
" pkt_len " : 97 ,
" d i r " : "C2S " ,
" src_ap " : " 1 9 2 . 1 6 8 . 1 . 2 : 5 0 2 8 4 " ,
" dst_ap " : " 1 9 2 . 1 6 8 . 2 . 3 : 8 0 " ,
" r u l e " : " 1 : 1 0 0 0 0 0 0 : 0 " ,
" a c t i on " : " would_drop " ,
"msg " : "SERVER−WEBAPP Apache Log4j a r b i t r a r y

5This example corresponds to an attack form where a hacker executes his own malicious code/program
on a target.
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code execut ion attempt " ,
" c l a s s " : " Attempted User P r i v i l e g e Gain " }

Listing 2.2: Snort Example Output

When compared to Zeek, this alert includes more details, such as the protocol used, packet
length, etc. This would appear in Zeek’s “conn.log” and can then be cross referenced if
needed. This example gives some insight into how Snort operates. While it can be used
for traffic classification, it is rather aimed at preventing real time threats as can be seen
in the attack above.

2.5.3 Suricata

Suricata provides IDS and IPS services and is comparable to Snort. Listing 2.3 demon-
strates an example alert which was raised based on packet signature (61).

[ 1 : 2 1 0 0 4 9 8 : 7 ]
GPL ATTACK_RESPONSE id check returned root [ ∗ ∗ ]
[ C l a s s i f i c a t i o n : P o t e n t i a l l y Bad T r a f f i c ]
[ P r i o r i t y : 2 ]
{TCP}
2 1 7 . 1 6 0 . 0 . 1 8 7 : 8 0 −> 1 0 . 0 . 0 . 2 3 : 4 1 6 1 8

Listing 2.3: Example Alert raised by Suricata

Again, it is apparent that a connection was made, with the source and destination IP:Port
tuples provided. The protocol used is TCP and a reason for the classification is also given.
Like Snort, Suricata can be configured to perform actions based on rules, for example
dropping the packet, sending a notification, or raising an alert. The problem with this
type of classification is again the focus on individual packets and real time analysis. This
makes Suricata well suited for threat protection but less suited for analysis of traffic
captures.

2.5.4 Wireshark

Unlike the other utilities, Wireshark is used for inspecting and analysing packets directly.
In Figure 2.1 the Source IP 192.168.0.118 establishes a connection to google.at, which
resolves to 142.251.39.57. The protocol used is Quick UDP Internet Connections (QUIC),
which is establishing itself as a replacement for TCP in some instances and in this case,
is simply used to load the Google front page. Some information about the purpose and
content of the packet is displayed by Wireshark but, with QUIC being encrypted, only
“Protected Payload” is displayed. This makes Wireshark a good choice for understanding
individual packets and connections, but not suited for larger scale flow analysis and
labelling.

16



2.5. Existing Ways of Traffic Classification

Figure 2.1: Example of Wireshark’s User Interface

2.5.5 TII-SSRC-23 Dataset
Used for testing purposes, the TII-SSRC-23 dataset contains several pcaps with sample
traffic of attacks or benign traffic and a csv file which contains detailed information on
the flows within the pcap files. The dataset provides a total of 85 labels in the csv file,
out of which the labels in Listing 2.4 have been selected for demonstration purposes:

{ " Flow ID" : "192.168.1.42 −192.168.1.220 −43808 −53 −17" ,
" Src IP " : " 1 9 2 . 1 6 8 . 1 . 4 2 " ,
" Src Port " : 43808 .0 ,
" Dst IP " : " 1 9 2 . 1 6 8 . 1 . 2 2 0 " ,
" Dst Port " : 53 ,
" Protoco l " : 17 . 0 ,
" Timestamp " : "07/02/2023 04 : 04 : 00 PM" ,
" Flow Duration " : 5005274 .0 ,
" Label " : " Mal i c i ous " ,
" T r a f f i c Type " : " Mirai " ,
" T r a f f i c Subtype " : " Mirai DDoS ACK"}

Listing 2.4: Labels selected from TII-SSRC-23 Dataset for demonstration purposes

The flow above is taken from the “Mirai_DDoS_ACK” pcap, which contains a dedicated
denial of service attack using ACK statements in the TCP protocol. The fields provided
are similar to those of Zeek and Snort. The source and destination IP:Port tuples are
provided, along with a timestamp, flow duration and flow id (to uniquely label this
flow). What is more interesting is the classification provided by the dataset: the label
states “Malicious”, indicating an attack. However the traffic type is simply set to “Mirai”,
referring to the Mirai botnet6 and the traffic subtype reads “‘Mirai DDoS ACK”. These
fields leave room for improvement. For instance, the traffic type is redundant when
looking at the traffic subtype. Furthermore, no specifics about the attack are provided,
meaning that all flows contained within the dataset would have to be processed again to
gain more insight into the number of requests or which IPs took part in the attack.
In conclusion, the labels provided by existing tools and methods are either too detailed,
or not detailed enough, requiring post-processing. In the next chapter, the state of the
art is analysed in more detail, discussing how the existing forms of traffic analysis can be
improved and extended upon.

6The Mirai botnet consists of a network of infected Internet of Things (IoT) devices used to perform
DDoS attacks (45).
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CHAPTER 3
Methodology

This chapter describes the working methodology of this thesis. We begin by contextualiz-
ing the traffic analysis and the Network Intrusion Detection Systems explored. We then
expose and discuss the development of a tool (FlowBreaker) built on Zeek for performing
Network Intrusion Detection and traffic analysis. Later on, the developed test setup for
evaluating this tool is presented based on the datasets used for the experiments, i.e. the
TII-SSRC-23 NIDS dataset benchmark and its default labelling system and a capture of
the real-world capture of MAWI WIDE project.

3.1 Explored NIDS
We narrowed down the selection to the following three tools:

• Snort

• Wireshark

• Zeek

3.1.1 Snort & Rule based Detection
Snort is an intrusion detection system able to operate on both pcap files and live traffic.
Its main feature is its rule based detection system, which labels packets based on criteria
defined in a ruleset. To clarify how this is done in practice, here is an example rule from
the Snort Wiki (36):

alert tcp $EXTERNAL_NET 80 -> $HOME_NET any
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This rule tells Snort to send an alert if a TCP connection from the “EXTERNAL_NET”
on source port 80 to any port in the “HOME_NET” is established. Snort can not
only send an alert but also perform other actions, such as blocking the connection,
dropping the packet, or sending a response to the source, based on the rule provided.
This means that Snort allows for a very fine grade approach that can be tailored to
any network and its threat model. There are two pre-existing rulesets: one provided
by the Snort community and one provided for a subscription fee to customers of Cisco.
While Snort is an excellent choice for monitoring and protecting a live network, it is
rather unfit for labelling/processing pcap files, as this would require creating a very exten-
sive and detailed set of rules. Furthermore, statistical analysis would require additional
overhead based on the results provided by Snort after applying the aforementioned ruleset.

3.1.2 Wireshark
Unlike Snort, Wireshark is not directly used for NID, but rather as an open source packet
inspection tool. It focuses on describing packets and their contents and, while being able
to aggregate packets into flows, flow labelling is not its main focus. Wireshark offers an
user friendly GUI and optionally a command line utility called TShark for automation
purposes (37). This makes Wireshark a suitable candidate for in depth manual analysis,
using its assortment of functions to filter and search for packets. It is rather unfit however
for the task of filtering aggregated flows/connections on a larger scale, as this would
require us to construct a wrapper that first aggregates all packets into suitable flows,
before any labelling can take place.

3.1.3 Zeek
While Wireshark focuses on the contents of packets, Zeek directly abstracts this layer
and instead aggregates all packets into packet flows, which directly describe a connection
from one IP and Port tuple to another. Using these tuples, Zeek generates an unique
identifier for each flow. Additionally, Zeek is able to extract descriptors, such as the
number of bytes transmitted/received that can then be used to evaluate the purpose of
a connection. Furthermore, Zeek provides its own scripting language and is built with
modularity in mind (38). We can therefore configure it to provide all details in need of
assessment and then label flows accordingly. Paired with its rich documentation, open
source approach and the ability to work directly on pcap files, its feature set makes it
the most suitable solution for the task at hand.

3.2 Using Zeek as a Basis for Informative Labelling
With Zeek offering modularity and extensive, detailed log files after processing a pcap
file, it is well suited as a foundation for labelling IP traffic. This section will address how
Zeek works, how to use and configure its ouput and finally how a custom frontend for
processing pcaps with Zeek through a web browser was built.
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3.2.1 Working with Zeek
Zeek’s main target operating system is Linux. To make future updates and possible
migrations of the system easier and independent of the host machine, it was decided to
use Docker to run an instance of Zeek. The developers of Zeek provide a docker image for
this use case, making the setup process very simple — with the process being discussed
in detail in the section 3.2.2 (42). When running Zeek, we can either have it live capture
traffic on an interface, e.g. the host machines ethernet port, or provide a pcap file to Zeek
for analysis. Since the focus of this thesis is not live traffic labelling, we will proceed with
the latter. For a simple analysis of a pcap file, using default parameters, the following
command is sufficient: (43)

zeek -r mypackets.trace local

This command runs Zeek with the mypackets.trace file as an input pcap file. The word
“local” instructs Zeek to use the “local.zeek” script, which is included in the standard
configuration and can be found in the official Github repository (44). After running
Zeek in this manner, it puts out several log files—the most notable being the “conn.log”,
which lists all connections that have been established and further details, e.g. timestamp,
protocol, service, and bytes transferred. Additionally, Zeek creates a separate log file for
each enabled submodule, e.g. “http.log” and “dns.log”, each of which contain specific
information on connections using the Hyper Text Transfer Protocol (46) and the Domain
Name System (47) respectively.

3.2.2 Building a Frontend for Zeek
After performing initial test runs with Zeek, the next step was to create a testing
environment to test Zeek on existing datasets. When running Zeek as a Docker image, it
is necessary to manually manage the pcap files, then run Zeek with a custom script, and
then copy back the output. This gets very tedious when analysing multiple files. For this
reason, a more user friendly solution using docker-compose was conceptualised. With the
docker-compose.yml file provided in the Appendix A.3, the following Docker containers
are created:

• Zeek

• Debian

• PHP server

• nginx webserver

All images are pulled directly from Dockerhub. The nginx webserver then hosts a simple
PHP: Hypertext Preprocessor (PHP) webpage which provides the possibility to upload
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and download files. To actually run PHP, which is a scripting language, a PHP server is
necessary. To move and delete files, a Debian Linux container is used. Finally the Zeek
container perfoms the pcap analysis. The simplified workflow is as follows: First a pcap
file is uploaded by the user through the php webpage. This file is then located in the
“uploads” directory. The Debian container runs a shell script, monitoring changes in this
directory. If a new file is detected, the Debian container executes another script which
runs a command in the Zeek container using the file as input. After Zeek has finished its
analysis, a “console.log” is created, containing the command line return value of Zeek.
The Debian container detects this newly created file and compresses the output log files
into a zip file. This zip file is then placed in the “zipped-logs” directory, from which it
can be downloaded using the webpage. The zip file contains the name of the analysed
pcap and the timestamp of the analysis. Finally, the temporary log files are deleted. To
save on storage space, another shell script runs in the background, deleting the oldest file
once the uploads directory reaches 8 gigabytes in size.

Figure 3.1 gives a brief, simplified overview of how a user uploads a pcap file, which is
then analysed by Zeek, with the results zipped by the Debian container and provided back
to the user. The nginx and PHP Server container have been omitted in this flowchart.
Figure 3.2 illustrates this system in more detail, with the cylinders representing the
folders “uploads” and “zipped-logs” and the rounded rectangles representing Docker
containers. The arrows indicate the actions taken by the containers. The “Management
Script” is responsible for monitoring the upload directory, running the “Zeek Script”
when a new pcap file is uploaded, zipping the .log files produced by Zeek, and saving
them to the “zipped-logs” directory.

Figure 3.1: Flowchart showing how a pcap is processed using Zeek, simplified for
demonstration purposes, omitting the nginx and php components.
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Figure 3.2: Flowchart illustrating the Frontend for Zeek, showcasing how Docker
containers communicate and operate.

3.3 FlowBreaker: A Smart Wrapper for Zeek

This section revolves around the planning and development of FlowBreaker: a tool that
wraps Zeek’s output and processes it to detect the attacks mentioned in Chapter 2. It
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also provides additional insight into the traffic and the hosts associated with it. First
the scope is set, then FlowBreaker’s structure is explained, and finally we give details on
how traffic is classified.

3.3.1 Setting the Scope
As already mentioned in this thesis, it is necessary to limit the goals and expectations,
as the field of analysing IP traffic is massive. Therefore, the following design goals were
set early on in the planning phase of FlowBreaker:

1. CLI only: A GUI is not necessary for operation and it requires significantly more
development-time to implement. Only using a CLI simplifies development in
exchange for slightly reduced usability. This way all user input can be provided
as text using a CLI. Furthermore, CLIs are easier to integrate with Shell scripts,
which facilitates automated processing of multiple input files.

2. Outsourcing of pcap analysis: Aggregating packets into flows by processing a pcap
is difficult to implement, as one would need to implement a way of formatting the
binary data into readable data and then iterate over said data. With Zeek, this
is not necessary because it already provides aggregated packet flows in its output
data. These flows can then be parsed into custom classes, which are then used
internally.

3. Providing a framework rather than a fully featured solution: This way the end
result can be easily modified in the future. Furthermore, features can be developed
independently of each other, which simplifies future additions.

4. Concentrating on detecting certain types of attacks first: Detecting all feasible
attacks would be out of scope, as we want to provide a proof of concept, that can
be validated first. By concentrating on a smaller subset of attacks, we can trade
quantity for quality. Furthermore, the resulting detection methods could be reused
and adapted to other forms of attacks in the future, thus reducing development
time.

With this in mind, the expectations can be set accordingly: The resulting tool is
supposed to take the already processed pcap file, then perform its own analysis based
on the measurements contained within the pcap, and finally output a summary of the
file’s contents with additional labels with a high informative value in place. Therefore,
the end result should be cross-platform-compatible and provide an easy way for user
configuration.

3.3.2 Divide & Conquer
In order to be able to work on features individually, FlowBreaker had to be structured in
a modular way, involving breaking functionality up into independent subclasses. This
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ensures code readability and maintainability. Additionally, since the data provided
is not pre-sorted, the used language has to be capable of efficiently handling lists
that contain several 100,000 entries. This is why C# was used. Unlike interpreted
languages such as Python, C# builds on an object-oriented approach and strong typing,
providing significantly faster execution due to its compiled nature. Additionally, C# offers
Language Integrated Query (LINQ), which enables queries similar to Structured Query
Language (SQL) on any custom classes containing data. These features, combined with
the asynchronous support and the excellent IDE (Integrated Development Environment)
provided by Visual Studio, make C# a solid foundation for this thesis. With data queries
sorted, the next step is processing the raw input data into a structured format that can
be handled by other modules.

3.3.3 Wrapping Zeek’s Output
As mentioned above, Zeek outputs several log files after processing a pcap file. The most
important one is the “conn.log”, which lists all connections Zeek is able to recognise.

An example line of this log file can be found in Listing 3.1.

With this in mind, it is already possible to extract several key details, such as the
origin and destination, bytes transmitted, protocols used and duration of the connection.
Furthermore we can cross reference this entry to other log files, such as the “http.log”,
using the “uid” parameter. To handle this kind of connection, the “Connection class”,
which acts as a simple wrapper and provides access to the attributes below, is introduced.
Furthermore, standard methods such as “ToString()”, 1 were introduced.
With the existing data formatted, the next step was to aggregate these connections into
larger flows and associate them with a given host IP address—hence the “Connection-
Group” class is introduced. This class stores a list of all communications associated with
a given IP and provides additional fields for statistic description, such as the number of
unique source ports used, average number of bytes transmitted per connection, number of
connections, etc. The goal of this class is to provide a starting point for later classifying
IPs as malicious or benign. All attributes and methods implemented are discussed in the
next sections, along with an overview of the program flow and the other classes involved.

Please note that FlowBreaker’s “connections” refer to TCP, UDP and ICMP communi-
cations, with the term being used interchangeably, rather than just for TCP connections.

" t s " : "1970−01−01T00 : 4 2 : 1 0 . 8 81 29 9Z" ,
" uid " : " CF2GticcWn8tTg866 " ,
" id . orig_h " : " 1 9 2 . 1 6 8 . 1 . 9 0 " ,
" id . orig_p " : 35900 ,
" id . resp_h " : " 1 9 2 . 1 6 8 . 1 . 7 0 " ,
" id . resp_p " : 8080 ,
" proto " : " tcp " ,
1ToString() is a method which returns a String summarising an object’s properties
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" s e r v i c e " : " http " ,
" durat ion " : 25 .995668000000023 ,
" or ig_bytes " : 137 ,
" resp_bytes " : 4487402 ,
" conn_state " : "SF" ,
" l o c a l _ o r i g " : true ,
" l o ca l_re sp " : true ,
" missed_bytes " : 0 ,
" h i s t o r y " : " ShADadtttfF " ,
" or ig_pkts " : 2565 ,
" or ig_ip_bytes " : 147597 ,
" resp_pkts " : 3410 ,
" resp_ip_bytes " : 4690493 ,
" ip_proto " : 6

Listing 3.1: Example of a Zeek conn.log entry

The flowchart in Figure 3.3 provides a rough overview of the tool’s inner workings.
As explained above, the log files provided by Zeek are first read in, then formatted into a
list of individual connections. Optional log files, e.g. the “dns.log”, are parsed as well
and provided if required for analysis later on. Since some of the information contained in
them, such as the “id.orig_h” (which denominates the origin IP address), are redundant
and already contained in the “conn.log”, they are only queried if needed and are not
structured into individual connection groups. To actually sort connections effectively
they are first broken up by the following protocols:

• Transmission Control Protocol (TCP)
This protocol is used for reliable data transfers, meaning that each packet is
confirmed by the receiver. It is used for purposes such as transmitting files and
authentication (48).

• User Datagram Protocol (UDP)
This protocol is used for unreliable data transfers, this is useful when speed matters
more than data integrity; for example, in streaming video (49).

• Internet Control Message Protocol (ICMP)
Unlike TCP and UDP, this protocol is directly embedded in the IP stack and is
used for basic controls and messages, e.g. the “destination unreachable” notifica-
tion/message (50).

The reason for this is that TCP, UDP, and ICMP are the most frequently used IP
protocols, and attacks are prone to use them separately (i.e. most attacks commonly
focus on one of these protocols). For example a DNS amplification attack, an attack
abusing Domain Name System (DNS) to overwhelm a victim (20), is carried out using
UDP, as DNS is a service almost exclusively using this protocol (47). Another example
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Figure 3.3: This Flowchart outlines how FlowBreaker processes Zeek input files,
performs attack detection and writes the results to disk. 27
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would be brute force for guessing passwords, which aims at protocols such as Hypertext
Transfer Protocol Secure (HTTPS), or Secure Shell (SSH), that are built on TCP (19).
After splitting the connections up by TCP, UDP and ICMP, the three resulting lists are
once sorted by source IPs and once by destination IPs (six lists in total). This is done
because some attacks, for example DDoS, use many source IPs on a single destination IP,
while others, e.g. scans for connected hosts, originate from a single source.
By using two separate connection groups, it is easier to evaluate what is happening in a
given traffic capture. During the process of aggregating the connections into connection
groups, the additional statistical parameters (“Flags & Outliers”), which are discussed
in Section 3.3.6, are also calculated and set. Finally the processed connection groups
are parsed into the individual submodules, which run detection methods on the groups.
The results are then saved to the output directory in the txt, csv and json formats. This
also applies to the six processed connection groups, containing all TCP, UDP and ICMP
connections.
To allow for flexibility in FlowBreaker’s behaviour, each module along with its methods
is configurable by using a configuration file. This file called “config.toml” is formatted in
the toml (52) format, which allows for comments and better readability2.

The values in this file specify thresholds and markers used in the detection methods for
the classification of individual hosts. One example would be how many SSH connections
need to be initiated by a source IP for the source IP to be flagged as malicious, which is
specified using the field “MinConnections” in the section [SSHBruteForce]. An example
for a list of values would be the “CommonPorts” list, which is specified in the section
[CommonPortsAttack] and denominates each port that FlowBreaker watches. The
purpose of each configuration value is explained in Section 3.3.4 alongside the detection
methods they are used in.

2An example for this file can be found in the Appendix A.1.
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3.3.4 FlowBreaker’s Modules

This section gives an overview of the implemented analysis modules, including a short
description of the attacks they can detect, and Table 3.1 providing an overview of their
submethods and relevant configuration parameters. In the current version of FlowBreaker
there are four modules implemented:

Module Submodule Sorts By Config Values

Basic Analysis N/A Src. & Dest. IP Flag Setting Behaviour

Scanning DetectPortScans Source IP Connection_Threshold,
Unique_Port_Threshold

DetectHostDiscoveryScans Source IP Unique_IP_Threshold
DetectProtocolSpecificScans Source IP SYN_Scan_Threshold
DetectVersionScans Source IP Connection_Threshold,

Min_Port_Number,
Max_Bytes_Transferred,
Common_Ports

DetectServiceEnumeration Source IP Connection_Threshold,
Min_Port_Number,
Min_Bytes_Transferred,
Common_Ports

BruteForce DetectCommonPortAttacks Destination IP MinConnectionsPerPort
DetectPasswordSpraying Source IP PasswordSprayingThreshold
DetectSSHBruteForce Source IP MinConnections
DetectSSLBruteForce Source IP MinConnections
DetectHTTPBruteForce Source IP MinConnections

DDoS DetectSYNFlood Destination IP SYNThreshold
DetectUDPFlood Destination IP UDPThreshold
DetectICMPFlood Destination IP ICMPThreshold
DetectDNSAmplification Source IP DNSThreshold,

MaxDomainRepetitions
DetectNTPAmplification Source IP NTPThreshold
DetectSSDPAmplification Source IP SSDPThreshold
DetectConnectionExhaustion Destination IP ConnectionThreshold,

MaxBytes, MinDuration
DetectSlowlorisAttack Destination IP HalfOpenThreshold,

MinDuration

Table 3.1: FlowBreaker Module Overview: Listing Submodules, relevant configuration
options and how output is sorted
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1. Basic Analysis
This module is responsible for creating six outputs: First the connections are
split into three groups: TCP, UDP and ICMP. These are then broken up into
Connection Groups sorted by destination IP, and Connection Groups sorted by
source IP, resulting in a total of six groups. In addition, the custom flag fields are
set based on the config.toml and the average values are calculated.

2. Scanning
This module detects attacks that search for vulnerabilities on a target machine by
using the following methods:

a) DetectPortScans
This method detects Port Scans, where an attacker tries to find open ports on
a target machine. Two thresholds are configurable to achieve this: Connec-
tion_Threshold, which sets the minimum number of connections a host needs
to establish and Unique_Port_Threshold which sets the minimum number of
unique ports that need to be addressed by the attacker. The output is sorted
by source IP.

b) DetectHostDiscoveryScans.
This method detects Host Discovery Scans based on the number of unique des-
tination IPs targeted by a host. If this number exceeds Unique_IP_Threshold,
the source IP is flagged and written into the output file. The output is sorted
by source IP.

c) DetectProtocolSpecificScans.
This method detects SYN Scans, which consist of the attacker sending TCP
Syn Packets to a victim, in order to detect open ports/protocols. Zeek
provides the “S state” in the “history field”, indicating that only a SYN packet
without the ACK bit set was seen coming from the source IP. FlowBreaker
flags this as an attack if the minimum number of these connections set in
SYN_Scan_Threshold is exceeded. The output is sorted by source IP.

d) DetectVersionScans.
This method detects Version Scans, which try to detect the specific protocol
version being used on a given port. This is done by searching for repeated
connections to commonly used ports, with minimal data transfer. The fol-
lowing parameters can be defined: Connection_Threshold (minimum number
of connections per port), Min_Port_Number (minimum number of unique
ports targeted), Max_Bytes_Transferred (the maximum number of bytes),
Common_Ports (a list determining which ports are monitored). The output
is sorted by source IP.

e) DetectServiceEnumeration
This method works identical to the method above, with the only difference
being that, instead of a maximum number of bytes being defined, a minimum
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number of bytes is defined with Min_Bytes_Transferred. The output is sorted
by source IP.

3. BruteForce
This module implements very basic methods that trigger based on the number of
connections made, with a high number indicating a potential Brute Force attempt.

a) DetectCommonPortAttacks
This method triggers if the number of established connections from a single
IP to a port in the CommonPorts list exceeds the MinConnectionsPerPort
variable. The results are sorted by destination IP.

b) DetectPasswordSpraying
This method listens for authentication attempts on the ports listed in Com-
monPorts. It triggers if the number of login attempts (ssh, ssl or http) exceeds
PasswordSprayingThreshold. The output is sorted by source IP.

c) DetectSSHBruteForce
This method triggers if the amount of SSH connections exceeds MinConnec-
tions. The output is sorted by source IP.

d) DetectSSLBruteForce
This method triggers if the amount of SSL/TLS connections with failed
handshakes exceeds MinConnections. The output is sorted by source IP.

e) DetectHTTPBruteForce
This method triggers if the amount of Hypertext Transfer Protocol (HTTP)
requests that contain “password=” in their “uri” field exceeds MinConnections.
The Unique Resource Identifier (URI) field(59) serves as the authentication
to a server, meaning that a high number of these requests indicates password
guessing. The output is sorted by source IP.

4. DDoS
This module implements methods that search for attacks that attempt to exhaust
the resources of a target by flooding it with requests.

a) DetectSYNFlood
This methods triggers if the number of connections with their conn_state set to
“S0” or “REJ” (a field used by Zeek, describing TCP connections that contain
only a single SYN packet or have been rejected) exceeds SYNThreshold. The
output is sorted by destination IP.

b) DetectUDPFlood
This method triggers if the number of UDP connections exceeds the UDPThresh-
old. The output is sorted by destination IP.

c) DetectICMPFlood
This method triggers if the number of ICMP connections exceeds the ICMPThresh-
old. The output is sorted by destination IP.
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d) DetectDNSAmplification
This method works by detecting redundant DNS queries, by checking the
following conditions: The number of DNS requests that query the same
domain more than MaxDomainRepetitions, have to exceed DNSThreshold. If
MaxDomainRepetitions is set to 0, only the total number of DNS requests
has to exceed DNSThreshold. The output is sorted by source IP. (Because
from Zeek’s interpretation, the victim is the source of the request)

e) DetectNTPAmplification
This method triggers if the amount of connections with 123 being the origin
port exceeds NTPThreshold. The output is sorted by source IP. (Because
from Zeek’s interpretation, the victim is the source of the request)

f) DetectSSDPAmplification
This method triggers if the amount of connections with 1900 being the origin
port exceeds SSDPThreshold. The output is sorted by source IP. (Because
from Zeek’s interpretation, the victim is the source of the request)

g) DetectConnectionExhaustion
This method works by checking for a high number of connections with minimal
data transfer that stay open for a long duration. The minimum number of
connections is defined in ConnectionThreshold, the maximum number of bytes
in MaxBytes and the minimum duration in seconds in MinDuration. The
output is sorted by destination IP.

h) DetectSlowlorisAttack
This method triggers if the number of half-open connections, therefore con-
nections in the “S1” or “SF” state (a field used by Zeek, describing TCP
connections that have not been terminated), exceeds HalfOpenThreshold, with
MinDuration again defining the minimum time a connection needs to stay
open to be counted. The output is sorted by destination IP.
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3.3.5 FlowBreaker’s Workflow
FlowBreaker works by breaking up its input into smaller, sorted lists, that describe
network flows. Understanding this process is key to understand the output of the
program. As can be seen in Figure 3.3, FlowBreaker starts by reading in the Zeek
Logs, to then further analyse them. Internally, FlowBreaker uses the custom class
“ConnectionGroup”, which stores a single IP as its key, a list of connections relating to
this IP, as well as the values, fields and flags calculated based on this IPs activity. This
is carried out in the following order:

1. Discrimination by Protocol
The input is broken up by the underlying protocol used, namely: TCP, UDP and
ICMP.

2. Discrimination by IP
The three resulting groups are now sorted twice into two dictionaries: First,
“SortBySource”, which contains all IPs that have at least initiated a single connection;
and, second, “SortByDestination”, which contains all IPs that have at least received
a single connection.

3. Processing “SortBySource” and “SortByDestination” Dictionaries
From Steps 1 and 2 we obtained a total of six dictionaries, which are all processed
individually. FlowBreaker calculates the average values across all IPs and their
associated connections for all six dictionaries and uses them as a reference when
determining custom activity flags, which can be used to identify IPs with high or
low activities.

4. Running additional Modules
If configured, FlowBreaker runs each module added to the configuration file on
the lists generated above. These outputs (if they actually exist) are then saved to
separate files.

3.3.6 Interpreting FlowBreaker’s Output
After executing a submodule, FlowBreaker saves its output into three different output file
types: .txt, .csv, .json, with the first serving as a human readable summary and the latter
two as means for automated processing. In these output files, FlowBreaker offers “Text
Fields”, “Activity Flags”, “Flagging Scores” and “Average Values”. Text Fields provide
a general description of the analysed IP addresses and the communications associated
with them (Note that “Connections” refers to TCP as well as UDP and ICMP based
communications). “Activity Flags” are binary values, serving to indicate high activity of
the IP question compared to the other addresses in a traffic capture. Flagging Scores are
float values, which are used as a basis for setting the “Activity Flags”. Their value can be
understood as a multiple of the average value in a given traffic capture and is calculated
based on the equations in Equation . Finally, “Average Values” is an assortment of float
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values describing the average of e.g. communications or ports per IP address. The details
of how these calculations are performed can be found in Equations 3.2 to 3.8.

Text Fields

In its output, FlowBreaker provides several text fields for each host contained in the
input files. These fields are meant to offer human-readable information, describing the
activity of the host in question:

1. IP
The IP associated with the connections, which is either the source or the destination,
but never both in the same file.

2. Total Connections
The total number of communications associated with this IP.

3. Protocol
The transport protocol used, either TCP, UDP or ICMP

4. Service
If the Connection Group only contains a single type of network protocol, this field
is set to this protocol, e.g. “http”. If not, it is set as “UNDEF”. The protocol
identification is done based on Zeek’s output. Note that Connection Group is an
internal class name of FlowBreaker, which is created for every unique IP address.

5. Classification
This text field is only set if the Connection Group was identified as malicious,
otherwise it is set to “UNDEF”.

6. Connection Summary
This field either refers to source or destination IPs. It contains the following lists
and their related figures/aggregations:

a) Source/Destination IPs
A list of all unique IPs and the number of connections they are associated
with, sorted in descending order by the number of connections.

b) Unique Destination Ports
A list of all unique destination ports used and the number of connections they
are associated with, sorted in ascending order based on port number.

c) Unique Source Ports
A list of all unique source ports used and the number of connections they are
associated with, sorted in ascending order based on port number.

7. Services
This field contains a list with the number of services logged by Zeek together with
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their number of occurrences. Note that “ssl”(55) simply refers to encrypted traffic
and is used by Zeek to express that a Transport Layer Security (TLS) encryption
was recognised (56) (SSL was superseded by TLS and both acronyms are often
used interchangeably).

Activity Flags

Based on the configuration file, FlowBreaker sets eight flags according to the IPs activity
and Equation 3.1. This equation defines the threshold of what is considered a “high”
amount by FlowBreaker. The flags can be understood as follows:

1. High Outgoing Port Activity: If set, this flag indicates that the IP was associated
with a “high” entropy of destination ports, meaning that the IP targeted many
different ports in its communications.

2. High Incoming Port Activity: If set, this flag indicates that the IP was associated
with a “high” entropy of source ports, meaning that the IP used many different
source ports in its communications.

3. High Outgoing IP Activity: If set, this flag indicates that the IP was associated with
a “high” entropy of destination IPs, meaning that the IP targeted many different
IP addresses in its communications.

4. High Incoming IP Activity: If set, this flag indicates that the IP was associated
with a “high” entropy of source IPs, meaning that the IP was addressed by many
different IP addresses.

5. High Number of Outgoing Connections: If set, this flag indicates that the IP
was associated with a “high” amount of incoming connections, meaning that the
IP initiated many connections/communications (either to the same or different
destinations).

6. High Number of Incoming Connections: If set, this flag indicates that the IP was
associated with a “high” amount of outgoing connections, meaning that the IP
was targeted in many connections/communications (either to the same or different
sources).

7. Listener : This flag is set if the IP has more incoming than outgoing communications,
meaning it “listens” more than it “speaks” (this flag is mutually exclusive with the
Speaker flag).

8. Speaker : This flag is set if the IP has more outgoing than incoming communications,
meaning it “speaks” more than it “listens” (this flag is mutually exclusive with the
Listener flag).
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All flags are consistent across output files for the same IP.

Flagi =
�

True, if vi ≥ v̄ × f

False, otherwise
(3.1)

Where vi is the value for the specific IP, v̄ is the average value across all IPs and their
connections, and f is the multiplication factor provided in the configuration file. All vi

values are logged in console during runtime but are not contained in the output files. To
save them, it is necessary to either copy the console log or pipe the output to a file.

Flagging Scores

This section simply contains the results of equation 3.1 for each individual flag. The idea
here is to provide more detail than just a binary value. If the flag cannot be set, the
value is initialised as “-1” — for example, in an output file that only contains source
IP addresses, the “Incoming IP activity” would be “-1”, because this file only addresses
outgoing connections, not incoming ones.

Average Values

To clarify the various variables used internally by FlowBreaker, Table 3.2 provides an
overview of key variables alongside short explanations. The Average Values are calculated
as follows: With src_ips referring to the number of unique source IPs, dest_ips
referring to the number of unique destination IPs, src_ports to the number of unique
source ports and dest_ports to the number of unique destination ports.

Variable Description

src_ips Number of unique source IPs
dest_ips Number of unique destination IPs
src_ports Number of unique source ports
dest_ports Number of unique destination ports
connections Total number of connections (communications) for a given proto-

col/IP
orig_bytes Origin bytes sent (excluding IP header) - calculated by Zeek based

on packet numbers, can be inaccurate
resp_bytes Response bytes sent (excluding IP header) - calculated by Zeek based

on packet numbers, can be inaccurate
orig_ip_bytes Origin IP bytes sent (including headers) - based on bytes actually

seen by Zeek, accurate
resp_ip_bytes Response IP bytes sent (including headers) - based on bytes actually

seen by Zeek, accurate

Table 3.2: Overview of Variables used internally by FlowBreaker
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Connections per Source IP =
�

connections, for sortBySource
connections

src_ips , for sortByDestination
(3.2)

Connections per Destination IP =
� connections

dest_ips , for sortBySource
connections, for sortByDestination

(3.3)

Connections per Source Port = connections
src_ports (3.4)

Connections per Destination Port = connections
dest_ports (3.5)

Connections per Unique IP =
�

Connections per Destination IP, for sortBySource
Connections per Source IP, for sortByDestination

(3.6)

Average Bytes transferred per Connection =
�n

i=1(orig_bytesi + resp_bytesi)
connections (3.7)

Average IP Bytes transferred per Connection =
�n

i=1(orig_ip_bytesi + resp_ip_bytesi)
connections

(3.8)

Where in 3.7 and 3.8:

• n is the number of connections in the group.

• orig_bytesi and resp_bytesi are the original and response bytes for connection i.

• orig_ip_bytesi and resp_ip_bytesi are the original and response IP bytes for
connection i.

• connections is the total number of connections in the Connection Group - a class
used by FlowBreaker to describe a given host and its associated connections.

The values “orig_ip_bytes” and “resp_ip_bytes” represent the number of bytes that
have been sent by the source IP address and by the destination IP address, including
headers. These numbers are accurate and correspond to the actual packets transmitted,
as seen by Zeek. The values “orig_bytes” and “resp_bytes” however are calculated by
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Zeek based on the sequence numbers of the packets, without including the IP header.
This means that they are prone to be inaccurate in attack scenarios, where large numbers
of packets are sent. To illustrate the fields and calculations explained in this section, the
example in Listing 3.2 shows FlowBreaker’s output for a single IP address with a single
DNS connection.
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IP : 1 9 2 . 1 6 8 . 0 . 1 1 8
Total Connect ions : 1
Protoco l : UDP
Se r v i c e : dns
C l a s s i f i c a t i o n : UNDEF
Connection Summary :

Unique Des t inat i on IPs : 1
Des t ina t i on IPs :

1 . 1 . 1 . 1 : 1 connec t i ons
Unique Des t inat i on Ports : 1

Des t ina t i on Ports :
53 : 1 connec t i ons

Unique Source Ports : 1
Source Ports :

32431 : 1 connec t i ons
S e r v i c e s :
Ac t i v i t y Flags :

High Outgoing Port Act i v i t y : Fa l se
High Incoming Port Act i v i t y : Fa l se
High Outgoing IP Act i v i t y : Fa l se
High Incoming IP Act i v i t y : Fa l se
High Number o f Outgoing Connections : Fa l se
High Number o f Incoming Connect ions : Fa l se
L i s t e n e r : Fa l se
Speaker : True

Flagg ing Scores ( Current Value/Average Value ) :
Outgoing Port Act i v i t y : 1
Incoming Port Act i v i t y : −1
Outgoing IP Act i v i t y : 1
Incoming IP Act i v i t y : −1
Outgoing Connections : 1
Incoming Connections : −1

Average Values :
Connect ions per Des t ina t i on IP : 1
Connections per Source IP : 1
Connections per Des t ina t i on Port : 1
Connections per Source Port : 1
Connections per Unique IP : 1
Bytes t r a n s f e r r e d per Connection : 0
IP Bytes t r a n s f e r r e d per Connection : 80

Listing 3.2: Example .txt Output of FlowBreaker for a single DNS connection
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3.4 Analysing Labels provided by popular NIDS Datasets
With the testbench created, we can now move on to running Zeek on existing datasets.
In this section the labels provided by the TII-SSRC-23 dataset are addressed and possible
improvements upon these labels are discussed.
Furthermore, a single traffic capture file, provided by the Measurement and Analysis on
the WIDE Internet (MAWI) Working Group3, is selected, analysed and then processed
with FlowBreaker. The results of this analysis are summarised in the Evaluation chapter.
While the traffic captures of MAWI do not necessarily contain any intrusion attempts,
they can be used to showcase and assess FlowBreaker’s capability to summarise traffic
data.

3.4.1 Overview of the TII-SSRC-23 dataset
The TII-SSRC-23 dataset (15) provides 32 pcap files containing malicious and non
malicious traffic and a csv file labelling the traffic of each file as either benign or malicious,
and, if applicable, the type of attack taking place. The csv file was split by traffic subtype,
with the resulting labels compiled in Table 3.4. It is apparent that this labelling is rather
basic. All traffic flows contained in the pcap file share the same label, with no additional
explanation given. For example, the “information-gathering” label does not provide any
further insight into what kind of information is actually being gathered. This could range
from a port scan (scanning for open ports), to a host discovery scan (scanning for all
IPs in a network), to service enumeration (identifying which version of a service is being
used on a host), or simply an attacker looking for vulnerable webpages.

3.4.2 Selecting subtypes from the TII-SSRC-23 Labels
After assessing the attack types contained within the dataset, the attacks in Table 3.3
were selected for further assessment. (D)DoS refers to “(Dedicated) Denial of Service”,
and it sets out to overwhelm a victim by sheer volume of requests. This can take place
by abusing protocols like DNS or using multiple hosts (20). “Bruteforce” refers to an
attacker searching for passwords or other confidential data with no prior information,
hence blindly guessing or using “brute force” (19). Finally “information gathering”, as
discussed above, can refer to various attacks that generally aim at extracting information
on possible targets.

The reason why these types and subtypes of attacks were selected, is that they are
very common and should be easy to filter from benign traffic. To label these different
types, we will identify key markers used by attacks, such as the port numbers used, the
amount of activity associated with a given host (e.g. how many TCP connections have

3The MAWI (Measurement and Analysis on the WIDE Internet) Working Group performs network
traffic measurement, analysis, evaluation, and verification of the WIDE (Widely Integrated Distributed
Environment) project. This project captures packet traces from backbone networks, typically from a
transpacific link between Japan and other regions.
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been initiated) and the protocols involved, e.g. DNS for the pcap “mirai_ddos_dns”.
The attack types listed in Table 3.3 should depict very distinct patterns in these markers.
For example, DNS is served on port 53 using UDP, while SSH is typically served on
port 22 using TCP (19). This means, that the pcap “bruteforce_ssh”, should contain
an unusually high number of TCP connections to port 22, while “miraid_ddos_dns”
should contain a high number of communications associated with port 53, possibly from
different source IPs (20). We will therefore filter the input data accordingly and test
if FlowBreaker’s detection methods, mentioned in Section 3.3.4, can detect the attack
patterns mentioned in Table 3.3. Furthermore, we will assess if FlowBreaker is able to
provide further descriptions to the pcaps listed in Table 3.3. The next step will be to
process all other pcaps listed in Table 3.4, assessing FlowBreaker’s performance when
processing attack patterns it was not directly designed to detect.

pcap Label Traffic Type Traffic Subtype

syn_tcp_dos Malicious DoS DoS_SYN
udp_dos Malicious DoS DoS_UDP
mirai_ddos_dns Malicious Mirai-Botnet Mirai_DDoS_DNS
mirai_ddos_syn Malicious Mirai-Botnet Mirai_DDoS_SYN
mirai_ddos_udp_udpplain Malicious Mirai-Botnet Mirai_DDoS_UDP
mirai_scan_bruteforce Malicious Mirai-Botnet Mirai_Scan_Bruteforce
information_gathering Malicious Information_Gathering Information_Gathering
bruteforce_ftp Malicious Bruteforce Bruteforce_FTP
bruteforce_http Malicious Bruteforce Bruteforce_HTTP
bruteforce_ssh Malicious Bruteforce Bruteforce_SSH
bruteforce_telnet Malicious Bruteforce Bruteforce_Telnet

Table 3.3: Selected Attack Types from the TII-SSRC-23 Dataset: Label denominates
classification, Traffic Type the broader category, Traffic Subtype provides more detailed

information
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pcap file Label Traffic Type Traffic Subtype

ack_tcp_dos Malicious DoS DoS_ACK
cwr_tcp_dos Malicious DoS DoS_CWR
ecn_tcp_dos Malicious DoS DoS_ECN
fin_tcp_dos Malicious DoS DoS_FIN
http_dos Malicious DoS DoS_HTTP
icmp_dos Malicious DoS DoS_ICMP
mac_dos Malicious DoS DoS_MAC
psh_tcp_dos Malicious DoS DoS_PSH
rst_tcp_dos Malicious DoS DoS_RST
syn_tcp_dos Malicious DoS DoS_SYN
udp_dos Malicious DoS DoS_UDP
urg_tcp_dos Malicious DoS DoS_URG

audio Benign Audio Audio
background Benign Background Background
http Benign Video Video_HTTP
rtp Benign Video Video_RTP
udp Benign Video Video_UDP
text Benign Text Text

mirai_ddos_ack Malicious Mirai-Botnet Mirai_DDoS_ACK
mirai_ddos_dns Malicious Mirai-Botnet Mirai_DDoS_DNS
mirai_ddos_greeth Malicious Mirai-Botnet Mirai_DDoS_GREETH
mirai_ddos_greip Malicious Mirai-Botnet Mirai_DDoS_GREIP
mirai_ddos_http Malicious Mirai-Botnet Mirai_DDoS_HTTP
mirai_ddos_syn Malicious Mirai-Botnet Mirai_DDoS_SYN
mirai_ddos_udp_udpplain Malicious Mirai-Botnet Mirai_DDoS_UDP
mirai_scan_bruteforce Malicious Mirai-Botnet Mirai_Scan_Bruteforce

information_gathering Malicious Information-Gathering Information_Gathering

bruteforce_dns Malicious Bruteforce Bruteforce_DNS
bruteforce_ftp Malicious Bruteforce Bruteforce_FTP
bruteforce_http Malicious Bruteforce Bruteforce_HTTP
bruteforce_ssh Malicious Bruteforce Bruteforce_SSH
bruteforce_telnet Malicious Bruteforce Bruteforce_Telnet

Table 3.4: TII-SSRC-23 Classification of network traffic in pcaps: Label denominates
classification, Traffic Type the broader category and Traffic Subtype further specifies the

contents of the pcap
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3.4.3 Overview of the MAWI Working Group Traffic Archive
The MAWI Working Group, is a research group that, among other things, collects traffic
traces at the Widely Integrated Distributed Environment (WIDE) backbone, which is
one of the major backbones connecting the Japanese internet(62). These traffic captures
are available in the MAWI Working Group Traffic Archive, which provides daily captures,
that cover a 15 minute time span. The captures are provided as zipped pcap files, with
a single one of them reaching upwards of seven Gigabytes in size. Since these samples
contain “natural” traffic and are not pre-analysed, there are no labels provided. This
means, that unlike with the TII-SSRC-23 dataset, it will not be possible to verify results
of an analysis independently.

3.4.4 Using the MAWI dataset for Evaluation
As mentioned above, a single traffic capture is very large. For this reason, a single pcap
file from 01.01.2025, capturing the time frame from 14:00 to 14:15 was used for evaluation
purposes (63). MAWI provides a breakdown of the protocols contained in the pcap file,
which is visible in Table 3.5. It is apparent that roughly 1/5 of the traffic consists entirely
of http and https — this can be used to test whether some of this traffic will be labelled
anomalous due to the high volume. The same can be said about UDP and DNS, which
account for 17.48% and 3.05%. What supersedes this is ICMP, which accounts for 1/4 of
the traffic, which is unusual, as ICMP (at least in smaller networks) normally accounts
for less traffic. A possible explanation for this could be ICMP probing, which describes
the process of scanning the network using ICMP to detect which hosts respond and track
outages, mostly caused by the USC ANT project (16).
Similar to the the TII-SSRC-23 dataset, we use this pcap file in our test experiments
by using the same process and steps described in Section 3.2.2. Note that this network
capture was not previously labelled; however, analysing it with FlowBreaker for evaluation
purposes has a meaningful value since this is real-world data (i.e. not specifically designed
to contain different attack collections). In Section 4.2 we contrast results with the
information provided in Table 3.5 to check whether attack patterns can be recognised.
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Protocol Packets (%) Bytes (%) Bytes/Pkt

Total 136925174 (100.00%) 136355160176 (100.00%) 995.84

IP4 117883811 (86.09%) 111906629655 (82.07%) 949.30
TCP 54038536 (39.47%) 88454071193 (64.87%) 1636.87
http 7828571 (5.72%) 16190032422 (11.87%) 2068.07
https 20204061 (14.76%) 38530889698 (28.26%) 1907.09
smtp 344497 (0.25%) 172257246 (0.13%) 500.03
ftp 22806 (0.02%) 1526087 (0.00%) 66.92
ssh 1717789 (1.25%) 2918533088 (2.14%) 1699.01
dns 128856 (0.09%) 14688217 (0.01%) 113.99
bgp 33728 (0.02%) 3558809 (0.00%) 105.51
other 23755489 (17.35%) 30622421286 (22.46%) 1289.07
UDP 23937668 (17.48%) 15143624827 (11.11%) 632.63
dns 4170755 (3.05%) 745019703 (0.55%) 178.63
https 7935225 (5.80%) 7229154457 (5.30%) 911.02
other 11829767 (8.64%) 7169283557 (5.26%) 606.04
ICMP 34085962 (24.89%) 2154229712 (1.58%) 63.20
gre 183676 (0.13%) 53480495 (0.04%) 291.17
ipsec 5636496 (4.12%) 6101040602 (4.47%) 1082.42
ip6 75 (0.00%) 8020 (0.00%) 106.93
other 1398 (0.00%) 174806 (0.00%) 125.04
frag 25072 (0.02%) 17766520 (0.01%) 708.62

IP6 18683211 (13.64%) 24426690737 (17.91%) 1307.41
TCP6 10409565 (7.60%) 19206176865 (14.09%) 1845.05
http 573986 (0.42%) 1015165130 (0.74%) 1768.62
https 6252212 (4.57%) 12757842508 (9.36%) 2040.53
smtp 25854 (0.02%) 55290950 (0.04%) 2138.58
ftp 5834 (0.00%) 727043 (0.00%) 124.62
ssh 89575 (0.07%) 138668069 (0.10%) 1548.07
dns 49059 (0.04%) 9978130 (0.01%) 203.39
bgp 9184 (0.01%) 2278185 (0.00%) 248.06
other 3403861 (2.49%) 5226226850 (3.83%) 1535.38
UDP6 6836812 (4.99%) 4858585074 (3.56%) 710.65
dns 3176525 (2.32%) 902937014 (0.66%) 284.25
https 3457144 (2.52%) 3858158217 (2.83%) 1116.00
other 203143 (0.15%) 97489843 (0.07%) 479.91
ICMP6 554825 (0.41%) 46524625 (0.03%) 83.85
gre 881995 (0.64%) 315391243 (0.23%) 357.59
other6 14 (0.00%) 12930 (0.00%) 923.57

Table 3.5: Protocols contained in the MAWI capture of 01.01.2025, split by percentage
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CHAPTER 4
Evaluation

This chapter revolves around testing FlowBreaker’s performance on existing traffic capture
datasets. This process is split into describing the test setup and comparing potential
pre-existing labels to the labels assigned by FlowBreaker.

4.1 Evaluating FlowBreaker on the TII-SSRC-23 Dataset
In order to process the pcap files provided by the dataset with FlowBreaker, they first
needed to be pre-processed with Zeek. This was done by using the docker compose
stack, discussed in Section 3.2.2. This stack hosts a webserver and a PHP frontend for
uploading pcap files, which are then automatically processed by Zeek. After preparing
the relevant pcap files, the output was processed with FlowBreaker, using the default
configuration toml file, which can be found in the Appendix A.1.
FlowBreaker’s modules detect most attacks through statistical means, e.g. if the amount
of “suspicious” connections crosses a threshold defined in the configuration file, the source
IP in question is labelled as malicious. In order to depict the additional labels provided
by FlowBreaker accurately, the configuration used for the experiments employs rather
low thresholds. The thresholds were not configured higher because the analysis of the
benign traffic in the dataset showed no false positives, so this fine-tuning was deemed
unnecessary.
The results of the processing are split into three subsections, with Section 4.1.1 addressing
attacks FlowBreaker was built to recognise, Section 4.1.2 addressing attacks not yet
implemented in FlowBreaker and the Section 4.1.3 giving detailed information on how
FlowBreaker recognises attacks in the “information-gathering” pcap file.

When comparing FlowBreaker’s labels/descriptions to the ones provided by the TII-
SSRC-23 dataset, we face the challenge that FlowBreaker assigns labels to individual
IP addresses and flows/communications associated with them, while the TII-SSRC-23
dataset labels the entire content of a given pcap with a single classification, including
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every IP address contained within. Since this makes it hard to compare the results
directly, an aggregation was performed. If FlowBreaker detects an attack pattern in a
given pcap, it creates a file, listing all IP addresses and flows that were deemed suspicious,
e.g. if FlowBreaker detects a HTTP Brute Force attack, it will include all HTTP flows
that took part in it in said file.
However, these labels are not mutually exclusive, meaning that a flow can appear in
multiple output files, classified under different labels. To actually gain comparable data,
all output files of FlowBreaker (if any) for a given pcap were grouped together, listing
the amount of flows associated with the attack type. This is apparent in Table 3.3, 4.2
and 4.4. The pcaps provided by the TII-SSRC-23 dataset almost exclusively contain IP
addresses, which either fill the attacking role or are under attack. This means that the IP
addresses by themselves hold little descriptive power and were thus omitted. Instead, we
took the route of counting the total amount of flows in all pcaps provided by the dataset
with FlowBreaker, with the results shown in Table 4.3. Using these results, we can assess
how many, out of the total flows present, were recognised as malicious by FlowBreaker.
Furthermore, we will discuss if FlowBreaker was able to provide more relevant insight
into its labels/descriptions.

4.1.1 Labelling Attacks implemented in FlowBreaker

As explained in Section 3.4.1, the TII-SSRC-23 dataset contains 32 pcap files, out of
which 10 pcaps are presented in Table 3.3 and 4.2 and have been selected for direct
evaluation using FlowBreaker. The Flow Count column next to the attack classification
is the total number of connections/communications1 that FlowBreaker associated with
this attack. These values are based on the connections provided by Zeek in the “conn.log”.
For comparison, the total number of connections/flows in each pcap, split by protocol, is
listed in Table 3.3.

First we will start by taking a look at the attacks in the TII-SSRC-23 dataset,
for which FlowBreaker offers a dedicated detection method. Looking at Table 3.3, it
is apparent that, when used to search for attack patterns it was designed to detect,
FlowBreaker was able to recognise at least one attack pattern in each file. Starting with
the first entry in the dataset, labelled as “bruteforce_ftp”, we can see that FlowBreaker
labelled this as a “Common Port Attacks” with 3470 connections.

Now, what does this label mean? When looking for simple Brute Force attacks,
it is sufficient to monitor certain ports and protocols and set a limit for established
connections(19).
File Transfer Protocol (FTP) (53) is usually served on port 20 and 21. As the name
implies, it is used for transferring files, which often involves authentication. An attacker
would thus attempt multiple user and password combinations to see if any of them are

1The term connections in the scope of FlowBreaker refers to TCP, UDP and ICMP communication-
s/flows.
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valid, resulting in hundreds of attempts. A legitimate usage would only result in a few
connections, as connections are reused to save on overhead.

Since FlowBreaker saw 3470 flows originating from a small amount of IPs to a single
destination port, it was labelled as excessive and marked as “Common Port Attacks”.

pcap/sub-label TII-label Attack Classifications Flow Count

bruteforce_ftp bruteforce Common Port Attacks 3470
bruteforce_http bruteforce HTTP Brute Force Attack 331 1

Slowloris 210
bruteforce_ssh bruteforce Common Port Attacks 1970

SSH Brute Force 1970
bruteforce_telnet bruteforce Common Port Attacks 2333
information_gathering Info.-gathering See below N/A
mirai_ddos_dns mirai-botnet UDP Flood 134016

DNS Amplification 2 2

mirai_ddos_udp_udpplain mirai-botnet UDP Flood 1784
mirai_scan_bruteforce mirai-botnet Common Port Attacks 4766

Slowloris 1270
syn_tcp_dos dos SYNFlood 1810966
udp_dos dos UDP Flood 348492
1 HTTP Brute Force Attack: Additionally, 16358 suspicious HTTP requests
2 DNS Amplification: Additionally, 27880 suspicious DNS requests.

Table 4.1: Attacks implemented in FlowBreaker in the TII-SSRC-23 Dataset

Attack Classification Flow Count

Port Scans 567671
Protocol Specific Scans 72055
Service Enumeration 4433
SYN Flood 269572
UDP Flood 1404
Common Port Attacks 1362431

Table 4.2: FlowBreaker’s Classifications of the Flows contained within the
“information_gathering” pcap of the TII-SSRC-23 Dataset

These “Common Port Attacks”, (as explained in Section 3.3.4) are classified by
checking a list of commonly used ports for certain protocols, such as FTP, to see if any
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of these ports were targeted in excess, i.e. a high number of flows/connections have been
established. It is then up to the researcher to decide if the classification was justified.
The same label is assigned to the pcaps “bruteforce_ssh” and “bruteforce_telnet”. Both
protocols use authentication and provide control access and are thus valuable targets.
SSH stands for Secure Shell (54) and allows users to log into a remote machine, with
Telnet (57) achieving a similar goal. Since Zeek provides a specific log file for SSH, there
is also an additional subclassification by FlowBreaker named “SSH Brute Force” based on
this file. As already explained for the attack targeted at FTP, these labels are assigned
based on exceeded thresholds.
Moving onto the “bruteforce_http” file, FlowBreaker was once again able to recognise
two attacks, but here things differ from the “Common Port Attacks”. The “HTTP Brute
Force Attack” has 331 connections, which at first glance, seems little compared to the
former Brute Force attacks. However, in this case, a connection does not represent an
attempt. The total requests (and therefore attempts) are listed as a footnote (16358).
These requests are taken from Zeek’s http.log file and contain “password=” in their “uri”
field and are thus labelled as suspicious by FlowBreaker. This field is used for HTTP
authentication (58). In this case, this means that a client uses it to authenticate itself to
a server to gain access to resources. Again, such a high number of requests is very likely
malicious, since a user would not access that many resources in a short time frame.
The final classification “Slowloris”, with 210 associated connections, is a false label.
Slowloris is an attack that works by stressing a server by keeping many connections
open over a long time period, therefore preventing other clients from connecting (27).
FlowBreaker recognised this by searching for connections that have a small data transfer
(indicating that no useful data is transmitted) but a long duration. In this instance,
connections are reused for HTTP requests containing no data but the authentication
headers, which is why FlowBreaker assigned this label. However, it is up to the researcher
to recognise this misclassification and potentially alter the configuration.
The next pcap file analysed, is “mirai_ddos_dns”, which contains a DNS amplification
attack by the mirai-botnet (45). This type of attack exploits the DNS protocol by sending
spoofed requests with the target’s IP address as the apparent source (20). This causes the
target to be flooded with unwanted DNS responses. FlowBreaker successfully recognised
this attack type by listing 27880 suspicious DNS requests. In this case, the amount of
connections is misleading, as Zeek only saw two connections that were actually initiated
by the source IP, even though it was flooded with DNS responses by other hosts. The
second classification set by FlowBreaker is “UDP Flood”, which just indicates that the
amount of UDP connections made by a single host crossed a threshold. This classification
is triggered because DNS uses UDP, which is why many UDP connections were seen by
FlowBreaker. An UDP Flood also has the goal of overwhelming a victim with a high
volume of UDP requests/connections (21). This is possible because UDP is stateless
and can be used with very little effort to spam a target with unwanted data. The target
then has to deny all these connections, which can be resource intensive. FlowBreaker
successfully recognised this attack type in two other pcaps, namely “udp_dos” and
“mirai_ddos_udp_udpplain”, with “DOS” referring to “Denial of Service” and “DDoS”
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to “Dedicated Denial of Service”. Both serve the same goal of overwhelming a victim
with useless requests but the latter involves multiple sources of attack, such as the mirai
botnet. Furthermore, they can be understood as a subtype of Distributed Denial of
Service (DDoS) (23). The “mirai_scan_bruteforce” pcap is similar to the other Brute
Force attacks discussed above. The only difference is that this time it was carried out
by a botnet. Once again, FlowBreaker recognised these attacks correctly, with Slowloris
being a false label. Before moving onto the “information_gathering” pcap, the last pcap
on the list is “syn_tcp_dos”. FlowBreaker correctly identified the traffic in this file as
“SYNFlood”. A SynFlood works by sending a lot of SYN packets to a victim, which
initiates the TCP negotiation process (22). The victim then has to acknowledge these
requests and store the connection state. The attacker never replies to the acknowledge-
ments (SYN-ACK) sent by the victim, causing stress on the victim’s side, as it has to
retain a lot of open, unfinished connections, while still answering to new ones.
Table 4.2 provides an overview of all the attack types FlowBreaker recognised within the
“information_gathering” pcap. While the TII-SSRC-23 dataset only provides the label
and sub-label “information_gathering”, FlowBreaker was able to provide a more detailed
overview of the contents. Port Scans, Common Port Attacks, SYN Floods and UDP
Floods function in the same manner as above. The new attack types not yet explained,
are “Protocol Specific Scans” and “Service Enumeration”. These attacks are similar
to a Port Scan (24), but go a step further: The former simply sends SYN packets to
many different ports and waits for replies to see which ports are open. FlowBreaker
specifically searches for connections containing only a SYN packet to label this type of
attack. A Service Enumeration attack addresses the same port and protocol multiple
times to check which versions of the service running on that port are available. This
is useful information as certain versions are vulnerable to different types of attacks.
The SYN Flood and UDP Flood are false labels in this instance. As explained above,
many SYN packets are sent to gather information but in a SYN-Flood, the primary
goal is overwhelming the victim. FlowBreaker still recognised this as a SYN Flood, as
the behaviour is the same. The UDP Flood label is also very likely assigned due to
FlowBreaker recognising UDP connections that are used to gather information as a denial
of service attack. This could be remedied by setting a higher limit in the configuration file.

To summarise, FlowBreaker can recognise the attacks it was designed to recognise,
while also offering a description on why it classified the attack as such. When it comes to
comparing the assigned classifications to the ones provided by the TII-SSRC-23 dataset,
FlowBreaker offers comparable labels or, in case of false labels, a plausible reasoning why
these labels were assigned, which should make them easy for a researcher to spot and
correct. Compared to the TII-SSRC-23 dataset, FlowBreaker labels on a per-IP basis,
instead of classifying all flows inside a pcap with a given attack label. This provides a
more fine-grained approach when searching for attack patterns in unfiltered traffic but
makes it hard to compare the labels/classifications directly. We can thus conclude, that
the limits based approach used in FlowBreaker’s detection methods, as described in Sec-
tion 3.3.4, is indeed capable of filtering attack patterns. Furthermore, although omitted
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in this section for reasons of simplicity, FlowBreaker’s output files put its classifications
into context, i.e. a researcher can use the Average Values and Flags described in Section
3.3.6 to further assess whether a given host’s activity is anomalous/malicious or not.
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pcap/sub-label TII-label TCP UDP ICMP

ack_tcp_dos dos 944,204 0 0
cwr_tcp_dos dos 859,356 0 0
ecn_tcp_dos dos 862,067 0 0
fin_tcp_dos dos 1,276,452 0 0
http_dos dos 41,399 0 0
icmp_dos dos 0 0 7
mac_dos dos 1,919 0 0
psh_tcp_dos dos 899,906 0 0
rst_tcp_dos dos 1,663,731 0 0
udp_dos dos 0 348,623 0
urg_tcp_dos dos 889,464 0 0
bruteforce_dns bruteforce 0 24,061 0
bruteforce_ftp bruteforce 3,470 0 0
bruteforce_http bruteforce 331 0 0
bruteforce_ssh bruteforce 1,970 0 0
bruteforce_telnet bruteforce 2,333 0 0
audio benign 62 17 7
background benign 3 11 7
video_http benign 191 8 8
video_rtp benign 3 248 8
video_udp benign 3 117 8
text benign 80 39 5
information_gathering recon 1,363,105 1,404 44
mirai_ddos_ack mirai-botnet 9,529 37 4
mirai_ddos_dns mirai-botnet 10 134,038 1
mirai_ddos_greeth mirai-botnet 10 6,844 5
mirai_ddos_greip mirai-botnet 10 4,008 5
mirai_ddos_http mirai-botnet 5,896 94 1
mirai_ddos_syn mirai-botnet 30,527 83 5
mirai_ddos_udp_udpplain mirai-botnet 12 1,862 5
mirai_scan_bruteforce mirai-botnet 4,791 373 8

(The values provided are the sum of all connections/flows of all unique hosts contained in each
pcap)

Table 4.3: Total amount of Connections/Flows in every pcap of the TII-SSRC-23
Dataset as analysed and calculated by FlowBreaker
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4.1.2 Labelling Attacks not implemented in FlowBreaker

This section details how FlowBreaker recognised attacks for which no specific detection
mechanism had been implemented. For 14 of the 21 pcaps listed in Table 4.4, FlowBreaker
provides at least one classification, alongside the number of flows contained in the pcap
that were classified as such. For simplicity reasons, the output files were again aggregated,
omitting the individual IP addresses, as those are not relevant in the scope of the TII-
SSRC-23 dataset — instead, the total flows responsible for the classification are listed.
FlowBreaker does not perform any deeper analysis of traffic contents, i.e. it will not
output any “benign” labels if the input was not classified as an attack. The reason why
no classification is given for “icmp_dos” and “mac_dos”, is that the attacks are not
accurately captured by Zeek, as ICMP traffic was omitted in the output and Medium
Access Control (Address) (MAC) traffic is out of scope, resulting in FlowBreaker being
unable to give more insight. This is also evident in Table 4.3, with FlowBreaker only
listing seven ICMP flows for the former and zero flows for the latter.

All attacks present in Table 4.4 have been explained already, with the only exception
being “Connection Exhaustion”, a label defined by FlowBreaker 3.3.4. This attack has
the goal of depleting the resources of a victim. FlowBreaker checks for this type of attack
by searching for connections that have a high duration, but have minimal data transfer.
If the amount of these connections exceeds a threshold, the label is assigned. Unlike
the submethod for detecting a Slowloris attack, which only includes unterminated TCP
connections, this submethod includes all TCP connections meeting above mentioned
criteria.
Since (Dedicated) Denial of Service attacks mostly work by generating useless and long
lasting traffic, it makes sense that FlowBreaker assigned this label to the pcaps labelled
as “dos” by the dataset. Interestingly, FlowBreaker assigned the “UDP Flood” label to
the “bruteforce_dns” pcap. DNS Brute Force in the scope of the dataset means that a
server is checking specific subdomains of a domain, such as “database.domain.com”, to
find potential targets. This generates a high amount of DNS requests. Since DNS utilises
mostly UDP, FlowBreaker assigns this label based on the high volume of UDP packets
seen.
Without addressing each pcap file listed in Table 4.4 individually, it is apparent that
FlowBreaker is able to provide insight into the traffic by offering classifications due to the
attacks contained within them sharing symptoms with more specialised attacks: Even
though the label “Service Enumeration” was not initially meant to detect DoS attacks, it
is useful for the recognition of the repeated targeting of ports prevalent in these types of
attacks. The same is true for FlowBreaker recognising hosts that send a lot of unwanted
SYN packets, labelling such cases as “SynFlood” or with enough port variety “Port Scans”
as evident in the “mirai_ddos_syn” pcap.
Another case of unintended use is the “Slowloris” label. Originally meant for identifying
attacks that aim at blocking resources, it is also useful for detecting “unproductive”
connections that do not carry any data, but remain open for a long time. Since many
attacks share this pattern, this indicates that this detection label could be expanded into
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a more general indicator when searching for malicious traffic.
To summarise, even when used on traffic data containing attack patterns it was not
designed to recognise, FlowBreaker is still able to correctly label this traffic as malicious.
Furthermore, the labels assigned by FlowBreaker are justified based on patterns/mea-
surements present in the dataset, meaning that they are verifiable by the researcher using
FlowBreaker.

Looking at Table 4.4, it is also evident that FlowBreaker did not output any false
labels for the pcaps classified as “benign” by the dataset, resulting in zero labelled flows
and no classification given.
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pcap/sub-label TII-label Attack Classifications Flow Count

ack_tcp_dos dos Connection Exhaustion 5833
Service Enumeration 233

bruteforce_dns bruteforce UDP Flood 24061
cwr_tcp_dos dos Connection Exhaustion 6492

Service Enumeration 215
ecn_tcp_dos dos Connection Exhaustion 6161

Service Enumeration 221
fin_tcp_dos dos Service Enumeration 301
http_dos dos Slowloris 39327

SYNFlood 2065
icmp_dos dos - -
mac_dos dos - -
mirai_ddos_ack mirai-botnet Port Scans 3727
mirai_ddos_greeth mirai-botnet UDP Flood 4390
mirai_ddos_greip mirai-botnet UDP Flood 1883
mirai_ddos_http mirai-botnet Slowloris 742
mirai_ddos_syn mirai-botnet Port Scans 4617

SynFlood 8696
psh_tcp_dos dos Connection Exhaustion 6957

Service Enumeration 216
rst_tcp_dos dos Common Port Attacks 1324

Port Scan 1311
urg_tcp_dos dos Connection Exhaustion 6129

Service Enumeration 208
audio benign - -
background benign - -
video_http benign - -
video_rtp benign - -
video_udp benign - -
text benign - -

Table 4.4: Results of analysing attacks and benign traffic in the TII-SSRC-23 Dataset
not implemented in FlowBreaker: Listing Classification and associated Flow Count
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4.1.3 Detecting Malicious Traffic in the “Information Gathering” pcap
Compared to the labels provided in the original dataset, FlowBreaker’s output is much
more detailed and provides additional reasoning to the user, including the calculations
and thresholds used for determining the type of attack. Additionally, statistical labels are
provided, which are absent in the dataset and would have to first be calculated manually.

We will first discuss the additional labels, to then reason how they can be leveraged
to improve attack detection. In detail, FlowBreaker provides the following additional
calculations, as discussed in Section 3.3.5:

• Outgoing IP/Port activity — Indicates if the host uses a high number of
different IPs/Ports for outgoing connections/flows, in comparison to the other hosts
in the pcap file.

• Incoming IP/Port activity — Indicates if the host uses a high number of
different IPs/Ports for incoming connections/flows, in comparison to the other
hosts in the pcap file.

• Unique IPs and their flow/connection count — How many flows are associated
with each Source/Destination IP.

• Unique Ports and their flow/connection count — How many flows are
associated with each Source/Destination Port.

• Average Bytes transferred per Connection — How much data was transferred
per connection/flow on average for a given host.

Furthermore, the following labels are provided:

• Classification - The subtype of the attack in question.

• Reason - Why this traffic was flagged as malicious.

• Services - The high level protocols (e.g. HTTP, SSH) used.

Using the calculations above, FlowBreaker gives a more detailed overview of the
traffic within a pcap. This is apparent when looking at the“Information_Gathering”
pcap of the original dataset: With the labels provided being:

1. Label: Malicious

2. Traffic Type: Information Gathering

3. Traffic Subtype: Information Gathering
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FlowBreaker is able to subdivide these labels further, as seen in Table 4.2. This section
focuses on this individual pcap to explain how FlowBreaker uses different parameters
to arrive at a potential classification. Using these parameters, we will discuss how
malicious traffic can be distinguished from benign traffic. The key parameters used for
the classifications in Table 4.2 are:

• Number of S0 States — S0 is a label assigned by Zeek, which means that only a
SYN packet was sent during a TCP connection.

• Number of REJ States — REJ is a label assigned by Zeek, which means that
the SYN packet was rejected at the destination.

• Unique Port Numbers Used — The average number of unique ports gives
insight on how many different services a client accesses on a target machine. If
this value exceeds a certain threshold, e.g. ≥ 100, it can be assumed that these
connections are malicious and an attack such as a Port Scan is taking place.

• Connections per Port — The average number of connections per port is often
inversely correlated to the number of unique ports: A legitimate client often accesses
a single resource on a target machine, e.g. a video stream through a web browser.
This means that the number of unique ports would be one, as only one port is
necessary for HTTP, additionally the number of connections per port would be
high, as the same port is addressed multiple times when streaming video.

• Services Used — The services used by a host can shed light on its intentions: A
high variety could hint at a Service Enumeration or other types of scanning attacks.

• Bytes Transferred — The average number of bytes transferred is of interest,
because it serves as a measurement of the “productiveness” of the connections/flows
associated with a host. When transmitting files or streaming video, this value
would be very high, but in a SynFlood or Port Scan it would be very low.

With these indicators it is now possible to compare the contents of the benign pcap
“video_http” to those of the malicious pcap “information_gathering”. In the “video_http”
pcap, a single client streams video from a single source using http. In the “informa-
tion_gathering” pcap, a single client leverages different attack patterns to gain infor-
mation on a target client/network. After analysing both pcaps with FlowBreaker, the
results were compiled in Figures 4.1, 4.2, 4.3 and 4.4. The results can be understood
as follows: Since only one relevant IP address is contained in each pcap, the output
of FlowBreaker has been aggregated to compare the parameters individually in each
figure. This means that Figure 4.1 compares the amount of Total Connections (i.e.
flows) associated with the relevant IP in both pcaps, Figure 4.2 the amount of Unique
Destination Ports targeted by the relevant IP, Figure 4.3 the Average Bytes transferred
per flow/connection between the host and the target, and finally, Figure 4.4 compares S0
and REJ States between the malicious and the benign client. When looking at benign
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traffic in general, both the source and destination try to conserve resources, leading to
the following behaviour: TCP connections are established properly and with purpose,
thus the amount of SYN only connections, or S0/REJ States, is ideally zero. Moreover,
the client will only target specific destination ports, commonly in the single digit area
for a single purpose. Furthermore, since connection establishment and teardown takes
time, the amount of individual connections is lower, with a high amount of transferred
bytes. In malicious traffic, we can expect the opposite to be true: A Port Scan will
try to look for open ports, thus targeting a high amount of destination ports, while
transferring little to no data (24). Similarly, we can expect a high number of initiated
connections, if an attacker is scanning for other hosts in the network — as none of these
connections is wanted nor expected at the destination, many of them will be rejected (25).
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Figure 4.1: Comparison of Total Connections counted by FlowBreaker in the pcaps
containing HTTP Video (benign) and Information-Gathering (malicious)

In Figure 4.1, it is apparent that in the “video_http” pcap, the benign client establishes
only 188 connections, while the malicious client in the “information_gathering” pcap
is several magnitudes above that number. Both pcaps contain only one source IP, thus
we can use this measure as a direct comparison. This hints at suspicious activity, as
normally connections/flows are not established blindly, but rather with purpose. The
high number of connections/flows associated with a single IP in “informationg_gathering”
hints at a network mapping taking place. In such an attack, the client targets many
different IP addresses, to see which of them respond, thus creating a map of the network
??. With FlowBreaker providing the total amount of connections/flows for every analysis
it performs, it is possible to quickly recognise suspicious IP addresses in a given pcap
(though in this case only one IP is present). To achieve the same result by using the labels
of the TII-SSRC-23 dataset, it would be necessary to count every flow and associate it to
an IP. We will look at the Number of Unique Destination Ports next to see how many
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ports were targeted.
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Figure 4.2: Comparison of Unique Destination Ports counted by FlowBreaker in the
pcaps containing HTTP Video (benign) and Information-Gathering (malicious)

Looking at Figure 4.2, we see that the client in the “video_http” pcap only targets a
single destination port. This is to be expected, as the client only accesses a single service
using HTTP on a single destination. Meanwhile for gathering information, the client
accesses as many ports as possible with the intent of discovering open ports — reaching
the maximum amount of addressable unique ports 65.535. FlowBreaker provides the
value of Unique Destination Ports for every IP address in a given pcap, thus highlighting
malicious activity — in this specific case, we can directly compare the single IPs present
in both pcaps. This leads us to the conclusion, that this value can help in discovering
suspicious activity, which is also the reason why the Unique Destination Ports parameter
is used by FlowBreaker to identify possible Port Scans taking place. This parameter is
also unique to FlowBreaker and not present in the TII-SSRC-23 dataset. Knowing that
the source IP in the “information_gathering” pcap targets a high number of destination
ports and has a very high number of connections/flows associated with it, we will now
take a look at the amount of data transferred.

FlowBreaker calculates the Average IP Bytes per Connection, which can be understood
as the amount of data transferred on average per connection/flow, including the IP Packet
Headers (i.e. not just application data is counted). We can leverage this information
to gauge how “productive” the connections/flows associated with a given IP are — if
the value is very low, little data is transferred, causing overhead. As this calculation is
performed by FlowBreaker, it would again be necessary to iterate over every flow in a
pcap to achieve the same result when using pre-existing labels. This becomes apparent
in Figure 4.3, which compares the averages of both pcaps. For HTTP Video, the amount
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Figure 4.3: Comparison of Average Bytes per Connection (including Headers) calculated
by FlowBreaker in the pcaps containing HTTP Video (benign) and

Information-Gathering (malicious)

of bytes transferred is very high, because large amounts of data are streamed over a
single connection. Contrary to that, the average in the Information Gathering pcap is
very low. This is due to the Port Scans taking place: Here no data is transmitted, as
the attacker only listens for the SYN-ACK response, indicating an open port. Using this
information provided by FlowBreaker, we can further conclude that the client in the
“information_gathering” pcap uses a lot of resources, but transfers little data, which is
undesirable in most applications.

Figure 4.4 compares the S0 and REJ States in both pcaps. In the legitimate traffic, no
S0 state was seen, as the used port is open and thus there should always be a SYN-ACK
response. A Port Scan addresses many unavailable ports by design, thus resulting in the
83,028 S0 States of the Information Gathering pcap. The high number of REJ States
is due to the same reason, with the difference that the connection attempt is actively
rejected at the destination (e.g. because no service is running on that port, or the firewall
is closed). The 46 REJ States that occurred in the HTTP Video stream can be explained
by connection issues or timeouts in the TCP protocol and are to be expected in low
quantities.
Using the information provided by FlowBreaker about the S0 and REJ states, it is
possible to conclude that almost all connections/flows initiated by the malicious client in
the “information_gathering” pcap are unwanted at the destination. S0 and REJ states
are assessed by Zeek, with FlowBreaker counting the occurences and attributing them
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Figure 4.4: Comparison of S0 and REJ Connections counted by FlowBreaker in the
pcaps containing HTTP Video (benign) and Information-Gathering (malicious)

to individual IPs. To achieve a similar descriptive power by using these values through
other tools would prove difficult, as it involves filtering for SYN packets and tracking the
state of TCP connections through an entire pcap.
To summarise, the TII-SSRC-23 dataset does not reflect the information provided in
the diagrams in this section in its labels. In order to extract it, each flow in the dataset
would need to be iterated, counting the ports used, bytes transmitted and requests made.
Also, since the connection state identification is done by Zeek, it is not directly available
from the dataset. Therefore, to achieve the same descriptive power as FlowBreaker, the
labels provided by the dataset would need to be processed again and cross-referenced
with information gathered by Zeek after processing the pcap files. This leads us to
the conclusion that FlowBreaker offers a high amount of convenience to the user when
assessing the contents of a given pcap, as the provided parameters prove to be relevant in
the benchmark environment. Furthermore, FlowBreaker offers insight into its justification
for classifications, making it easier for researchers to interpret the results when compared
to the labels provided by the TII-SSRC-23 dataset.

4.2 Evaluating FlowBreaker on a MAWI Archive Traffic
Capture

Given that it is uncertain whether the pcap provided by the MAWI Archive contains
any attacks, it is interesting to see if FlowBreaker labels any of the traffic as malicious.
This section first discusses the output generated by FlowBreaker, to then evaluate the
findings and provide reasoning on their validity.
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4.2.1 General Statistics provided by FlowBreaker

With Section 4.1 focusing on labelling attacks, one key feature of FlowBreaker still
remains to be highlighted. FlowBreaker generates very detailed, human readable logs,
which can be used as reference when analysing a traffic capture. Table 4.5 lists the
statistics FlowBreaker provides during runtime when analysing the provided pcap from
the MAWI archive. This information is useful to assess the behaviour of a given IP by
comparing its individual values to the average values of the pcap.

Metric TCP UDP

Total Source IPs 22,659 10,851
Total Destination IPs 152,770 5,931
Total Connections 258,114 104,170
Avg. unique destination IPs 10.900 2.009
Avg. unique source IPs 1.617 3.675
Avg. unique destination ports 1.595 1.000
Avg. unique source ports 7.251 9.469
Avg. connections per destination IP 11.393 9.600
Avg. connections per source IP 1.690 17.564

Table 4.5: TCP and UDP Connection Statistics, provided by FlowBreaker

To assess the potential of FlowBreaker, let us analyse the output it generates when
processing a randomly selected IP (here, 36.182.230.11). These are shown in Listing 4.1.
Note that the IP in question connected to 12291 unique destination IPs. FlowBreaker
lists such destination IPs together with their respective connection counts; however, we
omit this information to avoid taking up an unnecessarily large amount of space for our
example. Additionally, the Source and Destination Ports are also listed, with the number
of connections associated to them.
In this case, it is obvious that the IP connected to port 6379 every time. If this were an
attack, this could be a command and control server, but it can also be done for legitimate
reasons, e.g. a centralised update. For further confirmation, a researcher could then
look at the connection states of that IP in more detail, for example whether or not each
destination replied to the connection attempt.
Another useful indicator is the average amount of IP bytes transferred per connection,
which is calculated for each individual IP by FlowBreaker. In this instance it is 60,
indicating that the connections are all identical (because it is not a fraction — this can
happen when all connections share the same value). Furthermore, it shows that very
little information has been transferred; this could indicate a synchronisation protocol or
an attacker scanning if the port is open.
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Finally, port 6379 serves the Redis service (64), which is an in-memory database2, making
it a potential target for attacks. Unfortunately, without external labels, it is hard to
verify whether the use is actually nefarious or legitimate.

In Table 4.5, it can be seen that FlowBreaker provided information about TCP and
UDP connections/flows, but none about ICMP flows, even though almost 25% of the traf-
fic capture consists of them. This is due to Zeek’s pre-processing. After consulting Zeek’s
logs, it became apparent that Zeek recognised several hosts running a trace-route3 using
ICMP and thus omitted these packets from its final output. This behaviour would have to
be changed in the script used to run Zeek (mentioned in Section 3.2.2) when processing a
pcap file through the frontend, which could be achieved by simply telling Zeek to include
ICMP based communications directly in its output instead of overriding them with its in-
ternal analysis. This is thus not an inherent limitation to FlowBreaker and could be solved
in future versions of the frontend. However, since the problem arose at the end of the
evaluation phase, it was not addressed in order to keep the testing environment consistent.

Looking at the other statistics provided in Table 4.5, we cannot verify them directly
using the information provided in Table 3.5, since FlowBreaker works with flows and the
reference data is based on individual packets.
As evident in this section, the output in Listing 4.1 is useful for assessing individual IPs.
The fields not yet addressed are: Activity Flags and Flagging Scores. The Activity Flags
can be seen as a binary indicator whether or not an IP has a high amount of activity,
compared to the rest of the capture file. This is explained in more detail in Section 3.3.6,
but their main purpose is to quickly filter if an IP is an outlier or not.
As mentioned in Section 3.3.6, the Flagging Scores simply serve as the basis for these
flags, indicating the ratio of the current IP’s value to the average value (note that “-1”
indicates that the value could not be calculated but can be found in the other output file
provided by FlowBreaker, which sorts by source IP). In this instance, the Outgoing Port
Activity is 1138,715 times higher than the average, indicating that this IP is very clearly
an outlier that should be investigated further.

2in-memory database: A database stored in the Rapid Access Memory (RAM) for faster access times.
3Traceroute is a command used for mapping a network’s topology (51).
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IP : 3 6 . 1 8 2 . 2 3 0 . 1 1
Total Connections : 12291
Protoco l : TCP
S e r v i c e : UNDEF
C l a s s i f i c a t i o n : UNDEF
Connection Summary :

Unique Des t ina t i on IPs : 12291
Des t ina t i on IPs :

1 5 0 . 6 6 . 1 5 . 2 4 1 : 1 connec t i ons
1 5 0 . 6 6 . 1 5 . 2 4 7 : 1 connec t i ons
1 5 0 . 6 6 . 1 5 . 2 2 5 : 1 connec t i ons
. . .

Unique Des t ina t i on Ports : 1
Des t ina t i on Ports :

6379 : 12291 connec t i ons
Unique Source Ports : 8257

Source Ports :
32770 : 1 connec t i ons
32774 : 1 connec t i ons
32776 : 1 connec t i ons
. . .

S e r v i c e s :
Ac t i v i t y Flags :

High Outgoing Port Ac t i v i t y : True
High Incoming Port Ac t i v i ty : Fa l se
High Outgoing IP Act i v i t y : True
High Incoming IP Act i v i t y : Fa l se
High Number o f Outgoing Connections : True
High Number o f Incoming Connections : Fa l se
L i s t e n e r : Fa l se
Speaker : True

Flagg ing Scores ( Current Value/Average Value ) :
Outgoing Port Ac t i v i t y : 1138 ,7146
Incoming Port Ac t i v i t y : −1
Outgoing IP Act i v i t y : 1127 ,5695
Incoming IP Act i v i ty : −1
Outgoing Connections : 1078 ,862
Incoming Connections : −1

Average Values :
Connections per Des t ina t i on IP : 1
Connections per Source IP : 12291
Connections per Des t ina t i on Port : 12291
Connections per Source Port : 1 ,4885552
Connections per Unique IP : 1
Bytes t r a n s f e r r e d per Connection : 0
IP Bytes t r a n s f e r r e d per Connection : 60

Listing 4.1: FlowBreaker’s Output for IP 36.182.230.11 in the MAWI traffic capture
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FlowBreaker also outputs data using the csv format, which is useful for processing
data further. The top 10 entries of FlowBreaker’s csv formatted output can be seen
in the following Tables: Table 4.6 lists the 10 most active source IPs using the UDP
protocol, ranked by the amount of connections/flows associated with them. Similarly,
Table 4.7 lists the 10 most active destination IPs using the UDP protocol, also ranked
by the amount of connections/flows associated with them. The same has been done for
TCP, listing the most active sources in Table 4.8 and the most targeted destinations in
Table 4.9.
These tables can be used as reference by a researcher for plotting data and to quickly
look up which IP addresses are the most active (which usually indicates relevance). For
example, it can be seen that the most active IP using UDP in Table 4.7 serves a total of
17,738 connections, probably indicating a DNS server. When investigating the top IP
in Table 4.8, it seems that each destination IP is only targeted once. This, combined
with the fact that the same port is targeted every time, suggests that this IP is relevant.
Looking at Listing 4.1, we can see that IP 36.182.230.11 targets Port 6379 exclusively.
We can thus conclude that this IP is likely carrying out malicious activity, likely scanning
multiple hosts for Port 6379. Unlike the top IP in Table 4.8, the top IPs in Table 4.6
and 4.9 do not immediately reveal useful information that could be used as an indicator
for malicious activity. However, these tables are useful for demonstrating how the top
five IPs account for far more connections than the remaining entries.

After highlighting FlowBreaker’s capabilites of providing an overview, the next section
addresses attack patterns found by FlowBreaker in the MAWI traffic capture.
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IP Total Unique Unique Unique Unique
Connections Dest IPs Source IPs Dest Ports Source Ports

203.178.182.222 3,009 889 1 1 2,934
2001:4230:f7cc:e60c:
202:4a00:e79a:a54a 2,671 615 1 1 2,538
203.178.180.55 2,151 330 1 1 2,079
131.113.133.45 1,009 182 1 1 979
131.113.133.43 965 149 1 1 941
2001:4d70:f2ed:beb4:
702:7c0b:cc7f:fc64 904 178 1 1 878
2001:4d70:f097:9ed:
7809:77ce:3ffe:643 742 79 1 1 737
2001:4d70:f097:9ed:
7809:77ce:3ffe:647 702 101 1 1 695
61.166.65.100 630 1 1 1 630
2404:93cf:7f8:e201:
fdee:c17f:98df:8465 569 2 1 1 569

(Top 10 Source UDP IPs sorted by total connections)

Table 4.6: Top 10 Source UDP IPs, based on FlowBreaker’s Analysis

IP Total Unique Unique Unique Unique
Connections Dest IPs Source IPs Dest Ports Source Ports

2001:4230:81d:fde7:
ff0f:8019:f3fe:3934 17,738 1 3,124 1 14,712
192.12.106.202 15,529 1 2,781 1 13,626
202.243.164.209 9,323 1 1,016 1 8,527
192.151.56.21 6,101 1 109 1 4,621
192.151.56.54 6,089 1 99 1 4,593
2620:7be:71ec:1fc:
9f2:820:307e:106 5,934 1 90 1 4,482
2620:7be:71ec:1fc:
9f2:820:307e:141 5,744 1 74 1 4,305
202.243.162.173 3,081 1 470 1 2,997
2001:4d51:ffc4:3ef:
f105:7bef:fc7e:3a3b 1,429 1 202 1 1,392
88.166.193.213 889 1 4 1 876

(Top 10 Destination UDP IPs sorted by total connections)

Table 4.7: Top 10 Destination UDP IPs, based on FlowBreaker’s Analysis
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IP Total Unique Unique Unique Unique
Connections Dest IPs Source IPs Dest Ports Source Ports

36.182.230.11 12,291 12,291 1 1 8,257
141.157.180.187 3,835 3,829 1 2 84
141.157.180.105 3,753 3,753 1 1 1
185.90.3.177 3,605 3,569 1 1 3,389
193.21.207.59 3,426 3,334 1 3 3,191
193.84.89.48 3,415 3,325 1 1 3,232
185.141.3.226 3,372 3,372 1 1 3,165
193.21.207.47 2,988 2,953 1 3 2,842
172.40.178.50 2,348 2,348 1 1 2,257
193.167.179.5 2,327 2,315 1 1 2,232

(Top 10 Source TCP IPs sorted by total connections)

Table 4.8: Top 10 Source TCP IPs, based on FlowBreaker’s Analysis

IP Total Unique Unique Unique Unique
Connections Dest IPs Source IPs Dest Ports Source Ports

131.112.115.241 677 1 136 5 358
203.178.182.97 497 1 228 4 476
163.93.12.153 479 1 76 2 471
203.178.184.83 422 1 117 4 415
150.66.56.65 404 1 145 7 391
185.141.3.245 358 1 358 355 1
2001:4d70:f2ed:beac:
fff9:7bd4:3ff:61ed 209 1 52 66 174
202.116.68.67 190 1 51 3 143
23.109.46.227 172 1 76 1 76
2001:4230:81d:fde7:
ff0f:8019:f3fe:3934 156 1 148 2 156

(Top 10 Destination TCP IPs sorted by total connections)

Table 4.9: Top 10 Destination TCP IPs, based on FlowBreaker’s Analysis
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4.2.2 Addressing Attack Patterns found by FlowBreaker
As explained in Section 3.3.4 when scanning for Brute Force attacks, FlowBreaker has a
conservative tendency to label some traffic with specific characteristics as UDP Flood,
which may be wrong in some cases. Since this label is assigned based on the number of
UDP flows, this can be mitigated by simply raising the limits.

Looking at Table 4.10, it is reasonable to think that not all entries listed are experi-
encing an UDP Flood, but they are most likely higher level DNS servers4.
This shows that FlowBreaker’s configuration needs to be adapted to each use case and
also highlights the differences between traffic in smaller networks and traffic at a backbone.

IP Total UDP DNS Unique Unique Unique
Connections Connections Queries Dest IPs Source IPs Source Ports

2001:4230:81d:fde7:
ff0f:8019:f3fe:3934 17,738 17,738 23,989 1 3,124 14,712
192.12.106.202 15,529 15,529 16,972 1 2,781 13,626
202.243.164.209 9,323 9,323 9,512 1 1,016 8,527
192.151.56.21 6,101 6,101 8,991 1 109 4,621
192.151.56.54 6,089 6,089 9,040 1 99 4,593
2620:7be:71ec:1fc:
9f2:820:307e:106 5,934 5,934 8,710 1 90 4,482
2620:7be:71ec:1fc:
9f2:820:307e:141 5,744 5,744 8,646 1 74 4,305
202.243.162.173 3,081 3,081 3,072 1 470 2,997
2001:4d51:ffc4:3ef:
f105:7bef:fc7e:3a3b 1,429 1,429 1,428 1 202 1,392

(All IPs involved in UDP Flood attack are shown)

Table 4.10: UDP Flood Attack Statistics, based on FlowBreaker’s Analysis

4The DNS system is hierarchical, with the top handling a higher volume of requests

67



4. Evaluation

Table 4.11 addresses entries which were labelled by FlowBreaker as Password Spraying.
Password Spraying is the practice of trying (different) passwords on many different
ports/hosts (26). FlowBreaker detects this by watching a port list in the configuration
used, this includes Ports: 21 (FTP), 22(SSH), 23(Telnet), 3389(RDP5) and 5900 (VNC6).
If more than 50 connections are made to one of these ports, the label is assigned to the
IP in question. Even for a backbone, it is unusual to have a single IP connect to that
many different destinations using the protocols mentioned above.
It is thus very likely that Table 4.11 indeed lists IPs scanning for potential victims,
especially because the number of unique destination ports is 1.

IP Total Unique Unique Unique Unique
Connections Dest IPs Source IPs Dest Ports Source Ports

172.40.178.50 2,348 2,348 1 1 2,257
87.135.246.132 1,911 1,911 1 1 1,843
141.157.180.137 1,840 1,825 1 1 1,785
87.135.240.77 319 318 1 1 317
198.28.88.199 216 216 1 1 1
205.48.29.63 210 210 1 1 1
87.119.147.4 193 193 1 1 1
205.48.29.221 184 184 1 1 1
205.48.29.145 182 182 1 1 1
211.152.206.223 182 127 1 1 1

(Top 10 IPs out of 50 results)

Table 4.11: Password Spraying Attack Statistics, based on FlowBreaker’s Analysis

Listing 4.2 contains an excerpt of FlowBreaker’s output file for Password Spraying. It
can be seen that all connections were initiated to port 5900, with little actual data being
transferred (just 40.324 Bytes on average). This, paired with the high Flagging Scores
of 311.2606, 215.4042, 206.09944, expressing a large amount of connections compared
to other IPs in the pcap, confirms the suspicion indicated by the information in Table
4.11, that this host is indeed Password Spraying (or at least looking for machines with
an open 5900 port).

5Remote Desktop Protocol (RDP) is a protocol used by Windows for remote access
6Virtual Network Computing (VNC) is also a protocol for remote access
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IP : 1 7 2 . 4 0 . 1 7 8 . 5 0
Total Connections : 2348
Protoco l : TCP
S e r v i c e : UNDEF
C l a s s i f i c a t i o n : Password Spraying
Reason :
Attempts to many unique d e s t i n a t i o n s : 2348
SSH attempts : 0
SSL attempts : 0
HTTP attempts : 0
Connection Summary :

Unique Des t ina t i on IPs : 2348
Des t ina t i on IPs :

2 0 3 . 1 7 8 . 2 0 5 . 2 5 3 : 1 connec t i ons
2 0 3 . 1 7 8 . 1 7 2 . 3 4 : 1 connec t i ons
2 0 3 . 1 7 8 . 2 5 4 . 4 7 : 1 connec t i ons

. . .
Unique Des t ina t i on Ports : 1

Des t ina t i on Ports :
5900 : 2348 connec t i ons

Unique Source Ports : 2257
Source Ports :

32770 : 1 connec t i ons
32771 : 1 connec t i ons
32780 : 1 connec t i ons

. . .
S e r v i c e s :
Ac t i v i t y Flags :

High Outgoing Port Ac t i v i t y : True
High Incoming Port Ac t i v i ty : Fa l se
High Outgoing IP Act i v i t y : True
High Incoming IP Act i v i t y : Fa l se
High Number o f Outgoing Connections : True
High Number o f Incoming Connections : Fa l se
L i s t e n e r : Fa l se
Speaker : True

Flagg ing Scores ( Current Value/Average Value ) :
Outgoing Port Ac t i v i t y : 311 ,2606
Incoming Port Ac t i v i t y : −1
Outgoing IP Act i v i t y : 215 ,4042
Incoming IP Act i v i ty : −1
Outgoing Connections : 206 ,09944
Incoming Connections : −1

Average Values :
Connections per Des t ina t i on IP : 1
Connections per Source IP : 2348
Connections per Des t ina t i on Port : 2348
Connections per Source Port : 1 ,040319
Connections per Unique IP : 1
Bytes t r a n s f e r r e d per Connection : 0
IP Bytes t r a n s f e r r e d per Connection : 40 ,32368

Listing 4.2: FlowBreaker’s Output for Password Spraying in the MAWI traffic capture
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Table 4.12 lists all Host Discovery Scans identified by FlowBreaker. Due to the high
traffic volume to single servers, this label is not as indicative as it would be in other
scenarios (e.g. when inspecting the TII-SSRC-23 dataset). Comparing this information
with Table 4.13, we can see that the top four IPs of both tables are the same.
This is relevant because Table 4.13 addresses Protocol-Specific Scans, which work by
detecting SYN-only connections. This indicates that a connection is unwanted by the
destination host. Given that all connections of these 4 top IPs are SYN-only, we can
conclude that these hosts are malicious and/or performing some kind of active information
gathering.
However, we cannot confirm if these hosts are indeed scanning for hosts or for a single
open port (except for address 172.40.178.50, which was confirmed targeting port 5900
in Listing 4.2). In any case, exclusively having SYN-only connections, all IPs listed in
Table 4.13 are highly suspicious of carrying out undesired network traffic activities.

IP Total Unique Unique Unique Unique Avg Connections
Connections Dest IPs DNS Queries Source IPs Source Ports per Dest IP

36.182.230.11 12,291 12,291 0 1 8,257 1.0000
141.157.180.187 3,835 3,829 0 1 84 1.0016
141.157.180.105 3,753 3,753 0 1 1 1.0000
185.90.3.177 3,605 3,569 0 1 3,389 1.0101
193.21.207.59 3,426 3,334 0 1 3,191 1.0276
193.84.89.48 3,415 3,325 0 1 3,232 1.0271
185.141.3.226 3,372 3,372 0 1 3,165 1.0000
193.21.207.47 2,988 2,953 0 1 2,842 1.0119
172.40.178.50 2,348 2,348 0 1 2,257 1.0000

(Top 10 IPs out of 32 results)

Table 4.12: Host Discovery Scan Attack Statistics, based on FlowBreaker’s Analysis

70



4.2. Evaluating FlowBreaker on a MAWI Archive Traffic Capture

IP Total SYN-only Failed SSL Unique Unique Unique
Connections Connections Handshakes Dest IPs Dest Ports Source Ports

36.182.230.11 12,291 12,291 0 12,291 1 8,257
141.157.180.105 3,733 3,733 0 3,733 1 1
141.157.180.187 3,695 3,695 0 3,695 1 1
185.90.3.177 3,519 3,519 0 3,519 1 3,314
185.141.3.226 3,325 3,325 0 3,325 1 3,130
193.84.89.48 3,267 3,267 0 3,267 1 3,106
193.21.207.59 3,264 3,264 0 3,264 1 3,069
193.21.207.47 2,930 2,930 0 2,930 1 2,795
172.40.178.50 2,329 2,329 0 2,329 1 2,240
193.167.179.5 2,294 2,294 0 2,294 1 2,203

(Top 10 IPs out of 32 results)

Table 4.13: Protocol-Specific Scan Attack Statistics, based on FlowBreaker’s Analysis

The last attack type that FlowBreaker detected is Port Scans. In Table 4.14, several
IPs are listed with all of their connections labelled as SYN-only (S0) or rejected connections
(REJ).
While some of these connections are not unusual, the entries listed in this table seem to
be looking for open ports. Compared to the results in Tables 4.12 and 4.13, the amount
of unique destination ports is higher this time, indicating that the list of scanned ports is
longer.

IP Total Unique Unique Unique S0 REJ
Connections Dest IPs Dest Ports Source Ports

83.192.141.160 1,823 1,810 52 1 1,813 10
154.170.107.192 1,758 1,753 865 2 1,746 11
23.123.132.156 1,742 1,729 29 1,697 1,730 12
83.192.141.42 1,290 1,283 456 1 1,287 3
92.7.86.251 1,063 1,056 173 1 1,040 22
79.131.203.211 877 875 66 2 871 5
115.24.50.56 610 606 269 608 596 14
91.7.33.92 578 577 201 1 573 5
5.132.204.32 545 543 191 1 538 7
91.7.33.198 502 500 186 1 501 1

(Top 10 IPs out of 447 results)

Table 4.14: Port Scan Attack Statistics, based on FlowBreaker’s Analysis

After reviewing the attacks listed by FlowBreaker, the provided summaries and
classifications seem to be consistent. In spite of the fact that it is not possible to directly
confirm the labels without being able to verify them at the source, or by contrasting
with other tools for Network Intrusion Detection, results are promising. This underlines
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FlowBreaker’s utility as a solution for analysing traffic and its ability to automatically
detect attacks if given a configuration file adjusted to the specific use case and traffic
analysed. With the evaluation concluded, the next chapter addresses open issues and
future improvements.
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CHAPTER 5
Open Issues and Future Directions

After concluding the evaluation phase, the results look very promising.

By utilising the MAWI Traffic Archive, as well as the TII-SSRC-23 dataset, we were
able to demonstrate, how a limit-based approach, i.e. filtering communications in IP
based traffic by certain parameters and sort them using pre-defined thresholds, is able
to effectively describe traffic captures. In doing so, we developed a tool, FlowBreaker,
which offers significant insight into traffic captures with little operational overhead. How-
ever, some open issues and room for improvement also arose. This section summarises
the potential improvements and sets a course for future directions in terms of using a
limit-based approach as well as our practical implementation of this approach.

5.1 Critiquing the Approach of Host Description
In our work we use pre-defined limits for filtering traffic to generate descriptions of a
given traffic capture, similar to the ruleset-based approach employed by NIDS and NIPS
such as Snort. In doing so, we created a tool that could be used in Human-Guided
Labelling, as described in Section 2.1.1. What distinguishes our approach from other
works, is that, rather than labelling 5 Tuple flows directly as typically done in NIDS
datasets (15) (2), is that we assign labels to entire hosts/IPs and provide a description as
to why this label has been assigned, based on certain parameters. Given that a host can
display multiple behaviours and attack patterns, a single flow can have multiple attack
labels assigned.

5.1.1 Using Flow Descriptions for ML
ML relies on accurately labelled datasets, which is one of the greatest issues when using
NIDS datasets, as they are often out of date, irrelevant or simply of poor quality (12). In
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ML, data points are typically attributed to a single label, i.e. a flow can not be labelled
as a part of two different attack patterns simultaneously. This makes our approach of
allowing for flows to have multiple labels, as we aim at describing host behaviour, rather
than flow behaviour, unfit for the direct use with ML. Thus, in order to use this approach
for ML, a researcher would have to take FlowBreaker’s suggestions/descriptions and
decide which labels to assign by hand. If combined with other tools mentioned in Section
2.1.1, our approach could provide additional descriptive power, but by itself it is limited.

5.1.2 Reliance on Humans
With our approach offering host descriptions in various output files, rather than describ-
ing every flow individually, a human is almost always necessary to make sense of the
descriptions. This is especially true as filtering using limit-based filters is limited in terms
of context-awareness. This means that, as observed in Section 4.1.3, different attack
patterns can match to the same traffic and it is up to a human to make a distinction.
This makes our approach useful when assessing traffic captures by hand, but less fit for
automatisation.

5.2 Suggested Enhancements for FlowBreaker
When designing FlowBreaker, one of the top priorities was modularity and ease of use.
While both have been achieved, it became clear during the evaluation phase, that further
improvements can be made:
The modularity of FlowBreaker, providing a separate output file for each attack, directly
contradicts the ease of use, by scattering output across several locations. Furthermore,
there is some overlap between attack patterns, leading to multiple labels for the same
IP. While this can be the case, it would benefit the user experience if these labels could
be summarised into a single file. Since FlowBreaker was built on top of the output of
Zeek, it is necessary to host a separate instance of Zeek for pre-processing files. This
somewhat complicates the use of FlowBreaker for the end user. Finally, FlowBreaker offers
detection methods for many generic attacks, but these only cover a small (nonetheless
very important) subset of the actual attacks taking place in real life scenarios.

5.2.1 Detection of Attacks
While FlowBreaker covers some popular attacks, the list of them is certainly not exhaustive.
Most of FlowBreaker’s modules revolve around threshold based detections, meaning that
if a number of connections, bytes, states or ports is exceeded, the IP in question is
labelled as malicious. Furthermore, since most attacks follow similar patterns, it is not
always clear which attack is actually taking place. For now the solution for this was to
label an attack with all labels triggered by it and leave the distinction up to the user.
Another issue is that currently the timing information provided by Zeek is not being
issued for threat detection. This could also be a valuable asset in detecting attacks based
on packet timestamps, e.g. to recognise a covert channel being used for data exfiltration.
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Another issue that became evident is Zeek’s handling of ICMP based attacks. With
ICMP integrated more closely into the IP stack, it is handled a bit differently than TCP
and UDP. This results in Zeek sometimes directly detecting hosts running the trace
route command and labelling these patterns as such. This resulted in FlowBreaker being
unable to properly label ICMP based attacks. In order to improve on this behaviour,
the script used to run Zeek would need to be altered, followed by further testing with
FlowBreaker.

5.2.2 Output

With FlowBreaker providing its information in three different output formats, there is
already a lot of flexibility available. However, the output formatting could be further
improved, making it more readable and providing a better overview. At the time of
development, flexibility was a higher priority. Thus FlowBreaker provides multiple output
files, with each corresponding to a detected type of attack or being a summary of the
connections of a given host. In hindsight, this flexibility also leads to a loss of overview
and redundant information in the output files. Furthermore, attack patterns could be
grouped together, offering multiple classifications in the same file, instead of just one.

Moreover, as mentioned in Section 5.1, our approach of labelling hosts/IPs, rather
than individual flows, makes the results difficult to compare to existing NIDS datasets,
which are typically labelled on a per-flow basis. This issue could be addressed by creating
a new module, that generates e.g. a .csv styled flow list, containing all descriptions/labels
using the traditional 5 Tuple-based approach. Doing so, would make our approach easier
to automate and integrate with other tools.

In order to improve upon these aspects, further testing and research with FlowBreaker
is needed. The findings could then be summarised and added to the existing functionality.

5.2.3 User Interface and Experience

While one of FlowBreaker’s main goals is ease of use and it certainly provides a very
simple CLI interface, the user still has to pre-process pcaps externally using Zeek and
then run FlowBreaker on the output. This is an additional barrier as Zeek is cumbersome
to set up under non-Linux operating systems. While somewhat mitigated by the custom
frontend provided in this thesis, future versions of FlowBreaker could bypass this need
and process pcaps directly. Another issue that comes with CLI interfaces, is that they
have to be configured and interfaced with using only text. When trying to automate
processes, this is a significant advantage, given that shell scripts can be run using different
configuration files with little setup time. However, when manually processing traffic
captures, the process can become tedious. A solution for this could be a helper GUI,
which acts as an interface for inputting parameters and then runs FlowBreaker’s CLI
version with said parameters.

75



5. Open Issues and Future Directions

5.3 Future Directions
With suggested enhancements for FlowBreaker now laid out, this section revolves around
a few proposals on how to tackle them, as well as further ideas for research based on
FlowBreaker and the research conducted here, or using FlowBreaker as the core of future
research in the field of network security.

5.3.1 Additional Modules
As mentioned above, there is more than one dimension for improvement worth exploring
with FlowBreaker. Ranking the afore discussed issues by urgency, one of the top priorities
would be extending the capabilities of FlowBreaker in detecting more variants of attacks.
This can easily be achieved by writing new submodules. With the existing modules
already covering most attacks detectable by numeric patterns, e.g. number of ports
used, bytes transferred, etc., a module concentrating on covert channels or hidden data
exfiltration, command and control servers or other nefarious server structures would
make a great addition to FlowBreaker’s repertoire. Furthermore, existing modules could
be used for cross referencing, bundling the information into a single detection method.

5.3.2 Research on Labelling Methods
After addressing the critiques regarding per-flow-based labelling and implementing the
changes proposed in this section, FlowBreaker could be used to directly analyse existing
NIDS benchmark datasets. Thus, using FlowBreaker to carry out a comprehensive
comparison on the datasets published in the last 10 years would prove to be a major
contribution to the science community. Especially the low quality of NIDS datasets (12),
and its impact on ML-based tools could then be further assessed. Furthermore, the
descriptions provided by FlowBreaker could offer a new perspective on existing data,
potentially identifying patterns that have previously been missed.

5.3.3 Field Research based on FlowBreaker
To further the research made in this thesis, there are several fields of interest that could
be explored. One such field would be to run FlowBreaker on more samples provided by
the MAWI Working Group. Doing so would provide more data, which could then be
cross-referenced. This means that the attack patterns recognised by FlowBreaker could
be validated using statistical means, e.g. how often a certain attack pattern emerged,
from which IPs, etc..

In general, FlowBreaker’s approach of not indexing flows and associated sessions, but
rather host activity, offers a new perspective in exploring traffic.
One interesting aspect would be to analyse larger networks, characterise host behaviour/ac-
tivity and use FlowBreaker to highlight potential weak spots or constraints. This could
then be used to map network topologies or develop potential expansions of said networks.
In itself, the idea of describing network activity in relation to NIDS from a higher level
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perspective is not entirely new. Previous works include tracking sessions/applications
through the use of vectors for identification to detect attacks despite TLS encryption
(18), as well as characterising IP hosts through IP headers, rather than decrypting the
payloads (17). Doing so has proven as an effective measure for characterising networks
and communications. This means that simply capturing traffic in different networks
and analysing it with FlowBreaker opens up new ways of research and possibilities for
describing network phenomena.
To summarise, pre-existing ways of labelling could be combined with the descriptions
provided by FlowBreaker to offer new ways of classifying, interpreting and indexing traffic
in relation to existing threat potentials.
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CHAPTER 6
Conclusion

6.1 Assessing the Research Goals
In order to properly compare the findings of this thesis to the initial expectations, it is
necessary to first briefly restate the research goals. Objectives were:

1. Establish a set of minimum criteria to provide a summarised and qualitative
description of network flows.

2. Develop a tool which integrates an existing NIDS to obtain the above mentioned
summaries and descriptions (describing traffic flows).

3. Show to what extent these enriched labels offer a more discriminating and precise
traffic classification.

The first goal was accomplished indirectly when designing FlowBreaker. In its output,
FlowBreaker lists several measurements: ports used, number of connections made, data
transferred, etc. Additionally, several custom indicators have been created: The Activity
Flags which serve to indicate high activity as well as the Flagging Scores which are
used to set the aforementioned Flags. Furthermore, FlowBreaker calculates the averages
values of the amount of ports used, unique IP addresses seen and transferred bytes per
connection. This, combined with the modules targeted at detecting specific attacks,
serves as a summarised and qualitative description of individual network flows.
The second goal was reached by building FlowBreaker, which works on top of Zeek, thus
integrating an existing NIDS for more detailed labels and analysis. The final goal was
achieved in the Evaluation chapter of this thesis. First, by using the TII-SSRC-23 dataset
to directly compare the labels assigned by FlowBreaker to those provided by dataset
creators. Second, by using a traffic capture from the MAWI Working Group to directly
test FlowBreaker on real traffic.
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We can therefore conclude that our approach of filtering and describing traffic by
defining limits on certain parameters delivers comparable and promising results when
benchmarked using a NIDS dataset, but also when used on real traffic captures. Next, we
will address how this approach was used in FlowBreaker to help answering the research
questions.

6.2 Answering the Research Questions
The following research questions are discussed and answered in this section:

1. How can we label network traffic so that the information provided offers high quality
descriptive knowledge, particularly in relation to network attacks?

2. How can we use existing and established tools in the NIDS field to obtain qualita-
tively enriched traffic-labels?

3. To what extent do qualitatively enriched traffic-labels favor post-analysis and a
deeper evaluation of classification and detection algorithms?

The approach towards labelling and describing network traffic in this thesis was to
look at network traffic from host perspective, rather than addressing flows individually.
This diverges from the more common approach in NIDS datasets of using 5 tuple flows.
We created detection methods for some of the most common attack patterns in the NIDS
field, such as (D)DoS, Brute Force and Portscans, which assign labels to individual hosts.
These labels contain descriptions on why the label was assigned, including measurements
and reference values. Furthermore, statistical values and descriptions are provided for
each analysed traffic capture, even if no attack patterns were identified in this capture.
Using the TII-SSRC-23 dataset, the detection methods were benchmarked and evaluated.
In the course of this evaluation, our approach proved to provide labels offering a higher
quality descriptive knowledge when compared to the reference labels.
While reviewing pre-existing approaches towards labelling traffic, tools such as Snort,
Suricata, Wireshark and Zeek were assessed in the task of obtaining qualitatively enriched
traffic-labels.

After this assessment, Zeek was selected to serve as a foundation to provide these
labels. The reason for this is its high modularity and configurability, paired with its
detailed output. The measurements provided by Zeek were then used to create custom
flows, which perform cross-comparisons among these features. These cross-comparisons
served to improve attack detection and thus traffic labelling.

For assessing the final research question, we have to take a look at the Evaluation
Chapter, specifically Section 4.1. The labels provided by FlowBreaker are consistent with
the labels provided by the TII-SSRC-23 dataset, but offer more insight into the reason
of the classification. This more descriptive approach of labelling traffic provides more
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context when deciding if a label was assigned correctly or not. This can be seen in Section
4.1.3, where we successfully used these additional descriptions to further reason as to
why attack patterns were recognised. We can thus reason that the enriched traffic-labels
provided by FlowBreaker can be used to perform a deeper evaluation of the analysed
traffic, as well as provide a basis for judging detection algorithms.

6.3 Contributions and Outlook
Our approach of filtering traffic and describing it from a host perspective, rather than
just labelling flows directly, serves as a new addition to the NIDS field, providing
FlowBreaker as a new tool that focuses on the ease of use while improving upon existing
measurements provided by Zeek. It thus contributes to the science community as a new
way to manually, as well as automatically, detect anomalies and network attacks in traffic
captures, while also providing a more human-understandable description of network
phenomena. Furthermore, it has been evaluated and validated on existing datasets
and traffic captures, where it was able to provide comparable and descriptive labels.
This could prove to be useful when working with ML-based approaches, as our more
descriptive labels could aid in decision-making, feature selection, and potentially reveal
hidden patterns or parameters that influence the algorithm’s performance.
Future improvements of this approach could include providing flow-based labels in addition
to host or IP-based labels, making it easier for researchers to cross-reference results with
existing NIDS datasets, potentially improving upon their quality. To further the usability
provided by FlowBreaker, planned future versions include a more streamlined detection
process, extensions of the limit-based approach making it possible to recognise more
sophisticated attacks, as wells as enriching its output offer through the use of graphical
and plotting environments.
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A.1 Configuration Files

A.1.1 Standard Configuration

1 # List of enabled scanning modules
2 Enabled_Modules = ["Scanning", "BruteForce", "DDoS"]
3
4 # Variables for Preprocessing conn.log
5 [BasicParameters]
6 # The values below are multipliers applied
7 # to the average number of IPs/Ports
8 # Example: if a host has more than twice the
9 # average of connections to unique IPs

10 # the highOutIP Flag is set.
11
12 # TCP
13
14 # highOutPort is set if exceeded
15 Threshold_Outliers_Outgoing_Unique_Port_TCP = 1.0
16 # highOutIP is set if exceeded
17 Threshold_Outliers_Outgoing_Unique_IP_TCP = 1.0
18 # highInPort is set if exceeded
19 Threshold_Outliers_Incoming_Unique_Port_TCP = 1.0
20 # highInIP is set if exceeded
21 Threshold_Outliers_Incoming_Unique_IP_TCP = 1.0
22 # highOutConn is set if exceeded
23 Threshold_Connections_Per_Destination_IP_TCP = 1.0
24 # highInConn is set if exceeded
25 Threshold_Connections_Per_Source_IP_TCP = 1.0
26
27 # UDP
28
29 # highOutPort is set if exceeded
30 Threshold_Outliers_Outgoing_Unique_Port_UDP = 1.0
31 # highOutIP is set if exceeded
32 Threshold_Outliers_Outgoing_Unique_IP_UDP = 1.0
33 # highInPort is set if exceeded
34 Threshold_Outliers_Incoming_Unique_Port_UDP = 1.0
35 # highInIP is set if exceeded
36 Threshold_Outliers_Incoming_Unique_IP_UDP = 1.0
37 # highOutConn is set if exceeded
38 Threshold_Connections_Per_Destination_IP_UDP = 1.0
39 # highInConn is set if exceeded
40 Threshold_Connections_Per_Source_IP_UDP = 1.0
41
42 # ICMP
43
44 # highOutPort is set if exceeded
45 Threshold_Outliers_Outgoing_Unique_Port_ICMP = 1.0
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46 # highOutIP is set if exceeded
47 Threshold_Outliers_Outgoing_Unique_IP_ICMP = 1.0
48 # highInPort is set if exceeded
49 Threshold_Outliers_Incoming_Unique_Port_ICMP = 1.0
50 # highInIP is set if exceeded
51 Threshold_Outliers_Incoming_Unique_IP_ICMP = 1.0
52 # highOutConn is set if exceeded
53 Threshold_Connections_Per_Destination_IP_ICMP = 1.0
54 # highInConn is set if exceeded
55 Threshold_Connections_Per_Source_IP_ICMP = 1.0
56
57 # Port Scan Detection Settings
58 [PortScan]
59 Connection_Threshold = 20
60 Unique_Port_Threshold = 20
61
62 # Host Discovery Scan Detection Settings
63 [HostDiscoveryScan]
64 Unique_IP_Threshold = 1000
65
66 # Protocol-Specific Scan Detection Settings
67 [ProtocolSpecificScan]
68 SYN_Scan_Threshold = 1000
69
70 # Version Scan Detection Settings
71 [VersionScan]
72 Connection_Threshold = 5 # Number of connections per port
73 Min_Port_Number = 8 # Number of unique Ports
74 Max_Bytes_Transferred = 10
75 Common_Ports = [
76 20, 21, 22, 23, 25, 53, 80, 110, 111,
77 135, 137, 138, 139, 143, 161, 389,
78 443, 445, 464, 500, 513, 514, 515, 623,
79 636, 1433, 1521, 2049, 3306, 3389, 5432,
80 5900, 5985, 5986, 6379, 8080, 8443, 9200, 27017
81 ]
82
83 # Service Enumeration Detection Settings
84 [ServiceEnumeration]
85 Connection_Threshold = 5 # Number of connections per port
86 Min_Port_Number = 8 # Number of unique Ports
87 Min_Bytes_Transferred = 10
88 Common_Ports = [
89 20, 21, 22, 23, 25, 53, 80, 110, 111,
90 135, 137, 138, 139, 143, 161, 389,
91 443, 445, 464, 500, 513, 514, 515, 623,
92 636, 1433, 1521, 2049, 3306, 3389, 5432,
93 5900, 5985, 5986, 6379, 8080, 8443, 9200, 27017
94 ]
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95
96 [CommonPortsAttack]
97 CommonPorts = [22, 23, 3389, 21, 5900] # SSH, Telnet, RDP, FTP, VNC
98 MinConnectionsPerPort = 50
99

100 [PasswordSpraying]
101 CommonPorts = [22, 23, 3389, 21, 5900] # SSH, Telnet, RDP, FTP, VNC
102 PasswordSprayingThreshold = 50
103
104 [SSHBruteForce]
105 MinConnections = 50
106
107 [SSLBruteForce]
108 MinConnections = 50
109
110 [HTTPBruteForce]
111 MinConnections = 50
112
113 [SYNFlood]
114 SYNThreshold = 1200
115
116 [UDPFlood]
117 UDPThreshold = 1000
118
119 [ICMPFlood]
120 ICMPThreshold = 500
121
122 [DNSAmplification]
123 DNSThreshold = 100
124 MaxDomainRepetitions = 1
125
126 [NTPAmplification]
127 NTPThreshold = 100
128
129 [SSDPAmplification]
130 SSDPThreshold = 100
131
132 [ConnectionExhaustion]
133 ConnectionThreshold = 1000
134 MaxBytes = 200
135 MinDuration = 20.0
136
137 [Slowloris]
138 HalfOpenThreshold = 100
139 MinDuration = 30.0

Listing A.1: standard.toml Configuration File used in FlowBreaker
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A.1.2 Zero Limits Configuration

1 # List of enabled scanning modules
2 Enabled_Modules = ["Scanning", "BruteForce", "DDoS"]
3
4 # Variables for Preprocessing conn.log
5 [BasicParameters]
6 # The values below are multipliers applied
7 # to the average number of IPs/Ports
8 # Example: if a host has more than twice the
9 # average of connections to unique IPs

10 # the highOutIP Flag is set.
11
12 # TCP
13
14 # highOutPort is set if exceeded
15 Threshold_Outliers_Outgoing_Unique_Port_TCP = 1.0
16 # highOutIP is set if exceeded
17 Threshold_Outliers_Outgoing_Unique_IP_TCP = 1.0
18 # highInPort is set if exceeded
19 Threshold_Outliers_Incoming_Unique_Port_TCP = 1.0
20 # highInIP is set if exceeded
21 Threshold_Outliers_Incoming_Unique_IP_TCP = 1.0
22 # highOutConn is set if exceeded
23 Threshold_Connections_Per_Destination_IP_TCP = 1.0
24 # highInConn is set if exceeded
25 Threshold_Connections_Per_Source_IP_TCP = 1.0
26
27 # UDP
28
29 # highOutPort is set if exceeded
30 Threshold_Outliers_Outgoing_Unique_Port_UDP = 1.0
31 # highOutIP is set if exceeded
32 Threshold_Outliers_Outgoing_Unique_IP_UDP = 1.0
33 # highInPort is set if exceeded
34 Threshold_Outliers_Incoming_Unique_Port_UDP = 1.0
35 # highInIP is set if exceeded
36 Threshold_Outliers_Incoming_Unique_IP_UDP = 1.0
37 # highOutConn is set if exceeded
38 Threshold_Connections_Per_Destination_IP_UDP = 1.0
39 # highInConn is set if exceeded
40 Threshold_Connections_Per_Source_IP_UDP = 1.0
41
42 # ICMP
43
44 # highOutPort is set if exceeded
45 Threshold_Outliers_Outgoing_Unique_Port_ICMP = 1.0
46 # highOutIP is set if exceeded
47 Threshold_Outliers_Outgoing_Unique_IP_ICMP = 1.0

87



A. Appendix

48 # highInPort is set if exceeded
49 Threshold_Outliers_Incoming_Unique_Port_ICMP = 1.0
50 # highInIP is set if exceeded
51 Threshold_Outliers_Incoming_Unique_IP_ICMP = 1.0
52 # highOutConn is set if exceeded
53 Threshold_Connections_Per_Destination_IP_ICMP = 1.0
54 # highInConn is set if exceeded
55 Threshold_Connections_Per_Source_IP_ICMP = 1.0
56
57 # Port Scan Detection Settings
58 [PortScan]
59 Connection_Threshold = 0
60 Unique_Port_Threshold = 0
61
62 # Host Discovery Scan Detection Settings
63 [HostDiscoveryScan]
64 Unique_IP_Threshold = 0
65
66 # Protocol-Specific Scan Detection Settings
67 [ProtocolSpecificScan]
68 SYN_Scan_Threshold = 0
69
70 # Version Scan Detection Settings
71 [VersionScan]
72 Connection_Threshold = 0 # Number of connections per port
73 Min_Port_Number = 0 # Number of unique Ports
74 Max_Bytes_Transferred = 1000000
75 Common_Ports = [
76 20, 21, 22, 23, 25, 53, 80, 110, 111,
77 135, 137, 138, 139, 143, 161, 389,
78 443, 445, 464, 500, 513, 514, 515, 623,
79 636, 1433, 1521, 2049, 3306, 3389, 5432,
80 5900, 5985, 5986, 6379, 8080, 8443, 9200, 27017
81 ]
82
83 # Service Enumeration Detection Settings
84 [ServiceEnumeration]
85 Connection_Threshold = 0 # Number of connections per port
86 Min_Port_Number = 0 # Number of unique Ports
87 Min_Bytes_Transferred = 1
88 Common_Ports = [
89 20, 21, 22, 23, 25, 53, 80, 110, 111,
90 135, 137, 138, 139, 143, 161, 389,
91 443, 445, 464, 500, 513, 514, 515, 623,
92 636, 1433, 1521, 2049, 3306, 3389, 5432,
93 5900, 5985, 5986, 6379, 8080, 8443, 9200, 27017
94 ]
95
96 [CommonPortsAttack]
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97 CommonPorts = [22, 23, 3389, 21, 5900] # SSH, Telnet, RDP, FTP, VNC
98 MinConnectionsPerPort = 0
99

100 [PasswordSpraying]
101 CommonPorts = [22, 23, 3389, 21, 5900] # SSH, Telnet, RDP, FTP, VNC
102 PasswordSprayingThreshold = 0
103
104 [SSHBruteForce]
105 MinConnections = 0
106
107 [SSLBruteForce]
108 MinConnections = 0
109
110 [HTTPBruteForce]
111 MinConnections = 0
112
113 [SYNFlood]
114 SYNThreshold = 0
115
116 [UDPFlood]
117 UDPThreshold = 0
118
119 [ICMPFlood]
120 ICMPThreshold = 0
121
122 [DNSAmplification]
123 DNSThreshold = 0
124 MaxDomainRepetitions = 0
125
126 [NTPAmplification]
127 NTPThreshold = 0
128
129 [SSDPAmplification]
130 SSDPThreshold = 0
131
132 [ConnectionExhaustion]
133 ConnectionThreshold = 0
134 MaxBytes = 10000000
135 MinDuration = 0.0
136
137 [Slowloris]
138 HalfOpenThreshold = 0
139 MinDuration = 0.0

Listing A.2: zero_limits.toml Configuration File used in FlowBreaker
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A.2 Setup Files

A.2.1 Docker Compose File

1 # This stack saves to /home/user/docker/zeek
2 # - this can be changed by the user,
3 # as long as it is consistent!
4 # In order for this script to function properly,
5 # the folder permissions need to
6 # be set to 766 - otherwise the container won't have write access!
7
8 # PLEASE DON'T RUN THIS SCRIPT WITHOUT ANY ACCESS CONTROL AS
9 # IT ENABLES ACCESS TO YOUR LOCAL DIRECTORIES THROUGH DOCKER!!!

10 # BEST PRACTICE WOULD BE USING A REVERSE PROXY
11 # INSTEAD OF FORWARDING THE 80 PORT!
12
13 # Before deploying, either change the /home/user/docker/zeek
14 # folder to a custom location, or change user to your own username.
15 # Make sure the permissions are set before launching
16
17 services:
18 zeek:
19 image: zeek/zeek:latest
20 volumes:
21 - /home/user/docker/zeek/zeek-logs:/zeek-logs
22 - /home/user/docker/zeek/uploads:/uploads:ro
23 working_dir: /zeek-logs
24 user: "root"
25 command: tail -f /dev/null
26 restart: always
27
28 webserver:
29 image: nginx:latest
30 volumes:
31 - /home/user/docker/zeek/uploads:/usr/share/nginx/html/uploads
32 - /home/user/docker/zeek/zipped-logs:/usr/share/nginx/html
33 /zipped-logs:ro
34 - /home/user/docker/zeek/nginx/nginx.conf:/etc/nginx/
35 nginx.conf:ro
36 -/home/user/docker/zeek/nginx/upload.php:/usr/share/
37 nginx/html/upload.php:ro
38 ports:
39 - "9005:80"
40 restart: always
41 networks:
42 - zeek
43
44 php:
45 image: php:7.4-fpm
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46 volumes:
47 - /home/user/docker/zeek/uploads:/usr/share/nginx/html/uploads
48 - /home/user/docker/zeek/zipped-logs:/usr/share/nginx/html/
49 zipped-logs
50 - /home/user/docker/zeek/nginx/upload.php:/usr/share/nginx/
51 html/upload.php:ro
52 - /home/user/docker/zeek/nginx/php.ini:/usr/local/etc/php/
53 php.ini:ro
54 restart: always
55 networks:
56 - zeek
57
58 zeek_manager:
59 image: debian:latest
60 volumes:
61 - /home/user/docker/zeek/uploads:/uploads
62 - /var/run/docker.sock:/var/run/docker.sock
63 - /home/user/docker/zeek/scripts:/scripts
64 - /home/user/docker/zeek/zeek-logs:/zeek-logs
65 - /home/user/docker/zeek/zipped-logs:/zipped-logs
66 - /home/user/docker/zeek/scripts/zeek_manager.sh:/
67 zeek_manager.sh:ro
68 depends_on:
69 zeek:
70 condition: service_started
71 environment:
72 - DOCKER_HOST=unix:///var/run/docker.sock
73 command: ["/bin/bash", "/zeek_manager.sh"]
74 restart: always
75
76 networks:
77 zeek:
78 external: false

Listing A.3: docker-compose.yml for deploying Zeek Frontend
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A. Appendix

Table of Abbreviations
AL Active Learning

ML Machine Learning

DDoS Distributed Denial of Service

LAN Local Area Network

OSI Open Systems Interconnection

IP Internet Protocol

IoT Internet of Things

TCP Transmission Control Protocol

UDP User Datagram Protocol

ICMP Internet Control Message Protocol

DNS Domain Name System

SSH Secure Shell

API Application Programming Interface

PCAP Packet Capture

PCAPNG Packet Capture Next Generation

SSL Secure Sockets Layer

NID Network Intrusion Detection

NIDS Network Intrusion Detection System

NIPS Network Intrusion Prevention System

IDS Intrusion Detection System

IPS Intrusion Prevention System

GUI Graphical User Interface

IoC Indicator of Compromise

CLI Command Line Interface

HTTP Hypertext Transfer Protocol
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A.2. Setup Files

HTTPS Hypertext Transfer Protocol Secure

PHP PHP: Hypertext Preprocessor

LINQ Language Integrated Query

FTP File Transfer Protocol

MAC Medium Access Control (Address)

QUIC Quick UDP Internet Connections

MAWI Measurement and Analysis on the WIDE Internet

WIDE Widely Integrated Distributed Environment

RAM Rapid Access Memory

TLS Transport Layer Security

URI Unique Resource Identifier
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