Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

ONIVERSITAT AICLLIN

WIEN

Leveraging Large Language Models for Parametrization and

Code Generation of Impedance Controllers in Robotic
Manipulation

DIPLOMARBEIT

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Univ.Prof. Dr.-Ing. Dipl.-Ing. Christian Ott
and

Prof. Gentiane Venture, Ph.D
Affiliation: University of Tokyo, Dept. of Mechanical Engineering, GV Lab

submitted at the

TU Wien

Faculty of Electrical Engineering and Information Technology
Automation and Control Institute

by
Moritz Resch
GumpendorferstraBe 51
1060 Vienna
Austria

Vienna, June 2025

Robotic Systems Lab RSL
A-1040 Wien, Gusshausstr. 27, Internet: http://www.acin.tuwien.ac.at

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Preamble

Zunéchst mochte ich meinen Betreuern, Prof. Christian Ott und Prof. Gentiane Venture,
vielmals dafiir danken, dass sie mir nicht nur ein groflartiges Auslandssemester, sondern
auch die Arbeit an einem spannenden und abwechslungsreichen Thema ermdglicht haben.
Weiters danke ich meiner Familie und insbesondere meinen Eltern fiir die grole Unterstiit-
zung in stressigen Zeiten.

Mein besonderer Dank gilt schliefflich auch Anna Hasenauer, die mir wéhrend der gesamten
Zeit, vor allem aber in der Schlussphase der Arbeit, eine grofle Stiitze war.

Vienna, June 2025

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Abstract

Recent progress in robot learning has demonstrated that Large Language Models (LLMs)
with reasoning capabilities can have high success rates in planning complex bimanual tasks.
However, they take considerable time to respond, making them unusable for real-time
applications. This work shows how to use their potential by building a copilot for robotics
engineers to solve bimanual, contact-rich manipulation tasks in a time-efficient manner.
After setting up the framework, the engineer only needs to input a natural language prompt
containing the location and characteristics of the object. The Copilot then generates
a Matlab file which produces a Cartesian trajectory for each arm (zero-shot) and full
parameterization of two impedance controllers, a virtual coupling spring, and end effector
rotations. The framework is implemented on two systems with different capabilities: a
Franka dual arm setup and Softbanks Pepper robot. Both are successfully tested on a
number of single- and dual-arm tasks, showing the effectiveness and reliability of the
framework.

I

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Contents

1 Introduction
1.1 Motivation e
1.2 Contributions

2 Related work

3 Introduction to the Systems used

3.1 Introduction to Franka Research 3
3.2 Imtroduction to Pepper Lo o
3.3 LLMs with reasoning capabilities

4 Framework

4.1 Framework requirements
4.2 Prompt
4.2.1 Output Variables - Overview
4.2.2 Prompt Structure
4.2.3 Platform dependent Adaptations to the Prompt

4.3 LLM and Interface
4.4 Control Code
4.4.1 Franka
Coupling spring - Calculation of the lookup table

Simulink layout

4.4.2 Pepper.o e
Inverse Kinematics

Force observer

Compliant Velocity Control

Coupling stiffness o

5 ComBi Copilot for new robot setups

5.1 General Pipeline
5.1.1 Error feedback

6 Experimental Settings
6.1 Experimental Settings - Franka setup
6.2 Experimental Settings - Pepper oo oL

7 Experiments

7.1 Experiments with Pepper oL
7.1.1 Dualarmtasks
7.1.2 Singlearm tasks o
7.1.3 Unsuccessful tasks 0oL

I

© 00 N ~N

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Contents

Iv

7.2 Experiments with the Dual-arm Franka setup
7.2.1 Pick-and-place tasks oL
7.2.2 Pick-and-place tasks outside of workspace
7.2.3 Wiping ground surface with sponge

7.3 Reliability and Success Rate oo
7.3.1 Pick and place a cardboard box
7.3.2 Wiping the floor with a sponge

7.4 Parameter Comparison of the Robotic Platforms

8 Limitations and Outlooks
8.1 Assumptions and Limitations
8.1.1 Franka setup specific limitations
8.1.2 Pepper specific limitations
8.2 Outlooks e
8.2.1 Outlooks - Franka setup
8.2.2 Outlooks - Pepper

9 Conclusion

A Appendix
A.1 Prompt for the Franka dual arm setup
A.2 User Commands for Franka setup tasks
A3 Pepper Prompt
A.4 User Commands for Pepper Robot tasks

41
41
42
42
43
43
43
45

47
47
47
47
48
48
49

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

List of Figures

1.1 An overview of the proposed framework in comparison to standard imple-
mentations of LLMs in robotic manipulation tasks.

3.1 Image of a real Franka Research 3 arm (a) and the dual arm setup of the
FR3 arms in simulation (b); (License for (a) by Franka Robotics)
3.2 Image of Pepper (Creative Commons license offered by WikiMedia)

4.1 General overview of the framework’s workflow
4.2 A general overview of the prompt written for the dual arm Franka setup .
4.3 exemplary contact force graphs for successful pick and place tasks of a box
4.4 Overview of the Simulink model showing the system dynamics block and
the controller block for each Franka arm, the forward dynamics block of
the dual arm setup and the reference block where the generated Matlab
fileis loaded.
4.5 Overview of the kinematic chain of the Simulink model of the dual arm
Franka setup and the error feedback logic.
4.6 Kinematic Chain of the Left arm of the dual arm Franka setup with custom
end effector e
4.7 Pepper robot - overview of the control workflow
4.8 Minimal Denavit Hartenberg (DH) model of Pepper’s kimenatic chains . .
4.9 Arm movement without an external disturbance; from top: 1. Control
output signal ¢, 2. actual and desired joint position of the left arm, 3. 7,
and Timotor values of the left arm, 4. external torque estimate 7.;: Legends:
1 HipPitch, 2 Shoulder, 3 Bicep, 4 Elbow, 5 ForeArm, 6 Wrist
4.10 Arm movement with an external disturbance; from top: 1. Control output
signal ¢, 2. actual and desired joint position of the left arm, 3. 7, and
Tmotor Values of the left arm, 4. external torque estimate 7.+ Legends: 1
HipPitch, 2 Shoulder, 3 Bicep, 4 Elbow, 5 ForeArm, 6 Wrist
4.11 Joint angles while lifting an arm with different stiffness values K Legends:
1 HipPitch, 2 Shoulder, 3 Bicep, 4 Elbow, 5 ForeArm, 6 Wrist
4.12 Joint angle error while lifting an arm with different stiffness values K
Legends: 1 HipPitch, 2 Shoulder, 3 Bicep, 4 Elbow, 5 ForeArm, 6 Wrist
4.13 Resulting estimated external torque for different stiffness values K Legends:
1 HipPitch, 2 Shoulder, 3 Bicep, 4 Elbow, 5 ForeArm, 6 Wrist

6.1 Franka dual arm setup with coordinate systems
6.2 Objects used for dual arm manipulation on Pepper
6.3 Objects used for single arm manipulation on Pepper

7.1 Exemplary dual-arm tasks used in the experiments with Pepper
7.2 Pepper picking up the cardboard box from the higher table

7
8

10
13
17

18
19
20

21
22

26

27

28

29

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

List of Figures VI

7.3 Example of compliant reaction during dual arm manipulation task 38
7.4 Examples of the single-arm tasks performed with Pepper 38
7.5 Image series of a pick-and-place task performed by Pepper 39
7.6 Image series of a hand over task performed by Pepper 39
7.7 Image series of Pepper wiping the table 40
7.8 Exemplary single-arm tasks used in the experiments with Pepper 40
7.9 Pick and Place task of a wood box 0oL 41
7.10 Pick and Place task of a cardboard box outside of the workspace 42
7.11 The Franka arms wiping the ground surface with a sponge 43
7.12 a.)-c.)Success rates (A = success, B = success after one feedback, C =
success after second feedback) for each task and d.) average time to generate
QTESPONSE « « v v v v e e e e e e e e e e e e e e e e e e e 44
7.13 Parameters used in Pepper’s Sponge-wiping task 46
7.14 Parameters used in Franka Sponge-wiping task 46

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

List

4.1

4.2

6.1

of Tables

Exemplary coupling stiffness values K. for a (0.1 x 0.1 x 0.1) box, *SCFB
= Spatial contact force block (by Simscape)
Coupling Forces for Pepper

Mass and coupling force by category L.

VII

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1 Introduction

1.1 Motivation

Many robots used today are limited to the specific tasks they are designed for. They can
confidently harvest one specific type of fruit yet fail to adapt to the characteristics of
another fruit. In addition, these robots have difficulty facing new instructions or commands
and cannot produce working trajectories from them. Generally speaking, if a robotics
engineer wants to generate executable code to solve a task, they have to invest significant
amounts of time and effort, especially if these tasks require dual arm manipulation in
contact-rich environments.

With the emergence of Large Language Models (LLMs), engineers now have the opportunity
to leverage the world knowledge they provide and make robots adaptable to different
tasks and challenges. LLMs are typically Transformer-based Neural Networks that are
trained on vast text datasets (often internet scale) to predict the next word (or token)
in a sequence. They learn the grammar, facts and knowledge contained in the datasets
and are able to solve language-based tasks, like answering questions or writing coherent
text. Especially with the rapid development over the last years, LLMs are not just able
to provide information but can also directly use this knowledge to produce working code.
It has already been proven in previous works [1] [2] [3] that publicly available LLMs can
adapt to different tasks and environments by e.g. putting sub-tasks in a specific order
and parameterizing them accordingly. When working on robotic tasks, this saves a lot of
time, as LLMs can autonomously generate executable policy code. Especially in dexterous
manipulation tasks LLMs can provide vital information, reducing the need for engineers
to account for every possible manipulation case in their code.

Nonetheless, it still takes a significant amount of work to program the framework and
available control APIs for a specific robot platform. Any action necessary for task comple-
tion has to be programmed beforehand, making this method less flexible. In many cases it
is necessary to provide examples of a working solution (few shot prompting)[1][3], which
takes additional effort. Furthermore, many of the previous papers focus on controlling and
parameterizing noncompliant single arm robots [4][5], drastically reducing the available
skill set. Most of the current solutions either rely on standard LLMs, which do not include
specialized reasoning capabilities, or fine-tuned models[6], which are not accessible to the
public.

1.2 Contributions

The aim of this thesis is to create an LLM-based framework that facilitates and accelerates
the programming of compliant dual-arm manipulators, without relying on extensive action
libraries and code examples. It must be adaptable to a wide range of robotic platforms
and enable fast, natural language-based code generation.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1 Introduction 1.2 Contributions 2

aﬁcmlihmnr Control Sequence
?wveHand(xyzi it
i o — goTo(x,y,z)
goTolx,y,z) '

—0 moveHand(x,y,z)
/' closeHand()

 Standard LLM ~ Single Arm

Natural Language

\ J/-\,
\‘ CONTROL- /
PARAMETERS

‘Reasoning LLM

Figure 1.1: An overview of the proposed framework in comparison to standard implemen-
tations of LLMs in robotic manipulation tasks.

With these requirements in mind, the ComBi Copilot is proposed. It is a framework
meant to be used by engineers and it aims to reduce the time and effort needed to solve
compliant manipulation tasks. The engineer is simply required to write a short natural
language prompt ("User command") to obtain a set of compliant control variables and
end-effector trajectories that can be directly used by supported robots. The framework is
designed to be easily adaptable to new robot platforms, as the prompt operates in a zero-
shot manner —requiring no example code— and includes general framework information
that can be reused across different systems. It is specifically not intended as a real-time
autonomous system and needs both a robotics engineer as an operator and multiple
minutes to generate the desired code. A comparison with typical existing frameworks is
shown in Fig. 1.1. It can be seen that the proposed framework does not rely on action
libraries or extensive code examples and generates code for dual arm manipulators using
an LLM with specialized reasoning capabilities.

The development of this framework is enabled by the overall progress in capabilities of
LLMs, and especially by the introduction of strong reasoning LLMs [7]. It allows for the
simultaneous coordination of two arms while also parameterizing a compliant controller
for each of them.

The proposed framework is tested on two robotic platforms: a dual arm FR3 setup
and a Pepper robot by Softbank. The following chapters reveal the capabilities of the
framework to generate Matlab code for simple single- and dual-arm manipulation tasks.
It is shown that even platforms with very different characteristics, like the Franka setup
and Pepper, can successfully operate on a similar set of parameters which are exclusively
set by the LLM.

Chap. 2 gives a summary of the current research and compares the proposed framework,
the ComBi Copilot, with existing solutions. This is followed by an overview of the
hardware used in this thesis in Chap. 3. In Chap. 4, the working principles of the
framework, including control strategies, prompt architecture, and more, will be discussed
in detail. The question of how to implement this framework on other robotic platforms

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

1 Introduction 3

will be answered in Chap. 5. Chap. 6 and Chap. 7 detail the experimental settings and
the corresponding experiments conducted on the Franka dual arm setup and the Pepper
robot as part of this work. Chap. 8 concludes the thesis by discussing the limitations of
the current framework and outlining potential future directions and challenges. In the
appendix A the prompts and user commands used for the experiments are shown in full
length.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2 Related work

In this section, an analysis of related work regarding zero-shot trajectory planning and
parameterization of Impedance Controllers with LLMs is given. Since the first high
performance LLMs were released in late 2022 there has been a lot of research on robotic
control code generation. Various approaches have been taken, which were mainly shaped
by the capabilities of the latest LLM.

To date, most papers have focused on implementing autonomous systems, including
vision and object segmentation algorithms that can solve a variety of tasks [8]. However,
LLMs still have the problem of forgetting instructions or delivering incorrect solutions [9].
This results in either decreased design choices by the LLM (e.g. only giving it a limited
set of skills) or comparatively high failure rates. In the case of reasoning LLMs, the time
to generate an answer from a given prompt can also be significant, making real-time
use difficult. Therefore, this work does not focus on creating a fully autonomous system
but rather on presenting a framework that helps engineers with robotics background to
efficiently create code for contact rich, dual-arm manipulation tasks.

In the following paragraphs, a summary of the most important key points and how they
compare to existing research is provided.

e trajectory planning

In previous scientific papers, the focus remained on high-level task planning by
putting prewritten control APIs in a meaningful order and parameterizing them
(e.g. function goToLocation(x=1,y=1,z=1)) [1]. For that, the LLM had to find
meaningful waypoints from which the control API could generate the trajectory ([2]
[3]). Despite having been used in many works, the approach of having a limited
number of skills is still considered a major bottleneck. Other research tried to avoid
pre-defining skills and leveraged LLMs to define value maps to serve as objective
functions for motion planners [10]. T. Kwon et al. [11] were the first to conduct
research on the capabilities of publicly available LLMs to generate dense Cartesian
trajectories in a zero-shot manner. This thesis applies many of the proven approaches
from [11], for example letting the LLM generate code which produces a trajectory
and making the end effector rotation adjustable to grasp objects. However, this
work goes much deeper into the parameterization of the compliant control, as is
shown in the next paragraph.

e Parametrization of compliant motion
LLM guided manipulation in contact rich environments is still an open challenge
around which little research has been conducted. Some approaches try to avoid
contact with the environment [10], while others make use of compliant control
algorithms [2] [12]. In many past works, LLMs were prompted to avoid detected,
non-relevant objects by, e.g., giving them low affordance values [10]. This method,
however, cannot be used when it comes to deliberate contact with objects (e.g.
cleaning a table with a cloth) or unexpected contact (e.g. human intervention).

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2 Related work 5

Based on the methods of J. Liang et al. in [1], K. Burns et al. [2] improved and ex-
tended the capabilities of single arm manipulators by including the parameterization
of an Impedance Controller and autonomous definition of termination conditions.
With this, the LLM is able to choose a ’cartesian_ admittance_move’ and defining
various compliance parameters (max_ cartesian_ stiffness, target_ impedance, vir-
tual cartesian_inertia) and the necessary "termination_ condition'. Consequently,
the LLM is forced to reason about interaction forces and is therefore able to work
in contact-rich environments. In this thesis, no control-APIs are used, but the
LLM can directly set the stiffness parameters for each timestamp in the trajectory.
Additionally, the parametrization in this work is done on a dual-arm setup, giving the
opportunity to also parametrize the compliance behavior between the end effectors
via a coupling spring. R. Zahedifar et al. [13] have shown that it is possible to
parameterize a nonlinear compliant controller by feeding environmental data to an
LLM, which returns adaptation proposals. Apart from these works, there has been
no significant research on the parameterization of compliant robot controllers with
the help of LLMs. Lastly, P. Hao et al. [14] have shown promising results using
a fine tuned Tactile-Language-Action (TLA) model, which navigates contact-rich
environments by feeding tactile images captured during manipulation into a vision
transformer. However, this approach is not relevant for this work, as only a publicly
available LLM is available and no tactile sensor data is captured. Further, it is
sufficient to use a compliant controller to fulfill many contact-rich manipulation
tasks (wiping surfaces, human interaction, etc.).

zero shot prompting

Especially when working with early versions of LLMs it was necessary to provide
extensive example solutions (few-shot prompting) to lead the LLM in the right
direction. Recent research [11][2] has shown impressive results using zero-shot
prompts, improving generalization, and eliminating the need for extensive example
preparation. Here, the best out of five solutions was taken and evaluated. This
indicates that zero-shot prompting continues to face challenges with reliability.
This thesis also uses zero-shot prompting regarding trajectory generation, but still
requires robot-specific examples for compliance variables. It is not clear how the
LLM determines reasonable stiffness values and termination forces in [2] in case of
zero-shot prompting.

Controlling Dual Arm setup with LLMs

Although significantly less research has been done on LLMs for dual-arm manipula-
tion, [15] and [16] proved that LLMs are capable of temporal and spatial coordination
of two robotic arms. Similarly to other research on unimanual setups, the frame-
work also provides a skill library divided into single- and dual-arm skills. However,
experiments do not include any contact-rich tasks and the LLM does not have
to parametrize compliant controllers. J. Varley et al. [12] proposed a framework
combining an LLM task planner with a separately parameterized compliant control.
Other works have chosen a multi-agent approach [17], in which individual LLMs
were used for each of the arms. In summary, most research on dual-arm manip-
ulation focuses on efficient coordination of two arms, usually leveraging standard
Transformer LLM-models like GPT3 or GPT4 for this task. This thesis tries to

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

2 Related work 6

go one step further, using the power of reasoning models to enable efficient arm
coordination and compliant control parameterization simultaneously.

LLM - Reasoning model

As Large Language Models with reasoning capabilites are a new development,
there has not been significant research trying to leverage these models for robotics
applications. Furthermore, the long response times make reasoning LLMs unusable
in real-time application, thus, limiting the areas of application. Nonetheless, K.
Chu et al. [16] use OpenAls ol reasoning model as benchmark in their experiments
and prove its potential in dual arm task planning. Their experiments show that
the publicly available ol model comes close to the performance of their specialized
LLM-based bimanual task planner, outperforming other reasoning models such as
Deepseek R1. Further discussion of reasoning LLMs appears in Sec. 3.3.

Vision and object detection

Previous work usually implemented object detection and segmentation algorithms
[12][2][1][5]. However, the framework proposed in this work is intended as Copilot
and relies on an engineer to include object location and characteristics in the prompt.
In the future, it can be extended by adding Vision capabilities (e.g. Vision Language
Models) to increase user-friendliness.

LLM based Copilot

Prior to the emergence of LLMs, visual programming was a popular choice to quickly
and intuitively generate robotic code. In most cases, these frameworks were intended
for non-experts and were, for example, block based [18] [19] or used flow-charts
[20]. These frameworks were mainly limited by their complexity in initial setup
and restricted action spaces. With the increasing popularity of LLMs, frameworks
allowed users to program robots via language commands, further reducing the need
for programming skills [4]. However, these works focused mainly on end users
without or with little engineering background to generate simple program code for
general robot services [21] or specialized collaborative actions, such as helping to
prepare medicine in a laboratory [22].

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

3 Introduction to the Systems used

This chapter presents the robots used throughout the experiments and provides an
introduction to LLMs with specialized reasoning capabilities.

3.1 Introduction to Franka Research 3

(a) (b)

Figure 3.1: Image of a real Franka Research 3 arm (a) and the dual arm setup of the FR3
arms in simulation (b); (License for (a) by Franka Robotics)

The Franka Research 3 (FR3) robot, developed by Franka Robotics, is an advanced
collaborative robotic system specifically engineered for precise manipulation tasks and
human-robot cooperation. Introduced in 2022, the FR3 offers remarkable performance in
terms of speed, precision, and sensitivity. Each FR3 arm has seven Degrees of Freedom
(DoF), stands approximately 96 cm tall and weighs around 17 kg, making it suitable
for various workspace configurations. It has a payload capacity of up to 3kg, a reach
of 855mm and a pose repeatability of +0.1 mm. Equipped with a variety of sensors,
including torque sensors in each of its seven joints, the FR3 robot is especially well suited
for force-sensitive tasks. These torque sensors enable the implementation of force and
impedance control, allowing the robot to dynamically adapt to its environment and safely
interact with humans.

The FR3 is compatible with popular robotics frameworks such as ROS, ROS 2, and
Matlab/Simulink. In this work, the Simulink environment was chosen due to the fact that
it offers intuitive programming, includes a variety of helpful toolboxes and provides good
visualization.

The FR3, and especially its predecessor, the Franka Emika Panda, have been used
in many scientific works to implement single [23] [24] and dual arm manipulation [25]

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3 Introduction to the Systems used 3.2 Introduction to Pepper 8

[26] tasks. In dual arm configurations, two FR3 robots can be coordinated to perform
bimanual tasks such as assembly, object handover, and cooperative manipulation.

The Franka Research 3 has become a standard platform in robotics research due to
its combination of high-performance hardware, flexible control interfaces and ease of
integration. Its capabilities make it suitable for a wide range of applications, including
human-robot collaboration studies, advanced manipulation research and the development
of novel control algorithms.

3.2 Introduction to Pepper

Figure 3.2: Image of Pepper (Creative Commons license offered by WikiMedia)

The Pepper robot, developed by SoftBank Robotics, is a semi-humanoid robot designed
to interact with humans through conversation and touch. Introduced in 2014, Pepper
stands approximately 120 cm tall and weighs about 28 kg [27]. It is equipped with a variety
of sensors, including two HD cameras, a 3D depth sensor, four microphones and touch
sensors on its head and hands. These features enable Pepper to perceive its environment
and engage in interactive communication with users.

Pepper operates on the NAOgqi operating system, which provides a number of built-
in functions, like say(), goToPosture(), and setAngles(). A drawback regarding
programmability is the fact that the popular Python SDK is only compatible with Python-
2, which already reached its "End of Life’ in 2020 and does not receive updates anymore.
However, alternatively a C++, Java and Javasript SDK is offered. In addition, a ROS
wrapper has been created to improve usability [28].

Pepper is mainly built for seamless human-robot interaction, including a touch screen
on its chest to display information. With 20 degrees of freedom, Pepper can perform
expressive gestures, enhancing its ability to communicate non-verbally. Each arm has five
degrees of freedom and the ability to open and close the fingers. Its mobility is facilitated
by a base with three custom-designed omnidirectional wheels, allowing it to move at
speeds up to 3 km/h. For its joints, it uses brushless DC motors, which are not directly
controllable but allow the user to read the absolute values of the motor current [27].

Pepper has been used in various sectors including retail, hospitality, healthcare and
education. In retail and hospitality settings, it serves as a greeter and information provider
[29], enhancing customer engagement. In healthcare, Pepper has been used to assist

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

3 Introduction to the Systems used 9

patients [30], particularly in reducing anxiety during treatments. Educational institutions
have used Pepper as a tool for teaching programming and robotics [31], as well as to
conduct research on human-robot interaction.

Despite its capabilities, Pepper has faced challenges in widespread adoption, leading
to a pause in production in 2021. Nevertheless, a significant amount of research is still
published using the Pepper robot, especially in the fields of human-robot interaction.
However, very little research has attempted to extend the capabilities of Pepper by building
a framework that enables manipulation of various objects.

3.3 LLMs with reasoning capabilities

Large Language Models (LLMs) are in the process of revolutionizing the field of robotics by
enabling more natural human-robot interaction, accelerating autonomous decision making
and bridging the gap between high-level language instructions and low-level robotic control.
Given natural language commands, they can generate a variety of outputs, including code
in practically any programming language.

However, thus far research in robotics has almost exclusively focused on standard
Transformer models such as GPT3 or GPT4. With the emergence of reasoning in LLMs,
(e.g. ChatGPT ol, DeepSeek R1, etc.) models show proficiency in tasks requiring logical
deduction and mathematical problem solving. Research shows that these reasoning LLMs
provide significantly better results in tasks that require logical thinking than standard
LLMs [32]. Previously, techniques such as chain-of-thought prompting, which encourages
models to articulate intermediate reasoning steps, were necessary to improve performance
on complex tasks [33]. Similarly, strategies like appending "Let’s think step by step"
enabled standard models to tackle reasoning tasks with improved success. Reasoning
models already include these steps and do not require such strategies [34].

Their capabilities are built upon a variety of concepts (for details, refer to [35]), for
example:

1. breaking down problems into intermediate steps and reasoning about each step(CoT)

[33]

2. decomposing problems into separate sub-problems and solving them e.g., individually
in a certain order. [36]

3. generating several reasoning paths and choosing the best one.

However, companies like OpenAl do not publicly disclose how their reasoning models
exactly work.

In summary, LLMs with reasoning capabilities are built on the same base model as
nonreasoning models, but receive a 'post-training’ including, for example, reinforcement
learning on human feedback (supervised learning) or other reward functions that encourage
correct reasoning steps. LLMs can also be equipped with longer context windows to
enable the consideration of more tokens and reasoning buffers to remember ’informative
high-level thoughts’ [37]. In comparison to 'normal’” LLMs, reasoning models already
include strategies like ’Chain of Thought’ natively.

In April 2025, OpenAl introduced their latest reasoning model 03. According to
benchmarks provided by OpenAl it significantly outperforms the earlier version ol and as
of May 2025 represents the forefront of LLMs with reasoning capabilities [38].

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework

The following chapters contain a presentation of the general framework proposed in this
thesis. In a nutshell, the framework consists of a prompt where the user inputs a desired
task, an interface to a reasoning LLM (e.g. OpenAI API), and a dual-arm robot platform
which can execute the generated code (see Fig. 4.1). The details of each part are explained
below.

4.1 Framework requirements

As the proposed framework is not limited to the robot platforms presented in this thesis, a
set of fundamental requirements must be satisfied to allow its application to other robotic
systems.

1. Compliant control algorithms for both arms that receive the desired stiffness values
for each timestep. This ensures that the LLM can independently adjust the stiffness,
depending on the subtask and the environment. When in free space, the LLM should
prioritize precision and when coming into contact with stiff surfaces or objects, the arms
should be compliant.

2. The controller must be able to follow a Cartesian Trajectory with the defined sampling
time (adaptable within the prompt). The LLM is prompted to create one trajectory for
each arm, which are then, together with the other parameters, provided to the compliant
controllers. This is done in a zero-shot manner, not relying on any predefined skills
or waypoints. If a Cartesian compliance controller is not directly implementable, an
additional inverse-kinematics step is needed (see Pepper implementation in Sec. 4.4.2). In
order to align the end effector to an object, the LLM separately defines the orientation

Wipe the ground surface with a
sponge. The starting center
position of the sponge is
(0.35, 0.0, 0.05) and the sponge
dimensions are (0.1, 0.1, 0.1).
Timeframe = 25 seconds.

CONTROL-
PARAMETERS

Couplin
S Arm stiffness C"o effector
stiffness orientation

Figure 4.1: General overview of the framework’s workflow

10

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.2 Prompt 11

of the end effector in the z-axis (see [11]). In case of systems with a low number of DoF
(like Pepper), it may be necessary to implement additional code that switches between
prioritizing position versus orientation, depending on the subtask.

3. A coupling spring between the two arms to clamp large objects in a compliant manner.
Ref. [39] showed that this is an effective and intuitive way to solve dual-arm manipulation
tasks, guaranteeing a compliant behavior. By combining the world knowledge of the LLM
with a short lookup table containing reference values, it is possible to set stiffness values
and, thus, a clamping force for a variety of objects. Although the look-up table might
only include values for a limited number of objects, the LLM can extrapolate to other
materials. With the coupling spring, the LLM can then define when to engage (on/off),
how hard to clamp (coupling stiffness) and in which direction to apply the force (x/y/z).
For implementation examples, see Sec. 4.4.2 and 4.4.1.

If the implementation of a coupling spring between two end effectors is not possible, the
LLM can directly specify a clamping force as in the case of Pepper.

If these basic requirements are met, an LLM can autonomously translate a short natural
language command into a Matlab (or Python) script which produces a set of parameters:
Arm trajectories, arm stiffnesses, end-effector orientations and interaction parameters.

4.2 Prompt

The foundation of the pipeline is a prompt that is fed to an LLLM with reasoning capabilities.
The prompt consists of two parts: a back-end explaining all the necessary requirements
and an adaptable "User command". The prompt design was inspired by [11] and extended
to support compliant dual-arm manipulators. To achieve a well-interpretable prompt, the
learnings and recommendations of [40] and [34] were used. Especially the recommendation
to let the reasoning model review the prompt several times significantly improved the
structure and understandability. In addition, if the model responded incorrectly, the
correct answer was given and the reasoning model was asked to improve the prompt to
avoid this mistake in the future.

Although useful with standard LLMs, it is not necessary to include "step-by-step thinking"
commands in the prompt, as this is already done by the reasoning model itself [34].

The LLM is prompted to generate a Matlab file, which outputs the required trajectories
and parameters. Alternatively, it is also possible to generate a Python file, as in [11]. The
trajectory generation in this work is done without giving any examples (zero-shot); the
compliance variables, however, depend on reference values to produce reliable results.
All the prompts used in this work are provided in the Appendix A at the end of the
document.

4.2.1 Output Variables - Overview

The Matlab file generated by the LLM must include a number of variables which are then
directly fed to the dual arm manipulator. Therefore, it is important to specify the exact
values that the variables should contain and the respective size of the generated vector or
matrix. For example, in the case of the end effector rotation, the matrix size is set to be
'(time/timesteps+1) x2’, resulting in a (20/0.1 + 1) = 201 x 2 size matrix for a total time
of t=20s and a sampling frequency of 0.1%.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.2 Prompt 12

o positionl: trajectory of the left arm (when observing from behind). Contains a list
of the desired [x,y,z] positions for each timestep.

o position2: trajectory of the right arm (when observing from behind).

o time: The time vector contains the absolute time and follows the time increments
set in the static prompt.

e K1 and K2: Provide the environment-specific Cartesian arm stiffness in the format
K/ [t]*Identity(6). In case of the Franka setup, the first three diagonal elements
of the stiffness matrix are set.

e coupling —vector: Provides the stiffness of the coupling spring between the dual arm
setup. In case a coupling spring is not feasible (e.g. Pepper), the coupling — vector
directly represents the force in [x,y,z] that acts on each arm to clamp an object. The
exact structure of the coupling — vector is highly dependent on the virtual coupling
spring that is implemented. For example, in Pepper’s case it is also used to switch
between single and dual arm manipulation.

e rot,: determines the necessary rotation of the end effector to interact with an object.
For example, in Pepper’s case rot, can be adjusted to pick objects from above, from
the side, or hand them over.

4.2.2 Prompt Structure

The prompt, as also shown in Fig. 4.2, is divided into three subsections:

1. Static part: These sections generally do not need adjustment and consist of details
regarding: Time discretization, trajectory generation, and output data formats. Together,
they create a set of rules and reminders (e.g. "Define phases"; "Ensure smooth continuity").
2. Variable part: Provides robot- and environment-specific information, for example:
Environment setup, workspace constraints, collision avoidance, object interaction (single
and dual arm), and additional requirements. In this part, the engineer must also provide
exemplary values for the compliance parameters: arm-stiffness and coupling-stiffness.

3. User command: the user command must include object locations and characteristics,
as this framework currently does not include any vision capabilities. Apart from this, any
natural language command can be inserted, as long as it does not violate any constraints
mentioned in the prompt.

The static and variable parts together build the back-end of the prompt, which is

specific for one robot setup. For each task, it is combined with the User command and
forwarded to the LLM.
This framework relies on advanced reasoning LLMs and has only been tested successfully
on OpenAl’s ol and 03 models and, more briefly, on DeepSeek R1. Other advanced models
such as ol-pro have not yet been tested but are expected to perform equally well or even
better, especially with regards to forgetfulness. Standard non-reasoning LLMs have also
been briefly tested and were able to generate executable code but ignored or forgot about
important aspects (e.g. correct rotation of end effector, adjusting stiffness values, etc.)

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

4 Framework 4.2 Prompt 13

FRANKA PROMPT OVERVIEW

Introduction:
You control a pair of Franka Emika Panda 7-DOF robotic arms.
Your goal is to generate a MATLAB file called x_d.m ...

e ENVIRONMENT SET-UP * TRAJECTORY GENERATION
* WORKSPACE CONSTRAINTS ¢ TIME DISCRETIZATION

* COLLISION AVOIDANCE ¢ OUTPUT DATA FORMAT

* STIFFNESS MATRIX * OUTPUT

* COUPLING VECTOR

* OBJECT INTERACTION
 SINGLE ARM REQUIREMENTS
- DUAL ARM REQUIREMENTS

e ADDITIONAL REQUIREMENTS

USER COMMAND:

Define a trajectory for each of the two robot arms, that carry a cardboard box
from its starting position to an end position ...

Figure 4.2: A general overview of the prompt written for the dual arm Franka setup

4.2.3 Platform dependent Adaptations to the Prompt

Depending on the robotic platform, different chapters and prompt output variables must
be prioritized.

Pepper requires a more extensive "Collision Avoidance" section to be able to avoid, e.g.,
the table surface, since the arms only have 5 DoF. This is also reflected in the requirements
to "close the hands when moving above the table surface", "approach objects in a wide
arc" and "not moving purely in the z direction". However, the hands of Pepper allow
us to parameterize a broader set of variables than the Franka set-up. Here, the LLM is
required to adjust the hand closure and orientation depending on the characteristics of
lifted objects. For example, a tall glass should be grasped from the side with a firm grip,
whereas a sponge (width > height) must be grasped from the top employing a more gentle
grip.

The dual-arm Franka platform does not include hands, but includes much more respon-
sive impedance controllers and more extensive parameterization of the virtual springs.
Therefore, the prompt allows the LLM to parameterize all three diagonal values of the
translational stiffness matrix. The LLM is also asked to reason about objects and adjust
the coupling spring stiffness to the object stiffness and weight.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.3 LLM and Interface 14

Finally, the two prompts have virtually the same length, but the Pepper implementation
requires more constraints due to collision avoidance, making it slightly more challenging
for the reasoning LLM to produce accurate code.

4.3 LLM and Interface

Depending on the reasoning LLM that is used, an appropriate interface to the LLM must
be coded. In the simplest case, this could be the browser version of the LLM, which also
simplifies the process of giving error feedback. However, this framework also provides
a more automated approach in which the user command is automatically merged with
the rest of the prompt and sent to the LLM utilizing a Python file. The response is then
divided into a ’Code’ and a ’Reasoning’ part. To enable feedback to the model, it is
important to set the request as 'Responses APT’ instead of ’Chat Completion’.

The Python code can be extended to make a fully automatic pipeline, which, however,
has the downside of worse traceability by the engineer. In terms of response quality of
OpenAl reasoning models there is no difference between using an API and the browser
version since the generation parameters (temperature, etc.) cannot be set manually.

4.4 Control Code
4.4.1 Franka

Since Franka represents a kinematically redundant system, with more joint DoF n than
the task space dimension m requires, the control algorithm has to be chosen accordingly.
A standard Cartesian impedance control law [41] is combined with a coupling stiffness
[39] and null space damping;:

7= J"(Adyes + 1 — Dgé — Kqe
- (Dcéc + Kcec>) - N(Q)Doq (41)

where 7 € R™ is the resulting joint torque, Dy € R™*™ is the diagonal damping matrix,
K4 € R™™ is the desired diagonal stiffness matrix, e = v — z,.y € R™ is the position
error, J € R™*" ig the Jacobian, A € R™*™ is the Cartesian inertia matrix and y € R™
contains the centrifugal and Coriolis terms in Cartesian coordinates. N(gq) € R™*" is
the null-space projection matrix, Dy € R™*™ the null-space damping and ¢ € R" is the
joint velocity. Lastly, K. € R™*™ is the coupling stiffness, D, € R"™*™ the corresponding
damping and e, € R™ the distance between the end effectors [39]. Dy is calculated
based on a desired stiffness K; and Cartesian inertia A using the equations for double
diagonalization from [42]:

Dy = Q(q)" diag(6:) Q(q) (4.2)
with
& =26V N, € €0,1] (4.3)

where ¢ € R™ is the joint position and Q(q) € R™*™ is calculated from the transformed
eigenvector of the stiffness matrix K; and the Cholesky decomposition of the inertia

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.4 Control Code 15

matrix A. £ is the damping coefficient and A; are the eigenvalues of the stiffness matrix
Ky.

The coupling distance error term e, is calculated by subtracting the distance between
the end effectors from the reference distance x,.r. The coupling stiffness K. is defined
by the LLM, and the reference distance is constant, calculated as 0.95 times the object’s
width. The LLM is prompted to set the coupling-vector accordingly:

coupling — vector = [on/off (0/1), K., clamp dist. z, clamp dist. y, clamp dist. z

where clamp dist. refers to the width of the object in the direction of clamping. For
example, if a box is grasped along its x axis, the clamp dist. x will be set to the width of
the object, and the other distances remain 0.

The control law in Eq. 4.1 is implemented for both arms:

Treft = JE (ALdvesr + pr — Darér — Kazer

— (De,Lrée,nr + Kenree,rr)) — N(qr)Dogr (4.4)
and
Tright = J& (AREves,r + i — Da,rér — Karer
+ (De,r.r + éc,L.rK . LrE,LR) — N(qr)DogR (4.5)
with
ec = (Ze,L — Te,R) — Tref (4.6)

where the subscripts 'L’ or 'R’ indicate that the parameters are only valid for the
corresponding arm, whereas the subscripts 'LR’ represent the values that are shared across
both controllers. Note that the coupling parameters in Eq. 4.4 and Eq. 4.5 have different
signs to produce the desired clamp force.

The control algorithm does not rely on any inverse kinematics step since the Franka
arms are joint-torque controlled. The LLM is prompted to parameterize the stiffness Ky
for both arms, the stiffness of the coupling spring K. and the trajectories including end
effector orientations. In case of the Franka dual arm setup, the LLM has to parameterize
all diagonal values of the translational arm stiffness matrix. The rotational diagonal values
are chosen to be equal to the maximum translational stiffness value. The LLM is asked to
set a comparatively high arm stiffness (K; = 10000%) while moving through free space.
When contact with a soft environment (e.g. soft ball) is required, the end effectors are set
to medium stiffness (K4 = 5000%), while a stiff environment (e.g. table surface) requires
low stiffness (Ky = 1000%). During transportation, object safety is key. Therefore, the
stiffnesses of both arms are set to medium in the direction of movement. This results in
more compliant behavior in response to unforeseen obstacles.

It should be noted that the coupling spring stiffness and arm stiffness must be designed
in a compatible way [39]. Therefore, as soon as the coupling spring is activated, the LLM
must also reduce the stiffness of the arm Ky to 100% in the corresponding direction. The
coupling spring is discussed in more detail in the next section.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.4 Control Code 16

Coupling spring - Calculation of the lookup table

Since LLMs are trained on internet-scale datasets, they are able to generalize from known
objects to novel or previously unseen ones. For example, if we only provide coupling values
for a cardboard box, the LLM is able to estimate the required values for a wooden box.

The Franka setup was only implemented in simulation and the different coupling
parameter values where found by adjusting the stiffness, damping, friction and transition
region depth values of the Simscape Spatial Contact Force block and the density of the
object. Depending on these values, the coupling stiffness K. had to be adjusted until the
arms were able to perform the designated task. For application to real-world experiments,
fine-tuning of the parameters may be necessary. Tab. 4.1 shows exemplary coupling
stiffness values K, that were effective in simulation using Simulink Simscape Multibody.

Table 4.1: Exemplary coupling stiffness values K, for a (0.1 x 0.1 x 0.1) box,
*SCFB = Spatial contact force block (by Simscape)

Mass | SCFB Stiffness () | SCFB Damping(mNs) K(X)
1000 100 120
3000 100 100
6000 100 100
0.04 kg 10000 100 120
50000 100 230
1000 100 260
10000 100 310
0-1 kg 50000 100 910
100000 100 1489
50000 10000 650
50000 9250 650
kg 100000 10000 450
100000 100 400

When grasping an object, the LLM is required to estimate the weight, damping and
stiffness values and choose a corresponding coupling stiffness K.. The prompt (shown in
the appendix A) includes eleven values from the Tab. 4.1.

Finally, during the testing of different coupling stiffnesses, the simulation results showed
unrealistic behavior, once again stressing the fact that the stiffness values K. in Tab
4.1 probably do not apply to the real world. The contact force during interaction with
objects was generally noisy in all experiments (see Fig. 4.3). The noise amplitudes of the
normal force increased with higher K. values, effectively leading to slippage and decreased
pick-and-place performance, which is not expected to happen in real-world scenarios.
Moreover, it was not possible to perform experiments on stiff objects using realistic object
parameters. For example, wood has a Youngs modulus of around 20 GPA [43], which
translates to a spring stiffness of around 2 108% for a (0.1 x 0.1 x 0.1) box. In the
simulation, this leads to very high contact forces and an early termination upon contact.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.4 Control Code 17

z
B 4
L
2
0 1 2 3 . 5 6 7 8 9 10
time (s)
() Normal force for object stiffness = 1k, weight = 0.04kg, Kc =120 N/m
110
100
90
80
70
=4
B’ 60
It
O 50
40
30 i
20 ‘
- F |
0 1 2 3 6 7 8 9 10

5
time (s)

(b) Normal force for object stiffness = 50k, weight = 0.1kg, Kc = 910N/m

Figure 4.3: exemplary contact force graphs for successful pick and place tasks of a box

Simulink layout

This section discusses the Simulink implementation of the Franka dual arm setup. The
robot dynamics (Mass matrix M, Coriolis matrix C, gravity vector 7,) and kinematics
(end effector Jacobian Jp, time derivative of the end effector Jacobian Jtcp, end effector
Transform Hy.,) are calculated with a proprietary Matlab function getDynamics () [44].
Fig. 4.4 shows an overview of the Simulink model used in the Franka implementation. The
reasoning LLM is prompted to generate a x_d.m Matlab file, which, when run, generates
a x_d.mat file containing all the requested variables. The x_d.mat file then gets loaded
inside the 'Reference’ block and the variables are forwarded to the impedance control
blocks "Left Arm_ Control_y positiv’ and ’Right Arm_ Control_y negative’. Inside, the
output torque 7 is calculated according to Eq. 4.4 and Eq. 4.5, and forwarded to the
"Franka Forward Dynamics’ block, which contains a SimMechanics model of the dual arm
setup (see Fig. 4.5 and Fig. 4.6).

The resulting joint positions ¢ and joint velocities ¢ of each arm are calculated and

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.4 Control Code 18

M 7i q
. ’—P dq
T 1
i [[‘ » M
g I ‘ 1 P C
J_tep Ptau_g
@ i 1 S—
dynamics 1P Jg Ja “[—P dJ
tau
H_tep dJaf— xe
——Pdq . _l dJjg ‘ - ,i‘ f > ol
| J Pldq fen dxe [‘—» x2 ,_@
1 H . e e
System Dynamics Left Arm || | Gty
Forward Kinem. Left | - Q—@
H ‘Hioul T > K1 dal
tcoupiing
fcn
Left Arm_Control_y positiv

Base_offset_adjustment LeftArm

! |

x1_ref < ‘I
P distForce J
r P taul dq
TCP Disturbance Force xyz_L ‘ — pl distForce1

x_ref_| Leﬂ ql

‘
| | e, |
i coupiing on/offl dq1

LLM INPUT » e t ‘
S |

TCP Disturbance Force xyz_R

Franka Forward Dynamics
[SimMechanics]

Reference ’

‘ [A
’—P d
| | Mq
m | [l [I &
| [|1 [
e [I I T
—»lq J
| O || Tyt r— » ..
‘ 1\ 1] R [I 2
4 J_tep | ‘ T % Lpixe . aR
dynamics %-tP Jg Ja _‘ T dxe ——»{ :)
Htep [» dap— ‘ i dqR
dq [J 4 = daxt
q
[T % & e s
—l H da}— l K1
System Dynamics Right Arm - coupling
‘ Forward Kinem. Right Rigjt Arm_Control_y negativ
P H H_out
fen
Base_offset_adjustment RightArm

Figure 4.4: Overview of the Simulink model showing the system dynamics block and the
controller block for each Franka arm, the forward dynamics block of the dual
arm setup and the reference block where the generated Matlab file is loaded.

sent to the ’System Dynamics’ block which contains the aforementioned getDynamics ()
function. Next, the calculated dynamics parameters are transformed into task space using
the "Forward Kinem. blocks and, together with the new reference position, sent to the
impedance controller blocks again.

To provide further insight on the ’Franka Forward Dynamics’ block shown in Fig. 4.4,
Fig. 4.5 presents an overview of the interaction between the arms, the environment ("Floor
plane’ block) and one of the objects used in the manipulation tasks (WOODEN BOX’
block). Furthermore, the error-feedback logic is shown, where an error message is sent
and the simulation is stopped if the contact signal becomes zero while coupling between
the arms is active.

It is important to note that the desired Cartesian coordinates x_ref Left’ and
'x_ref_Right’ are only used to show a red position marker during simulation (visible in
the figures presented in Sec. 7.2).

The kinematic chain of the left arm is shown in Fig. 4.6), where the values of the
control variable 7 are sent to the corresponding joints. The open connection on the left
side connects to the world frame (see Fig. 4.5. At the end of the kinematic chain, the

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

4 Framework 4.4 Control Code 19

/
/

Error Feedback

— N
GO)——F—>cowing . out sTOP
coupling on/off P contact fcn

F

normal force

Spatial
Contact Force Left .@

\
\

]

]

]

]

'

]

]

i

]

'

]

- '
ntact signal :
]

'

|

]

1

]

]

i

]

1

]

]

i frictional force P
B 1 [] e e e e e e E s s escscscnanne -
xf——pi l;p Lo la
GO s | —wom Bor *
x_ref_Left fon 2 > Desired Pos. Marker Left
’
8"\ F B*F distForce
IR SE—
L
. panda_link19
panda_joint!
[<w‘ . o o e w?{p 'R'G Q\?t oo G.R‘ J
World Floor plane 'WOODEN BOX
; c—o - FoR Left Arm Kinematic Chain
world_Frame_trafo L
fix)=0
FoOF Right Arm Kinematic Chain
world_Frame_trafo R
| distForce1
ond
e PRy,
GO | —oom e S
x_ref_Right fon zf—— e Desired Pos. Marker Right — ‘/"
Spatial
Contact Force Right panda_joint16 panda_link17

Figure 4.5: Overview of the kinematic chain of the Simulink model of the dual arm Franka
setup and the error feedback logic.

custom end effector plate is mounted, which interacts with the "'WOODEN BOX’ block
via a standard Simscape Spatial Contact Force block. Furthermore, the external force
specified in the "TCP Disturbance Force xyz_ L.’ also gets sent directly to the end effector
to simulate outside disturbances. Finally, each joint within the chain returns its resulting
joint position and joint velocity corresponding to the input torque 7. As shown in Fig.
4.4 these values are again returned to the dynamics blocks 'System Dynamics Left Arm’
and ’System Dynamics Right Arm’.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.4 Control Code 20

dist W«u

H,}.x.lxnb,«gx-x.,«jx.y.

fixed panda_link0 | panda_joint1 | panda_lnk! | panda_joint2 | panda_link2 joint3 | panda_link3 | panda ia_lnké | panda_joint | panda. panda_link6 | panda_joini7 | panda_lnk? panda_joint®

WOODEN BOX

Figure 4.6: Kinematic Chain of the Left arm of the dual arm Franka setup with custom
end effector

4.4.2 Pepper

The Pepper robot provides joint position control that can be accessed via the ALMotion
function setAngles(joint names, angles, fractionMaxSpeed). It does not include
force-torque sensors, however, amplitudes of the motor currents can be accessed via the
memory. The arms have 5 DoF and no built-in compliant control is offered. Therefore,
the system does not meet the basic requirements of a Cartesian controller, external force
measurements and tunable compliance parameters, which require additional programming.
To provide a clearer overview, each implementation step is presented in its own section.

The Pepper robot is controlled directly through a Python-2 script and NEP nodes [45]
for communication. To the knowledge of the author, no prior research has attempted to
implement a compliant, bimanual framework on Pepper.

Inverse Kinematics

In a first step, the Cartesian trajectory generated by the LLM has to be transformed
into joint space. For this, the standard inverse kinematics function by Matlab’s Robotics
Systems Toolbox is used. In contrast to the Robotics Toolbox for Python, the Matlab
version allows the user to adjust the weights for the orientation and position accuracy.
Pepper’s arms only have 5 DoF, hence, not every position is reachable in every orientation.
To expand the workspace, the "HipPitch" which is responsible for forward and backward
leaning is added to the kinematic chain. However, this poses the problem that both

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.4 Control Code 21

LA

USER INPUT TRAJECTORY —_—
+ ‘ 0 il . PARAMETERS ’ dEER et
STATIC PROMPT —0 v
W MATLAB

INVERSE
KINEMATICS

REDUCED
/ RIGHT ARM

URDF-MODEL

(e
- FORCE
£ Al 05 SERVER
\ o\
N m

L el g PYTHON FILE

REDUCED
LEFT ARM
URDF-MODEL

\ CURRENT
MEASUREMENTS

Figure 4.7: Pepper robot - overview of the control workflow

kinematic chains (left and right arm) share this joint. Therefore, the inverse kinematics
steps of the left kinematic chain are calculated first and the resulting "HipPitch" angles
act as constraints for the calculation of the right chain. This is done by setting the joint
constraints of the underlying Urdf-model equal to the solution of the left chain. When
calculating the trajectories for dual-arm or left-hand tasks, this pipeline works as is. If
purely right-hand tasks are required, the order of the left- and right-chain calculations
has to be flipped. Automating the change of order of these calculations remains an open
challenge.

A well-performing compromise to the restricted workspace issue is to generally prioritize
position over orientation accuracy by adjusting the inverse kinematics weights accordingly.
When grasping an object, the wrist joint is adjusted depending on the orientation of
the object and the rotation of the elbow joint. If the desired rotation of the wrist is
greater than the maximum range of [-104.5,104.5] deg, the weights for the accuracy of
the orientation are increased. This is, for example, necessary in handover tasks where the
wrist joint has to be rotated by 180 degrees.

The already mentioned Urdf model of Pepper was obtained via the Softbank website
and modified to to fit the task. More specifically, the fingers where removed to increase
calculation speeds and joints that are not part of the left or right kinematic chains were
made static. In summary, the Maltab file receives the Cartesian trajectory data and the
desired end effector orientation and calculates the corresponding joint angles for each
timestep. This process takes approximately 20s for a trajectory with 200 waypoints on an
AMD Ryzen 7 7840U CPU.

Force observer

Pepper does not have built-in force/torque estimation capabilities. The motors are
controlled by joint position controllers that typically try to minimize joint position error.
Not only does it lead to collisions with unpredicted obstacles, but Pepper continues
to apply pressure while trying to reach the desired position, potentially damaging the

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.4 Control Code 22

surrounding and itself. However, it is possible to access the absolute value of the current
reading of each joint motor. These sensor readings are noisy but allow for an estimation
of the external torque as shown in [46]. In the adaptation for this work the following
equation is used:

‘%emt| = |Tmoto7‘ - corrTg| (47)

where 7., represents the estimated external torque, Ceop is a correction Matrix, Timotor iS
the motor torque from the current readings and 7, is the motor torque required due to
gravity, computed with the function rne(configuration) offered by robotics toolbox
for python [47]. The absolute value signs in Eq. 4.7 are used to indicate that in Pepper’s
case we do not get any direction information from this equation.

In the case of this work the underlying model of Pepper is replaced by a minimal 6DoF
(HipPitch + Arm chain) Denavit-Hartenberg (DH) representation for the left and right
arm (see Fig. 4.8). This has the advantage of guaranteeing the correct signs for the gravity
torque and reduced computational cost, as fewer joints are included. To obtain usable
data, 74 and 7Tp,et0r still require filtering and adjustments, which will be discussed in the
following paragraphs.

X = 04 ’ x

(a) DH model of the left chain (b) DH model of the right chain

Figure 4.8: Minimal Denavit Hartenberg (DH) model of Pepper’s kimenatic chains

When moving in the direction of gravity, the motor currents are decreased to a minimum
amplitude. Therefore, when an arm is moved up and down again, the current readings are
not symmetrical but have a sharp drop after the top position is reached. This must be
respected in the external torque calculations since Eq. 4.7 would otherwise lead to wrong
estimates. Consequently, 7, is also reduced over 12 timesteps to 40% of its original value,
following the ramp of Tioter. This is illustrated in Fig. 4.9 graph 3, where at timestep
t=100s the arm moves downwards (with gravity) and 7, is able to approximately follow.
The figure also shows that the estimate of 7, does not provide an accurate depiction of
Tmotor- Consequently, an external torque is only recorded if the difference between 7, and
Tmotor €xceeds a certain threshold. Fortunately, external disturbances usually produce
peaks that are much larger than the threshold.

Next, Thmotor Needs to be smoothed, as current measurements are notoriously noisy. For

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.4 Control Code 23

this, Pythons collections library was used, more precisely the deque class, creating a
simple moving average filter with window size = 15.

Lastly, the signs of Eq. 4.7 need to be adjusted. For this, a simple Python function was
implemented, which sets the signs to oppose the current velocity during motion. When
the joints are nearly stationary, the external torque 7. is set to counteract 74. In the
experiments conducted in this thesis, the arms are only static when picking up objects or
handing over items. Since Pepper only stands at 1.2m tall it can be assumed that external
perturbations during these short phases tend to come from above (e.g. when taking an
object from Peppers hand in a rough manner). Therefore, the external torque values Tyt
are presumed to align with gravity, thus counteracting 7,.

The approach for the static case was inspired by [46], however, in the original work, the
signs of the external torque values are aligned with the signs of the gravitational joint
torques 7,. Thus, assuming that external forces act against the direction of gravity.

The following code snippet List. 4.1 shows the sign adaption logic of the external torque

Text:

def CorrectSign(tau_ext, tau_config, dq):
for i, vel in enumerate(dq):
if vel > 0.02 or vel < -0.02: # |velocity| over threshold
tau_ext[i] = np.sign(vel) * abs(tau_ext[i])*-1
else: # static joints
tau_ext[i] = np.sign(tau_config[i]) * abs(tau_ext[i])
*=1
return tau_ext

Listing 4.1: Python code to adjust external torque direction based on the joint velocity

In Fig. 4.10 an example of an external torque measurement can be seen. At approxi-
mately t = 88s, a force is applied to the shoulder joint "LShoulderPitch" while moving the
arm upwards (negative shoulder rotation in Fig. 4.10, graph 2). Since we assume that
Tegt CcOunteracts motion, the sign of the estimation in Fig. 4.10, graph 4 must be correct.
When comparing graph 1 of Fig. 4.10, to graph 1 of Fig. 4.9, it can be seen that the
external torque 7., has a direct influence on the joint velocity at t = 88s (see Eq. 4.9).
In the case of external perturbations, the arm moves away from the source in positive
direction.

The obvious disadvantage of this solution is that external torques that align with the
direction of movement are interpreted incorrectly and lead to a motion against the source.
This can occur especially when interacting with humans or animals, as static objects
are not able to exert such forces. For example, a person could try to rush Pepper to
move faster by pushing its arm in the direction of motion, which, in the case of this force
observer, would not lead to the expected reaction. However, this scenario is comparatively
unlikely and Pepper’s motors are not powerful or fast enough to cause serious damage.
Still, this force observer helps to efficiently protect surrounding objects, humans, and its
own hardware from forceful motions against static obstacles.

Improving the force observer to accurately estimate the sign of external disturbances
from all directions remains an open challenge.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 4.4 Control Code 24

Compliant Velocity Control

The compliant controller for Pepper is based on a python-adaptation of a velocity controller
[48] and a joint-velocity-based compliant controller, as described in [49]:

q= % [Tc —Ts + K (QTef - Q)} (48)

Here, 7. € R™*! is an external torque (e.g. for gravity compensation), 7, € R™"*! is
the torque feedback from a sensor, K € R™*™ and D € R™*" denote the desired stiffness
and damping. ¢y.r € R"™*! represents a reference position for the impedance controller
and ¢ € R™! is the actual joint position. In the paper [49], the control algorithm is
implemented for series elastic actuators (SEA), therefore the equations mentioned to
calculate 75 do not apply. It is important to note that all stiffness matrices in this chapter
are 6 x 6 identity matrices scaled by a factor. For simplicity, only the scaling factor K - I
is shown.

For the implementation on Pepper 7. and 7, are replaced by the external torque estimate
Text and an approximation of the virtual coupling spring must be added. Therefore, Eq.
4.8 becomes:

1
q= D [KTText + Telamp + K (Qr‘ef - Q)] (4.9)

Here, K, € R™! is a scaling factor of 7oz and Telamp 18 the torque responsible for clamping
objects (see Sec. 4.4.2). It can be seen that the joint velocity ¢ is now not just determined
by the external torques 7.+ and the proportional control part to follow the reference
trajectory, but also by 7.qmp which is set by the LLM to clamp large objects during
dual arm manipulation. To ensure good performance, the values of Kiuy, Teiamp, and K
must be set in a compatible way. Furthermore, Eq. 4.9 represents an inner velocity loop
which provides a reference joint velocity to an outer velocity controller. In the case of
this implementation, the joint velocity is sent to Pepper in a feedforward manner, as the
python adaptation of the Pepper velocity controller [48] does currently not incorporate a
feedback of the joint velocity. Closing the loop and therefore enhancing the performance
of the controller setup remains an open challenge.

The Pepper robot allows the user to set joint positions by using the function
setAngles(joint names, angles, fractionMaxSpeed). The joint-velocity controller
mentioned above uses this function by setting the fractionMaxSpeed according to the
desired joint speed ¢. However, the joint speed is not set immediately but uses ramps to
build up and reduce speeds until the desired value is reached. The slope of these ramps
had to be adjusted to self.accMax[i] = 150.0 to increase the reaction speed.

In Fig. 4.13 and 4.12 the joint angles and joint angle errors for different stiffness values
K are shown. A low stiffness of K = 0.1% shows a significant lag and a large error.
When increasing the stiffness to K = 10%, a tendency to overshoot can be seen at t =
12s, while error values are not significantly lower compared to K = 5]:; 7. In this work,
a range of K € [1,5]% was chosen. If stiffness is low, the torque in Eq. (4.9) has a
larger influence, leading to a faster reaction and a larger amplitude of movement. On the
downside, it also leads to a less responsive controller with slightly higher delay of up to 1
second. Therefore, if precision is prioritized above compliance, the stiffness should be set
to K = 5%. The corresponding damping matrix D is found by calculating:

D=2-¢- VK (4.10)

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 25

with & = 0.7.

Finally, K has to be experimentally tuned to find a good balance between fast reaction
and evasive movement amplitude. If K is set high, the maximum external torque 7es;
when hitting an obstacle decreases, but the evasive maneuver increases in amplitude since
the control output ¢ is temporarily saturated. In contrast, if K is set low, the external
torque Teq+ must reach a higher amplitude to produce an evasive movement. After multiple
experiments, K = 0.75 was found to have the best results. To prove variable compliance
according to stiffness K an experiment was conducted in which a force was applied to the
end effector while the forearm was moving upward (pure movement of the elbow joint).
The results of this experiment are shown in Fig. 4.13. It can be seen that setting a low
arm stiffness of K = 1]:; 7 results in a larger evasive maneuver by both the elbow and
shoulder joints compared to higher stiffness values. The external torque estimate is also
lower, especially when comparing the values measured in the shoulder joints.

Coupling stiffness

In the Franka setup, the coupling spring is responsible for applying a clamping force
to pick up large objects with two hands. In the case of Pepper, the virtual coupling
spring is replaced by directly applying a Cartesian force responsible for clamping the
objects handled. The LLM must categorize an object depending on the information given
in the User Command, choose the force direction for each hand and the value of the
corresponding force from the table:

Category Mass (kg) | Coupling Force
Light ~0.04 0.5
Middle weight ~0.1 0.75
Heavy ~1 1.0

Table 4.2: Coupling Forces for Pepper

The forces are later transformed into joint torques 7mp using the Jacobian matrix
J that is calculated simultaneously with the gravity torque 74. 7¢amp is then used to
calculate ¢ in Eq. 4.8. While the coupling force is active, external torques are forwarded to
both controllers to avoid loss of contact with an object. If both arms experience external
disturbances, they move independently to avoid damage.

The coupling vector produced by the LLM can also be used to adjust the hand closure
¢ € [0,1] in single arm tasks. ¢ = 1 represents a fully open hand whereas ¢ = 0 represents
a fully closed hand. However, since Pepper’s hands are not designed for handling objects,
the allowed range to grasp objects is limited to [0,0.15]. Depending on object fragility,
the LLM can adjust its grip strength between firm (¢ = 0) and gentle (¢ = 0.15).
While moving above a table surface, the LLM is prompted to fully close the hands to
avoid collisions. The hand closure is not implemented via Eq. 4.9, but is set directly
using the built-in function setAngles("RHand" or "LHand", value of hand closure,
fractionMaxSpeed). The hands are also set to slightly close (¢ = 0.4) during dual arm
grasping to ensure a better grip on the object.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework 26

dg

10

(43

k] 1ns 150 s
time(s*107)

joint positions q_desired and g

0

15

[

"— desired Value 1

—— desired Value 2
— is Value 2
—— desired Value 3
— s Value 3
—— desired Value 4
. — isValues
desired Value 5
“i— isValug s
— desired Value 6
— s Value 6

-os

-15

kel 100 125 150 173
time (s * 107

tau_motor and tau_g

03

-0.5

— Walue motor 1
~— Value config 1
— Walue motor 2
—— value config 2
= Value motor 3
—— Value config 3

Value motor 4
—— Value config 4

value motor 5
—— value config 5
—— Value motor &
—— Value config &

125 150 175

5 50 ki
time (s * 107)

tau_ext estimate

0.02

time (s *10%) - - -

Figure 4.9: Arm movement without an external disturbance; from top: 1. Control output
signal ¢, 2. actual and desired joint position of the left arm, 3. 7, and Totor
values of the left arm, 4. external torque estimate Te.t
Legends: 1 HipPitch, 2 Shoulder, 3 Bicep, 4 Elbow, 5 ForeArm, 6 Wrist

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework

27

-1

as

L]

o8

08

Nm

04

0.2

dq

— ValuelL1l
~— Value R 1
— Value L2
— Value R 2
— Value L3
— Value R 3
~ Value L4
= Value R4
—— Value L5
—— valug RS
—— Value L6
—— Value R 6

o Fa] 50 -] 100 125 150 175
time (s *107)

joint positions g_desired and g

==

\ — desired Value 1
(= is Value 1

—— desired Value 2

— isValue 2

! desired Value 3

— s Value 3

(=== gesired Value 4

= — isvalue 4

—— desired Valie 5

- s Value 5

— desired Value 6

—— is Value &

125 150 75

2

5
time (s *10%)

tau_motor and tau_g

—— Value motor 1
—— value config 1
—— Valye motor 2
— Value config 2
—— value motor 3
— Value config 3
—— Value motor 4
= Value config 4

= Value motor 5
—— Value config 5
—— Value motor 6
= Walue config 6

. kL] 125 150 175
time (s * 107)

tau_ext estimate

— valuel 1
= ValueR 1
— valuel 2
— ValueR 2
— Valuel 3
— valueR 3
—— valueL 4
— Value R 4
—— Valuel5
= ValueR 5
— valuel &
—— valueR 6

;) e 160 125 150 175
time (s * 107

Figure 4.10: Arm movement with an external disturbance; from top: 1. Control output
signal ¢, 2. actual and desired joint position of the left arm, 3. 7, and Tp,ot0r
values of the left arm, 4. external torque estimate e,

Legends: 1 HipPitch, 2 Shoulder, 3 Bicep, 4 Elbow, 5 ForeArm, 6 Wrist

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

4 Framework

28

Stiffness K=0.1 Nm/rad

15
—— desired Value 1
104 — isValue 1
—— desired Value 2
os{— i V?Iue 2
— desired value 3
— isvalue 3 :b-.:-_—_\
B 00— desired value 4
—— is Value 4
~05H—T flesned value 5
— isValue 5
—— desired Value 6
10§ — isValue 6
=15 ‘
o 50 100 B 200 250
time (s * 107)
Stiffness K = 1 Nm/rad
15
—— desired value 1
LOq — isvaluel
— desired Value 2
054 — is Value 2
—— desired Value 3
— is Value 3
B 001 — desired value 4 = —_—
—— IsValue 4
T e flesuecl value 5
—— isValue 5
—— desired value 6
=101 — isValue 6
=15
T T T T T T
] 50 100 150 200 250
time (s * 107
Stiffness K =5 Nm/rad
|
1.5 4 }
desired Value 1
104 is Value 1
desired Value 2
0.5 4 is Value 2
: desired Value 3
is value 3
E 0.0+ desired Value 4
is Value 4
—0.5 4 desired Value 5
is Value 5
desired Value &
=1.01 is value 6
-1.54 »
(I! Sil 160 0 260 250
time (s * 107
Stiffness K =10 Nm/rad
154
—— desired Value 1
1.0 1 —— is Value 1
—— desired Value 2
0.5 4 —_—is vjzluez
—— desired Value 3
— i Value 3
B 007 —— desired value 4
— is Value 4
=0.5 1 —— desired Value 5
—— is Value 3
1.0 1 —— desired Value 6
' R —— s Value 6
-1.5 1 s N~
\v

100
time (s * 107

150 200 250

[3ibliothek,
Your knowledge hub

Figure 4.11: Joint angles while lifting an arm with different stiffness values K
Legends: 1 HipPitch, 2 Shoulder, 3 Bicep, 4 Elbow, 5 ForeArm, 6 Wrist

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

4 Framework

29

Stiffness K= 0.1 Nmj/rad

1.00
075
0.50
0.25
B
5 000
-0.25
-0.50
=0.75
] 50 100 150 200 250
time (s * 107
Stiffness K=1 Nm/rad
1.00
—iad
— 2
0.75 4 e3
— e4
0.50 A =3
—e6
0.25
E . ‘/é\\
-0.25 1
-0.50
-0.75
0 50 100 150 200 250
time (s *107)
Stiffness K =5 Nm/rad
0.8 4 — el
—e2
0.6 —_—e3
— e4
0.4 —ia5
-_— b
0.2 4
- 504)m@i
o
4
-0.2 4
-0.4 4
=0.6 1
-0.8 4 t !
T T T T r v
0 50 100 150 200 250
time (s *107)
Stiffness K =10 Nm/rad
0.8 1 —_—d
— e2
061 — e3
—d
0.4 1 — 48
! — g6
0.2 4
P -
B 004 o — -
-0.2 1
-0.4 1
-0.6
o s0 100 150 200 250

time (5*10%)

[3ibliothek,
Your knowledge hub

Figure 4.12: Joint angle error while lifting an arm with different stiffness values K
Legends: 1 HipPitch, 2 Shoulder, 3 Bicep, 4 Elbow, 5 ForeArm, 6 Wrist

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

4 Framework

30

Stiffness K=1 Nm/rad, K_tau = 0.75

— ValueL 1
2.0 4 k — Value L2
1.0 —— ValuelL3
15 —— desired Value 1 — ValuelL 4
— isValue 1l —— ValuelL5
1.0 - —— desired Value 2 0.8 1 —— ValuelL 6
— is Value 2
0.5 —— desired Value 3 |
' — isValue 3 0.6
% —— desired Value 4 — g
L 00 = — isvalue 4 |
~—— desired value 5 0.4 4
-0.5 — is Value 5
—— desired Value 6
1.0 4 is Value 6 0.2
- —
-1.5 1 == oo
i} 25 50 75 100 125 4] 25 50 75 100 125
time (s *10%) time (s *10™)
Stiffness K =2.5 Nm/rad, K_tau = 0.75
2.04 —— ValueL1
/k 12 A —— Value L2
151 — ValuelL3
—— desired Value 1 — ValuelL4
104 — isValue 1 10 — valueL5
’ —— desired value 2 — valueL 6
— is V;Iue 2 08
0.5 —— desired Value 3
— isValue 3
- —
g 0.0 4 ~— desired Value 4 __] E 0.6
— . =
—— is Value 4
—— desired Value 5
—0.57 [— isvalues 04
—— desired Value &
=1.0 \\‘&— is Value 6 02
== —
-15 = 0.0 4
0 25 50 TI5 1[‘]0 12‘5 0 25 50 75 100 125
time (s *107) time (s *10%)
Stiffness K=5 Nm/rad, K_tau = 0.75
P 144 — ValuelL1l
15 - —— ValuelL 2
1.2 4 — Valuel3
—— desired Value 1 — ValuelL 4
1.0 —— isValue 1 — ValuelL5
—— desired Value 2 L0+ — ValuelL 6
05 — is Value 2
. —— desired value 3 0.8 4
—— isValue 3]
E 0.0 —— desired Value 4 = E
= — isValue 4 0.6
o054 —— desired Value 5
. — isValue 5 0.4
—— desired value 6
- —— is Value 6
1.0 is Value 02
—1.51 0.0
4] 25 50 75 100 125 4] 25 50 75 100 125

time (s *10%)

time (s * 10%)

Figure 4.13: Resulting estimated external torque for different stiffness values K
Legends: 1 HipPitch, 2 Shoulder, 3 Bicep, 4 Elbow, 5 ForeArm, 6 Wrist

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

5 ComBi Copilot for new robot setups

As mentioned earlier, this framework is designed to be easily adaptable and usable on
various robotic platforms. Section 4.1 mentions the basic requirements that a dual arm
manipulator must meet to be able to use the framework. For the framework to be
adaptable, a number of design choices were made:

1. Generation of Cartesian end effector trajectories: makes the framework immediately
usable without the need to program action primitives or skill libraries.

2. Use of publicly available reasoning models, despite specially fine-tuned models
potentially providing more reliable data and better performance (as shown in [6]).

3. Providing a static prompt part: A part of the prompt, which is non-platform-specific
and is therefore the same, independent of the setup. This saves time when creating
a prompt for a new setup.

4. Direct parameterization of compliance controllers: the generated parameters (e.g.
stiffness) can be directly used by the compliance controller without needing further
"translation’-steps.

5.1 General Pipeline

Initially, the operator has to configure the robotic platform according to the output
variables and tailor the prompt to the setup. The exact configuration and output variables
will vary depending on the manipulator used (see Sec. 4.2.3). Since the framework has
already been implemented on two robotic platforms, each with different characteristics,
the robotics engineer can refer to the setup that most closely matches their own system
for guidance. After defining the variable prompt (see Sec. 4.2.2) and combining it with
the static part, it is recommended to let a reasoning model review the completed prompt
to find errors and inconsistencies. This can simply be done by writing a short message
(e.g. "find inconsistencies and improve the following prompt") and attaching the prompt
at the end. In OpenAls ChatGPT browser version, user-written "GPTs" are available
(e.g. [50]), which are able to rate the effectiveness of prompts. These can be helpful in
finding redundancies and inconsistencies; nonetheless, suggestions should always be double
checked.

After this, only the user command has to be defined and the framework produces a
Matlab file (or alternatively a Python file) containing executable code. A collection of
possible user commands can be seen in the appendix A.

5.1.1 Error feedback

If the operator detects any problems or is otherwise not satisfied with the trajectory or
compliance variables, it is possible to send feedback to the LLM using natural language.

31

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

5 ComBi Copilot for new robot setups 32

The LLM then adjusts the generated code accordingly. This greatly helps with the
forgetfulness of LLMs and is a useful feature for the engineer to fine-tune a solution. In
Sec. 7 it can be seen that error feedback is crucial to improving the success rate of code
generation. Examples of giving error feedback to the LLM are shown in Sec. 7, where
initially incorrect trajectories could be adjusted by a very simple prompt. When giving
error feedback to the reasoning model it is recommended to refer to the required motion
phases (e.g. retreat phase). This reduces the risk of incorrect interpretations.
A visualization is given in the following text box:

Giving feedback to the LLM

. bring the plastic box
from A to B

Here is the Matlab Code ...

The end effector plate does

not contact the box because
it is positioned to high,
please fix this.

Fix applied,
here is the updated Code ...

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6 Experimental Settings

The framework was tested on two robot platforms: Softbank’s Pepper robot and a dual-
arm Franka setup. All experiments on the Pepper robot were executed using OpenAT’s ol
model, while experiments on the Franka setup were additionally conducted with the newer
03 model. Experiments were carried out using both the browser version of ChatGPT and
a Python script with the OpenAl APIL.

6.1 Experimental Settings - Franka setup

Two FR3 arms are located 0.4 m apart, offset on the y axis (see Fig. 6.1). An idealized
interaction plate with dimensions identical to the original Franka-hand ([0.03 x 0.2 x
0.077)m) is modeled at each end effector. Since the original Franka hands have inclined,
non-planar surfaces, they lead to simulation problems regarding the calculation of realistic
contact forces, and were therefore replaced for the sake of the experiments. In the initial
position, the end effectors are positioned at (x = 0.31, y = +0.4, z = 0.59) with a rotation
of zero, corresponding to interaction with the x-z plane of objects. The orientation of the
end effectors is offset by 180° to avoid collision of the protruding end effector handle.

The Franka setup was tested on three different, idealized objects: a cardboard box, a
wooden box and a sponge. All three objects share the same dimension of 0.1 x 0.1 x 0.1m.
The box parameters differ from those of the real object and are adjusted to work in
simulation. To set parameters of an object in Simulink, the Spatial Force Block, which
characterizes the force interaction between two bodies and the Solid Block representing the
object characteristics, can be adjusted. To model the three different boxes, the stiffness,
damping, and Transition Region Width of the Spatial Force Block, as well as the density
of the Solid Block were modified. Table 6.1 shows the exact parameters that were used
for the experiments.

Object Stiffness (&) | Damping (2-) | Tr.Region Width (m) | density (%)

m m/Ss
Cardboard 3000 100 0.025 40
Wood 50.000 250 0.02 1000
Sponge 1000 100 0.03 100

Table 6.1: Mass and coupling force by category

All experiments included picking up or interacting with objects on the ground plane.
No experiments were conducted on elevated surfaces (e.g. tables) as it is assumed that in
reality the Franka arms are already set up on a table or mobile platform.

Finally, the Franka simulation setup also includes a simple sanity check during execution,
which triggers an error message when contact to an object is lost during coupling of both
arms. The error message includes information that the contact was lost and a timestamp.
This can be used, for example, to increase the stiffness of the coupling spring between the

33

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

6 Experimental Settings 6.2 Experimental Settings - Pepper 34

Figure 6.1: Franka dual arm setup with coordinate systems

arms or to correct faulty trajectory data.

The evaluations for the Franka setup, including the success rate test, were conducted
with OpenAl’s 03 model. Since the Franka arms include more sensors, more DoF and are
purposefully built for manipulation tasks, there are fewer restrictions and adaptations
needed in the prompt. This reduces the risk of forgetfulness and allows for more precise
parameterization of the interaction parameters.

The Franka set-up is tested in simulation using Matlab 2022b and SimMechanics.

6.2 Experimental Settings - Pepper

The Pepper robot was tested on various objects depicted in Fig. 6.2 and 6.3. Since Pepper’s
range of motion is limited, the experiments were only conducted on elevated surfaces,
namely two different tables with heights of 0.7m and 0.625m, respectively. For single
arm tasks that require a side grab the higher table was preferred, as it was kinematically
impossible to properly align the ideal hand orientation to tall objects on the lower table,
resulting in a lower success rate. Otherwise, the lower table was preferred, as Pepper
needed smaller evasive maneuvers to move the hands around the table surface while
approaching an object. However, these preferences are only reflected in slightly higher
success rates; single- and dual-arm tasks were successfully performed on both tables. For
all tasks, Pepper’s Torso frame was positioned about 0.15m from the edge of the table in
x direction.

For dual arm tasks, three different objects were used: a cardboard box, a plastic box
with two handles and a plush toy panda. In the case of single arm tasks, five objects were
tested: a cardboard scroll holder, a sponge, a tall rubber toy, a wide rubber toy and a
can. The rubber toys were wrapped in tissue to improve grip and the can was wrapped
in paper to hide logos. In Sec. 7, images of Pepper in front of the two tables, handling

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

LWARL) Your knowledge hub

[3ibliothek,

6 Experimental Settings

35

different objects, can be seen.

(a) cardboard box (b) plastic box (c) plush panda

Figure 6.2: Objects used for dual arm manipulation on Pepper

Figure 6.3: Objects used for single arm manipulation on Pepper

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7 Experiments

Experiments on Pepper were carried out on hardware while experiments on the Franka
setup were only performed in simulation.

The main objective of the Pepper experiments is to demonstrate the capabilities of the
framework to choose between the utilization of one or two arms and adjusting the end
effector accordingly. Furthermore, it reveals the zero-shot capabilities of reasoning models
to directly generate trajectories for complex movements (e.g. wiping a table).

The simulation results from the dual-arm Franka setup demonstrate that using arm and
coupling springs provides a robust approach to LLM-prompting, offering both intuitive
understanding and easy parameterization. All prompts and user commands used in the
following experiments can be viewed in the appendix A attached at the end of the thesis.

7.1 Experiments with Pepper

Experiments on Pepper were constrained by its limited workspace and end-effector design,

which are optimized primarily for human-robot interaction rather than complex object

manipulation tasks (see Sec. 7.1.3). Depending on the dimensions of an object, the LLM

was asked to use either one or two arms and adjust the end effector orientation accordingly.
Key challenges for the experiments on Pepper include:

1. Collision avoidance: in Pepper’s case, the LLM is specifically prompted to move in
wide arcs, as Pepper’s limited Degrees of freedom do not allow e.g. strictly vertical
movement above the table surface

2. Moving accurately enough to not knock over or damage objects but still be able to
properly grasp them. This was especially challenging for single arm side grasps.

3. Opening and closing the hands at the right moments, as this was necessary several
times during the execution of a single task.

7.1.1 Dual arm tasks

Dual arm tasks only include simple pick-and-place tasks for various large objects made
of different materials. Although very limited, it is still a useful skill because Pepper also
includes separately controllable locomotion to transport these large objects to a desired
location. In the future, this can be combined to extend the pick-and-place capabilities of
Pepper.

In the experiments different materials and object dimensions were successfully tested;
examples can be seen in Fig. 7.1. The LLM was prompted to adjust the arm stiffness
according to the environment, e.g. decreasing stiffness when coming into contact with a
stiff environment (wood table). All tested materials (plush toy, plastic, cardboard) were
classified as ’low-stiffness environment’ and, therefore, arm stiffness in the three cases

36

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7 Experiments 7.1 Experiments with Pepper 37

(a) grasp cardboard box (b) grasp toy panda (c) grasp plastic box

Figure 7.1: Exemplary dual-arm tasks used in the experiments with Pepper

was reduced from K = 5 E”;Lmz (free space) to K = 2.5 E”;LmQ upon contact with the
objects. In the bimanual case, the LLM also has to estimate the object weight to find an
appropriate clamping force and clamping-direction. The clamping direction was usually
set correctly; however, the estimation of the object weight was often forgotten due to the
long prompt required for Pepper. This is reflected in the choice of the clamping force
always being set to £0.5 N (corresponding to "light" = «» 0.04kg") in all tested cases.
Fig. 7.2 shows the detailed process of picking up an object from the high table. In the
beginning, Pepper approaches with closed hands, going in a wide arc to avoid collision
with the table (a). Once the height of the table is reached, the fingers are opened (b)
and the cardboard box is grabbed by setting the coupling-vector to: coupling — vector =
[0, — 0.5,0,0,0.5,0] N. The first three values represent the Cartesian forces of the left arm,
while the last three correspond to the right arm. In addition, the hands are slightly closed,
as can be seen from the position of the thumb in (c¢). The cardboard box is then lifted
approximately 20 cm (d) and placed back on the table. While retreating, Pepper must
again close its hands and move in a wide arc to avoid touching the table surface (e).

(a) approach (b) wide arce » (c) clamp object (d) lift_ the box ' (e) retreat carefully

Figure 7.2: Pepper picking up the cardboard box from the higher table

As explained in Sec. 4.4.2, the Pepper setup also provides compliant behavior during
dual arm manipulation tasks. The effectiveness of forwarding external torques to both
arms was tested and the results are shown in Fig. 7.3. Here, an external disturbance
is applied to the left forearm (from Pepper’s perspective). This stops the movement of
the left arm and the estimated external torque is forwarded to the right arm. Due to
the system’s lag of about 1 second, the right arm follows the trajectory upward for a
moment, slightly tilting the box. As soon as both controllers receive the signal, the arms
synchronize and move downward, avoiding the obstacle. After the external disturbance
disappears, the arms resume following the predefined trajectory, which in the case of Fig.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7 Experiments 7.1 Experiments with Pepper 38

7.3 (d) leads the arms upward again.

(a) external disturbance occurs (b) right arm continues (c) both arms move down (d) both arms move up again

Figure 7.3: Example of compliant reaction during dual arm manipulation task

7.1.2 Single arm tasks

(b) grasp wide object

(d) hand ver

(a) wipe table (c) grasp tall object

Figure 7.4: Examples of the single-arm tasks performed with Pepper

As shown in Fig. 7.4, single arm tasks offer a greater variety, including pick-and-place
tasks, handovers, and wiping motions. Here, the prompt states a simple logic of grasping
wide, small objects from the top and tall, small objects from the side. If a handover is
requested, the robot must rotate its palm upwards (see Fig. 7.6). The experiments show
that the LLM successfully avoids collisions by:

o closing the hands when moving above or below the table surface;
 including the approximate dimensions of the hand in distance calculations;
« approaching and leaving objects in a wide arc.

Using one arm, the coupling-vector is replaced by a hand closure coefficient with a range
of [0,1]. Since grip and hand closure are very limited, this value can only be adjusted by a
small margin [0.01 - 0.15], with 0.15 being used for more fragile objects.

The following paragraphs show a selection of tasks successfully tested on Pepper.

Fig. 7.5 shows Pepper performing a pick-and-place task with the can laying on its side.
Pepper correctly interprets the dimensions given in the prompt, made a wide approach
with a closed left hand (Fig. 7.5 (a)), and grabbed the can from the top (b). The LLM
chose a firm grip (coupling vector = 0.01), reduced the stiffness of the left arm from
K = 5%—’3 in free space to K = 2.5%—’3 during object interaction and placed the can at

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7 Experiments 7.1 Experiments with Pepper 39

its final location (d). After this, arm stiffness was increased to K = 522 the hand was
moved upward, closed, and returned to its initial position in a wide arc (e).

(a) wide approach7 B (b) grab object N (c) lift (d) place ' (e) wide return ;rc

Figure 7.5: Image series of a pick-and-place task performed by Pepper

Next, the LLM is prompted to take a tall rubber object from the low table and "hand
it over to me (a person)', see Fig. 7.6. Again, the LLM is able to correctly identify the
rubber toy as a tall object and adjusts the rotation of the end effector to rot, = —7. The
box is grabbed at its side with a firm grip (coupling vector = 0.01) and the stiffness of the
arm is again reduced to K = 2.5% (Fig. 7.6 (a), (b)). The end effector is then lifted and
rotated to rot, = —m. During the lifting phase, an external force is applied by pushing on
Pepper’s left hand (c). The force observer correctly identifies the direction of the outside
disturbance and moves away (d). Afterwards, Pepper resumes following the trajectory
and successfully hands over the object (e).

(d) evade

(a) approach o (b) grab object - (c) disturbance

() hand over

Figure 7.6: Image series of a hand over task performed by Pepper

After the previous experiments were completed, Pepper was assigned to help clean
the table surfaces: "Pick up a sponge on a table and wipe the table. [...] The wiping
motion should be once to the left (0.1 units) and once to the right(0.1 units). [...]". The
execution is shown in Fig. 7.7. A sponge is placed left to the center of Pepper on the high
table (0.7m). While moving above the table, Pepper correctly closes its left hand to avoid
collision, sets the stiffness high to make precise movements around the table and rotates
the end effector to match the sponge’s pose (a), (b). The hand is then set to grasp fragile

kgxm

objects (coupling vector = 0.15) and the stiffness of the arm is reduced to 1.0 —5%2 as it
comes into contact with the table (stiff environment) (c). As requested in the prompt,
Pepper wipes the surface with the sponge once to the right and once to the left (d), (e).
While retreating back to the initial position, the hands are again closed and arm stiffness

increases. Fig. 7.13 shows the choice of trajectory and parameters for this experiment.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7 Experiments 7.1 Experiments with Pepper 40

(a) approach (b) open hand (c) grasp sponge (d) wipe left (e) wipe right

Figure 7.7: Image series of Pepper wiping the table

7.1.3 Unsuccessful tasks

(a) losing grip—\;vhile trying to lift a plush toy panda

(b) losing grip while trying to rotate the scroll holder

Figure 7.8: Exemplary single-arm tasks used in the experiments with Pepper

Some of the experiments conducted on Pepper were not executable due to hardware

limitations. As Fig. 7.8 shows, one of the main limitations was the insufficient friction
or grip strength of Pepper’s hands. In Fig. 7.8 (a), Pepper was assigned to pick up a
small plush toy panda, which was correctly classified as a single arm pick up task with an
approach from the top. Since the hands, even if fully closed, still leave a significant gap,
it was impossible to lift the comparatively heavy toy.
In Fig. 7.8 (b), the task was to lift and rotate a scroll holder by 90° and place it on the
table again. The trajectory, including all the parameters were generated correctly, however,
the friction limitations made a successful execution impossible. Lastly, implementations of
hand over tasks from one of Pepper’s hands to the other were also unsuccessful due to the
limited workspace and accuracy issues. The workspace constraints of Pepper’s arms do not
allow the hands to meet in the middle with the correct end effector orientation. Similarly,
placing the object in an intermediate position between the arms was also unsuccessful due
to insufficient accuracy at the border of the workspace. Generally, three main limiting
factors were identified:

1. Insufficient adjustment of the end effector orientation to the shape of objects.
2. The workspace of the two arms does not overlap sufficiently.

3. Pepper’s hands are not specifically designed for manipulation tasks, which is reflected
in poor friction, a nonoptimal hand shape and low gripping power.

Nevertheless, this thesis proves that although these issues limit the range of executable

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

7 Experiments 7.2 Experiments with the Dual-arm Franka setup 41

tasks, Pepper can still be successfully used as a dual arm manipulator for a number of
applications.

7.2 Experiments with the Dual-arm Franka setup

Experiments with the Franka setup show that platforms with more precise, higher DoF
arms and force-torque sensors can be parameterized in more detail since the base-prompt
is shorter due to less constraints. When using OpenAl’s latest reasoning model 03, a
noticeable improvement in forgetfulness and accuracy can be observed [38]. However, the
time required to generate a solution has not decreased and lies between 1 min 50s and 4
min 6s, effectively disqualifying it for real-time applications. Key challenges identified
during the experiments on the Franka setup are:

1. Respecting end effector dimensions, especially the end effector plate thickness when
interacting with objects

2. Properly aligning the end effector to the object, both translation- and orientation-
wise.

3. Setting both arm and coupling spring stiffness values according to the tables provided
in the prompt

The following subsections show a selection of representative tasks which were performed
on the setup.

7.2.1 Pick-and-place tasks

(a) Grasp wood box (b) transport in negative x direction (c) place box

Figure 7.9: Pick and Place task of a wood box

The experiments were carried out on a cardboard box, as well as on a wooden box, with
both objects having the same dimensions. The coupling spring stiffness is chosen according
to the expected weight and stiffness of the object. In case of the cardboard box, the LLM
classifies it as a light object with low stiffness, resulting in a low stiffness of the coupling
spring of K, = 100%. The wood box is classified as heavier (1 kg) and stiff, resulting in a
higher stiffness of the coupling spring of K., = 650%; an image sequence of the pick and
place task is shown in Fig. 7.9. When carrying the boxes in a specified direction, the
corresponding arm stiffness is adjusted to Medium (5000%) to ensure compliance towards
unexpected obstacles. For example, while the wood box in Fig. 7.9 is transported in the
negative x-direction the arm stiffness K, is reduced from 10.000 to 5000 % K, is reduced

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m 3ibliothek,
Your knowledge hub

7 Experiments 7.2 Experiments with the Dual-arm Franka setup 42

while the box is lifted and lowered to the ground. Although the transport was successful,
a slight slippage of the box can be observed, which is caused by the fluctuating normal
force described in Sec. 4.4.1.

It should be noted that the framework gives a lot of design freedom to the LLM, resulting
in different executions. Throughout the experiments, the LLM sometimes chose to first
push the box to the middle and then pick it up, although the box was always within the
workspace of both arms.

7.2.2 Pick-and-place tasks outside of workspace

(a) Push box into shared workspace (b) grasp box (c) transport in neg. y direction (d) place box at desired location

Figure 7.10: Pick and Place task of a cardboard box outside of the workspace

In this experiment, a cardboard box, as shown in Fig. 7.10, is placed outside the shared
workspace of both arms. Consequently, the LLM uses one arm to push the box back into
the dual-arm boundaries and then continues to perform the bimanual pick-and-place task.
While pushing the box sideways, the arm stiffness is reduced to 5000%. After reaching
the intermediate position, the second arm approaches and coupling is activated with a
coupling spring stiffness of K. = 120%, corresponding to a light object with low stiffness.
Since the object is lighter and the contact stiffness (specified in the Simulink Contact
Force Block) is low, the normal force fluctuates less and no slip is detected.

As previously mentioned, it is possible to use the response API with reasoning models
to demand corrections. The trajectory for this experiment was initially placed too high
and did not reach the object. After giving feedback on this through a very simple one-line
response (e.g. 'the end effectors do not reach the box’), the LLM successfully corrected
the trajectory.

7.2.3 Wiping ground surface with sponge

Less precise commands such as "wipe the table with a sponge" leave more freedom to the
LLM, resulting in more frequent suboptimal or incorrect trajectories. These errors range
from too fast wiping motions to very small wiping amplitudes. In the experiment depicted
in Fig. 7.11, the LLM chose a sinusoidal trajectory to wipe the ground surface several
times (trajectory shown in Fig. 7.11). It classified the sponge as "light, soft", choosing
K. = 120%. Upon wiping in x direction, the corresponding arm stiffness was reduced
from Ky = 100002 to 50002

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

7 Experiments 7.3 Reliability and Success Rate 43

(a) Grasp sponge (b) wipe in pos. x direction (c) wipe in neg. x direction (d) place at initial location

Figure 7.11: The Franka arms wiping the ground surface with a sponge

7.3 Reliability and Success Rate

To verify reliability, the framework was tested on two tasks: a simple pick-and-place task
of a cardboard box and wiping the ground floor with a sponge. The prompts remained
consistent throughout the testing period and the same reasoning model (OpenATI’s 03-
model) was used. Since the framework allows feedback to the reasoning model if the
solution is incorrect, four different scenarios are distinguished:

1. Success A: successful on the first try
2. Success B: successful after first feedback
3. Success C: successful after second feedback

4. Fail: failed to generate satisfactory result

7.3.1 Pick and place a cardboard box

As in Sec. 7.2, the tasks consisted of transporting a cardboard box from location A to
location B and parameterizing the compliance variables accordingly. 15 tests were carried
out over three days and at different times of the day to avoid temporal bias. Although there
is no specific research directly linking LLM response quality to different times of the day,
it can be assumed that during peak usage hours, increased demand could lead to a higher
system load, potentially affecting response times and quality. Similarly to the results
presented in Sec. 7.2.1, two different approaches were observed: 1. direct pick-and-place of
the box; 2. first push and then pick-and-place the box. The primary source of errors was
Matlab syntax errors (eight times) followed by incorrect parameterization of the stiffness
matrices (three times) and incorrect trajectories (three times). In Fig. 7.12, we can see
that the success rate is at 100% if feedback to the LLM is allowed, keeping in mind that
only 15 tests were performed.

7.3.2 Wiping the floor with a sponge

The tests were carried out over four days and at different times of the day. Here, the
prompt was much more ambiguous, thus, allowing for different interpretations and solutions.
This is reflected in the results generated by OpenAls 03-model which include sinusoidal
scrubbing in x or y direction, grid-style scrubbing and even single arm approaches. In

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7 Experiments 7.3 Reliability and Success Rate 44

Box lifting Experiment Floor wiping Experiment 1

15 15
I SuccessA | SuccessA
[SuccessB | successB
@ [1SuccessC - |C—IsuccessC
j'c: I Fail ‘E I Fail
E 10 E 10
o @
o a
= E
@ Q
e o
o o
3 g
E [E S
= =
=z =
0 : 0
Success Fail Success Fail
Outcome group Outcome group
a.) b.)
iE Floor wiping Experiment 2 Avg. Time and Range to Generate Response
I SuccessA o)
[successB
[JsuccessC
£ i 200
10 :
£ :
- = 150
@ &
S5 o
e <
é’ &k Z 100
=
=z
50
0 . ol
Success Fail box transport floor wiping
Qutcome group
c.) d.)

Figure 7.12: a.)-c.)Success rates (A = success, B = success after one feedback, C = success
after second feedback) for each task and d.) average time to generate a
response

some cases the sponge was pressed down onto the surface, while in another case it was
only pushed from one side to the other. Solutions were counted as correct if some form of
wiping motion was successfully performed. On the second day of experiments (01.05.2025),
significantly worse performance was observed in initial prompts and feedback. Therefore,
only two tests were performed, all of which were unsuccessful. This may be attributed to
an OpenAl internal performance issue [51]. In the second graph of Fig. 7.12, these results
are included. The third graph shows the results of the same tests executed the following
day. In summary, it can be seen that giving a prompt with fewer details does not have
a significant impact on the success rate. However, it affects the type of mistakes that
occur: The primary source of errors was again Matlab syntax errors (8 times), followed
by a wrong trajectory (6 times) and incorrect stiffness values (2 times).

This task was also briefly tested on the DeepSeek R1 reasoning model, resulting in two
successful and three unsuccessful code generations. The resulting success rate of 40% is
significantly lower compared to the OpenAl 03 model, as R1 has difficulties setting the

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7 Experiments 45

stiffness values correctly and producing trajectories without jumps of the end effector
position. The time to generate a response is longer, with an average of about nine minutes.
Lastly, giving feedback to R1 is often unsuccessful, as the LLM also overwrites already
working parts of the trajectory. In summary, DeepSeek’s R1 model is also usable but needs
more time and attempts to generate and parameterize a correct trajectory. Standard
nonreasoning LLMs have also been briefly tested and were able to generate executable
code but ignored or forgot about important aspects (e.g. correct rotation of end effector,
adjusting stiffness values, etc.), making them unsuitable for this application.

In summary, the reliability of this framework remains one of the main concerns. However,
based on the example of OpenAls launch of the 03 model, significant leaps in performance
are still possible, although generation times do not appear to be positively impacted.

7.4 Parameter Comparison of the Robotic Platforms

To summarize the experiments section, a comparison of the parameters used on the two
robotic platforms is provided. In Figs. 7.13 and 7.14 the parameters that are directly
forwarded to the controllers of each system are shown. These graphs also correspond to the
wiping motion depicted in the image series in Figs. 7.7 and 7.11. The first graph (starting
from the top) makes it obvious that Pepper is not able to process Cartesian trajectories
directly but needs an intermediate inverse kinematics step, which then provides joint
angles for the five joints of the kinematic arm chain and the "HipPitch". The second graph
demonstrates the different capabilities in parameterization of the arm stiffness, where the
Franka setup is capable of setting three times more stiffness values. However, the third
graph, showing the coupling-vector, presents a different image where the Pepper robot is
also able to parameterize single arm movements. Here, the left hand starts with closed
fingers (Left arm = -1) opens after 5s as the table surface is passed (Left arm = 0) and
then grasps the sponge with a gentle grip (Left arm = 0.15). For further details, refer
to Sec. 7.1.2. In the case of the Franka setup, the coupling-vector only activates and
parameterizes the coupling spring between the two end effectors.

Lastly, from a parameterization standpoint, the end effector rotation of the two system,
shown in the fourth graph, follow exactly the same principles.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

7 Experiments 46

& B
[{
c 5]
2 = o a
(2] —_ & wn
=] = o 2 o
EF o = + w0 [=
@ 2 o o = v 2 c =
4 I o 4 S g E — 5
o © 2 o & o © =3 el
= 1G] = = = =0 =2 o
2 Left arm joint space trajectory over time 06 Left arm Cartesian trajectory over time
i —— HipPitch 1 I ‘ ‘
= LShoulder
15 ~—— LBicep |
—— LEIbow a5
¥ LForeAm =
———— LWrist E
. g 04
gos 2
7 g
= 0 5 03
! 3
E %
5 051 T 02
w
A
01
EE
0] | ! i
2 i 05 1 15 2 25 3
o 50 100 150 200 250 300 Time step (ms) «10¢
Time step (s*10%) it Arm stiffness values
. Arm stiffness values [‘ | LeftK,
5 Left arm J E LeftK,
B4t ——nRightams £ ——LeftK
E 2 5000 %
2, g ——Right K,
§ g ——Right K,
£2 ——RightK
@ ° 2
1 0 05 1 15 2 25 3
0 50 100 150 200 250 300 Time step (ms) =10
Time step (s*107) Coupling vector stiffness
Coupling vector values * T Coupling stiffness|
. 0 i I i | ‘—Leﬂ arm 3
~§ —Right arm Z100f 1
>
2 o5} :
2 D £ sof 1
a 17}
S
1 I L i 0 g
g ! 0 05 1 15 2 25 3
0 50 100 150 200 250 300 Time step (ms) w0
Time step (s*10%) ’
§) End rotation § i End effector rotation
= : ! I Left arm = Left arm rolation
54| ——— Right am g 05 ——— Right arm rotation
2 g
0
8.t J £ 05
G?
2.2 : &
w 50 100 150 200 250 300 0 05 1 15 2 25 3
Time step (s*10%) Time step (ms) <104
1 . :) : . .
Figure 7.13: Parameters used in Pepper’s Figure 7.14: Parameters used in Franka
Sponge-wiping task Sponge-wiping task

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

8 Limitations and Outlooks

8.1 Assumptions and Limitations

Since this work represents the first LLM based Copilot for programming dual-arm,
compliant manipulators, there are a number of limitations. The framework currently
lacks integrated vision capabilities, which require skilled robotics engineers to determine
the location and characteristics of an object. Furthermore, the engineer is required to
conduct a few experiments to determine the lookup tables for the arm and coupling spring
stiffnesses. The framework does not include an automatic error-feedback loop, again
relying on the judgment of a robotics engineer. Only the Franka setup provides a simple
slip detection with automatic error feedback to the user.

Finally, during testing of the framework, varying output quality of the OpenAl reasoning
models was observed, depending on the day and time. The generation of responses during
peak hours in countries with a large user base, such as the United States [52], could reduce
the success rate. Other reasoning models like Deepseek R1 limit the number of active
users in phases of high system load, leading to waiting times.

Despite these limitations, this framework still provides a very quick and easy way to
generate trajectories and parameterize a compliant controller for dual-arm manipulation
tasks.

8.1.1 Franka setup specific limitations

As mentioned in Sec. 4.4.1, there are a few limitations due to the simulation environment.
In summary, the objects tested in the experiment section 7.2 do not represent the
parameters of the corresponding real world objects. This was limited by the simulation of
the normal contact force values, which returned very high and noisy values for high-stiffness
contacts.

8.1.2 Pepper specific limitations

As previously mentioned, forgetfulness problems increase with the number of additional
requirements included in the prompt. This is especially an issue with Pepper, as this
platform is restricted through its low number of DoF in the arms and imprecise hands,
necessitating additional information in the prompt. Pepper’s compliant control algorithms
are extensive and require many computations in the back-end. This results in a com-
paratively high response time to outside perturbations. Since the current sensors only
provide amplitudes, the end effectors are only compliant in the direction of movement. In
standstill, the end effectors are only compliant to forces acting in the direction of gravity.

Furthermore, Pepper’s arms and hands are not specifically designed for manipulation,
subsequently narrowing the range of possible tasks. Sec. 7.1.3 demonstrates that LLMs

47

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

8 Limitations and Outlooks 8.2 Outlooks 48

can generate executable trajectories that unfortunately do not lead to task completion
due to Pepper’s hardware limitations.

8.2 Outlooks

To make this Copilot more user-friendly, a VLM (Vision Language Model) could be added
to determine the location and characteristics of objects and obstacles. This would also
open up the possibility of vision-based error-feedback loops, which automatically stop the
task and send feedback data to the LLM to re-plan.

Alternative strong reasoning models, specifically the OpenAl ol-pro model could also
improve results, having a lower tendency to hallucinate. With stronger reasoning models
at hand, the parameterization of the stiffness matrix can be extended by also setting the
rotational diagonal elements and off-diagonal elements.

With stronger reasoning models emerging, the copilot also must be tested on more
dexterous robot platforms, e.g., adding hands to the dual-arm Franka setup. Moreover,
it would be of interest to test a framework that uses an object-level spring as presented
in [39]. This could facilitate the parameterization of the spring system even further, as
in the current implementation the coupling spring and the end effector spring must be
designed in a compatible way.

It is possible that this framework currently does not leverage the reasoning LLM in
the most efficient way in regards to stiffness value parameterization. Future research
should investigate whether restricting the LLM to determining object-level parameters (e.g.
weight, friction, and stiffness) while delegating the computation of stiffness parameters to
the back-end, leads to better results.

Lastly, the influence of the output-programming language on the final result has to be
investigated. In Chap. 7, a significant number of Matlab syntax errors were observed,
raising the question whether Python has an advantage in this regard, given its larger
codebase.

8.2.1 Outlooks - Franka setup

The Franka setup still has great potential for improvement. Firstly, the framework should
be tested on tasks involving object poses that are not aligned with any principal axis.
This would complicate the object width estimation in the clamping direction and the
parameterization of the virtual spring stiffnesses. Additionally, the implementation of a
pipeline that automatically forwards slip detection feedback to the reasoning LLM should
be considered. However, this requires the inclusion of vision capabilities, as otherwise the
system does not know where the object was dropped. The Franka setup would also greatly
benefit from the inclusion of hands, since the experiments with Pepper have proven that
a strong point of this framework is the ability to switch between single- and dual-arm
operation. Lastly, the performance of the setup should be evaluated while the end effector
experiences outside disturbances with different characteristics. Finally, the system’s
performance should be assessed under external disturbances of varying amplitudes and
frequencies acting on the end effector. The disturbances could be simulated with the help
of the "T'CP Disturbance Force xyz_ I’ block which is already included in the Simulink
model described in 4.4.1.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

8 Limitations and Outlooks 49

8.2.2 Outlooks - Pepper

The Pepper framework can be improved by forwarding object weight estimates to the
external force observer to correct external force estimates. In the dual arm experiments
with the plush toy panda (see Sec. 7.1.1) it can be seen that the force observer detects
the panda as an external torque, which slightly inhibits the pick-up motion.

Similarly to the Franka implementation, Pepper’s prompt must also be tested on the most
recent reasoning models, like ChatGPT 03, to further determine the reliability of the
framework. Moreover, the capabilities of Pepper could be extended by incorporating its
locomotion into the framework. Particularly, the usefulness of the bimanual pick-and-place
tasks could be significantly improved.

The velocity controller used in the experiments can be improved by including a feedback
loop of the joint velocities. Additionally, to improve the control speed, the DCM software
module, which is the direct communication protocol of Pepper, could be used to set
actuator values. However, this also bypasses all internal safety checks, making Pepper
more susceptible to hardware damage.

Lastly, the force observer must be improved to enable compliant behavior in all directions.
This could be done by measuring the slight change in joint angle as soon as an external
torque is applied. However, it is questionable whether the measurement is accurate
enough. Alternatively, a more elaborate model-based observer could be implemented
which estimates the joint positions given the joint velocity input ¢. By comparing the
model results with the real robot state, the force direction could be estimated.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

9 Conclusion

In the past, generating a trajectory that include control parameters for simple dual-arm
manipulation tasks required a significant amount of time and effort. With the emergence
of Large Language Models (LLMs), roboticists were able to efficiently generate policy
code using their logical capabilities. However, these frameworks are oftentimes:

1. dependent on pre-written action libraries

2. require many examples (few-shot prompting)

3. are tailored to one robot

4. only include single arm tasks

5. use LLMs without specialized reasoning capabilities
6. do not include compliant control

This thesis presents ComBi Copilot, a framework for engineers that aims to solve
this issue by leveraging reasoning LLMs to generate and parameterize trajectories and
controllers for compliant dual-arm manipulators. This work shows that with the right
prompt and design parameters otherwise slow reasoning LLMs are capable of producing
complex dual-arm trajectories in a zero-shot manner.

Furthermore, it is shown that strong reasoning models are capable of a simultaneous
parameterization of compliant control stiffnesses and a virtual coupling spring for object
manipulation given a short lookup table.

This is proven by implementing the framework on two robotic platforms with different
characteristics: a dual arm Franka setup and Softbanks Pepper robot. As soon as the
robotic platform meets the basic system requirements, the robotics engineer only has to
provide a short user command, which includes a task description, object information, and
location, to generate executable Matlab code. To the knowledge of the author, this is
also the first work that implements a compliant dual-arm manipulation framework on the
Pepper robot. Furthermore, this work explains which design steps were taken to make the
framework adaptable to other robotic dual arm setups and how this adaptation process
can be done in an efficient manner.

Finally, the Experiments section shows single-arm and dual-arm tasks executed on the
dual-arm Franka setup and on Pepper. Tasks include simple pick-and-place operations,
hand overs, and wiping motions. The reliability of the ComBi Copilot is tested on the
Franka setup and yields a good success rate, if error-feedback to the reasoning LLM is
permitted. Experiments with the Pepper robot reveal that it is possible to implement
partially compliant behavior; however, the number of executable tasks is limited due
to hardware restrictions. The code generated in the experiment section always includes
parameterization of two compliant control stiffness matrices, a virtual coupling spring and
a Cartesian trajectory, including the end effector rotation for both arms.

50

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

9 Conclusion 51

In the future, the framework can be extended by including Vision capabilities, which
would enable automated object recognition and error feedback to the reasoning LLM.
Additionally, the framework could be tested on more dexterous tasks, for example, including
hands on the dual-arm Franka setup. This would combine the effective single- versus
dual-arm coordination shown on Pepper with the extensive parameterization on the Franka
setup.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix

A.1 Prompt for the Franka dual arm setup

Introduction:

You control a pair of Franka Emika Panda 7-DOF robotic arms. Your goal is to generate a
MATLAB file called x_d.m that, when run, produces a file x_d.mat containing 7 variables
based on the USER, COMMAND at the end of the prompt. The generated trajectories
must adhere to the workspace and collision constraints, maintain smoothness, and respect
the provided timeframe.

ENVIRONMENT SET-UP:

¢ Coordinate System:
1. x-axis: depth, increasing away from you.
2. y-axis: horizontal, increasing to the left.

3. z-axis: vertical, increasing upwards.

e The robot arm bases are located at the locations:
— Base1: (x=0,y=0.4,z=0)
— Base 2: (x =0,y =-04,z=0)

Ground plane = x-y plane at z = 0

The top part of the robots end-effectors are currently positioned at
— End effector 1: (x = 0.31, y = 0.4, z = 0.59), rotation around z = 0
— End effector 2: (x = 0.31, y = -0.4, z = 0.59), rotation around z = 0

o End Effector Interaction Plate:
1. Plate center at end-effector tool center.
2. End effector plate dimensions:
a) Length (x-direction): 0.2 (£0.1 from the center)
b) Thickness (y-direction): 0.03 (£0.015 from the center)
c¢) Depth (z-direction): -0.077 (downwards)
3. Rotation around z: +pi radians. Negative = clockwise, positive = anticlockwise.

4. Initial orientation: Plate long side parallel to x-axis. Interactions (push/lift)
must use a plate’s long side (the 0.2 side) aligned appropriately to the target
object’s surface. Therefore the plates are initially aligned to clamp a box along
the y-axis and must rotate +pi/2 to clamp along the x-axis.

52

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.1 Prompt for the Franka dual arm setup 53

5. The robot arms are top-down, facing the tabletop.

WORKSPACE CONSTRAINTS:

The motion must remain within the following workspace boundaries (global coordinate
system):
Arml — tool center point 1: 1. x-axis: [0.0, 0.5]

2. y-axis: [-0.2, 0.9]

3. z-axis: [0.0, 0.7]

Arm2 — tool center point 2: 1. x-axis: [0.0, 0.5]
2. y-axis: [-0.9, 0.2]
3. z-axis: [0.0, 0.7]

Do not exceed these limits at any time.

COLLISION AVOIDANCE:
1. Consider object and end-effector plate dimensions.
2. Avoid collisions between the two end effectors.

3. Account for plate dimensions! If you want to interact with objects, you have to
account for the 0.030 (+ 0.015) thick interaction plate!

4. When picking up objects, always approach from the sides! Approaching from above
with aligned plates can lead to collision with the top.

5. Do not collide with the ground plane! There should always be at least z = 0.01
units between end effector (or plate) and ground plane, unless the User command
demands interaction with the ground plane!

6. Make sure to avoid crashing into objects you have just moved and remember the
new position of moved objects

TRAJECTORY GENERATION:

1. Break down the trajectories for both arms into defined phases (e.g., “Approach with
Arm1,” “Interact with Arm1,” “Approach with Arm2,” “Retreat Arm1,” etc.).

2. Assign time to each phase, generate the required number of waypoints, and ensure
smooth continuity (the end point of one step is the start of the next).

3. If the task involves interacting with a specific object part, identify which side is best
to engage.

4. After finishing the task return to the initial position.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.1 Prompt for the Franka dual arm setup 54

TIME DISCRETIZATION:

Time is discretized in 0.001-second intervals (1 ms time steps), i.e., 1000 steps per second.

OUTPUT DATA FORMAT:

The final output should be MATLAB file called “x_d.m” containing code that generates ex-
actly 7 variables: time, positionl, position2, K_matrixl, K_matrix2, coupling_vector

and rot_z

1.

2.

7.

time: (time/timesteps+1)x1 vector, Absolute time in seconds.

positionl: (time/timesteps+1)x3 matrix,

e X, YV, z positions of the end-effector of Arm 1 at each time step.

position2: (time/timesteps+1)x3 matrix,

e X, YV, z positions of the end-effector of Arm 2 at each time step.

. K_matrix1: (time/timesteps+1)x4 vector, Desired Cartesian stiffness of the end-

effector of Arm 1

K__matrix2: (time/timesteps+1)x4 vector, Desired Cartesian stiffness of the end-
effector of Arm 2

coupling vector: (time/timesteps+1)x5 vector. [coupling on/off (1/0), coupling
stiffness, clamp_ distance_x, clamp_ distance_y, clamp_ distance_z].

rot_z: (time/timesteps+1)x2 vector [Left z_rot, Right z_rot], in radiant.

The values should be stored as flcat64,
STIFFNESS MATRIX:

1.

3.

Define the variables K_matrix = [Kx, Ky, Kz, Krot] for a Cartesian stiffness
matrix diag(Kz, Ky, Kz, Krot, Krot, Krot) for the end-effector. The stiffness values
change based on environmental interaction, provided in the user prompt. The
rotational stiffness Krot should be equal to the largest stiffness value among [Kx, Ky,
Kz]. Kx, Ky and Kz can differ depending on the expected interaction direction (e.g.
if interaction forces are only expected in z-direction, lower the stiffness Kz) In the
description below you will find typical reference values for a stiffness K:

a) High Stiffness (K ~ 10000.0): No contact (free space).

b) Medium Stiffness (K ~ 5000.0): Contact with low-stiffness environment (e.g.
soft ball)

c) Low Stiffness (K ~ 1000.0): Contact with a stiff environment (e.g. wooden
tabletop)

Adjust stiffness if the robotic arm comes into contact with the environment (e.g.,
reduce stiffness when contacting a stiff surface like a table).

Once the two arms are coupled, treat stiffness as follows.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.1 Prompt for the Franka dual arm setup 55

a) The clamping (spring) axis always stays soft: K = 100.

b) Of the two remaining axes, only the one in which the tool-centre actually moves
during the current phase is softened to Medium (=~ 5000); the other stays High
(= 10000).

c) Rotational stiffness Krot is always set to the largest of Kx, Ky, Kz.
4. Expected transitions would be for example: “Approaching with high stiffness in free

space, medium stiffness when contacting a rubber box, low stiffness when touching
and gliding along a wooden table”.

COUPLING VECTOR:

1. Coupling activates a virtual spring between the two arms to pick up objects.

2. coupling_ vector(1) =1 or 0 (on/off)

3. coupling_vector(2) = coupling stiffness Kc

4. coupling vector(3:5) = [clamp_ distance_x, clamp_ distance_y, clamp_ distance_ 7]

5. With clamp_distance you can choose the direction of clamping. Set the
clamp_ distance equal to the object width which is clamped. The other clamp__distance
values must remain 0.

6. You must estimate the objects approximate weight (if not provided) and its object-
stiffness. Then choose an appropriate stiffness Kc. You are not bound to the exact
example values of Kc, you can choose values between them.

7. material examples: (cardboard box = light and 6000 stiffness); (hollow wood box =
middle_weight and 50000 stiffness); (hardwood box = heavy and 75000)

8. example values:

"light = ~0.04kg": [{ "object stiffness": 1000, "Kc": 120 },
"object stiffness": 6000, "Kc": 100 },
"object stiffness": 10000, "Kc": 120 },
"object stiffness": 50000, "Kc": 230 },
{ "object stiffness": 100000,"Kc": 295 }],
"middle_weight = ~0.1kg": [{ "object stiffness": 1000, "Kc": 260 1},
{ "object stiffness": 10000, "Kc": 310 },
{ "object stiffness": 50000, "Kc": 910 1},
{ "object stiffness": 100000,"Kc": 1489 }],
"heavy = ~1kg": [{ "object stiffness": 50000, "Kc": 650 1},
{ "object stiffness": 100000, "Kc": 400 }]

s

9. Lower the corresponding value of the STIFFNESS MATRIX (Kx or Ky or Kz) to
100 to avoid counteraction

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.1 Prompt for the Franka dual arm setup 56

OBJECT INTERACTION:

1.

To properly interact with objects along a certain side, you must rotate the end
effector around the z-axis so that the long side of the interaction plate is oriented
towards the object’s surface. For example:

a) If you need to push or hold the object along the object’s x-axis dimension
(approaching it from the “left” or “right” side), rotate the end effector’s plate
by £0° (0 radians) around the z-axis so that the long side of the plate aligns
with the object’s x-axis.

When interacting (pushing, grasping) with an object, always account for end effector
/ interaction plate dimensions to avoid overlapping/collision.

a) For example: If the box is 0.1 units wide in the direction you are pushing from,
and each end-effector plate protrudes 0.015 units from the tool center in that
direction, then the two tool centers (for Arm1 and Arm2) must be separated
by: 2 x 0.015 4+ 0.1 = 0.13 units total

Try to maximize gripping surface

When grasping, arms must maintain contact and coupling with the box from the
moment they first engage it until the box is fully placed at the final position. Only
after the box has been placed at its final position and is securely resting on the
target surface may the arms disengage

If the USER COMMAND violates the workspace constraints of one arm, consider
splitting the task in two sub tasks using both arms.

Interpolate the rot_ z values to avoid jumps in orientation.

You can use a single Arm to push objects or two arms (dual arm) to grasp and pick
up objects.

Just before touching an object, the end effector velocity must be low to avoid large
contact forces.

You can not position the end effector centers lower than the highest point of an
object. This avoids collision between end effector and object.

SINGLE ARM REQUIREMENTS

1.

You can only push objects, you cannot pick them up with one arm.

DUAL ARM REQUIREMENTS

1.

When approaching objects, you must align and position the interaction plates,
leaving a safety 0.05-unit lateral offset between each plate and the object. Hold this
position for 0.5 s, then move laterally to grasp.

. After grasping, hold the grasp for 0.5 s before lifting the object.

When releasing the object, move away laterally at least 0.05 units, then continue.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.1 Prompt for the Franka dual arm setup 57

ADDITIONAL REQUIREMENTS:

1. If one Arm is not used for a subtask, retreat it if it is in the way of the other Arm
or let it stay at the current position if there is no risk of collision.

2. Check at every step if the Workspace constraints are met.

3. Pushing objects might lead to inaccurate object locations. Therefore only push
objects in a straight line, engaging at the center of the respective side

4. At the end, verify that all output variables have the correct shape

5. Important: You can only lower the interaction plates until the center of the end
effector aligns with the highest point of the object. Only the interaction plate can
make contact with an object.

6. Demands from the User Command are prioritized over constraints in the prompt.

7. Do not use anonymous functions to do assignments in the Matlab Code, instead set
variables manually.

OUTPUT

1. A step by step explanation that includes:

a) short Phase description (e.g., “Approach,” “Contact and Push,” “Lift,” “Trans-
fer,” “Retreat”)

b) Relevant variables (K_matrix1, K_matrix2, coupling_vector, rot_z) for that
phase

¢) Description which arm is necessary for phase

o,

The necessary waypoints
e
f

timestamps

)
)
)
) Analysis of objects that are relevant in collision avoidance

2. Matlab code that, if run, will produce x_d.mat with the specified variables and
format. Make sure that the variables time, K_matrix1, K_matrix2, positioni,
position2, coupling_vector, rot_z have the correct format.

USER COMMAND:

Define a trajectory for each of the two robot arms, that carry a cardboard box from its
starting position to an end position. At some point the box should be at least 0.2 units
above the ground.

The starting center position of the box is (0.3, 0.25, 0.05) and the box dimensions are
(0.1, 0.1, 0.1).

The end center position of the box is (0.3, - 0.25, 0.05) Timeframe = 15 seconds.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.2 User Commands for Franka setup tasks

A.2 User Commands for Franka setup tasks

Pick and Place — Cardboard Box

Define a trajectory for each of the two robot arms, that carry a cardboard box
from its starting position to an end position. At some point the box should be
at least 0.2 units above the ground.

The starting center position of the box is (0.3, 0.25, 0.05) and the box dimen-
sions are (0.1, 0.1, 0.1).

The end center position of the box is (0.3, - 0.25, 0.05) Timeframe = 15
seconds.

Pick and Place — Hardwood Box

Define a trajectory for each of the two robot arms, that carry a hardwood box
from its starting position to an end position. At some point the box should be
at least 0.2 units above the ground.

The starting center position of the box is (0.35, 0.0, 0.05) and the box dimen-
sions are (0.1, 0.1, 0.1).

The end center position of the box is (0.05, 0.0, 0.05) Timeframe = 15 seconds.

Hand Over Pick and Place — Cardboard Box

Define a trajectory for each of the two robot arms, that transport a cardboard
box from its starting position to an end position. At some point the box
should be at least 0.2 units above the ground.

The starting center position of the box is (0.3, 0.5, 0.05) and the box dimensions
are (0.1, 0.1, 0.1).

The end center position of the box is (0.3, - 0.25, 0.05) Timeframe = 20
seconds.

Stack — Cardboard Boxes

Define a trajectory for each of the two robot arms, that carry a cardboard box
from its starting position to an end position. At some point the box should be
at least 0.2 units above the ground.

The starting center position of the box is (0.35, 0.0, 0.05) and the box dimen-
sions are (0.1, 0.1, 0.1).

The end center position of the box is (0.05, 0.0, 0.05) Timeframe = 15 seconds.

Wipe with Sponge

Define a trajectory for each of the two robot arms to wipe the ground surface
with a sponge. The starting center position of the sponge is (0.35, 0.0, 0.05)
and the sponge dimensions are (0.1, 0.1, 0.1).

Timeframe = maximum 25 seconds.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.3 Pepper Prompt 59

A.3 Pepper Prompt

Introduction

You control the 2 Arms of a Pepper Robot. Your goal is to generate a MATLAB file
called x_d.m that, when run, produces a file x_d.mat containing 7 variables based on the
USER COMMAND at the end of the prompt. The generated trajectories must adhere to
the workspace and collision constraints, maintain smoothness, and respect the provided
timeframe.

ENVIRONMENT SET-UP
1. Coordinate System:
a) x-axis: depth, increasing away from you.
b) y-axis: horizontal, increasing to the left.
¢) z-axis: vertical, increasing upwards.

2. Ground plane = x-y plane at z = 0.

3. Initial End-Effector Positions:
o Left Arm: (0.054,0.18,0.59), z-rotation = —7/2.
o Right Arm: (0.054,—0.18,0.59), z-rotation = 7/2.

4. Object Interaction should only be done with the two End-effectors (hands).

WORKSPACE CONSTRAINTS
The motion must remain within the following workspace boundaries (global coordinate
system):
Left Arm = Arml: 1. x-axis: [0.0,0.26]
2. y-axis: [—0.05,0.35]
3. z-axis: [0.56,1.1]

Right Arm = Arm2: 1. x-axis: [0.0,0.26]
2. y-axis: [—0.35,0.05]
3. z-axis: [0.56,1.1]

Do not exceed these limits at any time.

COLLISION AVOIDANCE

1. Avoid collisions between the two end effectors.

2. Do not collide with the ground plane or other planes! There should always be at
least z = 0.01 units between end effector (or plate) and ground plane or other planes.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.3 Pepper Prompt 60

If there is a table or similar surface closer than 0.2 units in x direction, lift the
arms above the surface in y and z direction to avoid collisions. The movement in y
direction must be at least 0.1 units.

. Consider the end effector outer dimensions!

When lifting the arm(s) above a table surface for the first time, set
coupling_vector = [-1,—1,—1,—1,—1, —1].

This closes the hands to avoid initial collisions.
Open hands (coupling_vector=[0,0,0,0,0,0]) IMMEDIATELY after reaching z =
0.05 units above the table surface.

After finishing with an object and after moving away from the object, you must
again set coupling_vector = [—1,—1,—1,— 1, — 1, — 1] to avoid collisions on the
retreat.

Make sure to avoid crashing into objects you have just moved and remember the
new position of moved objects.

TRAJECTORY GENERATION

1.

Break down the trajectories for both arms into defined phases (e.g. “Approach with
Arm1,” “Interact with Arm1,” “Approach with Arm2,” “Retreat Arm1,” etc.).

The interpolation should not be linear; it should be a second-order smooth arc.

Assign time to each phase, generate the required number of waypoints, and ensure
smooth continuity (the end point of one step is the start of the next).

If the task involves interacting with a specific object part, identify which side is best
to engage.

After finishing the task move away from objects and lift the relevant end effector 0.1
units in z direction. After that set coupling vector =[-1,—1,—1,—1,—1, — 1]
and return to the initial position.

TIME DISCRETIZATION

Time is discretized in 0.1-second intervals, i.e. 10 steps per second.

OUTPUT DATA FORMAT

The final code should reside in a MATLAB file named x_d.m, which, when executed,
produces x_d.mat containing exactly 7 variables: time, positionL, positionR, K1, K2,

coupling vector and rot_z.

1. time: (time/timesteps 4+ 1) x 1 vector, Absolute time in seconds.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.3 Pepper Prompt 61

7.

. positionL: (timesteps 4+ 1) x 3 matrix [x,y,z | for the Left Arm end effector.

positionR: (timesteps + 1) x 3 matrix [x,y,z | for the Right Arm end effector.
K1: (time/timesteps + 1) x 1 vector, Cartesian stiffness for Arm1 end effector.
K2: (time/timesteps + 1) x 1 vector, Cartesian stiffness for Arm2 end effector.
coupling_vector: (time/timesteps + 1) x 6 vector [Fxl, Fyl, Fzl, Fxr, Fyr, Fzr|.

rot_z: (time/timesteps + 1) x 2 vector [Left z_ rot, Right z_rot |, in radian.

The values should be stored as float64.

STIFFNESS MATRIX

Define K to scale a 6 x 6 identity matrix, K = K - eye(6). Vary K based on interaction.
Typical reference values for stiffness K:

High Stiffness (K ~ 5.0): No contact (free space).

Medium Stiffness (K ~ 2.5): Contact with low-stiffness environment (e.g. soft ball).
Low Stiffness (K ~ 1.0): Contact with a stiff environment (e.g. wooden tabletop).
Reduce K upon contacting stiff surfaces to be more compliant.

Expected transitions: “Approaching with high stiffness in free space, medium
stiffness when contacting a rubber box, low stiffness when touching and gliding
along a wooden table”.

COUPLING VECTOR

1.

Coupling activates a virtual spring between the two arms to pick up LARGE objects
with both arms. The force will push the end effectors towards the handled object.
You must set the force and the direction according to the direction in which the box
is clamped by the end effectors.

coupling vector = [Fx_ left, Fy_left, Fz_left, Fx_right, Fy_right, Fz_right].

You must estimate the object’s approximate weight (if not provided) and its object-
stiffness. Then choose an appropriate virtual force.

Material examples: cardboard box = light and low stiffness; hollow wood box =
middle_ weight and middle stiffness; hardwood box = heavy and high stiffness.

If no coupling is needed, set coupling_vector = 0.0.

Example values:
“light” ~ 0.04kg: coupling force = 0.5
“middle_weight” ~ 0.1kg: coupling force = 0.75
“heavy” =~ 1kg: coupling force = 1.0

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.3 Pepper Prompt 62

7. For Single Arm Grab: set all the coupling_vector values of the hand you want
to close to 0.15 or 0.01 depending on the object fragility. Example: If you want
to close the right hand to grasp a small and fragile object, set coupling_vector =
[0,0,0,0.15,0.15,0.15].

8. Do not interpolate the coupling vector values!

OBJECT INTERACTION

1. To properly interact with objects along a certain side, you must rotate the end
effectors. For that, set rot_z[0] (Left Arm) and rot_z[1] (Right Arm).

2. Try to maximize gripping surface.

3. When grasping, arms must maintain contact and coupling with the box from the
moment they first engage it until the box is fully placed at the final position. Only
after the box has been placed at its final position and is securely resting on the
target surface may the arms disengage.

4. Tt is possible to pick up large and small objects. Large object = any dimension
> (0.15 units or weight > 0.1 kg.

5. If you want to pick up large objects, use both arms and squeeze the object with the
help of coupling_vector.
a) set rot_z[left] = —7/2 and rot_z[right] = 7/2.
6. If you want to pick up small objects, use the closer arm and rotate the hand (rot_z):
a) rot_z = 0 to grasp from the top.

b) rot_z left arm = —m/2 or rot_z right arm = 7/2 to grasp from the side.

7. If the USER COMMAND violates the workspace constraints, consider splitting the
task in two sub-tasks using both arms. A hand-over of an object around y = 0 is
only possible in the x-range [0.1..0.15]. Example: use left arm, place the object on
table, use right arm to finish task.

8. Grab objects in the middle of the respective side.
9. Interpolate the rot_z values to avoid jumps in orientation.
10. Stay at the position for 1second before grasping an object.

11. Always approach from the side (in y direction). Example: Object location =
(0.18,0.2,0.7) then move left arm to y = 0.25, only then move left arm to

SINGLE ARM REQUIREMENTS
1. Single arm pick-up:

a) By default, taller objects (where the height > width in the x-y plane) should
be grasped from the side to ensure a larger contact area along their vertical
dimension.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.3 Pepper Prompt 63

b) Lower, wider objects (where the x-y dimensions > height) should be grasped
from above to maximize surface contact.

2. If the object is fragile (e.g. fruit, eggs, cardboard) set the values of coupling_vector
to 0.15. If the object is robust (e.g. wood, rubber) set the values to 0.01.

3. When grasping from the side (tall objects), grab objects at their center.

4. If the USER PROMPT demands a hand-over of an object to a person, pick
up the object, transport it, and hand it over by setting rot_z[left] = —x or
rot_z[right] = 7. Open the hand (coupling_vector = 0) and hold the object at
the hand-over location for 3 seconds.

5. Hand-overs to people (e.g. “hand it over to me”) should always be at (0.22,0.2,0.85)
if not specified otherwise.
6. When grasping from the top (handling wide objects):

a) You must approach from the top! Move the end effector at least 0.05 above
the object, then move down to grasp.

b) Always grab the object at its top (highest) part, not at the center.
c¢) Pure z-axis movement is allowed!
d) The end effector can be lowered to 0.025 units above the table or similar surface.

7. After placing an object at the final location, always move up at least 0.1 units in z
direction to avoid collisions when returning to the initial position.

DUAL ARM REQUIREMENTS

1. Dual arm pick-up: approach objects laterally along a wide arc to prevent collisions
with the top. Always stay at a safety distance of at least 0.08 from the object before
moving closer to grasp.

2. When releasing the object, move away laterally at least 0.05 units, then return to
the initial position.

3. Each arm must stay 0.015 units away from the respective object side to account for
end effector dimensions.

a) If the object has a width of 0.32 or below, each arm must stay 0.025 units away
from the respective object side!

b) If the object is soft (e.g. pillow), each arm must stay 0.0 units away from the
respective object side!

ADDITIONAL REQUIREMENTS

1. If one arm is not used for a sub-task, it should stay at the current position if there
is no risk of collision.

2. Check at every step if the workspace constraints are met.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.4 User Commands for Pepper Robot tasks 64

3. Pushing objects might lead to inaccurate object locations. Therefore don’t push
objects when you have to handle them again afterwards.

4. Important: Due to the Pepper robot’s 5-DOF limitations, purely vertical (z-axis)
movements are often not possible. You must include at least 0.05 units of motion in
the x or y direction. This movement should be in a direction that aids subsequent
tasks.

5. You must pause the trajectory for 1 second if an important waypoint (e.g. positions
mentioned in prompt) is reached.

6. When lifting an object, always lift it at least 0.1 units off the surface.

OUTPUT

1. A step-by-step explanation that includes:

a) Short phase description (e.g. “Approach,” “Contact and Push,” “Lift,” “Trans-
fer,” “Retreat”).

) Relevant variables (K1, K2, coupling_vector, rot_z) for that phase.
) Description which arm is necessary for phase.
d) The necessary waypoints.
) Timestamps.
f) Analysis of objects that are relevant in collision avoidance.
2. MATLAB code that, if run, will produce x_d.mat with the specified variables

and format. Make sure that the variables time, K1, K2, positionL, positionR,
coupling_vector, rot_z have the correct format.

USER COMMAND

Pick up a sponge on a table and wipe the table. The table can be interpreted as x-y plane
at z = 0.71. The table starts at x = 0.15 and extends infinite in the positive and negative
y direction.

The starting center position of the sponge is (0.18,0.2,0.76) and the sponge dimensions
are (0.12,0.06,0.1).

The wiping motion should be once to the left (0.1 units) and once to the right (0.1
units). This should be done within 25 seconds.

A.4 User Commands for Pepper Robot tasks

Dual Arm Box Pickup

Define a trajectory for each of the Pepper arms, that picks up a plastic box
from its starting position, lifts it up and returns it to the starting position.
The box should be lifted at least 0.15 units (z direction) above the table.

The Box lays on a table, which can be interpreted as x-y plane at z = 0.63.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.4 User Commands for Pepper Robot tasks

The table starts at x = 0.15 and extends infinite in the positive and negative
y direction.

The starting center position of the box is (0.2, 0.0, 0.74) and the box dimensions
are (0.15, 0.22, 0.16).

This should be done within 25 seconds.

Dual Arm Box Pickup — Big Box, High Table

Define a trajectory for each of the Pepper arms, that picks up a cardboard
box from its starting position, lifts it up and returns it to the starting position.
The box should be lifted at least 0.1 units (z direction) above the table.

The Box lays on a table, which can be interpreted as x-y plane at z = 0.71.
The table starts at x = 0.15 and extends infinite in the positive and negative
y direction.

The starting center position of the box is (0.18, 0.0, 0.82) and the box dimen-
sions are (0.1, 0.30, 0.22).

This should be done within 25 seconds.

Transport Rubber Tall Box

Pepper should pick up a rubber Box (dimension 0.05, 0.05, 0.1) from its initial
center location (0.2, 0.1, 0.75) and place it at (0.2, 0.3, 0.75). The box is
positioned on a table, which can be interpreted as x-y plane at z = 0.7.

The table starts at x = 0.15 and extends infinite in the positive and negative
y direction.

This should be done within 20 seconds.

Transport Rubber Wide Box

Pepper should pick up a rubber Box (dimension 0.05, 0.1, 0.05) from its initial
center location (0.18, 0.1, 0.725) and place it at (0.18, 0.25, 0.725). The box is
positioned on a table, which can be interpreted as x-y plane at z = 0.7.

The table starts at x = 0.15 and extends infinite in the positive and negative
y direction.

This should be done within 25 seconds.

Hand Over: One RoboHand to Another

A rubber box lays on a table, which can be interpreted as x-y plane at z =
0.625. The table starts at x = 0.15 and extends infinite in the positive and
negative y direction.

The starting center position of the box is (0.24, 0.2, 0.675) and the box
dimensions are (0.05, 0.05, 0.1).

Transport the box to position (0.24, -0.2, 0.675).

This should be done within 30 seconds.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

A Appendix A.4 User Commands for Pepper Robot tasks

Hand Over: One RoboHand to Human

A rubber box lays on a table, which can be interpreted as x-y plane at z =
0.72. The table starts at x = 0.15 and extends infinite in the positive and
negative y direction.

The starting center position of the box is (0.18, 0.2, 0.77) and the box dimen-
sions are (0.05, 0.05, 0.1).

Transport the box and hand it over to me (a person).

This should be done within 20 seconds.

Toy Panda — Big Pickup

A plush toy panda lays on a table, which can be interpreted as x-y plane at z
= 0.70. The table starts at x = 0.15 and extends infinite in the positive and
negative y direction.

The starting center position of the toy panda is (0.2, 0, 0.8) and the toy panda
dimensions are (0.20, 0.20, 0.3).

Pick up the plush toy panda and lift it 0.1 units, then place it at its initial
location again.

This should be done within 20 seconds.

Toy Panda — Small Pickup

A plush toy panda lays on a table, which can be interpreted as x-y plane at z
= (0.70. The table starts at x = 0.15 and extends infinite in the positive and
negative y direction.

The starting center position of the toy panda is (0.18, 0.15, 0.76) and the toy
panda dimensions are (0.08, 0.09, 0.12).

Pick up the plush toy panda and place it at (0.18, 0.25, 0.76).

This should be done within 20 seconds.

Sponge Wiper

Pick up a sponge on a table and wipe the table. The table can be interpreted
as x-y plane at z = 0.71. The table starts at x = 0.15 and extends infinite in
the positive and negative y direction.

The starting center position of the sponge is (0.18, 0.2, 0.76) and the sponge
dimensions are (0.12, 0.06, 0.1).

The wiping motion should be once to the left (0.1 units) and once to the right
(0.1 units).

This should be done within 20 seconds.

Scroll Pickup

A document tube stands on a table, which can be interpreted as x-y plane at
z = 0.70. The table starts at x = 0.15 and extends infinite in the positive and
negative y direction.

The starting center position of the document tube is (0.18, 0.15, 0.85) and the

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

A Appendix A.4 User Commands for Pepper Robot tasks

67

document tube dimensions are (0.05 diameter and 0.3 tall).

Pick up the document tube, turn it 90 degrees and place it on the table lying
on its side.

This should be done within 25 seconds.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Bibliography

1]

J. Liang, W. Huang, F. Xia, et al., ,,Code as policies: Language model programs for
embodied control,” arXiv preprint arXiv:2209.07753, 2022.

K. Burns, A. Jain, K. Go, et al., Genchip: Generating robot policy code for high-
precision and contact-rich manipulation tasks, arXiv.org, 2024. [Online]. Available:
https://arxiv.org/abs/2404.06645 (visited on 05/12/2025).

G. Cheng, C. Zhang, W. Cai, L. Zhao, C. Sun, and J. Bian, Empowering large
language models on robotic manipulation with affordance prompting, arXiv.org, 2024.
[Online]. Available: https://arxiv.org/abs/2404.11027.

U. B. Karli, J.-T. Chen, V. N. Antony, and C.-M. Huang, ,,Alchemist: Lim-aided
end-user development of robot applications, ACM/IEEE International Conference
on Human-Robot Interaction, Mar. 2024, pp. 361-370.

J. Chen, Y. Mu, Q. Yu, et al., Roboscript: Code generation for free-form manipula-
tion tasks across real and simulation, 2024. arXiv: 2402.14623 [cs.R0]. [Online].
Available: https://arxiv.org/abs/2402.14623.

G. R. e. a. Team, Gemini robotics: Bringing ai into the physical world, arXiv.org,
2025. [Online]. Available: https://arxiv.org/abs/2503.20020.

M.-H. Guo, J. Xu, Y. Zhang, et al., R-bench: Graduate-level multi-disciplinary
benchmarks for llm mllm complex reasoning evaluation, 2025. arXiv: 2505.02018
[cs.CV]. [Online]. Available: https://arxiv.org/abs/2505.02018.

I. Singh, V. Blukis, A. Mousavian, et al., ,,Progprompt: Generating situated robot
task plans using large language models,” 2023 IEEE International Conference on
Robotics and Automation (ICRA 2023), IEEE, May 2023.

J.-T. Chen and C.-M. Huang, Forgetful large language models: Lessons learned from
using llms in robot programming, arXiv.org, 2023. [Online]. Available: https://arx
iv.org/abs/2310.06646 (visited on 05/12/2025).

W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, Vozposer: Composable
3d value maps for robotic manipulation with language models, arXiv.org, Jul. 2023.
[Online|. Available: https://arxiv.org/abs/2307.05973.

T. Kwon, N. D. Palo, and E. Johns, ,Language models as zero-shot trajectory
generators,“ IEFE Robotics and Automation Letters, vol. 9, pp. 6728-6735, Jun.
2024.

J. Varley, S. Singh, D. Jain, et al., Embodied ai with two arms: Zero-shot learning,
safety and modularity, arXiv.org, 2024. [Online]. Available: https://arxiv.org/ab
$/2404.03570 (visited on 05/12/2025).

R. Zahedifar, M. S. Baghshah, and A. Taheri, ,Llm-controller: Dynamic robot

control adaptation using large language models,“ Robotics and Autonomous Systems,
vol. 186, pp. 104913-104 913, Jan. 2025.

68

https://arxiv.org/abs/2404.06645
https://arxiv.org/abs/2404.11027
https://arxiv.org/abs/2402.14623
https://arxiv.org/abs/2402.14623
https://arxiv.org/abs/2503.20020
https://arxiv.org/abs/2505.02018
https://arxiv.org/abs/2505.02018
https://arxiv.org/abs/2505.02018
https://arxiv.org/abs/2310.06646
https://arxiv.org/abs/2310.06646
https://arxiv.org/abs/2307.05973
https://arxiv.org/abs/2404.03570
https://arxiv.org/abs/2404.03570

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Bibliography 69

[14]

[17]

[18]

[23]

[24]

[26]

[27]

P. Hao, C. Zhang, D. Li, et al., Tla: Tactile-language-action model for contact-rich
manipulation, arXiv.org, 2025. [Online]. Available: https://arxiv.org/abs/2503
.08548 (visited on 05/12,/2025).

K. Chu, X. Zhao, C. Weber, M. Li, W. Lu, and S. Wermter, Large language models
for orchestrating bimanual robots, arXiv.org, 2024. [Online]. Available: https://ar
xiv.org/abs/2404.02018.

K. Chu, X. Zhao, C. Weber, and S. Wermter, Lim+map: Bimanual robot task
planning using large language models and planning domain definition language,
arXiv.org, 2025. [Online|. Available: https://arxiv.org/abs/2503.17309 (visited
on 05/12/2025).

Z. Zhao, X. Yue, J. Xie, C. Fang, Z. Shao, and S. Guo, ,, A dual-agent collaboration
framework based on llms for nursing robots to perform bimanual coordination tasks,“
IEEE Robotics and Automation Letters, vol. 10, no. 3, pp. 2942—-2949, 2025.

P. A. Akiki, P. A. Akiki, A. K. Bandara, and Y. Yu, ,,Eud-mars: End-user devel-
opment of model-driven adaptive robotics software systems,* Science of Computer
Programming, vol. 200, p. 102 534, 2020, 1SSN: 0167-6423.

E. Coronado, D. Deuff, P. Carreno-Medrano, et al., ,,Towards a modular and
distributed end-user development framework for human-robot interaction,“ IEEE
Access, vol. 9, pp. 12675-12 692, 2021.

F. Erich, M. Hirokawa, and K. Suzuki, ,,A visual environment for reactive robot
programming of macro-level behaviors,“ Oct. 2017, pp. 577-586, 1SBN: 978-3-319-
70021-2.

Y. Ge, Y. Dai, R. Shan, K. Li, Y. Hu, and X. Sun, Cocobo: Ezploring large language
models as the engine for end-user robot programming, 2024. arXiv: 2407 .20712
[cs.HC]. [Online]. Available: https://arxiv.org/abs/2407.20712.

L. Gargioni, D. Fogli, and P. Baroni, ,Preparation of personalized medicines through
collaborative robots: A hybrid approach to the end-user development of robot
programs,“ ACM J. Responsib. Comput., Jan. 2025. [Online]. Available: https://d
oi.org/10.1145/3715852.

A. Shahid, D. Piga, F. Braghin, and L. Roveda, ,,Continuous control actions learning
and adaptation for robotic manipulation through reinforcement learning,* Au-
tonomous Robots, vol. 46, Mar. 2022.

M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox, Object rearrangement using
learned implicit collision functions, 2021. arXiv: 2011.10726 [cs.RO]. [Online].
Available: https://arxiv.org/abs/2011.10726.

K. K. Babarahmati, M. Kasaei, C. Tiseo, M. Mistry, and S. Vijayakumar, Robust and
dexterous dual-arm tele-cooperation using adaptable impedance control, 2024. arXiv:
2108.04567 [cs.RO]. [Online]. Available: https://arxiv.org/abs/2108.04567.

A. Dastider, H. Fang, and M. Lin, Apex: Ambidextrous dual-arm robotic manipulation
using collision-free generative diffusion models, 2024. arXiv: 2404.02284 [cs.RO].
[Online]. Available: https://arxiv.org/abs/2404.02284.

Softbank, Softbank pepper documentation, http://doc.aldebaran.com/2-5/fami
ly/pepper_technical/index_pep.html, Accessed: 2025-05-24.

https://arxiv.org/abs/2503.08548
https://arxiv.org/abs/2503.08548
https://arxiv.org/abs/2404.02018
https://arxiv.org/abs/2404.02018
https://arxiv.org/abs/2503.17309
https://arxiv.org/abs/2407.20712
https://arxiv.org/abs/2407.20712
https://arxiv.org/abs/2407.20712
https://doi.org/10.1145/3715852
https://doi.org/10.1145/3715852
https://arxiv.org/abs/2011.10726
https://arxiv.org/abs/2011.10726
https://arxiv.org/abs/2108.04567
https://arxiv.org/abs/2108.04567
https://arxiv.org/abs/2404.02284
https://arxiv.org/abs/2404.02284
http://doc.aldebaran.com/2-5/family/pepper_technical/index_pep.html
http://doc.aldebaran.com/2-5/family/pepper_technical/index_pep.html

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Bibliography 70

28]

[29]

[30]

[36]

[37]

[38]

[39]

[40]

[41]

O. robotics, Softbank pepper ros documentation, https://wiki.ros.org/pepper,
Accessed: 2025-05-24.

Z. A. barakeh, S. alkork, A. S. Karar, S. Said, and T. Beyrouthy, ,,Pepper humanoid
robot as a service robot: A customer approach,* in 2019 3rd International Conference
on Bio-engineering for Smart Technologies (BioSMART), 2019, pp. 1-4.

T Ikeuchi, R Sakurai, K Furuta, Y Kasahara, Y Imamura, and S Shinkai, ,,Utilizing
social robot to reduce workload of healthcare professionals in psychiatric hospital: A
preliminary study, Innovation in Aging, vol. 2, no. supply, pp. 695696, Nov. 2018,
ISSN: 2399-5300.

R. Lanzilotti, A. Piccinno, V. Rossano, and T. Roselli, ,Social robot to teach
coding in primary school,* in 2021 International Conference on Advanced Learning
Technologies (ICALT), 2021, pp. 102-104.

S. Wu, Z. Peng, X. Du, et al., A comparative study on reasoning patterns of openai’s
01 model, 2024. arXiv: 2410.13639 [cs.CL]. [Online]. Available: https://arxiv.o
rg/abs/2410.13639.

J. Wei, X. Wang, D. Schuurmans, et al., Chain-of-thought prompting elicits reasoning
in large language models, 2023. arXiv: 2201 .11903 [cs.CL]. [Online|. Available:
https://arxiv.org/abs/2201.11903.

OpenAl, Openai platform - how to prompt reasoning models effectively, https://pl
atform.openai.com/docs/guides/reasoning-best-practices#how-to-prompt
-reasoning-models-effectively, Accessed: 2025-04-27.

J. Huang and K. C.-C. Chang, ,,Towards reasoning in large language models: A
survey,” in Findings of the Association for Computational Linguistics: ACL 2023,
A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds., Toronto, Canada: Association
for Computational Linguistics, Jul. 2023, pp. 1049-1065. [Online]. Available: https:
//aclanthology.org/2023.findings-acl.67/.

T. Khot, H. Trivedi, M. Finlayson, et al., Decomposed prompting: A modular approach
for solving complex tasks, 2023. arXiv: 2210.02406 [cs.CL]. [Online|. Available:
https://arxiv.org/abs/2210.02406.

L. Yang, Z. Yu, T. Zhang, et al., Buffer of thoughts: Thought-augmented reasoning
with large language models, 2024. arXiv: 2406.04271 [cs.CL]. [Online]. Available:
https://arxiv.org/abs/2406.04271.

OpenAl, Benchmarks for 03 model, https://openai.com/index/introducing-03
-and-o4-mini/, Accessed: 2025-05-07.

T. Wimbock, C. Ott, and G. Hirzinger, ,,Jmpedance behaviors for two-handed ma-
nipulation: Design and experiments,* Proceedings - IEEE International Conference
on Robotics and Automation/Proceedings, Institute of Electrical and Electronics
Engineers, Apr. 2007, pp. 4182-41809.

M. G. Arenas, T. Xiao, S. Singh, et al., ,How to prompt your robot: A promptbook
for manipulation skills with code as policies,” 2024 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, May 2024, pp. 4340-4348.

B. Siciliano and E. Al, Robotics : modelling, planning and control. Springer, Cop,
2010.

https://wiki.ros.org/pepper
https://arxiv.org/abs/2410.13639
https://arxiv.org/abs/2410.13639
https://arxiv.org/abs/2410.13639
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://platform.openai.com/docs/guides/reasoning-best-practices##how-to-prompt-reasoning-models-effectively
https://platform.openai.com/docs/guides/reasoning-best-practices##how-to-prompt-reasoning-models-effectively
https://platform.openai.com/docs/guides/reasoning-best-practices##how-to-prompt-reasoning-models-effectively
https://aclanthology.org/2023.findings-acl.67/
https://aclanthology.org/2023.findings-acl.67/
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2406.04271
https://arxiv.org/abs/2406.04271
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[3ibliothek,
Your knowledge hub

Bibliography Bibliography 71

[42]

[43]

A. Albu-Schaffer, C Ott, U Frese, and G. Hirzinger, ,,Cartesian impedance control
of redundant robots: Recent results with the dlr-light-weight-arms,* 2003 IEEE
International Conference on Robotics and Automation, IEEE, Mar. 2004.

K. Murata and T. Kanazawa, ,,Determination of young’s modulus and shear modulus
by means of deflection curves for wood beams obtained in static bending tests,*
Holzforschung, vol. 61, no. 5, pp. 589-594, 2007. [Online]. Available: https://doi
.org/10.1515/HF.2007.082.

Matlab, Matlab toolbox franka, https://frankaemika.github.io/docs/franka_m
atlab/index.html, Accessed: 2025-05-31.

E. Coronado, Nep middleware documentation, https://coronadoenrique.gitboo
k.io/nep+, Accessed: 2025-04-28.

E. Coronado, T. Shinya, and G. Venture, ,,Hold my hand: Development of a force
controller and system architecture for joint walking with a companion robot,*
Sensors, vol. 23, p. 5692, Jan. 2023.

P. Corke, Robotics toolbox for python documentation, https://petercorke.githu
b.io/robotics-toolbox-python/intro.html, Accessed: 2024-12-01.

G. Claudio and F. Spindler, Velocity controller for pepper, https://github.com/1
agadic/pepper_control, Accessed: 2024-12-01.

M. Mosadeghzad, G. A. Medrano-Cerda, J. A. Saglia, N. G. Tsagarakis, and D. G.
Caldwell, ,,Comparison of various active impedance control approaches, modeling,
implementation, passivity, stability and trade-offs,“ 2012 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM), IEEE, Jul. 2012, pp. 342
348.

K. Celep, Link to chatgpt - prompt check gpt, https://chatgpt.com/g/g-gSdMDNo
Pi-prompt-check, Accessed: 2025-05-23.

OpenAl, Openai issue note, https://status.openai.com/incidents/01JT25FY8WDV
H38GCTK6BV4PQR, Accessed: 2025-05-02.

Similarweb, Chatgpt web traffic by country, https://www.similarweb.com/websi
te/chat-gpt.com/#geography, Accessed: 2025-05-06.

https://doi.org/10.1515/HF.2007.082
https://doi.org/10.1515/HF.2007.082
https://frankaemika.github.io/docs/franka_matlab/index.html
https://frankaemika.github.io/docs/franka_matlab/index.html
https://coronadoenrique.gitbook.io/nep+
https://coronadoenrique.gitbook.io/nep+
https://petercorke.github.io/robotics-toolbox-python/intro.html
https://petercorke.github.io/robotics-toolbox-python/intro.html
https://github.com/lagadic/pepper_control
https://github.com/lagadic/pepper_control
https://chatgpt.com/g/g-gSdMDNoPi-prompt-check
https://chatgpt.com/g/g-gSdMDNoPi-prompt-check
https://www.similarweb.com/website/chat-gpt.com/##geography
https://www.similarweb.com/website/chat-gpt.com/##geography

	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related work
	3 Introduction to the Systems used
	3.1 Introduction to Franka Research 3
	3.2 Introduction to Pepper
	3.3 LLMs with reasoning capabilities

	4 Framework
	4.1 Framework requirements
	4.2 Prompt
	4.2.1 Output Variables - Overview
	4.2.2 Prompt Structure
	4.2.3 Platform dependent Adaptations to the Prompt

	4.3 LLM and Interface
	4.4 Control Code
	4.4.1 Franka
	Coupling spring - Calculation of the lookup table
	Simulink layout

	4.4.2 Pepper
	Inverse Kinematics
	Force observer
	Compliant Velocity Control
	Coupling stiffness

	5 ComBi Copilot for new robot setups
	5.1 General Pipeline
	5.1.1 Error feedback

	6 Experimental Settings
	6.1 Experimental Settings - Franka setup
	6.2 Experimental Settings - Pepper

	7 Experiments
	7.1 Experiments with Pepper
	7.1.1 Dual arm tasks
	7.1.2 Single arm tasks
	7.1.3 Unsuccessful tasks

	7.2 Experiments with the Dual-arm Franka setup
	7.2.1 Pick-and-place tasks
	7.2.2 Pick-and-place tasks outside of workspace
	7.2.3 Wiping ground surface with sponge

	7.3 Reliability and Success Rate
	7.3.1 Pick and place a cardboard box
	7.3.2 Wiping the floor with a sponge

	7.4 Parameter Comparison of the Robotic Platforms

	8 Limitations and Outlooks
	8.1 Assumptions and Limitations
	8.1.1 Franka setup specific limitations
	8.1.2 Pepper specific limitations

	8.2 Outlooks
	8.2.1 Outlooks - Franka setup
	8.2.2 Outlooks - Pepper

	9 Conclusion
	A Appendix
	A.1 Prompt for the Franka dual arm setup
	A.2 User Commands for Franka setup tasks
	A.3 Pepper Prompt
	A.4 User Commands for Pepper Robot tasks

