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ARTICLE INFO ABSTRACT

Keywords: Extracorporeal Membrane Oxygenation provides life-saving support for patients with severe heart and lung
Extracorporeal membrane oxygenation dysfunction; however, its implementation is associated with significant complications, including hemolysis and
(ECMO)

thrombosis. These complications address the need for an improved design of hollow fiber membrane oxygena-
tors. This study presents a multi-objective optimization framework aiming to enhance the gas exchange effi-
ciency while minimizing blood damage. A 2D computational fluid dynamics model, validated with micro-PIV
measurements, was developed to simulate 200 fiber configurations defined by three geometric parameters (fiber
diameter, distance-to-diameter ratio, and angle) and a flow parameter (blood flow rate). Specific CO, removal,
dead-zone-to-total-area ratio, and hemolysis index were established as objectives, representing gas exchange
efficiency, thrombosis potential within the membrane module, and hemolysis, respectively. Objectives were
modeled using multivariate polynomial functions with unknown exponents and determined using the modified
enhanced Jaya algorithm. Single-objective and multi-objective optimization were performed using Pareto front
solutions, followed by weighted sum and goal programming methods to identify optimal arrangements. The
findings demonstrated that the maximum obtained specific CO, removal, dead-zone-to-total-area ratio, and
hemolysis index are 250.3 mL¢o2 min™! m'2, 0.0254 %, and 0.011 x 1073 %, respectively. Furthermore, this study
identifies the distance-to-diameter ratio as the key factor affecting all the objectives. Finally, the calculated
optimal configuration from both weighted sum and goal programming methods suggests that the best configu-
ration includes low angle, small diameter, and relatively moderate distance-to-diameter ratio, and high blood
flow rate.

Multi-objective optimization
Computational fluid dynamics (CFD)
Modified enhanced jaya

Pareto front solutions

of red blood cells, may occur due to mechanical stress within the circuit
induced by the pump or contact with fibers, leading to the release of free
hemoglobin into the bloodstream [5-7]. While hemolysis in an ECMO

1. Introduction

Extracorporeal Membrane Oxygenation (ECMO) is a life-support

technique used in critical care to support patients with severe heart
and lung dysfunction [1]. The main component of an ECMO circuit is the
hollow fiber membrane oxygenator, which facilitates gas exchange by
diffusing oxygen into the blood and removing carbon dioxide [2].
During the COVID-19 pandemic, the use of ECMO increased signifi-
cantly, supporting patients experiencing severe respiratory failure. The
increased dependence on ECMO displayed its critical role in managing
acute respiratory distress syndrome (ARDS) caused by COVID-19 and
the evolving outcomes associated with its use throughout the pan-
demic’s first two years [3]. Despite the life-saving potential of ECMO, it
is associated with significant complications [4]. Hemolysis, the rupture

circuit is more associated with the blood pump and cannulae, consid-
ering the oxygenator’s shear stresses, which comprise the largest volume
and area of the ECMO circuit, is essential. Pan et al. demonstrated the
gradual hemolysis in a microfluidic device with arrays of narrow gaps
representing the blood path in ECMO. Their study revealed that due to
the squeeze of RBCs between the fibers, they deform periodically,
resulting in the fatigue of RBCs, progressive changes in morphology, and
the gradual loss of deformability, indicating the importance of consid-
ering the hemolysis of the oxygenator [8]. Blood clot formation, or
thrombosis, is another critical issue, potentially resulting in ischemic
events and compromising the effectiveness of the oxygenator [9-11].
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These complications contribute to high mortality rates among ECMO
patients [12-14]. Studies indicate that survival rates differ based on the
specific type of ECMO used; for instance, veno-arterial (VA) ECMO has
reported survival rates of approximately 40-60 %, while veno-venous
(VV) ECMO showed survival rates around 21-37 % [15]. To address
these challenges, optimizing the design of hollow fiber membrane oxy-
genators to enhance mass transfer efficiency and reduce the risk of he-
molysis and thrombosis is essential.

Computational modeling is an effective method for simulating and
analyzing the blood flow and gas transfer within the oxygenator. Many
studies have utilized computational fluid dynamics (CFD) to investigate
the effect of different fiber arrangements and other parameters on flow
patterns and gas transfer rates. Taskin et al. developed a multi-fiber CFD
model evaluating two different void fractions or fiber spacings. Their
findings indicated that at lower flow rates, the mass transfer rates for the
arrangement with a denser configuration were only slightly higher than
those of the wider-spaced arrangement. However, at higher flow rates,
the denser configuration appeared more favorable [16]. Kaesler et al.
examined oxygen transfer efficiency in staggered, in-line, and three
random configurations. Their study demonstrated that a random
configuration chain of fibers forms areas of low blood velocity and af-
fects oxygen transfer [17]. Santos et al. tested flow-aligned spacers for
different cases and showed how the local Sherwood number varied in
each scenario [18]. Lukitsch et al. developed a 3D CFD model of an
oxygenator with a parallel flow configuration. Their study confirmed
that increasing the blood flow rate increases the radial velocity and
improves specific CO, removal [19].

Additionally, research findings have demonstrated that changing the
shape and arrangement of fibers may significantly influence gas ex-
change efficiency. Ecker et al. demonstrated that sinusoidal-shaped
hollow fibers increase the available gas exchange surface, thereby
improving CO; transfer rates. Their findings also indicated that gas
transfer efficiency is higher when fibers are arranged in a staggered
configuration compared to a non-staggered arrangement [20].
Furthermore, advancements in membrane materials, such as poly-
methylpentene (PMP) fibers, have enhanced biocompatibility and
reduced thrombogenicity. PMP fibers improve gas permeability and
lower resistance to blood flow, which helps reduce the risk of hemolysis
and thrombosis [21]. These ongoing studies aim to advance ECMO
technology by integrating computational modeling with experimental
validation to develop oxygenators that optimize gas exchange and
reduce complications, thereby improving patient outcomes.

Even though previous studies have utilized CFD to simulate gas
transfer in hollow fiber membrane oxygenators with various fiber con-
figurations, they have mainly focused on the fiber scale to evaluate mass
transfer and neglected the critical complications of hemolysis and
thrombosis. On the other hand, some studies have investigated blood
damage, such as thrombosis in oxygenators, in a macroscopic way.
These studies modeled a hollow fiber membrane as a porous medium.
For instance, Fu et al. conducted CFD simulations to investigate the
thrombosis risk in four clinical and one newly designed oxygenator [22].
CFD models that use a porous media approach are commonly employed
to simulate the behavior of entire ECMO oxygenators. Since there are
more than 10000 fibers in oxygenators, it is very hard to simulate the full
oxygenator with all the fibers. In many studies, fibers were treated as a
porous medium to neglect the complex geometry of the fiber bundle,
allowing macroscopic flow and mass transfer evaluation [22-26].
However, at the fiber-scale level, only a very limited section of the
oxygenator can be effectively investigated due to the computational
cost. While these models simulate the thrombosis in the oxygenator,
they do not include detailed blood damage modeling between the fibers.
The micro-CT images from Wagner’s study show many clot formations
between the fibers, representing the importance of microscopically
investigating the blood damage [27]. Optimizing fiber arrangements
without addressing these risks limits progress in oxygenator design.
Therefore, an optimization approach is required to evaluate gas
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exchange efficiency while minimizing the risks of hemolysis and
thrombosis.

The primary aim of this study is to identify and analyze the in-
terrelations between key geometric parameters of ECMO oxygenators,
including fiber spacing, diameter, and bundle arrangement, and their
effects on gas exchange efficiency, hemolysis, and thrombosis. By
developing multivariate models to predict these outcomes, the study
enhances understanding of how design choices influence oxygenator
performance and blood damage. Following this, optimization methods,
including Pareto front analysis, are applied to identify optimal config-
urations that maximize gas transfer efficiency while minimizing blood
damage.

2. Materials and methods
2.1. Computational fluid dynamics

2.1.1. Geometric parameters

Three geometric parameters, including angle, diameter, and
distance-to-diameter ratio, as well as a flow parameter, blood flow rate,
were considered to optimize the membrane fiber arrangement. Fig. 1(a)
shows the angle, diameter, and distance between the fibers in a stag-
gered arrangement. Each parameter was assigned a specific lower and
upper bound: the angle ranged from 30 to 60 ', the diameter ranged from
300 to 700 pm, the distance-to-diameter ratio ranged from 1.25 to 2.25,
and the blood flow rate ranged from 0.5 to 5 L.min"'. Blood flow rate was
incorporated as an input parameter because flow condition variation
might significantly influence the behavior of the geometric configura-
tion of the fibers, thereby impacting the overall performance. Since the
distance between the fibers may be impractical in some cases, the
distance-to-diameter ratio was considered. For instance, in fibers with a
diameter of 300 ym, a distance of 500 ym (distance-to-diameter ratio of
1.66) is feasible. In comparison, the exact distance is impossible in fibers
with a diameter of 600 pm (distance-to-diameter ratio of 0.83) as the
fibers collide.

2.1.2. Numerical domain

The computational fluid dynamics (CFD) domain was designed with
27 fibers, including 22 full fibers within the flow path and 10 half fibers
at the periodic boundaries. Since simulations with more fibers produce
results similar to the 27-fiber configuration, the CFD model with the 27-
fiber configuration was chosen to better balance computational cost and
accuracy. Given the laminar flow and unidirectional fiber alignment, a
2D flow assumption was considered appropriate for the CFD model,
reducing the computational cost compared to a 3D model while main-
taining accuracy. Inlet and outlet extensions of 6 mm each was added to
the domain to achieve fully developed flow conditions. Fig. 1(b) shows
the CFD domain along with dimensions, considering the arrangement
with a 45 fiber angle, a fiber diameter of 400 ym, and a spacing of 600
um between fibers, giving a distance-to-diameter ratio of 1.5.

2.1.3. Governing equations, boundary conditions, and simulation settings
The steady-state flow of blood is modeled by solving incompressible
Navier-Stokes equations,

p (‘;—: + (v.V)V) = —Vp+uVv €]

V.v=0, (2)

where p is the fluid density in kg m™3, v is the fluid velocity vector inm s”
L p is the pressure in Pa, and y is the fluid viscosity in Pa s. These
equations express the momentum conservation in a differential control
volume. Solving the Navier-Stokes equations with appropriate initial
and boundary conditions yields the velocity and pressure distributions
throughout each control volume in the discretized computational
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Fig. 1. Geometric and computational domain setup for fiber arrangement. (a) Defined geometric parameters for fibers in a staggered arrangement, (b) CFD domain
layout with 27 fibers, showing flow direction, dimensions, and boundary conditions.

domain. Ansys Fluent (Ansys, Inc., Pennsylvania, USA) was used to solve
the Navier-Stokes equations for the CFD simulations.

In this study, blood is treated as a non-Newtonian fluid, following a
Carreau-Yasuda viscosity model, with a constant density of 1050 kg m™
[28]. The Reynolds number is calculated utilizing Equations (3) and (4),
where Q represents the blood flow rate in m® s, L the distance between
the fibers in m, 6 the angle between the fibers in degrees, V the inlet
blood velocity in m s}, D the fibers diameter in m, and U, the infinite
shear rate viscosity in Pa s. Considering an infinite shear rate viscosity of
0.0035 Pa s [28], a maximum flow rate of 5 L min’l, a minimum
distance-to-diameter ratio of 1.25 and a minimum angle of 30 , results
in the maximum Reynolds number of 33.33, indicating laminar flow
condition.

Q=AV=(6xLxsin(@)x1)xV 3)

_pVD_ rQ

R =
‘" ue 6. Lsin()

4

Fig. 1(b) shows the applied boundary conditions on the CFD domain.
At the inlet, a constant velocity and at the outlet, a constant gauge
pressure of 0 Pa was imposed. Periodic boundary condition was
considered for the upper and lower sides of the domain, indicating a
repetitive fiber arrangement and flow pattern. Period boundary condi-
tions are suitable here, allowing the simulation to model only a section
of fibers rather than the entire oxygenator. The Coupled scheme was
used for pressure-velocity coupling, with pressure discretized using a
second-order scheme and momentum using a second-order upwind
scheme. A convergence value of 10 was set for all the variables.

2.1.4. Mass transport simulations
The steady-state transport of the gas is modeled by solving the
advection-diffusion equation,

Vo =DV?p+S, %)

where ¢ is the scalar quantity, D is the diffusion coefficient in m? s}, and
S is the source term in s”. Since the CO3 and O5 exchange rates are in the
same range [29-31] and given that CO, removal is generally the limiting
factor in ECMO system performance, only CO, removal is considered in
this study. This approach was chosen to reduce computational cost,
simplify the optimization process, and avoid unnecessary complexity, as
simulating both gases was deemed redundant due to their similar trends
and transfer rate ranges.

A user-defined scalar (UDS) was used to solve the advection-diffusion
equation. Based on the study by Svitek and Federspiel, the CO, partial
pressure is modeled by solving the following equation:

V.(V. PC02) =V. (DeffTCOZ VPCOg) ’ (6)

where Doy co, is the effective diffusivity of COg, which is a combination
of diffusion coefficient of CO,, HCO3, and bounded CO,. The effective
diffusivity of CO3 is calculated as follows:

Drco,
Dco, + a0, Aco,

1+-L Jco,

aco,

Defy co, = )

where D¢y, is the diffusivity of dissolved CO2, Dyco, is the diffusivity of
bicarbonate, aco, is the CO3 solubility, and Aco, is the slope of the CO2
content curve [32]. A constant CO; partial pressure of 45 mmHg was set
at the inlet, and a partial pressure of 4 mmHg was imposed on the fiber
surfaces. At the outlet, a zero gradient CO, partial pressure was applied.
The UDS was discretized using a second-order scheme, with a conver-
gence criterion set to 10”°. The mass-weighted average of CO, partial
pressure is calculated at the outlet, and by calculating the CO, concen-
tration from the partial pressure [33,34], the CO, removal is calculated
as follows:

CIR = leood (CCOZ Jinlet — CCOZ ,outlet) (8)

Where CTR is the rate of transferred CO in mLcoy min™ m?, Qblood is the

blood flow rate in mLpjgoq min™, and Cco, is the COy concentration in
-1

mLcoz mLjood-

2.1.5. Hemolysis index evaluation

A practical method for evaluating hemolysis is the hemolysis index
(HI), which simplifies the relationship between shear stress, exposure
time, and red blood cell damage. Hemolysis is typically assessed using
empirical models that link mechanical stress and exposure duration.
This approach, which has been validated in numerous studies [35,36],
offers a direct and computationally efficient way to evaluate hemolysis.
The hemolysis index was modeled by solving the advection equation,
d(HI')

— TP(V.VHI)=5, 9

where HI is defined as a user-defined scalar variable equal to HI'/%, and
S is the source term given by S = p(C o) 1a, C, a, and f are the empirical
coefficients equal to 3.62x107°, 0.785, and 2.416, respectively [35,36].

The scalar shear stress, o, is calculated using Equation (10):

0.5
B
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where oy are the shear stress components, and i and j are indices rep-
resenting the coordinate directions in a Cartesian coordinate system.

2.1.6. Mesh dependence study

A mesh dependence study was done to ensure that the simulation
results were independent of the mesh size and that the modeled physical
phenomena were accurately captured. A structured mesh provides
higher accuracy and lower computational cost than an unstructured
mesh due to its regular and grid-like cell arrangement, reducing the
numerical diffusion. Therefore, a structured mesh was generated for a
smoother gradient, better convergence, and stability. The mesh was
refined for the configuration with a 45 ° fiber angle, a fiber diameter of
400 um, a spacing of 600 ym between fibers, and a blood flow rate of
0.75 L min!. Four different meshes with the minimum orthogonal
quality of 0.65 and a number of elements of 50k, 100k, 250k, and 500k
were generated, and the local Sherwood number was evaluated for each.
The local Sherwood number was calculated based on the following
equation:

k. L
Dco,

Sh an

where L denotes the characteristic length in m, which in this context
corresponds to the diameter of the fibers, D¢o, represents the diffusion
coefficient of the CO», and k, is the local mass transfer coefficientin m s
that was calculated based on the following equation:

ko= — Dco, 0Pco,

12)
Pco, jner 0N

Root mean square error (RMSE) for the Sherwood number for each
mesh was calculated relative to the finest mesh (500k). The RMSE per-
centage for 50k, 100k, and 250k elements meshes were 10.89 %, 4.52 %,
and 1.33 %, respectively. Since the RMSE between the 250k and 500k

IZ.S mm

%

3dmm o,
2.1 mm ?‘—': i

5 mm

25 mm
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element meshes is around 1 %, the 250k element mesh settings were
selected for the CFD simulations, ensuring consistent element count
across varying geometries and mesh configurations. The local Sherwood
number along a fiber circumference and a generated mesh close-up with
250k elements are shown in supplementary material S.1.

2.2. Experimental setup and procedure

2.2.1. Microchannel fabrication

Four rectangular microchannels containing fibers with different an-
gles, diameters, and distance to diameter ratios were 3D-printed to
investigate the transverse flow conditions in a membrane oxygenator.
Microchannels were 3D-printed with a Digital Light Processing (DLP)
printer (Max X27, Asiga, New South Wales, Australia) using Nano Clear
resin (FunToDo, Kotka, Finland) with fibers in a staggered position. The
fibers are 3D-printed as cylinders inside the microchannels with a height
of 1 mm. On the side of the channels, semi-cylinders were 3D-printed,
implying the periodic boundary condition. Fig. 2(a) shows the sche-
matic of the microchannel with dimensions, and Fig. 2(b) shows the 3D-
printed microchannel for the micro-particle image velocimetry (p-PIV)
experiment. The 4x magnification of the fibers under the microscope is
shown in Fig. 2(c). Table 1 presents the geometric parameter values of
the printed microchannels alongside the flow rate.

2.2.2. Micro-PIV measurement

For visualizing the flow and velocity field between the fibers of the
fabricated micro-channel, a p-PIV system was utilized. A simplified
schematic of the p-PIV system is shown in Fig. 2(d). Fluid flow (water) is
seeded with polystyrene fluorescent micro-particles with a diameter of
1.9 ym (PS-FluoRot-2.0, microParticles GmbH, Berlin, Germany). Since
the density of the micro-particles (1.05 g cm™®) is similar to the density of
the water (1 g cm™>), the micro-particles stay suspended in the water and
move along the flow field. Fluid is pumped with the syringe pump

(b)

v ‘l= J—ﬁ t - Fibers
;Ef' = HE | Focal plane
i : N Fluorescent
icroscope lens r1 | particles
Dichroic E
N Laser source
mirror cube
Relay lens
Camera
Data
aquisition

Fig. 2. Overview of microchannel design and measurement setup. (a) Detailed design of Microchannels, (b) 3D printed microchannel for the micro-PIV measure-
ment, (¢) Microchannel fibers under 4x magnification using the microscope, (d) Simplified schematic of the p-PIV system.
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Table 1
Geometric parameter values of printed microchannels with the corresponding
experiment flow rate.

Microchannel  Angle Diameter Distance-to- Flow Rate
] [um] Diameter Ratio | — [mL min~?]
]
Case 1 60 600 (2 x 900/600 = 1.5 1.5
300)
Case 2 60 300 450/300 = 1.5 1.5
Case 3 45 494 (1.3 x 780/494 =1.579 3
380)
Case 4 45 380 600/380 = 1.579 3

(Model 11, Harvard Apparatus, Pennsylvania, USA) with a flow rate of
1.5 mL min! and 3 mL min™. Two laser pulses are emitted from the laser
source (Bernoulli B-PIV 200-15, Litron Lasers, Warwickshire, UK) with a
time interval of 100 ps. Since the wavelength of the laser matches the
absorption wavelength of the micro-particles, they excite at 530 nm and
emit light at 607 nm, making them visible. The emitted light from the
micro-particles inside the microchannel is captured by a high-speed CCD
camera (Zyla 5.5 sCMOS, Andor Technology Ltd, Belfast, UK) that is
mounted on an inverted microscope (IX73, Olympus Life Science,
Tokyo, Japan), which provides magnified images of flow between the
fibers. A synchronizer (LaserPulse Synchronizer 610036, TSI, Minne-
sota, USA) is used to precisely control the timing between the camera
exposure and laser pulses, ensuring that two images are captured shortly
after the laser pulses. The captured images are post-processed in the
Insight 4G software (TSI, Minnesota, USA). Measurements were done at
the midplane of the microchannel (shown as the focal plane). More
details of the micro-PIV principle are given by Raffel et al. [37].

2.3. Data-driven model development

2.3.1. Multivariate polynomial model formulation

The primary objectives of ECMO are to enhance mass transfer while
minimizing the risks of thrombosis and hemolysis. Therefore, three
objectives were considered in this study:

1 Maximizing specific CO, removal: Specific CO5 removal was calcu-
lated by dividing the CO, removal rate from Equation (8) by the total
fiber surface area, indicating the mass transfer efficiency of the
oxygenator.

2 Minimizing dead-zone-to-total-area ratio: Regions with a velocity
below 0.1 mm s were defined as dead zones where blood flow is
minimal and increases the risk of thrombosis. The dead-zone-to-
total-area ratio measures the percentage of the oxygenator poten-
tially susceptible to thrombosis.

3 Minimizing hemolysis index: Hemolysis index quantifies the extent
of hemolysis, providing an estimate of blood cell damage.

In this study, blood-side pressure drop was not considered a direct
optimization objective since the analysis focused on mass transfer effi-
ciency, hemolysis, and thrombosis risk, which are more linked to patient
safety and clinical outcomes. Besides, it was considered that the pump
would manage any pressure loss, and its effects would be reflected
indirectly through hemolysis, indicating hydraulic stress within the
system. So, a higher pressure drop results in a higher mechanical load on
the pump, which leads to higher shear-induced hemolysis.

The overview of the methodology employed in this study is shown in
Fig. 4. After defining the input parameters and objectives, developing
the CFD model, and conducting micro-PIV measurements for CFD vali-
dation, the fourth step involved generating 200 cases with varying input
parameters using the Latin hypercube sampling (LHS) method [38]. CFD
simulations were conducted for these cases to assess the effect of each
defined parameter (angle, diameter, distance-to-diameter ratio, and
blood flow rate) on the defined objectives. The dataset was divided into
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a model identification dataset and a validation dataset to construct
surrogate models for each objective. Specifically, 150 cases were used as
model identification dataset to train the surrogate models, and the
remaining 50 cases constituted the validation dataset where they were
employed to assess the accuracy of the developed surrogate models.

As demonstrated in many studies, numerous physical phenomena
exhibit nonlinear behavior. For instance, the Sherwood number in a
laminar flow parallel to a plate is given as a function of the Reynolds
number raised to the power of 1/2 and the Schmidt number raised to the
power of 1/3 (Sh=0.664 Re'’2 SC/3). However, by treating Re'/? and
Sc1/® as separate variables, the Sherwood number equation can be
expressed as a linear polynomial function of order 1 for each variable.
So, an unknown exponent was assigned to each parameter to achieve a
better fit to the data, and each objective is expressed as follows:

objective=f (anglea ,diameter”, distance —to —diameterratio®, flowrate? )

13

where a, b, ¢, and d are the unknown exponents of each parameter,
which vary for each objective. Additionally, the polynomial order is an
unknown parameter that must be determined.

2.3.2. Modified Enhanced Jaya Algorithm

The Modified Enhanced Jaya algorithm, combining the modified
Jaya algorithm for mixed variables [39] with the Enhanced Jaya Algo-
rithm (EJAYA) [40], was implemented in MATLAB (MathWorks, Natick,
Massachusetts, USA) and utilized to determine each objective’s expo-
nents and polynomial model. The unknown exponents were treated as
continuous variables, constrained between —5 and 5, while the poly-
nomial model was treated as a discrete variable, ranging from 1111 to
6666. Each digit in the polynomial model specifies the maximum degree
of each input parameter in the multivariate polynomial model.

The Modified Enhanced Jaya algorithm was applied to minimize the
fitness function for each objective. A multivariate polynomial model was
fitted to the data for each population (parameters a, b, ¢, d, and the
polynomial order). Using the input parameters from the model identi-
fication and validation datasets, the relative error of the obtained value
from the multivariate polynomial model compared to the CFD was
calculated as the fitness function. Additionally, 625 parameter combi-
nations (5 values for each parameter) were generated and evaluated by
the model. To enforce constraints, any negative output from the model
resulted in a penalty value of 10° being assigned to the fitness function.

The EJAYA algorithm framework includes a search mechanism that
consists of local exploitation and global exploration strategies. For each
population, a switch probability is selected randomly. The global
exploration strategy is applied if this value exceeds 0.5; otherwise, the
local exploitation strategy is used. Since differential vectors between
historical and current populations cover a broader search space than
differential vectors within the same generation, the global exploration
strategy can be particularly effective.

The discrete variable for polynomial order was treated as a contin-
uous variable within the population generation. The generated value
was then checked to find the two closest discrete values. If the generated
value was greater than the average of these two values, it was assigned
the higher value; otherwise, it was assigned the lower value.

3. Results
3.1. CFD validation with Micro-PIV

Different CFD simulations were conducted using a 3D domain, as
shown in Fig. 1(b), to validate the results of the micro-PIV experiments.
Unlike the main simulations, the validation simulations incorporated
modified boundary conditions to align with the experimental setup;
period boundary conditions were replaced with wall boundary condi-
tions, and the working fluid was changed to water to replicate the actual
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Fig. 3. Comparison of CFD simulations and micro-PIV experiments for four cases with different geometric parameters.

experimental conditions. Velocity contours were computed and visual-
ized at the mid-plane of the domain for comparison. Fig. 3 compares the
CFD simulation and the micro-PIV experiment results. Due to the
inherent difficulty in defining a precise line in the micro-PIV experiment
results to compare with the CFD results, a qualitative comparison
approach was adopted. As shown in Fig. 3, the CFD simulations closely

align with the micro-PIV measurements, exhibiting strong agreement
and confirming the robustness and accuracy of the CFD as an effective
method to evaluate flow behavior between the fibers. With a 4x
magnification, the field of view in the micro-PIV experiment was limited
to 690%820 microns. As a result, capturing the complete flow field
around the entire fiber was impossible in cases 1 and 3.
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|

_[ Step 1: Define input parameters and objectives
1- Angle
3- Distance-to-diameter ratio

2- Diameter
4- Blood flow rate

Input parameters:

Objectives: 1- Specific CO, removal 2- Dead-zone-to-total-area ratio

3- Hemolysis index

_( Step 2: Create CFD model and mesh study

A CFD model was developed to evaluate the objectives, and a mesh independence study was
conducted to determine the appropriate grid size for subsequent simulations.

|

_[Step 3: Micro-PIV measurement for CFD Valdation

Micro-PIV measurements were conducted for four cases to validate the velocity fields
predicted by the CFD simulations.

|

|

Step 4: Create a dataset of 200 cases

The Latin Hypercube Sampling method generated 200 cases with varying input parameters.
Of these, 150 cases were used as the model identification dataset to train the surrogate
model, while the remaining 50 cases were used as a validation dataset to assess the model's

accuracy.

_[ Step 5: Use modified enhanced Jaya algorithm

The modified enhanced Jaya algorithm was employed to determine the unknown exponent
of each input parameter and the polynomial order for each objective. The multivariate
polynomial function representing each objective was formulated based on these values.

|

_[ Step 6: Single-objective optimization

Single-objective optimization was performed using the surrogate models to determine each

|

and maximum values.

objective's

|

_[ Step 7: Multi-objective optimization
Multi-objective optimization was performed, and the Pareto front was obtained to identify
the optimal configurations that balance all defined objectives. The weighted sum and goal
programming methods were subsequently applied to select the most optimal fiber
arr from the Pareto front solutions.

Fig. 4. Overview of the methodology employed in this study for the optimi-
zation of fiber arrangement in an oxygenator. The process includes parameter
definition, CFD modeling, experimental validation, surrogate model develop-
ment using a modified enhanced Jaya algorithm, and both single- and multi-
objective optimization to identify optimal configurations.

3.2. Data distribution

Fig. 5 illustrates the relationship between the objectives (specific
CO4 removal, dead-zone-to-total-area ratio, and hemolysis index) and
input parameters (angle, diameter, distance-to-diameter ratio, blood
flow rate). The scatter plots indicate that most input parameters have a
minimal correlation with the hemolysis index. However, there is a slight
negative trend with the distance-to-diameter ratio, where a lower
distance-to-diameter ratio tends to increase the hemolysis index,
resulting in higher blood damage. Uniform scatter indicates a weak
relationship with the hemolysis index between angle, diameter, and
blood flow rate.

A more noticeable trend with angle and blood flow rate is shown
with the dead-zone-to-total-area ratio. Lower angles and higher blood
flow rates are associated with reducing the dead-zone area. A clear
negative correlation exists between diameter and the specific CO2
removal. Decreasing the diameter tends to increase the specific COy
removal. Also, a slight positive trend is observed between blood flow
rate and specific CO2 removal, with a higher flow rate increasing specific
CO- removal.

As illustrated in Fig. 5, the majority of the data for the hemolysis
index falls below 10 x 103%, and most values for the dead-zone-to-
total-area ratio are below 0.75 %. Additionally, specific CO, removal

is mainly below 110 mL¢oz min? m2.

3.3. Model evaluation of each objective

The modified enhanced Jaya algorithm has been employed to
determine the unknown exponent for each input parameter and the
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polynomial order of the multivariate polynomial function. Stepwise
regression was utilized to model the objectives. Stepwise regression
removes predictors based on statistical criteria, such as p-values,
allowing for selecting a subset of predictors that best aligns with the
objectives. The calculated exponent values for each variable and the
polynomial model for each objective are presented in Table 2. The final
equation for each objective is provided in the supplementary material
S.3.

Fig. 6 illustrates the accuracy of the obtained models for each
mentioned objective. The obtained model for specific CO, removal,
shows high accuracy for both the identification and validation datasets.
The error between the predicted value and those obtained from the CFD
simulations falls below 2.5 % for the model identification dataset. It
remains below 5 % for the validation dataset except for one data point
with an approximate error of 14 % (see Fig. 6(a)). The scatter plot of
predicted versus actual specific CO5 removal is shown in Fig. 6(b). The
data points align closely with the identity line, indicating a strong
agreement between the predicted and actual values for specific CO5
removal. Low error percentages across both model identification and
validation indicate that the model is highly accurate in predicting spe-
cific CO, removal.

The developed model predicting the dead-zone-to-total-area ratio
demonstrates good accuracy as well. Fig. 6(c) illustrates the error per-
centage of this ratio as a function of input parameters. The error remains
consistently below 15 %, indicating a good fit for the complex dataset.
Even though most of the dead-zone-to-total-area ratio falls below 1, and
only 7 data points show the dead-zone-to-total-area ratio above 1, the
model shows a high accuracy across lower and higher values. Similarly,
the close alignment of the predicted and actual values along the identity
line implies that the model performs well (see Fig. 6(d)).

Fig. 6(e) presents the error percentage of the hemolysis index model.
For this model, all the errors are below 5 %. Fig. 6(f) shows the predicted
versus actual hemolysis index, where the data points align very closely
to the identity line, meaning that the developed model performs well
and provides high accuracy. Overall, all three models accurately fit the
data, making them appropriate for further analysis.

3.4. Global Sensitivity Analysis

Uncertainty and sensitivity analysis are considered critical compo-
nents in model applications. Global Sensitivity Analysis (GSA) helps to
identify the key parameters whose uncertainty has the most significant
impact on the output, allowing ranking of the variables, fixing or
removing irrelevant ones, and reducing the complexity of the problem.
Among the various GSA methods, variance-based Sobol’ sensitivity
indices are most commonly used due to their efficiency and ease of
interpretation [41,42].

Several Sobol’ indices exist, including the first-, second-, and higher-
order indices. A second-order Sobol’ indices can be defined as the first-
order Sobol’ index of a group of two input variables. In this study, the
first- and total-order Sobol’ indices were investigated. Azzini et al.
proposed two sampling strategies along with their respective Monte
Carlo estimators to calculate both the first- and total-order Sobol’
indices [43]. Their findings demonstrate that the new strategy out-
performs the previous one introduced by Saltelli [44]. Therefore, this
study calculates the first-order and total Sobol indices following the
methodology of Azzini et al. using the sample size of 10”.

The sensitivity analysis results, based on first-order and total-order
Sobol’ indices, are presented in Fig. 7. The distance-to-diameter ratio
emerges as the most influential parameter across all objectives, both in
terms of its direct effect and its interaction with other variables. This
influence is particularly evident for the hemolysis index, where the
Sobol’ indices for the distance-to-diameter ratio show a notably higher
contribution compared to the other inputs. In contrast, the blood flow
rate demonstrates almost the least influence on all objectives.

The specific COy removal is most sensitive to the diameter and
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Fig. 5. Relationship between the objectives (specific CO, removal, dead-zone-to-total-area ratio, and hemolysis index) and input parameters (angle, diameter,
distance-to-diameter ratio, blood flow rate) for the model identification (blue) and model validation (red) datasets.

Table 2
Exponents and polynomial orders were achieved for each objective using the
modified enhanced Jaya algorithm.

Objective a b c d Polynomial
Model
Specific CO, Removal 1.413  -0.251 —1.464 0.360  poly4666
[mLco, min~! m~2]
Dead-Zone-to-Total- 1.192  —-0.093 —1.198 1.741  poly5546
Area Ratio [%]
Hemolysis Index x10-3  0.597  —0.801 —2.691 —0.027  poly6452

[%]

distance-to-diameter ratio, while the dead-zone-to-total-area ratio is
primarily influenced by the distance-to-diameter ratio and angle.
However, for the dead-zone-to-total-area ratio, the variation in sensi-
tivity indices between the inputs is less pronounced compared to the
specific CO removal and the hemolysis index. The total-order Sobol’
indices, which account for the main effects and interactions among input
variables, further support these findings.

3.5. Single-objective optimization

A single-objective optimization approach was conducted following
the development of the multivariate polynomial models and the pre-
liminary study of input parameter effects on each objective. A design
space was constructed by defining each input parameter’s minimum and
maximum bounds. This space was discretized into a fine grid of data
points, ensuring a thorough exploration of the objective landscape.
Then, the objectives were evaluated at each of these discrete points
using the developed polynomial models. Subsequently, the global

minimum and maximum values of each objective were identified. This
method allows for a detailed understanding of the influence of the input
parameters on the objectives and facilitates the identification of
parameter configurations that yield the best possible outcomes for each
objective. The minimum and maximum values of each objective are
presented in Table 3. Since the aims are to maximize the specific CO2
removal and minimize the dead-zone-to-total-area ratio and the hemo-
lysis index, the input parameter configurations that achieve these out-
comes are highlighted in bold in Table 3.

3.6. Multi-objective optimization

In the multi-objective optimization analysis, the Pareto front was
used to identify the optimal trade-offs between objectives. Despite the
single-objective optimization that focuses on maximizing or minimizing
a single objective, multi-objective optimization considers multiple ob-
jectives simultaneously. The aim is to identify solutions where im-
provements in one objective cannot be achieved without compromising
another, known as non-dominated solutions. These solutions together
form the Pareto front.

The Pareto front was constructed for all three objectives simulta-
neously. The resulting Pareto front provides a comprehensive view of
the optimal solutions where no further improvement can be made in one
objective without negatively impacting another. This approach enables
the identification of balanced parameter configurations that consider all
objectives, aiming to achieve the best fiber arrangement.

Fig. 8 shows the dominated and Pareto optimal solutions considering
all three objectives. Pareto solutions are the non-dominated points, with
no other points having higher specific CO5 removal and lower dead-
zone-to-total-area ratio and hemolysis index. The multi-objective
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Fig. 6. Accuracy of the models for each objective: (a) Error percentage of specific CO, removal versus input parameters; (b) Predicted versus calculated value of the
specific CO, removal from CFD; (c) Error percentage of dead-zone-to-total-area ratio versus input parameters; (d) Predicted versus real value of the dead-zone-to-
total-area ratio from CFD; (e) Error percentage of hemolysis index versus input parameters; (f) Predicted versus real value of the hemolysis index from CFD.

Pareto front presents a comprehensive perspective on the trade-offs
among specific CO2 removal, dead-zone-to-total-area ratio, and hemo-
lysis index. The multi-objective Pareto front indicates that enhancing
specific CO5 removal can significantly decrease the dead-zone-to-total-
area ratio yet raises the hemolysis index, resulting in a precise balance
in design choices.

Following obtaining the Pareto front solutions, two methods,
weighted sum and goal programming, were employed to identify the
optimal fiber arrangement.

3.6.1. Weighted sum method

The weighted sum method is a technique that combines several ob-
jectives into a single objective function by assigning a weight to each,
allowing for prioritized trade-offs among the objectives [45]. In this
study, the method balances the maximization of specific CO2 removal
alongside  the  minimization of hemolysis index and
dead-zone-to-total-area ratio by adjusting the relative importance of
each objective.

The primary advantages of the weighted sum method are its
simplicity and flexibility, as it allows objectives to be emphasized ac-
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Table 3
Single-objective optimization results.

Objective Min/Max Angle [°] Diameter [um)] Distance-to-Diameter Ratio | — ] Flow Rate [L.min~!]
Specific CO, Removal [mLco, min~! m~2] Min = 12.2 30 700 2.25 0.5

Max = 250.3 30 300 1.25 5
Dead-Zone-to-Total-Area Ratio [%] Min = 0.024 34 300 1.55 4.8

Max = 7.54 60 700 1.35 0.5
Hemolysis Index x10~3 [%] Min = 0.011 60 700 2.25 0.5

Max = 876 30 300 1.25 5

cording to specific needs by modifying the weights. However, this
approach has limitations, including the subjectivity in weight selection,
which may influence the outcome [46]. The best 3 optimal arrange-
ments based on the weighted sum method for various weights are pre-
sented in Table 4. As shown in Table 4, the optimal arrangements
achieved with the lowest diameter (300 ym), lower angles, and highest
blood flow rate (5 L min™). Furthermore, assuming almost the same
angle, by increasing the distance-to-diameter ratio from 1.25 to 1.65, the
specific CO, removal decreases from 220 to 130 mLcoy min? m?
(—41 %), while the hemolysis index decreases from 285x 1073 to
12 x 1073 % (—95.8 %).

3.6.2. Goal programming method
The goal programming method is another technique that seeks to

10

achieve predefined target values or thresholds for each objective,
minimizing the deviation from these set goals [47]. The primary ad-
vantages of goal programming lie in its ability to precisely align with
clinical requirements by establishing explicit performance targets,
reducing subjective prioritization often seen in other methods [48].
However, this approach also presents challenges, such as the difficulty in
setting realistic and attainable target values and a potential risk of
generating unbalanced or infeasible solutions if the set goals are overly
restrictive or incompatible with each other. Considering the maximum
value of the specific CO, removal (250.3 mLco2 min’! m'z), the mini-
mum value of hemolysis index (0.011 %), and the minimum value of
dead-zone-to-total-area ratio (0.024 %) as the targets, the best 3 optimal
arrangements using goal programming method are presented in Table 5.

The results of the goal programming method indicate that optimal
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Table 4

The best three optimal fiber arrangements were determined using the weighted sum method for various weight combinations (w1, wy,ws).

Dead-Zone-to-Total-

Weights Angle Diameter Distance-to-Diameter Blood Flow Rate Specific CO; Removal Hemolysis Index x
[l [um] Ratio [—] [Lmin '] [mLco, min~! m~2] Area Ratio [%] 1073 [%]

wp =1/ 30 300 1.25 5 250.3 0.086 876
3

wpy =1/ 30 300 1.25 4.9 248.6 0.070 846
3

ws =1/ 30 300 1.25 4.8 246.9 0.060 816
3

wy = 31 300 1.25 5 243.4 0.080 607
0.7

wy = 32 300 1.25 5 237.1 0.076 457
0.2

w3 = 31 300 1.25 4.9 241.7 0.064 586
0.1

wy = 34 300 1.25 4.7 220.3 0.045 284
0.2

wy = 34 300 1.25 4.8 2221 0.050 294
0.7

w3 = 34 300 1.25 4.6 218.4 0.041 274
0.1

wy = 37 300 1.65 5 130.8 0.031 11
0.1

wy = 36 300 1.65 5 132.5 0.029 12
0.2

w3 = 38 300 1.6 5 134.6 0.031 13
0.7

solutions are achieved with the smallest fiber diameter and the highest
blood flow rate. Moreover, the hemolysis index obtained using this
method is lower than that achieved with the weighted sum method,
particularly when higher weights are assigned to specific CO, removal
or the dead-zone-to-total-area ratio.

In both the weighted sum and goal programming methods, selecting
different weights or setting alternative goals impacts the optimization
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outcome, often resulting in different results. Therefore, assigning these
values must carefully consider the relative importance of each objective
within the context of critical care, as specific outcomes such as mini-
mizing hemolysis or maximizing mass transfer may take superiority
depending on clinical priorities and patient-specific requirements.
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The best three optimal arrangements were determined using the goal programming method, considering the best single objectives as targets.

Optimal Angle Diameter Distance-to-Diameter Blood Flow Rate Specific CO, Removal Dead-Zone-to-Total- Hemolysis Index
Solutions [ [um] Ratio [—] [L min'l] [mLcoa min? m'z] Area Ratio [%] %107 [%]
Optimal 34 300 1.45 5 164.4 0.027 46

Solution 1
Optimal 36 300 1.4 5 168.9 0.032 53

Solution 2
Optimal 35 300 1.45 5 161.8 0.027 41

Solution 3

4. Discussion

The solutions obtained from multi-objective optimization differ in
geometric configuration compared to those from single-objective opti-
mization. For instance, when optimizing only for specific CO, removal,
the resulting geometry is characterized by a 30" fiber angle, 300 ym
diameter, and a distance-to-diameter ratio of 1.25. This configuration
forms a very dense fiber bundle, which is efficient in gas transfer but
induces high hemolysis and pressure drop. In contrast, when applying
multi-objective optimization using the goal programming method, the
optimal geometry shifts to a 34° angle, the same 300 pm diameter, but
with a more moderate distance-to-diameter ratio of 1.45. This configu-
ration achieves a specific COy removal of 164.4 mLcoz min? m?2,
approximately 34 % lower than the single-objective optimum. However,
the hemolysis index is reduced by 94.7 %, demonstrating that a modest
compromise in mass transfer efficiency by increasing the distance-to-
diameter ratio can substantially improve blood damage.

The specific CO, removal calculated in this study aligns closely with
the experimental results reported in Svitek’s study [32]. Although the
detailed specifications of their first prototype fiber bundle module are
not fully disclosed, the fiber diameter of 300 ym and the specific COy
removal values, ranging from 50 to 75 mL¢o2 min! m™ for a blood flow
rate of 0.75-2.25 L min™, are consistent with the CFD results obtained in
the present study. For example, with a diameter of 320 ym, a
distance-to-diameter of 2.1, an angle of 38’, and a flow rate of 2.3 L
min'l, the calculated specific CO, removal was 68.9 mLco2 min! m2.
Similarly, with a diameter of 315 um, a distance-to-diameter of 1.95, an
angle of 43 ° and a flow rate of 1.3 L min™', the calculated specific CO2
removal was 58.5 mLgoe min’! m™.

Typical fiber mat configurations used in existing oxygenators were
examined to establish the relevance of our findings to commercial
oxygenator designs. For example, Membrana® PMP fiber mats feature a
packing density of 44 fibers per inch and a fiber diameter of 380 pm,
resulting in an approximate center-to-center spacing of 600 pm [49],
which corresponds to a fiber angle of 51.7° and a distance-to-diameter
ratio of 1.27. As shown in Table 4, this configuration closely aligns
with the optimal geometries identified through our multi-objective
optimization using the weighted sum method, thereby supporting the
practical applicability of our modeling approach.

Although this study focuses on evaluating and optimizing membrane
fiber arrangements, practical implementation may differ due to inherent
challenges, such as slight variations in fiber positioning and movement
of fibers as the fluid flows around them. Therefore, this study thoroughly
analyzed and optimized the ideal geometric configuration. It is
acknowledged that using a 2D simulation model represents a limitation
of this work. In the simulations, fibers were assumed to be transverse to
the flow, effectively modeling a cross-sectional slice of the oxygenator.
While this approach offers valuable insight into local flow behavior and
mass transfer between fibers, it does not fully capture the three-
dimensional flow complexities present in real devices, such as those
with 90° stacked or 24° wound configurations, as Focke et al. [50] re-
ported. Nonetheless, the 2D configuration used here closely resembles
the 90° stacked arrangement and provides a computationally efficient
parametric analysis and optimization framework.

Moreover, this study demonstrated that increasing mass transfer
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leads to increased blood damage, a factor often overlooked in previous
studies. Even though there are some solutions to mitigate blood damage,
such as adding heparin to the blood to reduce the risk of thrombosis
[51], this study showed that optimizing the arrangement of the fibers
can also effectively reduce the blood damage.

5. Conclusion

This study focused on optimizing the arrangement of ideal hollow
fiber membrane oxygenators to enhance specific CO, removal while
reducing the hemolysis index and the dead-zone-to-total-area ratio. The
study developed highly accurate tools for predicting gas exchange effi-
ciency, hemolysis, and dead-zone formation across various fiber con-
figurations by integrating CFD simulations with multivariate polynomial
models. These models evaluated the effects of geometric parameters,
including fiber angle, diameter, and distance-to-diameter ratio, and the
flow parameter, blood flow rate, on each objective. The main findings of
the study are outlined below:

e CFD simulations demonstrated a good agreement with micro-PIV
measurements, validating the accuracy of the numerical model.
Combining the modified enhanced Jaya algorithm and multivariate
polynomial functions resulted in high-accuracy modeling of the
objectives.

The distance-to-diameter ratio had the most significant impact on the

hemolysis index.

Specific CO, removal was most sensitive to the fiber diameter and

distance-to-diameter ratio.

The dead-zone-to-total-area ratio was mainly influenced by the

distance-to-diameter ratio and fiber angle.

e The optimal configuration is sensitive to the chosen weights (in the
weighted sum method) or goal targets (in the goal programming
method).

e Commercial fiber mat, Membrana® PMP (44 fibers/inch, 380 pm
diameter), were analyzed to assess how typical design parameters
align with the optimized geometries identified in this study.

Overall, this study demonstrates that careful optimization of fiber
arrangement parameters can balance high mass transfer efficiency and
reduce the risk of hemolysis and thrombosis. The study provides a
foundation for further refining ECMO designs, emphasizing the need for
parameter-specific adjustments based on clinical priorities.
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