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A B S T R A C T

Extracorporeal Membrane Oxygenation provides life-saving support for patients with severe heart and lung 
dysfunction; however, its implementation is associated with significant complications, including hemolysis and 
thrombosis. These complications address the need for an improved design of hollow fiber membrane oxygena
tors. This study presents a multi-objective optimization framework aiming to enhance the gas exchange effi
ciency while minimizing blood damage. A 2D computational fluid dynamics model, validated with micro-PIV 
measurements, was developed to simulate 200 fiber configurations defined by three geometric parameters (fiber 
diameter, distance-to-diameter ratio, and angle) and a flow parameter (blood flow rate). Specific CO2 removal, 
dead-zone-to-total-area ratio, and hemolysis index were established as objectives, representing gas exchange 
efficiency, thrombosis potential within the membrane module, and hemolysis, respectively. Objectives were 
modeled using multivariate polynomial functions with unknown exponents and determined using the modified 
enhanced Jaya algorithm. Single-objective and multi-objective optimization were performed using Pareto front 
solutions, followed by weighted sum and goal programming methods to identify optimal arrangements. The 
findings demonstrated that the maximum obtained specific CO2 removal, dead-zone-to-total-area ratio, and 
hemolysis index are 250.3 mLCO2 min-1 m-2, 0.0254 %, and 0.011 × 10− 3 %, respectively. Furthermore, this study 
identifies the distance-to-diameter ratio as the key factor affecting all the objectives. Finally, the calculated 
optimal configuration from both weighted sum and goal programming methods suggests that the best configu
ration includes low angle, small diameter, and relatively moderate distance-to-diameter ratio, and high blood 
flow rate.

1. Introduction

Extracorporeal Membrane Oxygenation (ECMO) is a life-support 
technique used in critical care to support patients with severe heart 
and lung dysfunction [1]. The main component of an ECMO circuit is the 
hollow fiber membrane oxygenator, which facilitates gas exchange by 
diffusing oxygen into the blood and removing carbon dioxide [2]. 
During the COVID-19 pandemic, the use of ECMO increased signifi
cantly, supporting patients experiencing severe respiratory failure. The 
increased dependence on ECMO displayed its critical role in managing 
acute respiratory distress syndrome (ARDS) caused by COVID-19 and 
the evolving outcomes associated with its use throughout the pan
demic’s first two years [3]. Despite the life-saving potential of ECMO, it 
is associated with significant complications [4]. Hemolysis, the rupture 

of red blood cells, may occur due to mechanical stress within the circuit 
induced by the pump or contact with fibers, leading to the release of free 
hemoglobin into the bloodstream [5–7]. While hemolysis in an ECMO 
circuit is more associated with the blood pump and cannulae, consid
ering the oxygenator’s shear stresses, which comprise the largest volume 
and area of the ECMO circuit, is essential. Pan et al. demonstrated the 
gradual hemolysis in a microfluidic device with arrays of narrow gaps 
representing the blood path in ECMO. Their study revealed that due to 
the squeeze of RBCs between the fibers, they deform periodically, 
resulting in the fatigue of RBCs, progressive changes in morphology, and 
the gradual loss of deformability, indicating the importance of consid
ering the hemolysis of the oxygenator [8]. Blood clot formation, or 
thrombosis, is another critical issue, potentially resulting in ischemic 
events and compromising the effectiveness of the oxygenator [9–11]. 
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These complications contribute to high mortality rates among ECMO 
patients [12–14]. Studies indicate that survival rates differ based on the 
specific type of ECMO used; for instance, veno-arterial (VA) ECMO has 
reported survival rates of approximately 40–60 %, while veno-venous 
(VV) ECMO showed survival rates around 21–37 % [15]. To address 
these challenges, optimizing the design of hollow fiber membrane oxy
genators to enhance mass transfer efficiency and reduce the risk of he
molysis and thrombosis is essential.

Computational modeling is an effective method for simulating and 
analyzing the blood flow and gas transfer within the oxygenator. Many 
studies have utilized computational fluid dynamics (CFD) to investigate 
the effect of different fiber arrangements and other parameters on flow 
patterns and gas transfer rates. Taskin et al. developed a multi-fiber CFD 
model evaluating two different void fractions or fiber spacings. Their 
findings indicated that at lower flow rates, the mass transfer rates for the 
arrangement with a denser configuration were only slightly higher than 
those of the wider-spaced arrangement. However, at higher flow rates, 
the denser configuration appeared more favorable [16]. Kaesler et al. 
examined oxygen transfer efficiency in staggered, in-line, and three 
random configurations. Their study demonstrated that a random 
configuration chain of fibers forms areas of low blood velocity and af
fects oxygen transfer [17]. Santos et al. tested flow-aligned spacers for 
different cases and showed how the local Sherwood number varied in 
each scenario [18]. Lukitsch et al. developed a 3D CFD model of an 
oxygenator with a parallel flow configuration. Their study confirmed 
that increasing the blood flow rate increases the radial velocity and 
improves specific CO2 removal [19].

Additionally, research findings have demonstrated that changing the 
shape and arrangement of fibers may significantly influence gas ex
change efficiency. Ecker et al. demonstrated that sinusoidal-shaped 
hollow fibers increase the available gas exchange surface, thereby 
improving CO2 transfer rates. Their findings also indicated that gas 
transfer efficiency is higher when fibers are arranged in a staggered 
configuration compared to a non-staggered arrangement [20]. 
Furthermore, advancements in membrane materials, such as poly
methylpentene (PMP) fibers, have enhanced biocompatibility and 
reduced thrombogenicity. PMP fibers improve gas permeability and 
lower resistance to blood flow, which helps reduce the risk of hemolysis 
and thrombosis [21]. These ongoing studies aim to advance ECMO 
technology by integrating computational modeling with experimental 
validation to develop oxygenators that optimize gas exchange and 
reduce complications, thereby improving patient outcomes.

Even though previous studies have utilized CFD to simulate gas 
transfer in hollow fiber membrane oxygenators with various fiber con
figurations, they have mainly focused on the fiber scale to evaluate mass 
transfer and neglected the critical complications of hemolysis and 
thrombosis. On the other hand, some studies have investigated blood 
damage, such as thrombosis in oxygenators, in a macroscopic way. 
These studies modeled a hollow fiber membrane as a porous medium. 
For instance, Fu et al. conducted CFD simulations to investigate the 
thrombosis risk in four clinical and one newly designed oxygenator [22]. 
CFD models that use a porous media approach are commonly employed 
to simulate the behavior of entire ECMO oxygenators. Since there are 
more than 10000 fibers in oxygenators, it is very hard to simulate the full 
oxygenator with all the fibers. In many studies, fibers were treated as a 
porous medium to neglect the complex geometry of the fiber bundle, 
allowing macroscopic flow and mass transfer evaluation [22–26]. 
However, at the fiber-scale level, only a very limited section of the 
oxygenator can be effectively investigated due to the computational 
cost. While these models simulate the thrombosis in the oxygenator, 
they do not include detailed blood damage modeling between the fibers. 
The micro-CT images from Wagner’s study show many clot formations 
between the fibers, representing the importance of microscopically 
investigating the blood damage [27]. Optimizing fiber arrangements 
without addressing these risks limits progress in oxygenator design. 
Therefore, an optimization approach is required to evaluate gas 

exchange efficiency while minimizing the risks of hemolysis and 
thrombosis.

The primary aim of this study is to identify and analyze the in
terrelations between key geometric parameters of ECMO oxygenators, 
including fiber spacing, diameter, and bundle arrangement, and their 
effects on gas exchange efficiency, hemolysis, and thrombosis. By 
developing multivariate models to predict these outcomes, the study 
enhances understanding of how design choices influence oxygenator 
performance and blood damage. Following this, optimization methods, 
including Pareto front analysis, are applied to identify optimal config
urations that maximize gas transfer efficiency while minimizing blood 
damage.

2. Materials and methods

2.1. Computational fluid dynamics

2.1.1. Geometric parameters
Three geometric parameters, including angle, diameter, and 

distance-to-diameter ratio, as well as a flow parameter, blood flow rate, 
were considered to optimize the membrane fiber arrangement. Fig. 1(a) 
shows the angle, diameter, and distance between the fibers in a stag
gered arrangement. Each parameter was assigned a specific lower and 
upper bound: the angle ranged from 30 to 60 

◦

, the diameter ranged from 
300 to 700 μm, the distance-to-diameter ratio ranged from 1.25 to 2.25, 
and the blood flow rate ranged from 0.5 to 5 L.min-1. Blood flow rate was 
incorporated as an input parameter because flow condition variation 
might significantly influence the behavior of the geometric configura
tion of the fibers, thereby impacting the overall performance. Since the 
distance between the fibers may be impractical in some cases, the 
distance-to-diameter ratio was considered. For instance, in fibers with a 
diameter of 300 μm, a distance of 500 μm (distance-to-diameter ratio of 
1.66) is feasible. In comparison, the exact distance is impossible in fibers 
with a diameter of 600 μm (distance-to-diameter ratio of 0.83) as the 
fibers collide.

2.1.2. Numerical domain
The computational fluid dynamics (CFD) domain was designed with 

27 fibers, including 22 full fibers within the flow path and 10 half fibers 
at the periodic boundaries. Since simulations with more fibers produce 
results similar to the 27-fiber configuration, the CFD model with the 27- 
fiber configuration was chosen to better balance computational cost and 
accuracy. Given the laminar flow and unidirectional fiber alignment, a 
2D flow assumption was considered appropriate for the CFD model, 
reducing the computational cost compared to a 3D model while main
taining accuracy. Inlet and outlet extensions of 6 mm each was added to 
the domain to achieve fully developed flow conditions. Fig. 1(b) shows 
the CFD domain along with dimensions, considering the arrangement 
with a 45

◦

fiber angle, a fiber diameter of 400 μm, and a spacing of 600 
μm between fibers, giving a distance-to-diameter ratio of 1.5.

2.1.3. Governing equations, boundary conditions, and simulation settings
The steady-state flow of blood is modeled by solving incompressible 

Navier-Stokes equations, 

ρ
(

∂v
∂t

+(v.∇)v
)

= − ∇p + μ∇2v (1) 

∇.v=0, (2) 

where ρ is the fluid density in kg m-3, v is the fluid velocity vector in m s- 

1, p is the pressure in Pa, and μ is the fluid viscosity in Pa s. These 
equations express the momentum conservation in a differential control 
volume. Solving the Navier-Stokes equations with appropriate initial 
and boundary conditions yields the velocity and pressure distributions 
throughout each control volume in the discretized computational 
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domain. Ansys Fluent (Ansys, Inc., Pennsylvania, USA) was used to solve 
the Navier-Stokes equations for the CFD simulations.

In this study, blood is treated as a non-Newtonian fluid, following a 
Carreau-Yasuda viscosity model, with a constant density of 1050 kg m-3 

[28]. The Reynolds number is calculated utilizing Equations (3) and (4), 
where Q represents the blood flow rate in m3 s-1, L the distance between 
the fibers in m, θ the angle between the fibers in degrees, V the inlet 
blood velocity in m s-1, D the fibers diameter in m, and μ∞ the infinite 
shear rate viscosity in Pa s. Considering an infinite shear rate viscosity of 
0.0035 Pa s [28], a maximum flow rate of 5 L min-1, a minimum 
distance-to-diameter ratio of 1.25 and a minimum angle of 30 

◦

, results 
in the maximum Reynolds number of 33.33, indicating laminar flow 
condition. 

Q=A V = (6× L× sin(θ)×1) × V (3) 

Re=
ρ V D

μ∞
=

ρ Q
6 μ∞

L
D sin(θ)

(4) 

Fig. 1(b) shows the applied boundary conditions on the CFD domain. 
At the inlet, a constant velocity and at the outlet, a constant gauge 
pressure of 0 Pa was imposed. Periodic boundary condition was 
considered for the upper and lower sides of the domain, indicating a 
repetitive fiber arrangement and flow pattern. Period boundary condi
tions are suitable here, allowing the simulation to model only a section 
of fibers rather than the entire oxygenator. The Coupled scheme was 
used for pressure-velocity coupling, with pressure discretized using a 
second-order scheme and momentum using a second-order upwind 
scheme. A convergence value of 10-5 was set for all the variables.

2.1.4. Mass transport simulations
The steady-state transport of the gas is modeled by solving the 

advection-diffusion equation, 

∇φ=D∇2φ + S, (5) 

where φ is the scalar quantity, D is the diffusion coefficient in m2 s-1, and 
S is the source term in s-1. Since the CO2 and O2 exchange rates are in the 
same range [29–31] and given that CO2 removal is generally the limiting 
factor in ECMO system performance, only CO2 removal is considered in 
this study. This approach was chosen to reduce computational cost, 
simplify the optimization process, and avoid unnecessary complexity, as 
simulating both gases was deemed redundant due to their similar trends 
and transfer rate ranges.

A user-defined scalar (UDS) was used to solve the advection-diffusion 
equation. Based on the study by Svitek and Federspiel, the CO2 partial 
pressure is modeled by solving the following equation: 

∇.(v. PCO2 )=∇.
(
Deff ,CO2∇PCO2

)
, (6) 

where Deff ,CO2 is the effective diffusivity of CO2, which is a combination 
of diffusion coefficient of CO2, HCO3

− , and bounded CO2. The effective 
diffusivity of CO2 is calculated as follows: 

Deff ,CO2 =
DCO2 +

DHCO3
αCO2

λCO2

1 + 1
αCO2

λCO2

(7) 

where DCO2 is the diffusivity of dissolved CO2, DHCO3 is the diffusivity of 
bicarbonate, αCO2 is the CO2 solubility, and λCO2 is the slope of the CO2 
content curve [32]. A constant CO2 partial pressure of 45 mmHg was set 
at the inlet, and a partial pressure of 4 mmHg was imposed on the fiber 
surfaces. At the outlet, a zero gradient CO2 partial pressure was applied. 
The UDS was discretized using a second-order scheme, with a conver
gence criterion set to 10-5. The mass-weighted average of CO2 partial 
pressure is calculated at the outlet, and by calculating the CO2 concen
tration from the partial pressure [33,34], the CO2 removal is calculated 
as follows: 

CTR=Qblood
(
CCO2 ,inlet − CCO2 ,outlet

)
(8) 

Where CTR is the rate of transferred CO2 in mLCO2 min-1 m-2, Qblood is the 
blood flow rate in mLblood min-1, and CCO2 is the CO2 concentration in 
mLCO2 mLblood

-1 .

2.1.5. Hemolysis index evaluation
A practical method for evaluating hemolysis is the hemolysis index 

(HI), which simplifies the relationship between shear stress, exposure 
time, and red blood cell damage. Hemolysis is typically assessed using 
empirical models that link mechanical stress and exposure duration. 
This approach, which has been validated in numerous studies [35,36], 
offers a direct and computationally efficient way to evaluate hemolysis. 
The hemolysis index was modeled by solving the advection equation, 

d(HIʹ)
dt

+ ρ(v.∇HIʹ)= S, (9) 

where HÍ  is defined as a user-defined scalar variable equal to HI1/α, and 
S is the source term given by S = ρ

(
C σβ)1/α. C, α, and β are the empirical 

coefficients equal to 3.62×10-5, 0.785, and 2.416, respectively [35,36]. 
The scalar shear stress, σ, is calculated using Equation (10): 

σ =

[
1
6
∑(

σii − σjj
)2

+
∑

σ2
ij

]0.5

(10) 

Fig. 1. Geometric and computational domain setup for fiber arrangement. (a) Defined geometric parameters for fibers in a staggered arrangement, (b) CFD domain 
layout with 27 fibers, showing flow direction, dimensions, and boundary conditions.
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where σij are the shear stress components, and i and j are indices rep
resenting the coordinate directions in a Cartesian coordinate system.

2.1.6. Mesh dependence study
A mesh dependence study was done to ensure that the simulation 

results were independent of the mesh size and that the modeled physical 
phenomena were accurately captured. A structured mesh provides 
higher accuracy and lower computational cost than an unstructured 
mesh due to its regular and grid-like cell arrangement, reducing the 
numerical diffusion. Therefore, a structured mesh was generated for a 
smoother gradient, better convergence, and stability. The mesh was 
refined for the configuration with a 45 ◦ fiber angle, a fiber diameter of 
400 μm, a spacing of 600 μm between fibers, and a blood flow rate of 
0.75 L min-1. Four different meshes with the minimum orthogonal 
quality of 0.65 and a number of elements of 50k, 100k, 250k, and 500k 
were generated, and the local Sherwood number was evaluated for each. 
The local Sherwood number was calculated based on the following 
equation: 

Sh=
kc L
DCO2

(11) 

where L denotes the characteristic length in m, which in this context 
corresponds to the diameter of the fibers, DCO2 represents the diffusion 
coefficient of the CO2, and kc is the local mass transfer coefficient in m s-1 

that was calculated based on the following equation: 

kc = −
DCO2

PCO2 ,inlet

∂PCO2

∂n
(12) 

Root mean square error (RMSE) for the Sherwood number for each 
mesh was calculated relative to the finest mesh (500k). The RMSE per
centage for 50k, 100k, and 250k elements meshes were 10.89 %, 4.52 %, 
and 1.33 %, respectively. Since the RMSE between the 250k and 500k 

element meshes is around 1 %, the 250k element mesh settings were 
selected for the CFD simulations, ensuring consistent element count 
across varying geometries and mesh configurations. The local Sherwood 
number along a fiber circumference and a generated mesh close-up with 
250k elements are shown in supplementary material S.1.

2.2. Experimental setup and procedure

2.2.1. Microchannel fabrication
Four rectangular microchannels containing fibers with different an

gles, diameters, and distance to diameter ratios were 3D-printed to 
investigate the transverse flow conditions in a membrane oxygenator. 
Microchannels were 3D-printed with a Digital Light Processing (DLP) 
printer (Max X27, Asiga, New South Wales, Australia) using Nano Clear 
resin (FunToDo, Kotka, Finland) with fibers in a staggered position. The 
fibers are 3D-printed as cylinders inside the microchannels with a height 
of 1 mm. On the side of the channels, semi-cylinders were 3D-printed, 
implying the periodic boundary condition. Fig. 2(a) shows the sche
matic of the microchannel with dimensions, and Fig. 2(b) shows the 3D- 
printed microchannel for the micro-particle image velocimetry (μ-PIV) 
experiment. The 4x magnification of the fibers under the microscope is 
shown in Fig. 2(c). Table 1 presents the geometric parameter values of 
the printed microchannels alongside the flow rate.

2.2.2. Micro-PIV measurement
For visualizing the flow and velocity field between the fibers of the 

fabricated micro-channel, a μ-PIV system was utilized. A simplified 
schematic of the μ-PIV system is shown in Fig. 2(d). Fluid flow (water) is 
seeded with polystyrene fluorescent micro-particles with a diameter of 
1.9 μm (PS-FluoRot-2.0, microParticles GmbH, Berlin, Germany). Since 
the density of the micro-particles (1.05 g cm-3) is similar to the density of 
the water (1 g cm-3), the micro-particles stay suspended in the water and 
move along the flow field. Fluid is pumped with the syringe pump 

Fig. 2. Overview of microchannel design and measurement setup. (a) Detailed design of Microchannels, (b) 3D printed microchannel for the micro-PIV measure
ment, (c) Microchannel fibers under 4x magnification using the microscope, (d) Simplified schematic of the μ-PIV system.
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(Model 11, Harvard Apparatus, Pennsylvania, USA) with a flow rate of 
1.5 mL min-1 and 3 mL min-1. Two laser pulses are emitted from the laser 
source (Bernoulli B-PIV 200-15, Litron Lasers, Warwickshire, UK) with a 
time interval of 100 μs. Since the wavelength of the laser matches the 
absorption wavelength of the micro-particles, they excite at 530 nm and 
emit light at 607 nm, making them visible. The emitted light from the 
micro-particles inside the microchannel is captured by a high-speed CCD 
camera (Zyla 5.5 sCMOS, Andor Technology Ltd, Belfast, UK) that is 
mounted on an inverted microscope (IX73, Olympus Life Science, 
Tokyo, Japan), which provides magnified images of flow between the 
fibers. A synchronizer (LaserPulse Synchronizer 610036, TSI, Minne
sota, USA) is used to precisely control the timing between the camera 
exposure and laser pulses, ensuring that two images are captured shortly 
after the laser pulses. The captured images are post-processed in the 
Insight 4G software (TSI, Minnesota, USA). Measurements were done at 
the midplane of the microchannel (shown as the focal plane). More 
details of the micro-PIV principle are given by Raffel et al. [37].

2.3. Data-driven model development

2.3.1. Multivariate polynomial model formulation
The primary objectives of ECMO are to enhance mass transfer while 

minimizing the risks of thrombosis and hemolysis. Therefore, three 
objectives were considered in this study: 

1 Maximizing specific CO2 removal: Specific CO2 removal was calcu
lated by dividing the CO2 removal rate from Equation (8) by the total 
fiber surface area, indicating the mass transfer efficiency of the 
oxygenator.

2 Minimizing dead-zone-to-total-area ratio: Regions with a velocity 
below 0.1 mm s-1 were defined as dead zones where blood flow is 
minimal and increases the risk of thrombosis. The dead-zone-to- 
total-area ratio measures the percentage of the oxygenator poten
tially susceptible to thrombosis.

3 Minimizing hemolysis index: Hemolysis index quantifies the extent 
of hemolysis, providing an estimate of blood cell damage.

In this study, blood-side pressure drop was not considered a direct 
optimization objective since the analysis focused on mass transfer effi
ciency, hemolysis, and thrombosis risk, which are more linked to patient 
safety and clinical outcomes. Besides, it was considered that the pump 
would manage any pressure loss, and its effects would be reflected 
indirectly through hemolysis, indicating hydraulic stress within the 
system. So, a higher pressure drop results in a higher mechanical load on 
the pump, which leads to higher shear-induced hemolysis.

The overview of the methodology employed in this study is shown in 
Fig. 4. After defining the input parameters and objectives, developing 
the CFD model, and conducting micro-PIV measurements for CFD vali
dation, the fourth step involved generating 200 cases with varying input 
parameters using the Latin hypercube sampling (LHS) method [38]. CFD 
simulations were conducted for these cases to assess the effect of each 
defined parameter (angle, diameter, distance-to-diameter ratio, and 
blood flow rate) on the defined objectives. The dataset was divided into 

a model identification dataset and a validation dataset to construct 
surrogate models for each objective. Specifically, 150 cases were used as 
model identification dataset to train the surrogate models, and the 
remaining 50 cases constituted the validation dataset where they were 
employed to assess the accuracy of the developed surrogate models.

As demonstrated in many studies, numerous physical phenomena 
exhibit nonlinear behavior. For instance, the Sherwood number in a 
laminar flow parallel to a plate is given as a function of the Reynolds 
number raised to the power of 1/2 and the Schmidt number raised to the 
power of 1/3 (Sh=0.664 Re1/2 SC1/3). However, by treating Re1/2 and 
Sc1/3 as separate variables, the Sherwood number equation can be 
expressed as a linear polynomial function of order 1 for each variable. 
So, an unknown exponent was assigned to each parameter to achieve a 
better fit to the data, and each objective is expressed as follows: 

objective=f
(

anglea
,diameterb

,distance− to− diameterratioc
,flowrated

)

(13) 

where a, b, c, and d are the unknown exponents of each parameter, 
which vary for each objective. Additionally, the polynomial order is an 
unknown parameter that must be determined.

2.3.2. Modified Enhanced Jaya Algorithm
The Modified Enhanced Jaya algorithm, combining the modified 

Jaya algorithm for mixed variables [39] with the Enhanced Jaya Algo
rithm (EJAYA) [40], was implemented in MATLAB (MathWorks, Natick, 
Massachusetts, USA) and utilized to determine each objective’s expo
nents and polynomial model. The unknown exponents were treated as 
continuous variables, constrained between − 5 and 5, while the poly
nomial model was treated as a discrete variable, ranging from 1111 to 
6666. Each digit in the polynomial model specifies the maximum degree 
of each input parameter in the multivariate polynomial model.

The Modified Enhanced Jaya algorithm was applied to minimize the 
fitness function for each objective. A multivariate polynomial model was 
fitted to the data for each population (parameters a, b, c, d, and the 
polynomial order). Using the input parameters from the model identi
fication and validation datasets, the relative error of the obtained value 
from the multivariate polynomial model compared to the CFD was 
calculated as the fitness function. Additionally, 625 parameter combi
nations (5 values for each parameter) were generated and evaluated by 
the model. To enforce constraints, any negative output from the model 
resulted in a penalty value of 106 being assigned to the fitness function.

The EJAYA algorithm framework includes a search mechanism that 
consists of local exploitation and global exploration strategies. For each 
population, a switch probability is selected randomly. The global 
exploration strategy is applied if this value exceeds 0.5; otherwise, the 
local exploitation strategy is used. Since differential vectors between 
historical and current populations cover a broader search space than 
differential vectors within the same generation, the global exploration 
strategy can be particularly effective.

The discrete variable for polynomial order was treated as a contin
uous variable within the population generation. The generated value 
was then checked to find the two closest discrete values. If the generated 
value was greater than the average of these two values, it was assigned 
the higher value; otherwise, it was assigned the lower value.

3. Results

3.1. CFD validation with Micro-PIV

Different CFD simulations were conducted using a 3D domain, as 
shown in Fig. 1(b), to validate the results of the micro-PIV experiments. 
Unlike the main simulations, the validation simulations incorporated 
modified boundary conditions to align with the experimental setup; 
period boundary conditions were replaced with wall boundary condi
tions, and the working fluid was changed to water to replicate the actual 

Table 1 
Geometric parameter values of printed microchannels with the corresponding 
experiment flow rate.

Microchannel Angle 
[
◦
]

Diameter 
[μm]

Distance-to- 
Diameter Ratio [ −
]

Flow Rate 
[
mL min− 1]

Case 1 60 600 (2 ×

300)
900/600 = 1.5 1.5

Case 2 60 300 450/300 = 1.5 1. 5
Case 3 45 494 (1.3 ×

380)
780/494 = 1.579 3

Case 4 45 380 600/380 = 1.579 3
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experimental conditions. Velocity contours were computed and visual
ized at the mid-plane of the domain for comparison. Fig. 3 compares the 
CFD simulation and the micro-PIV experiment results. Due to the 
inherent difficulty in defining a precise line in the micro-PIV experiment 
results to compare with the CFD results, a qualitative comparison 
approach was adopted. As shown in Fig. 3, the CFD simulations closely 

align with the micro-PIV measurements, exhibiting strong agreement 
and confirming the robustness and accuracy of the CFD as an effective 
method to evaluate flow behavior between the fibers. With a 4x 
magnification, the field of view in the micro-PIV experiment was limited 
to 690*820 microns. As a result, capturing the complete flow field 
around the entire fiber was impossible in cases 1 and 3.

Fig. 3. Comparison of CFD simulations and micro-PIV experiments for four cases with different geometric parameters.
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3.2. Data distribution

Fig. 5 illustrates the relationship between the objectives (specific 
CO2 removal, dead-zone-to-total-area ratio, and hemolysis index) and 
input parameters (angle, diameter, distance-to-diameter ratio, blood 
flow rate). The scatter plots indicate that most input parameters have a 
minimal correlation with the hemolysis index. However, there is a slight 
negative trend with the distance-to-diameter ratio, where a lower 
distance-to-diameter ratio tends to increase the hemolysis index, 
resulting in higher blood damage. Uniform scatter indicates a weak 
relationship with the hemolysis index between angle, diameter, and 
blood flow rate.

A more noticeable trend with angle and blood flow rate is shown 
with the dead-zone-to-total-area ratio. Lower angles and higher blood 
flow rates are associated with reducing the dead-zone area. A clear 
negative correlation exists between diameter and the specific CO2 
removal. Decreasing the diameter tends to increase the specific CO2 
removal. Also, a slight positive trend is observed between blood flow 
rate and specific CO2 removal, with a higher flow rate increasing specific 
CO2 removal.

As illustrated in Fig. 5, the majority of the data for the hemolysis 
index falls below 10× 10− 3%, and most values for the dead-zone-to- 
total-area ratio are below 0.75 %. Additionally, specific CO2 removal 
is mainly below 110 mLCO2 min-1 m-2.

3.3. Model evaluation of each objective

The modified enhanced Jaya algorithm has been employed to 
determine the unknown exponent for each input parameter and the 

polynomial order of the multivariate polynomial function. Stepwise 
regression was utilized to model the objectives. Stepwise regression 
removes predictors based on statistical criteria, such as p-values, 
allowing for selecting a subset of predictors that best aligns with the 
objectives. The calculated exponent values for each variable and the 
polynomial model for each objective are presented in Table 2. The final 
equation for each objective is provided in the supplementary material 
S.3.

Fig. 6 illustrates the accuracy of the obtained models for each 
mentioned objective. The obtained model for specific CO2 removal, 
shows high accuracy for both the identification and validation datasets. 
The error between the predicted value and those obtained from the CFD 
simulations falls below 2.5 % for the model identification dataset. It 
remains below 5 % for the validation dataset except for one data point 
with an approximate error of 14 % (see Fig. 6(a)). The scatter plot of 
predicted versus actual specific CO2 removal is shown in Fig. 6(b). The 
data points align closely with the identity line, indicating a strong 
agreement between the predicted and actual values for specific CO2 
removal. Low error percentages across both model identification and 
validation indicate that the model is highly accurate in predicting spe
cific CO2 removal.

The developed model predicting the dead-zone-to-total-area ratio 
demonstrates good accuracy as well. Fig. 6(c) illustrates the error per
centage of this ratio as a function of input parameters. The error remains 
consistently below 15 %, indicating a good fit for the complex dataset. 
Even though most of the dead-zone-to-total-area ratio falls below 1, and 
only 7 data points show the dead-zone-to-total-area ratio above 1, the 
model shows a high accuracy across lower and higher values. Similarly, 
the close alignment of the predicted and actual values along the identity 
line implies that the model performs well (see Fig. 6(d)).

Fig. 6(e) presents the error percentage of the hemolysis index model. 
For this model, all the errors are below 5 %. Fig. 6(f) shows the predicted 
versus actual hemolysis index, where the data points align very closely 
to the identity line, meaning that the developed model performs well 
and provides high accuracy. Overall, all three models accurately fit the 
data, making them appropriate for further analysis.

3.4. Global Sensitivity Analysis

Uncertainty and sensitivity analysis are considered critical compo
nents in model applications. Global Sensitivity Analysis (GSA) helps to 
identify the key parameters whose uncertainty has the most significant 
impact on the output, allowing ranking of the variables, fixing or 
removing irrelevant ones, and reducing the complexity of the problem. 
Among the various GSA methods, variance-based Sobol’ sensitivity 
indices are most commonly used due to their efficiency and ease of 
interpretation [41,42].

Several Sobol’ indices exist, including the first-, second-, and higher- 
order indices. A second-order Sobol’ indices can be defined as the first- 
order Sobol’ index of a group of two input variables. In this study, the 
first- and total-order Sobol’ indices were investigated. Azzini et al. 
proposed two sampling strategies along with their respective Monte 
Carlo estimators to calculate both the first- and total-order Sobol’ 
indices [43]. Their findings demonstrate that the new strategy out
performs the previous one introduced by Saltelli [44]. Therefore, this 
study calculates the first-order and total Sobol indices following the 
methodology of Azzini et al. using the sample size of 107.

The sensitivity analysis results, based on first-order and total-order 
Sobol’ indices, are presented in Fig. 7. The distance-to-diameter ratio 
emerges as the most influential parameter across all objectives, both in 
terms of its direct effect and its interaction with other variables. This 
influence is particularly evident for the hemolysis index, where the 
Sobol’ indices for the distance-to-diameter ratio show a notably higher 
contribution compared to the other inputs. In contrast, the blood flow 
rate demonstrates almost the least influence on all objectives.

The specific CO2 removal is most sensitive to the diameter and 

Fig. 4. Overview of the methodology employed in this study for the optimi
zation of fiber arrangement in an oxygenator. The process includes parameter 
definition, CFD modeling, experimental validation, surrogate model develop
ment using a modified enhanced Jaya algorithm, and both single- and multi- 
objective optimization to identify optimal configurations.
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distance-to-diameter ratio, while the dead-zone-to-total-area ratio is 
primarily influenced by the distance-to-diameter ratio and angle. 
However, for the dead-zone-to-total-area ratio, the variation in sensi
tivity indices between the inputs is less pronounced compared to the 
specific CO2 removal and the hemolysis index. The total-order Sobol’ 
indices, which account for the main effects and interactions among input 
variables, further support these findings.

3.5. Single-objective optimization

A single-objective optimization approach was conducted following 
the development of the multivariate polynomial models and the pre
liminary study of input parameter effects on each objective. A design 
space was constructed by defining each input parameter’s minimum and 
maximum bounds. This space was discretized into a fine grid of data 
points, ensuring a thorough exploration of the objective landscape. 
Then, the objectives were evaluated at each of these discrete points 
using the developed polynomial models. Subsequently, the global 

minimum and maximum values of each objective were identified. This 
method allows for a detailed understanding of the influence of the input 
parameters on the objectives and facilitates the identification of 
parameter configurations that yield the best possible outcomes for each 
objective. The minimum and maximum values of each objective are 
presented in Table 3. Since the aims are to maximize the specific CO2 
removal and minimize the dead-zone-to-total-area ratio and the hemo
lysis index, the input parameter configurations that achieve these out
comes are highlighted in bold in Table 3.

3.6. Multi-objective optimization

In the multi-objective optimization analysis, the Pareto front was 
used to identify the optimal trade-offs between objectives. Despite the 
single-objective optimization that focuses on maximizing or minimizing 
a single objective, multi-objective optimization considers multiple ob
jectives simultaneously. The aim is to identify solutions where im
provements in one objective cannot be achieved without compromising 
another, known as non-dominated solutions. These solutions together 
form the Pareto front.

The Pareto front was constructed for all three objectives simulta
neously. The resulting Pareto front provides a comprehensive view of 
the optimal solutions where no further improvement can be made in one 
objective without negatively impacting another. This approach enables 
the identification of balanced parameter configurations that consider all 
objectives, aiming to achieve the best fiber arrangement.

Fig. 8 shows the dominated and Pareto optimal solutions considering 
all three objectives. Pareto solutions are the non-dominated points, with 
no other points having higher specific CO2 removal and lower dead- 
zone-to-total-area ratio and hemolysis index. The multi-objective 

Fig. 5. Relationship between the objectives (specific CO2 removal, dead-zone-to-total-area ratio, and hemolysis index) and input parameters (angle, diameter, 
distance-to-diameter ratio, blood flow rate) for the model identification (blue) and model validation (red) datasets.

Table 2 
Exponents and polynomial orders were achieved for each objective using the 
modified enhanced Jaya algorithm.

Objective a b c d Polynomial 
Model

Specific CO2 Removal 
[
mLCO2 min− 1 m− 2]

1.413 − 0.251 − 1.464 0.360 poly4666

Dead-Zone-to-Total- 
Area Ratio [%]

1.192 − 0.093 − 1.198 1.741 poly5546

Hemolysis Index ×10− 3 

[%]
0.597 − 0.801 − 2.691 − 0.027 poly6452
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Pareto front presents a comprehensive perspective on the trade-offs 
among specific CO2 removal, dead-zone-to-total-area ratio, and hemo
lysis index. The multi-objective Pareto front indicates that enhancing 
specific CO2 removal can significantly decrease the dead-zone-to-total- 
area ratio yet raises the hemolysis index, resulting in a precise balance 
in design choices.

Following obtaining the Pareto front solutions, two methods, 
weighted sum and goal programming, were employed to identify the 
optimal fiber arrangement.

3.6.1. Weighted sum method
The weighted sum method is a technique that combines several ob

jectives into a single objective function by assigning a weight to each, 
allowing for prioritized trade-offs among the objectives [45]. In this 
study, the method balances the maximization of specific CO2 removal 
alongside the minimization of hemolysis index and 
dead-zone-to-total-area ratio by adjusting the relative importance of 
each objective.

The primary advantages of the weighted sum method are its 
simplicity and flexibility, as it allows objectives to be emphasized ac

Fig. 6. Accuracy of the models for each objective: (a) Error percentage of specific CO2 removal versus input parameters; (b) Predicted versus calculated value of the 
specific CO2 removal from CFD; (c) Error percentage of dead-zone-to-total-area ratio versus input parameters; (d) Predicted versus real value of the dead-zone-to- 
total-area ratio from CFD; (e) Error percentage of hemolysis index versus input parameters; (f) Predicted versus real value of the hemolysis index from CFD.
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cording to specific needs by modifying the weights. However, this 
approach has limitations, including the subjectivity in weight selection, 
which may influence the outcome [46]. The best 3 optimal arrange
ments based on the weighted sum method for various weights are pre
sented in Table 4. As shown in Table 4, the optimal arrangements 
achieved with the lowest diameter (300 μm), lower angles, and highest 
blood flow rate (5 L min-1). Furthermore, assuming almost the same 
angle, by increasing the distance-to-diameter ratio from 1.25 to 1.65, the 
specific CO2 removal decreases from 220 to 130 mLCO2 min-1 m-2 

(− 41 %), while the hemolysis index decreases from 285× 10− 3 to 
12 × 10− 3 % (− 95.8 %).

3.6.2. Goal programming method
The goal programming method is another technique that seeks to 

achieve predefined target values or thresholds for each objective, 
minimizing the deviation from these set goals [47]. The primary ad
vantages of goal programming lie in its ability to precisely align with 
clinical requirements by establishing explicit performance targets, 
reducing subjective prioritization often seen in other methods [48]. 
However, this approach also presents challenges, such as the difficulty in 
setting realistic and attainable target values and a potential risk of 
generating unbalanced or infeasible solutions if the set goals are overly 
restrictive or incompatible with each other. Considering the maximum 
value of the specific CO2 removal (250.3 mLCO2 min-1 m-2), the mini
mum value of hemolysis index (0.011 %), and the minimum value of 
dead-zone-to-total-area ratio (0.024 %) as the targets, the best 3 optimal 
arrangements using goal programming method are presented in Table 5.

The results of the goal programming method indicate that optimal 

Fig. 7. Bar graph of first- and total-order Sobol’ indices (respectively at the top and the bottom) with a sample size of 107.

Table 3 
Single-objective optimization results.

Objective Min/Max Angle [◦] Diameter [μm] Distance-to-Diameter Ratio [ − ] Flow Rate 
[
L.min− 1]

Specific CO2 Removal [mLCO2 min− 1 m− 2] Min = 12.2 30 700 2.25 0.5
Max ¼ 250.3 30 300 1.25 5

Dead-Zone-to-Total-Area Ratio [%] Min ¼ 0.024 34 300 1.55 4.8
Max = 7.54 60 700 1.35 0.5

Hemolysis Index ×10− 3 [%] Min ¼ 0.011 60 700 2.25 0.5
Max = 876 30 300 1.25 5
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solutions are achieved with the smallest fiber diameter and the highest 
blood flow rate. Moreover, the hemolysis index obtained using this 
method is lower than that achieved with the weighted sum method, 
particularly when higher weights are assigned to specific CO2 removal 
or the dead-zone-to-total-area ratio.

In both the weighted sum and goal programming methods, selecting 
different weights or setting alternative goals impacts the optimization 

outcome, often resulting in different results. Therefore, assigning these 
values must carefully consider the relative importance of each objective 
within the context of critical care, as specific outcomes such as mini
mizing hemolysis or maximizing mass transfer may take superiority 
depending on clinical priorities and patient-specific requirements.

Fig. 8. Three-objective Pareto front solutions for the optimization of specific CO2 removal, dead-zone-to-total-area ratio, and hemolysis index. (a) 3D representation 
of Pareto optimal solutions (red) and dominated solutions (blue). (b, c, d) Projection of three-objective Pareto front solutions onto each respective plane.

Table 4 
The best three optimal fiber arrangements were determined using the weighted sum method for various weight combinations (w1,w2,w3).

Weights Angle 
[
◦

]
Diameter 
[μm]

Distance-to-Diameter 
Ratio [− ]

Blood Flow Rate 
[L min− 1]

Specific CO2 Removal 
[mLCO2 min− 1 m− 2]

Dead-Zone-to-Total- 
Area Ratio [%]

Hemolysis Index ×
10− 3 [%]

w1 = 1/
3

30 300 1.25 5 250.3 0.086 876

w2 = 1/
3

30 300 1.25 4.9 248.6 0.070 846

w3 = 1/
3

30 300 1.25 4.8 246.9 0.060 816

w1 =

0.7
31 300 1.25 5 243.4 0.080 607

w2 =

0.2
32 300 1.25 5 237.1 0.076 457

w3 =

0.1
31 300 1.25 4.9 241.7 0.064 586

w1 =

0.2
34 300 1.25 4.7 220.3 0.045 284

w2 =

0.7
34 300 1.25 4.8 222.1 0.050 294

w3 =

0.1
34 300 1.25 4.6 218.4 0.041 274

w1 =

0.1
37 300 1.65 5 130.8 0.031 11

w2 =

0.2
36 300 1.65 5 132.5 0.029 12

w3 =

0.7
38 300 1.6 5 134.6 0.031 13
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4. Discussion

The solutions obtained from multi-objective optimization differ in 
geometric configuration compared to those from single-objective opti
mization. For instance, when optimizing only for specific CO2 removal, 
the resulting geometry is characterized by a 30

◦

fiber angle, 300 μm 
diameter, and a distance-to-diameter ratio of 1.25. This configuration 
forms a very dense fiber bundle, which is efficient in gas transfer but 
induces high hemolysis and pressure drop. In contrast, when applying 
multi-objective optimization using the goal programming method, the 
optimal geometry shifts to a 34◦ angle, the same 300 μm diameter, but 
with a more moderate distance-to-diameter ratio of 1.45. This configu
ration achieves a specific CO2 removal of 164.4 mLCO2 min-1 m-2, 
approximately 34 % lower than the single-objective optimum. However, 
the hemolysis index is reduced by 94.7 %, demonstrating that a modest 
compromise in mass transfer efficiency by increasing the distance-to- 
diameter ratio can substantially improve blood damage.

The specific CO2 removal calculated in this study aligns closely with 
the experimental results reported in Svitek’s study [32]. Although the 
detailed specifications of their first prototype fiber bundle module are 
not fully disclosed, the fiber diameter of 300 μm and the specific CO2 
removal values, ranging from 50 to 75 mLCO2 min-1 m-2 for a blood flow 
rate of 0.75–2.25 L min-1, are consistent with the CFD results obtained in 
the present study. For example, with a diameter of 320 μm, a 
distance-to-diameter of 2.1, an angle of 38

◦

, and a flow rate of 2.3 L 
min-1, the calculated specific CO2 removal was 68.9 mLCO2 min-1 m-2. 
Similarly, with a diameter of 315 μm, a distance-to-diameter of 1.95, an 
angle of 43 

◦

, and a flow rate of 1.3 L min-1, the calculated specific CO2 
removal was 58.5 mLCO2 min-1 m-2.

Typical fiber mat configurations used in existing oxygenators were 
examined to establish the relevance of our findings to commercial 
oxygenator designs. For example, Membrana® PMP fiber mats feature a 
packing density of 44 fibers per inch and a fiber diameter of 380 μm, 
resulting in an approximate center-to-center spacing of 600 μm [49], 
which corresponds to a fiber angle of 51.7◦ and a distance-to-diameter 
ratio of 1.27. As shown in Table 4, this configuration closely aligns 
with the optimal geometries identified through our multi-objective 
optimization using the weighted sum method, thereby supporting the 
practical applicability of our modeling approach.

Although this study focuses on evaluating and optimizing membrane 
fiber arrangements, practical implementation may differ due to inherent 
challenges, such as slight variations in fiber positioning and movement 
of fibers as the fluid flows around them. Therefore, this study thoroughly 
analyzed and optimized the ideal geometric configuration. It is 
acknowledged that using a 2D simulation model represents a limitation 
of this work. In the simulations, fibers were assumed to be transverse to 
the flow, effectively modeling a cross-sectional slice of the oxygenator. 
While this approach offers valuable insight into local flow behavior and 
mass transfer between fibers, it does not fully capture the three- 
dimensional flow complexities present in real devices, such as those 
with 90◦ stacked or 24◦ wound configurations, as Focke et al. [50] re
ported. Nonetheless, the 2D configuration used here closely resembles 
the 90◦ stacked arrangement and provides a computationally efficient 
parametric analysis and optimization framework.

Moreover, this study demonstrated that increasing mass transfer 

leads to increased blood damage, a factor often overlooked in previous 
studies. Even though there are some solutions to mitigate blood damage, 
such as adding heparin to the blood to reduce the risk of thrombosis 
[51], this study showed that optimizing the arrangement of the fibers 
can also effectively reduce the blood damage.

5. Conclusion

This study focused on optimizing the arrangement of ideal hollow 
fiber membrane oxygenators to enhance specific CO2 removal while 
reducing the hemolysis index and the dead-zone-to-total-area ratio. The 
study developed highly accurate tools for predicting gas exchange effi
ciency, hemolysis, and dead-zone formation across various fiber con
figurations by integrating CFD simulations with multivariate polynomial 
models. These models evaluated the effects of geometric parameters, 
including fiber angle, diameter, and distance-to-diameter ratio, and the 
flow parameter, blood flow rate, on each objective. The main findings of 
the study are outlined below: 

• CFD simulations demonstrated a good agreement with micro-PIV 
measurements, validating the accuracy of the numerical model.

• Combining the modified enhanced Jaya algorithm and multivariate 
polynomial functions resulted in high-accuracy modeling of the 
objectives.

• The distance-to-diameter ratio had the most significant impact on the 
hemolysis index.

• Specific CO2 removal was most sensitive to the fiber diameter and 
distance-to-diameter ratio.

• The dead-zone-to-total-area ratio was mainly influenced by the 
distance-to-diameter ratio and fiber angle.

• The optimal configuration is sensitive to the chosen weights (in the 
weighted sum method) or goal targets (in the goal programming 
method).

• Commercial fiber mat, Membrana® PMP (44 fibers/inch, 380 μm 
diameter), were analyzed to assess how typical design parameters 
align with the optimized geometries identified in this study.

Overall, this study demonstrates that careful optimization of fiber 
arrangement parameters can balance high mass transfer efficiency and 
reduce the risk of hemolysis and thrombosis. The study provides a 
foundation for further refining ECMO designs, emphasizing the need for 
parameter-specific adjustments based on clinical priorities.
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Table 5 
The best three optimal arrangements were determined using the goal programming method, considering the best single objectives as targets.

Optimal 
Solutions

Angle 
[
◦

]
Diameter 
[μm]

Distance-to-Diameter 
Ratio [− ]

Blood Flow Rate 
[L min-1]

Specific CO2 Removal 
[mLCO2 min-1 m-2]

Dead-Zone-to-Total- 
Area Ratio [%]

Hemolysis Index 
×10-3 [%]

Optimal 
Solution 1

34 300 1.45 5 164.4 0.027 46

Optimal 
Solution 2

36 300 1.4 5 168.9 0.032 53

Optimal 
Solution 3

35 300 1.45 5 161.8 0.027 41
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