
High-Speed Pose Tracking for Robotic Grasping Using an RGB
Camera and Hybrid Vision Techniques

DIPLOMA THESIS

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Dipl.-Ing. Gerald Ebmer
Dr. techn. Minh Nhat Vu

Prof. Dr.-Ing. Wolfgang Kemmetmüller

submitted at the

TU Wien
Faculty of Electrical Engineering and Information Technology

Automation and Control Institute

by
Johannes König

Matriculation number 01507421

Vienna, May 2025

Complex Dynamical Systems Group
A-1040 Wien, Gußhausstr. 27–29, Internet: https://www.acin.tuwien.ac.at

Preamble

First and foremost, I would like to express my deepest gratitude to all those who made
the completion of this thesis and my graduation possible.

Thank you, Minh, for granting me the opportunity to work on this thesis and for sharing
your boundless enthusiasm for research. Your passion was truly inspiring. I am also
deeply grateful to the entire team at the Austrian Institute of Technology for welcoming
me so warmly. Professor Kemmetmüller, thank you for your insightful feedback, steady
supervision, and for always being open to my questions. Huy Hoang (Eric), I am especially
thankful for our invaluable discussions, your support, and the motivation you provided
throughout this journey. To my colleagues at ACIN, especially Alexander, Guillaume,
Marc-Philipp, Thies, and Florian, thank you for the countless hours you spent helping
me. Your dedication and generosity made a huge difference. Gerald, I owe you a special
thank you for lifting me up during a particularly difficult time and encouraging me to
keep going. The lessons you shared during your supervision will stay with me forever.

To all my fellow students who became dear friends, I will always cherish the memories
we made and look forward to what lies ahead for each of us. To all my flatmates, thank
you for filling my life with friendship and laughter during my studies. Your presence gave
me the much-needed energy to reach my goals. Valentina, thank you for having played
a crucial role in pushing me over the line during our late-night writing sessions. To my
brothers, Max, Mo, and Fabio, you’ve each been role models to me in your own way, and
I’m incredibly thankful for your support. And last but never least: Mami and Papi, thank
you for your unwavering love and support throughout my life. Everything I am, I owe to
you.

This thesis was created at the Automation and Control Institute of the TU Wien in
collaboration with the Austrian Institute of Technology.

Vienna, May 2025

I

Abstract

Object pose tracking is a crucial part in automated robotic manipulation, requiring reliably
updating the pose estimate at high frequencies so to enable precise high-bandwidth control
in real-time applications. This thesis presents a pipeline for model-based pose-tracking with
an RGB camera, implementing deep-learning-based algorithms for object segmentation
and initial pose estimation to guarantee flexibility, while classical computer vision methods
are used to iteratively update the pose in each image frame. The pipeline achieves an
average update rate of 50 Hz while demonstrating good tracking performance for objects
in various scenarios, including a robotic grasping experiment. However, challenges remain
in accurately estimating the orientation of symmetrical objects and handling objects with
similar colours to the background or highly textured surfaces.

II

Kurzzusammenfassung

Posenschätzung ist ein wichtiger Bestandteil von automatisierter robotischer Objektmani-
pulation und erfordert eine zuverlässige Schätzung der Objektpose mit hoher Frequenz,
um in Echtzeitregelungssystemen mit hoher Bandbreite Anwendung zu finden. Diese
Arbeit stellt eine modellbasierte Pipeline für das Pose-Tracking mit einer RGB-Kamera
vor. Sie integriert Deep-Learning-Algorithmen zur Objektsegmentierung und initialen
Pose-Schätzung, um eine hohe Flexibilität zu gewährleisten, während klassische Methoden
der Computer Vision zur iterativen Aktualisierung der Pose in jedem Bild genutzt werden.
Die Pipeline erreicht eine durchschnittliche Aktualisierungsrate von 50 Hz und zeigt eine
zuverlässige Tracking-Performance in verschiedenen Szenarien, einschließlich eines roboti-
schen Greifexperiments. Dennoch bestehen Herausforderungen bei der genauen Schätzung
der Orientierung symmetrischer Objekte sowie beim Tracking von Objekten mit geringen
Farbkontrasten zum Hintergrund oder stark texturierten Oberflächen.

III

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Aim and Structure of this Thesis . 3

2 Theoretical Foundations 4
2.1 Image Generation and Processing . 4
2.2 Region Model . 6

2.2.1 Colour Histograms . 6
2.2.2 Sparse Viewpoint Model and Correspondence Lines 7
2.2.3 Probabilistic Model . 8

2.3 Feature Extraction with Deep Neural Networks 10
2.3.1 Neuron to Deep Neural Networks 10
2.3.2 Convolutional Neural Networks . 11
2.3.3 Vision Transformers . 12

3 High-Speed Pose Tracking 15
3.1 RGB Camera and User Interface . 15
3.2 Object Segmentation . 16
3.3 Initial Pose Estimation . 17

3.3.1 Preprocessing . 18
3.3.2 Nearest Neighbour Search . 18
3.3.3 Pose Adjustment . 18

3.4 Pose Refinement . 20
3.4.1 Nearest Neighbour Search and Colour Histogram 21
3.4.2 Optimizing for the Pose Variation 22

4 Setup and Experiments 23
4.1 Setup . 23
4.2 Pose Tracking Accuracy . 23

4.2.1 Calibrating the Pose Measurement 25
4.2.2 Static Pose Tracking . 26

Influence of Object-to-Camera Distance 26
Influence of the Camera’s Resolution 28

4.2.3 Dynamic Measurements . 29
4.2.4 Multiple Blocks . 34
4.2.5 Inference Times . 34

4.3 Grasping an Object with a Robotic Gripper 35

IV

Contents V

5 Conclusion and Outlook 38

List of Figures

2.1 Image generation with perspective projection. 4
2.2 Filling up the colour histogram of a region G sparsely along the line γ. The

region is delimited by dotted lines. 6
2.3 Creation of a sparse viewpoint model for a given pose HO

T as in [24]. . . . 7
2.4 Close-up view of a projected correspondence line on a real image I as in [24]. 8
2.5 Different versions of the step functions p(r | dj , Gf) and p(r | dj , Gf) as

shown in [24]. 9
2.6 Single Perceptron (N) and a Multilayer Perceptron (MLP). Trainable

parameters are coloured in violet. 10
2.7 A convolutional layer of a 5 × 5 RGB image with a 3 × 3 kernel as shown

in [36]. The learnable parameters are coloured in violet. 11
2.8 An Attention Head in a ViT [16]. The learnable parameters are coloured

in violet. 13

3.1 Pipeline architecture. 15
3.2 Windows of the pipeline GUI implemented in RViz2. 16
3.3 Overview of Segment Anything [32]. 16
3.4 Model-based pose estimation with an RGB camera as done in [15]. 17
3.5 The relationship between the transformations. 19
3.6 Pose Variation θ =

�
θT

t θT
r

T
between two consecutive frames Iτ−1 and

Iτ as defined in [24]. 20
3.7 The variated contour distances on the current frame Iτ , as in[24]. The

silhouette of the object in the previous frame is overlaid onto Iτ 22

4.1 The two objects and the camera used in the accuracy experiments. The x,
y and z axes of the intrinsic body-frames are drawn in red, green and blue,
respectively. 24

4.2 Transformations between the frames of Optitrack, object and camera models. 25
4.3 The block and the cleanser bottle placed at different distances from the

camera for static pose estimation. The estimated bounding boxes and axes
are projected onto the images. 26

4.4 Static measurements with the block at different distances to the camera. . 27
4.5 Static measurements with the cleanser bottle at different distances to the

camera. 28
4.6 Static pose estimation of the block with a camera resolution of 480 × 640 at

different distances. The estimated bounding boxes and axes are projected
onto the images. 29

VI

List of Figures VII

4.7 Static tracking error of the block with a resolution of 480p at different
distances. 30

4.8 Dynamic eye-in-hand pose tracking of the objects at different resolutions. 31
4.9 Measurements of dynamic eye-in-hand tracking of the block at different

camera resolutions. The components of the ground truth translation are
plotted with dotted lines. 32

4.10 Measurements of dynamic eye-in-hand tracking of the cleanser bottle at dif-
ferent camera resolutions. The components of the ground truth translation
are plotted with dotted lines. 33

4.11 Tracking a block in an environment cluttered with similar objects. 34
4.12 Dynamic eye-to-hand measurement results of the block in an environment

cluttered with similar objects. 35
4.13 Setup for the grasping experiment. 36
4.14 Tracking and grasping a block with a robotic gripper. 37

List of Tables

4.1 Positional accuracies of static pose tracking for different object to camera
distances. 27

4.2 Positional accuracies of static pose tracking for the block for different
camera resolutions. 29

4.3 Positional accuracies of dynamic pose tracking for different resolutions. . . 31

VIII

1 Introduction

Robots have become indispensable in modern industry, logistics and healthcare, taking
on tedious, complex or dangerous tasks for humans. Many applications rely on vision-
based robotic manipulation, where an RGB or RGB-D camera provides perception input.
A prime example is given by automated surface cladding [1], in which a robotic arm
continuously tracks the workpiece moving relative to the robot to apply the material on
construction sites. In such dynamic environments, real-time perception is essential for
adapting to motion and ensuring precise execution.

Vision-based robotic manipulation typically involves four interconnected subtasks [2]:

1. Locating the object of interest within the visual scene.

2. Estimating the object’s six degrees of freedom (6-DoF) pose in 3D space from a
single image. Doing this for each frame in a video sequence is called pose tracking.

3. Computing an appropriate grasping pose for the robot’s end effector.

4. Planning and executing the robot’s motion to grasp the object successfully.

In scenarios where objects move relative to the robot - such as conveyor belt systems or
human-robot collaboration - steps 2 through 4 must be continuously updated. If tracking
is lost, the system must restart from step 1.

A high update rate is critical for real-time robotic control. The pose tracking algorithm
should operate at a frequency close to the camera’s frame rate (e.g., 30 Hz for standard
RGB cameras) to maintain high control bandwidth [3, 4]. A higher update rate enables
the robot to react faster to moving objects, which allows precise and smooth motion
planning, improving grasp success rates.

For widespread usability, pose tracking methods must be efficient, robust and implemented
with common robotic software. This thesis explores real-time object pose tracking using
only an RGB camera, focusing on applications in robotic grasping.

1.1 Related Work
A rigid body in three-dimensional space has six degrees of freedom (DoF), comprising
three translational and three rotational components. Together, these define the 6-DoF
pose of a rigid object. Pose estimation algorithms aim to determine an object’s pose by
processing information extracted from digital images. Tracking algorithms incrementally
refine the object’s initial pose over a sequence of images [5, 6].

1

1 Introduction 1.1 Related Work 2

The Benchmark for 6D Object Pose Estimation (BOP) challenges [7–10], which evaluate the
performance of pose estimation and tracking algorithms, have highlighted the progression
of techniques in this field. Until 2019, classic methods leveraging Point Pair Features
(PPF) [11], utilizing RGB-D or depth-only data, dominated the leaderboard. However,
with advancements in large-scale datasets and hardware capabilities, deep neural network
(DNN)-based methods surpassed PPF-based approaches in the 2020 BOP challenge.
Notably, recent entries [12–14] achieve high performance by relying solely on RGB images,
demonstrating the versatility of DNN-based pose estimation compared to traditional
computer vision techniques.

GigaPose [15] exemplifies this transition, achieving accurate pose estimations for unseen
objects within an average of 50 ms per estimate. This method combines Vision Transformer
(ViT) [16]-based feature extraction from scene images and object model renderings with
RANSAC to determine the optimal pose. Despite its accuracy, GigaPose struggles to
meet real-time requirements of 30 Hz. Its predecessor, MegaPose [17], refines coarse pose
estimates at rates approaching 30 Hz, albeit with initial estimation times exceeding one
second.

For applications requiring high update rates and constrained computational resources,
traditional vision-based trackers remain a compelling choice. Model-based approaches
leveraging handcrafted features, such as keypoints [18, 19] or edges [20, 21], compare
features extracted from scene images with those from object renderings. These methods
establish 2D-3D correspondences before solving an optimization problem to determine the
pose. Keypoint-based methods [22] are effective for textured objects, while edge-based
methods [23] perform better for textureless objects.

Stoiber et al. [24] introduced a method that leverages color information across corre-
spondence lines to create a probabilistic model. By optimizing this model, the pose is
efficiently estimated. The sparse representation of the region model allows the algorithm
to run on a single CPU core with potential update times of up to 1.04 ms. Subsequent
work added depth [25] and keypoint-based texture modalities [26], culminating in the
modular M3T library [27], which supports kinematic chain tracking and enables users to
combine multiple modalities as needed.

It is worth noting that most efficient pose-tracking methods are incremental in nature,
relying on small pose updates and requiring an initial pose estimate. Furthermore, many
pose-estimation algorithms, particularly those based on deep learning, depend on binary
object segmentation masks, requiring the additional step of segmenting the object for
end-to-end pose-estimation [2].

Traditional segmentation techniques, such as grayscale thresholding [28–30], or methods
based on keypoints, edges, or regions, demonstrate varying performance depending on the
specific application. Deep learning-based segmentation methods, however, offer greater
adaptability. For instance, XMem [31], a convolutional neural network (CNN)-based
approach, allows user feedback to refine segmentation masks by selecting points belonging
to the foreground or background. While effective for simple shapes, XMem struggles with
complex objects. Meta’s Segment Anything (SAM) model [32], trained on an extensive

1.2 Aim and Structure of this Thesis 3

dataset of masked images, demonstrates superior performance by generating high-quality
masks for diverse objects based on user input.

1.2 Aim and Structure of this Thesis
This thesis proposes an object-tracking pipeline with a fast update rate for vision-guided
manipulation tasks, integrating existing object segmentation, object pose estimation and
tracking algorithms. In many practical applications, the objects to be manipulated are
known. Hence, the emphasis is on object-tracking based on CAD models.

Chapter 2 introduces the theoretical background for model-based pose tracking of rigid
bodies and the required feature extraction from the images.

Chapter 3 describes the pipeline architecture and its implementation details.

Chapter 4 presents the setup and experiments that compare the pipeline’s pose output
with the measurement of a motion capture system. Furthermore, the pipeline is used in
an experiment to track and grasp an object with a robotic gripper.

Finally, Chapter 5 concludes the thesis with a summary of key findings and suggests topics
for future work.

2 Theoretical Foundations

To accurately estimate an object’s pose in an image, it is essential to extract and process the
relevant image information effectively. This chapter introduces the mathematical principles
underlying image generation and processing, providing a foundation for understanding pose
estimation techniques. A method for distinguishing between foreground and background
regions is discussed, as this differentiation plays a crucial role in the proposed online
tracking of an object’s pose relative to the camera. Finally, the chapter explores data-driven
feature extraction methods, which are widely employed in learning-based pose-tracking
applications, increasing their adaptability,

2.1 Image Generation and Processing
Figure 2.1 illustrates the typical setup for estimating the pose of an object O using an RGB
camera C. Both the camera and the object are associated with right-handed orthonormal
frames. The z-axis of the camera frame (zC) is parallel to the optical axis and the other
axes are aligned with the image plane PI . While the actual image plane, coinciding with
the sensor plane, is positioned at the focal distance f behind the lens, it is depicted at f
in front of the lens in Figure 2.1 for clarity. The pose of the object relative to the camera
is described using a homogeneous transformation matrix [33]

HO
C =


RO

C xO
C

0 1

�
∈ SE(3) , (2.1)

xC

yC

zCC
u

u

v
O

x

f

PI
HO

C

Optical Axis

Figure 2.1: Image generation with perspective projection.

4

2 Theoretical Foundations 2.1 Image Generation and Processing 5

where RO
C ∈ SO(3) represents the rotation matrix, and xO

C ∈ R3, denotes the translation
vector from the origin of C to the origin of O. With

xC
1

�
= HO

C


xO
1

�
(2.2)

the coordinates xO ∈ R3 relative to O of a point x are transformed into its coordinates
xC ∈ R3 with respect to C.

Assuming x is in the camera’s field of view and xC =
�
xC yC zC

T
, the perspective

projection model [34] 
u
1

�
= ΦK(xC) = 1

zC
KxC , (2.3)

yields the position u =
�
u v

T ∈ UH,W = (0, H) × (0, W) of the point’s projection onto
the image plane of height H and width W . The calibration matrix

K =

fx 0 cx

0 fy cy

0 0 1

 (2.4)

groups the camera’s known intrinsic parameters: the focal lengths fx and fy, and cx and
cy indicating the image centre in pixels. Recovering the 3D coordinates from the 2D image
coordinates is achieved via the inverse operation of (2.3)

xC = ΦK
−1(u, zC) = zCK−1


u
1

�
. (2.5)

The projection information for all points in the field of view is stored in an array I ∈
DC×H×W , commonly referred to as a digital image. For RGB cameras, the number of
channels is C = 3, where each channel represents the intensity of red, green, or blue
colour components, digitally encoded as integer values between 0 and 255, such that
D = {0, . . . , 255}. The red, green and blue colour values y ∈ D3 of the pixel at u ∈ UW,H

in the image I are extracted with the colour function

y = fI(u) . (2.6)

Scaling, rotating and shifting images is modelled using similarity transformation matrices
[34]

MA
a =


sA

a RA
a

�
αA

a

�
uA

a

0 1

�
∈ R3×3 , (2.7)

where sA
a > 0 is the scaling factor, RA

a

�
αA

a

�
∈ SO(2) denotes the in-plane rotation by

an angle αA
a , and uA

a ∈ R2 is the translation vector. This matrix transforms points

2 Theoretical Foundations 2.2 Region Model 6

fI(u) =
�
209 155 75

T

u

Gγ 0 255

0 255

0 255
I

Figure 2.2: Filling up the colour histogram of a region G sparsely along the line γ. The
region is delimited by dotted lines.

uA ∈ UHA,WA
from the original image IA ∈ D3×HA×WA to their counterparts ua ∈ UHa,Wa

on the transformed image Ia ∈ D3×Ha×Wa with
ua

1

�
= MA

a


uA

1

�
. (2.8)

The cropping and resizing operations are captured by setting αA
a = 0.

2.2 Region Model
Region-based methods partition the image into a foreground region Gf containing the
object of interest, and a background region Gb. Most region-based methods, like [35],
extract features from the whole image, which is computationally expensive. In [24], Stoiber
et al. proposed a region-based method, where colour histograms are created along lines
perpendicular to the object’s contour in the image. These so-called correspondence lines
make sparse feature extraction possible and improve efficiency. The colour information is
then used to compute the probability of the introduced contour distances to describe the
observed colour distribution in the image.

2.2.1 Colour Histograms
A colour histogram for an image region G ⊆ UW,H partitions the RGB colour space D3

into discrete bins, recording the number of pixels in G that fall into each bin [34]. The
histogram’s accuracy depends on both the number of colour bins and the size of the region
γ ⊆ G from which pixel colours are sampled. This region is called extraction region. The
extraction region and bin size are design parameters for the colour histogram extraction.
A higher number of bins and a larger extraction region improve accuracy but increase
computational cost. If γ = G, the colour histogram for G is said to be densely extracted,
otherwise sparsely extracted.

2 Theoretical Foundations 2.2 Region Model 7

ΦKT (·)

O

T

HO
TPT O

IT

�
HO

T
�−1

Φ−1
KT

(·, ·)

Template Rendering
Contour Points & Normal Vectors...

... in 3D... in 2D

Figure 2.3: Creation of a sparse viewpoint model for a given pose HO
T as in [24].

Figure 2.2 illustrates the extraction of the colour histogram for a region G of an image.
In this example, the extraction region γ is defined along a line traversing the region’s
contour. In this example, a pixel at u belonging to γ is assigned to a bin in the histogram.
Each colour channel is divided into four equidistant bins, resulting in a total of 43 = 64
possible values. The colour of this pixel is determined using (2.6)

fI(u) =

209
155
75

 . (2.9)

This corresponds to the fourth, third, and second bins of the red, green, and blue axes,
respectively, incrementing the count of that specific colour bin. The colour bins to which
u is assigned are marked with crossed boxes in the graphic.

Given the colour histograms for two disjoint regions Gf , Gb ⊂ UW,H of an image I such
that Gf ∪ Gb = UW,H , the probability

p(y | Gi) , y ∈ D3 , i ∈ {f, b} , (2.10)

represents the likelihood of colour y occurring in a pixel within region Gi. This probability
is obtained by dividing the bin counts by the total number of pixels considered across both
histograms. The probabilities for Gf and Gb are then combined to define the likelihood
functions

p(Gi | y) = p(y | Gi)
p(y | Gf) + p(y | Gb)

(2.11)

which express the probability that a given colour y belongs to Gi, i = {f, b} [24].

2.2.2 Sparse Viewpoint Model and Correspondence Lines
Given an image I of an object O, captured using a real camera C at a pose HO

C , Figure 2.3
and Figure 2.4 illustrate the creation process of a sparse viewpoint model R for a pose
HO

T where RO
T = RO

C , as in [24]. First, a virtual camera T with calibration matrix KT

2 Theoretical Foundations 2.2 Region Model 8

Gf

Gb

nj

cj

r

s = 2

0−1 1

dj

Gf

Gb

2 3
I

Figure 2.4: Close-up view of a projected correspondence line on a real image I as in [24].

renders a binary template image IT of the CAD model of the object O at the pose HO
T

using (2.3). Then, using classical edge detection algorithms, nc points along the object’s
silhouette contour are randomly sampled in IT , and their corresponding outward surface
normal vectors are estimated. In Figure 2.3, the contour line is highlighted in red, while
the contour points and normal vectors are drawn in blue and green, respectively. Finally,
the contour points and normal vectors are transformed back into the 3D object frame O
using

�
HO

T
�−1

and (2.5). These transformed contour points and normal vectors define
the sparse viewpoint model R at HO

T .

The sparse viewpoint model is then projected onto I using ΦK
�
HO

C (·)
�
, where K is the

calibration matrix of C. Figure 2.4 shows a magnified view of a projected correspondence
line. Each correspondence line is defined by a projected contour point cj and a projected
normal vector nj , j ∈ [1, . . . , nc]. The projected viewpoint model Ω is defined as the union
of all projected correspondence lines.

By grouping s ∈ N adjacent pixels on the correspondence line into pixel segments, a
coordinate r ∈ R is introduced. It measures the distance between the contour point’s
closest pixel and another point along the correspondence line, expressed in pixel segments.
Moving inward towards the object (the foreground Gf), r decreases towards −∞, whereas
it increases towards +∞ when moving into the background Gb. The signed contour distance
dj ∈ R represents the signed separation between cj and the actual boundary between
foreground and background in the image. In Figure 2.4, the scale parameter is set to
s = 2. The interested reader is referred to [24] for a more detailed explanation.

2.2.3 Probabilistic Model
In the presence of image noise or inaccuracies in the CAD model, the observed boundary
between Gf and Gb on the j-th correspondence line may shift to a distance r ̸= dj , indicating
a discrepancy between the template and real images. Given the contour distance dj and
the model G ∈ {Gf , Gb}, the probability of a point at a distance r from the contour point

2 Theoretical Foundations 2.2 Region Model 9

-6 -4 -2 2 4 6

1

r − dj

p(r | dj , Gf) p(r | dj , Gb)
Heaviside αh = 1

2 , sh = 1 αh = 1
3 , sh = 1

Figure 2.5: Different versions of the step functions p(r | dj , Gf) and p(r | dj , Gf) as shown
in [24].

belonging to G can be described by the cumulative distribution functions

p(r | dj , Gf) = σ(dj − r) , (2.12a)
p(r | dj , Gb) = σ(r − dj) , (2.12b)

with the Heaviside step function

σ(x) =
�

0 x ≤ 0
1 x > 0

. (2.13)

In [24], the authors proposed modelling these probabilities using smoothed step functions

p(r | dj , Gf) = 1
2 − αh tanh

�
r − dj

2sh

�
, (2.14a)

p(r | dj , Gb) = 1
2 + αh tanh

�
r − dj

2sh

�
, (2.14b)

where the amplitude parameter αh ∈ [0, 0.5] accounts for external effects such as noise,
while the slope parameter sh models local uncertainty. With αh = 1

2 and sh → 0, these
functions converge to the original step functions (2.14). Figure 2.5 demonstrates smoothed
step functions with various parameter configurations.

To extract the colour histograms for foreground Gf and background Gb along the projected
correspondence lines, a set-valued function lj(r) is introduced which returns the set of s
colours of pixels in the segment at distance r along the j-th correspondence line. Since the
colour likelihoods (2.11) do not accept a set of colours as arguments, they are adapted to

p(Gi | lj(r)) ∝
�

y∈lj(r) p(y | Gi)�
y∈lj(r) p(y | Gf) + �

y∈lj(r) p(y | Gb)
, i ∈ {f, b} . (2.15)

2 Theoretical Foundations 2.3 Feature Extraction with Deep Neural Networks 10

a(·)

b

w1

x2

xN

w2

wN

y

x1

N

x2

xN

x1

N12

N11

N1n1

NL2

NL1

NLK

y2

yK

y1ξ1

ξ2

ξn1

Layer 1

MLP

Layer L

Figure 2.6: Single Perceptron (N) and a Multilayer Perceptron (MLP). Trainable parame-
ters are coloured in violet.

They are combined with (2.14) to obtain the posterior density functions

p(dj | lj) =
�

r∈Lj

 �
i∈{f,b}

p(Gi | lj(r)) p(r | dj , Gi)

 , (2.16)

where Lj is the discrete set ensuring that every segment along the correspondence line
appears exactly once. This posterior describes the probability of observing the contour
distance dj given the colours extracted with lj along its correspondence line. The full
posterior, which models the probability of observing all contour distances d1, . . . , dnc given
the entire colour information D extracted along the correspondence lines with the set
valued functions lj , is given by

p(d1 ∧ · · · ∧ dnc | D) ∝
nc�

j=1
p(dj | lj)mjsh s2

, (2.17)

where mj is a constant associated with the j-th correspondence line. This posterior will
be used to track the object’s pose in Section 3.4.2. A detailed derivation of (2.17) can be
found in [27].

2.3 Feature Extraction with Deep Neural Networks
The human brain has an extraordinary ability to process and interpret diverse types of
information, adapting to changing environments, which classical machine vision cannot
do. Deep neural networks aim to replicate this behaviour. This section presents the
foundations of deep neural networks (DNNs), before discussing feature extractors based
on convolutional neural networks (CNNs) and Vision Transformers (ViTs).

2.3.1 Neuron to Deep Neural Networks
Neural networks aim to mimic the human brain by constructing interconnected computa-
tional units known as perceptrons or neurons (see Figure 2.6). The ultimate objective is

2 Theoretical Foundations 2.3 Feature Extraction with Deep Neural Networks 11

Image
Kernel

Activation Map

Figure 2.7: A convolutional layer of a 5 × 5 RGB image with a 3 × 3 kernel as shown in
[36]. The learnable parameters are coloured in violet.

to approximate arbitrary functions using these networks. A single neuron is a function
with a scalar output in the form of [36]

y = N(x, w) = a

�
wT


x
1

�
, x =

 x1
...

xN

 , w =


w1
...

wN

b

 . (2.18)

The weights w1, . . . , wN and the bias b are learnable parameters, while the activation
function a(·) introduces nonlinearity, enabling the neuron to model complex relationships.

A single neuron provides limited modelling capacity, but combining multiple neurons
enables the approximation of vector-valued functions. By feeding an input x into K
neurons, each with its own weight vector wj , j = 1, . . . , K, a layer is formed, producing
an output vector

y = a(Wx) , y =

 y1
...

yK

 , W =

wT
1
...

wT
K

 . (2.19)

Here, a(·) denotes the element-wise application of the activation function. Stacking
multiple layers forms a deep neural network and is commonly referred to as a Multilayer
Perceptron (MLP) (see Figure 2.6). The number of neurons in the final layer determines
the output dimensionality of the MLP.

Deeper networks can approximate more complex functions, but increasing depth comes at
the cost of higher computational demands during both training and inference, and can
lead to overfitting. For further details, see [36].

2.3.2 Convolutional Neural Networks
While fully connected neural networks, such as MLPs, are effective for many tasks, they
become computationally inefficient when dealing with high-dimensional inputs like images.

2 Theoretical Foundations 2.3 Feature Extraction with Deep Neural Networks 12

Convolutional Neural Networks (CNNs) address this issue by leveraging spatial hierarchies
and local connectivity patterns to efficiently extract relevant features from data.

A convolutional layer (see Figure 2.7) is the fundamental building block of a CNN. Instead
of connecting each neuron to all input features, it applies a two-dimensional convolution
operation, sliding a small matrix, known as a learnable filter or kernel W ∈ RC×M×N ,
over the input I ∈ RC×H×W . Here C represents the number of channels, W × H and
M × N are the dimensions of the input and kernel for each channel, respectively. The
outputs of the convolution are fed through a non-linear activation function and stored in
a two-dimensional feature map or an activation map. Applying multiple filters results in
a set of feature maps, each capturing different patterns such as edges, textures or complex
structures.

After convolutional layers, pooling layers further reduce the spatial dimensions while
retaining the most salient information. A common technique is max pooling, which takes
the maximum value in a local region. This operation enhances translational invariance
and reduces computational cost.

A typical CNN architecture consists of multiple convolutional and pooling layers followed
by fully connected layers, which aggregate extracted features for final classification or
regression. Given an input image, early convolutional layers detect low-level features (e.g.,
edges), while deeper layers capture high-level patterns (e.g., object parts).

CNNs have improved performance on tasks such as image classification, object detection,
and segmentation. Their hierarchical structure efficiently extracts spatial features while
reducing the number of trainable parameters compared to fully connected networks when
applied directly to images. For further details, see [36].

2.3.3 Vision Transformers
While CNNs efficiently capture local spatial patterns using convolutional filters, they
struggle with long-range dependencies and global context modeling. Vision Transformers
(ViTs) [16] address this limitation by applying the self-attention mechanism from natural
language processing (NLP) to image data [37]. Instead of using convolutional layers, ViTs
process an image as a sequence of non-overlapping patches, enabling them to model global
relationships between distant regions.

Figure 2.8 illustrates the workflow of a ViT. Given an input image I, it is divided
into N equal-sized patches Pi, i = 1, . . . , N . Each patch is flattened into a vector and
projected into an embedding space via a learnable linear transformation, producing token
vectors ei ∈ RM . These embeddings also include a positional encoding to retain spatial
information, as the self-attention mechanism does not encode positional relationships [37].

The token vectors are grouped in the embedding matrix

E =
�
e1 . . . eN

∈ RM×N . (2.20)

2 Theoretical Foundations 2.3 Feature Extraction with Deep Neural Networks 13

Linear and Positional Encoding

e1 e2 e3 e4

E =
�
e1 . . . e4

V =
�
v1 . . . v4

K =

�
k1 . . . k4

S =
�
s1 . . . s4

P1 P2

P3 P4

Ẽ =
�
ẽ1 . . . ẽ4

WV WQWK

Ē =
�
ē1 . . . ē4

ΣT =
�
σ1 . . . σ4

sm(·)

T

Attention Head

I

Q =
�
q1 . . . q4

Figure 2.8: An Attention Head in a ViT [16]. The learnable parameters are coloured in
violet.

2.3 Feature Extraction with Deep Neural Networks 14

The sequence of embeddings is then processed by a self-attention head, which learns how
different patches relate to each other. Each token ei is linearly transformed into a query
vector qi ∈ Rm and into a corresponding key vector ki ∈ Rm, m < M and i = 1, . . . , N ,
with

Q =
�
q1 . . . qN

= WQE ∈ Rm×N , (2.21a)

K =
�
k1 . . . kN

= WKE ∈ Rm×N , (2.21b)

where WQ, WK ∈ Rm×M are learnable matrices. The dot products Sij = kT
i qj provide a

measure of how much context Pi can give to Pj , of how much the key patch Pi “attends”
to the query patch Pj . The dot products are gathered in the similarity matrix

S = KTQ =
�
s1 . . . sN

∈ RN×N . (2.22)

Each similarity vector si is fed into the softmax function sm(·) to obtain the attention
weight matrix

Σ =
�
sm(s1) . . . sm(sN)

=

�
σ1 . . . σN

∈ RN×N . (2.23)

The entry Σij indicates the probability that the key patch Pi can give context to the
query patch Pj . To encode the context a patch Pi might give another patch, each token
ei is transformed into a value vector vi ∈ RM with

V =
�
v1 . . . vN

= WV E ∈ RN×N . (2.24)

The variation of the query embedding

ẽi = Vσi =
N�

j=1
vjΣji (2.25)

represents the change in context for the query patch Pi due to the key patch Pj , which is
added to the original embedding

ēi = ei + ẽi . (2.26)
The change for all embeddings is summarised in

Ē = E + VΣ , (2.27)

concluding the attention head.

In practice, multi-head self-attention is used, where multiple independent attention heads
capture different aspects of the input relationships. This improves the model’s ability to
learn complex dependencies. For more details, the reader is referred to [16, 36, 37].

Unlike CNNs, which focus on local feature extraction, ViTs can model global interactions
between distant image regions, making them highly effective for complex vision tasks.
However, their main drawbacks include a large number of parameters, requiring substantial
training data and a high computational cost during inference, due to the quadratic
complexity of self-attention.

3 High-Speed Pose Tracking

This chapter presents the architecture of the high-speed pose tracking pipeline, as illus-
trated in Figure 3.1. To ensure broad applicability and real-time performance, the pipeline
is implemented using Robot Operating System 2 Humble (ROS 2 Humble).

Camera

Object
Segmentation

Initial Pose
Estimation

Pose
Refinement

I0, K Iτ , K

HO
C,τ

HO
C,0M

us

CAD
Model

Figure 3.1: Pipeline architecture.

The pipeline assumes that a static object O with a known CAD model is within the
camera’s field of view. To initialize tracking, the user selects a point us ∈ UH,W on the
object in a frame I0 ∈ D3×H×W . This selection, combined with the initial image, is used
to generate a binary object mask M ∈ {0, 1}H×W .

The initial pose estimation module uses the mask, initial image, CAD model, and the
camera calibration matrix K to compute the object’s initial pose HO

C,0 relative to the
camera. From this point onward, an index τ ∈ N is introduced to denote the sequence of
incoming camera frames Iτ , allowing for object motion. The pipeline then iteratively refines
the estimated pose HO

C,τ . The following sections describe the key pipeline components in
detail.

3.1 RGB Camera and User Interface
The pipeline begins with an RGB camera with its coordinate frame C, which continuously
streams images I of resolution H × W alongside its intrinsic calibration matrix K. The
user can configure the image resolution and frame rate. A graphical user interface (GUI)
in RViz2 [38] displays the camera feed in real-time across three separate windows: the
first two show the raw camera feed, while the third presents the segmentation results.

The first GUI window (Figure 3.2a) serves as the user input interface, where the user

15

3 High-Speed Pose Tracking 3.2 Object Segmentation 16

(a) Click Input for Segmentation. (b) Segmentation Mask. (c) Estimated Bounding Box.

Figure 3.2: Windows of the pipeline GUI implemented in RViz2.

selects a pixel us to mark an object for segmentation. The frame visible at the moment of
selection serves as the initial image I0 for object segmentation and initial pose estimation.
Once available, the resulting segmentation mask is visualised in the second window
(Figure 3.2b).

Following initial pose estimation, the pipeline processes subsequent frames, indexed by
τ = 1, 2, . . . , where pose refinement begins. A bounding box representing each new pose
estimation is overlaid on the current video frame and displayed in the third window of the
user interface (Figure 3.2c).

3.2 Object Segmentation
Many pose estimation algorithms require an object segmentation mask as input, as they
do not independently locate objects. The object segmentation method must therefore
be adaptable and capable of generating accurate masks for a diverse range of objects.
Given an image I0 ∈ D3×H×W , an object segmentation mask M ∈ {0, 1}H×W is a binary
array where each pixel is classified as either belonging to the object of interest (1) or the
background (0). To achieve this level of adaptability and precision, the pipeline employs
Meta’s neural network, Segment Anything (SAM).

Image
Encoder

Ip
E

Mask Decoder

Prompt Encoder

us

M
t

Image
Preprocessing

I0

Figure 3.3: Overview of Segment Anything [32].

Figure 3.3 illustrates the workflow of SAM [32], which performs segmentation based on an
input image I0 and optionally provided segmentation prompts. These prompts can take
various forms, including foreground or background points, bounding boxes, or even textual
descriptions. In this pipeline, the prompt consists of the selected pixel us. Initially, SAM

3 High-Speed Pose Tracking 3.3 Initial Pose Estimation 17

resizes and pads the input image into Ip ∈ D3×D×D before employing a ViT-based encoder
with windowed attention to generate feature embeddings E ∈ RM×d×d (2.27). Here, M
denotes the dimensionality of the embeddings, while D and d represent the resolution
of the processed image and image embedding, respectively. A separate prompt encoder
processes the input prompts into a token vector t ∈ RM . By applying a combination of
self-attention, cross-attention layers, and multilayer perceptrons (MLPs), SAM predicts
multiple mask candidates and assigns a confidence score to each. The highest-scoring
mask M is selected. For further implementation details, the reader is referred to [32].

3.3 Initial Pose Estimation

ITk

nt

WT

HT

Itk

D

nt

D

Iq

D

D

Nearest
Neighbour

Search

It∗

Pose
Adjustment

M
W

H

IQ

HO
C

Crop
and

Resize

Figure 3.4: Model-based pose estimation with an RGB camera as done in [15].

A flexible pose tracking system requires a reliable method for initial pose estimation that
can handle various object types. For this purpose, the CAD model-based neural network
GigaPose [15] is chosen. This network generates a pose hypothesis when provided with the
camera’s intrinsic matrix K, the query image IQ = I0, the object’s binary segmentation
mask M, and the CAD model. Figure 3.4 illustrates the workflow of GigaPose, which is

3 High-Speed Pose Tracking 3.3 Initial Pose Estimation 18

summarised as follows.

3.3.1 Preprocessing
GigaPose first renders nt template images ITk

∈ D3×HT ×WT , k = 1, . . . , nt from the
object’s CAD model using predefined object poses HO

T ,k relative to a virtual camera T
with calibration matrix KT . The binary object mask M is applied to isolate the object
in the query image. The template and the masked query images are then cropped and
resized with the similarity transformations (2.7) MQ

q and MTk
tk

to obtain images of the
same dimensions Iq, Itk

∈ D3×D×D, in which the object is well framed.

3.3.2 Nearest Neighbour Search
A multi-head attention ViT-based network Fae estimates the DOFs for out-of-plane
rotation, being the azimuth and elevation angles (hence the subscript (·)ae) by identifying
the template It∗ depicting the object from the most similar view to the query image.
Therefore, Fae divides the cropped images Iq and Itk

each into N equally sized patches, to
which a binary value is assigned, indicating whether each patch contains pixels belonging
to the object. The ViT produces the output features (2.27)

Eq =
�
eq,1 · · · eq,N

∈ RM×N (3.1)

for the cropped query image and

Ek =
�
ek,1 · · · ek,N

∈ RM×N (3.2)

for each cropped template. In each query-template pair (Eq, Ek), feature matching between
the query image and the template is performed for each query feature eq,i by maximizing
the cosine similarity

β(eq,i, ek,j) = (eq,i)Tek,j

∥eq,i∥2∥ek,j∥2
, (3.3)

which is the cosine value of the angle between the vectors eq,i and ek,j . The template IT∗
that achieves the highest average cosine similarity for the matching features is defined as
the query’s nearest neighbour. Figure 3.5 illustrates the relationship between the query
image and its nearest neighbour. The main difference in the view between IT∗ and Iq lies
in the scale and the in-plane rotation. Therefore, RO

T ∗ of the nearest neighbour pose is a
good initial estimation for the rotation of the real pose HO

C , as it typically approximates
the 2 DOFs of the out-of-plane rotation. To achieve good results, Fae is trained to be
invariant to in-plane rotation, scale and translation.

3.3.3 Pose Adjustment
Figure 3.5 also shows the relationships between the different poses and images of the
object. At this stage, the nearest neighbour pose HO

T ∗ and the similarity transforms MT∗
t∗

3 High-Speed Pose Tracking 3.3 Initial Pose Estimation 19

It∗

D

D

ΦKT (·) MT∗
t∗

IT∗

WT

HT

Iq

D

D

MQ
q

IQ

W

H

T

HO
T ∗

O

ΦK(·)

HO
C

O

C

Mt∗
qMT∗

Q

Figure 3.5: The relationship between the transformations.

and MQ
q are known. It becomes apparent that finding an estimate for the similarity

transformation Mt∗
q between the nearest neighbour and the cropped query image, which

contains the remaining 4 DOFs, allows the computation of a pose estimate HO
C . These

DoFs, being the in-plane rotation angle, the scale, and the two translation parameters
(resulting in the subscript (·)ist), are estimated by a CNN-based network Fist, which is
trained to be invariant to out-of-plane rotation.

With

MT∗
Q =

�
MQ

q

�−1
Mt∗

q MT∗
t∗ =

s∗ cos(α∗) −s∗ sin(α∗) x∗
s∗ sin(α∗) s∗ cos(α∗) y∗

0 0 1

 (3.4)

being the full similarity transformation (2.7) between the original template IT∗ and query
image IQ, the estimation for the object-to-camera rotation is obtained by rotating around
the camera’s z-axis with

RO
C = Rz(α∗)RO

T ∗ , (3.5)

where Rz(α∗) denotes the rotation by angle α∗ around the z-axis. The frame of the
nearest neighbour is (approximately) aligned with the real pose with xtemp = Rz(α∗)xO

T ∗.
The depth estimate is obtained with

zO
C = ztemp

s∗
fx

fx,T
. (3.6)

Here, ztemp denotes the z-component of xtemp, while fx and fx,T are the focal lengths of
C and T , respectively. The centre of the reoriented frame is projected onto the template

3 High-Speed Pose Tracking 3.4 Pose Refinement 20

image plane and transformed onto the query image using the estimated similarity transform
with 

uc,Q

1

�
= MT∗

Q ΦKT (xtemp) . (3.7)

Finally, the 3D translation is computed with the inverse projection of C

xO
C = Φ−1

K

�
uc,Q, zO

C
�

(3.8)

completing the pose estimate HO
C with (3.5), which serves as the initial pose estimation

HO
C,0, as depicted in Figure 3.1. A more detailed explanation is given in [15].

3.4 Pose Refinement
After obtaining the initial pose estimation HO

C,0, the object can now move relative to the
camera. The algorithm tracking the pose of the moving object in each subsequent image
frame Iτ for τ = 1, 2, . . . must not only be accurate but also time efficient to keep up
with camera frame rate and the object’s speed.

O

H̃(θ)

O

C

ρ ω
θt

θr = ωρ

HO
C,τ−1

HO
C,τ

Figure 3.6: Pose Variation θ =
�
θT

t θT
r

T
between two consecutive frames Iτ−1 and Iτ

as defined in [24].

To achieve this, the tracker proposed in [24] was selected. It estimates the translation
θt ∈ R3 and the rotation θr = ωρ of the object between consecutive frames Iτ−1 and
Iτ . Here, ω ∈ R is the rotation angle, and ρ ∈ R3 is the normalized rotation axis. The

3 High-Speed Pose Tracking 3.4 Pose Refinement 21

pose variation vector is defined as θ =
�
θT

t θT
r

T
, which allows the computation of the

object’s pose transformation between consecutive frames as

H̃(θ) =

exp(S(θr)) θt

0 1

�
, (3.9)

where S(x) is the skew-symmetric matrix of a vector x, defined as

S(x) =

 0 −x3 x2
x3 0 −x1

−x2 x1 0

 , x =

x1
x2
x3

 . (3.10)

The current pose estimate is then updated with

HO
C,τ (θ) = HO

C,τ−1H̃(θ) , τ ∈ N\{0} . (3.11)

This is illustrated in Figure 3.6, with the silhouette of the object from the previous frame
and the current frame overlaid onto the image plane.

The following sections describe the steps involved in estimating the current pose HO
C,τ ,

given the previous and current frames Iτ−1 and Iτ , the pose estimate HO
C,τ−1 in Iτ−1,

and the camera intrinsics K.

3.4.1 Nearest Neighbour Search and Colour Histogram
Similar to Section 3.3.2, a nearest neighbour search is involved. The algorithm presented
in [24] computes nv ∈ N sparse viewpoint models Rk for different template poses HO

T ,k

before the tracking process starts, where k = 1, . . . , nv. With the estimation HO
C,τ−1 of

the previous refinement step, the sparse viewpoint model R of the template pose HO
T

with the most similar orientation to RO
C,τ−1 is selected and projected onto Iτ−1 with

ΦK
�
HO

C,τ−1(·)
�
. The resulting projected viewpoint model Ω is illustrated in Figure 2.4.

Colour histograms for Gf and Gb are extracted along all projected correspondence lines.
Each colour channel is divided into nh ∈ N equidistant bins. The extraction region γf of
Figure 2.2 corresponds to a set of pixel segments along all correspondence lines lying on Gf .
This set of pixel segments is defined by local coordinates r ∈ [−np, . . . , −1] with np ∈ N.
Similarly, the extraction region γb is defined by all pixel segments on correspondence lines
with r ∈ [1, . . . , np]. With this, the colour probability (2.10) is computed and used to
update a learned colour probability [27]

pτ (y | Gi) = βip(y | Gi) + (1 − βi)pτ−1(y | Gi) , y ∈ D3 , i ∈ {f, b} , (3.12)

where βi ∈ [0, 1] are learning rates for foreground and background, and pτ−1(y | Gi) is the
probability distribution used in the previous frame.

3.4 Pose Refinement 22

d̂
1,

l

d̂ 2,
l

d̂3,l

Gf

H̃(θ)

H̃
�
θ̂l

�

ĉ1,l

ĉ2,l

ĉ3,l

c1

n1

n2

c2

c3
n3

Iτ

Figure 3.7: The variated contour distances on the current frame Iτ , as in[24]. The
silhouette of the object in the previous frame is overlaid onto Iτ .

3.4.2 Optimizing for the Pose Variation
Upon receiving the current frame Iτ , where the object has moved relative to the last frame
Iτ−1, the nearest neighbour viewpoint model R from Iτ−1 is projected onto Iτ . This
projection, along with its contour points cj and normal vectors nj , is then projected onto
Iτ . The objective of [24] is to estimate the true pose variation θ that best explains the
colour distribution observed in the current frame. This process is illustrated in Figure 3.7.

The estimated variation θ̂ is computed iteratively by solving an optimisation problem. In
the l-th iteration, with l = 0, 1, 2, . . . , the contour points of R are projected onto Iτ using
ΦK

�
Ĥl(·)

�
. Here, Ĥl is the object-to-camera pose due to the pose variation θ̂l computed

with (3.11). This projection results in variated contour points ĉj,l = ĉj

�
θ̂l

�
. The distances

d̂j,l = d̂j

�
θ̂l

�
between cj and ĉj,l along the correspondence lines are combined with the

updated histogram (3.12) and (2.17) to compute the log-posterior

f
�
θ̂l

�
= ln

�
p
�
d̂1

�
θ̂l

�
∧ · · · ∧ d̂nc

�
θ̂l

�
| D

�
(3.13)

which is to be maximized. The optimisation iteration is performed using the Newton
Method

θ̂l+1 = θ̂l +
�

−∇2f
�
θ̂l

�
+


λrI3 0

0 λtI3

�−1

∇f
�
θ̂l

�
, θ̂0 = 0 . (3.14)

Here, λr and λt are Tikhonov regularization parameters, ∇f(θl) is the gradient and
∇2f(θl) is the Hessian matrix evaluated at θl. Full implementation details are available
in [27].

4 Setup and Experiments

In this chapter, the accuracy of the pose-tracking pipeline is tested by comparing its
pose output to the pose measurement of the motion capture system Optitrack using two
different objects in different setups. Finally, the tracker is used to grasp an object with a
gripper mounted on a 7-DoF robotic arm.

4.1 Setup
Each block from the pipeline in Figure 3.1 is implemented as a node in ROS2 Humble on
a computer with Ubuntu 24.04.2 and equipped with 128 GB of RAM, 32 Intel® Core™ i9
CPUs, and an NVIDIA GeForce RTX 4080 GPU. An RViz2 interface displays the current
camera frame and lets the user select the object of interest by clicking on it, initiating the
tracking process that starts with the object segmentation. After the tracking is started,
the interface also depicts the estimated bounding box overlaid on the original camera
image. The images, mask and estimated object-to-camera poses are published and saved
in rosbags throughout the measurements.

For accuracy measurements, the pipeline’s estimated pose is compared to the measurement
provided by the motion capture system Optitrack that serves as ground truth. Six cameras
are used to obtain measurements with submillimeter accuracy. Since Optitrack requires a
Windows architecture, the computer used for Optitrack and the Ubuntu PC are connected
via Ethernet. The motion capture measurements are published to the ROS2 domain with
a specialized node1.

The lightweight 7-DoF KUKA LBR iiwa robotic arm is equipped with a Robotiq 2-Finger
Gripper and is used for experimental validation of the pose tracker by tracking and
grasping an object with visual feedback provided by the pose-tracking-pipeline.

All experiments process the colour images from an Intel RealSense D435i camera with a
fixed focal length.

4.2 Pose Tracking Accuracy
Figure 4.1 shows the setup for measuring the accuracy of the pipeline. The Intel RealSense
D435i streams the colour images while tracking one of the two objects from this image.
The object on the left is the Scrub Cleanser Bottle from the YCB Object Dataset [39],

1MOCAP4ROS2-Project https://github.com/MOCAP4ROS2-Project

23

https://github.com/MOCAP4ROS2-Project

4 Setup and Experiments 4.2 Pose Tracking Accuracy 24

Figure 4.1: The two objects and the camera used in the accuracy experiments. The x,
y and z axes of the intrinsic body-frames are drawn in red, green and blue,
respectively.

while the object to the right is a 3D-printed miniature model of an interlocking concrete
security block. These objects were chosen to compare the tracker’s performance on objects
with differing levels of symmetry and texture. The tracking pipeline provides the estimated
pose ĤO

C (t) at time t.

Markers reflecting the infrared light emitted by the cameras of the motion capture system
Optitrack are mounted on those objects. The position of the markers is then used to
associate the objects and the camera to their respective Optitrack body frames Ob and Cb.
Optitrack measures the poses HOb

W (t) and HCb
W(t) of these frames relative to a static world

reference frame W.

These frames differ from the object’s intrinsic frames O and C. They are related by

HO
W(t) = HOb

W (t)HO
Ob

, (4.1a)
HC

W(t) = HCb
W(t)HC

Cb
, (4.1b)

where HC
Cb

and HO
Ob

are constant but unknown homogeneous matrices. Figure 4.2 illustrates
the relationships between the different poses. The ground truth is then given by

HO
C (t) =

�
HC

W(t)
�−1

HO
W(t) (4.2)

The accuracy is measured via the translational and angular errors

et(t) = xO
C (t) − x̂O

C (t) ∈ R3 (4.3a)
er(t) = Δω(t)ρ(t) ∈ R3 (4.3b)

of the pose estimation relative to the ground truth. Here, Δω(t) ∈ R is the error angle
and ρ(t) ∈ R3 denotes the normalized error rotation axis.

The following sections explain how the matrices HC
Cb

and HO
Ob

are determined and present
the experimental results.

4 Setup and Experiments 4.2 Pose Tracking Accuracy 25

W

ĤO
C (t)

HO
Ob

HOb
W (t)

Cb

C

Camera

Ob

O

Object

HC
Cb

HCb
W(t)

Figure 4.2: Transformations between the frames of Optitrack, object and camera models.

4.2.1 Calibrating the Pose Measurement

Given the setup shown in Figure 4.2, the matrices HC
Cb

�
pC

Cb

�
and HO

Ob

�
pO

Ob

�
are estimated

indirectly by optimizing the pose parameters

pC
Cb

=

θC

Cb

xC
Cb

�
and pO

Ob
=


θO

Ob

xO
Ob

�
. (4.4)

Here, θA
Ab

∈ R3, A ∈ {C, O}, represents the Roll-Pitch-Yaw angles of the rotation matrix
RA

Ab

�
θA

Ab

�
[33]. The homogeneous transformation

H̄
�
pC

Cb
, pO

Ob

�
=

�
HCb

WHC
Cb

�
pC

Cb

�
ĤO

C
�−1

HOb
W HO

Ob

�
pO

Ob

�
(4.5)

forms a closed kinematic chain, enabling the determination of the optimal pose vectors
solving [40] 

pC
Cb

pO
Ob

�
= arg min

pC
Cb

,pO
Ob

∈R6

N�
k=1

�
∥x̄k∥2 + w

���I − R̄k

���
F

�2
, (4.6)

where N measurements H̄k, k = 1, . . . , N , are used. The terms ∥·∥2 and ∥·∥F denote the
Euclidean and Frobenius norms, respectively.

To improve precision, the camera matrix HC
Cb

is first estimated independently of the object
transformations using a standard pose estimation technique with ArUco markers [41]. In
this step, a CharUco board replaces the object in Figure 4.2, with its reference frame
manually aligned to the motion capture frame. The camera is then slowly moved around
the board while estimating its pose ĤO

C,k in each frame (k = 1, . . . , N) using OpenCV’s
pose estimation algorithm. These measurements are used to optimize the pose parameters
pC

Cb
for the camera and pO

Ob
for the CharUco board.

4 Setup and Experiments 4.2 Pose Tracking Accuracy 26

(a) 1.27 m (b) 1.37 m

(c) 0.47 m (d) 0.43 m

Figure 4.3: The block and the cleanser bottle placed at different distances from the
camera for static pose estimation. The estimated bounding boxes and axes
are projected onto the images.

For the actual objects of interest, the transformations HO
Ob

are computed by collecting
training measurements ĤO

C,k using the implemented tracking pipeline. The camera is again
moved around the object after which (4.6) is solved, this time optimizing only for pO

Ob

while keeping pC
Cb

fixed to result of the camera optimization process.

4.2.2 Static Pose Tracking
Influence of Object-to-Camera Distance

Figure 4.3 illustrates the experimental setup, where objects are positioned at varying
distances from the camera, which operates at a resolution of 720 × 1280. The estimated
object poses are visualized by projecting their bounding boxes onto the images.

As shown in Table 4.1, the translation errors increase as the object moves farther from
the camera, which aligns with expectations. The detailed measurement graphs Figure 4.4
and Figure 4.5 show that the pose tracker refines the initial pose estimate and converges
after a few frames. The initial estimation error is random and independent of the object.

Interestingly, while the pose tracker improves positional accuracy for the cleanser bottle,
the absolute position errors in depth estimation for the block increase after the initial pose

4 Setup and Experiments 4.2 Pose Tracking Accuracy 27

Table 4.1: Positional accuracies of static pose tracking for different object to camera
distances.

Near Far
x y z x y z

Block
Ground Truth Position [cm] 4.46 11.10 45.18 16.84 −2.25 126.15

Mean Error [cm] 0.32 0.31 0.72 0.57 0.65 5.12
Standard Deviation [cm] 0.01 0.02 0.06 0.13 0.04 0.74
Relative Depth Error [%] 0.69 0.68 1.53 0.45 0.51 4.02

Bottle
Ground Truth Position [cm] 1.62 1.37 42.91 8.27 −6.60 136.87

Mean Error [cm] 0.19 0.52 0.32 0.17 0.03 3.85
Standard Deviation [cm] 0.01 0.05 0.29 0.06 0.05 1.01
Relative Depth Error [%] 0.44 1.21 0.74 0.13 0.02 2.77

0 2 4 60
0.2
0.4
0.6
0.8

|e t
|i

n
cm

Distance 0.47 m

x y z

0 2 4 60

2

4

6

Distance 1.27 m

0 2 4 6
0

45
90

135
180

t in s

Δ
ω

in
◦

0 2 4 6
0

45
90

135
180

t in s

Figure 4.4: Static measurements with the block at different distances to the camera.

4 Setup and Experiments 4.2 Pose Tracking Accuracy 28

0 2 4 60

1

2

3
|e t

|i
n

cm

Distance 0.43 m

x y z

0 2 4 60

5

10

Distance 1.37 m

0 2 4 6
0

45
90

135
180

t in s

Δ
ω

in
◦

0 2 4 6
0

45
90

135
180

t in s

Figure 4.5: Static measurements with the cleanser bottle at different distances to the
camera.

estimation. This effect is particularly pronounced when the block is positioned farther
away. The likely cause is the object’s small size in the image and the reduced contrast
between foreground and background at greater distances, which diminish the effectiveness
of the pose tracker.

Rotating the block by 180◦ around its x- or y-axis, or by n · 90◦, n ∈ N, around its z-axis
may lead to similar initial pose estimates. This explains the observed rotational error of
nearly 180◦ around the estimated z-axis at a distance of 1.37 m (Figure 4.4). By rotating
the estimated frame in Figure 4.3a adequately, the correct orientation can be restored.
In contrast, the cleanser bottle, due to its asymmetry, yields a more stable and accurate
orientation across different distances. Overall, static pose tracking performs more reliably
for asymmetric objects.

Influence of the Camera’s Resolution

When reducing the camera resolution to 480 × 640, one could expect the update rate to
increase. However, the architecture of the neural networks in the initial pose estimator
remains unchanged, while the computation of the region-based model and the optimization
steps are resolution-independent so that the overall pipeline speed remains unaffected.

For static measurements, the cube was placed at distances of 0.42 m and 1.27 m at 480×640
(480p) (Figure 4.6) and the results were compared to those at 720 × 1280 (720p). As

4 Setup and Experiments 4.2 Pose Tracking Accuracy 29

(a) 0.42 m (b) 1.27 m

Figure 4.6: Static pose estimation of the block with a camera resolution of 480 × 640 at
different distances. The estimated bounding boxes and axes are projected onto
the images.

Table 4.2: Positional accuracies of static pose tracking for the block for different camera
resolutions.

Near Far
x y z x y z

720p
Ground Truth Position [cm] 4.46 11.10 45.18 16.84 −2.25 126.15

Mean Error [cm] 0.32 0.31 0.72 0.57 0.65 5.12
Standard Deviation [cm] 0.01 0.02 0.06 0.13 0.04 0.74
Relative Depth Error [%] 0.69 0.68 1.53 0.45 0.51 4.02

480p
Ground Truth Position [cm] 2.81 12.0 39.77 3.68 1.91 126.94

Mean Error [cm] 0.44 0.35 0.44 0.47 0.01 2.19
Standard Deviation [cm] 0.05 0.08 0.31 0.06 0.05 0.85
Relative Depth Error [%] 1.06 0.85 1.05 0.37 0.08 1.72

shown in Table 4.2, translational errors for the closer measurements are comparable across
both resolutions. However, at a greater distance, translation estimates at 480p were
more accurate than at 720p. This unexpected improvement may be because at lower
resolutions, colour variations occur over fewer pixels along the correspondence line. As a
result, the difference between foreground and background colour histograms becomes more
pronounced under suboptimal lighting conditions. Finally, as in previous experiments, the
block’s symmetry causes orientation errors of 180° around an axis (Figure 4.7).

4.2.3 Dynamic Measurements
The tracking accuracy of the pipeline is evaluated through dynamic eye-in-hand tracking
of two objects at resolutions of 480p and 720p. Figure 4.8 presents four frames from each

4 Setup and Experiments 4.2 Pose Tracking Accuracy 30

0 2 4 60

1

2

3
|e t

|i
n

cm

Distance 0.4 m

x y z

0 2 4 60
1
2
3
4

Distance 1.27 m

0 2 4 6
0

45
90

135
180

t in s

Δ
ω

in
◦

0 2 4 6
0

45
90

135
180

t in s

Figure 4.7: Static tracking error of the block with a resolution of 480p at different distances.

measurement in chronological order, while Figures 4.9 and 4.10 plot the measurement
results for the block and the cleanser bottle, respectively. The positional error statistics
are summarized in Table 4.3.

When tracking the block, the estimated orientation flips once during tracking, for both
resolutions. At 480p, this occurs between the frames shown in Figures 4.8c and 4.8d,
whereas at 720p, the flip happens between Figures 4.8g and 4.8h. These abrupt orientation
changes are evident in the graphs depicting the error rotation axis components. This
confirms that tracking the orientation of symmetrical objects remains unstable without
additional adjustments. In terms of translational accuracy, the results indicate that higher
resolution leads to lower average translation errors across all components.

When tracking the cleanser bottle, tracking failures occur in both measurements when
the background colours closely resemble the object’s colours (Figures 4.8k and 4.8o).
However, at 480p, the object pose is permanently lost at this point (Figure 4.8l), leading
to complete tracker failure. In contrast, at 720p, successfully reestablishes the pose.
These resolution-dependent difficulties are observed at multiple instances, with tracking
proving to be more stable at higher resolutions. The higher mean translation errors for the
measurement with 720p are due to the instances where the pose is lost but reestablished
afterwards.

4 Setup and Experiments 4.2 Pose Tracking Accuracy 31

(a) 480p. (b) (c) (d)

(e) 720p. (f) (g) (h)

(i) 480p. (j) (k) (l)

(m) 720p (n) (o) (p)

Figure 4.8: Dynamic eye-in-hand pose tracking of the objects at different resolutions.

Table 4.3: Positional accuracies of dynamic pose tracking for different resolutions.
480p 720p

x y z x y z

Block
Mean Error [cm] 0.57 1.40 1.09 0.22 0.11 0.32

Standard Deviation [cm] 0.66 2.52 1.93 0.15 0.09 0.31

Bottle
Mean Error [cm] 0.40 0.62 0.49 0.48 0.27 0.82

Standard Deviation [cm] 0.41 0.83 0.49 0.33 0.16 1.30

4 Setup and Experiments 4.2 Pose Tracking Accuracy 32

0 10 20 30 40 50

0

0.2

0.4

0.6
D

ist
an

ce
in

m
480p

x y z

0 10 20 30 40
−0.2

0
0.2
0.4
0.6

720p

0 10 20 30 40 500

1

2

3

|e t
|i

n
cm

0 10 20 30 400

1

2

3

0 10 20 30 40 50
0

45
90

135
180

Δ
ω

in
◦

0 10 20 30 40
0

45
90

135
180

0 10 20 30 40 50
−1

0

1

t in s

C
om

po
ne

nt
s

of
ρ

0 10 20 30 40
−1

0

1

t in s

Figure 4.9: Measurements of dynamic eye-in-hand tracking of the block at different camera
resolutions. The components of the ground truth translation are plotted with
dotted lines.

4 Setup and Experiments 4.2 Pose Tracking Accuracy 33

0 5 10 15 20

0
0.2
0.4
0.6

D
ist

an
ce

in
m

480p

x y z

0 10 20 30 40 50
−0.2

0
0.2
0.4
0.6

720p

0 5 10 15 200

5

10

|e t
|i

n
cm

0 10 20 30 40 500

5

10

0 5 10 15 20
0

45
90

135
180

t in s

Δ
ω

in
◦

0 10 20 30 40 50
0

45
90

135
180

t in s

Figure 4.10: Measurements of dynamic eye-in-hand tracking of the cleanser bottle at
different camera resolutions. The components of the ground truth translation
are plotted with dotted lines.

4 Setup and Experiments 4.2 Pose Tracking Accuracy 34

(a) Initial Pose. (b) Another block disrupts the
tracking.

(c) Stacking blocks with different
colours.

(d) Partial occlusion with block
of same colour.

(e) Before stacking blocks with
same colour.

(f) Tracking lost after stacking.

Figure 4.11: Tracking a block in an environment cluttered with similar objects.

4.2.4 Multiple Blocks
Figure 4.11 presents frames captured at a resolution of 480p during the eye-to-hand
pose tracking of a block in an environment cluttered with identical blocks of different
colours. The corresponding measurement results are plotted in Figure 4.12. Despite
partial occlusion by a differently coloured block, the initial pose estimation (Figure 4.11a)
remains accurate. The tracker performs reliably until the tracked block becomes excessively
occluded by another object (Figure 4.11b).

The tracker successfully re-establishes the pose and continues tracking when the block is
stacked on a differently coloured cube (Figure 4.11c) and even when partially occluded
by a block of the same colour (Figure 4.11d). However, tracking fails when the block is
stacked onto another block of the same colour (Figure 4.11f). As observed in previous
experiments, the symmetry of the object results in an abrupt orientation flip, which is
evident in the graphs depicting the rotational error.

4.2.5 Inference Times
For all measurements presented in this chapter, the average inference time of the initial
pose estimation is 1.04 s. As previously discussed, this relatively high latency is primarily
attributed to the use of computationally intensive ViTs and CNNs, which require execution
on a GPU.

4 Setup and Experiments 4.3 Grasping an Object with a Robotic Gripper 35

0 10 20 30 40

0

0.5

1

D
ist

an
ce

in
m

x y z

0 10 20 30 40
0

45
90

135
180

Δ
ω

in
◦

0 10 20 30 40
0

10

20

t in s

|e t
|i

n
cm

0 10 20 30 40
−1

0

1

t in s
C

om
po

ne
nt

s
of

ρ

Figure 4.12: Dynamic eye-to-hand measurement results of the block in an environment
cluttered with similar objects.

In contrast, the subsequent pose refinement performed by the tracker achieves a significantly
lower average inference time of 20.4 ms, corresponding to a potential update rate of 49.01 Hz.
Since the refinement step is based on classical computer vision techniques, it is executed
efficiently on the CPU while maintaining a high update frequency.

4.3 Grasping an Object with a Robotic Gripper
In this experiment, the tracker is used to follow and grasp a block using the Robotiq
2-Finger Gripper 85, which is mounted on a 7-DoF KUKA LBR iiwa robotic arm.
Figure 4.13 illustrates the experimental setup, showing the various reference frames and
the transformations between them. The robotic gripper serves as the end-effector E , while
the robot is equipped with a fixed base frame R.

The robot measures its joint angles, represented as the configuration vector q(t) ∈ R7, at
a sampling rate of 8 kHz, where t denotes the time. The pose HC

W(t) of the camera C is
tracked by a motion capture system relative to a fixed world frame W . The transformation
HR

W between the robot base frame and the world frame remains constant and known. The
tracking pipeline estimates the object’s pose relative to the camera, denoted as HO

C (t),
which is then transformed into the robot’s reference frame using

HO
R(t) =

�
HR

W
�−1

HC
W(t)HO

C (t) (4.7)

The desired transformation HO
E (t) between the object and the end effector is typically

4.3 Grasping an Object with a Robotic Gripper 36

W
R

E

O

C

HR
W

HE
R(t)

HO
E (t)

HO
C (t)

HC
W(t)

Figure 4.13: Setup for the grasping experiment.

constant and known when following the object, ensuring that the gripper hovers slightly
above the object. When the user prompts the robot to grasp the object, the gripper lowers
by reducing the z-component of the translation vector in HO

E (t), and grasps it. This is
modeled with

xO
E (t) =

��
�
0 0 d

T
, 0 < t < tg�

0 0 d − Δd

T

, t ≥ tg

. (4.8)

Here, tg > 0 is the time at which the user prompts the robot to completely approach the
object and close the gripper, and 0 < Δd < d.

The block’s frame O is defined as in Figure 4.1. The objective is to align the gripper’s
y-axis with the ±z-axis of the block. To prevent tracking errors due to orientation flipping,
an algorithm dynamically adjusts RO

E (t).

The desired end effector pose relative to the robot frame to grasp the object at time t is
computed with

HE
R,d(t) = HO

R(t)
�
HO

E (t)(t)
�−1

(4.9)

and continuously fed into the task-space path-following controller described in [42].

Figure 4.14 illustrates the robot successfully tracking the object, adjusting its position
and orientation in real-time, and finally grasping it when prompted by the user.

4.3 Grasping an Object with a Robotic Gripper 37

(a) Initial Configuration. (b) Robot follows the block. (c) Robot follows the block.

(d) Robot stops above the block. (e) Lowering the gripper. (f) Grasping the block.

Figure 4.14: Tracking and grasping a block with a robotic gripper.

5 Conclusion and Outlook

This thesis presented a model-based pipeline capable of tracking the pose of various objects
with an update rate of up to 50 Hz using only an RGB camera. The pipeline’s flexibility
in selecting the object of interest is achieved by integrating the deep-learning-based
methods Segment Anything [32] for object segmentation and GigaPose [15] for initial pose
estimation. The high update rate is primarily attributed to the region-based tracking
approach introduced in [24], which efficiently exploits classical computer vision techniques
to differentiate between foreground and background to consecutively perform probabilistic
pose refinement steps.

The pipeline demonstrates robust performance for asymmetric objects and stable trans-
lational estimates for symmetrical objects across various scenarios, including dynamic
eye-in-hand pose tracking and eye-to-hand tracking in cluttered environments. Addi-
tionally, the pipeline has been successfully applied to a robotic grasping experiment,
underscoring its potential for future applications in robotic manipulation.

Despite these strengths, the tracker exhibits limitations in reliably estimating the ori-
entation of symmetrical objects, as reflected in the experimental results. Furthermore,
the pipeline struggles in environments where the object’s colour closely matches the
background, a common challenge in region-based tracking methods. Another notable
limitation is its inability to handle highly textured objects, which limits its applicability
to more complex scenarios.

To address the latter issue, the integration of a texture modality could improve the
robustness of the pipeline. In [27], the authors proposed combining their sparse region
model with a modality based on keypoint descriptors, which could enhance the pipeline’s
performance in texture-rich environments. However, attempts to integrate this modality
into the real-time pipeline were hindered by implementation flaws in the code provided by
the authors, despite its promising results in the original framework.

Further improvements could be achieved by incorporating depth information, which would
reduce the reliance on color contrasts between foreground and background. While this
would require an additional sensor and likely increase computational complexity, depth
information could improve the accuracy of pose estimation, especially in challenging
lighting conditions or cluttered environments. Another promising direction is to enhance
the refinement algorithm with a lightweight neural network, combining the efficiency of
classical methods with the adaptability of deep learning-based approaches. To avoid
abrupt changes in the estimated pose, additional constraints during the optimization
process could improve the tracker’s stability.

38

5 Conclusion and Outlook 39

Future work could also focus on extending the pipeline to support multi-object tracking,
enabling simultaneous pose estimation of multiple objects within the scene. Additionally,
implementing a robust recovery mechanism to automatically reinitialize the tracker when
the pose is lost would further enhance its reliability in real-world applications.

Bibliography

[1] D. Tish, N. King, and N. Cote, “Highly accessible platform technologies for vision-
guided, closed-loop robotic assembly of unitized enclosure systems,” Construction
Robotics, vol. 4, no. 1–2, pp. 19–29, May 2020. doi: 10.1007/s41693-020-00030-z.

[2] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping from object
localization, object pose estimation to grasp estimation for parallel grippers: A
review,” Artificial Intelligence Review, vol. 54, no. 3, pp. 1677–1734, Aug. 2020. doi:
10.1007/s10462-020-09888-5.

[3] D. Morrison, J. Leitner, and P. Corke, “Closing the loop for robotic grasping: A
real-time, generative grasp synthesis approach,” in Robotics: Science and Systems
XIV, ser. RSS2018, Robotics: Science and Systems Foundation, Jun. 2018. doi:
10.15607/rss.2018.xiv.021.

[4] D. Morrison, P. Corke, and J. Leitner, “Learning robust, real-time, reactive robotic
grasping,” The International Journal of Robotics Research, vol. 39, no. 2–3, pp. 183–
201, Jun. 2019. doi: 10.1177/0278364919859066.

[5] A. Trabelsi, M. Chaabane, N. Blanchard, and R. Beveridge, “A pose proposal and
refinement network for better 6d object pose estimation,” in 2021 IEEE Winter
Conference on Applications of Computer Vision (WACV), IEEE, Jan. 2021. doi:
10.1109/wacv48630.2021.00243.

[6] Y. Xu, K.-Y. Lin, G. Zhang, X. Wang, and H. Li, “Rnnpose: 6-dof object pose
estimation via recurrent correspondence field estimation and pose optimization,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 7,
pp. 4669–4683, Jul. 2024. doi: 10.1109/tpami.2024.3360181.

[7] T. Hodaň et al., “Bop: Benchmark for 6d object pose estimation,” in Computer
Vision – ECCV 2018. Springer International Publishing, 2018, pp. 19–35. doi:
10.1007/978-3-030-01249-6_2.

[8] T. Hodaň et al., “Bop challenge 2020 on 6d object localization,” in Computer Vision
– ECCV 2020 Workshops. Springer International Publishing, 2020, pp. 577–594. doi:
10.1007/978-3-030-66096-3_39.

[9] M. Sundermeyer et al., “Bop challenge 2022 on detection, segmentation and pose
estimation of specific rigid objects,” in 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), IEEE, Jun. 2023, pp. 2785–
2794. doi: 10.1109/cvprw59228.2023.00279.

40

https://doi.org/10.1007/s41693-020-00030-z
https://doi.org/10.1007/s10462-020-09888-5
https://doi.org/10.15607/rss.2018.xiv.021
https://doi.org/10.1177/0278364919859066
https://doi.org/10.1109/wacv48630.2021.00243
https://doi.org/10.1109/tpami.2024.3360181
https://doi.org/10.1007/978-3-030-01249-6_2
https://doi.org/10.1007/978-3-030-66096-3_39
https://doi.org/10.1109/cvprw59228.2023.00279

Bibliography 41

[10] T. Hodan et al., “Bop challenge 2023 on detection, segmentation and pose estimation
of seen and unseen rigid objects,” in 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), IEEE, Jun. 2024, pp. 5610–
5619. doi: 10.1109/cvprw63382.2024.00570.

[11] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally: Efficient
and robust 3d object recognition,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, IEEE, Jun. 2010, pp. 998–1005. doi:
10.1109/cvpr.2010.5540108.

[12] G. Wang, F. Manhardt, F. Tombari, and X. Ji, “Gdr-net: Geometry-guided direct
regression network for monocular 6d object pose estimation,” in 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2021,
pp. 16 606–16 616. doi: 10.1109/cvpr46437.2021.01634.

[13] Y. Hai, R. Song, J. Li, M. Salzmann, and Y. Hu, “Rigidity-aware detection for
6d object pose estimation,” in 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), IEEE, Jun. 2023, pp. 8927–8936. doi: 10.1109/
cvpr52729.2023.00862.

[14] X. Liu et al., “Gdrnpp: A geometry-guided and fully learning-based object pose
estimator,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–
17, 2025. doi: 10.1109/tpami.2025.3553485.

[15] V. N. Nguyen, T. Groueix, M. Salzmann, and V. Lepetit, “Gigapose: Fast and
robust novel object pose estimation via one correspondence,” in 2024 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2024,
pp. 9903–9913. doi: 10.1109/cvpr52733.2024.00945.

[16] A. Dosovitskiy et al., An image is worth 16x16 words: Transformers for image
recognition at scale, 2020. doi: 10.48550/ARXIV.2010.11929.

[17] Y. Labbé et al., “Megapose: 6d pose estimation of novel objects via render &
compare,” in Proceedings of The 6th Conference on Robot Learning, K. Liu, D. Kulic,
and J. Ichnowski, Eds., ser. Proceedings of Machine Learning Research, vol. 205,
PMLR, Dec. 2023, pp. 715–725.

[18] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004. doi: 10.1023/b:
visi.0000029664.99615.94.

[19] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative
to sift or surf,” in 2011 International Conference on Computer Vision, IEEE, Nov.
2011, pp. 2564–2571. doi: 10.1109/iccv.2011.6126544.

[20] J. Canny, “A computational approach to edge detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, Nov.
1986. doi: 10.1109/tpami.1986.4767851.

[21] Z. Jin-Yu, C. Yan, and H. Xian-Xiang, “Edge detection of images based on improved
sobel operator and genetic algorithms,” in 2009 International Conference on Image
Analysis and Signal Processing, IEEE, 2009, pp. 31–35. doi: 10.1109/iasp.2009.
5054605.

https://doi.org/10.1109/cvprw63382.2024.00570
https://doi.org/10.1109/cvpr.2010.5540108
https://doi.org/10.1109/cvpr46437.2021.01634
https://doi.org/10.1109/cvpr52729.2023.00862
https://doi.org/10.1109/cvpr52729.2023.00862
https://doi.org/10.1109/tpami.2025.3553485
https://doi.org/10.1109/cvpr52733.2024.00945
https://doi.org/10.48550/ARXIV.2010.11929
https://doi.org/10.1023/b:visi.0000029664.99615.94
https://doi.org/10.1023/b:visi.0000029664.99615.94
https://doi.org/10.1109/iccv.2011.6126544
https://doi.org/10.1109/tpami.1986.4767851
https://doi.org/10.1109/iasp.2009.5054605
https://doi.org/10.1109/iasp.2009.5054605

Bibliography 42

[22] M. Lourakis and X. Zabulis, “Model-based pose estimation for rigid objects,”
in Computer Vision Systems. Springer Berlin Heidelberg, 2013, pp. 83–92. doi:
10.1007/978-3-642-39402-7_9.

[23] T. Drummond and R. Cipolla, “Real-time visual tracking of complex structures,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7,
pp. 932–946, Jul. 2002. doi: 10.1109/tpami.2002.1017620.

[24] M. Stoiber, M. Pfanne, K. H. Strobl, R. Triebel, and A. Albu-Schäffer, “A sparse
gaussian approach to region-based 6dof object tracking,” in Computer Vision –
ACCV 2020. Springer International Publishing, 2021, pp. 666–682. doi: 10.1007/
978-3-030-69532-3_40.

[25] M. Stoiber, M. Sundermeyer, and R. Triebel, “Iterative corresponding geometry:
Fusing region and depth for highly efficient 3d tracking of textureless objects,” in
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE, Jun. 2022, pp. 6845–6855. doi: 10.1109/cvpr52688.2022.00673.

[26] M. Stoiber, M. Elsayed, A. E. Reichert, F. Steidle, D. Lee, and R. Triebel, “Fusing
visual appearance and geometry for multi-modality 6dof object tracking,” in 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, Oct. 2023. doi: 10.1109/iros55552.2023.10341961.

[27] M. Stoiber, “Closing the loop: 3d object tracking for advanced robotic manipulation,”
Ph.D. dissertation, Technische Universität München, Dec. 2023.

[28] X. Xu, S. Xu, L. Jin, and E. Song, “Characteristic analysis of otsu threshold and its
applications,” Pattern Recognition Letters, vol. 32, no. 7, pp. 956–961, May 2011.
doi: 10.1016/j.patrec.2011.01.021.

[29] R. Kohler, “A segmentation system based on thresholding,” Computer Graphics
and Image Processing, vol. 15, no. 4, pp. 319–338, Apr. 1981. doi: 10.1016/s0146-
664x(81)80015-9.

[30] D.-Y. Huang and C.-H. Wang, “Optimal multi-level thresholding using a two-stage
otsu optimization approach,” Pattern Recognition Letters, vol. 30, no. 3, pp. 275–284,
Feb. 2009. doi: 10.1016/j.patrec.2008.10.003.

[31] H. K. Cheng and A. G. Schwing, “Xmem: Long-term video object segmentation with
an atkinson-shiffrin memory model,” in Computer Vision – ECCV 2022. Springer
Nature Switzerland, 2022, pp. 640–658. doi: 10.1007/978-3-031-19815-1_37.

[32] A. Kirillov et al., “Segment anything,” in 2023 IEEE/CVF International Conference
on Computer Vision (ICCV), IEEE, Oct. 2023. doi: 10.1109/iccv51070.2023.
00371.

[33] K. Waldron and J. Schmiedeler, “Kinematics,” in Springer Handbook of Robotics.
Springer Berlin Heidelberg, 2008, pp. 9–33. doi: 10.1007/978-3-540-30301-5_2.

[34] R. Szeliski, Computer Vision: Algorithms and Applications. Springer International
Publishing, 2022, isbn: 9783030343729. doi: 10.1007/978-3-030-34372-9.

https://doi.org/10.1007/978-3-642-39402-7_9
https://doi.org/10.1109/tpami.2002.1017620
https://doi.org/10.1007/978-3-030-69532-3_40
https://doi.org/10.1007/978-3-030-69532-3_40
https://doi.org/10.1109/cvpr52688.2022.00673
https://doi.org/10.1109/iros55552.2023.10341961
https://doi.org/10.1016/j.patrec.2011.01.021
https://doi.org/10.1016/s0146-664x(81)80015-9
https://doi.org/10.1016/s0146-664x(81)80015-9
https://doi.org/10.1016/j.patrec.2008.10.003
https://doi.org/10.1007/978-3-031-19815-1_37
https://doi.org/10.1109/iccv51070.2023.00371
https://doi.org/10.1109/iccv51070.2023.00371
https://doi.org/10.1007/978-3-540-30301-5_2
https://doi.org/10.1007/978-3-030-34372-9

Bibliography 43

[35] V. A. Prisacariu and I. D. Reid, “Pwp3d: Real-time segmentation and tracking of
3d objects,” International Journal of Computer Vision, vol. 98, no. 3, pp. 335–354,
Jan. 2012. doi: 10.1007/s11263-011-0514-3.

[36] C. M. Bishop and H. Bishop, Deep Learning: Foundations and Concepts. Springer
International Publishing, 2024. doi: 10.1007/978-3-031-45468-4.

[37] A. Vaswani et al., Attention is all you need, 2017. doi: 10.48550/ARXIV.1706.
03762.

[38] Open Source Robotics Foundation, RViz - 3D Visualization Tool for ROS, https:
//github.com/ros2/rviz, Accessed: 2025-05-13, 2017.

[39] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar, “Bench-
marking in manipulation research: Using the yale-cmu-berkeley object and model
set,” IEEE Robotics & Automation Magazine, vol. 22, no. 3, pp. 36–52, Sep.
2015. doi: 10.1109/mra.2015.2448951.

[40] G. Ebmer et al., “Real-time 6-dof pose estimation by an event-based camera using
active led markers,” in 2024 IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV), IEEE, Jan. 2024, pp. 8122–8131. doi: 10.1109/wacv57701.
2024.00795.

[41] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and R. Medina-Carnicer,
“Generation of fiducial marker dictionaries using mixed integer linear programming,”
Pattern Recognition, vol. 51, pp. 481–491, Mar. 2016. doi: 10.1016/j.patcog.2015.
09.023.

[42] G. Ebmer, Robotische Assemblierung von Betonringsegmenten im Tunnelbau, Ger-
man. Wien: Technische Universität Wien, 2021, Diplomarbeit. doi: 10.34726/hss.
2021.74022.

https://doi.org/10.1007/s11263-011-0514-3
https://doi.org/10.1007/978-3-031-45468-4
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://github.com/ros2/rviz
https://github.com/ros2/rviz
https://doi.org/10.1109/mra.2015.2448951
https://doi.org/10.1109/wacv57701.2024.00795
https://doi.org/10.1109/wacv57701.2024.00795
https://doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/10.34726/hss.2021.74022
https://doi.org/10.34726/hss.2021.74022

Eidesstattliche Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct - Regeln
zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen
Mitteilungsblattes der TU Wien), insbesondere ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Für die Erstellung
dieser Arbeit wurde Künstliche Intelligenz (KI) unterstützend eingesetzt. Konkret kamen
KI-basierte Werkzeuge ausschließlich zur Korrektur von Rechtschreibung, Grammatik sowie
zur sprachlichen Überarbeitung einzelner Formulierungen zum Einsatz. Die inhaltliche
Ausarbeitung, Argumentation und Struktur der Arbeit stammen vollständig vom Verfasser
bzw. der Verfasserin. Die Verwendung erfolgte im Einklang mit den Richtlinien der TU
Wien zur Nutzung von KI im Studium. Die aus anderen Quellen direkt oder indirekt
übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Die
Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in ähnlicher Form in
anderen Prüfungsverfahren vorgelegt.

Vienna, May 2025

Johannes König

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Related Work
	1.2 Aim and Structure of this Thesis

	2 Theoretical Foundations
	2.1 Image Generation and Processing
	2.2 Region Model
	2.2.1 Colour Histograms
	2.2.2 Sparse Viewpoint Model and Correspondence Lines
	2.2.3 Probabilistic Model

	2.3 Feature Extraction with Deep Neural Networks
	2.3.1 Neuron to Deep Neural Networks
	2.3.2 Convolutional Neural Networks
	2.3.3 Vision Transformers

	3 High-Speed Pose Tracking
	3.1 RGB Camera and User Interface
	3.2 Object Segmentation
	3.3 Initial Pose Estimation
	3.3.1 Preprocessing
	3.3.2 Nearest Neighbour Search
	3.3.3 Pose Adjustment

	3.4 Pose Refinement
	3.4.1 Nearest Neighbour Search and Colour Histogram
	3.4.2 Optimizing for the Pose Variation

	4 Setup and Experiments
	4.1 Setup
	4.2 Pose Tracking Accuracy
	4.2.1 Calibrating the Pose Measurement
	4.2.2 Static Pose Tracking
	Influence of Object-to-Camera Distance
	Influence of the Camera's Resolution

	4.2.3 Dynamic Measurements
	4.2.4 Multiple Blocks
	4.2.5 Inference Times

	4.3 Grasping an Object with a Robotic Gripper

	5 Conclusion and Outlook

