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Kurzfassung

Diese Arbeit untersucht die Wirksamkeit von Large Language Models (LLMs) in der
automatisierten Testfallgenerierung für REST-APIs. Der Fokus liegt auf ihrer Leistungs-
fähigkeit, den Auswirkungen von Prompt Engineering-Techniken und ihrer Fähigkeit,
Schwachstellen zu identifizieren und die Testabdeckung zu verbessern. REST-APIs sind
aufgrund ihrer Einfachheit essenziell für die Webentwicklung, jedoch anfällig für Angriffe,
weshalb umfassende Tests unerlässlich sind. LLMs können helfen die API-Dokumentation
und Testprozesse zu optimieren und somit die Sicherheit und Belastbarkeit erhöhen.
Ziel dieser Forschung ist es einen LLM-basierten Ansatze zu entwickeln, der Testfälle
generiert, die Abdeckung verbessert und gleichzeitig die Testkosten minimiert.

Die Arbeit stellt zwei neue Anwendungsfälle vor: WebAPIDocumentation und WebA-
PITesting. Die Arbeit zielt darauf ab, die Erstellung von OpenAPI-Spezifikationen
zu automatisieren, Dokumentationsfehler zu beheben und Tests zur Identifikation von
Schwachstellen wie fehlerhafter Authentifizierung durchzuführen. Die Ergebnisse zeigen,
dass GPT-4o-mini o1 effektiver Endpunkten und Parametern erkennt. Das ist insbeson-
dere der Fall, wenn die Prompts mit Prompt Engineering-Techniken verwendet werden
wie Tree-of-Thought(TOT),Chain-of-Thought (COT) und In-Context Learning (ICL).
Obwohl GPT-4o-mini sich beim Erkennen gängiger Schwachstellen wie fehlerhafter Au-
thentifizierung und NoSQL-Injection auszeichnet, stößt es bei komplexeren Problemen wie
der Offenlegung sensibler Daten und unzureichender Ratenbegrenzung auf Schwierigkei-
ten. Die Ergebnisse zeigen das Potenzial von LLMs zur Verbesserung von Sicherheitstests
und betonen die Rolle des Prompt Engineering bei der Verbesserung der Effizienz und
Genauigkeit automatisierter Tests. Insgesamt trägt diese Arbeit zum aktuellen Fachgebiet
bei, indem sie zeigt, dass LLMs zum Generieren von Testfällen für REST-APIs verwendet
werden können und dabei effizient sind. Ihre Leistung kann durch den Einsatz von Prompt
Engineering-Strategien wie COT verbessert werden. Darüber hinaus zeigte sie, dass LLMs
zum Aufdecken gängiger Sicherheitslücken verwendet werden können.

Diese Arbeit erweitert das Wissen im Fachgebiet, indem sie die Wirksamkeit von LLM-
gesteuerten Tests für REST-APIs hervorhebt und Strategien zur Optimierung der LLM-
Leistung durch fortschrittliche Prompt-Techniken anbietet.
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Abstract

This thesis investigats the efficacy of Large Language Models (LLMs) in automating
REST API test case generation. It focuses on their performance, their ability to identify
vulnerabilities and improve test coverage and how Prompt Engineering techniques effect
this. REST APIs are crucial in web development due to their simplicity, but they are
vulnerable to attacks. Therefore, thorough testing is essential. LLMs can help with
that as they improve safety and resilience because they can help streamline testing
and documentation procedures for APIs. Thus, the goal of this thesis is to develop an
LLM-based approach to generate test cases, improve coverage, and reduce expenses.

This work introduces two new use cases: WebAPIDocumentation and WebAPITesting.
It aims to automate the generation of OpenAPI specifications, correct documentation
inconsistencies, and conduct tests to identify vulnerabilities such as faulty authentication.
The results show that GPT-4o-mini o1 is more effective at recognizing endpoints and
parameters, particularly when prompts are enhanced with Prompt Engineering tech-
niques like Tree-of-Thought(TOT), Chain-of-Thought (COT) and In-Context Learning
(ICL). Even though GPT-4o-mini does well in detecting common vulnerabilities like
Identification and Authentication Failures and NoSQL Injection, it has difficulties with
more complex issues such as Sensitive Data Exposure and Insufficient Rate Limiting. The
results show the potential of LLMs to improve security testing and highlight the role of
Prompt Engineering in improving the efficiency of automated testing. Overall, this thesis
contributes to the current field by showing that LLMs can be used in generating test
cases for REST APIs and are efficient in doing so. Their performance can be improved
by using Prompt Engineering strategies, such as COT. Additionally, the work shows that
LLMs can be used to find common security vulnerabilities.

This work contributes to the field by showcasing the effectiveness of LLM-driven testing
for REST APIs and providing strategies to optimize LLM performance by using Prompt
Engineering techniques.
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CHAPTER 1
Introduction

1.1 Motivation

RESTful APIs (Representational State Transfer APIs) [Fie00] play an important role
in modern web development because they are easy to implement, flexible, and scalable.
Since they are not tied to a specific format, they are very flexible. However, they adhere
to widely accepted web standards such as HTTP, JSON and XML formats, which allows
them to make communication and data exchange between different applications that use
different formats seamless. They are scalable because they use a stateless architecture.
Therefore, they are important for a wide range of services, ranging from cloud computing
to mobile applications [Ibm24, AM23].

Thorough testing of REST APIs is important to ensure proper functionality, effective
error handling, and smooth integration with other systems. This is essential because even
small API errors can spread through linked services and potentially cause widespread
failures [MLSRC22]. Furthermore, thorough testing improves the user experience by
ensuring that APIs can effectively manage real-world traffic. [GZA23, AM23].

Moreover, REST API testing is not only important to ensure proper functionality, but
also security. This is because REST APIs often expose sensitive information like financial
information or critical functionalities, which makes them appealing targets for attacks.
Thorough testing in this situation helps in finding possible weaknesses like Injection
attacks. Additionally, it ensures the confidentiality and integrity of the systems by
protecting them from potential cyberthreats. Ineffective testing can expose APIs to
exploitation, which can have serious consequences such as financial losses and data
breaches. As a result, robust testing is a crucial part of API development and deployment
since it improves performance while strengthening the overall security posture of web
services [GZA23, Arc19b, AM23, EACM22].
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1. Introduction

In conclusion, using thorough testing strategies, can help organisations to build more
robust REST APIs. It can not only ensure that they meet functional requirements but
also withstand potential security threats. This can lead to greater trust and reliability in
the services they provide [GZA23, AM23].

1.2 Problem Statement
Many current REST API testing tools like EvoMaster heavily rely on OpenAPI speci-
fications [Arc19b, AGP19]. The problem is that these specs are frequently out of date
or incomplete. When a specification is incomplete or outdated, the REST API test-
ing tools can struggle to properly test APIs, which can lead to bugs or integration
issues [GZA23, DPP+24]. In addition, most tools are not built to handle the complex
structure and interdependencies of real-world APIs. This makes it usually hard for them
to generate comprehensive test cases. As a result, developers often have to step in and
manually fill the gaps to make sure edge cases and less obvious scenarios are properly
tested [GZA23].

Even though, automated test case generation offers a promising solution to these problems.
The existing methods struggle with complex data types and functionalities of REST
APIs. Therefore, they can miss important unstructured data from API documentation,
which limits their effectiveness. Another issue is that it is hard to compare these
tools [KXSO22, MLSRC22].

The use of Large Language Models (LLMs) can help overcome these limitations since they
can improve the automation and effectiveness of generating test cases. They can do this
because they can better adjust to different API architectures and collect valuable insights
from unstructured data. However, there are also disadvantages using LLMs. A common
problem with LLMs is that they often struggle to generate the correct inputs and fully
understand the technical details of APIs, which can lead to errors. This happens when
APIs behave differently across versions or settings [KCS+23, JLM+24].

There are two main reasons for this. First, APIs vary widely in their design, which makes
it difficult for LLMs to interact with them consistently. Since each API has a different
structure, LLMs must continuously adapt, which adds complexity to the testing process.
Second, LLMs have not been completely incorporated into the tools and workflows that
developers typically use for API testing [DPP+24, JLM+24, AM23, EACM22] such as
Postman. As a result, these models are still trained mainly on general-purpose text,
not the kinds of logs or structured data that reflect real-world testing needs. This
makes it harder for them to respond effectively when an API behaves in unexpected
ways [QLY+24]. Moreover, since APIs frequently change (e.g., updates, new versions,
different configurations), and without proper integration, LLMs struggle to keep up with
these variations. In addition, most API testing tools (such as Postman or JMeter) are not
yet designed to seamlessly work with LLMs [MLSRC22]. This makes it harder for LLMs
to analyze API responses effectively, learn from failures, or suggest improvements [KSO23,
JLM+24].
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1.3. Research Questions

The lack of standardized practices in API design makes these challenges even more
difficult. When APIs do not follow consistent design conventions, automating the
testing process becomes much harder [KSO23]. To improve the automation of REST
API testing, it is important to address these issues. Since it will help to ensure the
reliability and performance of web services and applications that depend on these
APIs. One key step toward a more efficient and resilient testing system is to use
advanced techniques like LLMs, which can better understand complex commands and
process unstructured data. This will help meet the growing demands of modern web
development [KSO23, KXSO22, DPP+24, AM23].

1.3 Research Questions
This thesis investigates the following research questions regarding the use of Large
Language Models (LLMs) in testing REST APIs:

• RQ1: What is the efficacy of various Large Language Models (LLMs) in gener-
ating test cases for REST APIs, and which factors significantly influence their
performance?

• RQ2: What prompt engineering techniques are most effective for generating test
cases for REST APIs using LLMs?

• RQ3: To what extent can LLMs identify potential failure points or vulnerabilities
within REST APIs, and how accurate are their predictions in this context?

1.4 Aim of the Thesis and Expected Results
The aim of this thesis to use Large Language Models (LLMs) to help automate the
documentation and testing of REST APIs. The goal is to create an approach that
automatically generates tests using LLMs that can handle many tricky aspects of testing
REST APIs 3. These challenges include [GZA23, MLSRC22]:

• Challenges in Standardization and Documentation: The inconsistent use of
standards like the Zalando1 or Microsoft2 REST guidelines creates problems such as
non-standard API designs, outdated documentation, and challenges in integrating
services, which makes it harder to maintain accurate documentation and resulting
in incomplete or incorrect test cases. Our solution is WebAPIDocumentation,
which automatically creates a standardized OpenAPI specification. This ensures
that the specification stays up-to-date by creating a new version whenever the
REST API changes. By following established REST guidelines like Microsoft
and Zalando, it helps maintain a consistent API design, keeps the documentation

1https://opensource.zalando.com/restful-api-guidelines/
2https://github.com/microsoft/api-guidelines
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1. Introduction

current, and improves test case accuracy by providing a reliable source of truth for
API behavior [EACM22].

• Complex Input Types: Dealing with complex input types and data structures in
RESTful APIs can make it difficult to infer test input values accurately, limiting the
scope of automatic test case generation to simpler data types. Since WebAPIDocu-
mentation uses GET requests to query the REST API and retrieve the majority of
data structures, it helps with inferring valid test input values. When required, it
can handle complex data types or missing fields by using extra methods like schema
analysis and API documentation parsing, extracting various input variations, and
analyzing multiple responses.

• Security concerns: Ensuring the security of APIs while allowing effective testing
is a significant challenge, as testing mechanisms often need to bypass or simulate
security protocols, which can lead to vulnerabilities if not handled carefully. We
address this challenge with WebAPITesting, which looks for common security risks,
including those in the OWASP Top Ten, in REST APIs. It also detects API-specific
issues like improper authorization and data exposure, ensuring security protocols
remain intact during testing [Lim24, EACM22].

• Automatic Generation of multistep test cases: Testing REST APIs requires
building complex sequences of API calls to mimic real-world situations, focusing not
just on understanding each API function, but also on how they work together across
different steps, essential for guaranteeing that the system behaves as expected by ac-
curately simulating these sequences under various conditions. Since WebAPITesting
look for security vulnerabilities, it automatically generates and executes multistep
test cases to simulate real-world API interactions. It analyzes API dependencies
to build accurate call sequences, ensuring both functional correctness and security
under various conditions [CP08, MLSRC22].

By automating the generation of test cases with an LLM, the thesis aims to enhance
the effectiveness and efficiency of REST API testing. This automation is expected to
tackle the complex challenges as described above. Through this, the thesis will offer a
new way of testing that can adjust to changes in APIs over time. This improves the
safety, security, and robustness of tested web services while also reducing test generation
costs and increasing coverage.
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CHAPTER 2
Background

In this section, we are going to give a short overview of RESTful APIs, how they are
tested, and what are the challenges in testing.

2.1 REST API Testing
RESTful APIs (Representational State Transfer APIs) are web services that use the
REST architectural style that was introduced by Roy Fielding in 2000 [Fie00]. This
architecture helps create scalable web systems where the client and server use stateless
communication. This means that every client request has all the data needed to process it
and no client context is stored on the server. Moreover, RESTful APIs are flexible in how
data is exchanged because they do not need a specific format. Therefore, applications,
which are built using different technologies, can communicate with each other since REST
APIs can be used with different formats such as JSON and XML [GZA23, AM23, Ibm24].

A key advantage of RESTful APIs is that they use HTTP(Hypertext Transfer Protocol)
methods to interact with resources at specified endpoints [RFBL99, EACM22]. The
methods are POST, GET, DELETE, PUT and PATCH, where GET is the only one that
does not change the state of the resource. The resources are identified by a unique URI
(Unique Resource Identifier) and can be texts, photos, or representations of actual objects.
When a resource is queried, the client sends an HTTP request containing an url to server,
which returns the resource in formats such as JSON, HTML, or plain text [GZA23]. For
instance, if the request " GET /users/123" is made, then this means that there is a GET
request for the resource user with ID 123 and if there exists a JSON resource of this user,
then ""id":"123"" is returned [GZA23, Ibm24].

Another advantage of REST APIs is that they handle each request independently, which
removes the need for stored session data in the system. Therefore, REST APIs become
easier to scale and more dependable as a result. Additionally, responses that are listed
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2. Background

as "cacheable" can be used to lessen the amount of times a server is called and enhance
performance [GZA23, RFBL99, FM24].

A common standard for REST API documentation is OpenAPI Specification (OAS)
and offers a language-neutral format that makes it possible for machines and people to
understand how to use an API without having to see the source code. OpenAPI supports
automated tools that can generate easy-to-read documentation, server code (stubs), client
libraries, and testing scripts. OpenAPI documents are usually written in JSON or YAML
and describe how to use API endpoints by specifying details like URIs, HTTP methods,
and input parameters. Fuzzing tools also often use it to test APIs for security issues by
showing what requests are allowed, what responses to expect, and which data formats
are supported [GZA23, Tea, TTH21, ISCK24].

2.1.1 Testing RESTful APIs

REST APIs must be thoroughly tested to make sure that they work as intended, manage
requests and data appropriately, and scale effectively in a variety of scenarios [RR07].
Moreover, testing can help catch issues like incorrect data processing, security vulnerabili-
ties, and performance issues [Mye04]. To speed up this process, testing can be automated
as it helps to simplify the testing process, provides thorough coverage, and ensures that
the API performs reliably in various scenarios [GZA23, ISCK24].

Figure 2.1: Overview of REST API Testing at a High Level taken from [GZA23]

RESTful APIs are usually tested using a structured approach. First, a schema is defined
that specifies how the REST API should interact with the resources [Fie00, GZA23] (see
Figure 2.1). For this purpose, OpenAPI specification or JSON are often used. Second,
the schema is used to generate test cases that are evaluated against predefined metrics.
Third, the testing tools execute sequences of HTTP requests, which are defined in the
test case. Usually, these requests are POST or GET with specific parameters to evaluate
the behavior of the REST API. Additionally, it is tested if the authentication mechanism
of the REST API works correctly and it can connect properly to databases or other
services. Developers often use smart strategies like heuristics to try to cover all possible
scenarios [GZA23].
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2.1. REST API Testing

Approaches

REST API testing techniques can be categorized into different categories (see Table 2.1):

Category Description Tools

Black-box and White-
box Testing

Black-box tests API behavior, while white-box looks at internal
structure. Hybrid methods improve input handling [GZA23].

EvoMaster [Arc19b],
QuickRest [KCS20]

Search-based Testing Uses algorithms like Genetic and Swarm to optimize test generation
and maximize coverage [GZA23].

EvoMaster [Arc19b]

Property-based Testing Validates schema and resource state consistency [GZA23]. Schemathesis [HDD22],
QuickRest [KCS20]

Model-based Testing Uses models like Petri Nets are used to help the test genera-
tion [GZA23, FB15, LLZ18].

–

Others Graph-based approaches, regression tools, and LLMs enhance test
generation and fault detection [GZA23].

ExVivoMicroTest [GGM+23,
GGM+20],
LLMs [KSS+24, BMR+20,
DPP+24]

Table 2.1: Summary of REST API Testing Techniques

Black-box testing checks how the REST API behaves based on its inputs and outputs,
without looking at the internal code. On the other hand, white-box testing looks
at the code itself. Tools like EvoMaster [Arc19b] can be used for both black-box and
white-box testing whereas QuickREST [KCS20] only works for white-box testing. A mix
of black-box and white-box testing methods is usually used to manage complex input
scenarios and improve the coverage and effectiveness of the test [MASR21].

A different method that is called search-based testing, uses metaheuristic algorithms
like Swarm Algorithms and Genetic Algorithms to improve test case generation optimiza-
tion. Algorithms such as MOSA (Many-Objective Sorting Algorithm) [PKT15] and MIO
(Many Independent Objective) [Arc19a] have been developed for testing REST APIs to
improve how these tests are performed [GZA23]. In contrast, EvoMaster combines these
search-based techniques to optimize code coverage during testing [Arc19b]. In addition
to these, there’s property-based testing, which ensures certain conditions are consistently
maintained throughout the testing process, such as making sure the state of resources
and the structure of the data remain correct. Tools like Schemathesis [HDD22] and
QuickRest [KCS20] verify the structural and semantic correctness of REST APIs [GZA23].

Model-based testing takes a different approach by using abstract representations to
simulate the API’s behavior and state transitions. Models such as UML state machines
or colored Petri Nets serve as blueprints to guide the generation and verification of test
cases [LLZ18, FB15]. Besides these methods, other testing approaches are also used.
For example, graph-based testing uses algorithms like Breadth-First Search (BFS) to
explore how different parts of a REST API are connected, which helps to create more
complete test cases. Regression testing tools like ExVivoMicroTest compare different
versions of an API to find bugs that may have been introduced during updates [GGM+23,
GGM+20, GZA23].

Since Large Language Models (LLMs) can create test cases from natural language
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2. Background

descriptions of API features, their integration has grown in popularity recently. LLMs
can improve test coverage and efficiency by generating input, predicting output, and
inferring test scenarios based on API documentation [KSS+24, BMR+20].

In conclusion, the testing approaches covered above have different advantages in automa-
tion, optimization, or modeling. If these approaches are used together, this could improve
testing effectiveness and ensure reliable REST API performance.

Metrics

To assess how effective testing is, three main categories of metrics are commonly used:
coverage criteria, fault detection, and performance (see Table 2.2) [GZA23]. Each category
is important to ensure that APIs work as intended, adhere to specified schemas, handle
faults effectively, and maintain performance under different conditions.

Category Description Tools

Coverage Criteria Schema coverage: Focuses on status codes, paths, and responses.
Code coverage: Measures executed code.
Specialized metrics: Inter-parameter dependencies and security analysis.

HsuanFuzz [TTH21],
RESTest [MSR21],
JaCoCo [BT24],
EvoMaster [Arc19b]

Fault Detection Service errors: Detected using HTTP 5xx codes.
Schema violations: Deviations from API schema.
Rule violations: Idempotency, security, and consistency.

RestTestGen [CZPC22],
QuickRest

Performance Response times: Evaluated with testing strategies [GZA23, BFGC21].
Workloads: Simulated with Apache JMeter [FB15].
Bottlenecks: Identified by Schemathesis [HDD22].
Latency: Analyzed across regions [BIEC20].

Apache JMeter [FB15],
Schemathesis [HDD22]

Table 2.2: API Testing Metrics

Coverage criteria help measure how thoroughly an API has been tested by looking at
different parts of its behavior. One key metric is schema-related coverage, which checks
whether the API follows the structure defined in specs like OpenAPI including expected
inputs, outputs, status codes, and available operations. Testing tools of this type are
HsuanFuzz [TTH21] and RESTest [MSR21], which help test these elements by generating
requests and checking if responses match the schema. Another common metric is code
coverage, which measures how much of the backend code is actually executed during
testing. Tools of this type are EvoMaster [Arc19b] and JaCoCo1, which help track this
and is especially useful for Java and JavaScript applications. Some tools go further by
using special metrics to examine how input parameters interact or how secure the API
is. For example, grammar-based coverage looks at how components relate to each other,
while NLP-based tools can create realistic input data to mimic real-world users and
scenarios.

Fault detection identifies errors, schema violations, and rule violations. First, service er-
rors are often shown through HTTP status codes: 5xx codes signal server issues, while 4xx

1https://github.com/jacoco/jacoco
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2.1. REST API Testing

codes point to client errors, such as bad requests or authentication failures [RR07, FT02].
Second, schema violations usually occur when an API response does not match what the
schema defines. Tools of this type are RestTestGen and QuickRest. Third, rule violations
involve breaking security policies or failing to meet expected behaviors, such as idem-
potency (consistent results from repeated requests). Another method is metamorphic
testing, which checks for errors across multiple executions. Lastly, regression testing
catches issues introduced by changes in new versions of the API [GZA23].

Performance measures how well an API handles requests under different conditions.
Banias et al.[BFGC21] analyzed response times to find methods that reduce delays.
Fertig and Braun[FB15] used Apache JMeter to test how the API performs under
different workloads and network conditions. Schemathesis [HDD22] looked for bottlenecks
by identifying slow responses and excessive requests, while Bucaille et al. [BIEC20]
developed a system to track latency and performance in multiple locations, highlighting
how infrastructure and geographic factors affect performance.

In conclusion, the effectiveness of the REST API testing is evaluated using coverage
criteria, fault detection, and performance metrics. The coverage criteria ensures how
thorough the testing was, while fault detection identifies errors and violations. Perfor-
mance evaluates response times and bottlenecks. Tools such as RestTestGen, Apache
JMeter, and Schemathesis support these analyses.

2.1.2 Challenges in Automating REST API Tests
Testing REST APIs presents several challenges that can complicate the process and
reduce test effectiveness (see Table 2.3) [KXSO22]:

Category Description

External Dependencies Since REST APIs often rely on external services, setting up a stable testing environment
can be challenging [EACM22, CP08].

Schema Evolution and Stan-
dardization

When REST APIs evolve and standards vary, then inconsistencies in design and
outdated documentation become issues [EACM22].

Complex Input and Multi-Step
Test Generation

It is difficult to replicate real-world scenarios, especially when REST API calls depend
on each other. [KXSO22, EACM22]

Security and Authentication Testing secure APIs requires simulating protocols like OAuth without exposing sensitive
information [Tec24, EACM22].

Fault Detection and Dynamic
Data

External dependencies and changing data make it harder to detect faults and generate
automated tests [CP08, MLSRC22].

Performance Testing Testing response times often requires advanced tools and the ability to simulate real-
world user loads, which can generate costs [CP08].

Table 2.3: Challenges in API Testing

Testing REST APIs has several challenges that can make the process complex and
reduce the accuracy of test results. One big challenge is external dependencies because
REST APIs often rely on other services, like databases or third-party APIs, which may
not always be available or return consistent results during testing [EACM22]. Another
challenge is the evolution and standardization of the scheme. This happens,
when a REST API changes because a new endpoints is added or an existing endpoint is
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modified, it is hard to keep the tests up to date. The problem gets worse when developers
do not follow common standards like those from Zalando or Microsoft. This can lead to
nonstandard designs and outdated documentation [Tec24, KXSO22, EACM22].

Handling complex input and multistep test generation is also challenging, especially
when APIs require sequences of interdependent calls to mimic real-world scenarios.
Generating such tests becomes even harder when dealing with complex data types or
ensuring that requests depend on the correct sequence of prior responses. Moreover, most
tool have been tested in controlled environments, which makes hard to know how they
will perform in the real world [MLSRC22, KXSO22, Lim24].

Security and authentication introduce additional complications, as testing secure
APIs requires bypassing or simulating security mechanisms such as OAuth or API keys
without compromising security measures [MLSRC22, Tec24, EACM22].

An additional challenge is identifying faults and handling dynamic data. Pinpoint-
ing the source of problems, such as 5xx server errors, can be difficult when it is uncertain
whether the issue originates from the API or its external components. This becomes
even more complicated with dynamic data, such as timestamps or auto-generated IDs,
which make it difficult to create reproducible automated tests [MLSRC22, Tec24].

Lastly, performance testing poses its own set of difficulties. Accurately measuring
response time, latency, and throughput requires sophisticated infrastructure and realistic
simulations of user load, which can be especially demanding for distributed systems that
need to handle high levels of concurrent requests [MLSRC22, KXSO22, Lim24].

In conclusion, there are challenges in automating REST API testing. These are include
dealing with external dependencies, keeping up with changing schemas, and creating
complex, multistep test scenarios. Moreover, it is important to tackle issues such as
authentication, handling dynamic data, and measuring performance. Addressing these
challenges calls for strong tools and infrastructure to ensure tests remain accurate and
reliable, even in constantly changing environments.

2.1.3 Summary
Modern web services depend on RESTful APIs because they enable stateless and scalable
client-server communication using common HTTP methods like POST, GET, DELETE,
PUT, and PATCH. Schemas like OpenAPI ensure consistent interactions, simplify testing,
and support integration. Testing APIs is important to verify functionality, reliability,
and scalability (see Figure 2.1).

Table 2.1 shows different API testing methods. Black-box testing evaluated API behavior
without accessing internal details, whereas white-box testing examines internal structures.
Using a combination of both techniques achieves better results and is called hybrid
testsing. Other methods are search-based algorithms and model-driven testing that
optimize test generation. More recent innovations such as graph-based techniques and
Large Language Models (LLMs) further improve testing.
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API testing metrics (Table 2.2) include coverage, fault detection, and performance. Cov-
erage ensures thorough tests by checking schema compliance and parameter interactions.
Fault detection identifies errors such as schema mismatches, while performance metrics
measure response times and locate bottlenecks. Tools such as EvoMaster and Apache
JMeter aid in evaluations.

Automating API testing faces challenges (Table 2.3), such as adapting to schema changes,
simulating interactions, and ensuring security for features such as OAuth. Effective
solutions require robust tools and strategies to handle these complexities.

This thesis uses black-box testing as the main approach because it evaluates an API’s
behavior without needing access to its internal structure, making it suitable for real-world
use. Metrics such as routes and parameters discovered, vulnerabilities found, execution
time, and workload analysis offer a thorough assessment of automated REST API testing.
These metrics help identify issues, measure performance, and address common challenges,
supporting the creation of effective solutions for testing APIs in complex environments.

2.2 Large Language Model
Large Language Models (LLMs) are a type of machine learning model that are de-
signed to comprehend and produce text that is similar to that of a human. They
use transformer-based architectures like the models Bidirectional Encoder Representa-
tions(BERT) [DCLT19] and the new Generative Pre-trained Transformer (GPT) [Suf24],
which are deep learning methods. Usually these models are trained on large datasets,
which enable them to produce and predict text based on context. Moreover, accurate
language generation and understanding are influenced by quality of the training data.

Year Name Developer Description

2018 BERT Google Introduced bidirectional attention for better language understanding. [DCLT19]
2019 GPT-2 OpenAI Generated fluent text with 1.5B parameters. [Suf24]
2020 GPT-3 OpenAI Expanded to 175B parameters, enabling more coherent and general-purpose text generation.

[BMR+20]
2021 Gopher, Chinchilla DeepMind Focused on efficient scaling by balancing model size and training data. [RBC+21, HBM+22]
2022 BLOOM, OPT-175B Meta AI BLOOM emphasized openness; OPT-175B rivaled GPT-3 in scale. [SFA+22]
2023 GPT-4 OpenAI Improved reasoning and context handling, estimated to use 1T parameters. [Ope23]
2023 LLaMA Meta Provided smaller, efficient models; LLaMA2 improved fine-tuning. [TLI+23, TMS+23]
2024 GPT-4o, GPT-o1, GPT-o1-mini OpenAI Lighter GPT-4 versions tailored for speed, cost, and performance. [Ope24c, Ope24a]

2023–2024 Recent Developments – Models like Falcon, Mistral 7B, and Code Llama advanced coding and summarization.
[JSM+23, RGG+23]

Table 2.4: Important Milestones in the Development of Large Language Models

Table 2.4 shows how LLMs have evolved over time. Early models like BERT (2018) [DCLT19]
introduced bidirectional attention, which improved how machines understand natural
language. GPT-2 (2019) [SWR+22] and GPT-3 (2020) [BMR+20] demonstrated the
power of scaling up model size, with GPT-3 making a big impact by generating coherent
text using 175 billion parameters [Suf24, Ope23]. To overcome the limitations of earlier
models, DeepMind developed Gopher [RBC+21] and Chinchilla (2021) [HBM+22], which
optimized the balance between data size and the number of parameters.
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LLMs became more widely available in 2022 when BLOOM [SFA+22] and OPT-175B [ZRG+22]
released open-source models. A year lated, GPT-4 [Ope23] trillion parameters was re-
leased and produced more coherent text and improved context understanding then the
models before. In contrast, Meta’s LLaMA [TLI+23] and LLaMA2 [TMS+23] presented
more compact, effective models that were better suited for fine-tuning. Nowadays,
more sophisticated models like Falcon-180B, Mistral [JSM+23], and Code Llama (2023-
2024) [RGG+23] can manage intricate tasks like coding, summarizing data, and having
conversations.

GPT-4o [Ope24b], GPT-4o mini, and o1 [Ope24c] were added to OpenAI’s language
model lineup in 2024; each was created to meet a particular need. Launched in May, the
GPT-4o became the flagship model, able to process text, images, and audio simultaneously
for multi-modal, real-time tasks. Two months later, the more affordable, and compact
GPT-4o mini was released. A bigger model, o1 model, was unveiled in September, which
is good for tasks like logical analysis, multi-step reasoning, and research. This is because it
emphasizes sophisticated reasoning and complex problem-solving. Overall, these models
show that OpenAI is trying to find a balance between accessibility, efficiency, and power
across a range of applications.

In summary, LLMs are a major advancement in natural language processing (NLP),
which makes it possible for machines to understand and generate text like humans.

2.2.1 Functionality
The Transformer architecture is a deep learning method used by LLMs to understand
and generate text that seems to have been written by a human. It was originally presented
by Vaswani et al. (2017) [VSP+17], which has changed the way that machines process
language by allowing models to deal with complex linguistic structures and "long-range
dependencies" accurately.

Figure 2.2: Transformer architecture taken from [VSP+17]
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A Transformer architecture is divided into an encoder and a decoder. These compo-
nents two work together to process input text and produce logical output sequences. The
original text is transformed into numerical formats known as embeddings, as illustrated
in Figure 2.2. The addition of Positional Encoding preserves the sentence’s structure
and helps the model in comprehending the word order, which is crucial for accurately
capturing syntax and meaning [VSP+17].

The encoder plays an important role in analyzing the input using a mechanism called
self-attention. It helps the model to understand how words relate to each other, even
when they are far apart in the sentence [VSP+17]. For example, in The cat, which I saw
yesterday, is fluffy, the model has to understand that fluffy describes cat, even with other
words in between. This ability to maintain context over long distances is what makes
LLMs built on Transformers so powerful.

A Transformer is able to solve difficult tasks due to two properties. First, transform-
ers are able to better understand the word order in a sentence because of Positional
Encoding. If they would not have this encoding, transformers would not be recognize
the word sequence because they view the entire sentence at once. They keep track of
each word’s location by giving it a number [VSP+17]. Without this, a sentence could be
unclear, such as "The cat, which I saw yesterday, is fluffy," where the model does not
know, which words go together.

The cat which I saw yesterday is fluffy

Figure 2.3: Self-attention links "cat" and "fluffy," ensuring the model captures their
relationship.

Second, as already mentioned, self-attention enables the model to examine all words
in a sentence to determine which are the most relevant to each other in understand-
ing context. Unlike older methods that focus on nearby words, self-attention assigns
importance, or "attention weights," to words based on their relationships, even over
long distances [VSP+17]. In "The cat, which I saw yesterday, is fluffy," for example,
the term "cat" is very different from "fluffy." To make sure that the meaning of the
sentence is accurately captured, self-attention helps the model identify that "fluffy" de-
scribes "cat" by giving this connection more weight (see Figure 2.3). The model can
successfully understand both local and long-distance word relationships thanks to this
mechanism [VSP+17].

The decoder uses the encoded input together with the generated words from before
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to predict the next word. During training, it learns to align the generated text with
the input using the internal attention mechanisms. A loss function reduces prediction
errors to increase accuracy, and the output is transformed back into text using output
embeddings. After processing the input, the decoder uses a linear layer and a softmax
function (see Figure 2.2) to turn its outputs into "token probabilities", which makes it
possible to generate coherent text [VSP+17].

In conclusion, the Transformer architecture is a fundamental component of current
LLMs, which enables these models to excel in comprehending and producing text by
efficiently capturing structure, meaning, and relationships within language. This is
achieved because the positional encoding and self-attention are combined.

Training LLMs

In comparison to more traditional models like RNNs that process input step by step,
transformers make it possible for LLMs to process entire text sequences at once, which
makes them faster and more efficient. Once these models have learned general lan-
guage patterns from large and diverse datasets, they can summarize, translate, and
converse [BMR+20]. Fine-tuning [HR18, RSR+20] helps them adapt to particular tasks
or applications, which further improves their performance.

The LLM training process can be summarized as follows [KAT+25]:

1. Pre-training: The first step of training a LLM is called pre-training, where a
model is trained on datasets from various text sources like books and websites. Then
it learns general language patterns by doing word prediction or filling in the blanks.
This category of learning is called supervised learning, which helps the model, for
instance, to understand syntax, semantics, and factual knowledge [KAT+25].

2. Fine-tuning: After the first step is finished, the model is further trained in a
smaller and more specific-task set to adapt it to particular goals. For example, it
can be fine-tuned for particular tasks like answering questions, summarizing, and
sentiment analysis [RWC+19]. Some fine-tuning approaches are [KAT+25]:

• Transfer Learning: The general knowledge learned in the pre-training step
is fine-tuned to specific tasks using relevant data [VSP+17, DCLT19, HR18].
This helps to improve performance on downstream tasks [RSR+20].

• Instruction Tuning: Instruction-formatted datasets like input-output pairs
and task instructions are used to improve the models’ zero shot generalization
and task-specific performance [WBZ+22, SWR+22]. This enables models to
process complex natural language commands effectively.

Alignment: To ensure that LLMs are helpful, honest, and harmless (HHH) [ABC+21],
alignment was introduced because it uses feedback to modify the behavior of

14



2.2. Large Language Model

the model and prevent it from producing inaccurate text [BJN+22]. One im-
portant alignment methods is Reinforcement Learning with Human Feedback
(RLHF) [CLB+17, Ole25]. It works like the following:

a) Reward Modeling (RM): A reward model is trained on a "preference
dataset", which ranks responses based on human preferences and can be
labeled with HHH criteria [Ole25, ABC+21].

b) Learning Reinforcement (RL): The trained model is used to further refine
the LLMs. Usually the optimizer used to adjust the model’s parameters
to improve performance is proximal policy optimization (PPO) [SWD+17]
because it only makes small changes to the policy during training.

3. Optimization and scaling: Increasing the number of parameters can improve
performance on a variety of tasks, including the ability of the model to capture
complex language structures, according to research by Brown et al. [BMR+20]. For
example, GPT-3 performs very well and it has 175 billion parameters [KMH+20].
However, just increasing number of parameters is not the best course of action.
Research such as Training Compute-Optimal Large Language Models [HBM+22,
ZLM+23] shows that better results can be obtained when model size, training
data, and computational efficiency are balanced. Specifically, smaller models that
have been trained with more data can occasionally perform better than larger
ones [HBM+22, R24]. An example for such a model is Mistral7 [JSM+23].

In conclusion, one of the biggest advantages of LLMs is that they can produce text
that stays coherent and context-aware. The broad patterns they learnt during their pre-
training period are what give them this capacity. Moreover, LLMs can handle tasks with
little or no examples because of their few-shot and zero-shot learning abilities [BMR+20].
Interestingly, research on inverse scaling [MLP+23] shows that bigger models do not
always perform better, especially on tasks that involves complex reasoning. This suggests
that scaling alone isn’t enough. Instead, the quality of the model is heavily influenced by
things like training data, architecture, and how efficiently resources are used.

2.2.2 Challenges in LLMs
Although LLMs have shown their abilities, they still face a number of challenges, which
must be addressed o make sure they are suitable for real-life applications. These
challenges include ethical issues, technical limitations, and practical constraints tied to
the deployment of large-scale models (see Table 2.5).

One major challenge is Bias and Ethics because LLMs are trained on historical datasets.
This sets that include human-written text with biases of the time, they inherit the
biases, which exist in the training data. These biases can reflect gender, racial, cultural,
or other social biases, leading to biased or inappropriate results. For example, an
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Category Description

Bias and Ethics LLMs can pick up harmful biases from their training data, which may lead to unfair
results in areas like hiring or healthcare [BGMS21, WMR+21].

Hallucinations LLMs sometimes come up with wrong answers that sound reasonable, which can be
dangerous when used in sensitive areas [JLF+23].

Computational Re-
sources

Training and running LLMs uses a lot of computing power and produces lots of CO2
emissions, which raises concerns about cost and their environmental impact [SGM19,
BGMS21].

Interpretability It is hard to understand how LLMs come up with decisions and this lack of clarity
makes them harder to trust in important areas like law or medicine [DVK17,
SIG+24].

Context Length Limi-
tation

LLMs can only look at a limited amount of text at once, which makes it tough for
them to handle long conversations or documents [BMR+20].

Table 2.5: Challenges in LLMs

LLM can generate discriminatory language or reinforce stereotypes if trained on biased
data [BGMS21]. Although there are ongoing efforts to reduce this bias, it is challenging
because much of the training data come from the vast and unfiltered content available on
the Internet. This can become a problem because LLMs are being used more frequently
in sensitive areas such as employment, law enforcement, and healthcare [WMR+21]. One
major issue is that is known as hallucination. This happens when the model outputs text
that sounds convincing but is actually false or made-up [JLF+23].This happens when
LLMs does not reallly understand facts and they produce responses based on patterns in
the data. As a result, they might sometimes create details or answers that seem accurate
but are actually misleading [JLF+23]. This problem becomes particularly concerning
when LLMs are used in applications such as healthcare care, testing, or any domain that
requires factual accuracy, as hallucinations can result in harmful or dangerous outcomes.
Therefore, it is important that the testing tools generate a report so that the testers can
check and reproduce it to ensure the validity of the test.

Large amounts of Computational Resources are needed for LLMs. Especially, large-
scale models like GPT-3 and o1 require a lot of processing power to train and run since
they have billions of parameters and use potent GPU or TPU clusters to process massive
datasets. This energy-heavy process is an environmental concern [SGM19, BGMS21]
because training procedure emits a lot of CO2. Moreover, due to the high computational
costs it is harder for smaller organisations to get access , which concentrate AI development
among a small number of well-funded institutions. Even after training, these models are
still expensive to deploy for real-time use because of their high memory and processing
requirements [SGM19].

Another issue with LLMs is Interpretability. Even though these models are accurate,
it is challenging to understand how they arrive at particular conclusions because they
work like "black boxes". This lack of transparency is particularly troubling in sensitive
areas such as the medical field, where trust and rationale are essential. There is currently
work is ongoing to improve interpretability, but definitive solutions have not yet been

16



2.2. Large Language Model

reached [DVK17, SIG+24].

Although LLMs can understand and produce human-like text, their ability to handle
long-term dependencies is still limited by their context window. Models like GPT-3
have a finite context window, which means they struggle to capture very distant word
connections in text [BMR+20]. This limitation becomes a problem for tasks that need to
understand long documents or keep track of context in extended conversations.

In conclusion, although LLMs are great at producing natural-sounding language, they still
have major challenges, such as built-in biases, errors, high computational requirements,
limited transparency, and struggles with managing long-term information. Addressing
these issues is crucial, especially in sensitive applications, and requires ongoing research
to ensure responsible AI use.

2.2.3 Practical Applications
LLMs have significantly changed the way software developers write, fix, and improve
code. Their ability to process and generate text has simplified the coding processes since
it saves developers time and effort, as illustrated in Table 2.6.

Category Description Tools

Code Generation Generates and completes code snippets based on prompts,
which reduces repetitive tasks and improves productivity.

GitHub Copilot2, OpenAI
Codex3

Bug Detection and De-
bugging

Identifies coding errors and suggests fixes to streamline debug-
ging and improve code reliability.

DeepCode4, CodeWhis-
perer5

Code Review and Opti-
mization

Provides suggestions to improve code efficiency, readability,
and maintainability.

Codiga6, TabNine7

Knowledge Assistance Answers programming questions and explains technical con-
cepts or APIs to assist developers.

ChatGPT8, StackOverflow
Assistant9

Testing Automation Generates test cases and identifies edge cases to ensure robust
and reliable software performance.

EvoMaster10, Diffblue
Cover11

Table 2.6: Applications of LLMs in Software Development

The automation of code creation is one important application of LLMs in programming as
it makes it possible to save time . GitHub Copilot and OpenAI Codex are two examples
of tools that let developers quickly build and test their ideas by converting typed prompts
into functioning code [CTJ+21]. As a result, developers can focus on tackling more
complex problems and cut down on time spent on monotonous work. However, the code
must still be manually tested to ensure semantic accuracy even if the code is syntactically
correct.

Additionally, LLMs can help with debugging by reviewing code, finding errors, and
suggesting fixes. There are tools like CodeWhisperer and DeepCode make the debugging
process faster and easier. Other tools, such as Codiga and TabNine, help improve code
quality by making it more readable, maintainable, and easier to review and optimize.

Furthermore, LLMs provide extremely helpful knowledge support by answering pro-
gramming queries, explaining complex ideas, and providing documentation
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for APIs and libraries. For example, ChatGPT makes it easier for developers to learn
and troubleshoot. To ensure reliable program behavior, LLMs also automate the creation
of test cases and identify edge cases using tools like EvoMaster and Diffblue Cover.

In conclusion, LLMs have transformed software development by speeding up coding,
debugging, testing, and code reviews. Tools like Codex and Copilot can help automate
routine coding, testing, and debugging tasks (see Table 2.6).

2.2.4 Summary
Large Language Models (LLMs) use the Transformer architecture, which helps them to
understand and generate human-like language. Popular models are like BERT [DCLT19],
GPT-3 [BMR+20], GPT-4 [Ope23], and LLaMA [TLI+23]. If one wants to use the model
for a specific purpose, it has to be fine-tuned. These models are particularly good at
understanding word relationships and context using techniques like self-attention and
positional encoding.

This thesis compares GPT-4o-mini and GPT-o1, which represent different sizes and levels
of optimization in LLMs. GPT-4o-mini is designed for high-performance tasks but is
smaller and more affordable than bigger models. On the other hand, GPT-o1 and its
smaller version, GPT-o1-mini, are built for speed and efficiency. This makes them a
good fit for situations where fast responses and lower resource use are important. This
thesis looks at what each model does well, where they struggle, and how they work in
real-world cases. It also shows how model size and optimization affect performance in
different situations.

While LLMs offer many advantages, they also come with some challenges. These
include bias in the training data, generating incorrect but convincing answers (called
"hallucinations"), high computing costs, and difficulty handling long-term context (see
Table 2.5). Fixing these problems is especially important in areas like healthcare and
law, where accuracy and fairness are critical.

LLMs are also becoming useful tools in software development. Tools like OpenAI Codex
and GitHub Copilot can help automate tasks like coding, debugging, and testing (see
Table 2.6). Other LLM tools can support code reviews, give programming tips, and
generate test cases to save time and improve code quality.

In summary, LLMs are good at understanding and generating language. They represent
a big step forward in AI. This thesis looks at how models like GPT-4, GPT-o1, and
GPT-o1-mini deal with current challenges and how well they perform in real-world tasks.

2.3 Prompt Engineering
Prompt Engineering was created to make the answers from Large Language Models
(LLMs) more accurate and relevant. Since LLMs heavily rely on the quality of the prompts
they receive, well-structured prompts help reduce errors, ensure precise answers, and make
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interactions more efficient [SIB+24]. Prompt Engineering makes LLMs more efficient
and useful by saving time, reducing costs, and allowing for customized interactions
across industries. It has grown from basic prompts to more high-level methods like
Chain-of-Thought, Tree-of-Thought, and In-Context Learning, which help LLMs
handle complex reasoning. As a result, it has become a key research area for improving
accuracy and relevance in AI responses [SIB+24].

2.3.1 Chain-of-Thought
The Chain-of-Thought (COT) walks the LLM through "reasoning steps" to help them
tackle complicated problems [WWS+22]. This is done by dividing a task into smaller
logical steps rather than giving an answer right away, which allows the model to "think
out loud". This increases accuracy and simplifies the reasoning process, especially
for multi-step tasks like logical reasoning, math problem solving, and common sense
comprehension [WWS+22, SIB+24].

Using prompts such as "Let’s solve this step by step" [KGR+22] helps COT the model
to break the given prompt into smaller steps. It breaks down challenging tasks into
smaller, more manageable sub-tasks, which prevents the model to rush its’ responses
thereby improving accuracy. Through an explanation of its reasoning, the model becomes
more transparent, which reduces errors. For multi-step tasks like logical reasoning and
math problems, COT is helpful as these tasks need a structured approach rather than
an immediate answer. Moreover, it helps the model to produce more thoughtful and
organized answers across different domains[WWS+22, SIB+24].

For example, in order to solve the question "What is the sum of the first 10 even
numbers?" [Agg23], the phrase "Let’s break this down step by step." [WWS+22, SIB+24]
can be added before it. The model breaks the problem down into three steps. In the first
step, the model lists the first ten even numbers (2 to 20), then it adds them up one by
one ("2+4 = 6", "6+6 = 12", ...), and finally gives the correct answer, which is "110". In
order to catch mistakes, a check like “If the Total is over 100, double-check your math”
can be added [R24, KGR+22, WWS+22].

In short, COT helps the model solve complex problems by breaking them into smaller
steps, leading to more accurate and relevant answers.

2.3.2 Tree-of-Thought
Instead of using a linear step-by-step process, the tree-of-thought (TOT) Prompt Engineer-
ing strategy incorporates branching paths of reasoning, building on the chain-of-thought
(COT) approach [YYZ+23, SIB+24]. To arrive at a final answer, the TOT strategy allows
the model to evaluate multiple potential solutions in a tree-like structure [YYZ+23]. This
method is particularly useful for tasks like planning, problem solving, and scenarios that
call for decision making in the face of uncertainty or where there are many different
options to choose from [GOP+23, SIB+24, Lon23, LZ25].
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An work that uses a similar approach is PentestingGPT [DLMV+24], which uses the Pen-
testing Task Tree (PTT) that resembles the structure of a TOT prompt (see Figure 2.4).

Figure 2.4: Pentesting Task Tree taken from [DLMV+24]

If one wants to solve the question "What is the sum of the first 10 even numbers?"[Agg23]
in TOT, one has to add the following prompt proposed in [Hul23]:"Imagine three different
experts are answering this question. All experts will write down 1 step of their thinking,
then share it with the group. Then all experts will go on to the next step, etc. If any
expert realises they’re wrong at any point then they leave. The question is...". The
experts represent three different branches, where each tries to find a solution. Each
expert comes up with different ideas: one lists and added the numbers, another uses
pairing, and the third applies the formula for sum of an arithmetic series. As a next
step, they compare their reasoning step by step. At the end, they all arrived at the
answer"110", which confirms each reasoning. No expert dropped out, as all paths were
correct and reached the same answer.

By allowing the model to avoid unhelpful paths and focus on better options, the TOT
approach makes problem-solving more flexible and increases the chances of finding the best
answers to difficult questions. This branching method helps the model explore different
options, which leads to more detailed answers and better analysis [YYZ+23]. As a result,
TOT works well for NLP tasks that need step-by-step thinking and decisions.allows
models to explore different possibilities, leading to more detailed responses and deeper
analysis [YYZ+23].

2.3.3 In-Context-Learning
With In-Context Learning (ICL), LLMs can complete tasks without fine-tuning as
they generate responses based on context given inside the prompt [BMR+20, RWC+19].
This context can be in the form of examples or descriptions. Usually, the number of
examples is bound by its context window, which is the maximum number of "tokens"
(words or pieces of words) including input and output that the model can process at
once [Ber24]. A specific type of ICL is "one-shot-learning", where the prompt only gets
one example [Li23, BMR+20].

ICL helps a model infer the correct response patterns and apply similar reasoning to
new inputs by providing it with a few examples of "input-output pairs" right in the
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prompt [BMR+20]. When a prompt contains examples, the model is better able to
adjust to tasks like summarization, translation, and classification. Rethinking role
demonstrations makes sense [MLH+22].

If one wants to solve the question "What is the sum of the first 10 even numbers?"[Agg23]
by using ICL, examples have to be added to before it to give the model more context.
For instance, the prompt could look like this "Example 1: Question: What is the sum of
the first 5 even numbers? How to solve it: The first 5 even numbers are: 2, 4, 6, 8, 10.
Their sum is: 2 + 4 + 6 + 8 + 10 = 30. Answer: 30 Example 2: Question: What is the
sum of the first 8 even numbers? How to solve it: The first 8 even numbers are: 2, 4, 6,
8, 10, 12, 14, 16. Their sum is: 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 = 72. Answer: 72
What is the sum of the first 10 even number ?"[Agg23]. The model would then proceed
as in the examples. First, it lists the first ten even numbers, then it adds all of them up
and finally, gets the answer 110.

Many NLP tasks benefit from using in-context learning (ICL), especially when quick
learning is needed. For example, the model can give personalized answers or handle
questions on a specific topic. It does this by finding patterns in the examples it sees and
applying them to new inputs and because of this ICL is a helpful technique for prompt
engineering [WZS+23, SIB+24].

2.3.4 Further enhancements
There have been recent developments in prompt engineering, which can improve prompts
even further:

• Decomposition: Tasks are broken down into simpler sub-tasks using techniques
such as Plan-and-Solve, which improves the reasoning of the model through struc-
tured thinking. An example for such a prompt, proposed by Schulhoff et al. [SIB+24],
is: "Let’s first understand the problem and devise a plan to solve it. Then, let’s
carry out the plan step by step."

• Self-Criticism and Refinement: Prompts in Self-Refine help the model to
generate an answer, then critique it, and later improve it based on its own feedback
in an iterative loop. For example, one could as the model after getting an answer
back from the question "Is the above answer correct? If not, explain why and revise
it."[SIB+24, Bha24].

• Iterative Reasoning: Techniques like Cumulative Reasoning allow the model to
stop, evaluate intermediate steps, revise them if necessary, and explore alternative
paths for more reliable results [ZYYY23, SIB+24].

2.3.5 Summary
Prompt Engineering strategies like Chain-of-Thought (COT), Tree-of-Thought (TOT),
and In-Context Learning (ICL) are different methods that improve the performance of
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LLMs (see Figure 2.5) [SIB+24]. Each strategy tackles different challenges in reasoning,
which ensures that the approach fits the task for which it is used for.

Figure 2.5: Prompting strategies

The Chain-of-Thought (COT) strategy helps LLMs to solve problems step-by-step by
breaking them down into smaller parts. This does not only make it easier to follow the
"thought" process of the model, but also leads to greater accuracy. Moreover, just adding
prompts like "Let’s solve this step by step" can help the model think more clearly and
avoid rushing into wrong answers [KGR+22]. Usually, COT works very well for tasks
that require logic, math, or everyday reasoning [WWS+22].

The Tree-of-Thought (TOT) strategy builds on this idea by letting the model explore
different possible solutions in parallel, like branches growing from the same trunk. This is
helpful for tasks that need creativity, planning, or flexible thinking, where there isn’t just
one right answer [YYZ+23]. The model explores different options, keeps the best ones,
and ignores the rest [GOP+23]. Despite its computational demands, TOT enhances the
breadth and depth of problem solving [SIB+24].

The In-Context Learning (ICL) strategy differs from both COT and TOT by using
examples provided directly within the prompt. By giving input-output examples, ICL
helps the model in applying its reasoning to tasks like classification, summarization, and
domain-specific question answering [MLH+22]. But the key to its success is selecting
relevant and high-quality examples.

Every strategy has its own advantages and disadvantages. COT tends to work well for
tasks that follow a clear, step-by-step process like solving a math problem. On the other
hand, TOT is better for situations that need more flexibility, such as brainstorming or
exploring alternatives. ICL relies on examples, which makes it great for quickly adapting
to new types of tasks. Knowing how these methods differ helps people pick the right
one for their use case and make better use of what LLMs can do. They can be further
improved by adding self-verification, iterative reasoning, or decomposition.
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2.4 Related Work

Before Large Language Models (LLMs) were integrated, REST API testing had already
seen major advancements.

Already in 2019,RESTler was introduced by Atlidakis et al. [AGP19], which uses stateful
fuzzing and OpenAPI specifications for testing. In 2020, Viglianisi et al. [CZPC22]
developed RESTTESTGEN, a tool that generates tests from API interface definitions
by using Operation Dependency Graph (ODG). A year Later, Martin-Lopez et al. [MSR21]
published RESTest, a model-based framework for creating thorough test cases.

Building on these approaches, Alonso et al. [AMS+23] introduced ARTE, which used
database queries to create realistic test inputs to improve REST API testing. Arcuri et
al. [Arc19b] developed EvoMaster, which combines black-box and white-box techniques
with evolutionary algorithms to improve test coverage.

More recently, RESTSpecIT [DPP+24] used LLMs for black-box testing, which means
that the internal structure of the API is unknown. It can understand how an API
works without needing pre-written documentation. It automatically figures out API
specifications and generates test data with minimal input. This reduces the effort needed
to create detailed test cases, allowing APIs to be tested more quickly and thoroughly
with little manual work. Both tools show how LLMs and AI can automate complex
REST API testing. They improve test case generation, make testing more adaptable,
and reduce manual effort, making API testing more flexible, efficient, and thorough.

In summary, REST API testing has improved from early tools like RESTler, RESTTEST-
GEN, and RESTest to more advanced ones like ARTE and EvoMaster. These tools
introduced new ways to test APIs like fuzzing, dependency-based test generation, and
evolutionary algorithms. Newer tools like ARAT-RL and RESTSpecIT use LLMs to take
API testing a step further. They use black-box testing and reinforcement learning to
make testing more complete, flexible, and efficient. As LLMs improve, they could make
testing easier, cut down on manual work, and increase test coverage.

2.4.1 Automated REST API Testing without LLMs

REST APIs were automatically tested in many different ways before to the raise of LLMs.
They were thoroughly tested using different techniques in either white-box or black-box
setting. Additionally, complex interactions were simulated with the help of methods
such as model-based testing, evolutionary algorithms, and stateful fuzzing. Moreover,
several test generation techniques were applied in order to produce realistic test scenarios.
Sequence building, sampling, and constraint solving were among them (see Table 2.10).

Validation mechanisms frequently check status codes, detect server errors, and ensure
schema compliance. Together, these strategies enable for thorough testing and identify
issues that might be missed with simpler methods.
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Tool Methodology Testing Type Test Generation Dependency/Mutation
Handling

Metrics

RESTler
(2019)

Stateful fuzzing Black-box Stateful request se-
quences

API endpoint dependencies Status code checks
(5xx), schema com-
pliance

RESTest
(2020)

Model-based testing Black-box Constraint-solving Inter-parameter dependen-
cies

Nominal + er-
ror test, Status
code checks (5xx),
schema compliance

EvoMaster
(2021)

Evolutionary algo-
rithms

Black-box +
White-box

Sampling-based +
mutation-based

Operation dependencies Automated oracles
(5xx), code coverage

ARTE (2022) Semantic-based test-
ing

Black-box Uses knowledge
bases to to create
inputs for testing

Uses NLP for extracting
keywords

Status code checks
(4xx, 5xx), response
validation

RestTestGen
(2023)

graph-based testing Black-box Graph to define
meaningful execu-
tion orders

Missing Required, Wrong
Input Type, Constraint Vi-
olation

Status code checks
(4xx), schema com-
pliance, Nominal +
error tests

Table 2.7: Comparison of Automated REST API Testing Tools

RESTler, the "first stateful REST API fuzzing tool", was created by Atlidakis et
al. [AGP19] to evaluate the security and robustness of cloud services via their REST
APIs. Unlike traditional fuzzers, RESTler focuses on stateful test generation, which
means that it tries to discover service states that can only be accessed by a series of
requests. This kind of testing mimics real-life scenarios. Since it is a black-box tool, it
has no access to the internal code and uses the OpenAPI specification of the REST API
to infer dependencies between endpoints. For example, if one request generates a resource
ID needed by another, then RESTler ensures they are executed in the correct order. It
then creates a Python-based test grammar, which uses the functions restler_static
and restler_fuzzable to model request structures and introduce fuzzable inputs.
This grammar helps RESTler build and check request sequences, starting simple and
getting more complex, while checking responses (like HTTP 200) and using dependencies
to extend tests. By adding dynamic data makes the tests even more varied. Moreover,
RESTler uses smart search strategies like RandomWalk, BFS-Fast, and breadth-first
search (BFS) to explore the API more effectively. These strategies allow RESTler to
identify significant bugs, particularly server errors (HTTP 500). Testing in the real world
has demonstrated that RESTler can identify security flaws [AGP19].

RESTest [MSR21, DPP+24] is a black-box tool for generating tests using a "system
model", which is an OpenAPI specification, and a "test model" that is a YAML file
containing configurations. Using these two models, an abstract test case is generate,
which are later instantiated into executable tests. A advantages feature of RESTest is
supports inter-parameter dependencies, which are constraints between input parameters
in an API operation that must be fulfilled to form valid requests. It translates these
dependencies, which are defined in a constraint language, into an OpenAPI standard. It
supports various test generation strategies, including adaptive random testing, constraint-
based testing, and fuzzing. The latter uses constraint solvers (IDLReasoner) to ensure
that the dependencies are respected. It focuses on dependencies between parameters.
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RESTest uses random input generation and constraint solving to generate two kinds of
tests: "faulty" tests, which violate the rules or omit necessary parameters, and "nominal"
tests, which follow the rules to generate legitimate (2xx) replies. Moreover, RESTest uses
"test oracles" to make sure the response does not return a server error (5xx), follows the
correct format, and has the right status code depending on the type of test—whether it’s
a normal request or one meant to cause an error [MSR21].

EvoMaster [Arc19b] is a REST API testing tool with support for white-box as well as
black-box testing which parse the OpenAPI specification as a starting point. In black box
mode (EvoMasterBB) [KXSO22], generates random requests to test different API routes.
To maximize code coverage in white-box mode (EvoMasterWB) [KXSO22], EvoMaster
uses the evolutionary algorithm of MIO [Arc19a] and has access to the internal code.
MIO evolves a population of test cases by selecting, mutating, and discarding tests based
on their fitness for covering new targets. Additionally, EvoMasterWB uses two methods
to generate test, which are sampling-based and mutation-based methods. Sampling-based
tests are created from scratch with random or smart sampling, while mutation-based
tests modify existing structures. Both modes use an automated oracle to detect service
failures (5xx) [Arc19b, KXSO22].

ARTE (Automated REST Testing Engine) is a semantic-based testing tool to gen-
erate realistic input values for REST API testing [AMS+23]. It starts by analyzing the
OpenAPI specification and uses external knowledge bases to retrieve predicates, which
are are used for to create SPARQL queries. These queries are used to look for test inputs.
In order to further improve the input quality, it uses regular expressions to filter and
search for both valid and invalid values. ARTE has been integrated into RESTest and
has helped increase the number of successful API calls during testing.

RESTTESTGEN automatically creates REST API test cases by modeling "producer-
consumer" relationships using an Operation Dependency Graph (ODG) [CZPC22]. It
starts with parsing the OpenAPI specification and extracts operations and schemas into
internal models. Then the ODG is constructed, where the nodes represent the API
operations, and edges show when the output of one operation is used as input for another.
The graph captures how API operations depend on each other, which helps it to define
meaningful execution order of the testing steps. Then, it generates test sequences, each
made up of one or more test interactions. The input values for parameters are filled
using various strategies like random generation, enum/example values, or previously seen
values. For error testing, RESTTestGen applies mutation operators to introduce faults
like missing required fields or invalid types. Finally, the responses are checked using test
oracles: one evaluates HTTP status codes (2xx, 5xx), and another validates response
schemas. Finally, results are saved using built-in writers—either as structured JSON
reports or executable Java tests using REST-assured [CZPC22].
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2.4.2 Automated REST API Testing with LLMs
The rise of LLMs has brought new tools and techniques that make REST API testing
faster, more flexible, and more complete. Compared to traditional methods, these tools
use LLMs to understand complex OpenAPI specifications, create detailed test cases, and
fill in missing parts of the documentation. LLMs can handle complex situations and
make testing more realistic, which helps to find hidden bugs. This section looks at key
tools (see Table 2.8) that use LLMs for advanced API testing, such as rule extraction,
guessing missing specs, and planning test tasks on the fly.

Tool Methodology Testing Type Test Generation Dependency/Mutation
Handling

Evaluation Met-
rics

RESTGPT
(Kim, 2023)

Rule extraction
and specification
enhancement

Black-box
inference-based
testing

Few-shot prompting
with context-specific
examples

Rule generator and specifi-
cation enhancer

Rule extraction accu-
racy, precision, and
coverage

RESTGPT
(Luo, 2023)

Task decomposition
for API interaction

Black-box dy-
namic online
planning

Coarse-to-fine online
planning

Planner, API selector, ex-
ecutor

Success Rate, Cor-
rect Path Rate

RESTSpecIT
(2023)

OpenAPI specifica-
tion inference and
mutation

Black-box
mutation-based
testing

Focused mutation on
routes and parame-
ters

Masking, mutation process Specification com-
pleteness, API
behavior discovery

Table 2.8: Comparison of LLM-based REST API Testing Tools

The goal of RESTGPT et al. Kim [KSS+24] is to make REST API REST API testing
better by extracting constraints from OpenAPI specifications. This ensures that APIs
function correctly and adhere to intended behaviors. The study does not explicitly address
security vulnerabilities, such as identifying potential exploits or weaknesses within the
APIs. However, by improving the thoroughness of API testing, RESTGPT can indirectly
contribute to identifying issues that could have security implications. It uses Prompt
Engineering strategies, specifically few-shot prompting with context-specific examples,
to help the LLM in extracting rules from API specifications and improves the ability of
the model to produce precise and relevant test cases, which leads to better overall API
testing quality [KSS+24].

The approach involves several stages (see Figure 2.6) [KSS+24]:

• Rule Generator: RESTGPT uses GPT-3.5 Turbo with special prompts to extract
four types of rules, which are operational constraints, and parameter-related rules
including constraints, types, formats, and examples. It uses few-shot prompting
and context-specific examples to make the rules more accurate and useful.

• Specification Enhancement: RESTGPT augments OpenAPI specifications
by merging machine-readable constraints with insights from natural language
descriptions. This combined format provides enhanced specification documents
that improve the coverage of API tests by including parameter constraints, types,
formats, and examples.
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Figure 2.6: RESTGPT workflow et al. Kim [KSS+24]

When comparing RESTGPT to NLP2REST, RESTGPT shows better performance in rule
extraction accuracy, precision, and coverage. The authors attribute these improvements
to RESTGPT’s use of context-aware language model prompts and structured rule
extraction [KSS+24].

RestGPT by Song et al. [SXZ+23] enables LLMs to interact with real-world RESTful
APIs. The main goal is to improve response parsing, task decomposition, and making
complex REST API interactions easier. It achieves this by using coarse-to-fine online
planning mechanism, which allows dynamic task planning and execution. Moreover, it
is important to note that this paper does not focus on security testing. However, the
authors recognize the importance of security and state that "security issues are also
important in real-world applications" [SXZ+23].

Figure 2.7: RestGPT workflow by Song et al. [SXZ+23]

RESTGPT consist of three modules, as shown in Figure 2.7):

• Planner: This module breaks down the user instructions into manageable subtasks.
It can adjust to changes and uses a flexible “plan and execute” loop to refine tasks
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based on the user’s goal.

• API Selector: The API Selector selects the right APIs to complete each task
based on the sub-tasks that the Planner has created.

• Executor: This module handles responses and makes the actual API calls. It
consists of a Caller that creates API requests and a Parser that uses the response
to create Python code that reads and extracts data from the responses.

RestGPT can select APIs, break down tasks, and carry out plans step by step using a
"coarse-to-fine" planning system. This allows it to adjust in real time based on feedback.
For the evalution of effectiveness, the authors present the benchmark "RestBench", which
includes two real-world scenarios (TMDB and Spotify). The reason why they are used is
that they need multi-step API interactions. They measure performance using metrics
like Success Rate and Correct Path Rate to see how well RestGPT handles complex
tasks. The results show that RestGPT performs well, successfully managing complicated
API interactions. Moreover, it is important to point out that RestGPT does not use a
Prompt Engineering strategy but follows a structured approach to help the LLMs. The
system includes three key components: Planner, API Selector, and Executor, which use
carefully designed prompts to help the LLM break down tasks, select the right APIs,
and interpret responses. By using context-aware prompts, this method effectively applies
Prompt Engineering to achieve accurate and reliable results [SXZ+23].

Another framework called RESTSpecIT [DPP+24] uses LLMs (GPT-3.5) to test REST-
ful APIs and infer OpenAPI specifications. In particular, it focuses on finding server
errors in RESTful APIs and undocumented routes and parameters. It only needs the API
name and an LLM key to automatically create and edit HTTP requests with little user
input (see Figure 2.8). While its main goal is to improve API testing and documentation,
it can also accidentally uncover security issues, like misconfigured or hidden endpoints.
It is important to note that RESTSpecIT uses Prompt Engineering strategies to assist
LLMs in generating HTTP requests. For this purpose, it uses "in-context prompt mask-
ing technique". This approach enables the tool to infer API specifications effectively
without requiring fine-tuning of the model. However, it is important to mention that
this framework is not made for security testing.

RESTSpecIT is made up of four essential phases:

• User Initialization and Input: For initialization, it needs an LLM key, an
API name and a small configuration file. Then it generates an initial OpenAPI
specification and requests that the LLM gather the required API data (such as the
description, URLs, and terms of service).

• Masking and Mutation Process: It selects HTTP request seeds and applies
mutation operators like adding parameters or changing routes to mask specific
parts of the request. Then, it uses the LLM to generate new versions of those parts.
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Figure 2.8: RESTSpecIT workflow et al. [DPP+24]

The modified requests are checked to make sure they meet certain conditions, like
getting a 2xx status code and not containing error messages.

• Specification Inference: It updates the OpenAPI specification based on the
validity of the request. If the request was valid, it is added to the seed list and the
route is added to the specification. If new parameters for an endpoint are found,
they are added to the entry of the route in the documentation. Concrete values are
recorded in form of examples in the OpenAPI specification.

• Mutation Strategies: The tool uses three techniques (Focus Routes, Focus Param-
eters, and Focus All) to analyze the API structure more thoroughly. Each method
applies specific mutation changes step by step to discover new API behaviors.

The evaluation of RESTSpecIT shows its capability to infer API structures and generate
comprehensive OpenAPI specifications with minimal input, demonstrating its effective-
ness in testing and documenting RESTful APIs through LLM-powered mutation and
validation.

PentestGPT was developed by Deng et al. [DLMV+24] and uses LLMs for automated
penetration testing. It tackles important issues with context maintenance in complex
testing situations [ISCK24].

PentestGPT consists of three essential modules, where each serves a specific pur-
pose [DLMV+24]:

1. Reasoning Module: It refreshes the Pentesting Task Tree (PTT), which lays out
testing methodologies, and keeps a high-level perspective.

2. Generation Module: It converts the Reasoning Module’s strategic plans into
test commands.

3. Parsing Module: It processes and simplifies wordy outputs from various sources
to help with data interpretation and decision making.
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Figure 2.9: PentestGPT workflow et al. Deng al. [DLMV+24]

PentestGPT operates through several phases (see Figure 2.9) [DLMV+24]:

• Initialization and Configuration: In this phase, the initial test parameters and
target definitions are set up.

• Task Execution and Monitoring: During this phase, tasks are controlled and
carried out in real time according to PTT updates and data.

• Results Analysis and Feedback Loop: This stage involves constant analysis
and improvement of the outputs to guarantee that the PTT accurately reflects the
testing state.

In automated penetration testing, it has performed better than traditional LLM ap-
plications. It has been extensively tested in real-world settings, including established
benchmarking platforms and HackTheBox12 challenges, where it has demonstrated
significant gains in task completion rates and overall efficacy [ISCK24].

It shows that LLMs can offer improvements in cybersecurity by making penetration
testing processes more precise and efficient. Its release as an open source tool enables
continuous development and encourages community contributions, which are vital for
advancing cybersecurity testing methodologies.

2.4.3 Comparison to this thesis
In comparison to the related work, this thesis explores how Prompt Engineering strategies
can be utilized to enhance LLM performance in REST API testing and looks at their
potential to dynamically detect security vulnerabilities. While existing automated testing
tools, whether LLM-based or not, focus primarily on robustness and functional testing,
they largely overlook targeted security vulnerability detection. Although PentestGPT is
oriented towards penetration testing, it separates the documentation process from the
testing itself. This gap forms the basis of our work.

12https://www.hackthebox.com
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Point Existing Tools This Thesis

Focus Area Functional testing and robustness. Detecting security vulnerabilities in REST
APIs.

Specification Genera-
tion

Generates OpenAPI specifications using
tools like RESTSpecIT.

Generates OpenAPI specifications focused
on security risks using the "WebAPIDocu-
mentation" approach.

Testing Objectives Prioritizes functional coverage and specifica-
tion completeness.

Targets OWASP Top 10 risks, such as injec-
tion attacks and broken authentication.

Methodology Uses standard strategies for robustness and
compliance.

Integrates LLMs with Prompt Engineering
for dynamic security test cases.

Advancements Limited in addressing security vulnerabili-
ties.

Bridges functional testing and security as-
sessment for comprehensive testing.

Table 2.9: Comparison Between Existing Tools and This Thesis

Building upon concepts from tools like RESTSpecIT, we similarly generate OpenAPI
specifications dynamically by querying the REST API using the "WebAPIDocumentation"
approach (see Section 3.2.1). However, our approach’s objectives and focus are completely
different. Compared to other tools that focus on functional coverage or completeness
of specifications, our approach is specifically designed to identify and evaluate security
flaws.

Our testing framework focuses on the OWASP Top 10 security risks (see Table 3.1), which
include Broken Authentication, Injection Attacks, and Security Misconfigurations. We
combine specialized Prompt Engineering techniques with LLMs to enable the dynamic
generation of targeted test cases to actively search for these vulnerabilities. This approach
provides a comprehensive framework for safeguarding REST APIs and expands the range
of currently available tools by bridging the gap between functional testing and security
assessment.

2.4.4 Summary
Traditional REST API testing automation tools like RESTler and EvoMaster depend
on structured approaches such as stateful fuzzing, evolutionary algorithms, and graph-
based analysis. These approaches depend heavily on predefined rules, API specifications
(OpenAPI), and static dependency management. In contrast, LLM-using tools, such
as RESTGPT and RESTSpecIT, dynamically interpret API documentation, generate
test cases, and even infer missing specifications. This ability introduces context-aware
reasoning and adaptive test generation, which were previously absent in rule-based
systems.

Test generation is a key area where LLM-based tools offer significant advancements. They
use dynamic techniques such as few-shot prompting (RESTGPT by Kim), task decom-
position (RestGPT by Luo) and mutation strategies (RESTSpecIT). These approaches
enable LLMs to create customized test cases based on learned API behaviors. LLMs also
make it possible to improve pentesting (PentestGPT). In comparison, traditional tools
that do not use LLMs rely on static methods like building sequences, sampling, solving
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Point Without LLMs With LLMs

Methodology and Ap-
proach

Uses fixed rules and tools like fuzzing or evolutionary
algorithms.

Understands docs and fills gaps using language mod-
els.

Testing Type Uses black-box and white-box testing with stateful
flows.

Uses adaptive black-box testing based on context.

Test Generation Builds tests using static sequences and constraints. Uses prompts and mutations to create tests on the
fly.

Dependency and Muta-
tion Handling

Uses static rules to handle dependencies and muta-
tions.

Learns and adjusts dependencies dynamically.

Evaluation Metrics Measures code coverage, schema checks, and status
codes.

Adds metrics like rule matching and behavior detec-
tion.

Strengths Works well with full API specs and stable systems. Flexible for incomplete docs and complex APIs.
Limitations Needs full specs and struggles with changing APIs. Depends on LLM quality and needs more compute.
Use Cases Best for stable, well-documented APIs. Suited for exploring and testing evolving APIs.

Table 2.10: Comparison of API Testing Tools With and Without LLMs

constraints, and applying mutations. These methods are not flexible and cannot easily
adjust to complex or changing situations.

Although API testing without LLMs has proven to be highly reliable in structured
environments with well-defined specifications, it is most effective for detecting common
bugs and ensuring compliance. These tools use clear metrics like code coverage and schema
validation that makes them reliable in predictable situations. However, LLM-based tools,
although relatively new and less extensively validated, show greater adaptability. They
work very well for testing APIs with incomplete or poorly documented specifications.
This is because they can infer missing information, generate test cases dynamically, and
explore complex edge cases.

Both approaches have drawbacks. Testing tools without LLMs depend on complete
and accurate API specifications. This makes them not work well when faced with
undocumented or dynamically evolving APIs. Their testing coverage is often constrained
by predefined methodologies and static rules.

On the other hand, LLM-based tools heavily depend on how well the language model
understands the prompt, which can lead to mistakes if the context is not clear. Moreover,
they need a lot of computing power, which makes them more expensive to run and they
need a lot resources.

In short, traditional tools are strong in well-defined settings and follow clear rules, while
LLM tools offer more adaptability and can handle harder testing problems. Used together,
they can provide more complete REST API testing (see Table 2.10).
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CHAPTER 3
Approach

This elaborates on the technical/ formal contributions, conceptual approach, and imple-
mentation of this thesis.

3.1 Technical/Formal Contribution
This thesis aims to evaluate the effectiveness of Large Language Models (LLMs) in
generating test cases for REST APIs, identify the most effective Prompt Engineering
techniques for this purpose, and assess their ability to detect potential failure points or
vulnerabilities with accuracy. In order to answer these questions, an extensive literature
review was conducted, and preexisting work like RESTGPT and RESTSpecIT were
closely examined and tested before implementing our use case in HackingBuddyGPT1.
This was done to find out the drawbacks of the currently existing solutions. The following
conclusions could be drawn from these two tools:

• The output of an LLM is dependent on the prompt’s structure, specificity, and clarity
because well-written prompts direct the model to provide precise and pertinent
answers.

• Good REST API testing depends on a good OpenAPI specification.

• None of them experimented with Prompt Engineering and explored how this could
improve the performance of the models.

• The tools for automatic test generation did not specifically test if the REST APIs
had security vulnerabilities.

1https://github.com/ipa-lab/hackingBuddyGPT
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Therefore, in this work, we first focused on automating the way of creating a good
OpenAPI specification with the help of the LLM similar to how it was done in RESTSpecIT
in a black-box setting. This OpenAPI specification was generated by continuously giving
feedback to the model. Then this OpenAPI specification was used in order to properly
test the REST API for this we used the OWASP Top 10 security risks (See Table 3.1).

Vulnerability Description Measurement Methods

Authentication Issues Testing credential-based authentication, token va-
lidity, and privilege escalation

Query endpoints for login, verify token/session
validity, simulate brute-force attacks

Authorization Issues Unauthorized access or privilege escalation vulner-
abilities

Simulate role-based access control (RBAC) viola-
tions, test restricted endpoint access

Injection Attacks SQL, command, or NoSQL injection vulnerabilities Dynamically test inputs for unsanitized parameters,
automate SQL/command injection scenarios

Input Validation Testing for improper input handling Test for invalid formats, boundary values, and pa-
rameter injection

Error Handling & Information
Leakage

Leaking sensitive error messages or data Trigger errors intentionally, analyze responses for
sensitive information

Sensitive Data Exposure Unencrypted data transmission or misconfigured
security headers

Inspect API responses and headers for exposed
sensitive data or missing encryption

Rate Limiting & DoS Protection Protection against brute-force or DoS attacks Simulate high request loads, check for rate-limiting
mechanisms

Special Authentication Mecha-
nisms

Testing advanced authentication setups (e.g., multi-
factor, token-based)

Evaluate multi-factor authentication flows, tamper
with token structures

Endpoint Categorization Analyzing categorized endpoints for structural is-
sues

Use OpenAPI parsing to classify and test endpoints
systematically

Table 3.1: API Security Vulnerabilities and Measurement Methods Implemented in Code

3.2 Conceptual Approach
In this thesis, the automation of the generation of OpenAPI specifications and the
execution of security tests was achieved through two use cases: WebAPIDocumentation
and WebAPITesting. First, the OpenAPI specifications were created using WebAPIDoc-
umentation. Then WebAPITesting is used to executes tests based on the specification.

3.2.1 WebAPIDocumentation
WebAPIDocumentation was used to create thorough and accurate OpenAPI specifica-
tions, addressing common issues such as missing information and inconsistencies in the
documentation. The documentation process was divided into two main stages:

1. Explore: In this phase, the model sends GET requests to random endpoint paths
based on the current step. Only GET requests are used to ensure that the state of
the REST API remains unchanged. GET methods are HTTP safe methods because
they only retrieve information and do not change anything. The endpoints that
return 404 (not found) or 400 (bad request) indicate invalid paths or malformed
requests. These enpoints are recorded so that they can be explored in the Exploit
phase. The model systematically queries endpoints to explore the API’s structure
without modifying or deleting data. The endpoints are systematically queried:

a) Find root-level resource endpoints
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b) Find instance-level endpoints
c) Find sub-resource endpoints
d) Find endpoints with query parameters
e) Find related resource endpoints
f) Find multi-level-endpoints

2. Exploit: In this phase, the model should already have discovered all accessible
endpoints based on the responses to the requests. The endpoints that were discov-
ered in the previous phase that returned a 400 or 404 error are now tested with
alternative HTTP methods like POST, DELETE, PUT, and PATCH. Moreover, all
the already found endpoints are tested. Thus, any methods not previously tested
are now explored to determine their compatibility with the identified endpoints.

Figure 3.1: SimpleWebAPIDocumentation

The workflow of this looks like the following (see Figure 3.1):

1. A configuration with minimal information (description, url, and token if needed)
and the type of prompt strategy is passed to the program

2. The PromptEngineer utilizes the PromptGenerationHelper of the chosen
PromptStrategy to generate an adequate prompt based on the phase it is in.

3. The prompt is passed to LLMHandler and executed.

4. The ResponseHandler processes the model’s response. If the response indicates
a new action or a new path, the corresponding HTTP request is made and assessed.
Successful requests (status code 200 without error messages) are logged as correct
in the prompt history. If a 400 error occurs, the error message is recorded to guide
improvements. Unsuccessful actions are noted in the prompt history. Repeated
failures or unsuccessful paths trigger hints or suggestions for common endpoints to
be tested.
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5. The result of the executed HTTP request is given to the DocumentHandler,
which documents the findings in an OpenAPI specification for all successfully found
endpoints. In case a method for an endpoint is invalid, but the endpoint is correct,
this is also saved so that the error behavior is known for the testing procedure.

6. In order to evaluate the program and compare its performance to already existing
tools, the Evaluator calculates and saves the routes found via GET, the parame-
ters found, and the false positive query parameters based on the correct_endpoints
and query_params provided in the configuration.

7. At the end of the run, the finished OpenAPI specification and a report about the
effectiveness of the LLM are the result.

3.2.2 WebAPITesting
SimpleWebAPITesting checks both the functionality and security of the REST API. This
method tests how well the API works and how secure it is against major threats, focusing
especially on the OWASP Top 10 security risks, a list of the most critical web application
security threats (see Table 3.1). By addressing these risks, we aim to ensure that the
API is secure and reliable for practical use.

The workflow of this looks like the following (see Figure 3.2):

Figure 3.2: SimpleWebAPITesting

1. A configuration with minimal information (description, url, and token if needed)
and the type of prompt strategy is passed to the program

2. The PromptEngineer, which is responsible for managing the prompt generation
process, uses the PromptGenerationHelper, which offers helping methods for
the prompt generation such as parsing, of the chosen PromptStrategy (Cot, Tot,
Icl; See Section 3.2.3) to generate an adequate prompt based on the phase it is in.

3. The prompt is passed to the LLMHandler , which handles all operations related
to the LLM like execution and checking the prompt.
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4. The ResponseHandler, which is responsible for parsing the response, processes
the result of the model response. The result is analyzed by the ResponseAnalyzer,
which checks the status code, body and other information of the HTTP request.

5. The analysis from the ResponseAnalyzer is written by the ReportHandler
to a report file.

6. The TestHandler generates test cases and writes them into a test file that can
be executed later.

3.2.3 Prompt Generation Process
The prompts are generated through Prompt Engineer, which creates the prompts with
the help of PromptGenerationHelper based on PromptStrategy (see Figure 3.3). The
PromptStrategy can be one of three types: Tree-of-Thought (TOT), Chain-of-Thought
(COT), and In-context Learning (ICL)(see Section 12).

Figure 3.3: Prompt Generation process

• The Prompt Engineer creates a new prompt using the current interaction context
and strategy with the help of the Prompt Class . The generated prompt is added
to the history and the updated list is returned.

• The Prompt Class generated prompts based on the type of prompt class and
the current interaction context. The Prompt Generation Helper is used to make
prompt generation easier.

• The Prompt Generation Helper offers helper functions that make prompt
generation easier. It tracks the endpoints, generates test prompts, and helps spot
missing parts like endpoints or methods. Based on the results, it adjusts the testing
process to make sure the entire API is tested and well-documented.

There are two different contexts for the prompt: Documentation or Pentesting. For both
contexts, there are base prompts that are modified to fit the prompt strategy.
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Chain-of-Thought Prompts

Chain-of-Thought prompts break tasks into steps to improve clarity and reasoning. These
prompts break down tasks into smaller steps, which helps the model solve problems more
accurately [WWS+22]. Moreover, they include conditional steps, so that the model can
adjust its approach like retrying or improving a response if needed [R24]. When needed
dynamic branching is used, which lets the model try different paths and check its progress
before continuing, which leads to more flexible and effective problem-solving [SIB+24]
(see Figure 3.4b).

Tree-of-Thought Prompts

Tree-of-Thought (ToT) prompts help the model think through problems step by step,
using a branching structure with checkpoints along the way [Hul23, SIB+24]. It starts
with a root, then explores different reasoning paths, where each branch represents a
decision or step. If the model gets unexpected results, it can adjust using conditional
logic [SIB+24]. ToT also uses self-checks to spot and fix mistakes as it goes [WZX+23].
The outputs are clearly structured to make them readable and useful, helping models to
handle complex tasks effectively (see Figure 3.4c).

In-Context Learning Prompts

In-Context Learning (ICL) prompts guide tasks by using past examples. The model
retrieves steps and outcomes from previous tasks and adapts them to fit the current
context. For example, it might include details like API properties and response examples
to improve accuracy. The prompts are dynamically adjusted to reference past examples
and ensure clarity, using structured formats like JSON responses to make them more
useful. This approach helps the model learn from past interactions and solve new tasks
more effectively (see Figure 3.4a).
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Phase: Setup tests
Create an account by sending an appropriate HTTP request to
the correct endpoint: /identity/api/auth/signup with these
credentials of user:
{"name": "anna murphy", "email": "amy69@example.net",
"number": "6153733498", "password": "2SQAhdDvR1"}.
Request body should be in application/json format and look
similar to this:
{"name": "{{name}}", "email": "{{email}}", "number":
"{{phone}}", "password": "{{password}}"}.
Example:
{"email": {"type": "string", "example":
"Cristobal.Weissnat@example.com"}, "name": {"type":
"string", "example": "Cristobal.Weissnat"}, "number":
{"type": "string", "example": "6915656974"},
"password": {"type": "string", "example":
"5hmb0gvyC__hVQg"}}.

(a) Example of In-Context Learning

Phase: Setup tests
Let’s think step by step.

Steps:
Step 1:
Create an account by sending an appropri-
ate HTTP request to the correct endpoint:
/identity/api/auth/signup with these cre-
dentials:
{"name": "mary carpenter", "email":
"samuel47@example.com", "number":
"7394089726", "password": "gZCTNNqj4e"}.
Request body should be in application/json
format and look like:
{"name": "{{name}}", "email": "{{email}}",
"number": "{{phone}}", "password":
"{{password}}"}.

(b) Example of Chain-of-Thought
Root Objective: Setup tests
Tree of Thought:
Branch 1:
Step: "Imagine three different experts are answering this question.
All experts will write down one step of their thinking, then share it with the
group.
Then all experts will proceed to the next step.
If any expert realizes they’re wrong at any point, they will leave.
The question is:" [Hul23, LZ25]
Create an account by sending an appropriate HTTP request to the correct end-
point: /identity/api/auth/signup.
Use the following credentials:
{"name": "denise lin", "email": "tina89@example.org", "number":
"2188816795", "password": "7l7T7g20Ts"}.
Request Body: The request should be in application/json format and look
like:
{"name": "{{name}}", "email": "{{email}}", "number": "{{phone}}",
"password": "{{password}}"}.
Security: Ensure that the correct expected code is received, confirming that
access is restricted and no sensitive data is included in the response body.
Expected Response Code: 200 OK.

(c) Example of Tree-of-Thought, ToT prompting
taken from [Hul23]

Figure 3.4: Examples of prompts for REST API pentesting

3.3 Implementation

The implementation of this thesis was done within the "web_api_testing" use case
of the publicly available open-source project HackingBuddyGPT 2 [HC23]. It is a
GPT-powered tool designed for ethical hacking and API security testing and automates
tasks such as vulnerability assessment, penetration testing, and test case generation,
with a strong emphasis on addressing the OWASP Top 10 risks. LLMs simplify security
testing workflows and increase efficiency.

2https://github.com/ipa-lab/hackingBuddyGPT
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3.3.1 Prompt Generation
The prompt generation process consists of three components PromptEngineer, Prompt,
and PromptGenerationHelper (see Figure 3.5).

Figure 3.5: Prompt Generation Process

The PromptEngineer class serves as the core component for creating and managing
prompts in the HackingBuddyGPT project. It is responsible for generating adap-
tive and context-aware prompts to make tasks such as API testing and vulnerability
assessments easier. The workflow looks like the following (see Algorithm 3.1):

• Initialization: The PromptEngineer is initialized with a specific prompt strat-
egy, prompt context, REST API information, and an empty OpenAPI specifica-
tion.The strategies and contexts that the component can use are predefined and
represented as enums. For instance, the context can be
DOCUMENTATION or PENTESTING, and the strategy can be set to CHAIN_OF_THOUGHT,
TREE_OF_THOUGHT, or IN_CONTEXT_LEARNING.

• Strategy Handling: The prompt engineer creates prompts using the appropriate
prompt class based on the selected approach (for more details, see subsection 12).

• Prompt Generation: The generate_prompt method creates a new prompt
based the current prompt context, purpose and strategy. It updates the purpose of
the prompt, which is important for the WebAPITesting usecase as it specifies the
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goal of the test (e.g., checking security or functionality). The method then adds
the new prompt to the history, keeps track of the previous prompt, increases the
interaction count to reflect progress in the testing process, and finally returns the
updated history of prompts.

Algorithm 3.1: Generate Prompt with Context and Strategy
Input: turn: Interaction number, move_type: Interaction type ("explore"), prompt_history:

Optional, hint: Optional ("")
Output: Updated prompt_history with the new prompt and response

1 Generate prompt using the generate_prompt(move_type, hint, self._prompt_history,
turn=0) from the correct Prompt class

2 Update purpose of the prompt
3 Append {"role": "system", "content": prompt} to prompt_history
4 Update self.previous_prompt and increment self.turn
5 return prompt_history

Algorithm 3.2: Generate In-Context Learning (ICL) Prompt
Input: properties: Dictionary of object properties
example_response: Example API response in JSON format
endpoint: Target endpoint of the API
Output: prompt: Generated prompt string

1 Initialize: Start with API core information as prompt
2 Append "REST API: example_response.keys() endpoint"
3 Append "This API retrieves objects with the following properties:"
4 foreach prop, details in properties.items() do
5 Append "- prop: details[’type’] (e.g., details[’example’])" to prompt
6 end
7 Append "Example Response:" to prompt
8 if example_response is not empty then
9 Extract example_key as the first key in example_response

10 Format the example_response[example_key] as JSON and append to prompt

11 end
12 return prompt

For multi-step tasks Algorithm 3.6 This creates efficient context-sensitive prompts, which
are essential for automating tasks such as endpoint discovery, and security assessments
in web API testing.

The PromptGenerationHelper class is essential for API testing, handling the man-
agement and analysis of endpoint data, generating testing prompts, and tracking the
testing process. It efficiently keeps track of endpoints that have been discovered, tested,
or failed, along with their associated HTTP methods. The class also designs prompts
tailored to meet the specific needs of the API schemas and the progress of ongoing tests.
It helps identify and fill gaps by spotting missing endpoints, HTTP methods, or query
parameters and offers customized hints for these missing elements.

Additionally, the class dynamically adjusts the testing approach based on the outcomes
of previous tests. It provides recommendations for future steps, while keeping the testing
strategy agile and informed. Moreover, makes sure that prompts are within set limits and
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are clear and complete. Overall, the PromptGenerationHelper class helps automate
and improve web API testing by making it easier to explore, analyze, and document how
the API works.

The Prompt class is responsible for the actual generation of the prompt and will be
described in the following subsection.

Prompts

The prompts are all derived from the BasicPrompt, which is the abstract class
that encodes all the important attributes and functions of a prompt (see Figure 3.6).
TaskPlanningPrompt and StatePlanningPrompt are subclasses of BasicPrompt

Figure 3.6: UML diagram prompts

and describe different types of prompts. The TaskPlanningPrompt focuses on achiev-
ing specific tasks or goals, which typically involves sequences of actions or steps that need
to be executed to complete a task. In contrast, the StatePlanningPrompt focuses
more on how the system moves between states, using the conditions and effects of actions
to guide that process.

The ChainOfThoughtPrompt and TreeOfThoughtPrompt are subclasses of the
TaskPlanningPrompt as they work by breaking the task down into several steps.

42



3.3. Implementation

Chain-of-Thought prompts are designed to support linear, sequential reasoning where
each step builds on the previous one, whereas Tree-of-thought prompts are designed to
create prompts that help explore different possibilities or solutions for a given task by
using branches. Each branch stands for a different solution to the problem.

The InContextLearningPrompt is a subclass of the StatePlanningPrompt. These
types of prompts are designed to learn and adapt according to the specific situation
it encounters. This is achieved by adding the examples directly into the prompt. In
doing so, the prompt gathers context-specific information, which improves its ability to
provide appropriate and tailored responses. This method uses past examples as a guide,
allowing the system to better understand and respond to similar situations in the future.
Essentially, it is like teaching the prompt through direct experience, which makes it more
effective in handling comparable scenarios.

Chain-of-Thought

The ChainOfThoughtPrompt class implements the Chain-of-Thought (COT) strategy,
extending on the TaskPlanningPrompt class as it breaks the task down into linear
steps. The prompts are customized to specific prompt contexts, such as DOCUMENTATION
and PENTESTING. The steps are enumerated, the completed steps are tracked, and if
unexplored scenarios occur, the prompt is adjusted.

Algorithm 3.3: Transform Test Case to Hierarchical-Conditional Structure
Input: test_case: Dictionary with fields like ’objective’, ’steps’, ’security’
purpose: Purpose of the test case
Output: transformed_case: A structured test case with phases and conditions

1 Initialize: transformed_case with "phase_title", empty "steps" and "assessments"
2 foreach step in test_case["steps"] do
3 Retrieve security and expected_response_code for the current step
4 Construct step_details with: purpose, step, expected_response_code, security, and conditional

outcomes ("if_successful" → "No vulnerability found" and "if_unsuccessful" → "Vulnerability
found")

5 Append step_details to transformed_case["steps"]
6 end
7 Append phase assessment: "Review outcomes and revisit steps if needed"
8 Add final assessment: "Confirm objectives met"
9 return transformed_case

It does this by using a context-sensitive prompt generation algorithm (see Algorithm 3.3)
that transforms test cases into a structured format of the Chain-of-Thought prompt. It
organizes tasks into sequential phases with steps. In case of the PENTESTING context,
the steps are defined with the expected results and security conditions, which are used to
evaluate the test case. The LLM is prompted with just the steps of the prompt. This
can be observed in the example in Figure 3.7, which shows such a prompt. First, the
objective is defined as to query the host (https://reqres.in/api) and understand its
REST API. The second part details the steps, starting with querying the root-level
resource endpoints.
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Objective: Identify all accessible endpoints via GET requests for
https://reqres.in/api. ReqRes API is a testing API that allows developers
to simulate RESTful interactions.
"Let’s think step by step." [SIB+24]
Step 1: Query root-level resource endpoints.
Find root-level endpoints for https://reqres.in/api.
Only send GET requests to root-level endpoints with a single path component
after the root. This means each path should have exactly one ’/’ followed by a
single word (e.g., ’/users’, ’/products’).
1. Send GET requests to new paths only, avoiding any in the lists above.
2. Do not reuse previously tested paths.

Figure 3.7: Example of Chain-of-Thought prompt

Tree-of-Thought

The TreeOfThoughtPrompt class implements the Tree-of-Thought (TOT) strategy to
generate structured context-sensitive prompts.It is an extension of the TaskPlanning-
Prompt class and is specifically made to allow for adaptive problem solving and deliberate
reasoning for tasks like security analysis and API testing. The class uses a layered structure
that changes based on the results at each decision point, which makes it more flexible and
responsive. Similar to ChainOfThoughtPrompt, for the PENTESTING context steps
with expected results and security checks to evaluate test cases are defined. The LLM is
prompted with these steps only. Figure 3.9 shows an example where the goal is to query
the host (https://reqres.in/api) and explore its REST API, starting with root-level
endpoints.

Algorithm 3.4: Transform Test Case to Tree-of-Thought
Input: test_case: Dictionary with fields ’objective’, ’steps’, ’security’,

’expected_response_code’
purpose: Purpose of the test case
Output: transformed_case: Tree-of-Thought structure

1 Initialize: transformed_case with root objective, empty branches, and assessments
2 foreach step in test_case["steps"] do
3 Retrieve security and expected_response_code
4 Define branch with step details and thoughts (actions and conditions)
5 Append branch to transformed_case["branches"]
6 end
7 return transformed_case

"Imagine three experts each proposing one step at a time. If an expert
realizes their step was incorrect, they leave. The question is:"[Hul23,
LZ25]
Objective: Identify all accessible endpoints via GET requests for
https://reqres.in/api. ReqRes API is a testing API that allows developers
to simulate RESTful interactions.
Start by querying root-level resource endpoints.

Focus on sending GET requests only to those endpoints that consist of a single
path component directly following the root. For instance, paths should look like
’/users’ or ’/products’, with each representing a distinct resource type. Ensure
to explore new paths that haven’t been previously tested to maximize coverage.

Figure 3.8: Example of Chain-of-Thought prompt

The prompt generation algorithm of TreeOfThoughtPrompt (see Algorithm 3.4) uses

44



3.3. Implementation

the TOT strategy by turning test cases into a tree-like structure. It identifies relevant
steps based on the prompt’s purpose and context, such as documentation or pentesting.
Each step is represented as a branch in the tree, with conditional outcomes, assessments,
and backtracking paths for iterative reasoning. The resulting structure ensures the
execution of the logical and methodical task.

In-Context Learning

The InContextLearningPrompt class is designed to generate prompts using the
In-Context Learning (ICL) strategy, leveraging historical examples to provide adaptive
reasoning and guidance for tasks. Extending the StatePlanningPrompt class. The
prompts are generated by incorporating prior examples of steps and responses or in-
formation from the OpenAPI specification. This allows the prompts to be customized
for specific tasks, like exploring API endpoints or checking input parameters, which
makes them more accurate and useful. Moreover, the prompts are updated based on past
examples and results, which helps improve them over time.

The prompt generation algorithm of InContextLearningPrompt (see Algorithm 3.5)
adds examples to the prompt to produce example-informed prompts. By retrieving past
examples and merging them with current objectives, the algorithm ensures that the
prompts are both relevant and instructive. It validates the completeness and clarity of
the generated prompts, fostering an iterative learning process. This method does not only
enhances adaptive reasoning, but also supports efficient problem solving, particularly in
tasks that require detailed exploration and validation.

Algorithm 3.5: Generate In-Context Learning (ICL) Prompt
Input: properties: Dictionary of object properties
example_response: Example API response in JSON format
endpoint: Target endpoint of the API
Output: prompt: Generated prompt string

1 Initialize: Start with API core information as prompt
2 Append "REST API: example_response.keys() endpoint", "This API retrieves objects with

the following properties:"
3 foreach prop, details in properties.items() do
4 Append "- prop: details[’type’] (e.g., details[’example’])" to prompt
5 end
6 Append "Example Response:" to prompt
7 if example_response is not empty then
8 Extract example_key as the first key in example_response
9 Format the example_response[example_key] as JSON and append to prompt

10 end
11 return prompt

For multistep test cases, the algorithm (see Algorithm 3.6) uses In-Context Learning
(ICL) to create prompts. It looks at previous responses and, if a matching example exists,
combines it with the current step to build a prompt. If not, it just uses the one from
the current step. Each prompt is stored in the icl_prompts dictionary based on its
purpose. This method helps keep prompts relevant by connecting new tasks with past
examples.
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Based on this information :
REST API: dict_keys([’get’]) /users
This API retrieves objects with the following properties:

- id:int (e.g., 1)
- email:str (e.g., george.bluth@reqres.in)
- first_name:str (e.g., George)
- last_name:str (e.g., Bluth)
- avatar:str (e.g., https://reqres.in/img/faces/1-image.jpg)
Example Response:"{
"id": 1,
"email": "george.bluth@reqres.in",
"first_name": "George",
"last_name": "Bluth",
"avatar": "https://reqres.in/img/faces/1-image.jpg"
}" [req23, Cho21]
Objective: Identify all accessible endpoints via GET requests for
https://reqres.in/api. ReqRes API is a testing API that allows developers to
simulate RESTful interactions.
Query root-level resource endpoints.
Find root-level endpoints for https://reqres.in/api.
Only send GET requests to root-level endpoints with a single path component
after the root. This means each path should have exactly one ’/’
followed by a single word (e.g., ’/users’, ’/products’).

Figure 3.9: Example of Chain-of-Thought prompt, example information taken from [req23,
Cho21]

Algorithm 3.6: Transform Steps to In-Context Learning Prompts
Input: init_steps: Map of purposes to step groups
Output: icl_prompts: Map of purposes to ICL prompts

1 Initialize: icl_prompts as empty dictionary
2 foreach purpose, steps_groups in init_steps do
3 Retrieve previous_example from response_history
4 foreach steps in steps_groups do
5 foreach step in steps do
6 if previous_example exists then
7 Format prompt with previous example and current step
8 else
9 Format prompt using current step only

10 end
11 Append prompt to icl_prompts[purpose]
12 end
13 end
14 end
15 return icl_prompts

3.3.2 WebAPIDocumentation

WebAPIDocumentation consists of three phases: Prompt Generation, Documenta-
tion, and Evaluation (see Figure 3.10). In the prompt generation phase, prompts are gen-
erated based on the chosen strategy and context with the help of the PromptEngineer,
PromptGenerationHelper, and Prompt class (see subsection 3.3.1 for further infor-
mation). In the documentation phase, the responses of the prompts are analyzed via
the ResponseHandler and documentated via the DocumentationHandler.In the
evaluation phase, the endpoints and methods found are evaluated against the correct
openapi specification. This is done so that it is later possible to compare the effectiveness
against other tools.
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Figure 3.10: Class diagram of WebAPIDocumentation

ResponseHandler

The ResponseHandler class analyzes responses, creates schemas, and uses adaptive
reasoning. This class simplifies the testing process as it organizes the endpoints and
dynamically modifies the testing paths based on past results. It processes HTTP responses,
extracts JSON data, and uses LLM-based reasoning to continuously improve its strategies.
Moreover, it updates the OpenAPI schemas by extracting critical properties from API
responses to accommodate complex data structures.

Moreover, the class detects vulnerabilities through detailed endpoint analysis, automates
the creation of OpenAPI specifications from actual API interactions for documentation
purposes, and refines testing prompts and strategies based on data-driven insights.

By continually improving its methods based on feedback and incorporating error hints
for thorough coverage, the ResponseHandler ensures that API testing is systematic
and flexible, making it a crucial tool for developers.

OpenAPISpecificationHandler

The OpenAPISpecificationHandler class helps to automatically create, manage,
and update OpenAPI specifications based on real API use. It uses API responses to
ensure that the documentation is accurate and comprehensive. This class dynamically
updates OpenAPI documents as it processes API responses, automatically adding details
about endpoints, parameters, and schemas. Moreover, it analyzes HTTP responses
to organize information and adjusts the documentation by identifying patterns and
anomalies in the data.

The OpenAPISpecificationHandler starts with an empty OpenAPI template and
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continually refines it based on new API interactions. Moreover, it automates the docu-
mentation process, supports thorough testing, and ensures that all aspects of the API
are covered and up-to-date with standards, making API integration smoother.

Evaluator

The Evaluator class measures the effectiveness of API documentation and testing. It
calculates important metrics, analyzes query parameters, and detect errors such as false
positives. By comparing discovered routes and parameters with those documented, it
ensures that API testing is complete and documentation accurate.

This class begins by extracting routes and query parameters from API responses and
uses this data to track and identify any mismatches or missing information. It calculates
metrics such as the coverage of documented routes and parameters and the accuracy of
the documentation based on these findings. The Evaluator also logs detailed reports,
offering insight to improve API testing and documentation strategies.

Ultimately, the Evaluator ensures that the API documentation and testing are thorough,
improving the overall reliability and effectiveness of the API exploration process.

3.3.3 WebAPITesting
WebAPITesting consists of three phases: Prompt Generation, Response Analysis
and Test case generation, and Evaluation(see Figure 3.11). In the prompt generation
phase, prompts are generated based on context of the PentestingInformation and
structured in the correct form of prompt strategy (see subsection 3.3.1). In the response
analysis and test case generation phase, the responses of the prompts are analyzed
via the ResponseAnalyzer. Based on this analysis, test cases are generated via the
TestHandler and the findings are documentated via the ReportHandler. In the
evaluation phase, the vulnerabilities found are evaluated against the correct openapi
specification. This is done so that it is later possible to compare the effectiveness against
other tools.

PentestingInformation

The PenTestingInformation class helps simplify penetration testing by working
with OpenAPI specs to group endpoints and create flexible test steps. It uses an
OpenAPISpecificationParser to extract endpoints, schemas, and other information
from the provided OpenAPI specification. It sets up the tests by creating a user and
then logging in. If a token is returned, it is used for further authentication.

In addition to managing and assigning categorized endpoints (public, protected, and
sensitive) the class keeps track of accounts and tokens. It also provides built-in steps
for security tests, including checks for Authorization, Input Validation, Authentication,
Session Management, Error Handling, and testing for vulnerabilities like CSRF, XSS,
and business logic errors. For these tests, it creates context-aware prompts based on
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Figure 3.11: Class diagram of WebAPITesting

user-defined purposes, example data, and endpoint-specific schemas. Moreover, the
class includes functions for validating security configurations, testing edge cases, and
investigating endpoint behavior in various contexts.

Overall, the PenTestingInformation class helps find API vulnerabilities and mis-
configuration, makes penetration testing easier and faster by automating the process and
reducing manual work.

ResponseAnalyzer

The ResponseAnalyzer class analyzes the HTTP responses to check for issues in areas
like Authentication, Authorization, and Input validation. Depending on its goal, it can
also check for things like missing security headers or invalid inputs. It breaks down
raw HTTP responses into components like status codes, headers, and bodies to enable
precise, goal-oriented analysis. Moreover, The class adjusts its analysis based on the
goal, allowing it to perform specific checks like confirming if authentication worked or if
the input is valid. It looks for important headers, checks for rate limits, and makes sure
security headers are included.

Overall, ResponseAnalyzer works by reading HTTP responses, checking them based
on their purpose, and recording the results. This clear process helps spot issues and gives
useful feedback to improve how the API works and how secure it is.

TestHandler

The TestHandler class automates the creation, management, and execution of test
cases for API endpoints. The class uses structured parsing and LLMs to generate test
cases scripts that work with pytest , which makes the API testing process much easier
and faster.It pulls key details from response descriptions, like HTTP methods, endpoints,
input data, and expected results. After that it uses the LLM to create test cases with
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the right checks and expected outcomes. These test cases are saved in organized files,
and Python test scripts are created to run smoothly with pytest.

The workflow includes reading test case descriptions, generating test cases with AI, saving
them to files, converting them into pytest scripts, and managing these scripts to make
sure they are correct and reusable.

Overall, the TestHandler class improves the accuracy and speed of API testing while
reducing the amount of manual work needed. For this, it uses structured parsing
and LLMs to generate detailed test cases and scripts compatible with pytest, which
significantly streamlines the API testing process.

ReportHandler

The ReportHandler class makes the creation and organization of detailed reports for
API testing easier. It supports both text and PDF formats to capture and organize
essential information effectively (see Figure 3.12).

Test Name: PromptPurpose.AUTHENTICATION
Step: Send a GET request to /vapi/api5/user/192
using Basic Authentication.
Expected Result: [’200 OK when sending a GET request
with correct credentials, confirming access is granted.’]
Actual Result: 403 Forbidden
Vulnerability found.
Number of found vulnerabilities: 1

Test Name: PromptPurpose.AUTHENTICATION
Step: Use this account’s token to send a GET request
to /vapi/api5/user/192.
Expected Result: [’200 OK response,
indicating successful authentication.’]
Actual Result: 403 Forbidden
Vulnerability found.
Number of found vulnerabilities: 2

Figure 3.12: Passage of Vulnerability Report

The class automatically handles the creation and management of unique report files
for each testing session, which ensures that no data is overwritten. It comprehensively
documents the details of the endpoints tested and their results, along with analysis results
that include insights and objectives.

The workflow of the ReportHandler includes setting up a unique report file, logging
details of the endpoints tested, categorizing and writing the analysis results according to
their purposes, and finalizing the report in PDF format for easy distribution and archival.

Overall, the ReportHandler class simplifies the generation of professional, detailed
reports, which is improtant for the reproducibility of the tests.
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3.3.4 Summary
This thesis was implemented in the "web_api_testing" use case of the open-source
project HackingBuddyGPT 3. HackingBuddyGPT [HC23] is a tool powered by LLMs
that helps with ethical hacking and API security testing. It automates tasks like finding
vulnerabilities, running penetration tests, and creating test cases. It addresses the
OWASP Top 10 risks and uses LLMs to simplify workflows and improve efficiency.

At the core of HackingBuddyGPT is the PromptEngineer, which generates adaptive
context-aware prompts using strategies such as CHAIN_OF_THOUGHT, TREE_OF_THOUGHT,
or IN_CONTEXT_LEARNING for efficient endpoint discovery and vulnerability detection.
The PromptGenerationHelper helps by reviewing prompts, tracking progress, and
filling in missing parts of the API schema.

The PenTestingInformation class is a central component for penetration testing,
integrating OpenAPI specifications to dynamically categorize endpoints ("public", "pro-
tected", "sensitive") and generate customized testing steps. Moreover, it manages accounts,
tokens, and runs common security tests like Authentication, Authorization, and checks
for issues like XSS, CSRF, and business logic flaws to ensure full testing coverage.

Other important parts of the system are the ResponseHandler and OpenAPISpecifi-
cationHandler, which handle live response analysis and automatic API documentation.
The TestHandler creates test cases automatically, while the ReportHandler generates
detailed reports for sharing and documentation.

By combining smart prompt strategies, automated testing, and clear documentation,
HackingBuddyGPT offers a strong and efficient tool for API security testing, helping
uncover vulnerabilities and deliver useful insights.

3https://github.com/ipa-lab/hackingBuddyGPT
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CHAPTER 4
Evaluation

The objectives outlined in Section 3 will be evaluated using the metrics listed in Sec-
tion 4.1.1, and compared against the benchmarks provided in Table 4.1 and Table 4.2.
While the documentation metrics are derived from related works, the pentesting metrics
are based on previous research by Isozaki et al. [ISCK24]. To answer the question of
how effective different Large Language Models (LLMs) are at generating test cases for
REST APIs and what factors influence their performance, the following experiments were
conducted with two LLMs: GPT-4o-mini and o1. The results of these experiments will be
described and analyzed in this section. Although both models are developed by OpenAI,
GPT-4o-mini is more versatile and designed for broad applications, while o1 is optimized
for specific tasks, which can enhance certain performance aspects. This comparison looks
at how well each model handles different tasks, showing their strengths and weaknesses,
and giving insight into how their design affects their real-world performance.

4.1 Methodology
To evaluate our approach, we used a three-step process: setup, execution, and analysis.
This helped us keep things consistent across different tests and ensured our results
could be repeated. Our method combines ideas from both documentation-based and
security-focused testing to measure how accurate and effective the system is.

We tested a wide range of APIs, which we grouped into documentation benchmarks
and pentesting benchmarks (Table 4.1 and Table 4.2). The documentation benchmarks,
inspired by works like RESTSpecIT, test route and parameter discovery. In contrast,
the pentesting benchmarks include OWASP benchmarks and a custom "ticketbuddy"
benchmark for security testing, enabling a comprehensive assessment of functional and
security aspects.

The evaluation process includes the following.
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1. Benchmark Preparation: Making
sure each API benchmark had work-
ing access, specs, and needed tools.

2. Metrics Definition: Metrics in-
clude % Routes Found, % Parameters
Found, % Vulnerabilities Found, and
Number of Steps.

3. Execution: Each benchmark was
tested 10 times to ensure consistent

results.

4. Data Collection: We recorded key
values like routes discovered and vul-
nerabilities detected.

5. Analysis: We studied the data to
find what worked well and what did
not. For the pentesting benchmarks,
we also reviewed the generated test
reports.

For the documentation benchmarks, we focused on finding routes and parameters accu-
rately. While for the pentesting benchmarks, our goal was to detect common security
flaws like injection attacks and broken authentication. By looking at both sets together,
we got a clear and consistent view of how well our method works compared to other tools.

4.1.1 Metrics
The documentation metrics focus on the percentage of routes and parameters accurately
identified, as well as the discovery of additional routes and parameters. The Pentesting
metrics include the percentage of vulnerabilities found, execution time and workload, as
derived from Isozaki et al. [ISCK24].

4.1.2 Documentation
For documentation benchmarks, we evaluated the ability to accurately identify and
document routes and parameters. As our baseline we used the results of RESTSpecIt.

• % Routes Found: This measure-
ment is measured over 10 runs and
denotes the average percentage of cor-
rectly identified routes.

• % Parameters Found: This mea-
surement is measured over 10 runs
and denotes the average percentage of
correctly identified parameters.

• # Additional Routes Found: This

measurement denotes the average
number of additional routes found
over 10 runs, and is measured relative
to the baseline set of routes initially
identified by RESTSpecIT.

• Number of steps for discovery:
This measurement is measured over
10 runs and denotes the average num-
ber of steps until all endpoints and
parameters are found.

To thoroughly evaluate the capability of our framework to discover and document both
routes and query parameters, we used a diverse set of REST APIs. Table 4.1 presents the
APIs we selected, grouped by complexity. We classify REST APIs into different groups:
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API Type Description Use Cases URL

An API of Ice and Fire Simple API that proviedes data
from the "A Song of Ice
and Fire" series.

Testing route discovery,
parameter extraction, data
retrieval.

https://anapioficeandfire.com/,
Last accessed 2025-04-02

BallDontLie NBA Simple A free NBA API that pro-
vides real-time and histori-
cal basketball data.

Real-time data extraction,
route discovery, parameter
identification.

https://balldontlie.io/, Last
accessed 2025-04-02

Random User Genera-
tor

Medium API that generates ran-
dom user data like names,
emails, addresses.

Dynamic data retrieval,
parameter handling, route
discovery.

https://randomuser.me/, Last ac-
cessed 2025-04-02

CoinCap Hard API that containsReal-
time cryptocurrency mar-
ket data.

Real-time data streaming,
route discovery, parameter
extraction.

https://coincap.io/

Open Brewery DB Hard API that includes infor-
mation about breweries,
names, types, locations.

Route discovery, param-
eter handling, location-
based queries.

https://www.openbrewerydb.org/,
Last accessed 2025-04-02

ReqRes Hard Mock data for testing
and prototyping, supports
CRUD operations.

API route discovery,
CRUD operations, param-
eter handling.

https://reqres.in/, Last accessed
2025-04-02

Table 4.1: Documentation Benchmarks

• Simple: They are small, well-defined endpoint sets and limited parameters. These
ensure that our framework can handle relatively straightforward documentation
tasks without excessive overhead.

• Medium: They have a small set of endpoints but a large set of query parameters.
(e.g, Random User Generator)

• Hard: These APIs feature extensive endpoints, intricate parameter structures,
real-time data streaming, and CRUD operations(e.g., CoinCap, GBIF Species,
Open Brewery DB, ReqRes).

We chose a variety of complex APIs on purpose to show that the system can do more
than just find routes. Moreover, it handles real-time data, structured data, and advanced
query parameters well. We included harder REST APIs to test if our framework can
scale. By using both simple and complex APIs, we show that the framework is flexible
and performs well in real-world situations.

4.1.3 Pentesting
The metrics used in pentesting provide insight into the efficiency and resource demands
of the testing framework.

• Precision: Itevaluates how accurately positive predictions are made, calculated
as[HR24]:

Precision = True Positives
True Positives + False Positives [HR24] (4.1)

A high precision rate means that there are fewer false positives, which means
that the system correctly identifies relevant items while minimizing incorrect
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4. Evaluation

detections[HR24]. In API security testing, high precision ensures that detected
vulnerabilities are real threats rather than false alarms, reducing unnecessary
manual verification.

API Description Use Cases URL

TicketBuddy Custom benchmark API for secu-
rity testing, includes SQL Injection,
Identification and Authentication
Failures, and more.

Testing vulnerabilities in Access
Control, Data Validation, Authen-
tication methods, and Injection at-
tacks.

https://github.com/Neverbolt
/ticketbuddy, Last accessed 2025-
03-15

OWASP vAPI Deliberately vulnerable API for se-
curity testing, includes Injection
Flaws, Identification and Authenti-
cation Failures, and improper data
validation.

Testing Injection attacks, authenti-
cation mechanisms, data validation,
and access control vulnerabilities.

https://owasp.org/www-project
-vAPI/, Last accessed 2025-04-02

OWASP crAPI Vulnerable API designed to simu-
late real-world security issues, in-
cludes Identification and Authenti-
cation Failures, sensitive data expo-
sure, and IDOR.

Testing access control flaws, sensi-
tive data exposure, IDOR, and au-
thentication vulnerabilities.

https://owasp.org/www-project
-crAPI/, Last accessed 2025-04-02

OWASP Juice Shop Insecure web application for secu-
rity testing, includes SQL Injection,
XSS, and authentication flaws.

Testing authentication and autho-
rization mechanisms, input valida-
tion, SQL Injection, XSS, and busi-
ness logic vulnerabilities.

https://owasp.org/www-project
-juice-shop/, Last accessed 2025-
04-02

Table 4.2: Pentesting Benchmarks

The vulnerabilities in Table 4.3 come from a custom benchmark called TicketBuddy,
which was created to test for issues that can be found through REST API calls. These
vulnerabilities include Function Level Authorization, Broken Access Control, Lack of
Resources and Rate Limiting, Broken , Identification and Authentication Failures, Security
Misconfiguration, and Injection (SQL, NoSQL, etc.). The goal of TicketBuddy is to focus
on common API security issues that can be identified through interactions with the API
itself. It is important to find these vulnerabilities during REST API testing because they
can harm the system’s security.

No. Vulnerability How to Find the Vulnerability Detectable?

1 Broken Access Control Tries to make an API request to access other users’ data. ✓
2 Identification and Authenti-

cation Failures
Tests the authentication mechanism by attempting brute-force
or credential stuffing attacks using weak, default, or leaked
passwords. Use tools like Burp Suite for automated attacks.

✓

3 Lack of Resources and Rate
Limiting

Performs a DoS attack or send excessive requests to see if the
API limits or blocks excessive calls. A lack of rate-limiting
can lead to brute-force or DoS vulnerabilities.

✓

4 Broken Function Level Au-
thorization

Tries accessing higher-privileged API functions by modifying
the endpoint or parameters (e.g., accessing admin-only func-
tions) to check if proper authorization is enforced.

✓

5 Security Misconfiguration Reviews the API’s security configuration for common miscon-
figurations, such as improper HTTP headers, exposed services,
verbose error messages, or default credentials.

✓

6 Injection (SQL, etc.) Tries injecting malicious input (e.g., SQL, NoSQL) into API
parameters or request bodies. Tools like Burp Suite Intruder
can automate testing for Injection Flaws.

✓

Table 4.3: List of Vulnerabilities in TicketBuddy that can be found via REST API
Testing [HSAB22]

Each benchmark API provides a unique combination of vulnerabilities that are crucial
for evaluating pentesting frameworks based on the described metrics. TicketBuddy
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includes common issues like SQL Injection, Authentication flaws, and Sensitive data
leaks, which makes it useful for testing how well a framework can detect different types of
vulnerabilities. Another benchmark is OWASP vAPI , which is a purposely vulnerable
API that is great for checking both how fast (execution time) and how thoroughly (%
of Vulnerabilities Found) a framework can spot basic attack patterns. OWASP Juice
Shop is known for a wide range of bugs, including XSS and business logic issues. It’s
especially helpful for testing how well a tool handles complex API flows and performance
under pressure.

No. Vulnerability How to Find the Vulnerability Detectable?

1 Broken Access Control Intercepts the API request and try modifying the object ID in the request
parameters (e.g., change ‘id=5‘ to ‘id=6‘) to access other users’ data.

✓

2 Identification and Authentication
Failures

Tests the authentication mechanism by attempting brute-force or credential
stuffing attacks using weak, default, or leaked passwords. Use creds.csv
file to obtain user data.

✗

3 Excessive Data Exposure Uses a proxy tool such as Burp Suite to inspect the response from the API
and check if sensitive data is exposed that should be filtered out on the
client-side.

✗

4 Lack of Resources and Rate Lim-
iting

Performs a DoS attack or send excessive requests to see if the API limits
or blocks excessive calls. User should get 4 digit code to phone.

✗

5 Broken Function Level Authoriza-
tion

Tries accessing higher-privileged API functions by modifying the endpoint
or parameters (e.g., accessing admin-only functions) to check if proper
authorization is enforced.

✓

6 Unrestricted Access to Sensitive
Business Flows

Checks for endpoints that accept user input and try appending unexpected
fields, like ’&admin=true’ in the request body, to gain unauthorized access
to restricted functionality.

✗

7 Security Misconfiguration Reviews the API’s security configuration for common misconfigurations,
such as improper HTTP headers, exposed services, verbose error messages,
or default credentials.

✓

8 Injection (SQL, etc.) Tries injecting malicious input (e.g., SQL, NoSQL) into API parameters
or request bodies. Tools like Burp Suite Intruder can automate testing for
Injection Flaws.

✓

9 Improper Asset Management Enumerates sold or unused API versions that might be exposed uninten-
tionally and looks for deprecated endpoints or API versions that might
lack security updates.

✗

10 Insufficient Logging and Monitor-
ing

Tests by performing suspicious activities and checking if the API logs
or alerts any of those actions. This vulnerability allows attackers to act
unnoticed.

✗

Table 4.4: Vulnerabilities in vAPI that can be found via REST API Testing [HSAB22]

Table 4.4 lists the OWASP API Top 10 vulnerabilities found in vAPI, how they can
be detected, and whether they can be found using REST API testing. This thesis
focuses on vulnerabilities that can be only found through REST API calls. These
include Injection Flaws (SQL/NoSQL), Mass Assignment, Lack of Rate Limiting, Broken
Object-Level Authorization, Identification and Authentication Failures, and Security
Misconfigurations. Direct testing of these problems is possible by interacting with the
API. Some vulnerabilities like Excessive Data Exposure, poor asset tracking, or missing
logs cannot be tested directly through API calls, therefore, they are not included in this
testing procedure. This keeps the focus on security issues that can actually be found
using standard API testing methods.

Table 4.5 shows the security issues that can be found in the crAPI benchmark using
REST API testing like Excessive Data Exposure, Broken Function-Level Authorization,
SQL/NoSQL Injection, and Unauthenticated Access. Testers can uncover these issues by
tweaking request parameters, reviewing responses, or trying unauthorized requests. Since
they relate to how the API handles input, permissions, and database queries, they’re
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No. Vulnerability How to Find the Vulnerability Detectable?

1 BOLA (Broken Object-Level Au-
thorization)

Intercepts the "Refresh Location" request in Burp Suite, modify the vehicle
ID from another user’s ID, and send the request to retrieve unauthorized
vehicle data.

✗

2 Broken User Authentication Uses Burp Suite’s Intruder to automate OTP attempts with incorrect
values on the "Forgot Password" page, using an unprotected version of the
endpoint (v2).

✗

3 Excessive Data Exposure Inspects responses from the "Community" page for sensitive information
like another user’s details exposed in API responses.

✓

4 Rate Limiting Modifies parameters like “repeat_request_if_failed” and “num-
ber_of_repeats” to perform a Layer 7 DoS attack on the "Contact
Mechanic" feature, causing server overload.

✗

5 Broken Function Level Authoriza-
tion

Changes video name using PUT, discover DELETE method available, and
attempts to delete videos from other users by modifying video identifiers.

✓

6 Mass Assignment Modify the "status" and "quantity" parameters in API requests to return
items or increase balances, such as using PUT instead of GET to alter
order status.

✗

7 Server-Side Request Forgery
(SSRF)

Intercept a form request and change the URL to an external site (e.g.,
www.google.com) to trigger a server-side HTTP request.

✗

8 NoSQL Injection Intercepts and modifies the coupon validation request with NoSQL payloads
(e.g., ‘"$ne": 1‘) to gain unauthorized access.

✗

9 SQL Injection Inject SQL queries (e.g., ‘0’ OR ’0’ = ’0‘) into the coupon redemption
process to manipulate the database and redeem coupons.

✓

10 Unauthenticated Access Sends an unauthenticated request to an endpoint that provides data (e.g.,
order details) without requiring authentication.

✓

11 JWT Token Forgery Uses Burp Suite’s JWT Editor to modify JWT token’s algorithm to “none”
and changes the user email to access another user’s information.

✗

Table 4.5: List of Vulnerabilities in crAPI that can be found via REST API Test-
ing [HSAB22]

well-suited for standard API testing.

For instance, user roles and permissions must be examined for Broken Object-Level
Authorization, which isn’t always apparent through API requests. Similarly, Broken
User Authentication depends on the behavior of the authentication system, which may
not be observable via API calls. For this REST API, it is only possible to find this
vulnerability by obtaining the creds.csv file from the GitHub repository. Moreover, Rate
Limiting problems are hard to find with REST API testing alone because they depend
on server-side configurations that are hidden in API responses. Some parts of Server-Side
Request Forgery (SSRF) can be tested through REST API calls, but fully understanding
its impact requires watching how the server behaves, since SSRF makes the server request
internal resources. Another vulnerability that is hard to test with regular REST API
calls is JWT Token Forgery, since it requires changing tokens and knowing how the server
verifies them. Because these issues depend on server-side logic, REST API testing alone
often isn’t enough to catch them.

The Table 4.14 lists vulnerabilities in the OWASP Juice Shop and indicates whether they
can be detected via REST API testing. Vulnerabilities like Authentication problems,
Sensitive Data Leaks, Broken Access Control, and NoSQL injection can be found by
testing the REST API. These issues come from how the app handles data, checks users,
and runs database queries. Some other vulnerabilities, marked with “✗” in the last column,
cannot be found just by using REST API calls. For example, while it is possible to send
a SQL command in an REST API request, some SQL injection issues only show up if
the database actually runs the query. Cross-Site Scripting (XSS) is another vulnerability
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No. Vulnerability How to Find the Vulnerability Detectable?

1 Injection (SQL, Command,
Email)

Intercept API requests and inject payloads like “ OR 1=1 –‘ in input fields
or query parameters to manipulate database operations.

✗

2 Identification and Authentication
Failures

Tests the login and password reset endpoints with weak or brute-force
attempts to exploit authentication mechanisms.

✓

3 Sensitive Data Exposure Inspects API responses for unencrypted sensitive data such as credit card
numbers or personal information.

✓

4 Broken Access Control Modifies parameters like user IDs in API requests (e.g., change
‘/rest/basket/1‘ to ‘/rest/basket/2‘) to access unauthorized data.

✓

5 Cross-Site Scripting (XSS) Send payloads such as ‘<script>alert(1)</script>‘ via API inputs and
check if the response reflects it unsanitized.

✗

6 Insufficient Rate Limiting Makes repeated requests to endpoints (e.g., login, registration) and check
if the system limits the number of attempts.

✓

7 Server-Side Request Forgery
(SSRF)

Modifies parameters of the URL in API requests to try to access internal
or unauthorized resources.

✗

8 Mass Assignment Manipulates input fields by sending extra fields or modifying object prop-
erties through API calls (e.g., updating user roles).

✓

9 NoSQL Injection Injects NoSQL payloads (e.g., ‘"$ne": 1‘) in the API request to manipulate
database queries.

✓

10 Information Disclosure via Head-
ers

Inspect HTTP headers from API responses for sensitive data such as server
details or API version information.

✓

Table 4.6: OWASP Juice Shop Vulnerabilities that can be found via REST API Test-
ing [HSAB22]

that cannot be tested vie REST API calls. XSS is a client-side issue that happens when
the browser runs unsafe scripts. Another similar vulnerability is Server-Side Request
Forgery (SSRF), which occurs when the server is tricked into making requests to internal
or unauthorized resources. The effects of SSRF usually show up on the server, not in the
API response. Therefore, SSRF vulnerabilities require testing methods that involve the
server’s processing of requests, which cannot be fully assessed using only API calls. These
vulnerabilities require additional testing approaches beyond REST API interactions to
be detected effectively.

4.1.4 Summary

This thesis introduces two new use cases for HackingBuddyGPT: WebAPIDocumentation
and WebAPITesting. WebAPIDocumentation generates an OpenAPI specification, which
ensures that there is no missing data. WebAPITesting checks if the REST APIs work
correctly and are secure by using the OWASP Top 10 as a guideline. It runs tests to
find common problems like SQL injection or broken authentication. Together, these
tools help create better test cases and let us compare how well different frameworks find
vulnerabilities and document APIs.

4.2 Results: WebAPIDocumentation
In this section, the results are presented and analyzed. Each experiment was done with
GPT-4o-mini and o1.

WebAPIDocumentation was run 10 times on each of the REST APIs on all types of prompt
strategies (COT, TOT, ICL) so that it is comparable to the results of RESTSpecIT.
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4.2.1 OpenAI GPT-4o-mini
The experiments in this section were performed using GPT-4o-mini. The table provided
in Table 4.7 offers a comparative analysis of our framework HackingBuddyGPT and the
already established RESTSpecIT, focusing on their ability to discover API routes and
parameters across a selection of APIs. The table (see Table 4.7) shows two main metrics:
the percentage of routes found and the percentage of parameters found. Results for each
tool are shown side by side for easy comparison.

API name % Found Routes % Found Parameters

HackingBuddyGPT RESTSpecIT HackingBuddyGPT RESTSpecIT

An API of Ice and Fire 100% 98.57% 100% 93.53%
BALLDONTLIE NBA 100% 96.25% 71.43% 90.83%
Random User Generator 100% 100.00% 100% 73.33%
CoinCap 100% 77.00% 71.43% 80.66%
Open Brewery DB 100% 61.67% 100% 79.23%
ReqRes 100% 87.50% 66.67% 100.00%

Table 4.7: Comparison of best HackingBuddyGPT and RESTSpecIT results based on
GPT-4o-mini on APIs and evaluation metrics

Route discovery When evaluating the performance of HackingBuddyGPT and REST-
SpecIT in discovering API endpoints (routes), it becomes apparent from Table 4.7 that
HackingBuddyGPT generally outperforms RESTSpecIT. For both simple REST APIs,
both frameworks perform very well, which can be attributed to the low number of
endpoints that have to be discovered. It even manages 100% of the query parameters for
the An API of Ice and Fire API.

For the medium REST API Random User Generator, both frameworks achieve 100%
endpoint discovery. This could be due to the simplicity of this REST API since only has
one endpoint called “/api.”

Moreover, HackingBuddyGPT performed well in endpoint discovery for hard REST APIs,
achieving 100% for all such APIs. In contrast, RESTSpecIT was only able to achieve
scores between 60% and 90% in endpoint discovery for these REST APIs. The best
performance of RESTSpecIT was achieved for ReqRes with 87.50% in endpoint discovery.
In addition, it fell notably short in APIs like Open Brewery DB, where only 61.67% of the
routes were discovered, which is surprising, since this REST API only has four endpoints,
which are variants of breweries” such as /breweries/search.” HackingBuddyGPT likely
performs better in route discovery for APIs like Open Brewery DB because it focuses on
common endpoint patterns during exploration. This approach seems to help it find more
routes. This can also be observed for the CoinCap benchmark, where our approach found
all the routes (100%), while RESTSpecIT found only 77%. This implies that the route
discovery methodology used by HackingBuddyGPT might be more thorough or more
in line with the architecture of specific APIs. This suggests that HackingBuddyGPT’s
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method is either more thorough or better matched to how some APIs are built. It’s also
worth noting that HackingBuddyGPT found 100

Parameter discovery Both tools show varying effectiveness. For instance, Hacking-
BuddyGPT and RESTSpecIT both scored highly on the two simple REST APIs (An API
of Ice and Fire and Random User Generator). However, HackingBuddyGPT struggles
with identifying more complex parameters in hard REST APIs like CoinCap and Open
Brewery DB. Moreover, it has difficulty finding all parameters in BALLDONTLIE NBA,
which can be due to specific endpoint requirements. For instance, the ‘/seasons_averages‘
endpoint requires both a category in the route and an additional type as a query pa-
rameter, which cannot be retrieved with GET requests. This makes the discovery more
challenging. The better performance of RESTSpecIT in terms of parameter discovery
for these REST APIs could be due to its method of discovering query parameters. In
contrast, HackingBuddyGPT uses the LLM to create parameters using descriptions of
the REST API along with dynamically generated hints, making the inference process
easier for the LLM.This could be due to the fact that these REST APIs use a lot of
uncommon parameters that are harder to infer than the others. RESTSpecIT explores
REST APIs by mutating and inferring HTTP requests through a masking strategy. Using
route mutations, it adds, removes, or modifies paths to uncover undocumented endpoints.
Query parameter mutations introduce, alter, or reset parameters to test API flexibility,
while value mutations generate diverse inputs based on randomization, boundary values,
and inferred data types. For example, it might modify a URL path, try new query options,
or send unusual input values like long strings or edge-case numbers. Each successful
request is saved and used as a starting point for more testing. This lets RESTSpecIT
explore APIs in a smarter way than standard black-box tools, helping it uncover hidden
endpoints and behaviors. Each successful mutation is stored as a seed for further explo-
ration, which allows RESTSpecIT to iteratively refine its understanding and maximize
API coverage beyond traditional black-box testing methods. This method of discovering
query parameters performs better for the medium type REST API (e.g., Random User
Generator), where HackingBuddyGPT achieved 100% for the query parameters, whereas
RESTSpecIT only discovered 73.33%.

For BALLDONTLIE NBA, HackingBuddyGPT achieved 71.43% for query parameter dis-
covery, while RESTSpecIT achieved 90.83%. For CoinCap, HackingBuddyGPT achieved
71.43% for parameter discovery, while RESTSpecIT achieved 80.66%. RESTSpecIT only
achieved 79.23% in parameter discovery for Open Brewery DB, whereas HackingBud-
dyGPT achieved 100%. However, RESTSpecIT achieved 100% in parameter discovery
for ReqRes, whereas HackingBuddyGPT merely achieved 66.67%.

This experiments show that HackingBuddyGPT is better at route discovery, particularly
for simple and hard REST APIs, while RESTSpecIT is better at parameter discovery,
particularly for medium and hard REST APIs. Since each tool has benefits, selecting
one over the other should depend on the specific needs of the API and the type of data
sought.
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API % Found Routes % Found Parameters # Additional Found Routes

COT TOT ICL COT TOT ICL COT TOT ICL

An API of Ice and
Fire

100% 83.33% 100% 100% 100% 100% 0 0 0

BALLDONTLIE
NBA

100% 75% 75% 71.43% 37.50% 37.5% 0 0 0

Random User
Generator

100% 100% 100% 100% 100% 100% 2 2 2

CoinCap 100% 80% 80% 71.43% 71.88% 57.14% 1 2 1
Open Brewery DB 100% 100% 100% 100% 100% 100% 0 0 0
ReqRes 100% 100% 100% 42.86% 42.86% 66.67% 45 96 108

Table 4.8: Average Evaluation Metrics for HackingBuddyGPT Across APIs over 10 runs
with GPT-4o-mini

Effect of Prompting Strategies The table in Figure 4.8 provides a detailed com-
parison of the performance of the different Prompt Engineering strategies in various
APIs, revealing that while endpoint discovery is nearly perfect, with all prompt strategies
consistently achieving close to 100% in the tested APIs, parameter discovery shows more
variability and generally lower success rates. The Chain-of-Thought (COT) method out-
performs the other methods in the CoinCap API when it comes to identifying parameters.
This suggests that its methodical, sequential approach to reasoning may be better suited
for intricate parameter configurations. It’s possible that there are several reasons why the
In-Context-Learning method performs the worst when it comes to parameter discovery.
This method’s primary limitation is that it depends on the context of the original input,
which may not always contain enough relevant details to disclose more nuanced or hidden
parameters. Additionally, In-Context-Learning might not be as effective at adapting
dynamically to the different structures and conventions used across different APIs as
methods that explicitly analyze or change requests and responses to find parameters.

The COT and ICL strategies achieve 100% in both route and parameter discovery
for simpler APIs such as An API of Ice and Fire, while the TOT strategies performs
marginally worse, achieving 83.33% in route discovery. This shows that the simple design
of this API enables HackingBuddyGPT and the other frameworks to operate as efficiently
as possible without finding new paths.

All strategies perform well in route discovery for the more complex BALLDONTLIE NBA
API, with COT reaching 100%. However, there is a noticeable difference in parameter
discovery. In contrast to the TOT strategy, which finds 37.50% of the parameters, COT
finds 71.43%. This implies the more methodical approach of COT is more successful in
this case when it comes to establishing parameters. Additionally, no strategy finds any
new routes, showing that all tools successfully control the relatively fixed structure of
the API.

As expected for the simple API Random User Generator, HackingBuddyGPT identified
routes and parameters with perfect accuracy (100%) across all strategies. Both tools can
explore other or different structures in this API, as evidenced by the two extra routes
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that are found by all strategies.

While COT is 100% successful in route discovery for CoinCap, it only detects 71.43% of
the parameters in parameter discovery. In comparison to the other strategies, the TOT
and ICL strategies find a few more routes and perform marginally better in parameter
discovery (71.88% and 57.14%, respectively). In particular, TOT and ICL each find two
extra routes.

The Open Brewery DB API presents another straightforward example where all strategies
perform similarly well. All strategies achieve 100% both in the discovery of routes
and parameters, finding no additional routes. This is probably due to the API’s clear
structure, which eliminates the need for further exploration.

On the other hand, ReqRes turns out to be the hardest API. While HackingBuddyGPT
achieves 100% in route discovery, it performs worse in parameter discovery, with ICL
achieving 66.67% and COT and TOT identifying 42.86% of the parameters. Regarding
extra routes, the COT strategy discovers 45, TOT discovers 96, and ICL discovers 108.

This analysis highlights the importance of choosing a strategy based on the desired type
of information and API specifics, indicating the need for enhanced adaptive strategies for
parameter discovery in automated API testing tools.

(a) An API of Fire and Ice (b) BALLDONTLIE NBA

(c) Random User Generator

Figure 4.1: Number of steps in route discovery for GPT-4o-mini for simple and medium
benchmarks

Effect of Prompt Stratgies Figure 4.1 presents the results of the route discovery
strategies in five APIs using the GPT-4o-mini model. InAn API of Fire and Ice (a), all
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strategies reached 100% route discovery fairly quickly. Chain-of-Thought and Tree-of-
Thought finished by step 39, while In-Context Learning got there a bit earlier — likely
because the API was simple to explore. In contrast, with the BALLDONTLIE NBA
(b), Chain-of-Thought performed the best. It reached 60% after just a few steps, briefly
plateaued there and then continued to 100%, while the other two Prompt Engineering
strategies struggled to exceed 75%. Chain-of-Thought may have done better because it
breaks the problem into smaller steps, which seems to help it get more accurate results
and reach the goal faster, especially with complex or less straightforward structures.

In Random User Generator (c), In-Context Learning excelled, finding everything in the
first step and clearly outperforming the other strategies. This shows that it works well
for simpler API structures.

(a) Open Brewery DB (b) CoinCap

(c) Reqres

Figure 4.2: Number of steps in route discovery for GPT-4o-mini for hard benchmarks

In Open Brewery DB (see Figure 4.2 (a), Chain-of-Thought and In-Context strategies
reached 100% very quickly. Tree-of-Thought was slower but caught up by step 55, which
suggests taht the REST API had moderate complexity. The CoinCap API (b) showed
varied performance between strategies. Tree-of-Thought and Chain-of-Thought reached
full discovery by the 70th step, while In-Context learning plateaued at 80% after 97 steps.
This suggests that In-Context learning struggled with the complexity of this API or had
difficulty adapting to its structure. The most challenging API appeared to be Reqres (c),
where all strategies required many steps to reach 100% discovery, indicating a highly
complex API or suboptimal documentation.

Overall, Tree-of-Thought demonstrated fast and effective route discovery across APIs,
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which makes it especially useful for APIs with simpler or more obvious structures. Despite
being slower at times, In-Context was thorough in identifying every path. Because Chain-
of-Thought takes a methodical approach, it can be useful in situations that call for
in-depth, sequential analysis. This emphasizes how crucial it is to match the strategy to
the features of the API in order to achieve the best results.

In conclusion, the results demonstrate that HackingBuddyGPT excels in route discovery,
consistently outperforming RESTSpecIT across various API complexities. However, in
some situations, RESTSpecIT works better for parameter discovery, which probably
because it refines parameters iteratively. Although HackingBuddyGPT uses dynamically
generated hints and API descriptions to its advantage, its approach might need to be
improved further to better handle complex and less structured APIs. These results
demonstrate the advantages of each framework and indicate that in order to attain more
balanced performance across various API tasks, future iterations of HackingBuddyGPT
should concentrate on improving parameter inference.

4.2.2 OpenAI o1

In this section, we explore the results of experiments using the o1 model. Table 4.9
provides a comparative analysis between our HackingBuddyGPT framework and the
well-established RESTSpecIT. The table compares both frameworks on the basis of their
ability to identify API routes and parameters across a variety of APIs. The results are
categorized into two main metrics: the percentage of routes found and the percentage of
parameters found, which allows for an easy side-by-side comparison of the performance
of the framework.

API name % Found Routes % Found Parameters

HackingBuddyGPT RESTSpecIT HackingBuddyGPT RESTSpecIT

An API of Ice and Fire 100% 98.57% 100% 93.53%
BALLDONTLIE NBA 100% 96.25% 71.43% 90.83%
Random User Generator 100% 100.00% 100% 73.33%
CoinCap 100% 77.00% 71.43% 80.66%
Open Brewery DB 100% 61.67% 100% 79.23%
ReqRes 100% 87.50% 42.86% 100.00%

Table 4.9: Comparison of best HackingBuddyGPT and RESTSpecIT results based with
o1 on APIs and evaluation metrics

Table 4.9 compares the performance of HackingBuddyGPT and RESTSpecIT in iden-
tifying API endpoints and query parameters with o1 as the LLM. HackingBuddyGPT
usually performs better than RESTSpecIT in discovering API endpoints across different
API complexities. For simpler APIs like An API of Ice and Fire, both frameworks
achieve almost success rates, with HackingBuddyGPT also identifying 100% of the query
parameters. This high accuracy could be due to the straightforward nature of the API,
which requires fewer complex routes and parameters to be discovered.
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Route discovery For simpler APIs, HackingBuddyGPT performs well in route
discovery since it identifies 100% of routes for An API of Ice and Fire. This suggests that
HackingBuddyGPT works best when APIs have a clear and simple structure. Likewise,
HackingBuddyGPT accurately detects all routes for the Random User Generator API.
HackingBuddyGPT yields good results in route discovery for more complex APIs because
it finds all available routes (100%) for BALLDONTLIE NBA, matching RESTSpecIT.
Additionally, it once more reaches 100% route discovery for CoinCap. All approaches
perform similarly in Open Brewery DB, with HackingBuddyGPT achieving 100% route
discovery and detecting no extra routes, which is probably due to the simple and
predictable structure of the API.
For the most challenging API is ReqRes, HackingBuddyGPT finds 100% route discovery,
while RESTSpecIT only achieves 95.24%.

Parameter discovery Although HackingBuddyGPT performs well at route discovery,
the complexity of the API affects how well it performs in parameter discovery. Due to the
straightforward design of the API, An API of Ice and Fire is able to detect all parameters
with 100% accuracy. However, HackingBuddyGPT does not perform well on complex
REST APIs. RESTSpecIT can detect 90.83% of the parameters for BALLDONTLIE
NBA, while it can only detect 71.43%. The mutation-based refinement approach used in
parameter discovery by RESTSpecITs is probably to blame for this.
HackingBuddyGPT finds every query parameter in Random User Generator with 100%
accuracy. However, it only discovers 71.43% of parameters for the hard REST API
CoinCap using , while RESTSpecIT manages to achieve 77.00%. However, for Open
Brewery DB HackingBuddyGPT manages to find all parameters, which can be due to
the simple nature of the parameters.
The ReqRes API is the hardest REST API in terms of parameter discovery for Hacking-
BuddGPT. RESTSpecIT detects 100% of parameters, while HackingBuddyGPT only
detects 42.86%. This illustrates the need to improve iterative refinement and parameter
extraction, especially for complex APIs with dynamic structures.
In summary, HackingBuddyGPT is very good at finding API routes, especially in more
complex cases. In contrast, RESTSpecIT is better at discovering parameters, particularly
when they need to be fine-tuned step by step. Overall, both tools work well with simple
APIs, but HackingBuddyGPT’s approach for finding endpoints seems stronger in handling
more complex REST API designs. Conversely, RESTSpecIT’s parameter refinement
technique excels in situations where accurate parameter identification is crucial.
Table 4.10 presents the evaluation metrics for HackingBuddyGPT across various APIs
with o1 as the LLM. The table highlights HackingBuddyGPT’s performance in discovering
API endpoints, query parameters, and additional routes over 10 runs.

Effect of Prompt Strategies For An API of Ice and Fire, HackingBuddyGPT reaches
100% accuracy in route and parameter discovery for all prompt strategies (CoT, ToT,
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API % Found Routes % Found Parameters # Additional Found Routes

COT TOT ICL COT TOT ICL COT TOT ICL

An API of Ice and
Fire

100% 100% 100% 100% 100% 100% 0 0 0

BALLDONTLIE
NBA

100% 75% 75% 71.43% 25% 37.5% 0 0 0

Random User
Generator

100% 100% 100% 100% 100% 100% 2 2 2

CoinCap 100% 100% 90.00% 71.43% 71.43% 71.43% 1 2 1
Open Brewery DB 100% 100% 100% 100% 100% 100% 0 0 0
ReqRes 100% 95.24% 95.24% 42.86% 4.76% 23.81% 40 90 95

Table 4.10: Average Evaluation Metrics for HackingBuddyGPT Across APIs over 10 runs
with o1

and ICL). No extra or missing routes were found, showing that both HackingBuddyGPT
and other tools can work well with this REST API because it is clear and well-structured.

For BALLDONTLIE NBA, COT outperforms both TOT and ICL as it achieves 100%
route discovery, while the other two reach only 75%. This could be because of the
structured step-by-step reasoning of CoT, which likely helps COT to break down the
API systematically. In contrast, TOT and ICL struggle to go beyond 75%, which could
be because they either overcomplicate or fail to generalize the API’s query patterns. In
parameter discovery, COT again performs best at 71.43%, while TOT (25%) and ICL
(37.5%) fall behind, which indicates that COT’s logical breakdown better captures API
input structures.

For the Random User Generator API, all three strategies perform very well, achieving
100% route and parameter discovery. They each detect two additional routes, which
suggests that this API may have hidden or dynamically generated endpoints that the
strategies interpret differently. The dynamic nature of this API allows all strategies to
adapt well, leading to equal performance across the board.

For hard REST APIs like CoinCap, COT and TOT manage to achieve 100% route
discovery, while ICL falls slightly behind at 90%. The API may need more effective prompt
strategies or iterative refinement for extracting parameters, as all three struggle equally
in parameter discovery (71.43%). Since ToT’s branching logic investigates alternate paths
more aggressively, even if they might not always be correct, COT finds one extra route
while TOT detects two.

For Open Brewery DB, all strategies achieve 100% in both route and parameter discovery
without detecting extra routes, reinforcing the idea that APIs with a simple and structured
design are handled effectively regardless of the approach used.

When it comes to parameter discovery, ReqRes presents the largest challenge. TOT
(4.76%) and ICL (23.81%) have much more difficulty than CoT, which only detects 42.86%.
All strategies, nevertheless, are successful in route discovery. While TOT and ICL slightly
decline to 95.24%, COT continues to lead in route discovery (100%). This suggests that
a more structured reasoning approach, such as CoT, is necessary for complex APIs with
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highly structured or dynamic parameters. With COT detecting 40, TOT detecting 90,
and ICL detecting 95, the number of additional routes found is also incredibly high. This
implies that TOT and ICL might be over-examining routes, which could result in false
positives during route discovery.

(a) An API of Fire and Ice % (b) BALLDONTLIE NBA

(c) Random User Generator

Figure 4.3: Number of steps in route discovery for o1 of simple and medium benchmarks

In summary, HackingBuddyGPT proves to be highly effective in discovering routes,
particularly in simpler and moderately complex APIs. RESTSpecIT, on the other hand,
demonstrates superior performance in parameter discovery, especially for APIs with more
complex structures. Whileboth tools excel with simpler APIs, HackingBuddyGPT is
more robust in handling complex endpoint structures, while RESTSpecIT’s strength lies
in the iterative refinement of parameters. Both tools also show the ability to identify
additional routes, with HackingBuddyGPT generally outperforming in this area.

Figure 4.3 illustrates the performance of various route discovery strategies applied tosix
different APIs using the o1 model. InAPI (a) Fire and Ice, both the Tree-of-Thought
and Chain-of-Thought methods quickly reach a plateau in route discovery, typically after
a few 40 steps. In contrast, the In-Context Learning method discoveredall endpoints at
around 40steps. Compared to Figure 4.1 (a), it is evident that o1 takes considerably
longerto discover endpoints than GPT-4o-mini, highlighting a key performance difference
between the two models.

In (b) BALLDONTLIE NBA, Chain-of-Thought excels in uncovering routes rapidly, out-
performing Tree-of-Thought, which takes a longer time to reach full route discovery. In con-
trast, In-Context Learning andTree-of-Thoughtonlymanagetofindaround75%,however,thistheyachievedtodomuchfasterthanChain-
of-Thought,Interestingly,forthisRESTAPI,theperformanceofGPT-4o-minicloselymatchesthatofo1,showingasimilarpaceinuncoveringtheendpoints.For(c)RandomUserGenerator,allprompt
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strategies achieved to find the endpoint very fast. In particular,o1discoverstheoneendpointforallpromptstrategiesrightfromthefirststep,whileGPT-
4o-minitakesslightlylongertofindthesameresult,furthersuggestingthato1mayhavecertainadvantagesinspecifictypesofendpointdiscovery.

(a) OpenBreweryDB (b) CoinCap

(c) Reqres

Figure 4.4: Number of steps in route discovery for o1 of hard benchmarks

Similarly, in Figure 4.4 (a) Open Brewery DB, Chain-of-Thought and In-Context Learning
quickly identify most of the routes, while Tree-of-Thought lags behind. In this case,
GPT-4o-mini is much faster than o1 when using In-Context Learning, needing only about
41 steps to find all endpoints, while o1 takes around 360 steps. With Chain-of-Thought,
both models reach 100% after about 50 steps, though o1 is slightly faster, finishing in 45
steps. Tree-of-Thought also works a bit better in o1, reaching full discovery in 50 steps
compared to 55 steps in GPT-4o-mini.

In (b) CoinCap, all methods demonstrate slower route discovery, with Chain-of-Thought
leading and Tree-of-Thought trailing the others. A similar trend is observed when
comparing endpoint discovery between o1 and GPT-4o-mini: o1 requires about 650 steps
to reach full endpoint discovery, while GPT-4o-mini only needs around 100 steps.

Finally, in (c) Reqres, the trends mirror those seen in previous APIs, with Chain-of-
Thought reaching high route discovery early, Tree-of-Thought progressing slowly, and
In-Context Learning gradually increasing to a later plateau. Interestingly, o1 can discover
100% of the routes faster than GPT-4o-mini in this case, providing a surprising result
that contrasts with the findings for other APIs.

Overall, these results show a clear pattern: GPT-4o-mini is consistently faster in discov-
ering endpoints than o1, suggesting that GPT-4o-mini may be better suited for endpoint
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discovery tasks. This observation highlights differences in the efficiency of these models
for specific applications, with o1 performing more slowly across most APIs in comparison.

4.3 Results: WebAPITesting
4.3.1 OpenAI GPT-4o-mini
HackingBuddyGPT was tested on different benchmarks to find various API vulnerabilities.
The tables below show the results, including which vulnerabilities were found and how
they were detected.

Benchmark % Vulns Found Vuln Types Vuln Endpoints

TicketBuddy 100% 6 4
OWASP vAPI 100% 6 14
OWASP crAPI 75% 4 22

OWASP Juice Shop 60% 5 -

Table 4.11: Best vulnerability detection results of our approach

Table 4.11 provides an overview of the percentage of vulnerabilities found and the
total amount of vulnerabilities detected across different benchmarks. As the table shows,
HackingBuddyGPT did a great job detecting vulnerabilities, hitting 100% on TicketBuddy
(6 types) and OWASP vAPI (5 types). It struggled a bit more with tougher benchmarks
like OWASP crAPI and Juice Shop, where it caught 75% and 60% of the issues. This
may reflect the added complexity or depth of those APIs.

Benchmark Vulnerability How Vulnerability was Found Detected ?

TicketBuddy Broken Access Control Tried to make an API request to access other
users’ data.

✓

TicketBuddy Broken Function Level Au-
thorization

Tried to access admin-only functions to check if
proper Authorization is enforced.

✓

TicketBuddy Security Misconfiguration Reviewed the API’s security configuration for
common misconfigurations, such as improper
HTTP headers, exposed services, verbose error
messages, or default credentials.

✓

TicketBuddy Identification and Authen-
tication Failures

Tested the Authentication mechanism by at-
tempting brute-force or credential stuffing at-
tacks using weak, default, or leaked passwords.

✓

TicketBuddy Lack of Resources and
Rate Limiting

Performed a DoS attack or sent excessive re-
quests to test if the API limits or blocks exces-
sive calls. A lack of rate-limiting can lead to
brute-force or DoS vulnerabilities.

✓

TicketBuddy Injection (SQL, etc.) Tried injecting malicious input (e.g., SQL,
NoSQL) into API parameters or request bod-
ies.

✓

Table 4.12: Vulnerabilities Detected via HackingBuddyGPT for TicketBuddy

Table 4.12 outlines the specific vulnerabilities found in TicketBuddy via HackingBud-
dyGPT. These vulnerabilities include a variety of security issues such as Broken Access
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Control , Broken Function Level Authorization, Security Misconfiguration, Identification
and Authentication Failures, and Injection vulnerabilities.

Broken Access Control It was detected by attempting to make an API request to
access other users’ data, which is a common vulnerability in poorly configured Authoriza-
tion systems. HackingBuddyGPT was able to detect unauthorized access when a user
with ID 45 tried to access data belonging to user ID 44.

Broken Function Level Authorization This vulnerability was found by trying to
access admin-only functions, ensuring that proper Authorization was enforced before
allowing access. HackingBuddyGPT found this vulnerability by trying to access endpoints
that should be restricted.

Security Misconfiguration It was found by checking the API’s security settings for
common problems like missing HTTP headers, exposed services, detailed error messages,
or default passwords. While HackingBuddyGPT was able to detect this in some cases, it
was not always successful in identifying all security misconfigurations.

Identification and Authentication Failures This vulnerability was discovered by
testing the Authentication mechanism with brute-force or credential stuffing attacks using
weak, default, or leaked passwords. This was successfully detected by HackingBuddyGPT,
highlighting the importance of strong Authentication measures.

Injection (SQL, etc.) It was tested by trying to send harmful input (like SQL or
NoSQL injection) through API parameters or request bodies. HackingBuddyGPT was
able to find these injection flaws, which are important to fix to avoid data leaks or
unauthorized access.

However, HackingBuddyGPT did not always catch certain vulnerabilities. For example,
the Lack of Resources and Rate Limiting issue was tested by sending too many
requests to check if the API would block or limit them. This problem was not always
found, which shows that HackingBuddyGPT may sometimes miss Rate-Limiting issues.
These are important to catch because they can lead to DoS or brute-force attacks.
Moreover, Security Misconfiguration was not always found, which is possibly due to
the subtle nature of certain misconfigurations or how the API responds under specific
conditions.

To better understand how well HackingBuddyGPT finds vulnerabilities, a confusion
matrix was created to show its results on the TicketBuddy API.

Confusion matrix Figure 4.5 shows perfect results because the model found all 4
vulnerable endpoints (TP) with no mistakes. It did not find any missed cases (FN = 0)
and no wrong detections (FP = 0). However, it did not find any safe endpoints, so there
are no true negatives (TN).
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Figure 4.5: Confusion matrix of TicketBuddy

Overall, HackingBuddyGPT proved effective at spotting key vulnerabilities in Tick-
etBuddy, especially issues with Authentication, Authorization, and Injection Attacks.
However, it still struggled with more complex problems like Rate-Limiting and hidden
misconfigurations, which shows that there is room for improvement.

Benchmark Vulnerability How Vulnerability was Found Detected?

vAPI Identification and Au-
thentication Failures

Tested the Authentication mechanism by attempt-
ing brute-force or credential stuffing attacks using
weak, default, or leaked passwords.

✓

vAPI Injection (SQL, etc.) Tried injecting malicious input (e.g., SQL, NoSQL)
into API parameters or request bodies.

✓

vAPI Broken Function Level
Authorization

Tried accessing higher-privileged API functions
by modifying the endpoint or parameters (e.g.,
accessing admin-only functions) to check if proper
Authorization is enforced.

✓

vAPI Security Misconfigura-
tion

Reviewed the API’s security configuration for com-
mon misconfigurations, such as improper HTTP
headers, exposed services, verbose error messages,
or default credentials.

✓

crAPI Excessive Data Expo-
sure

Inspected responses from the "Community" page
for sensitive information like another user’s details
exposed in API responses.

✗

crAPI SQL Injection Injected SQL queries (e.g., ‘0’ OR ’0’ = ’0‘) into
the coupon redemption process to manipulate the
database and redeem coupons.

✓

crAPI Unauthenticated Ac-
cess

Sent an unauthenticated request to an endpoint
that provides data (e.g., order details) without
requiring Authentication.

✓

crAPI Mass Assignment Manipulated input fields by sending extra fields
or modifying object properties through API calls
(e.g., updating user roles).

✗

Table 4.13: Vulnerabilities Detected via HackingBuddyGPT for vAPI and crAPI

Table 4.13 shows the vulnerabilities that HackingBuddyGPT detected in two APIs: vAPI
and crAPI. It includes what issues were found, how they were tested, and whether
HackingBuddyGPT was able to catch them.

In the case of vAPI, HackingBuddyGPT successfully identified all vulnerabilities that
can be detected through REST API calls alone.
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Identification and Authentication Failures This issue was found by checking how
the REST API handles login attempts. HackingBuddyGPT simulated attacks using weak
or default passwords, similar to a credential stuffing scenario, to see if it could break
through the authentication system. HackingBuddyGPT identified that the system was
vulnerable to such attacks, emphasizing the importance of strong password policies and
rate-limiting mechanisms for Authentication processes.

Injection (SQL, etc.) It was tested via Injection attacks, particularly SQL and NoSQL
Injections. This was done by injecting malicious input into API parameters or request
bodies. These types of attacks try to trick the database into doing something it should
not do like revealing private data or bypassing login checks. HackingBuddyGPT was
able to detect these issues, showing how important it is to properly check and sanitize
inputs to stop unauthorized access to databases or systems.

Broken Function Level Authorization This vulnerability was identified by attempt-
ing to access higher-privileged functions in the API by modifying the endpoint or API
parameters. For example, the attempt to access admin-only functions without proper
Authorization checks was tested. HackingBuddyGPT successfully detected this flaw,
highlighting the need for robust Authorization checks at every function level to make
sure that only users, which are authorized, have access the functionality,.

Security Misconfiguration HackingBuddyGPT also found signs of misconfiguration,
like missing security headers, exposed services, or error messages giving too much detail.
Problems like default credentials and weak settings can leave APIs wide open to attackers.
HackingBuddyGPT detected multiple instances of security misconfigurations, highlighting
the importance of a secure by design configuration and regular audits of API settings to
prevent exploitation. To test how well HackingBuddyGPT detects vulnerabilities, we
analyzed its results on the vAPI API using a confusion matrix (Figure 4.6).

Figure 4.6: Confusion matrix of vAPI

Confusion matrix The model found all 14 real vulnerabilities (TP) with no false
negatives, giving it a perfect recall score. While HackingBuddyGPT performed well in
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detecting vulnerabilities in vAPI, it also flagged five safe endpoints as vulnerable. That
means it had no true negatives in this case and showed a slight tendency to overpredict.
However, it reached a high precision and recall (93.33%), with a strong F1-score showing
overall balance between detection and reliability.

Overall, HackingBuddyGPT did a good job finding all the real vulnerabilities in vAPI,
with high recall and precision. However, it flagged some safe endpoints by mistake, which
shows it might overpredict problems. The results show that the tool is strong at spotting
real threats, but could be improved to reduce false alarms.

For crAPI, the results were more mixed. It consistently identified 2 out of 4 vulnerabilities
and occasionally caught a third.

Excessive Data Exposure happens when an API response shows sensitive information,
like data from another user. In crAPI, the “Community” page was checked for this issue,
as it showed information that should have been hidden. However, HackingBuddyGPT
did not catch this problem, which suggests the tool may struggle to detect data exposure
when the information is hidden in complex responses or not properly filtered on the client
side. It shows a weakness in finding this type of issue in certain situations.

SQL Injection was attempted on the coupon redemption process in crAPI. Hack-
ingBuddyGPT successfully detected the vulnerability by using the Injection of SQL
queries like ‘0’ OR ’0’ = ’0‘, which could manipulate the underlying database. This
emphasizes the critical need for input validation to prevent unauthorized database access,
and HackingBuddyGPT effectively handled this detection.

Unauthenticated Access was successfully identified by HackingBuddyGPT when
unauthenticated requests were sent to an endpoint that provided sensitive data, such
as order details. The tool detected the issue, confirming the importance of proper
Authentication mechanisms for sensitive data access in APIs.

Mass Assignment occurs when extra fields or modified object properties are sent
in a REST API request, which can lead to unauthorized actions or privilege escalation.
For example, changing user roles via API calls was tested and detected successfully
by HackingBuddyGPT. This highlights the need for careful validation of input data to
prevent unauthorized changes to the system.

A confusion matrix was used to further evaluate HackingBuddyGPT’s classification
results on the crAPI API in order to determine how well it detected vulnerabilities.

Confusion matrix crAPI ’s confusion matrix (see 4.7) offers a thorough analysis of
the model’s classification performance. The actual vulnerabilities the model successfully
identified are indicated by the 17 True Positives. Five vulnerabilities that were overlooked
by the model are known as False Negatives (FN). Five False Positives (FP), or non-
vulnerable scenarios that the model incorrectly identified as vulnerabilities, were found.
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Figure 4.7: Confusion matrix crAPI

There were 18 True Negatives (TN) = 18, or non-vulnerabilities that the model accurately
recognized.

The model does well in differentiating between vulnerable and non-vulnerable cases, with
an accuracy of about 77.78%. However, accuracy by itself might not be enough to assess
the model’s dependability, particularly when there is a class imbalance. The bulk of the
reported vulnerabilities are, in fact, correct, according to the precision score of 77.27%.
The existence of false positives, however, raises the possibility that certain non-vulnerable
circumstances are being mistakenly identified as vulnerabilities. The model’s 77.27%
recall score indicates that it can detect a sizable percentage of current vulnerabilities.
The existence of false negatives, however, suggests that certain vulnerabilities are still
undiscovered. The model’s 77.27% value indicates that it strikes a decent balance between
identifying vulnerabilities and preventing misclassification.

The results show that HackingBuddyGPT was able to find most of the vulnerabilities in
crAPI, including important ones like SQL Injection. However, it missed the Excessive
Data Exposure vulnerability in some cases. This suggests it may have trouble spotting
this type of problem, especially when the exposed data isn’t easy to see or is hidden by
how the API is set up. Still, HackingBuddyGPT proved useful for automating security
testing, catching common issues like unauthenticated access and helping highlight areas
where it can be improved.

Table 4.14 provides a detailed look at vulnerabilities detected in OWASP Juice Shop.
HackingBuddyGPT was able to identify common vulnerabilities such as Identification
and Authentication Failures, NoSQL Injection, and Information Disclosure via Headers.
However, it struggled to consistently identify Sensitive Data Exposure and Rate Limiting
issues. These limitations indicate that while HackingBuddyGPT performs well in detecting
many vulnerabilities, there are some complex cases, particularly related to Rate Limiting
and data exposure, that it may not always catch.

Identification and Authentication Failures It was discovered in the case of the
OWASP Juice Shop, by trying out week passwords via brute-force attempts. HackingBud-
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Benchmark Vulnerability How to Find the Vulnerability Detected?

OWASP Juice Shop Identification and Authenti-
cation Failures

Test the login and password reset endpoints with
weak or brute-force attempts to exploit Authentica-
tion mechanisms.

✓

OWASP Juice Shop Sensitive Data Exposure Inspect API responses for unencrypted sensitive data
such as credit card numbers or personal information.

✗

OWASP Juice Shop Broken Access Control Modify parameters like user IDs in API requests
(e.g., change ‘/rest/basket/1‘ to ‘/rest/basket/2‘) to
access unauthorized data.

✓

OWASP Juice Shop Insufficient Rate Limiting Make repeated requests to endpoints (e.g., login, reg-
istration) and check if the system limits the number
of attempts.

✗

OWASP Juice Shop Mass Assignment Manipulated input fields by sending extra fields or
modifying object properties through API calls (e.g.,
updating user roles).

✗

OWASP Juice Shop NoSQL Injection Injected NoSQL payloads (e.g., “ or 1=1 —‘ into
email field) in the API request to manipulate
database queries.

✓

OWASP Juice Shop Information Disclosure via
Headers

Inspected HTTP headers from API responses for
sensitive data such as server details or API version
information.

✓

Table 4.14: Vulnerabilities Detected via HackingBuddyGPT for OWASP Juice Shop

dyGPT successfully identified this vulnerability through REST API testing, highlighting
the importance of strong Authentication mechanisms.

Sensitive Data Exposure This vulnerability can lead to the exposure of sensitive
information, such as credit card details or personal data. The API responses were
examined for unencrypted data leaks. However, this vulnerability was not always
detected by HackingBuddyGPT, indicating potential limitations in identifying subtle
data exposure issues that depend on specific API response formats or encryption practices.

Broken Access Control It was tested by modifying request parameters (e.g., changing
user IDs in API calls like /rest/basket/1 to /rest/basket/2) to access unauthorized re-
sources. HackingBuddyGPT effectively detected unauthorized access through REST API
testing, emphasizing the need for strict access control measures in API implementations.

Insufficient Rate Limiting This vulnerability was assessed by making multiple rapid
requests to endpoints such as log-in or registration. This vulnerability, which can allow
brute-force attacks if not properly mitigated, was not always detected by HackingBud-
dyGPT. This suggests that some rate-limiting mechanisms might be challenging to
identify without simulating real-world attack patterns over time.

Mass Assignment It happens when attackers modify object properties by adding or
changing fields in API requests, such as unauthorized user role changes. The tests on
OWASP Juice Shop showed that HackingBuddyGPT did not always catch this issue,
suggesting it may miss unauthorized changes through API calls.

NoSQL Injection This security vulnerability involves injecting malicious NoSQL queries
(e.g., using payloads like ‘ or 1=1 —) into API requests to manipulate database queries.
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In this case, HackingBuddyGPT successfully detected NoSQL Injection vulnerabilities,
demonstrating its effectiveness in identifying Injection flaws in REST APIs.

Information Disclosure via Headers It was evaluated by inspecting HTTP headers
for sensitive information, such as server details or API version numbers. HackingBud-
dyGPT detected this vulnerability effectively, highlighting the need to sanitize or remove
unnecessary information from HTTP headers in API responses.

Confusion matrix Since the true number of non-vulnerable endpoints for OWASP
Juice Shop was not provided, we could not create a confusion matrix. A confusion
matrix requires four key values: true positives (correctly identified vulnerabilities),true
negatives (correctly identified non-vulnerabilities), false positives (incorrectly identified
vulnerabilities), and false negatives (missed vulnerabilities). Without knowing the false
positives, it is impossible to measure the model’s precision, recall, or overall performance.
Our assessment revealed that 60% of the vulnerabilities we identified were discovered.

Overall, these tables show that HackingBuddyGPT is good at finding common API
vulnerabilities across different tests. While it works well in most cases, it sometimes misses
certain issues, especially with rate limiting, data exposure, and access control flaws. This
suggests that while HackingBuddyGPT is powerful, it could be improved to better detect
complex security issues. Still, the tool did well at spotting important vulnerabilities like
Authentication Failures, Injection Attacks, and Broken Authorization, which are serious
API security concerns. HackingBuddyGPT shows it can automate security testing by
finding common API problems, saving time and effort. While it sometimes missed issues
like Rate Limiting, Data Exposure, and access control flaws, it generally does a good job
detecting common vulnerabilities. This suggests HackingBuddyGPT could be improved
to spot more complex issues.

4.3.2 Summary
In summary, these experiments show how well the two LLMs ( GPT-4o-mini and o1,)
generate test cases for REST APIs and find security vulnerabilities. Overall, GPT-4o-mini
was especially good at finding endpoints, even in complex APIs, and creating test cases
using structured prompts like Chain-of-Thought. It also did better than RESTSpecIT
at finding routes, but struggled with discovering parameters in more complex cases. In
comparison, o1 did not perform that well. HackingBuddyGPT, which uses GPT-4o-mini,
performed well at spotting common issues like authentication failures and injection
attacks, but had difficulty with more complex problems like rate limiting and data
exposure. Overall, the study highlights the strengths of these tools but also shows they
need improvement. With better training and better prompt strategies, they could become
even more effective at catching harder-to-find security flaws in real-world APIs.
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CHAPTER 5
Discussion

This discussion answers the initial research questions by analyzing the results of Chap-
ter 4.
Research Question 1: What is the efficacy of various Large Language Models (LLMs)
in generating test cases for REST APIs, and which factors significantly influence their
performance?

The WebAPIDocumentation experiments show that how well Large Language Models
(LLMs) like GPT-4o-mini and o1 can generate test cases for REST APIs depends
on the complexity of the API, the model’s abilities, and the prompts used. This is
shown by comparing HackingBuddyGPT and RESTSpecIT. Similar to RESTSpecIT,
HackingBuddyGPT performs black-box testing by automating the discovery of routes
and parameters through schema analysis. These experiments test how well the models
can identify endpoints, parameters, and edge cases, which are key for creating test cases.
Input validation is also tested during the discovery process, as if a 401 or 422 error occurs,
the endpoint is queried again with different parameters.

The results show that HackingBuddyGPT is great at finding routes, especially in complex
APIs, but it struggles with discovering parameters, particularly for APIs that need
repeated adjustments. This highlights a challenge in creating test cases, where models
must generate valid cases with the right routes and parameters. While HackingBuddyGPT
is good at finding endpoints, it has trouble with dynamic parameters that need context.

The experiments also show that API complexity greatly affects how well models perform.
For simple APIs, generating test cases is easy, and models quickly find routes and
parameters. But as APIs get more complex, creating accurate test cases becomes harder.
The performance depends on three key factors: API complexity, model abilities, and
how the prompts are designed.GPT-4o-mini seems to have a stronger understanding of
RESTful API structures, allowing it to find hidden or undocumented endpoints better
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than o1. Prompt Engineering helps HackingBuddyGPT use context and structured input
to create more accurate test cases. Its advanced reasoning lets it figure out missing
endpoints, which helps with complex or dynamic APIs. It also generalizes better, using
knowledge from one API for others, while o1 is more limited.Strategies such as Chain of
Thought (COT) and Tree of Thought (TOT) improve the accuracy of the test case by
guiding the model through a structured reasoning process, whereas ICL does not achieve
the same results. These advantages make GPT-4o-mini more efficient in generating test
cases for a wide variety of APIs than o1.
In conclusion, as previously stated, Prompt Engineering, model capabilities, and API
complexity all affect how well LLMs generate REST API test cases. Due to training
and design differences, GPT-4o-mini performs better than o1 in identifying the REST
API endpoint and parameters. GPT-4o-mini’s cost-effectiveness and processing efficiency
make it ideal for tasks requiring rapid route and parameter identification. In contrast,
o1 is designed with a focus on complex reasoning and problem solving, which, while
enhancing its performance in tasks like coding and mathematics, may result in slower
response times and higher costs. These distinctions suggest that GPT-4o-mini’s training
emphasizes rapid and efficient comprehension of the API structure, whereas o1 prioritizes
deep reasoning capabilities [AI24, VIS24].
Research Question 2: What Prompt Engineering techniques are most effective for
generating test cases for REST APIs using LLMs?
The WebAPIDocumentation experiments show that Chain of Thought (COT) and Tree
of Thought (TOT) are the best strategies for generating test cases for REST APIs. COT
performs especially well at finding parameters and endpoints, especially in complex APIs
like CoinCap and BALLDONTLIE NBA. This is likely because COT breaks tasks into
smaller steps, helping the model find missing parameters more accurately. Previous
research has shown that COT improves logical reasoning by breaking down complex tasks
into structured steps, which helps with accuracy in tasks that need detailed inference
[WWS+22]. It seems that clear and specific instructions helped the model identify
key components of the API, reducing redundancy, and ensuring relevant, contextually
appropriate test cases [? ]. TOT also improves API exploration by systematically breaking
down discovery tasks, making it particularly effective in structured API environments [?
].
In contrast, In-context Learning (ICL) performs the worst in finding parameters, which
is most likely because it depends on the provided context, which may not always have
enough information to spot hidden parameters. While ICL works well for tasks with clear
context, its ability to find API parameters is limited. However, it can still be effective
for simple APIs, like the Random User Generator API, where it achieved 100For finding
routes, all three strategies do well, but COT and TOT are usually better at discovering
hidden endpoints, especially in complex APIs. This matches previous research, which
shows that structured reasoning methods help improve performance in data exploration
tasks. The results also show that GPT-4o-mini consistently outperforms o1 in finding API
endpoints, suggesting that differences in training and model optimization for structured
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API understanding affect performance in API testing. In conclusion, COT is the best
strategy for finding parameters and endpoints. TOT is performed also well at finding
endpoints. Future work should focus on improving these strategies to handle complex
parameter structures better.

Research Question 3: To what extent can LLMs identify potential failure points or
vulnerabilities within REST APIs, and how accurate are their predictions? The findings
demonstrate that HackingBuddyGPT can identify REST API vulnerabilities, though its
effectiveness varies according to how difficult the benchmarks are. In the WebAPITesting
experiments, HackingBuddyGPT performed well in detecting vulnerabilities in simpler
benchmarks like TicketBuddy and OWASP vAPI, achieving 100

HackingBuddyGPT performed well on simpler benchmarks but was less reliable with
more complex ones, like OWASP crAPI and OWASP Juice Shop. While it found many
serious vulnerabilities like SQL injection and unauthenticated access, it missed issues like
excessive data exposure and sensitive data exposure, which are harder to detect. Moreover,
it excels at identifying common vulnerabilities but falters at identifying subtler or more
complicated problems that require more thorough investigation. In OWASP Juice Shop,
for instance, the tool detected issues like NoSQL Injection and Broken Authentication,
but it struggled with issues like mass assignment and inadequate rate limiting, which are
more difficult to test with simple API calls. This demonstrates the tool’s inability to
identify more complicated vulnerabilities that require a more thorough examination of
the API’s operation in various scenarios. In conclusion, HackingBuddyGPT is good at
finding serious defects, but not perfect and sometimes misses vulnerabilities. The tool
needs to be improved in these areas, especially when handling more complex cases.

5.1 Challenges
While the LLMs worked well overall, we ran into a few challenges while building the two
use cases. One big challenges was stopping the model from repeating the same queries
because it kept using endpoints that it had already found. We solved this by keeping
track of both successful and failed requests so the model could explore more without
getting stuck. Figuring out the right parameters for each endpoint was also tricky. Even
with example queries, the model had to create new versions for each request. Therefore,
we had to be careful, as one wrong parameter could mess up the test.

Another issue was with In-Context Learning (ICL) because it sometimes copied query
patterns too exactly from the examples instead of adjusting them to fit the current
situation. This means that it executed requests on the provided examples. In order
to fix this issue we adjusted the prompt. Finally, it was challenging to get consistent
results across all benchmarks, since each one had its own structure, endpoint logic, and
security setup. This called for a versatile framework that could handle a wide range
of API conventions. It was difficult but necessary to generalize test cases for these
diverse structures, requiring specialized approaches to parameter generation and endpoint
discovery.
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Another major challenge was developing a standardized testing approach that could
accommodate different API configurations. To conduct effective security tests, the
framework needed to be universally applicable across benchmarks while remaining
adaptable to each API’s unique characteristics.

The generation of Python test cases also presented a challenge. Although the tests
were initially generated, they often contained placeholders or lacked full functionality.
Therefore, it was necessary to manually restructure and modify the generated tests so
that they could be run in actual situations. The process of improving the model’s code
generation capabilities was essential because it made clear that, especially for more
complicated test cases, the model must generate fully functional executable code.

These difficulties show the need for a testing framework that is more resilient and flexible.
A framework like this needs to be able to handle a variety of API structures and guarantee
that the code produced can be used directly in security testing without the need for
extensive post-processing or manual modifications.
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CHAPTER 6
Conclusion

This thesis aimed to evaluate the efficacy of Large Language Models (LLMs) in generating
test cases for REST APIs, identify effective Prompt Engineering techniques, and assess
their ability to detect vulnerabilities within REST APIs. Two new use cases were added
to HackingBuddyGPT (WebAPIDocumentation and WebAPITesting) to answer these
questions. WebAPIDocumentation generates OpenAPI specifications (and adressed the
problem of inconsitent Openapi specifications) in a black-box setting and in this process
conducts fuzzing. WebAPITesting focuses on more advanced testing, such as determining
security vulnerabilities such as Broken Authentication.

The findings of the experiments of WebAPIDocumentation show that for GPT-4o-mini
is better suited for endpoint and parameter discovery than o1. GPT-4o-mini seems to
have a better understanding of API structures, allowing it to identify hidden endpoints
and generate accurate test cases through improved Prompt Engineering. The prompting
strategy that performed the best as COT can be attributed to the fact that these kinds of
prompts are structured. Additionally, adjusting In-Context Learning (ICL) to encourage
creativity and varying query paths helped the model avoid repetition and explore a wider
range of possible scenarios.

The results of WebAPITesting show that GPT-4o-mini was successful in identifying
common security vulnerabilities such as broken authentication and NoSQL injection,
but struggled with more complex issues like Sensitive Data Exposure and Insufficient
Rate Limiting. While its accuracy was higher with well-documented APIs, it showed
variability in performance, suggesting that further refinement in training and Prompt
Engineering is needed to improve detection of complex vulnerabilities. Using structured
prompts, example queries, and providing context about the API helped the model better
identify the right endpoints and create more accurate test cases.

In conclusion, this thesis contributes to the current field by showing that LLMs can
be used in generating test cases for REST APIs and are efficient in doing so. Their
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performance can be improved by using Prompt Engineering strategies such as COT.
Moreover, it showed that LLMs can be used to uncover common security vulnerabilities.

6.1 Lessons Learned
The study provided several valuable lessons. First, improved Prompt Engineering played
an importnat role in enhancing the performance of LLMs, guiding them to generate
more accurate and contextually relevant test cases. Second, while GPT-4o-mini excelled
in detecting common vulnerabilities, it showed limitations in identifying more complex
security issues, indicating the need for further refinement. Finally, the importance of
contextual awareness became clear: providing the model with clear information about
the API structure in the form of a complete OpenAPI specification significantly improved
both the accuracy of its predictions and the quality of the generated test cases.

6.2 Future Work
Future work in this area could focus on improving the detection of complex vulnerabilities,
such as sensitive data exposure and rate limiting, by incorporating more training in
challenging scenarios. Increasing the diversity of training datasets to include various
API architectures and security vulnerabilities would enhance the model’s generalization
capabilities across distinct API categories. Additionally, more research into dynamic
Prompt Engineering, where the model tailors prompts based on the specifics of the API,
could lead to more efficient and accurate test case generation. Future iterations could
also focus on automating the suggestion of fixes or mitigation strategies, making LLMs
tools not only for vulnerability detection but also for remediation.
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Overview of Generative AI Tools
Used

In this thesis, two AI models, ChatGPT-4o-mini and ChatGPT-4o1, were used to improve
task efficiency and accuracy. They helped in conducting experiments, generating code
snippets, suggesting test scenarios, and automating tasks. GPT-4 specifically helped
format tables and refine text for improved clarity and coherence. AI tools were used
solely for technical support and did not influence result interpretation. All AI-generated
content was reviewed for academic integrity.
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Übersicht verwendeter Hilfsmittel

In dieser Arbeit wurden zwei KI-Modelle, ChatGPT-4o-mini und ChatGPT-4o1, ver-
wendet, um die Aufgabeneffizienz und -genauigkeit zu verbessern. Sie halfen bei der
Durchführung von Experimenten, der Generierung von Codeausschnitten, der Anregung
von Testszenarien und der Automatisierung von Aufgaben. GPT-4 hat insbesondere
dabei geholfen, Tabellen zu formatieren und verfeinern des Texts, um die Klarheit und
Verständlichkeit zu verbessern. KI-Tools dienten ausschließlich der technischen Unter-
stützung und hatten keinen Einfluss auf die Ergebnisinterpretation. Alle KI-generierten
Inhalte wurden auf akademische Integrität überprüft.
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