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Abstract

The NUCLEUS experiment aims to measure coherent elastic neutrino-nucleus scattering at the
Chooz nuclear power plant in France, using cryogenic particle detectors. The high sensitivity
required to probe the expected signal range below 100 eV/c2 can only be achieved using complex
and challenging analysis methods. The raw detector data consists of time series of voltage traces.
During measurements, the detector output stream is stored and recorded as raw data. This data
are made up of a noisy baseline, on which particle events and artifacts are superimposed. Particle
events have to be located in this stream in a process called triggering. The targeted particle
events are identified and distinguished from artifacts by their characteristic shape, which follows
a parametric description with a priori unknown parameters. To calculate the energy deposited
in the detector by such an event, the scale of the pulse has to be determined. This task, called
pulse height estimation, together with assessing event-shape parameters, triggering and defining
quality cuts aimed to exclude unwanted artifacts are crucial steps of raw data analysis. This
work aims to provide machine learning based methods for these tasks in order to speed up
raw data analysis while minimizing the need for manually defined cuts that might introduce
human biases. For denoising raw pulses the use of autoencoders is explored, showing promising
results. Furthermore, a shape based clustering method useful for data visualization is introduced,
along with a neural network based method for triggering that combines the efficiency of current
methods with artifact rejection capabilities. We also present a method for an automatized
creation of an optimum filter, a linear filter currently used for both triggering and pulse height
estimation, using information from the data stream. Finally, we present a new weakly supervised
per-detector framework for training neural networks for quality cuts. This approach matches the
performance of both handmade cuts and previous machine learning methods while being more
efficient and requiring shorter training times. All methods have been implemented in the CAIT
analysis framework used by NUCLEUS for data analysis.



Kurzfassung

NUCLEUS ist ein Experiment zum Nachweis von kohärenter elastischer Neutrino-Nukleus Streu-
ung mit kryogenischen Detektoren am französischen Kernkraftwerk Chooz. Der erwartete Signal-
bereich liegt unterhalb von 100 eV/c2. Um die dafür nötige Empfindlichkeit zu erreichen, müssen
komplexe Methoden zur Rohdatenanalyse eingesetzt werden. Die Rohdaten des Experiments
bestehen aus Zeitserien von Spannungssignalen, der gesamte Datenstrom wird gespeichert. In
diesem finden sich Teilchenereignisse und Artefakte, überlagert von einem Rauschsignal. Das
Lokalisieren von Ereignissen im Datenstrom wird Triggering genannt. Teilchenereignisse können
durch ihre charakteristische Pulsform identifiziert und von Artefakten unterschieden werden. Die
erwartete Pulsform folgt einer parametrischen Beschreibung mit a-priori unbekannten Parame-
tern. Um die im Detektor deponierte Energie zu bestimmen, muss die Pulsamplitude ermittelt
werden. Dies ist, zusammen mit der Identifizierung der Parameter der Pulsform und der Defini-
tion von Kriterien zum Ausschließen von Artefakten, Teil der Rohdatenanalyse. In dieser Arbeit
stellen wir auf maschinellem Lernen basierende Methoden zur Rohdatenanalyse vor, mit dem Ziel,
die Analyse zu beschleunigen und den Bedarf an manuell definierten Ausschlusskriterien zu ver-
ringern. Zur Rauschunterdrückung in Rohdaten wird der Einsatz von Autoencoder-Netzwerken
untersucht, mit vielversprechenden Ergebnissen. Des Weiteren stellen wir eine formbasierte Clus-
teringmethode zur Datenvisualisierung vor, sowie eine auf neuronalen Netzwerken basierende Me-
thode für das Triggering, welche gute Effizienz mit Artefaktunterdrückung kombiniert. Außerdem
wird eine Methode zur automatischen Berechnung eines Optimalfilters aus Rohdaten vorgestellt.
Der Optimalfilter ist ein linearer Filter, der sowohl für das Triggering als auch zur Rekonstruktion
von Pulshöhen verwendet wird. Schließlich stellen wir ein Framework zum Training von neurona-
len Netzen zur Artefakterkennung vor. Die mit diesem Ansatz erzielten Ergebnisse erreichen die
Qualität von händisch definierten Kriterien sowie vorheriger maschineller Lernmethoden, unter
Verwendung von kleineren, schneller trainierbaren neuronalen Netzwerken. Alle Methoden wur-
den in das CAIT-Analyseframework implementiert, welches von NUCLEUS für die Datenanalyse
verwendet wird.
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Introduction

Since their proposal in 1930 and first detection in 1956 [1], the study of neutrinos and their inter-
actions has been an active and fruitful field of research. Being the only fundamental particles in
the Standard Model that only interact via the weak interaction, they offer unique opportunities
to test the validity of the Standard Model. Due to the small interaction rates of most observable
neutrino interactions, detecting neutrinos usually relies on either very large neutrino fluxes, like
in the first neutrino detection or very large detectors, like Super-Kamiokande [2] (50 000 t of wa-
ter surrounded by about 11200 photomultiplier tubes), Borexino [3] (278 t of liquid scintillator),
KM3Net [4] (a large volume of the order of km3 of sea-water in the Mediterranean equipped
with Cherenkov neutrino telescopes) and IceCube [5] (an equally large volume of Antarctic ice
equipped with Digital Optical Modules). The measured interactions usually have interaction en-
ergies exceeding 1.8MeV, which is the boundary for inverse beta decay, with a recent observation
of a muon induced neutrino with an energy of 120+110

−60 PeV in the KM3Net experiment [6].
Recently also a lower energy neutrino interaction has been the focus of research, the coherent

elastic neutrino-nucleus scattering, or CEνNS for short. It has been predicted already in 1974[7]
as a direct consequence of existence of the neutral current of the weak interaction. It happens
if the interaction energy of a neutrino interacting with a nucleus via the neutral current is small
enough for the neutrino to interact coherently with all nucleons. Since the interaction is elastic,
the only experimental signature is a low energetic nuclear recoil. This makes CEνNS difficult
to observe, even though it is thought to be the dominant neutrino interaction at low energies.
Because of the enhanced cross section with respect to other neutrino interactions, detectors with
lower masses are possible. The challenge lies however in reaching the low energy sensitivity
necessary to resolve the CEνNS signal.

Due to this difficulty, CEνNS has only been recently observed, with the first observation
happening in 2017 by the COHERENT collaboration [8] using CsI[Na] and neutrinos produced
by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Currently, more
efforts are being made with different detector technologies to push accuracy. Further observations
were reported on accelerator neutrinos in 2021[9] using liquid Argon, on solar neutrinos in 2024
with 2.7 sigma using liquid Xenon[10] and on reactor antineutrinos in 2025 with 3.7 sigma using
high purity Germanium, available as preprint[11].

Another experiment focusing on CEνNS of reactor antineutrinos is the NUCLEUS experiment
[12] to be based at the Chooz nuclear power plant in France. Currently, the experiment is
under commissioning at Underground Laboratory (UGL) at Technical University Munich, with
relocation to Chooz planned for this year, followed by measurements in a technical run. The
experimental site will be located between the two reactor cores, at distances of 102m and 72m
from the respective cores. Due to the proximity to the reactor cores, the neutrino flux is expected
to be high enough to measure CEνNS with gram-scale detectors. The detectors will be crystals
of CaWO4 and Al2O3, equipped with transition edge sensors, kept at cryogenic temperatures.
Transition edge sensors are superconductors that are kept at their transition temperature. In

1



this configuration, a small change in their temperature results in a big change in their resistivity.
This effect can be used to measure the temperature increase in the crystals caused by a CEνNS
interaction. During measurements, the detector output stream, consisting of time series of voltage
traces, is stored as raw data. The stream is made up of a noisy baseline, onto which particle
events and artifacts are superimposed. Particle events have to be located on this stream in a
process called triggering. A theoretical model of this type of detectors [13] provides a parametric
description of the shape of particle events. The values of the parameters depend on the detector
and configuration, are a priori unknown and have to be inferred from the data. This description
can then be used to identify particle events and to distinguish them from artifacts. In addition,
the model predicts that the energy deposited in the detector by a particle event scales with
the pulse height of the event pulse. Close to the low energy threshold of the detectors, noise
and pulse heights have similar magnitudes, which makes triggering and pulse height estimation
difficult. Due to this, usually a linear matched filter, called the optimum filter, is employed[14].
Its form can be derived by requiring the linear filter giving the best signal to noise ratio for a
given signal shape and noise spectrum. It can be used for noise suppression during triggering
and as pulse height estimator. During triggering, some artifacts are also typically included. To
exclude them, parameters reflecting the shape of each trace are calculated. On these parameters,
cuts are defined with the aim to exclude as many artifacts as possible, while excluding as few
event pulses as possible. These cuts are called quality cuts.

Machine learning (ML) methods have had a surge in popularity in recent years, due to their
ability to master complex tasks without explicit instructions by learning from provided data.
They have applications in many fields; for cryogenic detectors, ML methods were introduced for
data analysis of the CRESST experiment. CRESST [15] is an experiment searching for dark
matter, which uses detector technology which is very similar to the one used by NUCLEUS.
Applications in CRESST include pulse height estimation [16], quality cuts [16, 17] and detector
operation [17]. This work builds heavily on these efforts, also using the same analysis framework
called CAIT [18].

Chapter 1 is going to give a short introduction to the physics of CEνNS and the NUCLEUS
experiment, highlighting the experimental setup and theoretical description of the detectors. In
Chapter 2, some methods currently used in raw data analysis of the NUCLEUS experiment are
presented. The optimum filter, its derivation and uses for triggering and pulse height estimation
is described, as well as common artifacts in the data and the procedure of defining quality cuts
to exclude them. Chapter 3 is concerned with machine learning methods for raw data analysis.
Section 3.1 explores the use of artificial neural networks for noise reduction in detector traces,
yielding promising results for triggering and event parameter estimation. Section 3.2 introduces
k-means clustering, a method for clustering detector traces, which can be used for dataset vi-
sualization, artifact rejection and event classification for the construction of labelled datasets.
In Section 3.3 a new method for triggering is presented. It uses a neural network to detect
particle events on the data stream. Its trigger efficiency for low energy pulses almost matches
the efficiency of the optimum filter, while being able to recognize and reject artifacts already
in the triggering process. Section 3.4 contains a framework for the complete automatization of
optimum filter triggering. This encompasses a method to infer the event pulse shape from raw
data without manual intervention and subsequent automatic calculation of the optimum filter,
as well as a method for the automatic determination of sensible trigger thresholds for triggering
with and without the optimum filter. Finally, in Section 3.5 a framework for artifact rejection
is presented. It consists of a shallow neural network, that can be trained quickly per detector
or configuration in a weakly supervised manner and yields results that match previous results
obtained using much larger networks, as well as manually defined cuts.

Many of the methods presented in Chapter 3 can be combined, for further automatization.
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For example, combining automatized triggering, clustering and the artifact rejection network, it
is possible to process a raw data stream in order to get a dataset containing only the clean events
present in the raw data stream with almost no manual interventions necessary. Another example
is the use of clustering to dramatically speed up the creation of a dataset that can be used to
train a network for triggering, which is able to combine triggering and artifact rejection into a
single step. Scripts for these procedures were implemented in CAIT, being already available to
be used.
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Chapter 1

The NUCLEUS experiment

1.1 Brief Introduction to CEνNS

When a neutrino interacts weakly with a nucleus via a neutral current, if the energy of the
exchanged virtual Z-boson is low enough such that its corresponding wavelength is of the order
of the size of the nucleus, the constituents of the nucleus are not resolved and the interaction
happens coherently over all nucleons. This interaction is called CEνNS; it is a direct consequence
of the existence of the neutral current of the weak interaction [7]. It is conceptually similar
to the electromagnetic case of electron-proton elastic scattering (see for example [19]). If the
wavelengths of the exchanged virtual photons are larger or in the order of the proton radius,
the constituents of the proton are not resolved and the interaction happens coherently with the
proton as a quasi-point-like particle. It is possible to include first order contributions of the finite
charge distribution of the proton by the inclusion of nuclear form factors, something that can
also be done in the case of CEνNS.

The full derivation of the CEνNS cross section in the Standard Model can be found in [20],
but we will give a short summary of the involved steps here for a better understanding of the
steps and approximations involved.

In the Standard Model, the neutral current at the vertices is given by

Jµ
NC = 2

�
f

gfLf̄Lγ
µfL + gfRf̄Rγ

µfR (1.1)

where f stands for all elementary fermions, fL and fR their left and right handed components,
and gfL and gfR for their respective couplings to the Z-boson, determined by charge and weak
hypercharge. Since the Z-boson has a mass of around 91GeV/c2, for small momentum transfers
its propagator becomes constant, and can be approximated with the fermi constant GF divided
by

√
2. With this, the amplitude of coherent neutrino nucleus scattering can be written as

iM(ν +N → v +N) = −i
√
2GF ⟨N(k2)|Jµ

NC |N(p2)⟩⟨ν(k1)|JNCµ|ν(p1)⟩ (1.2)

where p1, k1, p2 and k2 are the momenta of the initial neutrino, final neutrino, initial nucleus
and final nucleus, respectively.

The part concerning the nucleus only depends on the quark sector in the neutral current, since
the nucleus is made up of up and down quarks. To simplify the expression it is assumed that the
nucleus does not violate parity, and to evaluate it some known electromagnetic properties of the
nucleus are considered, introducing form factors F (q2) as function of the momentum transfer q
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and the weak charge of the nucleus QW . The assumption of parity is satisfied in the sense that
we statistically expect large nuclei to approximately have 0 spin.

The cross section can then be evaluated by considering that, since there are only left handed
neutrinos in the Standard Model, the right handed case should vanish and with the use of
kinematic relations. One obtains

dσ

dER
=

G2
F

4π
Q2

WF 2(q2)mN



1− ER

Emax
R



(1.3)

where mN is the mass of the target nucleus, ER is the nuclear recoil energy, and Emax
R is the

maximum recoil energy determined by kinematics and given by Emax
R = 2E2

ν/ (mN + 2Eν), with
the energy of the neutrino Eν . The nuclear weak charge is given by QW = N−Z

	
1− 4 · sin2 θW

�
with N the number of neutrons, Z the number of protons and θW the Weinberg angle.

The reactor antineutrinos targeted by NUCLEUS mainly stem from beta decays of fission
products [21], which means they usually have energies below 10MeV. The exchanged momentum
q between a neutrino and a nucleus is associated with a length scale given by h/q. For a neutrino
with an energy of 10MeV, this value is in the order of 100 fm if its entire momentum is transferred
in the interaction. This is well above the typical nuclear radii of around 5 fm, meaning that a
neutral current interactions will be in the coherent regime, with form factor close to unity.

CEνNS is also the dominant neutrino interaction at energies less than ∼ 100MeV. Because of
the large cross section compared to other neutrino interactions, measurements may be done with
smaller detectors. Instead of the typical tonnes or kilotonnes, detector masses can be in the order
of grams or kilograms. Nevertheless observing CEνNS is not trivial, since the only experimental
signature is a nuclear recoil with relatively low energy. The situation is further complicated by
the fact that the CEνNS cross-section increases with the size of the target nucleus, whereas the
recoil energy decreases for heavier nuclei.

The precise measurement of CEνNS is of great theoretical interest, since it is thought to be
sensitive beyond the Standard Model physics[22, 23, 20, 24], including to sterile neutrinos and
non-standard interactions.

1.2 Experimental setup

The NUCLEUS experiment [12] aims to measure CEνNS of reactor antineutrinos at the Chooz
nuclear power plant, located in the north of France. The plant consists of two pressurized water
reactors, each running at a nominal power of 4.25GWthermal. These reactors provide a steady
flow of electron antineutrinos, mainly originating from beta decays of 235U, 239Pu, 241Pu and
238U [25]. The experiment will be located at the Very Near Site (VNS), a room in the basement
of a building inside the protected area of the power plant, situated between the two reactor cores
at distances of 72m and 102m of the two cores. Due to space restrictions and restricted access
in the protected area, the experiment needs to be compact and low maintenance, thus a closed
cycle ’dry’ cryostat is employed. To reach the temperatures needed with such a cryostat, new
vibration decoupling technologies have been devised [26]. See Fig. 1.2 for a schematic overview
of the detector components and shielding.

Two measuring phases have been envisioned for the NUCLEUS experiment at Chooz: NUCLEUS-
10 g, with a total detector mass of 10 g, which is planned to start operations soon, followed later
by a second stage called NUCLEUS-1 kg with a detector mass of 1 kg.
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Figure 1.1: Schematic map of the Chooz power plant showing the location of the VNS. Graphic
taken from [27].

Figure 1.2: Schematic overview of the detector and its shielding, taken from [27].

6



1.2.1 Detectors and signal shape

The only experimental signal of CEνNS is a low energetic nuclear recoil. In cryogenic calorimeter
detectors like the ones used by NUCLEUS, this recoil is detected by measuring the resulting
temperature increase in the detector. The rise in temperature is proportional to the deposited
energy via

ΔT =
ΔE

C
(1.4)

where C denotes the heat capacity of the object and ΔE and ΔT are the changes in energy
and temperature. This means that for increased sensitivity, small values of C are desirable in
a detector. The Debye model of solid state physics (see for example ref. [28]) predicts that for
low temperatures the heat capacity in a solid scales like C ∝ T 3. Thus, detectors with high
sensitivity usually operate at cryogenic temperatures. Since the heat capacity increases with
mass, Eq. 1.4 also implies that small detectors are paramount to high sensitivities. The need for
high sensitivity has however to be balanced against considerations of interaction probabilities.
From Eq. 1.3 it is clear that the CEνNS cross section scales with the mass of the target nucleus,
and the interaction probability in a detector also scales with its size. Luckily, there are some
subtleties involved when applying Eq. 1.4 to cryogenic detectors, namely one has to consider
electron and phonon subsystems that are involved separately.

The detectors of NUCLEUS consist of CaWO4 and Al2O3 crystals, equipped with transition-
edge sensors (TES) [29], see Fig. 1.3 for a picture of one such crystal. The working principle of
these sensors is based on the phase transition between superconducting and normal conducting
states. Superconductivity is a phenomenon that arises in some materials at very low tempera-
tures, where below a critical temperature Tc the resistivity of the material rapidly drops to zero.
If the superconductor is kept at its critical temperature, a relatively small change of temperature
can cause a big change in resistance. A TES is made up of a superconductor operating at its
critical temperature. By monitoring its resistance, a TES effectively acts as a very sensitive
thermometer. See Fig. 1.4 for an example of a TES transition curve. For the TES readout, a
circuit containing a super conducting quantum interference device (SQUID) is used.

It is important to note that the temperature a TES measures is determined by the temperature
of its electron subsystem. To get an understanding of how the detector works, it is therefore
necessary to address how the different phonon and electron subsystems of the TES and the
detector crystal interact. The arguments presented here outline the ones made in ref. [13], see
the reference for a more detailed and nuanced description of the detector model.

A neutrino interacting via CEνNS in the detector produces mainly optical phonons that
rapidly decay into non-thermal acoustic phonons. In the relevant timescales, not many phonons
thermalize in the bulk of the detector crystal. Instead, thermalization happens mostly in the
TES and on the crystal surface, leading to two different time-depended signal components. To
describe the influence this has on the detector signal, the thermal model seen in Fig. 1.5 is used.
The different subsystems considered by it are the phonons in the absorber, the electrons in the
TES and the heat bath. The phonons in the TES are neglected, since their heat capacity is very
low. For the scope of the overview given here, it is also not necessary to include the thermal
conductances that involve the phonons in the TES, instead only the resulting conductance Gea

between electrons in the thermometer and phonons in the crystal is considered.
After a particle interaction at the time t0, the non-thermal phonons entering the TES are

efficiently absorbed and thermalized by the electronic system, leading to a power input Pe(t)
that raises the electronic temperature of the thermometer. The rise in temperature in the
crystal caused by phonons thermalizing on the surface is described by a power input Pa(t). By
noting that the temperature that determines the change in resistance in the TES, and thus the
output signal, is the temperature of the electrons in the thermometer Te, one can already explain
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Figure 1.3: Picture of a Al2O3 detector crystal with a TES, taken from ref. [27]

Figure 1.4: Transition curve of a Tungsten TES, taken from ref. [30]. The working point of the
detector is marked by the gray x. In the region marked by ΔR and ΔT the relationship between
resistance and temperature is approximately linear.
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qualitatively that the power input Pe(t) will lead to a signal change immediately, while the effects
of Pa(t) first have to pass through Gea to have an effect on the output. In accordance with this,
a fast and a slow component of the signal are observed experimentally. If we assume that a
fraction ϵ of the high frequency phonons is thermalized in the thermometer and the rest in the
crystal, we can write

Pe(t) = Θ(t− t0) ϵP0e
− t−t0

τn (1.5)

and
Pa(t) = Θ(t− t0) (1− ϵ)P0e

− t−t0
τn (1.6)

with the Heaviside function Θ(t), the time constant of the termalization of the high frequency
phonons τn and the initial power input P0 = ΔE

τn
.

To get more information about the expected shape of the pulses, one has to consider the
coupled equations for the temperature of the electrons in the thermometer Te and the phonons
in the absorber Ta:

Ce
dTe

dt
+ (Te − Ta)Gea + (Te − Tb)Geb = Pe(t) (1.7)

Ca
dTa

dt
+ (Ta − Te)Gea + (Ta − Tb)Gab = Pa(t) (1.8)

with the heat capacities Ce and Ca of the electrons in the thermometer and the phonons in the
absorber, and the thermal conductances Gea, Geb and Gab as indicated in Fig. 1.5. With the
initial condition Ta(t = 0) = Te(t = 0) = Tb and using Eqs. 1.5 and 1.6 one can solve Eqs. 1.7
and 1.8 to get the following expression for the thermometer signal ΔTe = Te(t)− Tb:

ΔTe(t) = Θ(t− t0)
�
An

�
e−

t−t0
τn − e

− t−t0
τin

�
+At

�
e−

t−t0
τt − e−

t−t0
τn

��
(1.9)

Here An and At denote the amplitudes of the fast ”non thermal” and the slower ”thermal”
component, τn and τt are the associated timescales and τin is an intrinsic timescale of the
thermometer. For the full expressions, showing how these parameters connect to the parameters
of the thermal model see ref. [13]. Experiments show that measured pulses are well described by
Eq. 1.9.

The TES of the NUCLEUS experiment are designed to have a large value of An and τin ≫ τn.
In this case, the detector operates in the so called calorimetric mode and integrates the non-
thermal input signal over time τin. The amplitude of the whole output signal is therefore expected
to be proportional to the input energy ΔE. The proportionality can however only hold as long
as the temperature change is proportional to the change in resistance in the TES, i.e. as long as
the temperature stays within the boundaries indicated in Fig. 1.4. If the temperature exceeds
this range, the detector goes into saturation, and pulses are distorted.

1.2.2 Background and shielding

The detectors of NUCLEUS will be deployed at the ”Very Near Site” (VNS), a 24m2 room that
is located in the basement of an office building in the protected area, between the two reactors,
located at a distance of 72m and 102m from the reactor cores. At this distance, no relevant
neutron background from the reactors is expected. Due to the relatively shallow overburden,
cosmic rays and particles originating from cosmic ray air showers pose a relevant source of
background, especially high energy neutrons are hazardous, since they can produce detector
signals that closely mimic CEνNS events. To address the background, a sophisticated multilayer
shielding strategy is employed. The outermost layers of the shielding are made up of a plastic
scintillator based muon veto, followed by layers of low radioactivity Pb and borated high density

9



Figure 1.5: Thermal model of the detector, taken from ref. [13]. See text for description.

polyethylene. This configuration provides efficient rejection of muon-induced background events
while minimizing the production of secondary particles by high-Z materials and attenuating
ambient gamma rays and neutrons. To ensure 4π coverage of the shielding, these layers are
continued inside the cryostat. Additionally, an almost 4π layer of boron carbide is present inside
the cryostat, to provide further neutron attenuation. The detectors are surrounded by a cryogenic
outer veto made of high purity Ge crystals, which acts to further reduce gamma ray as well as
neutron and muon induced backgrounds. Finally, the detector holders are instrumented with
TES and act as an inner veto to reject surface events and events related to the detector holder.

As mentioned in Section 1.2.1, two different detector materials will be employed, CaWO4

and Al2O3. As seen in Eq. 1.3, the CEνNS cross-section increases with the mass of the target
nucleus and its weak charge. Thus, the CEνNS rate on CaWO4 is greatly enhanced with respect
to Al2O3, while fast neutrons are expected to induce similar signatures in both materials due
to scattering on O nuclei. This allows for an efficient experimental neutron induced background
characterization during data taking, as no significant observation of CEνNS is expected on Al2O3.
See Fig. 1.6 for a plot of expected CEνNS rates in different materials at the VNS. Note that it
is not straightforward to calculate the exact shape of the reactor antineutrino spectrum, since
many different nuclides contribute, and the initial fuel composition as well as the thermal history
have to be taken into account. Furthermore, measurements only exist for the region above the
threshold for inverse beta decay of around 1.8MeV. Nonetheless, there are efforts to calculate
the reactor neutrino flux also at lower energies [21, 31].

1.3 Data used in this work

During data taking the whole data stream is stored as raw data. For detector monitoring a
heater pulse of varying amplitude is injected into the detector at regular intervals. The resulting
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Figure 1.6: Expected CEνNS rate for different materials, calculated by using the expected neu-
trino flux at the VNS. The gray band indicates the background level hoped to be achieved by
the NUCLEUS experiment. Graphic taken from [12].

pulses are called ”test pulses”. To identify these test pulses, additionally to the TES readout ADC
channel, the heater input DAC channel is stored. The data used in this work were acquired during
two runs: a commissioning run of eight weeks at TU Munich during Summer 2024, internally
called the Long Background Run (LBR) [32] and the run that resulted in the observation of a
nuclear recoil peak originating in neutron capture and the publication of ref. [33], called ”Run 29”.
In Run 29, data were recorded with a CaWO4 detector crystal, while LBR included data taking
with a CaWO4 detector, and a Al2O3 detector. In this work, four chunks of LBR data are used,
each corresponding to around 100 h of data taking. Two of these chunks were taken using one
CaWO4 detector, with a sampling rate of 10 kHz. Internally and in the course of this work they
are referred to as configuration 4 and 8. The other two chunks were taken with a double-TES
equipped Al2O3 crystal and a sampling rate of 50 kHz, referred to as configuration 5 and 9. In
between measurement chunks taken with the same detector, there is an interval of around a week.
For the scope of this work, only data from the central cryogenic detectors are considered, since
the dead time introduced by vetoes operating in anti-coincidence is integrated into the analysis
process after the raw data analysis steps discussed here.
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Chapter 2

Raw data analysis methods

The raw data stream of the cryogenic detectors of the NUCLEUS experiment consists of a time
series of voltage traces. Particle events in the stream are expected to follow the parametric
description of Eq. 1.9, superimposed with noise. Additionally, artifacts and noise fluctuations
are present on the stream. Artifacts can have different shapes and are caused e.g. by highly
energetic events or the detector readout electronics. During raw data analysis particle events
have to be located on the stream in a process called triggering. During triggering the stream
is searched for timespans where its value surpasses a threshold. One aims to set this trigger
threshold in order to trigger as many particle events as possible while minimizing the amount
of noise triggers, i.e. traces where the threshold is passed by a noise fluctuation. All traces that
pass the threshold but do not contain particle event pulses at the correct time are called artifacts.
In order to prevent them from distorting the results, they have to be excluded. In order to do
that, so called quality cuts are defined on parameters describing the shape of traces. Finally, to
assign an energy to each event pulse, its true pulse height has to be estimated.

2.1 Optimum filter

For triggering and for pulse height estimation in noisy conditions a noise suppressing filter is
very useful. As described in Section 1.2.1 the expected signal shape is constant and proportional
to the injected energy. If the power spectrum of the noise is also known, a matched filter called
optimum filter [14, 34] can be calculated. It is a linear time-invariant filter that maximizes the
signal to noise ratio (SNR). Given a measurement

x(t) = s(t) + n(t) (2.1)

that consists of the target signal s(t) and some noise n(t), the output of a linear filter is given
by the convolution of the x(t) with the filter h(t). Using the convolution theorem, this can be
expressed as the inverse Fourier transform of the product of Fourier transformed signal and filter:

xF (t) =
1√
2π

� ∞

−∞
H(ω)x̃(ω)eiωt dω (2.2)

where H(ω) and x̃(ω) denote the Fourier transforms of h(t) and x(t).
The SNR at time τ is given by the power of the target signal component at that time, divided

by the power of the noise component at that time. With Eqs. 2.1 and 2.2 we can easily write
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the filtered target signal as

sF (t) =
1√
2π

� ∞

−∞
H(ω)s̃(ω)eiωt dω (2.3)

with the Fourier transformed input signal s̃(ω). The signal power at time t = τ is therefore
simply given by s2F (τ).

Since the noise is stochastic we cannot apply the same reasoning to get the desired expression,
however by identifying that the expected power of the noise E[|n|2] is equal to its autocorrelation
RXX(0) we can use the Wiener-Khinchin theorem to write

E[|n|2] = 1√
2π

� ∞

−∞
N(w) dω (2.4)

with N being the noise power spectrum. The expected power of the filtered noise E[|nF |2] can
be determined by applying the filter. For it we get

E[|nF |2] = 1√
2π

� ∞

−∞
|H(ω)|2N(ω) dω (2.5)

Using Eqs. 2.3 and 2.5 we can identify the SNR to be

SNR =
1√
2π

| �∞
−∞ H(ω)s̃(ω)eiωτ dω|2�∞
−∞ |H(ω)|2N(ω) dω

(2.6)

This expression can be rewritten to

SNR =
1√
2π

| �∞
−∞(H(ω)N(ω)

1
2 )(s̃(ω)N(ω)−

1
2 eiωτ ) dω|2�∞

−∞ |H(ω)|2N(ω) dω
(2.7)

which allows for the identification of an upper bound of the SNR using the Cauchy-Schwarz
inequality:

SNR ≤ 1√
2π

{�∞
−∞ |H(ω)|2N(ω) dω}{�∞

−∞ |s̃(ω)|2N(ω)−1 dω}�∞
−∞ |H(ω)|2N(ω) dω

(2.8)

Putting together Eqs. 2.6 and 2.8 gives the simplified form of the inequality

| �∞
−∞ H(ω)s̃(ω)eiωτ dω|2�∞
−∞ |H(ω)|2N(ω) dω

≤
� ∞

−∞

|s̃(ω)|2
N(ω)

dω (2.9)

The signal to noise ratio reaches its maximum if the two sides are equal, which happens if the
filter is

H(ω) = K
s̃∗(ω)
N(ω)

e−iωτ (2.10)

with a normalization constant K. This filter is called the optimum filter. Intuitively, it can be
thought of as a frequency filter that suppresses noise frequencies but not signal frequencies. Due
to this property it can be used for triggering and as pulse height estimator.

It has to be noted however that it does not preserve the shape of target events. Also, when it
is applied to finite time traces, usually a window function is applied to the event before filtering.
This is to avoid edge effects that might arise otherwise. Also, the edges of the filtered events are
disregarded, which is again due to edge effects arising. To illustrate the effects of the optimum
filter and possible edge effects that can arise due to its application consider Fig. 2.1.
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Figure 2.1: Illustration of the effects of the optimum filter. On the left, a particle event is shown.
It is clearly visible how noise gets suppressed by the filter, with only the filtered event surpassing
the trigger threshold. On the right, the tail of a large particle pulse is shown, illustrating the
edge effects that can arise when the optimum filter is applied. The grey dashed lines in both
plots indicate the edges of the filtered events that are excluded during triggering.

2.1.1 The standard event

For the calculation of the optimum filter, in addition to the average noise power spectrum, the
signal shape must be known. As seen in Section 1.2.1, the expected pulse shape stays constant up
to the saturation limit, scaling only linearly with energy. To find the signal shape corresponding
to a detector at its current working point, strict cuts are applied to the triggered events, with
the scope of selecting only traces with well-defined pulses.

If we assume that all the measured events y are well aligned in time, if every trace is scaled
to the same value, we can treat each trace as a different measurement of the same ground truth.
This ground truth corresponds to the sought-after detector pulse shape z = (z1, ..., zn), consisting
of n samples. To find the value of z for each sample, one has to minimize the task

argmin
z

E[L(z, y)] (2.11)

where L denotes a loss function, acting as a measure of distance. In this formulation it is also
apparent, that the task can be interpreted as a maximum likelihood estimation, with L being
the negative log likelihood. With the commonly used L2 norm L(z, y) = (z− y)2, the expression
is minimized by

z = E[y] (2.12)

corresponding to the arithmetic mean.
Intuitively this means that since the noise is assumed to be uncorrelated, the noise contribu-

tions are averaged out. This average pulse is called a standard event (SEV). To check its validity,
it can be fit with the expected parametric pulse shape of Eq. 1.9.

During raw analysis the standard event is usually calculated by selecting a number of well
defined particle pulses by some manually defined cuts on the data and subsequent calculation of
the arithmetic mean of the selected traces. Finally, the standard event is normalized to height 1.

For the estimation of the noise power spectrum, a similar approach is chosen. It is crucial
that the traces used for the calculation do not contain particle pulses, as this would degrade the
performance of the optimum filter. Because of this, again clean traces are selected by cuts prior
to the calculation.
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2.2 Triggering

In the context of the NUCLEUS experiment, triggering denotes the localization of particle events
on the raw data stream. This is done by considering a predefined number of samples at a time,
called a record window. Due to the nature of the SQUIDs used for data acquisition, the offset
from 0 of the sample values can change for each record window. Because of this, the offset has
to be determined by calculating the mean of the first n samples for each record window. Usually
n is chosen to be 1/8 times the length of the record window. The offset gets subtracted from
the window, bringing its baseline to 0. Afterwards, if an optimum filter has been calculated, it
can be applied to the window, if not, the unfiltered trace is considered. For a maximum in the
record window to be considered a trigger candidate, it has to fulfil three conditions. Firstly, it
has to surpass the trigger threshold, secondly it cannot be in the excluded region near the edges
of the record window, and thirdly it cannot be too close to another sample already identified as
trigger. If these conditions are fulfilled by a point, a new record window is defined with this point
located at 1/4 of its length. If there is no higher maximum in the record window, the point of
the maximum is saved as trigger, otherwise the window is resampled up to a predefined number
of times. The target of this procedure is for all triggered events to be well aligned in time.

As described before, heater pulses, so called test pulses, are injected at regular intervals into
the detector. To determine whether a triggered pulse belongs to this category, the DAC heater
channel is considered. If a signal at the corresponding time is present, the pulse is considered as
a test pulse.

Furthermore, during triggering usually also some noise baselines are triggered. These are
needed among other things for the calculation of the noise power spectrum required for the
optimum filter, event simulation, efficiency and resolution studies. To trigger a predefined number
of baselines, a corresponding number of record windows located randomly in the stream is picked.
It is checked that none of the resulting baselines overlap with test pulses.

Triggering usually happens as a two-step process. As a first step, events and baselines are
triggered without the use of an optimum filter. The baselines are cleaned and a noise power
spectrum (NPS) is calculated from them. Then the target events are considered, and the standard
event is calculated as described above. With the standard event and NPS an optimum filter is
calculated. This optimum filter can subsequently be used to redo the triggering of events with
lower trigger thresholds to increase the sensitivity to low energetic pulses.

For the determination of the trigger threshold, multiple methods are available. One method
is to estimate the noise trigger rate, see e.g. ref. [35], and to set the threshold in order to match
a predefined expected noise trigger rate. There is however another approach, which also yields
satisfactory results. It defines the trigger threshold as a multiple of the baseline resolution. To
determine the baseline resolution, a number of cleaned baselines is taken. If the resolution with
the optimum filter is to be calculated, the filter is applied. Then, one sample value in the centre
of each baseline is taken. The sampled values are expected to follow a normal distribution centred
around zero. To verify this, their histogram is fited with a normal distribution. The standard
deviation of the fitted distribution is a measure of the magnitude of noise fluctuations and called
baseline resolution.

2.3 Pulse height estimation

We have already seen that the energy deposited in the detector scales, up to the saturation
limit, linearly with the pulse height. This means that to correctly assign an energy to a particle
pulse, one needs an estimate of the true pulse height and a calibration factor. The calibration
factor can be achieved with several methods, see e.g. ref. [36] and [37] for possible calibration
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methods for the NUCLEUS experiment. For the estimation of pulse height also several methods
are available. Taking the maximum of a pulse is the simplest approach. It has some shortcomings
however, especially in the case of very small and very large pulses. In the case of small pulses
the magnitude of noise fluctuations can be in the order of the pulse height, and thus add a
significant bias, and in the case of large pulses the detector might go into saturation, meaning
that the relation between pulse height and energy ceases to be linear.

Standard event fit A better and conceptually straightforward option is the so called standard
event fit. It consists of fitting the event trace with the standard event, with the scale and timing
of the SEV as free parameters. Since the standard event is normalized to height 1, the fitted
scale can be used as an estimate for the true pulse height of a pulse. This works well for well
defined pulses with magnitudes sufficiently above the noise level, but it can produce misleading
results for very small pulses.

This method can also be adopted to enable pulse height estimation for events with pulse
height above the saturation limit. This is due to the fact, that below the saturation limit the
response of the detector is still expected to be linear even for large pulses. This means that the
standard event fit can still be employed, considering only parts of the pulse that lie below the
truncation limit. This is called truncated SEV fit [38] and makes it possible to extend the energy
range of the detector.

Pulse height estimation with the optimum filter Even though the optimum filter does
not preserve the pulse shape, it can be used as an unbiased estimator for the pulse height of
non-saturated pulses. It it the state-of-the-art method for pulse height estimation of small pulses.

2.4 Data simulation

Simulated pulses are used for efficiency studies and for training neural networks. In the context of
the cryogenic data used for this work, a simulated event consists of a noise baseline superimposed
with a scaled and time shifted standard event.

The noise baselines used can either be noisy traces taken from the raw data stream, or
be simulated using the calculated noise power spectrum. The use of recorded baselines yields
simulated events that are closer to observed ones, however, baselines used need to be cleaned
well to avoid using baselines that contain small pulses or artifacts. This is not a big problem
in underground measurements with good background suppression but may be challenging with
measurements that contain higher levels of background. To simulate traces that have a given
noise power spectrum, a technique described in [39] is used. Baselines simulated in this way are
free of signal events and artifacts, however they are only an approximation to what real baselines
look like.

2.5 Quality cuts

On the data stream, in addition to particle events following the expected pulse shape, usually
also other types of events are present, and get triggered alongside the particle events. To prevent
these artifacts from distorting the measurement results, it is essential to remove them from the
datasets. In order to do this, so called quality cuts are defined on the data. The goal of these cuts
is to exclude as many artifacts as possible while preserving the integrity of the desired events.
There are different kinds of cuts employed. Rate based cuts focus on the number of events per
time: if there are regions with significantly anomalous event rate, they are excluded. Stability
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cuts focus on the detector test pulses. If for a given injected heater amplitude the recorded pulse
height deviates significantly from the mean, the detector might have changed the working point,
therefore rendering recorded pulses during that time are incomparable to others. Furthermore,
there are the anti-coincidence cuts with events from the active veto systems, which serve to
exclude non-neutrino interactions.

While it is relatively straightforward to apply and automatize the aforementioned cuts, the
last category of quality cuts is more involved and requires manual tuning. These cuts are shape-
based cuts, and target artifacts that do not follow the expected pulse shape. In order to define
these cuts, some values that reflect the pulse shape have to be calculated for each event. Values
that are typically used are the raw pulse height, the offset between left and right baseline levels
and the onset, rise and decay times of the pulse, among others. In CAIT, these parameters
are called ”main parameters”, and their calculation is conveniently implemented. Note that in
CAIT, in order to reduce the effect of noise fluctuations, a rolling average is employed prior to the
calculation of these main parameters. Furthermore, the root mean square error of the standard
event fit is a viable metric to define cuts on.

The cutoff values for each of these parameters have to be defined by hand for each mea-
surement. For example, one might define a cut on the raw pulse height, excluding non physical
events with heights larger than the saturation limit, a cut on the baseline difference, excluding
steps and flux quantum losses, and a cut on the fit root mean square (RMS) error to exclude
pile-ups (see next subsection for a short overview of common artifact types). While all of these
cuts are qualitatively justified, determining the exact cutoff values requires examining the data
and tuning the values manually. This process is not only time-consuming but also introduces
the risk of biases.

2.5.1 Artifacts

All traces that get triggered but do not contain well defined event pulses are called artifacts.
They can be caused by various reasons, and it is not always clear why and how they arise. There
are however some common classes of artifacts that are present in many datasets, due for example
to the characteristics of the detector readout electronics. The following is a short, non exhaustive
summary of some recurring classes of artifacts.

Flux quantum losses

Flux quantum losses arise due to the properties of the SQUID used for the TES readout. Its
response is periodic, rather than linear. This means that there is no fixed baseline level for the
detector output, but it is rather linearized by electronics to some baseline level. This results
in an ambiguity in the output. We call flux quantum loss an event where the detector output
returns to a different baseline after an event than it had before. It happens mostly after large,
saturated event pulses.

SQUID resets

Large steps in the signal can arise in a similar fashion as flux quantum losses due to the ambiguity
of the SQUID signal output. If the output leaves a predefined range, it is reset by electronics,
thus leading to a large step in the signal.
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Figure 2.2: Examples of a well defined pulse on the left and a flux quantum loss on the right.

Figure 2.3: A SQUID reset, resulting in a large step in the output signal on the left, a triggered
decaying baseline on the right.

Decaying baselines

If an event has a very long decay time, its tail can extend into a new record window. Due to
the nature of the optimum filter, such a decaying baseline can exceed the trigger threshold after
filtering.

Pile-up events

If there is more than one event inside a record window, it is called a pile-up event. These events
can be difficult to deal with when defining cuts.

Spikes

These are thin spikes in the signal, presumably originating from detector electronics.

Early or late trigger

Sometimes events are triggered at the wrong time, resulting in events that are still in the record
window, but not aligned on the time scale.
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Figure 2.4: (left) A pile-up event, consisting of a heavily saturated and a less saturated pulse.
(right) A spike event is visible.

Figure 2.5: (left) The event was triggered too late, due to it being at the beginning of the data
acquisition. (right) The artifact shown does not fit into any of the categories described above.
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Chapter 3

Machine learning methods

According to reference [40], machine learning is ”a field of computer science that studies algo-
rithms and techniques for automating solutions to complex problems”. It has gained prominence
in recent years, mainly due to the rise of very large, pre-trained neural networks for natural lan-
guage processing or image creation like ChatGPT. There are, however, many different methods
and approaches to machine learning.

The use of some of these methods has already been explored for raw data analysis as well
as detector operation in the CRESST experiment. The use of neural networks for artifact re-
jection has been explored in references [41], [42] and [17]. The use for detector operation with
reinforcement learning is also described in reference [17]. In reference [16] a wider array of ma-
chine learning methods for pulse height estimation and data simulation are presented. Due to
the similarities in detector technology of the CRESST and NUCLEUS experiments, these works
have been an important foundation for the methods and results presented here.

In this chapter, new approaches and methods of incorporating machine learning methods
into the raw data analysis of the NUCLEUS experiment are investigated. The use of a class
of artificial neural networks called autoencoders is explored for noise reduction of raw event
traces. A neural network based approach for triggering the raw data stream is presented. A new
framework for quick training of shallow neural networks on new datasets for artifact rejection
was also implemented. Moreover, a clustering method that can be used for data visualization
and for the creation of labelled datasets is introduced. Finally, we also introduce a new method
to extract the event pulse shape from raw, triggered detector data, which enables the automatic
creation of a standard event and optimum filter, and thus the automatization of the triggering
process.

Many of the methods presented can be combined, reinforcing the automatization aspect of
machine learning. For example, by combining automatized triggering, clustering and the artifact
rejection network, it is possible to obtain from a raw data stream a dataset containing only clean
events with almost no manual interventions necessary. Another example is the use of clustering
to dramatically speed up the creation of a dataset that can subsequently be used to train a neural
network which is able to combine triggering and artifact rejection into a single step.

A general finding of this work concerning neural networks used with data of the NUCLEUS
experiment is that smaller networks tend to match the performance of or even outperform bigger
networks with sizes typical for similar analysis tasks. It is thought that this is due to the relative
simplicity of the data used with respect to typical machine learning tasks, and should be taken
into consideration for future works on the topic.
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3.1 Denoising with artificial neural networks

In this section, two neural networks that have been trained for noise reduction in detector
traces are presented. In the raw data analysis process, two tasks can be identified for which
such a denoising algorithm could be used: pulse height estimation, and pulse characterization
(estimation of rise and decay time, used for defining quality cuts). The pulse height estimation is
currently usually done via the optimum filter. For pulse characterization, implementations may
vary. In CAIT, a rolling average is performed to reduce noise, after which the parameters are
calculated on this smoothed pulse.

The autoencoder presented in Subsection 3.1.1 has been optimized to reproduce the signal
scale accurately, thus enabling an accurate estimation of pulse height. On the other hand, the
Noise2Noise network presented in Subsection 3.1.2 has been tuned to reproduce signal shapes,
while only reproducing scale accurately in as small signal region.

3.1.1 Scaling autoencoder

Autoencoders [43] are an important family of artificial neural networks that are used to learn
efficient compressed representations of unlabelled data. An autoencoder typically consists of two
parts: an encoder network and a decoder network. The encoder network takes the autoencoder
input and outputs a latent representation of the input. The decoder network takes the latent
representation as input, and outputs the final output of the autoencoder. In the simplest case,
the network is trained by using the input as target output, i.e. the network is trained to encode
the input into a latent representation, and subsequently reconstruct it. This way, autoencoders
can learn to extract meaningful features of the data while ignoring parts that do not carry much
information.

The latent representation of a trained autoencoder can be used for dimensionality reduction or
as input to classification algorithms. Autoencoders also have applications as anomaly detection
algorithms: if they are only trained with ’good’ examples of data, they will fail to reconstruct
anomalous data well, making the reconstruction error a metric for goodness of the input event.
See [44] and [16] for applications of autoencoders as anomaly detectors with cryogenic detector
data. Finally, autoencoders can also be employed as denoising algorithms. In this case the model
is not trained to reconstruct the original input, but a different one.

In this section a denoising autoencoder is presented, a network that aims to reconstruct
noiseless outputs from noisy inputs and is trained with noiseless and noisy versions of the same
input. Therefore this network architecture relies on simulated data for training. The model
proposed here is called scaling autoencoder because of the features of its architecture. It consists
of two separate encoders, one encoding mainly the shape, the other encoding mainly the scale of
the input.

The model is trained on a dataset consisting of events that have been simulated using a
standard event and altered versions of a base NPS, and evaluated on a dataset simulated using
the same standard event and real baselines.

Data used

The datasets used for training and evaluation of this model consisted of simulated data. In order
to avoid overfitting and to be able to better asses how the model performs under changing noise
conditions, a novel approach to simulate noise baselines has been chosen. For the training dataset,
instead of using real baselines for the simulations, simulated baselines have been used. However,
instead of using the calculated NPS of the real data directly, is has been altered beforehand by
applying a magnitude warp [45] to the NPS. For this, a set of knots u = u1, . . . , uj is defined.
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Figure 3.1: Comparison of magnitude warped NPS with unchanged NPS.

The value of each knot is sampled from a normal distribution. The values in between knots
are interpolated with a cubic spline S(u) = s1, . . . , si. For a given NPS n = n1, . . . , ni, the
magnitude warped version is given by

nscaled = s1n1, . . . , stnt, . . . , sini (3.1)

This can be viewed as crude way to mimic changing noise conditions, as the general shape of
the NPS will stay the same, while the exact values are subject to change. See Fig. 3.1 for an
example of a magnitude warped NPS.

The training dataset consisted of 500000 events simulated with 50 different, magnitude warped
NPS based on the NPS from Run 29 and the standard event from Run 29. Additionally, 50000
simulated empty baselines have been part of the training dataset.

Model and Training

A sketch of the model architecture can be found in Fig. 3.2. The unscaled input is processed
two times. Once, it is scaled to height 1 and processed with the shape encoder. It consists of
a convolutional neural network, that performs well in shape recognition tasks. The output of
the shape encoder is a lower dimensional representation of the scaled input. The unscaled input
is also processed by the scale encoder without prior scaling. It consists of a Long Short-Term
Memory (LSTM) [46] network followed by a fully connected layer. The output of the scale
encoder is again a lower-dimensional representation of the input. The outputs of both encoder
networks are then passed to the shape decoder, which employs again a convolutional neural
network architecture. The scale encoder’s output is processed again by a fully connected layer
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Figure 3.2: Scaling Autoencoder

to produce a scalar. This scalar is multiplied with the shape decoder’s output to get the final
output of the autoencoder. The loss used was the mean squared error between output and target.

The model has been trained for 150 epochs, taking around 4.5 hours.

Results

To evaluate the performance of the trained network, a test dataset, consisting of 18000 events
simulated with real baselines and the same standard event as in training was used. The traces
of the test dataset have been denoised with the network, and the results have been compared
with pulse height estimations of the optimum filter. See Fig. 3.3 for an illustration of the models
performance. In summary, denoising and pulse height estimation work reasonably well for larger
pulses, yielding resolutions close to those of the optimum filter. However, for small pulses, the
models performance deteriorates. Below a certain threshold, no pulse is detected, and the model
struggles to distinguish between an empty baseline and a small pulse. Possible improvements
could be achieved by exploring alternative models, adjusting hyperparameters, or improving the
quality of the training data.

3.1.2 Noise2Noise

In ref. [47] it has been shown that for image denoising using machine learning algorithms, it is
not necessary to have noiseless target images for training. Instead, due to the statistical nature
of the problem, it is possible to train an algorithm with pairs of noisy images of the same thing,
if the mean of the noise is zero.
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Figure 3.3: Comparison of pulse heights estimated with optimum filter and scaling autoencoder.

24



To justify this, one can consider the training task of a model that is trained with pairs (x̂i, yi)
of images, where x̂i denotes model input, corresponding to the corrupted version of the clean
target yi. Training the model fθ with parameters θ is equivalent to the minimization task

argmin
θ

E[L(fθ(x̂), y)] (3.2)

where L denotes the loss function. When using the L2 loss described in Section 2.1.1, this
becomes

argmin
θ

E[(fθ(x̂)− y)2] (3.3)

Now consider that instead of using the clean target y, the noisy target ŷ = y + n is used, where
n is the noise, sampled from a zero mean distribution:

argmin
θ

E[(fθ(x̂)− y − n)2] (3.4)

Since the noise has zero mean, this expression is still minimized by fθ(x̂) = y.
Intuitively, this means that since the process of training a neural network is an optimiza-

tion problem, even though the gradient for each training step does not point towards the true
minimum we are looking for, the average gradient of all training steps will.

Even though this architecture has been devised for the use with images, due to the specific
nature of the problem it can be also be used for the denoising of the time series that make up the
data discussed in this work. Namely, because the target signal has the same shape, regardless
of the energy deposited in the detector (until the saturation limit), two particle pulses that have
been scaled to the same height can be treated as two noisy realizations of the same underlying
pulse shape.

A simple Noise2Noise neural network has been implemented in the course of this work, with
its focus on reconstructing pulse shape.

Data used

Even though in principle the training with event pulses would be possible, for practical reasons
training with test pulses has been chosen. The advantages of this are that test pulses are
abundant. Also, because they can be grouped into pulses that have been injected by the same
heater amplitude, also saturated pulses can be used for training, since we expect their underlying
shape to be same, even though it doesn’t follow the parametric description of the pulse shape.
A disadvantage of using test pulses for training is that due to their different origin, test pulses
are not expected to have the same pulse shape as particle pulses. To counteract this, the model
is trained to extract the noise, rather than the event pulse, from the input. See below for a
description of how the model is defined.

A dataset containing pairs of test pulses can be created largely automated. For this, first test
pulses with the same test pulse amplitude are identified. To ensure that only similar pairs of test
pulses are used, a threshold is placed on the pulse height difference as well as on the individual
left-right baseline differences. Absolute values are avoided to facilitate the use with new datasets.
Instead, cutoff values are calculated as percentages of the median values separately for each test
pulse amplitude.

Model and Training

Due to the fact that the model is trained with test pulses, which may have a different pulse
shape than event pulses, the focus of model training is shifted towards the characteristics of the
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Figure 3.4: Event pulse, denoised by the Noise2Noise model.

noise, rather than the pulse shape. To achieve this, the model is trained to predict the noise
residuals of each trace. The denoised version of the input is then calculated by subtracting the
model output from the model input. The model itself consists of an LSTM followed by a fully
connected layer. The training loss used was the mean squared error loss. Due to the small size of
the model, having only about 50000 trainable parameters, training the model on a single GPU
for 20 Epochs only takes around 10 minutes.

Results

The model trained on test pulses from a file succeeded to reduce noise considerably in particle
events of the same file. For illustration, some figures are shown, each displaying a raw pulse,
the version denoised by the model, and the pulse after applying a rolling average. This was
included, since it is the method that is currently employed in CAIT to reduce noise before
calculation of pulse parameters. In Fig. 3.4, a small event pulse is shown. The version denoised
with the Noise2Noise model is significantly smoother than the boxcar smoothed pulse, while still
maintaining important features such as rise time and onset.

In Fig. 3.5, two large, saturated pulses are depicted, with one leading to a flux quantum loss.
Since the pulse height is on a much larger scale than the noise, the effects of denoising are not
apparent. It can be noted however, that the boxcar smoothing washes out the edge of the pulse
rise time, while Noise2Noise smoothing does not. In the plot on the right, it can also be seen
that the model struggles with pulse shapes deviating from the expected one.

In summary the Noise2Noise autoencoder showed promising performance for denoising. Quan-
titative comparisons with the currently used boxcar smoothing method for pulse parameter es-
timation revealed that denoising with autoencoders performed better in some scenarios. The
improvements were however not deemed significant enough to warrant the use of this more in-
volved method of denoising.
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Figure 3.5: A large saturated pulse and flux quantum loss, denoised with different models.

3.2 Shape-based clustering with k-means

Clustering algorithms can be useful tools during raw data analysis. Their ability to group traces
into similar clusters can be used for quickly getting an overview of the makeup of a dataset,
visualization of cuts, and for the creation of labelled datasets that can be used for machine
learning methods.

There are multiple ways to approach clustering traces of raw data. One possibility is to
calculate parameters like rise and decay time for each trace and cluster the resulting values. In
this case, the clustering itself is a relatively simple operation, that uses some distance metric
in the resulting parameter space. However, the quality of the results hinges on the quality
and expressivity of the parameters chosen, and the way they are calculated, which can vary
for different datasets. Also, these parameters may be on different scales. To give a practical
example, consider two of the artifacts described in Section 2.5.1: a step due to a squid reset
and a decaying baseline. These can be identified by their left-right baseline difference, which is
however on very different scales, and many clustering algorithms struggle to handle clusters that
arise on different scales.

A different approach is to use an algorithm that clusters based on shape directly, instead of
relying on proxies to describe features of the shape. In the literature many algorithms specialized
for the clustering of time series can be found, see ref. [48] for some examples. While these
methods work, due to the properties of the data used in this work, another algorithm generally
outperformed these clustering methods specifically made for time series. The property we can
use is the fact that the time series are expected to be aligned in time. Due to this alignment, the
euclidean distance between two values with the same sample number becomes a viable clustering
metric. For example, a well triggered event pulse, with pulse height significantly larger than the
scale of the noise, has its maximum located at 1/4 of the record window. This means that a
value at 1/4 of the record window that is significantly different to 1 after normalization points
to the presence of an artifact, similarly values at the start and end of the record window can be
expected to be close to 0.

3.2.1 The algorithm

The algorithm proposed to make use of this property is called k-means clustering (see reference
[49] for an introduction). Mathematically, for a set of observations (x1,x2, ...,xn) the objective
of the algorithm is to partition the observations into k ≤ n sets S1, ..., Sk by minimizing the
within-cluster variance:
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x (3.6)

is called the centroid of the cluster. Note that for a cluster containing only good particle pulses,
this corresponds to the standard event. For application to the NUCLEUS raw data every event
has its offset removed and is normalized to height 1 before clustering.

The k-means algorithm needs a predefined number of clusters. This value can be set by hand,
through an educated guess, and subsequently fine-tuned. There is however a method to estimate
the quality of clustering for a given number of clusters. By using it, one can automatize finding
an appropriate number of clusters. The method is based on the silhouette score [50]. Given
some samples that have been grouped into a cluster, the silhouette score is a measure of how
well grouped the clusters are. The silhouette score of sample i is given by

si =
bi − ai

max(ai, bi)
(3.7)

where ai is a measure for the similarity of the sample i with the samples of the same cluster and
bi is a measure for the similarity of sample i with samples of all other clusters. si can take values
between -1 and 1, with values close to 1 indicating well assigned clusters.

With this, the strategy to find the optimal numbers of clusters k is as follows: for a given
range of values of k, k-means clustering is performed. For every iteration, the average silhouette
score of samples is calculated. Since this calculation can be time intensive, it is possible to only
sample a fraction of the events for this calculation. After all iterations, the number k with the
highest corresponding silhouette score is taken to be the best number of clusters.

Performance and uses

The k-means algorithm with silhouette scoring has been implemented in CAIT. In Fig. 3.6 an
example of clusters determined with k-means is shown. With this, the content of the dataset
can be visualized, and the ratio of events to artifacts can be estimated. For every cluster the
corresponding plot shows the centroid or mean event in black, some coloured example events
contained in the cluster are also plotted. The number of events in the cluster can be seen on
the top right of each plot. Note that in this case, the cluster with the lowest median RMS error
of the standard event fit is also highlighted in green. Clusters 2 and 6 seem to contain good,
non saturated lower energy pulses, clusters 0 and 7 saturated and higher energy pulses, clusters
1 and 4 contain flux quantum losses, cluster 3 contains steps, and cluster 5 contains decaying
baselines.

The method worked well on all tested datasets. It proved useful in dataset visualization,
giving an immediate overview of different event types and their quantity, thus making it possible
to quickly evaluate data quality. It can furthermore be used to define cuts, and for the creation
of labelled datasets for machine learning methods.

3.3 Triggering using neural networks

In this section, a framework is presented that uses an artificial neural network for triggering. It
is based on the ”overlapping parameter” algorithm described in references [51] and [52].
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Figure 3.6: k-means clustering for the events of configuration 4 of the LBR. See text for discussion.

29



The underlying idea of the framework is to treat the problem of event detection in a data
stream not as binary classification between the two cases, event present and event not present.
Instead, the problem is viewed as a regression problem. For this, the time series, in this case the
raw data stream, is divided into overlapping partitions p, also called windows. The predicted
quantity for each partition is the overlapping parameter op. It denotes the overlap of the partition
pi with an event e and is given by

op(pi, e) =
duration(pi

�
e)

duration(pi
�

e)
(3.8)

The value of op(pi, e) is between 0 and 1. The width of event and windows need not be the
same and can be chosen in order to fit the structure of the data. The overlap between windows,
which corresponds to the step size when iterating over the data stream can also be freely chosen.

After a time series has been divided into partitions and the overlapping parameter has been
predicted for each partition, the task of locating events is reduced to simply finding maxima in
the predicted overlapping parameter.

3.3.1 Dataset creation and training

For training, a mix of simulated and real data has been used. The part consisting of real data was
assembled by using conventionally triggered data that uses longer record windows than usual.
The long record windows were chosen so that every trace containing an event also contains
windows with a corresponding overlapping parameter of zero. The data were labelled into three
categories. Traces with a single, well aligned pulse were used as positive examples, traces with
only artifacts as negative examples and pulses with more than one pulse or misaligned pulses
where excluded from the training set. It is important to exclude misaligned pulses because, in
the calculation of the overlapping parameter, the pulse location was assumed to be at one quarter
of the record window, meaning that different pulse locations would reduce the time resolution
of the model. To facilitate data labelling, the k-means clustering algorithm described above
has been used as a starting point for labelling. Since this clustering method is not perfect and
unable to handle multiple events per trace, cleaning the dataset by hand is necessary. In order
for this to be done, a new tool has been implemented in CAIT, the EventCurator. It offers a
graphical interface for quick and easy cleaning of pre-clustered traces. Additionally, simulated
events with small pulse heights and empty baselines were added. This was done to avoid them
being under-represented in the training dataset and to improve resolution. After labelling, the
overlapping parameter is calculated for each trace. In case of artifacts or baselines with no pulses
present, it was taken to be zero everywhere.

In this work, the width of the events and the window width were chosen to be the same, 1024
samples for all datasets. In this configuration the overlapping parameter is confined between 0
and 1, with a sharp maximum at the exact overlap. The event region was defined to have the
pulse maximum at 1/4 of the width. See Fig. 3.7 for an example trace used for training with the
training op indicated.

The model used was a small convolutional neural network (CNN), consisting of three con-
volution layers with increasing channel number, followed by a fully connected layer. During
training, the mean squared error between predicted and real overlapping parameter was used as
loss function.

3.3.2 Locating events

To locate events on the stream, the whole stream is processed with the trained model. The
resulting predicted overlapping parameter is confined between 0 and 1 and usually has clear
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Figure 3.7: Example of a trace and op used for training

peaks that can easily be localized with conventional peak detecting algorithms. See Fig. 3.8
for an example of the predicted overlapping parameter of a file of Run 29. Note that this
approach to triggering replaces the trigger threshold on pulse height with a trigger threshold on
the overlapping parameter. This is a conceptual change, since the overlapping parameter does
not represent the height of the pulse, but is a measure of quality a certain pulse has. In other
words, small, well defined pulses may produce a high, well defined peak in the op, while big,
deformed pulses might produce a smaller peak or no peak at all.

In Fig. 3.9, a section of the data stream and the corresponding predicted op are visible. The
stream section contains one good pulse as well as a flux quantum loss. It can clearly be seen,
that the pulse is located correctly (the corresponding region around the peak of the op has been
marked), while the artifact, even though it has approximately the same raw pulse height as the
event, does not lead to a peak in the overlapping parameter.

For further analysis, especially for the creation of a standard event, it is crucial that the
events are located at the same point in the record window. This is usually defined to be at 1/4
of the record window, as seen for example in Fig. 3.7. However, the accuracy with which the
op-trigger algorithm can locate pulses is determined by the step size parameter. This parameter
indicates, how many samples the sliding window is moved after each calculation. Hence, the
number of traces that need to be processed is

nwindows =

�
lstream − wwindow

sstep
+ 1

�
(3.9)

with the length of the stream in samples lstream, the window width wwindow and the step size
sstep. So while sstep = 1 will deliver the best possible pulse location, a bigger step size will speed
up the calculation considerably. To increase calculation efficiency, the possibility to use a two
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Figure 3.8: Section of the predicted op of a raw data stream. The triggered peaks are marked,
the op threshold was set to 0.75

step algorithm has also been implemented. It works as follows: In the first step, the triggering
is done with a big step size to increase calculation efficiency, and rough trigger locations are
saved. Afterwards, for each rough trigger location, a window around the trigger is defined, and
the exact location is found by iterating over this window with a step size of 1. With this two
stage approach, good timing resolution is achieved while reducing processing time significantly.

3.3.3 Results

First, the model was evaluated qualitatively on data from Run 29. Training was done on data
without the CRAB source in place, then the data with the source in place was triggered with
the trained model. In Fig. 3.10 the resulting low energy part of the spectrum can be seen,
together with the published spectrum [36] from the same data. No cuts have been applied to the
op-triggered data. The main features of the spectra coincide, the small peak around 175 eV was
also noted in prior analyses of this data, it is due to a class of artifacts consisting of small steps.
To expand on this promising result, more quantitative evaluations of trigger performance have
been executed with data of configurations 4 and 5 of the LBR.

Efficiencies

Two more models have been trained with data from a segment of configuration 4 and 5 of the
LBR each, used afterwards to trigger the whole configuration, respectively. This emulates what
an actual workflow using this tool might look like. Note that for the double-TES detector of
configuration 5, two separate models have been trained, one for each TES. In order to study the
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Figure 3.9: Section of the raw data stream containing a triggered event together with the pre-
dicted op.

trigger efficiency, for both configurations a dataset containing 50000 pulses has been simulated
using real baselines. Pulses were simulated with pulse heights uniformly distributed between
zero and fifty times the respective baseline resolution, as calculated using the optimum filter as
described in Section 2.2. Subsequently the model has been applied to predict the overlapping
parameter for every simulated event, as well as for all baselines in the dataset. The latter
was done to get an estimate of the noise trigger rate. To avoid biases, no cuts were applied
to the baselines beforehand. Since the locations of these baselines are chosen at random from
the stream, the noise trigger rate estimated this way is expected to be greater than zero, since
particle events or artifacts might be present on some the traces. To see if a trace would have
been triggered, the maximum of its predicted op was considered.

Fig. 3.11 shows the predicted op values for the simulated test set of configuration 4 as well as
the receiver operating characteristic (ROC) curve, calculated using the percentage of all simulated
events where the predicted op passes the threshold as true positives, and all baselines where the
predicted op passes threshold as false positives. From both plots it is visible that a cutoff value
for the op of 0.55 is a good choice, balancing type I and type II errors. Figure 3.12 compares the
resulting trigger efficiency for op-triggering and optimum filter triggering on the same simulated
dataset, with the cutoff value for the op being 0.55, and the respective cutoff value for the
optimum filter corresponding to 10 times the baseline resolution. For this dataset and model,
the optimum filter is superior, having a sharper rise at low pulse heights.

Figures 3.13 and 3.14 show the same respective plots for both detectors of configuration 5.
There, the results show a better performance, especially in terms of trigger efficiency.
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Figure 3.10: Comparison of data triggered with op-triggering, without any cuts applied, and
published spectrum from the same data.

Figure 3.11: Left: Maximum of predicted op for the simulated test set of configuration 4. Right:
ROC curve for the same dataset.
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Figure 3.12: Comparison of trigger efficiencies for small pulse heights of configuration 4. Left:
the efficiency using the optimum filter with a cutoff value at 10 times the baseline resolution.
Right: the efficiency achieved with the op on the same dataset.

Figure 3.13: Predicted op and ROC curves for both detectors of configuration 5.
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Figure 3.14: Comparison of optimum filter and op trigger efficiencies for both detectors of con-
figuration 5. The optimum filter cutoff is chosen to be 10 times the baseline resolution in both
cases.
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Comparison of triggered events

To better evaluate the performance of the algorithm for triggering, the trained networks used
for efficiency studies in the previous section have been used to actually trigger the raw data of
configuration 4 and 5, using the threshold values for the overlapping parameter that have been
indicated above. The resulting triggered events have been compared to events that have been
triggered using the optimum filter method, with a a threshold value of 10 times the baseline
resolution. The optimum filter is expected to deliver more triggers, since it can not discriminate
between pulses and artifacts. To be able to compare results nonetheless, a cut has been defined on
the of-triggered data, aiming to exclude as many artifacts as possible while keeping valid particle
pulses. The remaining events have been compared to the ones triggered with the overlapping
parameter without cuts applied. To evaluate whether a single event has been triggered by both
methods, the trigger time stamps are considered. If two time stamps lie within a predefined
timespan, the triggered event is taken to be the same.

Configuration 4 In configuration 4, for two triggers to be considered triggering the same
event, they need to happen within 30ms of each other. In total, the optimum filter triggering
yielded 4223 events, the overlapping parameter triggering yielded 2500 events. Of these events,
2389 have been triggered by both methods. After application of a cut on the optimum filter-
triggered events, 2491 events remain. Of these, 2376 events are also present in the overlapping
parameter-triggered dataset. The numbers are also reported in Tab. 3.1 for a comprehensive
overview. It is worth to look a at the shape of some of the events in the respective groups. Since
it is assumed that the events that are present in both datasets and survive the cuts are well
defined particle events, and that the events that are excluded from the optimum filter dataset
by the cut are artifacts, the main interest lies on events that are present either only in the
overlapping parameter dataset, or only in the optimum filter dataset after application of cuts.
To get an overview of the events, the previously described k-means clustering has been applied
using 4 clusters for each dataset. In Fig. 3.15 the results for both datasets can be seen. The
events only triggered by the optimum filter consist, as clustered, of 81 good, low energetic pulses,
13 higher energy pulses, 18 saturated pulses and 3 flux quantum losses.

In the corresponding dataset of events only triggered with the overlapping parameter frame-
work, one cluster of saturated events, and one cluster of well defined particle events is visible.
The corresponding events are also triggered by the optimum filter, but are wrongly excluded by
the quality cut.

Configuration 5 The same procedure as with configuration 4 has been employed also for
the raw dataset of configuration 5. The data stream has been triggered with both methods,
with the thresholds being again 10 times the baseline resolution for the optimum filter, and
0.6 for the overlapping parameter, as indicated in Fig. 3.13. Both detector channels have been
triggered; however for easier comparison, only the results for one channel are presented, since the
two channels behave similarly. In this dataset, for two events to be considered the same, their
triggers had to be within 5ms. The number of raw triggers is 10832 for the optimum filter and
2449 for the overlapping parameter, of these, 1579 events are present in both datasets. Again,
a cut was defined on the optimum filter triggered data, after which 1640 events remained in the
dataset. Of these events, 1375 where also triggered by the overlapping parameter. The numbers
can be found again in Tab. 3.1. For illustration of the differences in triggered data, the clusters
calculated with k-means clusterings of the events that are only present either in the optimum
filter triggered dataset after the application of the cuts, or in the overlapping parameter dataset,
are shown in Fig. 3.16. It has to be noted that on this dataset, to evaluate if a trigger is a noise
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(a) Optimum filter dataset (b) Overlapping parameter dataset

Figure 3.15: Configuration 4: Clusters of events that are only present in either the optimum
filter triggered dataset, after application of cuts, or the overlapping parameter dataset.

Configuration 4
Configuration 5
Channel 0

raw triggers after cut raw triggers after cut
optimum filter 4223 2491 10832 1640
overlapping parameter 2500 2500 2449 2449
present in both 2389 2376 1579 1375

Table 3.1: Number of events triggered with different methods on raw datasets of configuration
4 and 5. Note that the cut has been defined on and applied to the optimum filter dataset
exclusively.

trigger, both channels need to be considered, since a pulse present in one channel causes both
channels to trigger. In the figure, it can be seen that the events only present in the optimum filter
dataset are made up mainly of very low energetic pulses, that could also be noise triggers, with
a couple of valid, higher energy pulses present as well. In the overlapping parameter dataset,
there are also a lot of low energetic pulses and possibly noise triggers, but also some step and
flux quantum loss artifacts. These are also triggered by the optimum filter, but removed by the
cuts applied.

Time resolution As described above, the two stage approach to triggering with the overlap-
ping parameter framework leads to greatly decreased computing times, while maintaining good
time resolution of triggers. Since the training of the neural network is done with events that
have been triggered with the optimum filter, the network is trained to reproduce the timing of
the optimum filter. Because of this, the time resolution of the trigger algorithm is limited by
the time resolution of the optimum filter. Hence, to evaluate the time resolution of the overlap-
ping parameter triggering, the trigger time stamps it delivers are compared to the trigger time
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(a) Optimum filter dataset (b) Overlapping parameter dataset

Figure 3.16: Configuration 5, Channel 0: Clusters of events that are only present in either the
optimum filter triggered dataset, after application of cuts, or the overlapping parameter dataset.

stamps of triggers achieved using the optimum filter. To do this, the difference in trigger times
for all events that have been triggered by both methods is calculated as Δttrig = toptrig − toftrig. In
Fig. 3.17 the resulting values are plotted. It can be seen that the differences in timing are mostly
close to 0. In the case of configuration 4, there is a small peak at around 8ms. It is mainly due
to strongly saturated events.

Conclusion In conclusion the overlapping parameter triggering yielded good results. The
efficiencies for small pulse heights, as evaluated on simulated datasets, are not yet on par with
the optimum filter. This could however still be improved upon with different models and bigger
training datasets. The framework can in the future also be combined with the optimum filter by
filtering each trace prior to processing it with the neural network.

The trigger performance for larger pulses was very good, combining high trigger efficiency

Figure 3.17: Comparison of trigger timing for configuration 4 and 5.
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with artifact rejection capabilities. In configuration 4, almost no artifacts where triggered, and
while in configuration 5 some where triggered, their amount was far less than the corresponding
number that is triggered with the optimum filter.

3.4 Automatic creation of the standard event, optimum
filter and trigger thresholds

In this section we introduce a method for the automatic creation of a standard event from raw
data. With this method, it is possible to automatically calculate an optimum filter that can be
used to estimate trigger thresholds, thus automatizing the complete optimum filter triggering
routine.

3.4.1 AutoSev

The calculation of a standard event (SEV) is an important step in the analysis process. It is
used to calculate the optimum filter and for pulse height estimation via fitting. The fit error of
the standard event fit is an important quantity on which cuts can be defined.

In order to calculate a good, representative standard event, it is crucial that no artifacts are
included in its calculation. To ensure this, the data has to be thoroughly inspected by hand,
and cuts have to be defined to exclude unwanted traces. This has to be done manually for every
detector run, since the shape of events and the noise are dependent on the detector itself, but
also on the configuration and background conditions. However, in this work a new approach
to automatize the standard event creation is presented. It has few parameters and requires no
prior knowledge about the data, while delivering results that are very close to standard events
calculated with manually defined cuts.

This approach, called AutoSev, hinges on several assumptions about the data: First of all,
there need to be test pulses present. Since they are used for monitoring purposes of the detector,
this is usually the case. Furthermore it is assumed that the shape of the test pulses is not
completely dissimilar from the shape of real particle induced events, a condition that is also
usually fulfilled, even though we do not expect the test pulses to have the same shape as particle
pulses. Lastly, it is assumed that particle induced pulses follow the parametric description taken
from [13] and given by Eq. 1.9.

The basic idea of the procedure is as follows: first, a standard event of test pulses is calculated
as first approximation of the real standard event. Each test pulse has a corresponding heater
amplitude or test pulse amplitude. If the heater amplitude is too high, then test pulses will start
to saturate. To avoid this, only the lower half of heater amplitudes is considered. Also, the lowest
heater amplitude is not considered, since it might be too noisy. On the remaining test pulses,
another automatic cut is performed. For this, each test pulse amplitude is considered separately.
For all events with the same test pulse amplitude, the pulse height and left-right baseline dif-
ference are considered. Their values are transformed into a robust z-score (see App. A). If both
quantities do not exceed 1, than the test pulse is accepted for the standard event calculation.
Through the use of the robust z-score, absolute cutoff values can be avoided, while still being able
to reliably exclude outlier values. Testing with different datasets has shown these two quantities
to be sufficient to exclude outliers.

The standard event derived from test pulses is then fitted to all particle events, yielding a
fitted pulse height phfit as well as the root mean squared error of the fit rmsfit. With these two
quantities, a normalized error

rmsnorm =
rmsfit
phfit

(3.10)
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Configuration 4 Conf. 5 Ch. 0 Conf. 5 Ch. 1
SEV AutoSev SEV AutoSev SEV AutoSev

t0 -1.612 -1.772 -0.084 -0.089 -0.086 -0.088
An 1.129 1.117 1.210 1.187 1.138 1.163
At 0.869 0.878 0.295 0.117 0.229 0.512
τn 41.561 43.072 0.640 0.919 0.730 0.515
τin 0.400 0.355 0.035 0.039 0.024 0.026
τt 13.166 13.271 2.735 5.700 3.823 2.169

Table 3.2: Comparison of fit parameters between standard events calculated by using manually
defined cuts and fit parameters of standard events calculated with AutoSev for different datasets.

is calculated. This quantity is then used to define a cut for the calculation of a new standard
event. To avoid having to set the cutoff value for rmsnorm manually, the following procedure is
employed:

First, the n0 events with the lowest rmsnorm are taken and used to calculate a standard event.
Then, this standard event is fitted with the parametric description of Eq. 1.9. The root mean
squared error between the standard event and the fitted function rmspar is calculated. Now, the
number n of events used for the standard event creation is increased. This will cause rmspar
to decrease at first, since more good events are averaged, thus reducing the noise. However,
at some point rmspar will start to increase again, when artifacts or events not following the
parametric description are also included in the calculation. Thus, n is increased until rmspar
stops to decrease. The resulting standard event is again fitted to all events, and the procedure
is repeated iteratively until the number of events used for the calculation no longer changes or
the maximum number of iterations is reached. After that, the standard event of the iteration
that yielded the overall lowest deviation from the fitted parametric description is taken as final
standard event.

Results

The method produces very good results on all tested datasets. Figure 3.18 shows the stan-
dard events calculated for different iteration steps on data of configuration 4. in Fig. 3.19 the
corresponding plots for channel 1 of configuration 5 are shown. In both figures the test pulse
standard event, while being almost noise free due to the high number of test pulses used in the
calculation, has some deviations from the parametric descriptions, and a different shape than
later iterations using event pulses. After the first step, the standard event is still noisy, even
though a lot of events have been used in the calculation, indicating that mostly low energy pulses
have been used. With an increasing number of iterations, the quality of the standard event and
its acceptance with the parametric fit improves. After 11 iterations, the standard event is in very
good agreement with the parametric fit. In Tab. 3.2 the fit parameters, as defined in Eq. 1.9, of
the parametric fit of standard events calculated with manually defined cuts and standard events
calculated with AutoSev are reported. Further investigations are needed to understand the fact
that, for configuration 4, τn > τt, the values being in good agreement for SEV and AutoSev. In
Fig. 3.20 the standard events calculated with AutoSev are compared to standard events calcu-
lated by using events that have been selected by manually defined cuts. It can be seen that the
shapes of the standard events calculated with different methods are in good agreement for all
considered datasets.
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(a) Test pulse standard event (b) AutoSev after 1 step

(c) AutoSev after 5 steps (d) AutoSev after 11 steps

Figure 3.18: Progress of the AutoSev for configuration 4. It can be clearly seen, that the standard
event approaches the parametric fit with increasing number of iterations.

3.4.2 AutoOf and triggering

After having a method to automatically create standard events, all that is missing to automat-
ically create an optimum filter is the NPS of clean noise baselines. The baselines need to be
cleaned before the calculation of the NPS to avoid particle events or artifacts being present.
Automatically selecting clean baselines for the NPS calculation can be done by using two quan-
tities: the root mean square error of a fit with a cubic polynomial and the left-right baseline
difference. The former can be used to exclude unwanted particle events and artifacts other than
decaying baselines that might be present in the traces. To also be able to reliably exclude de-
caying baselines the latter is used. For this, the left-right baseline difference is scaled again via
robust scaling (see App. A), such that an interpretable cutoff value on the scaled quantity can
be defined. In case of the fit error, instead of applying robust scaling, one can exclude a certain
percentile, e.g. the 50% of events with the highest fit error are excluded.

With the standard event and the noise power spectrum in place, an optimum filter can be
calculated. An important quantity for triggering that is still missing for further automatization is
the trigger threshold of the dataset. As mentioned in Section 2.2, it is possible to get an estimate
for a reasonable trigger threshold by using a multiple of the baseline resolution, calculated with
empty baselines. Each baseline is adjusted to remove its offset, and a specific point at the same
position across all baselines is selected. Excluding outliers, the values at these points are expected
to follow a Gaussian distribution centred around 0. Outliers are again removed through robust
scaling and applying a cutoff based on the resulting z-values. The remaining values are then
fitted to a Gaussian distribution, with its standard deviation serving as an approximation of the

42



(a) Test pulse standard event (b) AutoSev after 1 step

(c) AutoSev after 5 steps (d) AutoSev after 11 steps

Figure 3.19: Progress of the AutoSev for configuration 5, channel 1. Again, the progress when
increasing the number of iterations is visible.

resolution. If the optimum filter is to be included in the calculation, all baselines are filtered
with the optimum filter before the fit is calculated.

With these procedures in place, it is possible to completely automatize the optimum filter
triggering process: First, the test pulses are triggered. For this, only a threshold on the DAC
channel is needed, which is known a priori. Then baselines are triggered. The triggering of
baselines consists of the selection of random locations in the raw data stream, hence it does not
need any manually set parameters, except the number of baselines to be triggered. A reasonable
number can be determined as function of the total length of the stream, e.g. by requiring
1 baseline per recorded second of data. The baselines are used to calculate the noise power
spectrum, and to estimate the baseline resolution without the optimum filter. A multiple of the
baseline resolution is taken as trigger threshold, in order to trigger the events. From these events,
a standard event is calculated using AutoSev, which, together with the noise power spectrum
is used to calculate an optimum filter. The baseline resolution is estimated again, this time
using the optimum filter. Finally, the events are triggered again, using the optimum filter and a
multiple of the corresponding baseline resolution as trigger threshold.

As opposed to the triggering using a neural network presented in Section 3.3, there are no
black boxes involved, each step of the automatization can be inspected, and done manually if
needed.
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(a) Standard events of configuration 5, channel 0 (b) Standard events of configuration 5, channel 1

(c) Standard events for configuration 4.

Figure 3.20: Comparison of standard events calculated with AutoSev and by manually defined
cuts

Results

In Fig. 3.21 the automatically calculated noise power spectra, as well as the noise power spectra
calculated by using manually cleaned baselines can be seen. Even though there are some offsets
between the two, the overall shape remains very similar for all configurations. Since the standard
events were also similar, one expects the resulting optimum filter to be comparable as well.
Figure 3.22 shows the Gaussian fits for the baseline resolution described above, with and without
the use of an optimum filter. The resolutions calculated with the optimum filter for the different
filters can be seen in Tab. 3.3. They are comparable, even though the resolution calculated with
the automatically made filter has a lower value in all three cases.

To test the procedure, all available datasets have been triggered completely automated. The
triggered events were compared to events that were triggered with a manually made optimum
filter. For comparability, the trigger thresholds have been matched to 10 times baseline resolution
in both cases. As expected, the triggered events were almost the same in all cases, with minimal
timing differences. There were also some events that were triggered exclusively by one of the
two methods. Closer inspection of those events revealed that they were mostly artifacts, namely
decaying baselines. In conclusion, automatized optimum filter triggering is an approach that
works well.
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(a) (b)

(c)

Figure 3.21: Comparison of noise power spectra calculated by using manually cleaned baselines
and automatically cleaned baselines, for both channels of configuration 5, and configuration 4.

3.5 AutoCut

Building on the previous Section, the analysis of stream data can be further automatized by
focusing on the exclusion of artifacts. In the context of machine learning, this can be viewed as
binary classification problem: every trace is labelled either as artifact or good event pulse. Steps
in this direction using machine learning have been described e.g. in reference [17]. There, the
approach was to build a big dataset, consisting of labelled data of many detectors in different
configurations, which were used to train a network to classify traces into good pulses and artifacts.
By using a wide variety of training data, the network was thought to generalize well also to
data from previously unseen detectors. The paper reports good success, with high classification
accuracy. One problem that has been reported was the quality of labels in the dataset. While
most labels were correct, some wrongly labelled events were still present.

manually made filter automatically made filter
Conf. 4 0.399 ± 0.002 mV 0.382 ± 0.002 mV
Conf. 5, Ch. 0 1.94 ± 0.00 mV 1.88 ± 0.00 mV
Conf. 5, Ch. 1 1.29 ± 0.00 mV 1.27 ± 0.00 mV

Table 3.3: Baseline resolution values for different datasets, calculated with a handmade optimum
filter and automatically made optimum filter.
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(a) without optimum filter (b) with optimum filter

Figure 3.22: Fit for baseline resolution calculation of configuration 4 data. Notice the better
resolution when using an optimum filter prior to fitting.

The framework presented here, called AutoCut, has a different approach to the aforemen-
tioned one. Instead of using a big diverse training set and large models, datasets and models are
small. Instead of trying to train models that generalize well to different detectors and detector
configurations, models are trained per detector or configuration. This keeps training times very
short, while maintaining high classification performance.

The performance of machine learning classifiers is heavily influenced by the quality of the
dataset used for training. A good training dataset should be balanced, hence containing a
roughly equal number of both classes. Furthermore, interclass variability should be represented
well. For positive samples this means including different pulse heights, and potentially saturated
pulses. For negative samples, i.e. artifacts, this is more difficult, because even though they can
usually be classified into different categories, new kinds of artifacts may always arise, and even
known categories might or might not be present in datasets, depending on configurations and
ambient factors.

Moreover, to make the per-detector approach feasible, dataset creation should not depend on
hand labelling events, since that is a time intensive task. To overcome this problem, a weakly
supervised, potentially even unsupervised framework is employed for dataset creation. It hinges
on k-means clustering, described in Section 3.2, for the creation of a labelled, balanced training
dataset. This dataset can subsequently be used to train a small neural network, that outputs a
single number between 0 and 1 per trace. This number, which will be called the AutoCut-value
or AC for short, points to the event likely being an artifact (values close to zero) or being a good
event pulse (values close to 1).

Since the dataset creation is largely unsupervised, and the goal is not to get comparable
accuracy metrics for different network architectures, but to classify traces correctly, the machine
learning mantra of strict separation between training data and test data can be relaxed. The
underlying reason is that we do not aim for a network that generalizes to datasets taken with
different detectors, but for a network that generalizes from a part of a given dataset to the whole
dataset. This means it is feasible to use a large dataset, taken with a specific detector at a
specific configuration, create a smaller training dataset from it, and use a model trained on the
training set to make predictions on the whole dataset. The process can also be thought of as self
supervised training strategy: in the first step, a rough clustering together with the (potentially
automatically calculated) standard event delivers a rough prediction about data quality. The
inclusion of the standard event allows to prescribe a confidence level to each prediction. Training
a model on traces with high classification confidence allows the network to improve the first
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prediction and to make confident predictions even in edge cases.

3.5.1 Training dataset creation

As mentioned, the creation of training datasets is based on the already described k-means clus-
tering. Once the clustering on a dataset is completed, there are two possibilities of continuing
with dataset creation. The completely self supervised approach is to use the standard event fit
to identify the best cluster. In this case, the cluster with the lowest average normalized fit RMS
error is taken as the cluster containing good events, while examples from other clusters are taken
to be artifacts. As consistency check, is is verified that this ’good’ cluster also contains the event
with the lowest normalized fit RMS error. While this method consistently identified the cluster
containing the most well shaped particle pulses during testing correctly, in most cases there were
also other clusters that contained viable events. Consider for example Fig. 3.23, showing clusters
in configuration 4. There cluster 4, marked with green borders, has been correctly identified as
’best’ cluster. However, also cluster 0, containing saturated events, and cluster 2, containing low
energetic pulses, should be included in the training dataset as clusters containing viable particle
pulses. Because of this, the weakly supervised approach consists of inspecting the clusters by
hand, and manually choosing ’good’ clusters, that will be used as positive training examples.

Furthermore, it can be seen in Fig. 3.23 that even ’good’ clusters can contain artifacts: note
the clearly wrongly timed event visible in cluster 4. Also, it can not be excluded that ’bad’ clusters
contain well shaped particle pulses. To stop the imperfections of clustering from degrading the
dataset quality, a quality condition is introduced, making use of the normalized fit RMS error
rmsnorm of Eq. 3.10. For positive clusters, the 50% with the highest rmsnorm are ignored, while
for negative clusters the lower 25% of events with the lowest rmsnorm are ignored. The remaining
traces that belong to clusters labelled as particle events are then taken to be positive training
examples. Then a number of traces that is chosen so that the dataset is approximately balanced
is sampled from remaining events of each cluster labelled as containing artefacts.

This procedure allows for the creation of a training dataset with minimal human intervention,
that is balanced not only between positive and negative samples, but also captures the interclass
variability. Additionally, the possibility to include automatically cleaned empty baselines and
simulated saturated events as positive training examples, and simulated pile-ups as negative
training examples have been implemented in CAIT.

3.5.2 Model

The model used differs greatly from the ones used for example in reference [17]. While models
described there have up to several millions of trainable parameters with an input size of 2048
samples, the model used for AutoCut has only around 80000 trainable parameters for the same
input size. This allows for fast training, even without the use of GPUs.

The model used consists of only two layers: a convolutional layer followed then a fully con-
nected layer. The convolutional layer has an unconventionally large kernel with the size of 75%
of the input size. Usually, much smaller kernel sizes are used. The reason that such large ker-
nels perform well in this instance is again rooted in the specifics of the problem, namely in the
alignment. Since minimal padding is used, the choice of kernel size means that only very big
features at certain positions in the record window can be correctly learned, which is well suited
for the problem. For an illustration of learned filters see Fig. 3.24. It shows the filters of the
convolutional layer of a trained model. It can be seen that all the filters containing pulse like
features contain them in the first half of the filter kernel, illustrating the point about alignment.
Following the convolutional layer, a fully connected layer calculates a single output value from
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Figure 3.23: Visualization of clusters in data of configuration 4.
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the output of the prior layer.

3.5.3 Results

To evaluate the performance of the network trained on data from configurations 4 and 5, two
hand-labelled test sets have been made, taking data from configurations 8 and 9. Configuration
4 and 8 use the same CaWO4 detectors and contain each about a week of data with two weeks
in between. Configuration 5 and 9 use the same Al2O3 double-TES detectors and also each
contain data from a week of data taking with two weeks in between. In the test sets, the events
were labelled using k-means clustering, and each event was controlled by hand, changing its
class if necessary, using the event curator. Note that for the double-TES data each channel
has been labelled independently, and independent models have been trained for it. The test
dataset of configuration 8 consisted of 4464 events, of which 2493 were classified as good events
and 1971 as artifacts. The set of configuration 9 consisted of 9010 events. For channel 0, 1315
were classified as good and 7695 as artifacts. For channel 1, 1415 were classified as good and
7595 as artifacts. Note that there are a lot more triggered events in configuration 9, this is
due to the fact that the TES operation was more unstable, and there are a lot of decaying
baseline artifacts. For the scope of this work these have been classified as artifacts, even though
a more differentiated approach might be sensible, since while some decaying baselines are purely
artifacts of the optimum filtering, there are also decaying baselines that contain particle pulses,
from which some information might be recoverable.

The AutoCut results were compared to results obtained with a manually defined cut. For
this, on each test dataset, handmade cuts were defined on quantities such as left - right baseline
difference, decay time and onset, aiming for the cleanest resulting dataset. For both the hand-
made cut and the AutoCut some relevant metrics were calculated, in case of the AutoCut as
function of the AC cutoff value. The following metrics were chosen:

Recall, the proportion of true positive instances correctly identified by the model:

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)

Selectivity, the proportion of true negative instances correctly identified by the model:

Selectivity =
True Negatives (TN)

True Negatives (TN) + False Positives (FP)

Balanced Accuracy, the average of recall and selectivity, providing a more balanced mea-
sure when classes are imbalanced:

Balanced Accuracy =
Recall + Selectivity

2

Precision, the proportion of predicted positive instances that are correct:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)

Plots of balanced accuracy and precision over recall are shown in Figs 3.25 and 3.26. The
numbers for an AutoCut-value cutoff of 0.5 are listed in Tab. 3.4. Both in the plots as well as in
the table it can be seen that the AutoCut matched the performance of the handmade cut in all
tested datasets. For illustration, in Fig. 3.27 the traces of configuration 8 that have been wrongly
classified by the manually defined cut are shown. The false positives are mainly flux quantum
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Figure 3.24: Example of CNN filters of a trained AutoCut model.
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Configuration 8 Configuration 9
Channel 0 Channel 1

Handmade Autocut Handmade Autocut Handmade Autocut
True positive 2482 2456 1266 1278 1363 1376
True Negative 1915 1938 7657 7651 7510 7568
False Positive 56 33 38 44 74 27
False Negative 11 37 49 37 52 39
Bal. Accuracy 0.984 0.984 0.979 0.938 0.977 0.984
Precision 0.978 0.987 0.971 0.967 0.949 0.981
Recall 0.996 0.985 0.963 0.972 0.963 0.972

Table 3.4: Comparison of handmade cut with Autocut.

losses, decaying baselines, pile-ups and spikes. In the false negatives, a wrongly labelled spike
event and a wrongly labelled noisy trace are visible. In Fig. 3.28 the corresponding plots for
the AutoCut are shown. The false positives are mainly large flux quantum losses, pile ups and
spikes, while the false negatives consist almost exclusively of lightly saturated pulses, indicating
a possible under-representation in the training dataset.

Overall the AutoCut framework showed very promising performances on all tested datasets.

Figure 3.25: Comparison of balanced accuracy and precision over recall for configuration 8.
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Figure 3.26: Comparison of balanced accuracy and precision over recall for both channels of
configuration 9.
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Figure 3.27: All false classifications for the handmade cut on configuration 8.
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Figure 3.28: All wrong classifications for the Autocut on configuration 8. The numbers in the
top right corner of each plot indicate the value of the AC for that trace.
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Conclusion

In this work, the application of machine learning methods for raw data analysis of the NUCLEUS
experiment has been explored.

In Section 3.1 the use of different kinds of neural networks for noise reduction of event traces
has been investigated. The results obtained are promising; to consistently and significantly
outperform state of the art techniques, more improvements are needed for these methods.

In Section 3.2 the k-means algorithm for clustering detector traces is introduced. In the con-
figuration presented, it is used for clustering traces directly based on their shape and alignment
instead of relying on calculated proxies for these values. The algorithm showed good performance
and was used for the creation of labelled datasets during the course of this work. Also, it is a
powerful tool for direct visualization of the contents of a dataset containing detector traces.

The trigger algorithm presented in Section 3.3 uses a trained neural network for the localiza-
tion of particle pulses on the raw data stream. The neural network is trained using a labelled
dataset that can efficiently be created using k-means clustering. The algorithm has the advan-
tage of being able to differentiate particle events from artifacts already during triggering. Testing
showed very promising results: even though the trigger efficiency of the state of the art opti-
mum filter method is not yet matched for very low energetic pulses, for higher energetic pulses
triggering and artifact rejection work very well, with datasets that have been triggered with
the optimum filter and cleaned with manually defined cuts having largely the same make up as
datasets triggered with the machine learning algorithm without cuts applied.

In Section 3.4 an algorithm for the automatic calculation of an optimum filter using raw data
is presented. It can be used to trigger a raw data stream using the optimum filter and sensible
trigger thresholds completely without user input. It consists of several parts, with the most
involved one being the automatic selection of traces for the calculation of a standard event. This
works in an iterative fashion by taking advantage the information provided by the parametric
pulse shape description and the shape of test pulses. The algorithm yields standard events that
are very similar to ones calculated by event selection with manually defined cuts. Further au-
tomatic cleaning for noise baselines via robust scaling enables the automatic estimation of the
noise power spectrum and subsequent calculation of the optimum filter. Baseline resolution stud-
ies can be used to estimate trigger thresholds. Putting everything together enables completely
automatized optimum filter based triggering, yielding almost identical results to triggering with
an optimum filter calculated by using manually defined cuts.

In the final Section 3.5 a framework for artifact rejection is presented. It makes use of a
comparatively small, shallow neural network that is intended to be trained on a per detector or
configuration basis. For training, a labelled dataset is needed. The framework includes a weakly
supervised method for the automatic creation of such a dataset, making use of k-means clustering
and requiring only the selection of clusters as user input. This, together with quick training times
enables rapid deployment of the method to previously unseen datasets. The artifact rejection
power of the framework has been tested using a hand labelled dataset. The performance was
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very good, matching manually defined cuts as well as previously reported results using artificial
neural networks.

An overview of the ML methods developed in this work and their usage in the analysis of
raw data is shown in Fig. 3.29.

All the methods developed in this work are already implemented by me in CAIT and are
available for use in the analysis of raw data in the CRYOCLUSTER experiments (CRESST,
COSINUS and NUCLEUS).

In conclusion, machine learning methods offer many possibilities for the automatization of
raw data analysis tasks, potentially reducing human biases and facilitating the analysis of large
amounts of data that might arise in the future of the NUCLEUS experiment.
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Figure 3.29: Overview of the ML methods developed in this work and their possible usage in the
raw data analysis
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Appendix A

Robust z-score

The z-score is a statistical measure that describes the position of a data point in relation to the
mean of a dataset, in terms of standard deviations. Mathematically, this means the z-score Z is

Z =
X − µ

σ
(A.1)

with the sample mean µ and the sample standard deviation σ. This is useful because it can be
used to transform different datasets to a comparable scale, regardless of their original units. It
also allows for a scale independent, interpretable definition of cutoff values in units of σ.

The z-score is however sensitive to outliers, as it relies on sample mean and standard deviation,
both of which can be heavily influenced by extreme values. To counteract this, the robust z-score
[53] Zrobust is defined as

Zrobust =
X − X̃

IQR
(A.2)

where IQR denotes the interquartile range, meaning the range between the first and third quartile,
and X̃ denotes the median value of the dataset. Both the median and IQR are robust with respect
to outliers.
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Appendix B

Model definitions

All artificial neural networks presented in this work are implemented using the libraries PyTorch
[54] and PyTorch Lightning [55].

Scaling Autoencoder The scaling autoencoder described in Section 3.1.1 has two branches,
a LSTM branch and a convolutional branch, see Fig. 3.2 for illustration. The convolutional part
of the network receives a version of the input that has been scaled to a maximum of 1, while the
LSTM branch receives an unscaled version of the input. The The training loss used to train this
network was the mean squared error (MSE) loss.

Encoder

• LSTM branch:

– 3-layer LSTM with input size 8 and hidden size 80

– Output passed through a linear layer to produce a vector of size 32

• Convolutional branch:

– Conv1D(channels out=5, kernel=14, stride=2) → ReLU

– Conv1D(channels out=5, kernel=8, stride=2) → ReLU

– Conv1D(channels out=10, kernel=6, stride=2) → ReLU

– Conv1D(channels out=10, kernel=3, stride=2) → ReLU

– Conv1D(channels out=10, kernel=3, stride=2) → ReLU

– Fully connected layer to output vector of size 64

Decoder

• Input: Concatenation of outputs of LSTM and Conv1D branches

• Linear layer followed by reshaping to (channels, length)

• Transposed convolutional layers:

– ConvT(channels in=10, channels out=10, kernel=2, stride=2) → ReLU

– ConvT(channels out=10, kernel=4, stride=2) → ReLU
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– ConvT(channels out=10, kernel=5, stride=2) → ReLU

– ConvT(channels out=10, kernel=11, stride=2) → ReLU

– ConvT(channels out=5, kernel=21, stride=2) → ReLU

– ConvT(channels out=1, kernel=512, stride=1)

• Output is scaled by a the scalar output of a fully connected layer that takes the output of
the LSTM branch of the encoder as input

Noise2Noise The Noise2Noise network consists of a LSTM followed by a fully connected layer.
The input is padded at the beginning to avoid edge effects. The model output of the padded
part of the input is ignored by the following fully connected layer. The training loss used was
the MSE loss.

• Preprocessing: Reflective padding of 50 time steps is applied at the beginning of the se-
quence.

• LSTM Block:

– 2-layer LSTM with hidden size 64

– Dropout: 0.2 between LSTM layers

• Output Layer: A fully connected layer projects the LSTM output at each time step to a
1D noise estimate.

• Denoising: The estimated noise is subtracted from the input signal to produce the denoised
output.

Overlapping parameter triggering network The neural network used for overlapping pa-
rameter triggering was a convolutional neural network with two convolution layers followed by a
two fully connected layers. The loss used was the MSE loss.

• Convolutional layers:

– Conv1D(channels out=64, kernel=512, stride=1, dilation=2) → MaxPool1D(4) →
ReLU

– Conv1D(channels out=32, kernel=128, stride=1, dilation=1) → MaxPool1D(4) →
ReLU

• Fully connected layers:

– Linear(output size=10) → ReLU

– Linear(output size=1) → Sigmoid

AutoCut network The neural network trained for quality cuts consists of two layers, a con-
volutional layer and a fully connected layer. The loss used was the binary cross entropy loss.

• Convolution: Conv1D(channels out=32, kernel=1536, padding=204) → ReLU

• Fully connected: Linear layer with output dimension 1 → Sigmoid
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