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Abstract
Graphs have emerged as a foundation for a variety of applications,
including capturing factual knowledge, semantic data integration,
social networks, and informing machine learning algorithms. For-
malising properties of the data and ensuring data quality requires
describing schemas of such graphs. Driven by diverse applications,
the Semantic Web and database communities developed not only
different graph data models—RDF and property graphs—but also
different graph schema languages—SHACL, ShEx, and PG-Schema.
Each language has its unique approach to defining constraints and
validating graph data, leaving potential users in the dark about
their commonalities and differences. In this paper, we provide con-
cise formal definitions of the core components of these languages,
employ a uniform framework to facilitate a comprehensive compar-
ison between them, and identify a common set of functionalities,
shedding light on both overlapping and distinctive features.

This work is licensed under a Creative Commons Attribution 4.0 International License.
WWW ’25, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1274-6/25/04
https://doi.org/10.1145/3696410.3714694

CCS Concepts
• Information systems→ Graph-based database models; Se-
mantic web description languages.

Keywords
Graph Schema Languages, SHACL, ShEx, PG-Schema, RDF, Prop-
erty Graphs, Graph Databases, Common Data Model

ACM Reference Format:
Shqiponja Ahmetaj, Iovka Boneva, Jan Hidders, Katja Hose, Maxime Jaku-
bowski, Jose Emilio Labra Gayo, Wim Martens, Fabio Mogavero, Filip Mur-
lak, Cem Okulmus, Axel Polleres, Ognjen Savković, Mantas Šimkus, and Do-
minik Tomaszuk. 2025. Common Foundations for SHACL, ShEx, and PG-
Schema. In Proceedings of the ACM Web Conference 2025 (WWW ’25), April
28-May 2, 2025, Sydney, NSW, Australia. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3696410.3714694

1 Introduction
Driven by the unprecedented growth of interconnected data, graph-
based data representations have emerged as an expressive and ver-
satile framework for modelling and analysing connections in data
sets [46]. This rapid growth however, has led to a proliferation of
diverse approaches, each with its own identity and perspective.
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The two most prominent graph data models are RDF (Resource
Description Framework) [15] and Property Graphs [10]. In RDF, data
is modelled as a collection of triples, each consisting of a subject,
predicate, and object. Such triples naturally represent either edges
in a directed labelled graph (where the predicates represent rela-
tionships between nodes), or attributes-value pairs of nodes. That
is, objects can both be entities or atomic (literal) values. In contrast,
Property Graphs model data as nodes and edges, where both can
have labels and records attached, allowing for a flexible representa-
tion of attributes directly on the entities and relationships.

Similarly to the different data models, we are also seeing dif-
ferent approaches towards schema languages for graph-structured
data. Traditionally, in the Semantic Web community, schema and
constraint languages have been descriptive, focusing on flexibility to
accommodate varying structures. However, there has been a grow-
ing need for more prescriptive schemas that focus on validation of
data. At the same time, in the Database community, schemas have
traditionally been prescriptive but, since the rise of semi-structured
data, the demand for descriptive schemas has been growing. Thus,
the philosophies of schemas in the two communities have been
growing closer together.

For RDF, there are two main schema languages: SHACL (Shapes
Constraint Language) [28], which is also a W3C recommendation,
and ShEx (Shape Expressions) [43]. In the realm of Property Graphs,
the current main approach is PG-Schema [3, 4]; it was developed
with liaisons to the GQL and SQL/PGQ standardization committees
and is currently being used as a basis for extending these standards.
The development processes of these languages have been quite
different. For SHACL and ShEx, the formal semantics were only
introduced after their initial implementations, echoing the evolu-
tion of programming languages. Indeed, an analysis of SHACL’s
expressive power and associated decision problems appeared in
the literature [7, 8, 34, 39–41] only after it was published as a W3C
recommendation, leading up to a fully recursive variant of the lan-
guage [2, 6, 13, 14, 40], whose semantics had been left undefined in
the standard. A similar scenario occurred with ShEx, where formal
analyses were only conducted in later phases [9, 49]. PG-Schema
developed in the opposite direction. Here, a group of experts from
industry and academia first defined the main ideas in a sequence of
research papers [3, 4] and the implementation is expected to follow.

Since these three languages have been developed in different
communities, in the course of different processes, it is no surprise
that they are quite different. SHACL, ShEx, and PG-Schema use
an array of diverse approaches for defining how their components
work, ranging from declarative (formulae that specify what to look
for) to generative (expressions that generate the matching content),
and even combinations thereof. The bottom line is that we are left
with three approaches to express a “schema for graph-structured
data” that are very different at first glance.

As a group of authors coming from both the Semantic Web and
Database communities, we believe that there is a need for common
understanding. While the functionalities of schemas and constraints
used in the two communities largely overlap, it is a daunting task to
understand the essence of languages, such as SHACL, ShEx, and PG-
Schema. In this paper, we therefore aim to shed light on the common
aspects and the differences between these three languages.We focus
on non-recursive schemas, as neither PG-Schema nor standard

SHACL support recursion and also in the academic community the
discussion on the semantics of recursive SHACL has not reached
consensus yet [2, 6, 13, 14, 38, 40].

Using a common framework, we provide crisp definitions of the
core components of the languages. Since the languages operate on
different datamodels, as a first stepwe introduce theCommonGraph
Data Model, a mathematical representation of data that canonically
embeds into both RDF and Property Graphs, and develop general
common foundations (see Section 2). Precise abstractions of the
three languages are presented in Sections 3 (SHACL), 4 (ShEx), and 5
(PG-Schema); in the full version of the paper we explain how and
why we sometimes deviate from the original formalisms [1]. Each
of these sections contains examples to give readers an immediate
intuition about what kinds of conditions each language can express.
Then, in Section 6, we present the Common Graph Schema Language
(CoGSL), which comprises features shared by them all.

Casting all three languages in a common framework has the
immediate advantage that the reader can identify common func-
tionalities based on the syntax only: on the one hand, we aim at
giving the same semantics to schema language components that
syntactically look the same, and on the other hand, we can provide
examples of properties that distinguish the three languages using
simple syntactic constructs that are not part of the common core.
Aside from corner cases, properties expressed using constructs out-
side the common core are generally not expressible in all three
languages. By providing an understanding of fundamental differ-
ences and similarities between the three schema languages, we
hope to benefit both practitioners in choosing a schema language
fitting their needs, and researchers in studying the complexity and
expressiveness of schema languages.

2 Foundations
In this section we present some material that we will need in the
subsequent sections, and define a data model that consists of com-
mon aspects of RDF and Property Graphs.

2.1 A Common Data Model
When developing a common framework for SHACL, ShEx, and
PG-Schema, the first challenge is establishing a common data model,
since SHACL and ShEx work on RDF, whereas PG-Schema works
on Property Graphs. Rather than using a model that generalises
both RDF and Property Graphs, we propose a simple model, called
common graphs, which we obtained by asking what, fundamentally,
are the common aspects of RDF and Property Graphs (Appendix B
gives more details on the distilling of common graphs).

Let us assume disjoint countable sets of nodes N , values V ,
predicates P, and keys K (sometimes called properties).

Definition 1. A common graph is a pair G = (𝐸, 𝜌) where
• 𝐸 ⊆fin N × P ×N is its set of edges (which carry predicates), and
• 𝜌 : N ×K⇀V is a finite-domain partial function mapping node-
key pairs to values.

The set of nodes of a common graph G, written Nodes(G), consists
of all elements of N that occur in 𝐸 or in the domain of 𝜌 . Similarly,
Keys(G) is the subset of K that is used in 𝜌 , and Values(G) is the
subset of V that is used in 𝜌 (that is, the range of 𝜌).
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Figure 1: The media service common graph.

Example 1. Consider Figure 1, containing a graph to store in-
formation about users who may have access to (possibly multiple)
accounts in, e.g., a media streaming service. In this example, we
have six nodes describing four persons (𝑢1, ..., 𝑢4) and two accounts
(𝑎1, 𝑎2). As a common graph G = (𝐸, 𝜌), the nodes are 𝑎1, 𝑢1, etc.
Examples of edges in 𝐸 are (𝑢2, hasAcccess, 𝑎1) and (𝑢3, invited, 𝑢2).
Furthermore, we have 𝜌 (𝑢2, email) = d@d.d and 𝜌 (𝑎1, 𝑐𝑎𝑟𝑑) = 1234.
So, 𝐸 captures the arrows in the figure (labelled with predicates)
and 𝜌 captures the key/value information for each node. Notice
that a person may be the owner of an account, and may poten-
tially have access to other accounts. This is captured using the
predicates ownsAccount and hasAcccess, respectively. In addition,
the system implements an invitation functionality, where users
may invite other people to join the platform. The previous invita-
tions are recorded using the predicate invited. Both accounts and
users may be privileged, which is stored via a Boolean value of the
key privileged. We note that the presence of the key email (resp., of
the key (credit) card) is associated with, and indeed identifies users
(resp., accounts).

It is easy to see that every common graph is a property graph
(as per the formal definition of property graphs [3]). A common
graph can also be seen as a set of triples, as in RDF. Let

E = (N × P × N) ∪ (N × K ×V) .
Then, a common graph can be seen as a finite set G ⊆ E such that
for each 𝑢 ∈ N and 𝑘 ∈ K there is at most one 𝑣 ∈ V such that
(𝑢, 𝑘, 𝑣) ∈ G. Indeed, a common graph (𝐸, 𝜌) corresponds to

𝐸 ∪ {(𝑢, 𝑘, 𝑣) | 𝜌 (𝑢, 𝑘) = 𝑣} .
When we write 𝜌 (𝑢, 𝑘) = 𝑣 we assume that 𝜌 is defined on (𝑢, 𝑘).
Throughout the paper we see property graph G simultaneously as a
pair (𝐸, 𝜌) and as a set of triples from E, switching between these
perspectives depending on what is most convenient at a given moment.

2.2 Node Contents and Neighbourhoods
Let R be the set of all records, i.e., finite-domain partial functions
𝑟 : K⇀V . We write records as sets of pairs {(𝑘1,𝑤1), . . . (𝑘𝑛,𝑤𝑛)}
where 𝑘1, . . . , 𝑘𝑛 are all different, meaning that 𝑘𝑖 is mapped to𝑤𝑖 .

For a common graphG = (𝐸, 𝜌) and node 𝑣 inG, by a slight abuse
of notation we write 𝜌 (𝑣) for the record {(𝑘,𝑤) | 𝜌 (𝑣, 𝑘) = 𝑤} that
collects all key-value pairs associated with node 𝑣 in G. We call
𝜌 (𝑣) the content of node 𝑣 in G. This is how PG-Schema interprets
common graphs: it views key-value pairs in 𝜌 (𝑣) as properties of
the node 𝑣 , rather than independent, navigable objects in the graph.

SHACL and ShEx, on the other hand, view common graphs as sets
of triples and make little distinction between keys and predicates.
The following notion—when applied to a node—uniformly captures
the local context of this node from that perspective: the content of
the node and all edges incident with the node.

Definition 2 (Neighbourhood). Given a common graph G
and a node or value 𝑣 ∈ N ∪ V , the neighbourhood of 𝑣 in G is
NeighG (𝑣) = {(𝑢1, 𝑝,𝑢2) ∈ G | 𝑢1 = 𝑣 or 𝑢2 = 𝑣}.

When 𝑣 ∈ N , then NeighG (𝑣) is a star-shaped graph where
only the central node has non-empty content. When 𝑣 ∈ V , then
NeighG (𝑣) consists of all the nodes in G that have some key with
value 𝑣 , which is a common graph with no edges and a restricted
function 𝜌 .

2.3 Value Types
We assume an enumerable set of value types T . The reader should
think of value types as integer, boolean, date, etc. Formally, for
each value type v ∈ T , we assume that there is a set JvK ⊆ V of
all values of that type and that each value 𝑣 ∈ V belongs to some
type, i.e., there is at least one v ∈ T such that 𝑣 ∈ JvK. Finally, we
assume that there is a type any ∈ T such that JanyK = V .

2.4 Shapes and Schemas
We formulate all three schema languages using shapes, which are
unary formulas describing the graph’s structure around a focus
node or a value. Shapes will be expressed in different formalisms,
specific to the schema language; for each of these formalisms we
will define when a focus node or value 𝑣 ∈ N ∪V satisfies shape 𝜑
in a common graph G, written G, 𝑣 |= 𝜑 .

Inspired by ShEx shape maps, we abstract a schema S as a set of
pairs (sel, 𝜑), where 𝜑 is a shape and sel is a selector. A selector is
also a shape, but usually a very simple one, typically checking the
presence of an incident edge with a given predicate, or a property
with a given key. A graph G is valid w.r.t. S, in symbols G |= S, if

G, 𝑣 |= sel implies G, 𝑣 |= 𝜑,

for all 𝑣 ∈ N ∪V and (sel, 𝜑) ∈ S. That is, for each focus node or
value satisfying the selector, the graph around it looks as specified
by the shape. We call schemas S and S′ equivalent if G |= S iff
G |= S′, for all G. In what follows, we may use sel ⇒ 𝜑 to indicate
a pair (sel, 𝜑) from a schema S.

Example 2. We next describe some constraints one may want to
express in the domain of Example 1.
(C1) We may want the values associated to certain keys to belong

to concrete datatypes, like strings or Boolean values. In our
example, we want to state that the value of the key card is
always an integer.

(C2) We may expect the existence of a value associated to a key, an
outgoing edge, or even a complex path for a given source node.
For our example, we require that all owners of an account
have an email address defined.

(C3) We may want to express database-like uniqueness constraints.
For instance, we may wish to ensure that the email address of
an account owner uniquely identifies them.
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Table 1: Evaluation of a path expressions.

𝜋 J𝜋KG ⊆ (N ∪V) × (N ×V)
id {(𝑣, 𝑣) | 𝑣 ∈ N ∪V}
𝑞 {(𝑣,𝑢) | (𝑣, 𝑞,𝑢) ∈ G}
𝜋− {(𝑣,𝑢) | (𝑢, 𝑣) ∈ J𝜋KG}

𝜋 · 𝜋 ′ {(𝑣,𝑢) | ∃𝑣 ′ : (𝑣, 𝑣 ′) ∈ J𝜋KG ∧ (𝑣 ′, 𝑢) ∈ J𝜋 ′KG}
𝜋 ∪ 𝜋 ′ J𝜋KG ∪ J𝜋 ′KG

𝜋∗ JidKG ∪ J𝜋KG ∪ J𝜋 · 𝜋KG ∪ . . .

(C4) We may want to ensure that all paths of a certain kind end in
nodes with some desired properties. For example, if an account
is privileged, then all users that have access to it should also
be privileged.

(C5) We may want to put an upper bound on the number of nodes
reached from a given node by certain paths. For instance,
every user may have access to at most 5 accounts.

3 SHACL on common graphs
We first treat SHACL, because it is conceptually the simplest of the
three languages. It is essentially a logic—some call it a description
logic in disguise [7]. Our abstraction is inspired by [25]. We focus
on the standard, non-recursive SHACL, leaving recursive exten-
sions [2, 6, 14, 38, 40] for the future. Some features of SHACL are
incompatible with common graphs, and are therefore omitted (see
[1, Appendix B]).

Definition 3 (Path Expression). A path expression 𝜋 is given
by the following grammar:

𝜋 F id
�� 𝑞 �� 𝜋− �� 𝜋 · 𝜋

�� 𝜋 ∪ 𝜋
�� 𝜋∗ .

with 𝑞 ∈ P ∪ K and id the identity relation (or empty word).

Definition 4 (SHACL Shape). A SHACL shape 𝜑 is given by
the following grammar:

𝜑 F ⊤
�� test(𝑐) �� test(v) �� closed(𝑄) �� eq(𝜋, 𝑝) ��

disj(𝜋, 𝑝)
�� ¬𝜑 �� 𝜑 ∧ 𝜑

�� 𝜑 ∨ 𝜑
�� ∃≥𝑛𝜋.𝜑

�� ∃≤𝑛𝜋.𝜑 .

with 𝑐 ∈ V , v ∈ T , 𝑄 ⊆fin P ∪ K , 𝑝 ∈ P, and 𝑛 a natural number.
We may use ∃𝜋. 𝜑 as syntactic sugar for ∃≥1𝜋. 𝜑 .

Definition 5 (SHACL Selector). A SHACL selector sel is a
SHACL shape of a restricted form, given by the following grammar:

sel F ∃𝑞.⊤
�� ∃𝑞− .⊤ �� test(𝑐) .

with 𝑞 ∈ P ∪ K , and 𝑐 ∈ V .

Putting it together, a SHACL Schema S is a finite set of pairs
(sel, 𝜑), where sel is a SHACL selector and 𝜑 is a SHACL shape.

To define the semantics of SHACL schemas, we first define in
Table 1 the semantics of a SHACL path expression 𝜋 on a graph G
as a binary relation J𝜋KG over N ∪V . The semantics of SHACL
shapes is defined in Table 2, which specifies when a node or value
𝑣 satisfies a SHACL shape 𝜑 w.r.t. a G, written G, 𝑣 ⊨ 𝜑 . Note that
both J𝜋KG and {𝑣 ∈ N∪V | G, 𝑣 ⊨ 𝜑}may be infinite: for example,
JidKG is the identity relation over the infinite set N ∪V .

Table 2: Semantics of a SHACL shape 𝜑 .

𝜑 G, 𝑣 ⊨ 𝜑 if:

⊤ trivially satisfied
test(𝑐) 𝑣 = 𝑐

test(v) 𝑣 ∈ JvK
closed(𝑄) ∀𝑝 ∈ (P ∪ K) \𝑄 : not G, 𝑣 ⊨ ∃≥1𝑝.⊤
eq(𝜋, 𝑝) {𝑢 | (𝑣,𝑢) ∈ J𝜋KG} = {𝑢 | (𝑣,𝑢) ∈ J𝑝KG}
disj(𝜋, 𝑝) {𝑢 | (𝑣,𝑢) ∈ J𝜋KG} ∩ {𝑢 | (𝑣,𝑢) ∈ J𝑝KG} = ∅

¬𝜑 not G, 𝑣 ⊨ 𝜑

𝜑 ∧ 𝜑 ′ G, 𝑣 ⊨ 𝜑 and G, 𝑣 ⊨ 𝜑 ′

𝜑 ∨ 𝜑 ′ G, 𝑣 ⊨ 𝜑 or G, 𝑣 ⊨ 𝜑 ′

∃≥𝑛𝜋.𝜑 #{𝑢 | (𝑣,𝑢) ∈ J𝜋KG ∧ G, 𝑢 ⊨ 𝜑} ≥ 𝑛

∃≤𝑛𝜋.𝜑 #{𝑢 | (𝑣,𝑢) ∈ J𝜋KG ∧ G, 𝑢 ⊨ 𝜑} ≤ 𝑛

The semantics of SHACL schemas then follows Section 2.4. Im-
portantly, SHACL selectors always select a finite subset of N ∪V:
the selected nodes or values come either from the selector itself, in
the case of test(𝑐), or from G, in the remaining four cases. For exam-
ple, ∃𝑝.⊤ selects those nodes of G that have an outgoing 𝑝-edge in
G—it is grounded to G in the second line of Table 1. In consequence,
each pair (sel, 𝜑) in a SHACL schema tests the inclusion of a finite
set of nodes or values in a possibly infinite set.

Example 3. For better readability we write ∃𝜋 instead of ∃≥1𝜋.⊤
(that is, we omit ⊤) and ∀𝜋. 𝜑 instead of ∃≤0𝜋.¬𝜑 . Let us see how
the constraints from Example 2 can be handled in SHACL. For
(C1), we assume the value type int with the obvious meaning. The
following SHACL constraints express the constraints (C1–C5):

∃card− ⇒ test(int) (C1)
∃ownsAccount ⇒ ∃email (C2)

∃email− ⇒ ∃≤1email− (C3)
∃card ⇒ (∃privileged .¬test(true)) ∨

∀hasAcccess− . (∃privileged . test(true)) (C4)

∃email ⇒ ∃≤5hasAcccess. (C5)

Concerning constraint (C3), notice that by using inverse email
edges, the constraint indeed states that the email addresses uniquely
identify users.

The constructs eq(𝜋, 𝑝) and disj(𝜋, 𝑝) are unique to SHACL. Let
us see them in use.

Example 4. Using eq(𝜋, 𝑝), we can say, for instance, that an
owner of an account also has access to it:

∃ownsAccount ⇒ eq(hasAcccess ∪ ownsAccount, hasAcccess) .
Note how we use eq and ∪ to express that the existence of one path
(ownsAccount) implies the existence of another path (hasAcccess)
with the same endpoints.

A key feature in SHACL that is not available in ShEx is the
ability to use regular expressions to talk about complex paths. This
provides a limited, still non-trivial, form of recursive navigation
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in the graph, even though the standard SHACL does not support
recursive constraints (in contrast to standard ShEx).

Example 5. Suppose that in Figure 1, we impose that for every
node with a privileged key, either its value is false or, along inverse
invited edges there is a unique, privileged “ancestor”, which has no
further inverse invited edges. This is expressible as follows:

∃privileged ⇒ ∃privileged . test(false)∨
∃≤1invited−∗ .

(
∃privileged . test(true) ∧ ∃≤0invited−

)
.

4 ShEx on common graphs
While SHACL is conceptually the simplest of the three languages,
ShEx lies at the opposite end of the spectrum. It is an intricate,
nested combination of a simple logic for shapes and a powerful
formalism (triple expressions) for generating the allowed neigh-
bourhoods. In this work we focus on non-recursive ShEx, where
shapes and triple expressions can be nested multiple times, but
cannot be recursive. This allows us to simplify the abstraction with-
out compromising our primary goal of understanding the common
features, as neither PG-Schema nor standard SHACL support such
a general recursion mechanism. The abstraction of ShEx over com-
mon graphs is based on the treatment of ShEx on RDF triples [9].
Deviations from standard ShEx are discussed in [1, Appendix C].

Definition 6 (shapes and triple expressions). ShEx shapes
𝜑 and closed triple expressions 𝑒 are defined by the grammar

𝜑 F test(𝑐)
�� test(v) �� {𝑒 ; op−

} �� {𝑒 ; op±
} �� 𝜑 ∧ 𝜑

�� 𝜑 ∨ 𝜑
�� ¬𝜑 .

𝑒 F 𝜀
�� 𝑞.𝜑

�� 𝑞− .𝜑
�� 𝑒 ; 𝑒

�� 𝑒 | 𝑒
�� 𝑒∗ .

op− F (¬𝑅−)∗ .
op± F (¬𝑅−)∗ ;(¬𝑄)∗ .
where 𝑐 ∈ V , v ∈ T , 𝑞 ∈ P ∪ K , and 𝑅,𝑄 ⊆fin P ∪K . We refer to
expressions derived from 𝑒 ; op− and 𝑒 ; op± as half-open and open
triple expressions, respectively.

The notion of satisfaction for ShEx shapes and the semantics of
triple expressions are defined by mutual recursion in Table 3 and
Table 4. Triple expressions are used to specify neighbourhoods of
nodes and values. They require to consider incoming and outgoing
edges separately. For this purpose we decorate incoming edges
with − . Formally, we introduce a fresh predicate 𝑝− for each 𝑝 ∈ P
and a fresh key 𝑘− for each 𝑘 ∈ K . We let P− = {𝑝− | 𝑝 ∈ P},
K− = {𝑘− | 𝑘 ∈ K}, E− = N ×P− ×N ∪V×K− ×N , and define
Neigh±G (𝑣) ⊆ E ∪ E− as{

(𝑣, 𝑝, 𝑣 ′) | (𝑣, 𝑝, 𝑣 ′) ∈ G
}
∪
{
(𝑣, 𝑝−, 𝑣 ′) | (𝑣 ′, 𝑝, 𝑣) ∈ G

}
.

Compared to NeighG (𝑣), apart from flipping the incoming edges
andmarking themwith − , we also represent each loop (𝑣, 𝑝, 𝑣) twice:
once as an outgoing edge (𝑣, 𝑝, 𝑣) and once as an incoming edge
(𝑣, 𝑝−, 𝑣). In Table 4, we treat ¬𝑄 and ¬𝑅− as triple expressions. So,
the rule for 𝑒∗ gives semantics to (¬𝑄)∗ and (¬𝑅−)∗, and the rule
for 𝑒1 ; 𝑒2 gives semantics to open and half-open triple expressions.
In Table 3, 𝑓 is an open or half-open triple expression.

Closed triple expressions 𝑒 define neighbourhoods that use only
a finite number of predicates and keys (also called closed in ShEx
terminology) and cannot be directly used in shape expressions. Half-
open triple expressions e ;(¬𝑅−)∗ allow any incoming triples whose

Table 3: Satisfaction of ShEx shapes.

𝜑 G, 𝑣 ⊨ 𝜑 for 𝑣 ∈ N ∪V
test(𝑐) 𝑣 = 𝑐

test(v) 𝑣 ∈ JvK
{𝑓 } Neigh±G (𝑣) ∈ J𝑓 KG𝑣

𝜑1 ∧ 𝜑2 G, 𝑣 ⊨ 𝜑1 and G, 𝑣 ⊨ 𝜑2
𝜑1 ∨ 𝜑2 G, 𝑣 ⊨ 𝜑1 or G, 𝑣 ⊨ 𝜑2
¬𝜑 not G, 𝑣 ⊨ 𝜑

predicate or key is not in𝑅. Open triple expressions e ;(¬𝑅−)∗ ;(¬𝑄)∗
additionally allow any outgoing triples whose predicate or key is
not in 𝑄 . Let ⊤ = 𝜀 ;(¬∅−)∗ ; (¬∅)∗. Then ⊤ describes all possible
neighbourhoods, and {⊤} is satisfied in every node and in every
value of every graph.

Example 6. The ShEx shape {𝑝.𝜑1 ;𝑝.𝜑2;⊤} specifies nodes with
at least two different 𝑝-successors, one satisfying𝜑1 and one satisfy-
ing 𝜑2. Note that this is different from SHACL shape ∃𝑝.𝜑1 ∧∃𝑝.𝜑2
which says that the node has a 𝑝-successor satisfying 𝜑1 and a
𝑝-successor satisfying 𝜑2, but they might not be different.

Example 7. Assume that integers and strings are represented by
int, str ∈ T . The ShEx shape{

email.test(str) ; (card .test(int) | 𝜀) ; (¬∅−)∗
}

specifies nodes with an email property with a string value, an
optional card property with an integer value, arbitrary incoming
edges, and no other properties or outgoing edges. To allow addi-
tional properties and outgoing edges, we replace (¬∅−)∗ with ⊤.
The modified shape can be rewritten using ∧ as

{email.test(str) ; ⊤} ∧ {(card .test(int) | 𝜀) ; ⊤}

but the original shape cannot be rewritten in a similar way.

Definition 7 (ShEx Selectors). A ShEx selector is a ShEx shape
of a restricted form, defined by the grammar

sel F test(𝑐)
�� {𝑞.test(𝑐) ;⊤}

�� {𝑞. {⊤} ;⊤}
�� {𝑞− . {⊤} ;⊤} .

where 𝑞 ∈ P ∪ K and 𝑐 ∈ V .

Following Section 2.4, a ShEx schema S is a set of pairs of the
form (sel, 𝜑) where 𝜑 is a ShEx shape and sel is a ShEx selector.

In what follows, for a positive integer 𝑛, we write e𝑛 for e ; . . . ; e
where e is repeated𝑛 times, e≤𝑛 for 𝜀 | e1 | . . . | e𝑛 , and e≥𝑛 for e𝑛 ; e∗.
For a closed triple expression 𝑒 , we let {𝑒}◦ = {𝑒 ;(¬𝑅−)∗ ;(¬𝑄)∗}
where 𝑄 is the set of predicates and keys that appear directly in 𝑒

(as opposed to appearing in 𝜑 for a sub-expression 𝑞.𝜑 of 𝑒) and 𝑅 is
the set of predicates and keys whose inversions appear directly in 𝑒 .
For instance, if 𝑒 = 𝑝. {𝑞. {⊤} ;𝑝− . {⊤}}, then 𝑄 = {𝑝} and 𝑅 = ∅.
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Table 4: Semantics of triple expressions.

e JeKG𝑣 ⊆ 2E∪E
−

𝜀 {∅}
𝑞.𝜑

{
{(𝑣, 𝑞, 𝑣 ′)} ⊆ E

�� G, 𝑣 ′ ⊨ 𝜑
}

𝑞− .𝜑
{
{(𝑣, 𝑞−, 𝑣 ′)} ⊆ E− �� G, 𝑣 ′ ⊨ 𝜑

}
e1 ; e2

{
𝑇1 ∪𝑇2

��� 𝑇1 ∈ Je1K
G
𝑣 , 𝑇2 ∈ Je2K

G
𝑣 , 𝑇1 ∩𝑇2 = ∅

}
e1 | e2 Je1K

G
𝑣 ∪ Je2K

G
𝑣

e∗ {∅} ∪⋃∞
𝑛=1

{
𝑇1 ∪ · · · ∪𝑇𝑛

���� 𝑇1, . . . ,𝑇𝑛 ∈ JeKG𝑣 and
𝑇𝑖 ∩𝑇𝑗 = ∅ for all 𝑖 ≠ 𝑗

}
¬𝑄

{
{(𝑣, 𝑞, 𝑣 ′)} ⊆ E

�� 𝑞 ∉ 𝑄
}

¬𝑅− {
{(𝑣, 𝑞−, 𝑣 ′)} ⊆ E− �� 𝑞 ∉ 𝑅

}
Example 8. Let us now see how the concrete constraints from

Example 2 can be handled in ShEx.

{card− . {⊤} ;⊤} ⇒ test(int) (C1)
{ownsAccount. {⊤} ;⊤} ⇒ {email. {⊤} ;⊤} (C2)

{email− . {⊤} ;⊤} ⇒
{
(email− . {⊤})≤1}◦ (C3)

{card . {⊤} ;⊤} ⇒ {privileged .¬test(true)}◦ ∨{
(hasAcccess− . {privileged .test(true)}◦)∗

}◦ (C4)

{email. {⊤} ;⊤} ⇒
{
(hasAcccess. {⊤})≤5}◦ (C5)

We next show a more complex example, which illustrates the
power of ShEx that is not readily available in SHACL or PG-Schema.

Example 9. Suppose that we want to express the following con-
straint on each user who owns an account: the number of accounts
to which the user has access is greater or equal to the number of
accounts that the user owns. We can do this in ShEx as follows:

{ownsAccount. {⊤} ;⊤} ⇒{
(hasAcccess. {⊤})∗ ;(ownsAccount. {⊤} ; hasAcccess. {⊤})∗

}◦
Similarly to the above (yet more abstractly) consider the follow-

ing requirement: for the node 𝑐 , the number of outgoing 𝑝-edges
is equal to the number of outgoing 𝑞-edges. This can be expressed
in ShEx using test(𝑐) ⇒ {(𝑝. {⊤} ;𝑞. {⊤})∗}◦ but cannot be ex-
pressed in SHACL (see [1, Appendix C]).

Finally, let us see why ShEx and SHACL count differently.

Example 10. The following SHACL schema ensures that from
every node with an outgoing hasAcccess-edge, exactly two nodes
are accessible via a hasAcccess-edge or an ownsAccount-edge:

∃hasAcccess ⇒ ∃=2 (hasAcccess ∪ ownsAccount) .⊤
Here ∃=𝑛𝜋.𝜑 is a shorthand for ∃≤𝑛𝜋.𝜑 ∧ ∃≥𝑛𝜋.𝜑 . For instance, in
Figure 2, the graph on the right is valid, whereas the one on the left
is not. The same constraint cannot be expressed in ShEx because
ShEx cannot distinguish these two graphs (see [1, Appendix C]).
The reason is that ShEx triple expressions count triples adjacent
to a node, whereas SHACL and PG-Schema count nodes on the
opposite end of such triples. This makes counting edges simpler in
ShEx: the ShEx shape

{
(𝑝. {⊤} | 𝑞. {⊤})2 ;(¬∅−)∗

}
allows exactly

Alex
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Figure 2: Two graphs indistinguishable by ShEx

Table 5: Semantics of content types.

c JcK ⊆ R
J⊤K R
J{}K {r∅}

J{𝑘 : v}K
{
{(𝑘,𝑤)}

��𝑤 ∈ JvK
}

Jc1 & c2 K {(𝑟1 ∪ 𝑟2) ∈ R | 𝑟1 ∈ Jc1K ∧ 𝑟2 ∈ Jc2K}
Jc1 | c2 K Jc1K ∪ Jc2K

two outgoing edges labelled 𝑝 or 𝑞. In SHACL this is written as
(∃=2𝑝.⊤ ∧ ∃=0𝑞.⊤) ∨ (∃=2𝑞.⊤ ∧ ∃=0𝑝.⊤) ∨ (∃=1𝑝.⊤ ∧ ∃=1𝑞.⊤).

5 Shape-based PG-Schema
Shape-based PG-Schema is a non-recursive combination of a logic
and two generative formalisms. It uses path expressions to specify
paths (as in SHACL), and content types to specify node contents.
Both path expressions and content types are then used in formulas
defining shapes. Content types in PG-Schema play a role similar
to triple expressions in ShEx, but they are only used for properties.
Because all properties of a node must have different keys, they are
much simpler than triple expressions (in fact, they can be trans-
lated into a fragment of SHACL). Unlike for SHACL and ShEx, the
abstraction of shape-based PG-Schema departs significantly from
the original design. Original PG-Schema uses queries written in
an external query language, which is left unspecified aside from
some basic assumptions about the expressive power. Here we use a
specific query language (PG-path expressions). Importantly, up to
the choice of the query language, the abstraction we present here
faithfully captures the expressive power of the original PG-Schema.
A detailed comparison can be found in [1, Appendix D].

Definition 8 (Content type). A content type is an expression
c of the form defined by the grammar

cF ⊤
�� {} �� {𝑘 : v}

�� c & c
�� c | c .

where 𝑘 ∈ K and v ∈ T .

Recall that R is the set of all records. We write r∅ for the empty
record. The semantics of content types is defined in Table 5. Note
that JcK is independent from G and can be infinite.

Example 11. We assume integers and strings are represented via
int, str ∈ T . Suppose we want to create a content type for nodes
that have a string value for the email key and optionally have an
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Table 6: Semantics of PG-path expressions.

𝜋 J𝜋KG ⊆ (N ∪V) × (N ∪V) for G = (𝐸, 𝜌)

[𝑘 = 𝑐] {(𝑢,𝑢) | 𝑢 ∈ Nodes(G) ∧ (𝑘, 𝑐) ∈ 𝜌 (𝑢)}
¬[𝑘 = 𝑐] {(𝑢,𝑢) | 𝑢 ∈ Nodes(G) ∧ (𝑘, 𝑐) ∉ 𝜌 (𝑢)}

c
{
(𝑢,𝑢) | 𝑢 ∈ Nodes(G) ∧ 𝜌 (𝑢) ∈ JcK

}
¬c

{
(𝑢,𝑢) | 𝑢 ∈ Nodes(G) ∧ 𝜌 (𝑢) ∉ JcK

}
𝑘 {(𝑢,𝑤) | 𝜌 (𝑢, 𝑘) = 𝑤}
𝑝 {(𝑢, 𝑣) | (𝑢, 𝑝, 𝑣) ∈ 𝐸}
¬𝑃 {(𝑢, 𝑣) | ∃𝑝 : (𝑢, 𝑝, 𝑣) ∈ 𝐸 ∧ 𝑝 ∉ 𝑃}
𝜋− {

(𝑢, 𝑣) | (𝑣,𝑢) ∈ J𝜋KG
}

𝜋 · 𝜋 ′
{
(𝑢, 𝑣) | ∃𝑤 : (𝑢,𝑤) ∈ J𝜋KG ∧ (𝑤, 𝑣) ∈ J𝜋 ′KG

}
𝜋 ∪ 𝜋 ′ J𝜋KG ∪ J𝜋 ′KG

𝜋∗ {(𝑢,𝑢) | 𝑢 ∈ Nodes(G)} ∪ J𝜋KG ∪ J𝜋 · 𝜋KG ∪ . . .

integer value for the card key. No other key-value pairs are allowed.
We should then use {email : str} & ({card : int} | {}).

Definition 9 (PG-path expressions). A PG-path expression is
an expression 𝜋 of the form defined by the grammar

𝜋 F 𝜋
�� 𝜋 · 𝑘

�� 𝑘− · 𝜋
�� 𝑘− · 𝜋 · 𝑘′ .

𝜋 F [𝑘 = 𝑐]
�� ¬[𝑘 = 𝑐]

�� c �� ¬c �� 𝑝 �� ¬𝑃 �� 𝜋− �� 𝜋 · 𝜋
�� 𝜋 ∪ 𝜋

�� 𝜋∗ .
where 𝑘, 𝑘′ ∈ K , 𝑐 ∈ V , c is a content type, 𝑝 ∈ P, and 𝑃 ⊆fin P. We
use 𝑘 , 𝑘− , and 𝑘− · 𝑘′ as short-hands for PG-path expressions ⊤ · 𝑘 ,
𝑘− · ⊤, and 𝑘− · ⊤ · 𝑘′, respectively.

Unlike in SHACL, PG-path expressions cannot navigate freely
through values. In property graphs this would correspond to a join,
which is a costly operation. Indeed, existing query languages for
property graphs do not allow joins under ∗. However, PG-path ex-
pressions may start in a value and finish in a value. This leads to
node-to-node, node-to-value, value-to-node, and value-to-value ex-
pressions, reflected in the four cases in the first rule of the grammar.

The semantics of PG-path expression 𝜋 for graph G is a binary
relation overNodes(G)∪Values(G), defined in Table 6. In the table,
𝑘 is treated as any other subexpressions, eventhough it can only
be used at the end of a PG-path expression, or in the beginning as
𝑘− . Notice that ¬c matches nodes whose content is not of type c,
¬𝑃 matches edges with a label that is not in 𝑃 (in particular, ¬∅
matches all edges). Also, J𝜋KG is always a subset ofN ×N ,N ×V ,
V × N , or V × V , corresponding to the four kinds of PG-path
expressions discussed above.

Definition 10 (PG-Shapes). A PG-Shape is an expression 𝜑 de-
fined by the following grammar:

𝜑 F ∃≤𝑛 𝜋
�� ∃≥𝑛 𝜋

�� 𝜑 ∧ 𝜑 .

where 𝜋 is a PG-path expression. We write ∃ and ∄ for ∃≥1 and ∃≤0.

The semantics of PG-shapes is defined in Table 7. We say 𝑣 ∈
N ∪ V satisfies a PG-shape 𝜑 in a graph G if G, 𝑣 ⊨ 𝜑 . Every
PG-shape is satisfied by nodes only or by values only.

Definition 11 (PG-Selectors). A PG-selector is a PG-shape of
the form ∃ 𝜋 .

Table 7: Satisfaction of PG-shapes

𝜑 G, 𝑣 ⊨ 𝜑 for 𝑣 ∈ N ∪V

∃≤𝑛 𝜋 #
{
𝑣 ′ | (𝑣, 𝑣 ′) ∈ J𝜋KG

}
≤ 𝑛

∃≥𝑛 𝜋 #
{
𝑣 ′ | (𝑣, 𝑣 ′) ∈ J𝜋KG

}
≥ 𝑛

𝜑1 ∧ 𝜑2 G, 𝑣 ⊨ 𝜑1 and G, 𝑣 ⊨ 𝜑2

A PG-Schema S is a finite set of pairs (sel, 𝜑) where sel is a
PG-selector and 𝜑 is a PG-shape. The semantics of PG-Schemas is
defned just like in Section 2.4.

Example 12. The constraints (C1-C5) from Example 2 can be
handled in PG-Schema as follows:

∃card ⇒ ∃
(
{card : int} & ⊤

)
(C1)

∃ownsAccount ⇒ ∃email (C2)

∃email− ⇒ ∃≤1email− (C3)
∃ ({card : any} & ⊤) · {privileged : true} ⇒

∄ hasAcccess− · ¬{privileged : true} (C4)

∃email ⇒ ∃≤5 hasAcccess (C5)

Notice that in rule (C1), we indeed need ∃card, rather than ∃card− ,
because there is no PG-Shape to state that the selected value is of
type int, and so we formulate C1 as a statement about nodes.

A characteristic feature of PG-Schema, revealing its database
provenience, is that it can close the whole graph by imposing re-
strictions on all nodes.

Example 13. Given a common graph such as the one in Figure 1,
we might want to express that each node has a key privileged with
a boolean value and either a key card with an integer value or a
key email with a string value, and no other keys are allowed. In
PG-Schema this can be expressed as follows:

∃⊤ ⇒ ∃{privileged : bool} &
(
{card : int} | {email : str}

)
.

We can also forbid all predicates except those mentioned in the
running example: ∃⊤ ⇒ ∄¬{ownsAccount, hasAcccess, invited}.

6 Common Graph Schema Language
We now present the Common Graph Schema Language (CoGSL),
which combines the core functionalities shared by SHACL, ShEx,
and PG-Schema (over common graphs).

Let us begin by examining the restrictions that need to be im-
posed. We shall refer to shapes and selectors used in CoGSL as com-
mon shapes and common selectors. Common shapes cannot be closed
under disjunction and negation, because PG-Schema shapes are
purely conjunctive. For the same reason common shapes cannot be
nested. Kleene star ∗ cannot be allowed in path expressions because
we consider ShEx without recursion. Supporting path expressions
traversing more than one edge under counting quantifiers is im-
possible as this is not expressible in ShEx. Supporting disjunctions
of labels of the form 𝑝1 ∪ 𝑝2 is also impossible, due to a mismatch
in the approach to counting: while SHACL and PG-Schema count
nodes and values, ShEx counts triples, as illustrated in Example 10.
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Closed content types and ¬𝑃 cannot be used freely, because
neither SHACL nor ShEx are capable of closing only properties or
only predicate edges: both must be closed at the same time.

Finally, selectors are restricted because SHACL and ShEx do not
support ⊤ as a selector; that is, one cannot say that each node (or
value) in the graph satisfies a given shape. This means that SHACL
and ShEx schemas always allow a disconnected part of the graph
that uses only predicates and keys not mentioned in the schema,
whereas PG-Schema can disallow it (see Example 13).

Putting these restrictions together we obtain the Common Graph
Schema Language. We define it below as a fragment of PG-Schema.

Definition 12 (common shape). A common shape 𝜑 is an ex-
pression given by the grammar

𝜑 F ∃ 𝜋
�� ∃≤𝑛 𝜋1

�� ∃≥𝑛 𝜋1
�� ∃ c ∧ ∄¬𝑃

�� 𝜑 ∧ 𝜑 .

cF {}
�� {𝑘 : v}

�� c & c
�� c | c .

𝜋0 F [𝑘 = 𝑐]
�� ¬[𝑘 = 𝑐]

�� c & ⊤
�� ¬(c & ⊤)

�� 𝜋0 · 𝜋0 .

𝜋1 F 𝜋0 · 𝑝 · 𝜋0
�� 𝜋0 · 𝑝− · 𝜋0

�� 𝜋0 · 𝑘
�� 𝑘− · 𝜋0 .

𝜋 F 𝜋0
�� 𝑝 �� 𝜋− �� 𝜋 · 𝜋

�� 𝜋 ∪ 𝜋 .

𝜋 F 𝜋
�� 𝜋 · 𝑘

�� 𝑘− · 𝜋
�� 𝑘− · 𝜋 · 𝑘′ .

where 𝑛 ∈ N, 𝑃 ⊆fin P, 𝑘, 𝑘′ ∈ K , 𝑐 ∈ V , and 𝑝 ∈ P.

That is, c is a content type that does not use ⊤ (a closed content
type), 𝜋0 is a PG-path expression that always stays in the same node
(a filter), 𝜋1 is a PG-path expression that traverses a single edge or
property (forward or backwards), and 𝜋 is a PG-path expression
that uses neither ∗ nor ¬𝑃 . Moreover, 𝜋0, 𝜋1, and 𝜋 can only use
open content types; that is, content types of the form c & ⊤. The
use of ¬𝑃 is limited to closing the neighbourhood of a node (this is
the only way PG-Schema can do it).

Definition 13 (common selector). A common selector is a
common shape of one of the following forms

∃𝑘 , ∃ 𝑝 · 𝜋 , ∃ 𝑝− · 𝜋 , ∃ [𝑘 = 𝑐] · 𝜋 , ∃
(
{𝑘 : v} & ⊤

)
· 𝜋 , ∃𝑘− · 𝜋 ,

where 𝑘 ∈ K , 𝑝 ∈ P, 𝑐 ∈ V , v ∈ T and 𝜋 = 𝜋 or 𝜋 = 𝜋 ·𝑘′ for some
PG-path expression 𝜋 generated by the grammar in Definition 12 and
some 𝑘′ ∈ K .

That is, a common selector is a common shape of the form ∃ 𝜋

such that the PG-path expression 𝜋 requires the focus node or value
to occur in a triple with a specified predicate or key.

A common schema is a finite set of pairs (sel, 𝜑) where sel is
a common selector and 𝜑 is a common shape. The semantics is
inherited from PG-Schema.

As we have seen, the constraints (C1)-(C5) from our running
example can be expressed in all three formalisms; the PG-Schema
representation from Example 12 is also a common schema.

Proposition 1. For every common schema there exist equivalent
SHACL and ShEx schemas.

The translation is relatively straightforward (see Appendix C).
The two main observations are that star-free PG-path expressions
can be simulated by nested SHACL and ShEx shapes, and that
closure of SHACL and ShEx shapes under Boolean connectives
allows encoding complex selectors in the shape (as the antecedent
of an implication). We illustrate the latter in Example 14.

Example 14 (Complex paths in selectors). We want to express that
all users who have invited a user who has invited someone (so there
is a path following two invited edges) must have a key email of
type str. In PG-schema we express this as:

∃invited · invited ⇒ {email : str} & ⊤
At first glance, it seems unclear how to express this in the other

formalisms, since they do not permit paths in the selector. However,
we can see that paths in selectors can be encoded into the shape:
In SHACL, using the same example, we do this by

∃invited ⇒ ¬(∃invited · invited) ∨ ∃email.test(str)
And in ShEx for this example would be:

{invited. {⊤} ;⊤} ⇒ ¬𝜑2 ∨ {email.test(str)}◦

where 𝜑2 =
{
(invited.𝜑1)≥1 }◦ and 𝜑1 =

{
invited. {⊤}≥1 }◦. That

is, 𝜑1 is satisfied by nodes that have an outgoing path invited, and
𝜑2 by nodes that have an outgoing path invited · invited. For paths
of unbounded length, it is not apparent how such a translation
would proceed for ShEx schemas in the absence of recursion.

7 Conclusions
We provided a formal and comprehensive comparison of the three
most prominent schema languages in the Semantic Web and Graph
Database communities: SHACL, ShEx, and PG-Schema. Through
painstaking discussions within our working group, we managed
to (1) agree on a common data model that captures features of
both RDF and Property Graphs and (2) extract, for each of the
languages, a core that we mutually agree on, which we define for-
mally. Moreover, the definitions of (the cores of) each of the schema
languages on a common formal framework allows readers to maxi-
mally leverage their understanding of one schema language in order
to understand the others. Furthermore, this common framework
allowed us to extract the Common Graph Schema Language, which
is a cleanly defined set of functionalities shared by SHACL, ShEx,
and PG-Schema. This commonality can serve as a basis for future
efforts in integrating or translating between the languages, promot-
ing interoperability in applications that rely on heterogeneous data
models. For example, we want to investigate recursive ShEx and
more expressive query languages for PG-Schema more deeply.
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A Related Work
SHACL literature. The authoritative source for SHACL is the

W3C recommendation [28]. Further literature on SHACL following
its standardisation can be roughly divided into two groups. The
first group studies the formal properties and expressiveness of the
non-recursive fragment [8]. Notable examples in this category are:
the work by Delva et al. on data provenance [17], the work of Pareti
et al. on satisfiability and (shape) containment [41], and the work
of Leinberger et al. connecting the containment problem to descrip-
tion logics [34]. The second group of papers is concerned with
proposing a suitable semantics for recursive SHACL [2, 6, 13, 14] or
studying the complexity of certain problems for recursive SHACL
under a chosen semantics [40]. First reports on practical applica-
tions and use-cases for SHACL include the study of expressivity of
property constraints, as well as mining and extracting constraints
in the context of large knowledge graphs such as Wikidata and
DBpedia [19, 44]. Finally, the underlying ideas of SHACL where
transposed to the setting of Property Graphs in a formalism called
ProGS [47].

ShEx literature. ShEx was initially proposed in 2014 as a concise
and human-readable language to describe, validate, and transform
RDF data [43]. Its formal semantics was formally defined in [49].
The semantics of ShEx schemas combining recursion and negation
was later presented in [9]. The current semantic specification of
the ShEx language has been published as a W3C Community group
report [42] and a new language version is currently being defined as
part of the IEEEWorking group on Shape Expressions1. As for prac-
tical applications, ShEx has been applied as a descriptive schema
language through the Wikidata Schemas project2. Additional work
went into extending ShEx to handle graph models that go beyond
RDF, like WShEx to validate Wikibase graphs [29], ShEx-Star to
handle RDF-Star and PShEx to handle property graphs [30]. While
these works extend ShEx to (different types of) property graphs,
they do not provide a common graph data model, nor compare
schema languages, as we do.
1https://shex.io/shex-next/
2https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas

PG-Schema literature. PG-Schema, as introduced in [3], builds
upon an earlier proposal of PG-Keys [4] to enhance schema sup-
port for property graphs, in the light of limited schema support in

existing systems and the current version of the GQL standard [24].
It is currently being used in the GQL standardization process as a
basis for a standard for property graph schemas.

Comparing RDF schema formalisms. In Chapter 7 of [32], the
authors compare common features and differences between ShEx
and SHACL and [31] presents a simplified language called S, which
captures the essence of ShEx and SHACL. Tomaszuk [50] analyzes
advances in RDF validation, highlighting key requirements for
validation languages and comparing the strengths and weaknesses
of various approaches.

Interoperability between schema graph formalisms. Interoper-
ability between schema graph formalisms like RDF and Property
Graphs remains challenging due to differences in structure and
semantics. RDF focuses on triple-based modeling with formal se-
mantics, while Property Graphs allow flexible annotation of rela-
tionships with properties. RDF-star [21] and RDF 1.2 [26] extend
RDF 1.1 by enabling statements about triples, aligning more closely
with labeled property graphs: for instance, RDF-star allows triples
to function as subjects or objects, similar to how property graph
edges carry properties.

By adopting named graphs [12], already RDF 1.1 provided a
mechanism for making statements about (sub-)graphs. Likewise,
different reification mechanisms have been proposed in the liter-
ature for RDF in order to “embed” meta-statements about triples
(and graphs) in “vanilla” RDF graphs, ranging from the relatively
verbose original W3C reification vocabulary as part of the original
RDF specification, to more subtle approaches such as singleton
property reification [36], which is close to the unique identifiers
used for edges in most property graph models. Custom reification
models are used, for instance, in Wikidata, to map Wikibase’s prop-
erty graph schema to RDF, cf. e.g. [19, 22]. There is also work on
schema-independent and schema-dependent methods for trans-
forming RDF into Property Graphs, providing formal foundations
for preserving information and semantics [5]. All these approaches,
in principle, facilitate general or specific mappings between RDF
and property graphs, which is what the present paper tries to avoid
by focusing on a common submodel.

There have been several prior proposals for uniying graph data
models, rather then providing mappings between them. The One-
Graph initiative [33] aims to bridge the different graph data models
by promoting a unified graph data model for seamless interaction.
Similarly, MilleniumDB’s Domain Graph model [51] aims at cov-
ering RDF, RDF-star, and property graphs. These works seek a
common supermodel, aiming to support both RDF and property
graphs via more general solutions. In contrast, we aim at under-
standing the existing schema languages by studying them over a
common submodel of RDF and property graphs.

Schemas for tree-structured data. The principle of defining (parts
of) schemas as a set of pairs (𝑠𝑒𝑙, 𝜑) is very prominent in schema
languages for XML. A DTD [11] is essentially such a set of pairs
in which 𝑠𝑒𝑙 selects nodes with a certain label, and 𝜑 describes
the structure of their children. In XML Schema, the principle was
used for defining key constraints (using selectors and fields) [20,
Section 3.11.1]. The equally expressive language BonXai [35] is
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based on writing the entire schema using such rules. Schematron
[23] is another XML schema language that differs from grammar-
based languages by defining patterns of assertions using XPath
expressions [18]. It excels in specifying constraints across different
branches of a document tree, where traditional schema paradigms
often fall short. Schematron’s rule-based structure, composed of
phases, patterns, rules, and assertions, allows for the validation of
documents.

RDF validation. Last, but not least, it should be noted that the re-
quirement for (constraining) schema languages—besides ontology
languages such as OWL and RDF Schema—in the Semantic Web
community is much older than the more recent additions of SHACL
and ShEx. Earlier proposals in a similar direction include efforts to
add constraint readings of Description Logic axioms to OWL, such
as OWL Flight [16] or OWL IC [48]. Another approach is Resource
Shapes (ReSh) [45], a vocabulary for specifying RDF shapes. The
authors of ReSh recognize that RDF terms originate from various
vocabularies, and the ReSh shape defines the integrity constraints
that RDF graphs are required to satisfy. Similarly, Description Set
Profiles (DSP) [37] and SPARQL Inferencing Notation (SPIN) [27]
are notable alternatives.While SHACL, ShEx, and ReSh share declar-
ative, high-level descriptions of RDF graph content, DSP and SPIN
offer additional mechanisms for validating and constraining RDF
data, each with its own strengths and applications.

Implementations. Dozens of tools support graph data validation,
including ShEx and SHACL. A comprehensive collaborative list
of resources is available at: https://github.com/w3c-cg/awesome-
semantic-shapes.

B Distilling the common data model
In this section we discuss the relationship between common graphs
and the standard data models of the three schema formalisms—RDF
and property graphs.

B.1 Comparison with RDF
Recall that an RDF graph is a set a triples in

(IRIs ∪ Blanks) × IRIs × (IRIs ∪ Blanks ∪ Literals) .
As explained in Section 2, common graphs can be naturally seen as
finite sets of triples from

E = (N × P × N) ∪ (N × K ×V) ,
with (𝐸, 𝜌) corresponding to 𝐸 ∪ {(𝑢, 𝑘, 𝑣) | 𝜌 (𝑢, 𝑘) = 𝑣}. In the
RDF context, one would assume the following:

• N ⊆ IRIs ∪ Blanks,
• P ⊆ IRIs,
• K ⊆ IRIs,
• V = Literals.

However, the common graph data model does not refer to IRIs,
Blanks, and Literals at all, because these are not part of the property
graph data model. Unlike in RDF, a common graph may contain at
most one tuple of the form (𝑢, 𝑘, 𝑣) for each 𝑢 ∈ N and 𝑘 ∈ K . This
reflects the assumption that properties are single-valued, which is
present in the property graph data model. The distinction between
predicates and properties corresponds to the distinction between
datatype properties and object properties in OWL [52].

In contrast to the RDF model, but in accordance with the per-
spective commonly taken in databases, both values and nodes are
atomic. For nodes we completely abstract away from the actual
representation of their identities. We do not even distinguish be-
tween IRIs and Blanks. An immediate consequence of this is that
schemas do not have access to any information about the node
other than the triples in which it participates. In particular, they
cannot compare nodes with constants. This means that concrete
nodes cannot be listed as validation targets; rather, validation tar-
gets must be specified in a generic way based on observable aspects
of nodes, such as participation in some triples. This is a restriction
with respect to the RDF data model, but it follows immediately
from the same assumption made in the property graph data model.
Importantly, the abstractions of ShEx and SHACL we provide can
be easily extended to allow references to concrete nodes, if needed.

For values we take a more subtle approach: we assume a set T
of value types, with each v ∈ T representing a set JvK ⊆ V . This
captures uniformly data types, such as integer or string, and
user-defined checks, such as interval bounds for numeric values
or regular expressions for strings. Also, unlike for nodes, we allow
comparisons of values with constants. On the other hand, the com-
mon graph data model does not include any binary relations over
values, such as an order.

B.2 Comparison with property graphs
Let us recall the standard definition of property graphs [3].

Definition 14 (Property graph). A property graph is a tuple
(𝑁, 𝐸, 𝜋, 𝜆, 𝜌) such that

• 𝑁 is a finite set of nodes;
• 𝐸 is a finite set of edges, disjoint from 𝑁 ;
• 𝜋 : 𝐸 → (𝑁 × 𝑁 ) maps edges to their source and target;
• 𝜆 : (𝑁 ∪𝐸) → 2P maps nodes and edges to finite sets of labels;
• 𝜌 : (𝑁 ∪ 𝐸) × K⇀V is a finite-domain partial function
mapping element-key pairs to values.

A common graph 𝐺 = (𝐸′, 𝜌′) can be easily represented as a
property graph by letting

• 𝑁 = Nodes(𝐺),
• 𝐸 = 𝐸′,
• 𝜋 = {(𝑒, (𝑣1, 𝑣2)) | 𝑒 = (𝑣1, 𝑝, 𝑣2) ∈ 𝐸},
• 𝜆 = {(𝑒, {𝑝}) | 𝑒 = (𝑣1, 𝑝, 𝑣2) ∈ 𝐸} ∪ {(𝑣, ∅) | 𝑣 ∈ 𝑁 }, and
• 𝜌 = 𝜌′.

It is possible to characterise exactly the property graphs that are
such representations of common graphs. These are the property
graphs (𝑁, 𝐸, 𝜋, 𝜆, 𝜌) for which it holds that:

(1) 𝜆(𝑣) = ∅ for all 𝑣 ∈ 𝑁 , and 𝜆(𝑒) is a singleton for all 𝑒 ∈ 𝐸,
(2) there cannot be two distinct edges 𝑒1, 𝑒2 ∈ 𝐸 such that

𝜋 (𝑒1) = 𝜋 (𝑒2) and 𝜆(𝑒1) = 𝜆(𝑒2), and
(3) 𝜌 (𝑒, 𝑘) is undefined for all 𝑒 ∈ 𝐸, 𝑘 ∈ K .
So, common graphs can be interpreted as restricted property

graphs: no labels on nodes, single labels on edges, no parallel edges
with the same label, and no properties on edges. All these restric-
tions are direct consequences of the nature of the RDF data model.

While these restrictions seem severe at a first glance, the result-
ing data model can actually easily simulate unrestricted property
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graphs: labels on nodes can be simulated with the presence of cor-
responding keys, edges can be materialised as nodes if we need
properties over edges or parallel edges with the same label. This
means not only that common graphs can be used without loss of
generality in expressiveness and complexity studies, but also that
the corresponding restricted property graphs are flexible enough
to be usable in practice, while additionally guaranteeing interoper-
ability with the RDF data model.

B.3 Class information
The common graph data model does not have direct support for
class information. The reason for this is that RDF and property
graphs handle class information rather differently. In RDF, both
class and instance information is part of the graph data itself: classes
are elements of the graph, subclass-superclass relationships are rep-
resented as edges between classes, and membership relationships
are represented as edges between elements and classes. In property
graphs, the membership of a node in a class is indicated by a label
put on the node. A node can belong to many classes, but the only
way to say that class 𝐴 is a subclass of class 𝐵 is to ensure in the
schema that each node with label 𝐴 also has label 𝐵. That is,

• in property graphs, class membership information is avail-
able locally in a node, but consistency must be ensured by
the schema,

• in RDF, obtaining class membership information requires
navigating in the graph, but consistency is for free.

Clearly, both approaches have their merits, but when passing from
one to the other data needs to be translated. This means that we
cannot pick one of these approaches for the common data model
while keeping it a natural submodel of both RDF and property
graphs. Therefore, to reduce the complexity of this study, we do not
include any dedicated features for supporting class information in
our common data model. Note, however, that common graphs can
support both these approaches indirectly: designated predicates
can be used to represent membership and subclass relationships,
and keys with a dummy value can simulate node labels.

C More on the core
In this section we prove Proposition 1. Recall that common shapes
are defined by the grammar

𝜑 F ∃ 𝜋
�� ∃≤𝑛 𝜋1

�� ∃≥𝑛 𝜋1
�� ∃ c ∧ ∄¬𝑃

�� 𝜑 ∧ 𝜑 .

cF {}
�� {𝑘 : v}

�� c & c
�� c | c .

𝜋0 F [𝑘 = 𝑐]
�� ¬[𝑘 = 𝑐]

�� c & ⊤
�� ¬(c & ⊤)

�� 𝜋0 · 𝜋0 .

𝜋1 F 𝜋0 · 𝑝 · 𝜋0
�� 𝜋0 · 𝑝− · 𝜋0

�� 𝜋0 · 𝑘
�� 𝑘− · 𝜋0 .

𝜋 F 𝜋0
�� 𝑝 �� 𝜋− �� 𝜋 · 𝜋

�� 𝜋 ∪ 𝜋 .

𝜋 F 𝜋
�� 𝜋 · 𝑘

�� 𝑘− · 𝜋
�� 𝑘− · 𝜋 · 𝑘′ .

where 𝑛 ∈ N, 𝑃 ⊆fin P, 𝑘, 𝑘′ ∈ K , 𝑐 ∈ V , and 𝑝 ∈ P. We will
refer to PG-path expressions defined by the nonterminal 𝜋0 in the
grammar as filters.

The following two subsections describe the translations of com-
mon schemas to SHACL and ShEx. The translations are very similar
but we include them both for the convenience of the reader.

C.1 Translation to SHACL
Lemma 1. For each open content type c there is a SHACL shape
𝜑c such that G, 𝑣 ⊨ 𝜑c iff 𝜌 (𝑣) ∈ JcK for all G = (𝐸, 𝜌) and 𝑣 ∈
Nodes(G).

Proof. For the content type ⊤ the corresponding SHACL shape
is ⊤. For a content type of the form

{𝑘1 : v1} & {𝑘2 : v2} & · · · & {𝑘𝑚 : v𝑚} & ⊤ ,

the corresponding SHACL shape is

∃𝑘1 .test(v1) ∧ ∃𝑘2 .test(v2) ∧ · · · ∧ ∃𝑘𝑚 .test(v𝑚) .
Finally, every open content type different from ⊤ can be ex-

pressed as
(c1 | · · · | cℓ ) & ⊤ ,

where each c𝑖 is a content type of the form {𝑘1 : v1} & {𝑘2 :
v2} & · · · & {𝑘𝑚 : v𝑚} for some 𝑚. The corresponding SHACL
shape is

𝜑1 ∨ · · · ∨ 𝜑ℓ ,

where 𝜑𝑖 is the SHACL shape corresponding to the content type
c𝑖 & ⊤. □

Lemma 2. For each filter 𝜋0 there is a SHACL shape 𝜑𝜋0 such that
G, 𝑣 ⊨ 𝜑𝜋0 iff (𝑣, 𝑣) ∈ J𝜋0KG for all G and 𝑣 ∈ Nodes(G).

Proof. By Lemma 1, the claim holds for 𝜋0 = c & ⊤. For {𝑘 : 𝑐}
the corresponding SHACL shape is ∃𝑘.test(𝑐). As SHACL shapes
are closed under negation, the claim holds for ¬{𝑘 : 𝑐} and ¬(c&⊤).
Finally, concatenations of filters correspond to conjunctions of
shapes, so the claim follows because SHACL shapes are closed
under conjunction. □

Lemma 3. For each common shape of the form ∃ 𝜋 there is a SHACL
shape 𝜑∃𝜋 such that G, 𝑣 ⊨ 𝜑∃𝜋 iff G, 𝑣 ⊨ ∃ 𝜋 for all G and 𝑣 ∈
Nodes(G) ∪ Values(G).

Proof. Let us first look at common shapes of the form ∃ 𝜋 where
𝜋 is a concatenation of filters and atomic path expressions of the
form 𝑝 , 𝑝− , 𝑘 , or 𝑘− . Without loss of generality we can assume
that the concatenation ends with a filter or with 𝑘 . We proceed by
induction on the length of the concatenation. The base cases are
∃𝜋0 and ∃𝑘 , which correspond to 𝜑𝜋0 (Lemma 2) and ∃𝑘.⊤. For
∃ 𝜋0 ·𝜋 we can take 𝜑𝜋0 ∧𝜑∃𝜋 . For ∃ 𝑝 ·𝜋 we can take ∃𝑝.𝜑∃𝜋 , and
similarly for ∃ 𝑝− · 𝜋 and ∃𝑘− · 𝜋 .

The general case follows because SHACL shapes are closed under
union. Indeed, because our PG-path expressions are star-free, we
can assume without loss of generality that in each common shape
of the form ∃ 𝜋 , the PG-path expression 𝜋 underlying 𝜋 is a union
of concatenations of filters and atomic path expressions of the form
𝑝 or 𝑝− . Then, for

∃𝑘− · (𝜋1 ∪ · · · ∪ 𝜋𝑚) · 𝑘′

we can take
𝜑∃𝑘− ·𝜋1 ·𝑘 ′ ∨ · · · ∨ 𝜑∃𝑘− ·𝜋𝑚 ·𝑘 .

Simiarly for ∃𝑘− · (𝜋1 ∪ · · · ∪ 𝜋𝑚), ∃ (𝜋1 ∪ · · · ∪ 𝜋𝑚) · 𝑘′, and
∃ (𝜋1 ∪ · · · ∪ 𝜋𝑚). □

Lemma 4. For each common shape 𝜑 there is a SHACL shape 𝜑 such
that G, 𝑣 ⊨ 𝜑 iff G, 𝑣 ⊨ 𝜑 for all G and 𝑣 ∈ Nodes(G) ∪ Values(G).
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Proof. Because SHACL shapes are closed under conjunction, it
suffices to prove the claim for the atomic common shapes of the
forms ∃ 𝜋 , ∃≤𝑛𝜋1, ∃≥𝑛𝜋1, and ∃c ∧ ∄¬𝑃 . The first case follows
from Lemma 3.

Let us look at common shapes of the form ∃≥𝑛𝜋1. If 𝑛 = 0 we
can simply take ⊤. Suppose 𝑛 > 0. Then, for

∃≥𝑛𝜋0 · 𝑝 · 𝜋 ′0
we can take

𝜑𝜋0 ∧ ∃≥𝑛𝑝.𝜑𝜋 ′
0
,

and similarly for ∃≥𝑛𝜋0 · 𝑝− · 𝜋 ′0, ∃
≥𝑛𝜋0 · 𝑘− · 𝜋 ′0, and ∃≥𝑛𝜋0 · 𝑘

(using ⊤ instead of 𝜑𝜋 ′
0
).

Next, we consider common shapes of the form ∃≤𝑛𝜋1. For

∃≤𝑛𝜋0 · 𝑝 · 𝜋 ′0
we can take

¬𝜑𝜋0 ∨ ∃≤𝑛𝑝.𝜑𝜋 ′
0
,

and similarly for ∃≤𝑛𝜋0 · 𝑝− · 𝜋 ′0, ∃
≤𝑛𝜋0 · 𝑘− · 𝜋 ′0, and ∃≤𝑛𝜋0 · 𝑘

(again, using ⊤ instead of 𝜑𝜋 ′
0
).

Finally, let us consider a common shape of the form ∃ c ∧ ∄¬𝑃 .
Suppose first that

c = {} .

Then, the corresponding SHACL shape is simply

closed(𝑃) .
Next, suppose that

c = {𝑘1 : v1} & . . . & {𝑘𝑚 : v𝑚} .

Then, the corresponding SHACL shape is

∃𝑘1 .test(v1) ∧ · · · ∧ ∃𝑘𝑚 .test(v𝑚) ∧ closed
(
{𝑘1, . . . , 𝑘𝑚} ∪ 𝑃

)
.

In general, as in Lemma 1, we can assume that

c = c1 | . . . | c𝑚

where each c𝑖 is of one of the two forms considered above. The
corresponding SHACL shape is then

𝜑1 ∨ · · · ∨ 𝜑𝑚

where 𝜑𝑖 is the SHACL shape corresponding to ∃c𝑖 ∧∄¬𝑃 , obtained
as described above. □

Lemma 5. For every common schema there is an equivalent SHACL
schema.

Proof. Let S be a common schema. We obtain an equivalent
SHACL schema S′ by translating each (sel, 𝜑) ∈ S to (sel′, 𝜑′)
such that for all G and 𝑣 ∈ N ∪V ,

G, 𝑣 ⊨ sel implies G, 𝑣 ⊨ 𝜑

iff
G, 𝑣 ⊨ sel′ implies G, 𝑣 ⊨ 𝜑 ′.

Recall that sel is a common shape of one of the following forms:

∃𝑘 , ∃ 𝑝 · 𝜋 , ∃ 𝑝− · 𝜋 , ∃ {𝑘 : 𝑐} · 𝜋 , ∃
(
{𝑘 : v} & ⊤

)
· 𝜋 , ∃𝑘− · 𝜋 .

For sel′ we take, respectively,

∃𝑘.⊤ , ∃ 𝑝.⊤ , ∃ 𝑝− .⊤ , ∃𝑘.⊤ , ∃𝑘.⊤ , ∃𝑘− .⊤ .

For𝜑 ′ we take¬𝜑sel∨𝜑 where𝜑sel is obtained by applying Lemma 3
to sel, and 𝜑 is obtained by applying Lemma 4 to 𝜑 . □

C.2 Translation to ShEx
Lemma 6. For each open content type c there is a ShEx shape𝜑c such
that G, 𝑣 ⊨ 𝜑c iff 𝜌 (𝑣) ∈ JcK for all G = (𝐸, 𝜌) and 𝑣 ∈ Nodes(G).

Proof. For the content type ⊤ the corresponding ShEx shape is
{⊤}.

For a content type of the form

{𝑘1 : v1} & · · · & {𝑘𝑚 : v𝑚} & ⊤ ,

the corresponding ShEx shape is

{𝑘1 .test(v1) ;⊤} ∧ · · · ∧ {𝑘𝑚 .test(v𝑚) ;⊤} .

Finally, every other open content type can be expressed as

(c1 | · · · | cℓ ) & ⊤ ,

where each c𝑖 has the form {𝑘1 : v1} & · · · & {𝑘𝑚 : v𝑚} for some
𝑚. The corresponding ShEx shape is

𝜑1 ∨ · · · ∨ 𝜑ℓ ,

where 𝜑𝑖 is the ShEx shape corresponding to the content type
c𝑖 & ⊤. □

Lemma 7. For each filter 𝜋0 there is a ShEx shape 𝜑𝜋0 such that
G, 𝑣 ⊨ 𝜑𝜋0 iff (𝑣, 𝑣) ∈ J𝜋0KG for all G and 𝑣 ∈ Nodes(G).

Proof. By Lemma 6, the claim holds for 𝜋0 = c & ⊤. For {𝑘 :
𝑐} the corresponding ShEx shape is {𝑘.test(𝑐);⊤}. Because ShEx
shapes are closed under negation, the claim also holds for ¬{𝑘 :
𝑐} and ¬(c & ⊤). Finally, concatenations of filters correspond to
conjunctions of shapes, so the claim follows because ShEx shapes
are closed under conjunction. □

Lemma 8. For each common shape of the form ∃ 𝜋 there is a ShEx
shape 𝜑∃𝜋 such that G, 𝑣 ⊨ 𝜑∃𝜋 iff G, 𝑣 ⊨ ∃ 𝜋 for all G and 𝑣 ∈
Nodes(G) ∪ Values(G).

Proof. Let us first look at common shapes of the form ∃ 𝜋 where
𝜋 is a concatenation of filters and atomic path expressions of the
form 𝑝 , 𝑝− , 𝑘 , or 𝑘− . Without loss of generality we can assume
that the concatenation ends with a filter or with 𝑘 . We proceed by
induction on the length of the concatenation. The base cases are
∃𝜋0 and ∃𝑘 , which correspond to 𝜑𝜋0 (Lemma 7) and {𝑘. {⊤} ;⊤},
respectively. For ∃ 𝜋0 · 𝜋 we can take 𝜑𝜋0 ∧𝜑∃𝜋 . For ∃ 𝑝 · 𝜋 we can
take {𝑝.𝜑∃𝜋 ;⊤}, and similarly for ∃ 𝑝− · 𝜋 and ∃𝑘− · 𝜋 .

The general case follows because ShEx shapes are closed under
union. Indeed, because our PG-path expressions are star-free, we
can assume without loss of generality that in each common shape
of the form ∃ 𝜋 , the PG-path expression 𝜋 underlying 𝜋 is a union
of concatenations of filters and atomic path expressions of the form
𝑝 or 𝑝− . Then, for

∃𝑘− · (𝜋1 ∪ · · · ∪ 𝜋𝑚) · 𝑘′

we can take
𝜑∃𝑘− ·𝜋1 ·𝑘 ′ ∨ · · · ∨ 𝜑∃𝑘− ·𝜋𝑚 ·𝑘 .

Simiarly for ∃𝑘− · (𝜋1 ∪ · · · ∪ 𝜋𝑚), ∃ (𝜋1 ∪ · · · ∪ 𝜋𝑚) · 𝑘′, and
∃ (𝜋1 ∪ · · · ∪ 𝜋𝑚). □

Lemma 9. For each common shape 𝜑 there is a ShEx shape 𝜑 such
that G, 𝑣 ⊨ 𝜑 iff G, 𝑣 ⊨ 𝜑 for all G and 𝑣 ∈ Nodes(G) ∪ Values(G).
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Proof. Because ShEx shapes are closed under conjunction, it
suffices to prove the claim for the atomic common shapes of the
forms ∃ 𝜋 , ∃≤𝑛𝜋1, ∃≥𝑛𝜋1, and ∃c ∧ ∄¬𝑃 . The first case follows
from Lemma 8.

Let us look at common shapes of the form ∃≥𝑛𝜋1. If 𝑛 = 0 we
can simply take {⊤}. Suppose 𝑛 > 0. Then, for

∃≥𝑛𝜋0 · 𝑝 · 𝜋 ′0
we can take

𝜑𝜋0 ∧
{(
𝑝.𝜑𝜋 ′

0

)𝑛 ;⊤
}
,

and similarly for ∃≥𝑛𝜋0 · 𝑝− · 𝜋 ′0, ∃
≥𝑛𝜋0 · 𝑘− · 𝜋 ′0, and ∃≥𝑛𝜋0 · 𝑘

(using {⊤} instead of 𝜑𝜋 ′
0
).

Next, we consider common shapes of the form ∃≤𝑛𝜋1. For

∃≤𝑛𝜋0 · 𝑝 · 𝜋 ′0
we can take

¬𝜑𝜋0 ∨ ¬
{(
𝑝.𝜑𝜋 ′

0

)𝑛+1 ;⊤
}

and similarly for ∃≤𝑛𝜋0 · 𝑝− · 𝜋 ′0, ∃
≤𝑛𝜋0 · 𝑘− · 𝜋 ′0, and ∃≤𝑛𝜋0 · 𝑘

(again, using {⊤} instead of 𝜑𝜋 ′
0
).

Before we move on, let us introduce a bit of syntactic sugar.
For a set 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑛} ⊆ P ∪ K we write 𝑄∗ for the triple
expression

(
𝑞1 . {⊤} | 𝑞2 . {⊤} | . . . | 𝑞𝑛 . {⊤}

)∗.
We are now ready to consider a common shape of the form

∃ c ∧ ∄¬𝑃 . Suppose first that
c = {} .

Then, the corresponding ShEx shape is simply{
𝑃∗ ;

(
¬∅−

)∗}
.

Next, suppose that

c = {𝑘1 : v1} & . . . & {𝑘𝑚 : v𝑚} .

Then, the corresponding ShEx shape is

𝜑c&⊤ ∧
{
{𝑘1, . . . , 𝑘𝑚}∗ ; 𝑃∗ ;

(
¬∅−

)∗}
,

where 𝜑c&⊤ is obtained from Lemma 6. In general, as in Lemma 6,
we can assume that

c = c1 | . . . | c𝑚

where each c𝑖 is of one of the two forms considered above. The
corresponding ShEx shape is then

𝜑1 ∨ · · · ∨ 𝜑𝑚

where 𝜑𝑖 is the ShEx shape corresponding to ∃c𝑖 ∧ ∄¬𝑃 , obtained
as described above. □

Lemma 10. For every common schema there is an equivalent ShEx
schema.

Proof. Let S be a common schema. We obtain an equivalent
ShEx schema S′ by translating each (sel, 𝜑) ∈ S to (sel′, 𝜑′) such
that for all G and 𝑣 ∈ N ∪V ,

G, 𝑣 ⊨ sel implies G, 𝑣 ⊨ 𝜑

iff
G, 𝑣 ⊨ sel′ implies G, 𝑣 ⊨ 𝜑 ′.

Recall that sel is a common shape of one of the following forms:

∃𝑘 , ∃ 𝑝 · 𝜋 , ∃ 𝑝− · 𝜋 , ∃ {𝑘 : 𝑐} · 𝜋 , ∃
(
{𝑘 : v} &⊤

)
· 𝜋 , ∃𝑘− · 𝜋 .

If sel is of the form

∃𝑘 , ∃ {𝑘 : 𝑐} · 𝜋 , or ∃
(
{𝑘 : v} & ⊤

)
· 𝜋 ,

for sel′ we take {𝑘.{⊤} ;⊤}. In the remaining cases, we take, re-
spectively,

{𝑝.{⊤} ;⊤} , {𝑝−.{⊤} ;⊤} , {𝑘−.{⊤} ;⊤} .
For𝜑 ′ we take¬𝜑sel∨𝜑 where𝜑sel is obtained by applying Lemma 8
to sel, and 𝜑 is obtained by applying Lemma 9 to 𝜑 . □
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