
An Exploratory Study of Ad Hoc
Parsers in Python

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Softwareengineering and Internet Computing

eingereicht von

Andreas Olschnögger, BSc
Matrikelnummer 11702809

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assoc. Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc
Mitwirkung: Dipl.-Ing Michael Schröder, BSc

Wien, 2. Mai 2025
Andreas Olschnögger Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

An Exploratory Study of Ad Hoc
Parsers in Python

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Softwareengineering and Internet Computing

by

Andreas Olschnögger, BSc
Registration Number 11702809

to the Faculty of Informatics

at the TU Wien

Advisor: Assoc. Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc
Assistance: Dipl.-Ing Michael Schröder, BSc

Vienna, May 2, 2025
Andreas Olschnögger Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Andreas Olschnögger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Mai 2025
Andreas Olschnögger

v

Danksagung

Im Rahmen meiner Arbeit wurde ich von vielen Personen unterstützt, bei denen ich mich
herzlich bedanken möchte. Seitens der TU Wien möchte ich mich bei meinem Betreuer
Assoc. Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc, sowie bei Dipl.-Ing. Michael Schröder,
BSc, der mich mit seiner Expertise beraten hat, bedanken.

Zudem möchte ich mich bei Asst. Prof. Robert Dyer, Ph.D., bedanken, der mich bei
Fragen bezüglich Boa unterstützt hat.

Ein weiterer Dank gilt Carolin, meiner Familie und allen Personen, die mich während des
Studiums unterstützt haben.

vii

Acknowledgements

During my thesis, I was supported by many people, whom I would like to thank. My
thesis was guided by Assoc. Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc, and mentored by
Dipl.-Ing. Michael Schröder, BSc, who assisted and advised me throughout the study.

I would also like to express my gratitude to Assistant Professor Robert Dyer, Ph.D., for
his support with my questions regarding Boa.

Finally, I want to thank Carolin, my family, and all others who supported me during my
studies.

ix

Kurzfassung

Ad hoc Parsing bezeichnet das Verarbeiten von Strings, ohne dass formale Parsing-
Regeln vefolgt werden. Ad hoc Parser treten als Codeabschnitte in vielen Stellen im
Code auf und werden oft spontan geschrieben. Esentielle Bestandteile sind String-
Manipulationsfunktionen wie split oder replace. Diese Arbeit ist eine explorative
Studie in Python, welche das Vorkommen, Charakteristiken und Implementierungmuster
von ad hoc Parsern untersucht.

Wir entwickelten eine Methode um mit der Nutzung des Frameworks Boa aus einem
Datenset mit 1,710 Python Projekten auf GitHub string Variablen zu erkennen und
ausgehend von diesen Variablen ad hoc Parser Codestücke zu generieren. So war es uns
möglich ein Datenset bereitzustellen, dass 34,925 ad hoc Parser beinhaltet.

Unsere Auswertung zeigt, dass in 75% aller Projekte ad hoc Parsing verwendet wird.
Unsere wichtigsten Ergebnise sind: 1. Ad hoc Parser sind typischerweise kompakt (Me-
diangröße von 4 Zeilen) und treten über die ganze Methode verteilt auf; 2. Funktionen
zur Bearbeitung von strings wie split und replace, sowie Typkonvertierungen sind
vorherrschend; 3. 11% der ad hoc Parser verwenden reguläre Ausdrücke. Diese werden
hauptsächlich im hinteren Teil des Parsers zur abschließenden Verarbeitung verwendet;
4. Fehlerbehandlungen werden in ad hoc Parsern kaum behandelt. 80% der Parser, die
potentiell Fehler werfen könnten, sind ohne Fehlerbehandlung; und 5. Schleifen in ad hoc
Parsern weisen überwiegend eine flache Verschachtelung und lineare Grenzen auf.

Diese Arbeit stellt einen umfangreichen Datensatz an ad hoc Parsern in Python zur
verfügung und bietet Einblicke in ihre syntaktischen Charakteristiken und Muster. Die
Erkentnisse der Arbeit dienen der Entwicklung statischer Analysewerkzeuge, Parsergene-
ratoren, und weitergehender Forschung in diesem Bereich.

xi

Abstract

Ad hoc parsing is the processing of strings without following formal parsing rules. Ad hoc
parsers occur as code snippets in various places of source code and are typically written
on the fly. Characteristic features of ad hoc parsers are string manipulating functions
like split or replace. This thesis is an exploratory study investigating prevalence,
characteristics, and implementation patterns of ad hoc parsers in Python.

We create a method to extract ad hoc parser code snippets out of source code. Utilizing
the Boa framework, we analyze a dataset of 1,710 Python projects on GitHub and
generate a dataset containing 34,925 ad hoc parsers.

Our results show that 75% of all projects contained ad hoc parsing. The most important
findings are: 1. Ad hoc parsers are typically compact, with a median line of code of
4, and are found everywhere in code. 2. String transforming functions like split and
replace, as well as type conversion are dominant in ad hoc parsers. 3. 11% of ad hoc
parsers use regular expressions. Regular expressions are predominantly located in the
latter section of an ad hoc parser for final processing. 4. The majority of ad hoc parsers
do not contain exception handling. 80% of ad hoc parsers, which potentially throw errors,
have no local exception handling. 5. Ad hoc parsers show mainly a narrow nesting and
linear bounds.

In this work, we present an extensive dataset containing ad hoc parsers in Python and
provide insights into syntactic characteristics and patterns of ad hoc parsers. The results
of this work serve the development of static analysis tools, parser generators, and future
research in this field.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Background and Related Work 3
2.1 Background . 3
2.2 Related Work . 7

3 Ad Hoc Parser Mining 9
3.1 Identification of String Variables . 11
3.2 Parser Determination . 14

4 Findings 23
4.1 Dataset Categorization and Analysis 23
4.2 Frequency . 25
4.3 Location . 26
4.4 Size . 28
4.5 Input Sources . 30
4.6 Function Calls . 31
4.7 Regular Expressions . 34
4.8 Loops . 36
4.9 Error Handling . 37
4.10 Threats to Validity . 38

5 Conclusion and Future Work 41

List of Figures 43

List of Tables 45

List of Algorithms 47

xv

Bibliography 49

CHAPTER 1
Introduction

Ad hoc parsers are code snippets that transform an input string in some form, without
following common parsing rules or patterns. In Python, methods like slice, trim, etc.,
are often used for this purpose. This means that the programmer decides ad hoc how to
transform a string. Ad hoc parsers are frequently used in applications, yet there has been
little research on ad hoc parsers despite the risks they pose [5]. Many characteristics of
ad hoc parsers, such as average size, used functions, or typical parsing patterns, are not
known

This exploratory study aims to provide a dataset of ad hoc parser program snippets and
to investigate and analyse the semantic and syntactic properties of these ad hoc parsers.
To achieve this objective, we conduct a study based on a pre-registered research protocol
[26] that allows a thorough and systematic methodical examination of the subject.

For collecting the dataset of parsing snippets, we mine and analyze source code using the
Boa framework [9]. Boa provides several source code data sets for different programming
languages. We focus on programs written in Python because it is an extremely popular
and widely used language for data analysis and machine learning tasks.

To this end, we address the following research questions in this thesis:

RQ1 What are location characteristics of ad hoc parsers in Python projects?

Ad hoc parsers may be found in many locations within the source code. By analyzing the
projects that contain an ad hoc parser, it is possible to gain insight into their positioning
and distribution. This gives us insight into whether ad hoc parsers are predominantly
located at the beginning or end of functions. If they are distributed throughout the
code or concentrated in specific sections. An important aspect of this investigation
is the assessment of the average size of ad hoc parsers in terms of lines of code or
expressions, as well as the usage of temporary variables and method chaining. This helps

1

1. Introduction

us to understand how ad hoc parsers achieve syntactic compactness while encompassing
intricate functionality.

RQ2 What are the syntactic characteristics of ad hoc parsers?

We want to analyse various syntactical characteristics of ad hoc parsers from beginning to
end. Where does the input of an ad hoc parser originate from? Is it a global variable, a
return value of a function call, or is the input read from a file? Further, we want to know
how the input is processed. What functions or regular expressions are used in the parsing
process, and does parsing include error handling? If there are looping constructs, are they
functional (e.g., map, split) or are they more direct iterations (e.g., for, while)?

2

CHAPTER 2
Background and Related Work

2.1 Background
2.1.1 Boa
For the generation of the parser code snippets, we use Boa. Boa provides a domain-specific
language and infrastructure for analysing a wide range of software projects. Boa already
offers several ready-made datasets for different programming languages. In this paper we
focus on the dataset 2022 February/Python, which consists of 102,424 projects from
GitHub. The dataset includes only Python files.

Table 2.1: Summary Statistics of the Dataset 2022 February/Python

min mean median max
files 1.0 232.84 30 145 711
AST size 4.0 37710.5 5 832 47 655 140
stars 24.0 242.94 59 138 438
authors 1.0 7.91 3 10 895
commits 1.0 314.69 46 203 889
earliest commit 2005 2016.5 2017 2021
latest commit 2007 2019.04 2020 2021
created 2008 2016.69 2017 2021
timespan in years 0 2.51 1.62 16.57

Table 2.1 lists the summary statistics about the dataset, which include information about
the number of files, authors, stars in the GitHub repository, and more. It can be seen
that the dataset contains a wide variety of projects. For example, the range of files per
project goes from 1 to over 100,000. 50% of all projects have between 13 and 82 files.

3

2. Background and Related Work

Figure 2.1: Boa snippet: Graph traversal to identify string variables.

The data set does not contain any projects with fewer than 24 stars. The median for the
number of commits is 46.

Boa is its own domain-specific language, which means that the Python AST is compiled
from the source projects into a Boa AST. The ASTS can be analysed using Boa queries.
To analyse the Boa AST, Boa provides its own syntax inspired by object-oriented visitor
patterns. Another very interesting feature of Boa for our work is the analysis of program
graphs. Boa provides several functions to generate standard graphs, such as: control flow
graph (CFG), control dependency graph (CDG), data dependency graph (DDG), and
program dependency graph. Thus, a corresponding graph can be generated from each
method. Each graph consists of nodes that represent a corresponding AST node. To work
with these graphs and to analyze them, we can write graph traversals. Graph traversals
are similar to functions. The only input parameter is the corresponding node. Traversals
can optionally return a value. This value is associated with the corresponding node
within the traversal and is accessible from other nodes. Figure 2.1 shows an example of
code traversals. The traversal get_used_strings stores per node all string variables
that are used from here or later.

4

2.1. Background

2.1.2 Dependence Graphs
For constructing ad hoc parsers snippets, we use different dependence graphs. This
section covers control flow graphs, data dependence graphs, and program dependence
graphs, which are important structures in program analysis and used for capturing
distinct aspects of program behavior, making them crucial for compiler optimizations,
software verification, and static analysis tools.

Data Dependence Graph

The data dependence graph (DDG) [18] can be used to visualize data dependencies inside
a program. A node in the DDG can represent, e.g., statements, tasks, functions, and the
edges represent the dependence according to the flow of data [6]. This means a directed
edge from node i to node j states that j is data dependent on statement i. Figure 2.2b
shows an example of a DDG. The Statements L2, L3, L4, L6 dependent because of the
variable s, while L6 is a data-dependent statement on L5 because of the variable indent.

Control Flow Graph

A control flow graph (CFG) [2] is a directed graph describing all potential paths of
program code that is executed. Nodes represent basic blocks. Allen [2] describes a basic
block as a linear sequence of consecutive program instructions containing a single entry
and exit point. CFGs have been applied in many areas of research [28, 15, 16]. Edges
describe the control flow. An edge from block B1 to block B2 exists only if there is a
possible execution to proceed directly from the last statement of B1 to the first statement
of B2. Figure 2.2d shows an example of a CFG.

Control Dependence Graph

The control dependence graph (CDG) is a directed graph modeling the conditional
execution dependencies within a program. Contrary to the CFG, the CDG does not
contain the sequential information and emphasises the relationship of control predicates
(e.g., conditions and if or for statements) and the program parts they control. Nodes
of the CDG correspond to executable elements of the program, like statements, basic
blocks [10]. For constructing a CDG, the post-dominant relationships of the CFG have
to be constructed. The post-dominant relationships represent the edges, like visible in
Figure 2.2c.

Program Dependence Graph

The Program Dependence Graph (PDG) combines data dependence and control depen-
dence in a single graph structure. Ferrante et al. [10] introduced the PDG as a way to
represent the essential control and data relationships in a program executing without the
often very strict sequencing imposed by the traditional CFG. Nodes in the PDG repre-
sent operators and operands, while edges represent either control dependencies or data

5

2. Background and Related Work

Figure 2.2: Example of dependency graphs. (a) code sample; (b) data dependence graph;
(c) control dependence graph; (d) control flow graph; (e) program dependence graph;

dependencies. They capture the constraints on the execution order and computational
relationship between the nodes (Figure 3.7f).

2.1.3 Program Slicing
In this study, we use program slicing to extract ad hoc parsing snippets from Python
source code. Weiser [30] introduced program slicing as a powerful technique for extracting
program snippets based on their data and control flow. The algorithm to construct a
program slice requires two key pieces of information: the control flow graph and data
flow information. The data flow information is defined by two sets for each node n:

• DEF (n): a set of variables defined at node n
• REF (n): a set of variables that are referenced at node n

The algorithm involves computing sets of relevant variables for each node in the CFG for
a slicing criterion C = ⟨n0, V0⟩. The set RC(n) represents all relevant variables and is
computed as follows:

1. Initialization: The set of relevant variables for n0 is initialized to V0. All other sets
RC(n) are initialized to the empty set ∅.

2. Iteration: The algorithm iteratively computes for each node s the set of relevant
variables based on its successors and its own DEF /REF sets. This is done until a
fixed point is reached, meaning no more variables can be added to RC .

6

2.2. Related Work

Once the sets of relevant variables for all nodes are computed, the slice S is constructed.
A statement node n is included in the slice if the set of relevant variables of n+1 intersects
with the set of variables defined by DEF (n) or n is a control predicate that determines
whether statements in S are executed.

Weiser work established the foundation for program slicing and has been widely employed
since [12, 19, 32, 31]. AlAbwaini et al. [1] introduced a new model for identifying dead
code in programs using decomposition slicing [13].

2.1.4 Software Measures and Metrics

2.2 Related Work
Ad hoc parsers: There is little research in the area of ad hoc parsers. Schröder
and Cito have already dealt with ad hoc parsers and propose an automatic grammar
inference system for ad hoc parsers. The vision is to transform an ad hoc parser from a
source language like Python into an intermediate representation, which represents the
domain-specific language for parsing. By inference, a language model is created from the
intermediate representation, from which an appropriate grammar can be generated [25].

Analyzing language features in Python: The first study to analyze language
features and automatically identify their use in Python was conducted by Peng et al.
[24]. By developing an automatic language feature recognizer, they analyzed 35 popular
Python projects from 8 different domains and found that single inheritance, decorator,
keyword argument, for loops, and nested classes are the top 5 used language features.
By analyzing the different domains, they could give insights into the preference for
certain language features per domain. Projects in DevOps, for example, use exception
handling frequently. The results in exception handling are specifically interesting because
exception handling also plays a crucial part in ad hoc parsing. Peng et al. found that
developers care most about ImportError, ValueError, AttributeError, KeyError, and
OSError, which account for 80% of all errors.

Large scale analysis with Boa: There are several studies that utilized Boa for
static large-scale analysis. Dyer and Chauhan [8] utilized Boa to analyze predominant
paradigms in Python. They analyzed about 101,000 projects and found that many files
and projects favor the object-oriented paradigm, while single-file projects mostly favor
procedural or mixed paradigms. The analyzed files rarely change their predominant
paradigm over time. Apart from Python, Boa also provides datasets for Java projects.
Asaduzzaman et al. [3] used this Java dataset to conduct an empirical study on how
developers use exception handling. By analyzing a dataset holding more than 274,000
Java projects, they found that improper exception handling practices are not uncommon
within Java applications. These improper exception handling practices are not affected
by the experience of developers. Kery et al. [17] and Nakshatri et al. [23] also utilized
Boa for analyzing exception handling in Java using a dataset containing nearly 8,000,000

7

2. Background and Related Work

GitHub repositories. Kery et al. found that developers would rather handle exceptions
locally than propagate them by throwing an exception. Programmers tend to use actions
like Log, Print, Return, or Throw in catch blocks. Bad practices in exception handling,
like an empty catch block or catching exceptions, are widespread. Another large-scale
analysis using Boa was performed by Flint et al. [11]. They investigated type inference
in Kotlin. Therefore, they used the provided dataset from Boa, containing about 500,000
projects, and found that type inference is frequently used by developers when declaring
local variables or methods that are defined outside of the file.

In a study from Yang et al., 3,000,000 Python files from 51,000 different projects on
GitHub have been analyzed to address the questions of how complex Python features
are used. Their findings showed that the usage of dynamic features that pose a threat
to static analysis is infrequent, but the usage of context managers and decorators is
widespread [33].

Static analysis in other languages Sihler et al. also performed a large-scale static
investigation of real-world R code. They looked at more than 50,000,000 lines of code
to analyze feature characteristics of R code. They found that commonly used features
are assignments with <- and =, for loops, if conditionals, and name-based indexing
operations with $ [27]. Another large-scale analysis was done by Mariano et al.. They
investigated syntactic and semantic features of loops found in Solidity smart contracts.
Based on their Findings, they built a domain-specific language and a tool for automatically
summarizing solidity loops, by using a combination of k-means clustering and manual
sampling [20]. Gopstein et al. analyzed 14 popular and influential open source C and
C++ projects to find ‘atoms of confusion’, which are extremely small code patterns
that can cause misunderstanding, like the conditional operator. Their results show that
15 types of confusing micro patterns are found millions of times in programs like the
Linux kernel and GCC. They found that there is a strong correlation between atoms of
confusion and bug fixing commits. Projects with a lot of confusing micro patterns tend
to have a higher rate of security vulnerabilities [14].

8

CHAPTER 3
Ad Hoc Parser Mining

For the collection and analysis of a large dataset of Python projects, we utilized Boa
[9], a source code mining language and infrastructure. Using this framework has the
added advantage of ensuring the reproducibility of our analysis, allowing it to be easily
applied to other datasets. Additionally, Boa’s language-agnostic nature makes it relatively
straightforward to adapt the analysis to other programming languages, especially when
compared to creating custom analysis scripts. All Boa scripts for extracting the parsers
and evaluation scripts are publicly available on GitHub 1. To extract ad hoc parsers from
the dataset, we employ a form of program slicing [30] using the built-in static analysis
capabilities of the Boa framework. The following approach is also visible in Figure 3.1.

1. All methods from all Python files in each project are converted into a PDG [10].
2. For each method, all string variables are identified, including the arguments. Since

Python is typically untyped, a coarse but effective type inference is performed
by consulting an extensive list of methods whose arguments or return values are
un-/known to be strings. If type hints are available, they are also considered
(Section 3.1).

3. For each string variable, we create a forward slice of the program starting from
its first occurrence (unless it is already part of a previous slice). We utilize the
PDG to construct the slice and continue it if the data dependencies are inputs
for additional parsing operations. This ensures capturing the core of the parser,
including intermediate results and transformations, without obtaining a slice that
is the size of the entire method (Section 3.2).

4. If a program slice does not contain methods that impose constraints on the input
string (e.g., if the string is simply repeatedly appended), it is discarded.

1https://github.com/schnoeggi/ad-hoc-parsers-in-python

9

https://github.com/schnoeggi/ad-hoc-parsers-in-python

3. Ad Hoc Parser Mining

Figure 3.1: Workflow of Parser Slicing

Figure 3.2 shows an example of a Python method and its corresponding CFG. The
input value of this ad hoc parser is the method argument content_type. It has been
recognized as a string variable because the split method is used on content_type
in line 3. The detection of string variables is explained more precisely in Section 3.1.
Starting from the node of the input string, we explore the graph using depth-first search.
During this process, we analyze each subsequent node for data dependencies on the
previous node and check if it performs a parsing operation. In this manner, the parser
(highlighted in blue in the example) is constructed. A detailed description of the parser
creation process is provided in Section 3.2

Figure 3.2: The green nodes visualize the source of the input. The blue nodes depict the
set of parsing nodes and supporting nodes. The set of parsing nodes is visualized by the
bigger stroke.

10

3.1. Identification of String Variables

Figure 3.3: String determination: Each method argument and each node is analysed for
the four properties. Some properties only apply to method arguments, and some only to
body variables. The result is a list of string arguments and the DDG with marked nodes
containing a string definition.

3.1 Identification of String Variables

Since Python is an untyped programming language, the initial step for creating parser
snippets is to determine which variables represent strings. We employed various ap-
proaches, including analysis of naming conventions, comments, and examining methods
or operations applied to the variable.

In this study, we distinguish between two primary types of variables that can be defined
as strings: method parameters and variables created within the method body. We use
the DDG constructed by Boa for this analysis. The identification of whether a variable is
a string is explicitly evaluated through the use of Boa. To do this, the DDG of a method
is traversed. Boa’s traversal offers the option of saving return values for individual nodes.
In this way, each node that contains a string declaration can be marked accordingly. As
method arguments do not reflect individual nodes in the DDG, method arguments that
are strings are stored separately in a list. Four different aspects are used to determine
whether a variable is a string: naming convention, references in docstrings, if they have
been declared as a string, or if they have been defined as a string. Each of these aspects
is inspected separately. If one of them applies to the variable, it is recognized as a string.
This process is visualised in Figure 3.3.

3.1.1 Naming convention

We utilize the variable name to infer its nature as a string. Through qualitative analysis of
numerous diverse codebases, it has been observed that variables named with the prefixes
or suffixes name, text, str, or string are typically categorized as strings. When
these identifiers are used as prefixes or suffixes, they are separated by an underscore (_).

11

3. Ad Hoc Parser Mining

3.1.2 Docstrings
In order to extract the variable types of method arguments, the docstring of the method
to be analyzed was examined. A specific regular expression was employed in order to
encompass the various commonly used docstring types, including those of the Google
Style and Numpydoc Style, as well as those that are individually documented. The
type of method arguments is identified by examining the docstrings within the methods
themselves. The following regex is used where <argument_name> is replaced by the
name of the argument that is to be checked:

<argument_name>[:\-=(\s`]+\s*(the|a)?\s*str(ing)?(?!\w)

Figure 3.5 visualises this regular expression as a graph.

Other type annotations, like type hints, are not captured by Boa and therefore are not
covered within the analysis. Figure 3.4 shows an example of a method argument being
recognized as a string by the docstring definition.

Figure 3.4: Method with docstrings indicating the type of the method argument.

3.1.3 Declared as String
When assigning a value to a variable, the expression undergoes analysis to ascertain
whether it yields a string result. To achieve this, we traverse the computed DDG and
scrutinize the expression at each node that assigns a value. We determine the return
type of the assignment expression. We only focus on the return types string and string
array, since these are decisive for this task. The computation of the return type involves
distinct checks depending on the nature of the expressions. Table 3.1 lists the different

Figure 3.5: Visualisation of the regular expression for identifying string parameters in
docstrings

12

3.1. Identification of String Variables

Table 3.1: The calculation of the return type of an assign node is based on the assigned
expression.

Expression Type Description
Literal
"example_string"

If the expression is a literal and begins
with a single quote (‘) or double quote ("),
it is recognized as a string.

Method Call
sample_string.trim()

When the expression is a method call, an
examination is conducted to verify if the
invoked method returns either a string or
a string array.

Array Access
foo = string_list[1]

In cases where an array is accessed within
a string list and string_list is known
to be a string array foo is marked as a
string.

Variable Access
sample_string
sample_string_array

When declaring a variable, its type is
recorded for subsequent reference when-
ever the variable is accessed.

String Concatenation
sample_string + "example"

If a string is combined with an expression,
it implies that the expression is a string
type.

Modulo String Formatting
"example %s" % "string"

Modulo formatting of string values will
return a string value.

Conditional Expressions
"example1"
if sample_condition == 2"
else "example2"

When conditional expressions are used to
declare a variable.

New Array
["example1", "example2"]

The creation of a new array containing
strings.

expression types. Certain identifications, such as literals, are straightforward, whereas
others require more complex analysis. For example, to detect the declaration of a string
array, we look for expressions of the type NEW_ARRAY. In this case, we must determine
the return values of the child expressions, which are the items of the array. If these child
expressions are of type string, the array can be identified as a string array. To detect the
return type of the child expressions, we check the expressions against all the types listed
in Table 3.1. Additionally, we keep track of already declared variables and their types to
utilize this information when a variable is accessed.

If a value is assigned to a variable, the expression is analyzed to determine whether it re-

13

3. Ad Hoc Parser Mining

turns a string. For this, a list of known methods that return a string is used (Table 3.2. In
the same way, it is also determined whether the assignment is a list of strings. In this way,
strings accessed through indexing (e.g. street_number = address.split(' ')[1])
are identified.

3.1.4 Used as String
Similar to determining the return type of an expression, we analyze every expression to
retrieve a list of variable names used as strings. Specifically, for expressions classified
as method calls, we scrutinize whether the invoked method is among our predefined set
of known methods that work with strings. If the class function of a variable a string
method (e.g. name.trim()) or if a variable serves as a parameter in a method
that exclusively deals with strings (e.g. "Hello Bob!".find(name)), we mark the
variable as a string. The string methods and methods with string parameters we utilize
are listed in Table 3.2. Additionally, we also check for instances where a variable is used
in a conditional expression and the other operand is a string (e.g., name == "Bob").

3.1.5 Limitations
Relying on a list of known string methods leads to limitations, as there is no guarantee
that a class function of a variable of unknown type is a string method. It could be a
user-defined method or even part of a package. For instance, the split method from the
Python library TensorFlow is neither a string method nor does it return a string array.
In the evaluation process, we found three packages (TensorFlow, PyTorch, and NumPy)
that were predominantly utilized with their split methods. As these split methods
are not string methods, we explicitly excluded them from the identification process to
mitigate the misidentification of string variables.

3.1.6 Evaluation
Evaluating the results of identifying string variables, precision was analysed to measure
the accuracy of the algorithm. Precision measures the proportion of correctly identified
string variables out of all variables identified as strings. For precision assessment, a
random sample of 100 nodes identified as strings was inspected. Among these, 93 out of
100 nodes were accurately identified as strings. Thus, the precision of identifying string
variables is 93%, indicating a high degree of accuracy in correctly identifying strings.

3.2 Parser Determination
Following the identification of string variables, we generate a dataset containing all ad hoc
parser snippets. Figure 3.6 shows the main steps performed to generate the dataset.
For each string variable, we construct a program slice, resulting in a set of program
slices for each method, each representing a parser. In the second step, each slice is then
transformed into a Python file, only containing the parsing class. As a result, we obtain

14

3.2. Parser Determination

Table 3.2: List of known methods divided into categories they are used for.

Pa
rs

in
g

Pa
rs

in
g

pa
ra

m
te

rs

Pa
rs

er
Te

rm
in

at
in

g

St
rin

g
R

et
ur

ni
ng

St
rin

g
A

rr
ay

R
et

ur
ni

ng

St
rin

g
M

et
ho

ds

M
et

ho
ds

w
ith

St
rin

g
Pa

ra
m

et
er

s

split ✓ ✓ ✓ ✓
parse ✓ ✓
unpack ✓
replace ✓ ✓ ✓ ✓
find ✓ ✓ ✓
rfind ✓ ✓
lfind ✓
partition ✓ ✓ ✓ ✓
rpartition ✓ ✓ ✓ ✓
format ✓ ✓ ✓
strftime ✓ ✓ ✓
encode ✓ ✓
loads ✓
unquote ✓
int ✓
float ✓
chr ✓
dumps ✓
quote ✓
bytes ✓
read ✓ ✓
open ✓
from_file ✓
connect ✓
readline ✓
end ✓
get ✓
call ✓
run ✓
load ✓
join ✓ ✓
translate ✓ ✓
strip ✓ ✓
lstrip ✓ ✓
rstrip ✓ ✓
lower ✓ ✓
upper ✓ ✓
realpath ✓

15

3. Ad Hoc Parser Mining

Figure 3.6: The data set of ad hoc parsers is generated in two steps: 1. Constructing a
program slice 2. Generating Python code.

a dataset of all ad hoc parsers, each in its own file. In this section, we cover the process
of constructing an ad hoc parser slice by traversing the DDG.

3.2.1 Constructing the Program Slices

This section contains a detailed description of how the program slice of an ad hoc parser
is generated. This construction is performed by analyzing the DDG of each function.
The result of the program slice is a set of nodes, where each node represents a statement
of the AST. We distinguish between two types of nodes: parsing and non-parsing nodes.
Parsing nodes perform the actual parsing tasks. An example of a parsing node would
be params = content_type.split(';'). There are several criteria to identify
parsing nodes, which are explained in Section 3.2.2. Supporting nodes are nodes that do
not contain parsing tasks but are still necessary for the control flow of the parser logic.

When constructing parser slices, we consistently initiate the process from the input
variables. The process of retrieving parsers within a method is described in Algorithm 3.1.
For each method, we generate a set of parsers. The parsers are constructed starting by
the input variables. These variables are either method arguments or variables assigned
within the method body. When the input variable is a method argument, the starting
node of the snippet is the entry node of the DDG. It should be noted that the entry
node in the DDG has successors for all method parameters. Therefore, it is crucial to
constrain these successors to utilize only those that possess actual data dependence with
the input variable for further search.

16

3.2. Parser Determination

Algorithm 3.1: Parser-Detection
Input: Data dependence graph DDG, set of string arguments StringArgs
Output: Set R of tuples (Pi, Si) where Pi is a set of parser nodes and Si is a set

of supporting nodes
1 Function Main:
2 R ← ∅ // parsers in method
3 A ← ∅ // already assigned nodes
4 foreach node ∈ DDG do
5 if node is entry node then
6 for argument ∈ StringArgs do
7 (P, S) ← computeParser(node, argument)
8 R ← R ∪ {(P, S)}
9 else if node is a string declaration & node /∈ A then

10 (P, S) ← computeParser(node)
11 R ← R ∪ {(P, S)}
12 A ← A ∪ P ∪ S

13 return R
14 Function computeParserForArgument(node, methodArgument):
15 P ← ∅
16 S ← ∅
17 foreach succ ∈ Successors(node) do
18 if methodArgument is not used in succ then
19 continue
20 (Psucc, Ssucc) ← computeParser(succ)
21 if Psucc ̸= ∅ then
22 S ← S ∪ {node}
23 P ← P ∪ Psucc

24 S ← S ∪ Ssucc

25 return (P,S)
26 Function computeParser(node):
27 P ← ∅
28 S ← ∅
29 expr ← Expressions(node)
30 if expr is parser terminating expression then
31 return (∅, ∅)
32 if expr is parsing expression then
33 P ← P ∪ {node}
34 foreach succ ∈ Successors(node) do
35 (Psucc, Ssucc) ← computeParser(succ)
36 if Psucc ̸= ∅ then
37 S ← S ∪ {node}
38 P ← P ∪ Psucc

39 S ← S ∪ Ssucc

40 return (P,S)

17

3. Ad Hoc Parser Mining

To construct a parser, we iterate through the nodes of the DDG looking for a starting
point. A potential starting node of an ad hoc parser is either a string declaration or a
string method parameter. If a node has been marked as a string declaration (Section
3.1) and is not already part of another ad hoc parser, we start the slicing process, as
you can see in line 10. Because method parameters are not represented in a DDG, we
need to handle them explicitly. In this case, the starting point is the entry node of the
DDG. In a DDG, the successor nodes of the entry node include all different data flows.
Therefore, we need to restrict our slicing to those that have successor nodes that are
actually using the string parameter (line 18). For that node, the slicing process is started.
In the slicing process, each successor node in the DDG is subsequently traversed and
analyzed. If the respective node is identified as a parsing node, it is added to the parsing
set. If it is not a parsing node, it is added to the supporting set, provided that this
node has at least one successor that is a parsing node (line 22). Capturing supporting
nodes ensures that the code snippet encapsulates the core of the ad hoc parser, while
maintaining its completeness and capturing those statements that might be relevant for
the parsing process.

There are also methods that interrupt a parsing process. Reading files or sending a
network request often takes a string as input, like a file path or URI, and returns another
string. We call these functions parser-terminating functions because the loading of data
from a file or an API is treated as an interruption of the parsing process, as the result
is not a transformation of the input string. For instance, the preparation of a URL
string may require parsing to ensure its validity. Then a parser terminating function like
requests.get() is called to load some data. The data might be the input of a second
parser but not a part of the first one. All methods that are considered parser-terminating
are listed in Table 3.2.

3.2.2 Identifying Parsing Nodes

To establish precise criteria for the identification of parser methods, different metrics
were analyzed. We used a list of known methods that perform parsing operations. These
methods are listed in Table 3.2. If a node executes one of these methods, it is considered
a parsing node. Additionally, to this list of known functions, we also tried to look for
other function usage that might perform parsing tasks, like methods that accept a string
as input and return a string as output. However, this included too many false positive
parsers due to the broad specification, and to inspect the internal workings of other
methods. We analyzed methods solely used for parsing. These methods were identified by
their unique structure, having a string method parameter as parsing input and an ending
node representing the return of the parsed data. We could construct an initial naming
metric, thereby enhancing the parsing detection precision. Additionally, we considered
the deconstruction of strings, such as x, y = strings, as a parsing operation, further
refining the criteria for identifying parsing nodes.

18

3.2. Parser Determination

3.2.3 Code Generation
To extract program slices that only include the parsing code, we transform the identified
parsing sets back into Python source code. The parsing set is created by examining the
DDG, and although it contains all of the statements of the parser, transforming only
these statements into source code does not guarantee syntactic correctness. To illustrate,
if parsing statements are present within a try branch but not within the except branch,
only the try statement would be included in the parsing set. Consequently, the parsing
snippet set would not include the except statement. To guarantee syntactic correctness
in Python code, the except statement must be included, even if it has no parsing
statements. Thus, the source code is reconstructed based on the abstract syntax tree
(AST), with only the relevant elements relevant to the parser included in the source code
based on the generated parsing set. An example of how a parser snippet result may look
is visualized in Figure 3.7.

Figure 3.7: Comparison of original source code on the left to generated parser snippet
result on the right. The identified parsing set is highlighted in blue.

In the event that a statement is identified as part of the parser but its contained suite is
not, the suite will be replaced by the expression pass. To illustrate, in instances where an
if statement incorporates parsing operations or an except statement is mandatory due
to syntactic correctness, yet the suite within does not encompass any parsing operations,
the pass expression is included to ensure syntactic correctness. This can be observed in
Figure 3.7, where the suite inside the except statement is not part of the parser and is
therefore replaced by pass.

In order to transform the AST into Python code, a bespoke prettyprint method was
employed, as the existing prettyprint method of BOA is incomplete. The lack of precision
in the BOA AST results in the loss of certain characteristics of the original Python code.
For instance, var-positional and var-keyword parameters are not identified, and similarly,
lambda expressions within list comprehensions are not recognized. Additionally, the slice
notation is not identified. Of the 37.788 generated parser snippets, 2.286 were filtered out.
Such errors also contribute to the generation of Python code snippets that are, at least
partly, syntactically incorrect. Code that is not compilable in Python 3 is automatically
excluded from the study. Some examples where the Boa AST is incorrect are listed in

19

3. Ad Hoc Parser Mining

Table 3.3: Examples of not correctly compiled Boa AST and whether they are excluded
from the final data set.

Original Code Boa AST Excluded from final dataset

**kwargs kwargs in some cases
*args args in some cases
densityarr[0,:] densityarr[0] [] yes
inBuf[:] inBuf[] yes
inBuf[:1] inBuf[1] no

Table 3.3. Unfortunately, there are cases where it is not possible to ascertain whether
the AST has been compiled correctly or not. Consequently, we cannot guarantee that
the newly generated Python code is semantically identical to the original source code.

3.2.4 Evaluation
In order to verify the quality of the parser recognition methodology, we performed an
evaluation based on a random sample analysis in which randomly selected methods from
the dataset were manually checked.

Test criteria and methodology

True positives were identified by systematically testing a random sample of methods. A
sample was defined as a randomly selected set of techniques, which were then analyzed
manually. The aim of this analysis was to determine whether the respective method
contained a parser. The classification was binary with the categories “Yes” (contains a
parser) and “No” (does not contain a parser).

For each method, the contained string variables were examined, as these typically form
the basis for further processing by parsing methods. The definition of what is considered
a parsing method has already been described in detail in Section 3.2.2.

Precision

The precision of the parser identification and slicing process was evaluated by analyzing a
sample of 126 parser snippets. Of these, 108 were correctly identified as parsers, while the
remaining snippets were incorrectly identified. To assess the precision more rigorously,
we calculated a 95% confidence interval for the proportion of correctly identified parser
snippets. Based on the analysis, the confidence interval for the precision of parser snippets
is approximately (0.8040, 0.9360). This indicates a 95% confidence level that the true
proportion of correctly identified parser snippets lies within this interval.

We examined the reasons behind the incorrect classification of certain code snippets
as parsers. Table 3.4 shows the occurrence of the reasons. Overall, the errors were
caused in three different stages of creating the slice: the string identification, ad hoc

20

3.2. Parser Determination

Table 3.4: False positive instances and the reasons behind their classification as such.
Out of 128 instances, 18 were identified as false positives

Reason for the classification as a false positive Amount
String method has no actual constraints on input 4
Issue with the source code generation 3
A wrong input is identified for this parser 3
Input is not of type string 3
Parser is just a smaller part of the identified snippet 2
Others 3

parser extraction, and source code generation. Further studies could specifically analyse
the identified causes of errors and develop strategies to minimize them. Examples of
this could be the improvement of string recognition through semantic analysis or the
differentiation between real and overwritten parsing methods. Such approaches would
contribute directly to improving precision and reducing the number of false positives.

Challenges in Recall Calculation

In evaluating the performance of a heuristic, recall is a critical metric. Recall is measuring
the proportion of true positive instances correctly identified out of all actual positives.
However, the significance of this metric depends on sufficient true positive instances
within the sample. When the prevalence of true positives in the dataset is low, the
calculation of the recall becomes inherently unstable and less meaningful.

We have examined a sample of 100 methods, out of which only 4 were identified as
actually containing a parser (true positives). This corresponds to a prevalence of only
4%. Such a low number of true positives poses two major challenges:

Statistical instability With only 4 true positives, every fluctuation in the identification
of true positives (overlooked or additionally recognized parsers) leads to a disproportionate
modification of the recall value. If, for example, only 3 out of the 4 parsers would be
identified, the recall drops to 75%. This sensitivity makes the metric unreliable for robust
conclusions.

Non-representative sample When the sample just contains a few true positives,
the distribution of positive instances in the dataset might not be represented correctly.
A recall calculated on such a sample may therefore not be generalizable and does not
adequately reflect the actual performance of the heuristic on the total population.

21

CHAPTER 4
Findings

This chapter deals with the summarization, analysis, and presentation of the obtained
metrics of the ad hoc parser dataset and is divided into nine parts, each focusing on
different aspects of ad hoc parsers: the frequency of ad hoc parsers (4.2), where they are
located (4.3), their size (4.4), information about the input variable (4.5), what functions
are used and how they are used (4.6), usage of regular expressions (4.7), the nature of
loops (4.8), and error handling (4.9).

4.1 Dataset Categorization and Analysis
For our analysis, we categorize the main dataset into subsets based on the parser size
and other features: 1. One Liners 2. Small 3. Medium 4. Large 5. Very-Large 6. File
Input 7. Test File 8. Test Method 9. Regular Expressions 10. Parsing Method.

4.1.1 Size-Based Categories
The size-based categories — One Liners, Small, Medium, Large, Very-Large — were
derived based on the number of lines of code of each parser. This separation allows us to
analyze trends across parsers of different sizes.

1. One Liners (1 line)
2. Small (2-5 lines)
3. Medium (6-10 lines)
4. Large (10 -50 lines)
5. Very-Large (>50 lines)

4.1.2 Feature-Based Categories
In addition to size-based categories, we also categorized parsers based on specific features.

23

4. Findings

1. File Inputs: Parsers process input from a file (Figure 4.1). 5% of all ad hoc parsers
use files as parser input.

Figure 4.1: Example of an ad hoc parser with file as input

2. Test Methods: This set contains parsers that are within a test method. All methods
starting with test_ are considered to be test methods.

Figure 4.2: Example of an ad hoc parser inside a test method

3. Test Files: If a file name starts with test, we consider those as test files. This set
contains all parsers located inside a test file.

Figure 4.3: Example of an ad hoc parser inside a test file

4. Parsing Methods: These are functions with the goal of parsing an input. If the
parameter of a function is also the input of an ad hoc parser and the returning
value of the function is the returning value of the same parser, we call this function
a parsing method. Figure 4.4 and Figure 4.6 show examples of parsing methods.

24

4.2. Frequency

Figure 4.4: Example of a parsing method

5. Literal Input: This subset contains only the parser taking literals as an input
variable. Figure 4.5 shows an ad hoc parser taking a literal as input. We want to
analyse if this kind of parser has a reduced complexity due to relying on predefined
patterns, reducing the need for complex tokenization rules.

Figure 4.5: Example of an ad hoc parser with literal as input

6. Regex Usings: A significant proportion of parsers rely on regular expressions (11%).

Figure 4.6: Examples of an ad hoc parser using regular expressions.

Overlap Between Categories

Some functional-based subsets overlap significantly. Figure 4.7 shows this intersection.
Test Methods often overlaps with Literal Inputs, probably due to the nature of test
methods using fixed strings as test input. Regex Using is also often used in combination
with File Inputs or Parsing Methods due to the variability of the input string and need
for pattern extraction, but less in test methods because the input strings are already
known and therefore there is less need for complex pattern matching.

4.2 Frequency
To know how common ad hoc parsers are in the wild, we looked at the number of projects
that contain at least one ad hoc parser. Out of 1710 projects, 1285 contain at least one
ad hoc parser, meaning that about 75% of projects use ad hoc parsing. Comparing the
projects that contain parsers with those that do not, we found that projects without

25

4. Findings

Literal Input

Regex Using

Parsing Method

Test Files

Test Methods

File Inputs

02500

4438

3973

3358

1632

1970

1784

0

100

200

300

400

500

In
te

rs
ec

ti
o
n
 s

iz
e

502

439
415 415

327

266

206

87
67

Figure 4.7: Distribution of input sources

parsers are much smaller in terms of both the number of files and the number of AST
nodes (Table 4.1). This may be because smaller projects are simpler and may not need
ad hoc parsing because their functionality is limited.

4.3 Location

We wanted to analyze where ad hoc parsers are located within the method. So we divided
the method into four equal sections: Start, Earlier Section, Later Section,
and Ending. Then we looked at which section of each method contained at least one
parsing task. One might think that the parsing component of a function would typically
be at the beginning, validating and transforming inputs before passing them on to the
rest of the program, which is not confirmed by looking at the results. 48.6% of the
methods contain parsing tasks in the first quarter (Beginning), 61.9% in the earlier
section. 45.4% in the later part and 20% in the end (Figure 4.8). So, although there
might be some tendency for using a parser in earlier sections of a method, parsing tasks

26

4.3. Location

Table 4.1: Comparison of Projects With and Without Parsers

No Parser At Least One Parser
files ast nodes files ast nodes

count 425 425 1,285 1,285
mean 9 72,972 62 2,491,491
std 18 379,478 169 10,417,270
min 1 36 1 208
25% 2 2,762 6 29,475
50% 4 9,071 18 165,130
75% 10 34,664 47 908,894
max 290 6,560,250 2,464 158,823,900

Ending

Later Section

Earlier Section

Beginning

020000

20.0%

45.4%

61.9%

48.6%

0

1000

2000

3000

4000

5000

6000

In
te

rs
ec

ti
o
n
 s

iz
e

17.7%

15.2%
13.9%

12.7%

8.4%
7.4%

4.6% 4.6%
3.6% 3.5%

2.7%
1.7% 1.6% 1.3% 0.9%

Figure 4.8: Positioning of parsers inside Methods is rather dense. It is uncommon to
pause the parsing task and finish it in later sections.

occur in all sections. This supports the idea that shotgun parsing — the mixing of
parsing and business logic — is a real phenomenon [22, 29]. But although parsers can be
found throughout in the whole method it seems that they are rather compact, i.e., it is
not common to start a parsing task at the beginning of a method and continue it at the
end, which is done by only 1.6% of all parsers, which indicates that developers prefer
to encapsulate parser logic within small code block rather than spreading it across the
whole method.

The standard deviation of the positions of a parser gives us insight into the scatter of the
parser relative to the size of the function: Half of the parsers have a standard deviation
less than 0.14 and 75% of the parsers less than 0.21 (Table 4.2). This means that ad hoc
parsers are rather compact and less scattered across methods, which leads to better

27

4. Findings

maintainability of ad hoc parsers.

Table 4.2: Summary Statistics for Scattering Metrics

Statistic Range StdDev MAD
Count 34,915 34,915 34,915
Mean 0.34 0.15 0.15
Standard Deviation (Std) 0.24 0.10 0.10
Minimum (Min) 0.00 0.00 0.00
25th Percentile (Q1) 0.14 0.06 0.07
Median (Q2) 0.31 0.14 0.14
75th Percentile (Q3) 0.50 0.21 0.22
Maximum (Max) 1.00 0.48 0.48

4.4 Size
This section contains a discussion about the size of ad hoc parsers. By definition, they
are small snippets of code, but besides the average line of code and number of expressions,
we also want to analyze if ad hoc parsers regularly use temporary variables to store
intermediate results or if they might prefer method chaining. Ad hoc parsers might be
syntactically compact but packed with complex functionality in a small space. Analyzing
the size and structure can provide insights into the readability and maintainability of
ad hoc parsers.

To measure structural complexity, we looked at cyclomatic complexity, method chaining,
function calls, and temporary variables. Cyclomatic complexity is expressed as the
number of linearly independent paths in a program. A higher cyclomatic complexity
indicates a code that is harder to understand, maintain, and hence has a higher probability
of errors [21]. The method chaining is calculated by summing up all method chaining in
the parser. It is only counted when consecutive method calls are applied to the result of
a previous method. An example is given in Table 4.3.

Chaining Count = Number of Consecutive Method Calls − 1

The median size of 4 lines of code supports the characterization of ad hoc parsers as
small code snippets. 19.9% of all parsers are even one-liners, while the existence of larger
parsers also suggests that some contain complex implementations.

On average, parsers take up 1.37% of the project code, which confirms that ad hoc parsers
are small components.

We found that parsers have a moderate cyclomatic complexity (median=2), but there
are extreme outliers (max=182), which suggests the existence of mega parsers with

28

4.4. Size

Table 4.3: Method Chaining Examples

Code Snippet Chaining
Count

Explanation

input.split() 0 Single method call
input.strip().split() 1 Two consecutive calls ⇒ 2 − 1 = 1
data.filter().map().reduce() 2 Three consecutive calls ⇒ 3 − 1 = 2

deeply nested logic. These outliers might represent technical debt that could benefit from
refactoring into smaller components. Method chaining is used rather sparsely. 90% of
the parsers do not use method chaining at all. Parsers call an average of 4.21 functions,
while file input processing parsers call slightly more functions (mean = 5.95). We applied
the Pearson correlation [4] to determine the linear relationships of our metrics (Table
4.4). There is a strong correlation with the use of temporary variables (ρ=0.80), which
confirms that procedural coding predominates.

Table 4.4: Pearson Correlation Matrix of Parser Implementation Characteristics

Temp Vars Func Calls Cyclo Compl Meth Chain
Temp Vars 1.00 0.80 0.60 0.11
Func Calls 0.80 1.00 0.78 0.27
Cyclo Compl 0.60 0.78 1.00 0.11
Meth Chain 0.11 0.27 0.11 1.00

Temp Vars: Temporary Variables, Func Call: Function Calls, Cyclo Compl: Cyclomatic
Complexity, Meth Chain: Method Chaining

This confirms that ad hoc parsers are predominantly small and also simple. Although
there are more complex and functionally dense parsers, in general ad hoc parsers prefer to
follow procedural patterns and favour explicit states (temporary variables) and modular
partitioning (separate function calls) over chained method calls.

RQ1 Where do we find ad hoc parsers in Python projects?
Ad hoc parsers are widespread in Python projects and are found in an average of 75.15%
of all projects. This high prevalence emphasises the popular use of ad hoc parsers.
Contrary to the expectation that parsers are mainly used at the beginning of a method
(for example, for input validation), there is a broad distribution across the entire body of
the method. The size and complexity of ad hoc parsers may vary, but in most cases they
are relatively small and simple or even single-line.

29

4. Findings

4.5 Input Sources
To investigate the input sources of ad hoc parsers, we distinguished between two kinds
of sources: the programmatic source, i.e., how the input source is accessed (method
argument, function call, dictionary lookup, etc.) and the actual source of the input
(file input, command-line argument, config, etc.). The examples in Table 4.5 show the
different types of input sources we have examined.

Table 4.5: Examples of different input sources

Input Source Example
Config

Literal

Command-line

File input

Database query

Environment
variable

Shell command
output

Network request

Figure 4.9 shows the distribution of the input variable source. 43.12% of the parsers
receive their input directly as a method argument, 26.26% via a function call, and
12.01% as a literal. In rare cases, the input variable is assigned values through variable
assignments (5.41%) and dictionary lookups (3.57%).

The most common source of input is method arguments (65.84%). Figure 4.10 shows how
programmatic sources are related to actual sources. We observe that a large proportion
of method arguments are not directly used as input, but also as function calls. Figure
shows an example where the actual input source is passed as a method argument, but
processed before being used as an input for ad hoc parsing. 25.45% of the sources are
literals being parsed, and 4.8% is text originating from file reads. There is still a large
group of unknown sources, which are mostly generated by function calls, of which we can
not know the exact source of the return value. Since our analysis is based on the dataset
of parsing code, we don’t have access to custom-written methods and therefore cannot
compute the input source. Also, we do not know where the parsing function is called,
and therefore, we do not know the actual input source of the method arguments.

30

4.6. Function Calls

The largest input source for parsers in test methods is literals (37.99%), suggesting that
ad hoc parsers are often used in test methods to prepare literals to be tested.

M
et

h
o
d
 a

rg
u
m

en
t

F
u
n
ct

io
n
 c

a
ll

L
it
er

a
l

V
a
ri

a
b
le

 a
ss

ig
n
m

en
t

D
ic

ti
o
n
a
ry

 l
o
o
k
u
p

A
tt

ri
b
u
te

 a
cc

es
s

S
tr

in
g
 c

o
n
ca

te
n
a
ti
o
n

O
th

er

Source

0

2000

4000

6000

8000

10000

12000

14000

F
re

q
u
en

cy

43.12%

26.26%

12.01%

5.41% 3.57% 2.03% 1.69%
5.92%

Programmatic Source of Input of Ad hoc Parsers All

M
et

h
o
d
 a

rg
u
m

en
t

U
n
k
n
o
w

n

L
it
er

a
l

F
il
e

in
p
u
t

C
o
n
fi
g

O
th

er

Actual Source

0

5000

10000

15000

20000

F
re

q
u
en

cy

65.84%

14.99% 12.71%

5.11%
0.56% 0.79%

Actual Source of Input of Ad hoc Parsers

Figure 4.9: Examples of different input sources.

4.6 Function Calls
In this section, we investigate the usage of function calls in ad hoc parsers. An under-
standing of how functions are used provides insight into parsing patterns. Table 4.6 lists

31

4. Findings

Figure 4.10: Sankey diagram, showing the connection between programmatic source and
actual source of the input.

the top 20 functions used in ad hoc parsers.

Ad hoc parsers typically employ several categories of functions:

• String manipulation functions (e.g., split, replace, strip) for tokenizing
and transforming text

• Type conversion functions (e.g., int, float, str) for transforming parsed
strings into appropriate data types

• Validation functions (e.g., startswith, isinstance, len) for checking input
validity

• Collection operations (e.g., join, map, slicing operations) for manipulating
parsed data

• I/O functions (e.g., read, get) for retrieving input data

To analyze function usage patterns, we categorized the function calls within ad hoc
parsers by name, frequency, and position within the parsers.

The top 5 functions (split, replace, int, encode, len) account for about 34% of
all function usage, suggesting that these form the core toolkit for parsing operations.
int, str, and float together account for about 9.4% of function calls, highlighting the
importance of type conversion in parsing. There are also non-parsing functions that are
widely used, such as join (6.76%), startswith(5.38%), and isinstance(4.67%).
This widespread use of startswith and isinstance demonstrates the importance of
input validation in parsing, as shown in Figure 4.6.

32

4.6. Function Calls

Table 4.6: Distribution of Python functions by category and usage. The column Function
% displays the relative amount of the function compared to all functions in the dataset,
while the column Parser % displays the percentage of parsers using that function

Function Category Function % Parser % Projects
split String Manipulation 11.8% 35.3% 939
replace String Manipulation 9.4% 21.1% 699
int Type Conversion 6.5% 13.4% 624
encode String Manipulation 3.3% 10.9% 493
len Inspection 3.2% 9.0% 502
find Validation 2.6% 5.8% 321
strip String Manipulation 2.1% 6.7% 478
sub Regular Expressions 2.0% 3.9% 305
join String Manipulation 2.0% 6.8% 481
format String Manipulation 1.9% 5.8% 311
startswith Validation 1.9% 5.4% 372
isinstance Validation 1.7% 4.7% 302
str Type Conversion 1.6% 4.7% 345
search Regular Expressions 1.5% 3.8% 286
group Collection Operations 1.4% 2.5% 223
float Type Conversion 1.4% 3.2% 256
match Regular Expressions 1.1% 3.0% 291
read I/O Functions 1.1% 3.1% 294
get Collection Operations 1.0% 3.3% 302
parse String Manipulation 1.0% 2.8% 192
open I/O Functions 0.9% 2.9% 286
lower String Manipulation 0.9% 2.8% 264
append Collection Operations 0.7% 2.2% 259
findall Regular Expressions 0.6% 1.7% 150
endswith Validation 0.6% 1.9% 201
loads I/O Functions 0.6% 2.1% 239
print I/O Functions 0.5% 1.1% 126
rfind Validation 0.5% 1.6% 146
compile Regular Expressions 0.5% 1.7% 179
escape Regular Expressions 0.5% 1.0% 93

33

4. Findings

The beginning section of ad hoc parsers is characterized by the presence of setup code,
including imports, configuration, and initial data retrieval, which may involve fewer
function calls overall. Functions such as get (50.32%) and read (46.85%) exhibit a high
proportion in this section. The earlier section is likely to be utilized for the preparation of
inputs, the validation of data, or the execution of initial parsing steps. Functions such as
startswith (38.72%), len (31.82%), and sub (27.83%) are prevalent in this section.

The majority of functions are located in the final quarter of the parser (42.23%), with
the ending section often responsible for final transformations, encoding, formatting, or
output generation. Further, we observed this tendency of the predominance of functions
in the ending section of an ad hoc parser. encode (52.31%), float (51.90%), replace
(48.52%), and int (49.69%) are notable examples for this. While functions such as
startswith or isinstance are typically associated with early-stage validation, they
also occur in later steps of the parser. This observation suggests that these functions are
not only employed for initialization but also intermediate checks during parsing.

4.7 Regular Expressions
In this section, we look at the use of regular expressions in various ad hoc parsers. Regular
expressions represent a formal method of pattern matching, which is regularly used in
ad hoc parsers. Understanding how regex is applied can inform static analysis techniques
and parser design practices.

Regular expressions are used by 11% of the parsers analysed. File input processing
parsers show the highest number of regular expressions (18%), which is most likely due
to the need for structured input processing when processing file content.

There is a strong correlation between parser size and the use of regular expressions.
Larger parsers have a much higher rate of regular expressions (54%), suggesting that
regular expressions become increasingly valuable as parser complexity grows.

4.7.1 Function Specialization by Category
File input parsers show heavy use of findall (31.02%) and search (25.23%), suggesting
that regular expressions are used to extract specific patterns from the contents of files.
Parsers in test files show an exceptionally high usage of the split method (37.092%),
suggesting that ad hoc parsers here use regex mainly for tokenisation. Test method
parsers mainly use escape (24.24%), match (26.52%), and search (24.24%), with no
use of split, indicating a focus on precise pattern validation. In general, the most used
regular expression functions are sub (26.44%), search (23.55%), and match (14.79%).

4.7.2 Positional Distribution of Regex Functions
The positional analysis of regex functions indicates special usage patterns across different
sections of the parser (Table 4.7). Regex functions are mainly used in later stages of the

34

4.7. Regular Expressions

parser. 38.2% of all regex function calls are in the last 25% of parsers, which suggests
that regex is often used for refinement or transformations of already processed data.

Table 4.7: Distribution of regex functions across parser sections

Regex Function Beginning Earlier Section Later Section Ending
compile 45 (11.1%) 64 (15.8%) 75 (18.5%) 222 (54.7%)
escape 24 (4.5%) 91 (17.1%) 183 (34.4%) 234 (44.0%)
findall 92 (19.3%) 136 (28.5%) 103 (21.6%) 146 (30.6%)
finditer 24 (16.0%) 44 (29.3%) 46 (30.7%) 36 (24.0%)
match 152 (17.1%) 197 (22.2%) 217 (24.4%) 322 (36.3%)
search 256 (18.1%) 280 (19.8%) 385 (27.2%) 493 (34.9%)
split 139 (25.6%) 90 (16.6%) 150 (27.6%) 164 (30.2%)
sub 229 (14.4%) 346 (21.8%) 340 (21.4%) 673 (42.4%)
subn 2 (28.6%) 2 (28.6%) 0 (0.0%) 3 (42.9%)
Total 963 (16.0%) 1250 (20.8%) 1499 (25.0%) 2293 (38.2%)

compile and escape show a strong tendency toward later positions, probably due to
optimization of repetitive pattern use, while findall and finditer have a balanced
distribution.

Only 16% of regex functions are used at the beginning, while 38.3% are used in the
ending section. This indicates that regex is mostly used for final processing instead of
initial tokenisation.

4.7.3 Pattern Usage Distribution of Regex Functions

To understand the use of regular expression patterns, we categorized each pattern based
on its structural features. This categorization was inspired by prior research on regex
feature usage by Chapman and Stolee [7]. The pattern ^[0-9]+$, for example, contains
five different types of tokens. It has the start anchor (STR) and the end anchor (END),
which are specified using the caret ^ at the beginning and the dollar sign $ at the end
of a pattern, the custom character class (CCR) using pairs of brackets [..]. It also
utilizes a range (RNG), specified by a hyphen [0-9] and additional repetition (ADD)
expressed by using plus +. The full list of features and abbreviations is provided in Table
4.8. CCC is the most prevalent category, appearing in about 56% of patterns. Repetition
Operators (ADD: 46.7%, KLE: 36.1%, QST: 26.6%) are widely used. Compared to the
findings of Chapman and Stolee [7] we found that some features like CCC (+15.2%) and
STR (+11.2%) have a much higher prevalence in ad hoc parsers, while features like KLE
(-11.3%) and ANY (-10.1%) are used way less compared to the results of Chapman and
Stolee [7]. This suggests that the programmers use less ambiguous regular expressions
for ad hoc parsers. ANY and KLE can lead to overmatching, while CCC and ADD are
more restrictive.

35

4. Findings

Table 4.8: Regex Pattern Categories with Usage Statistics

Code Description Example nPatterns (%) nProjects (%)
CCC custom character class [aeiou] 185 (48.1%) 91 (66.9%)
ADD one-or-more repetition z+ 175 (45.5%) 78 (57.4%)
STR start-of-line ^{} 144 (37.4%) 68 (50.0%)
CG capture group (caught) 158 (41.0%) 67 (49.3%)
RNG character range [a-z] 106 (27.5%) 60 (44.1%)
KLE zero-or-more repetition .* 127 (33.0%) 59 (43.4%)
ANY any non-newline char . 93 (24.2%) 47 (34.6%)
QST zero-or-one repetition z? 97 (25.2%) 44 (32.4%)
END end-of-line \$ 67 (17.4%) 39 (28.7%)
NCCC negated character class [^{}qwxf] 67 (17.4%) 37 (27.2%)
DEC decimal digits \d 58 (15.1%) 35 (25.7%)
WSP whitespace \s 92 (23.9%) 30 (22.1%)
OR logical or a|b 50 (13.0%) 27 (19.9%)
WRD word characters \w 33 (8.6%) 21 (15.4%)
LZY lazy repetition z+? 33 (8.6%) 16 (11.8%)
SNG exact repetition z\{8\} 18 (4.7%) 13 (9.6%)
NCG non-capturing group (?:b) 15 (3.9%) 13 (9.6%)
NWRD non-word chars \W 9 (2.3%) 8 (5.9%)
NWSP non-whitespace \S 10 (2.6%) 6 (4.4%)
OPT options wrapper (?i) 16 (4.2%) 6 (4.4%)
NLKA negative lookahead a(?!yz) 5 (1.3%) 5 (3.7%)
LKB positive lookbehind (?<=a)bc 4 (1.0%) 4 (2.9%)
NLKB negative lookbehind (?<!x)yz 3 (0.8%) 3 (2.2%)
LWB at least n repetitions z{15,} 3 (0.8%) 3 (2.2%)
PNG named capture group (?P<name>x) 7 (1.8%) 3 (2.2%)
DBB bounded repetition z{3,8} 3 (0.8%) 3 (2.2%)
LKA positive lookahead a(?=bc) 2 (0.5%) 2 (1.5%)
WNW word boundary \b 6 (1.6%) 2 (1.5%)
ENDZ absolute end of string \Z 2 (0.5%) 1 (0.7%)

Note: Percentages calculated relative to total patterns (385) and projects (136).

4.8 Loops

Parsers employ various looping constructs to iterate over the input string. In this section,
we examine these constructs. Therefore, we categorized loops based on type (for,
while), nesting depth, and bound complexity. Additionally, we also investigated the
use of list comprehensions and sequence operations (map, index, enumerate, zip,
filter) as alternatives to explicit loops.

Explicit loops occur relatively often. 26.58% of our analyzed ad hoc parsers had explicit
loops (24.46% contain for statements, and 2.9% contain while statements). Parsers
with file processing tasks have the highest prevalence of explicit loops (47.59%). This
may result from incremental processing in file processing tasks, where files are read line

36

4.9. Error Handling

by line.

The nesting depth of loops is rather shallow. 73.42% of loops have no nesting. 22.63%
have a single level of nesting, 3% have a nesting depth of 2 and fewer than 1% have a
nesting ≥ 3.

We defined three categories of loop bounds: 1. Constant (4.1%): Fixed iteration count.
2. Linear on input (48.2%): Directly proportional to input size. 3. Complex (47.8%):
Dependent on conditions beyond simple input length.

The prevalence of shallow nesting and linear bound suggests that ad hoc parsers generally
favor simple, straightforward iteration strategies. However, there is a significant presence
of complex loop bounds, indicating that many parsers involve a non-trivial iteration logic.

The variation in loop usage across different parser categories (e.g, file input vs. regex-
based parsing) indicates that the nature of the parsing task influences the loop structure
and complexity.

4.9 Error Handling
This section deals with error handling within the parsers. The results include patterns
of how parsers handle exceptions. Table 4.9 lists the occurrence of exception handling
across the datasets. Only 14.0% of parsers contain explicit exception handling using try
blocks. 13.4% contain except blocks, and only 1.0% implement a finally clause. 4.1%
explicitly raise an exception.

Table 4.9: Exception Handling Statistics Across Different Code Categories

Category try except finally explicit raise
All 14.0% 13.4% 1.0% 4.1%
Very-Large 39.4% 39.4% 8.6% 19.9%
Large 38.3% 37.2% 3.0% 15.8%
Medium 27.7% 26.4% 2.0% 6.1%
Small 11.5% 10.8% 0.7% 2.5%
One Liners 0.0% 0.0% 0.0% 0.0%
Test Files 8.7% 7.4% 1.9% 1.6%
Test Methods 5.3% 3.5% 1.9% 0.3%
File Inputs 30.0% 27.7% 3.9% 7.9%
Regex using 15.8% 15.0% 2.4% 7.1%
Parsing Method 13.3% 13.2% 0.3% 5.4%
Possible Throwing 18.4% 17.2% 2.0% 5.7%

Parsers that read their input from files show the highest usage (30.0%) of error handling.
This significantly higher value draws attention to the need to act on the I/O exception
handling of files. Test methods, on the other hand, show relatively low exception handling
(only 5.4% of parsers in test methods use try blocks) but have a relatively high proportion

37

4. Findings

of finally clauses (1.9%) relative to general exception handling, which is presumably
due to cleanup operations of the test environments.

There is a strong correlation between the size of parsers and exception handling. Ultra-
large parsers show the highest proportion of exception handling (38.3% of try blocks and
exception blocks), 8.6% use finally blocks, and 19.9% explicitly throw exceptions. The
large parser set shows a similarly high number of try blocks (38.3%) with a noticeably
lower use of finally clauses (3%). Medium parsers show a moderate use of try blocks
(27.7%), while small parsers show a significantly lower number (11.5%). 29.1% of the
parsers are using functions that possibly raise exceptions; however, only 18.4% of these
exception-throwing parsers include explicit error handling, which means that 81.6% of the
parsers that could throw exceptions are not handled locally but are propagated further.

This analysis shows that most parsers lack exception handling. The limited implementa-
tion of exception handling combined with a relatively high number of parsers that may
throw unhandled exceptions indicates that many ad hoc parsers may be susceptible to
errors occurring when handling invalid inputs. This finding emphasizes the importance of
robust error-handling policies for parser design, especially for parsers with untrusted input.
RQ2 What are the syntactic characteristics of ad hoc parsers?
The input source of ad hoc parsers is mainly method arguments, 12.71% of the parsers
process literals. 5.11% of the parsers obtain the text to be processed from files. The
most frequently used functions are split, replace, int, encode, len. In addition
to the parsing functions, functions for type conversion (int, str, float) or for input
validation (startswith, isinstance) are frequently used. Regular expressions are
used by 11% of all parsers and even more by larger ad hoc parsers. Regular expressions
are mainly used in later phases of parsing for refinement or transformation of already
processed data. The simple nature of ad hoc parsers is also reflected in the use of loop
constructs. ad hoc parsers favour explicit for-loops with low nesting depth. Only 13.98%
of ad hoc parsers handle exceptions locally. 81.6% of parsers that could potentially throw
exceptions have no local error handling.
These results show that ad hoc parsers in Python typically are compact, procedural
structures and contain limited exception handling. Ad hoc parsers often use string ma-
nipulation functions and also regular expressions. Different variations in size, complexity,
and exception handling indicate different parsing requirements and potential robustness
issues.

4.10 Threats to Validity
This section covers the discussion about internal and external validity.

4.10.1 Internal Validity
Identification of string variables: We inferred string variables based on heuristics
and name conventions. This could lead to misclassifications.

38

4.10. Threats to Validity

False positive Parser: Like shown in Table 3.4, 14% of the ad hoc parsers were falsely
identified as such.

Boa AST limitation: The AST of Boa does not cover all code constructs (e.g.,
slicing, variable-positional and variable-keyword arguments, lambda expressions inside
list comprehensions). To mitigate this, we tried to infer these constructs where it was
possible. Due to missing information, some code snippets were not compilable and
therefore excluded from the study.

4.10.2 External Validity
Scope of the dataset: Our thesis is limited by the scope of our test set. Due to a
bug in Boa and time limitation, it was not possible to generate an ad hoc parser dataset
for all the 102.424 projects on Boa.

Programming language: The results of this study only apply to Python projects
and ad hoc parser code snippets that can be compiled with Python 3.13. However, due
to our modular structure and due to using Boa with its own AST, this research can be
extended to other programming languages supported by Boa with few adaptations.

4.10.3 Construct Validity
Definition of ad hoc parser: Our definition of ad hoc parser (Section 3.2.2) is very
broad. Our detection is based on the predefined list of methods that typically perform
string operations (Table 3.2). Due to the fact that Python is dynamically typed, we
cannot assure that these functions are, in fact, performed on strings.

Recall issues: As described in 3.2.4, due to the low prevalence of true positives in the
sample size, the calculation of the recall was not possible.

39

CHAPTER 5
Conclusion and Future Work

This thesis sheds light on the usage of ad hoc parsers in Python. We have successfully
identified ad hoc parsers and analyzed them. We have shown that ad hoc parsers are

• Widespread: We found ad hoc parsers in the majority of projects.
• Small: With a median size of 4 lines of code ad hoc parsers are rather small.
• Compact: Ad hoc parsing is mixed with business logic, but is compact in itself.

Meaning it is unlikely to start a parsing process at the beginning of a method,
pausing it for other logic, and then continuing the parsing process later on.

• Simple: Most ad hoc parsers have a low cyclomatic complexity, prefer a straight-
forward control flow, and use low nesting.

• Procedural: Ad hoc tend to be written in a procedural style. They use temporary
variables and prefer separate function calls over method chaining.

• Error prone: Exception handling in ad hoc parsers is rare. 80% of possibly
error-throwing parsers have no exception handling, making them vulnerable to
runtime errors.

Now we know that ad hoc parsers often use string manipulating functions (e.g., split,
split or strip), type conversion functions (e.g., int, float, str), and validation
functions (e.g., int, float, str). We also found that 10% of ad hoc parsers use
regular expressions, which are rather used at the end of ad hoc parsing. The top regular
expressions features used in ad hoc parsers are custom character classes ([aeiou]),
one-or-more repetition (z+), start of line (^{}), and group capturing ((caught)).

In addition to these results, we provide an infrastructure for future work. We have created
a dataset containing 34,925 snippets of real-world ad hoc parsers. This dataset can be
utilized for future research. Our Boa script for generating this dataset can be adapted
for other programming languages that are supported by Boa, like Java or Kotlin. As
we are one of the first to work extensively with Boas program analysis tools, like graph

41

5. Conclusion and Future Work

traversal in the Python dataset, we could identify some issues and limitations that were
not documented until now. We informed the developers of Boa and thus contributed to
further development and improvement of this framework.

We found that projects not containing ad hoc parsers are smaller in terms of file size and
AST nodes compared to projects containing ad hoc parsers. More precise analysis could
give insights into why ad hoc parsers are not needed in these projects. The dataset and
result provided can be used to train machine learning models to identify ad hoc parsers.
Future research could also go on to more precisely analyze input sources of ad hoc parsers.
Due to time constraints, we were not able to trace the source of the input outside of the
method that contains the ad hoc parsers. With Boa closing open issues, the study can
be reproduced to generate a larger dataset covering more ad hoc parsers. Further studies
might investigate the chronological code change of ad hoc parsers. By looking at bug-fix
commits, this could give insights into whether ad hoc parsers tend to be buggy or not.

42

List of Figures

2.1 Boa code snippet . 4
2.2 Dependency Graphs . 6

3.1 Workflow of detecting ad hoc parsers . 10
3.2 Ad hoc parser example with CFG . 10
3.3 Workflow of Parser Slicing . 11
3.4 Docstring example . 12
3.5 String identifying regular expression . 12
3.6 Workflow of parser set generation . 16
3.7 Comparison of ad hoc parser snippet . 19

4.1 Ad hoc parser: File input . 24
4.2 Ad hoc parser: Test method Input . 24
4.3 Ad hoc parser: Test file . 24
4.4 Ad hoc parser: Parsing method . 25
4.5 Ad hoc parser: Literal input . 25
4.6 Ad hoc parser: Regex using . 25
4.7 Distribution of input sources . 26
4.8 Parser Positioning . 27
4.9 Examples of different input sources . 31
4.10 Input Sources: Sankey Diagram . 32

43

List of Tables

2.1 Summary Statistics of the Dataset 2022 February/Python 3

3.1 Return type calculation . 13
3.2 Methods divided into categories . 15
3.3 Examples of not correctly compiled Boa AST 20
3.4 False positive instances . 21

4.1 Comparison of Projects With and Without Parsers 27
4.2 Summary Statistics for Scattering Metrics 28
4.3 Method Chaining Examples . 29
4.4 Pearson Correlation Matrix of Parser Implementation Characteristics . . 29
4.5 Examples of different input sources . 30
4.6 Function Metrics . 33
4.7 Distribution of regex functions across parser sections 35
4.8 Regex Pattern Categories with Usage Statistics 36
4.9 Exception Handling . 37

45

List of Algorithms

3.1 Parser-Detection . 17

47

Bibliography

[1] Nour AlAbwaini, Amal Aldaàje, Tamara Jaber, Mohammad Abdallah, and Ab-
delfatah Tamimi. Using program slicing to detect the dead code. In 2018
8th International Conference on Computer Science and Information Technology
(CSIT), pages 230–233, 2018. doi: 10.1109/CSIT.2018.8486334. URL https:
//doi.org/10.1109/CSIT.2018.8486334.

[2] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, July 1970. ISSN
0362-1340. doi: 10.1145/390013.808479. URL https://doi.org/10.1145/
390013.808479.

[3] Muhammad Asaduzzaman, Muhammad Ahasanuzzaman, Chanchal K. Roy, and
Kevin A. Schneider. How developers use exception handling in java? In Proceedings
of the 13th International Conference on Mining Software Repositories, MSR ’16,
page 516–519, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450341868. doi: 10.1145/2901739.2903500. URL https://doi.org/
10.1145/2901739.2903500.

[4] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson Correlation
Coefficient, pages 1–4. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN
978-3-642-00296-0. doi: 10.1007/978-3-642-00296-0_5. URL https://doi.org/
10.1007/978-3-642-00296-0_5.

[5] Sergey Bratus, Trey Darley, Michael Locasto, Meredith L. Patterson, Rebecca bx
Shapiro, and Anna Shubina. Beyond Planted Bugs in "Trusting Trust": The Input-
Processing Frontier. IEEE Security Privacy, 12(1):83–87, 2014. doi: 10.1109/MSP.
2014.1. URL https://doi.org/10.1109/MSP.2014.1.

[6] João M.P. Cardoso, José Gabriel F. Coutinho, and Pedro C. Diniz. Chapter 4 - source
code analysis and instrumentation. In João M.P. Cardoso, José Gabriel F. Coutinho,
and Pedro C. Diniz, editors, Embedded Computing for High Performance, pages
99–135. Morgan Kaufmann, Boston, 2017. ISBN 978-0-12-804189-5. doi: https://doi.
org/10.1016/B978-0-12-804189-5.00004-1. URL https://www.sciencedirect.
com/science/article/pii/B9780128041895000041.

49

https://doi.org/10.1109/CSIT.2018.8486334
https://doi.org/10.1109/CSIT.2018.8486334
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/390013.808479
https://doi.org/10.1145/2901739.2903500
https://doi.org/10.1145/2901739.2903500
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1109/MSP.2014.1
https://www.sciencedirect.com/science/article/pii/B9780128041895000041
https://www.sciencedirect.com/science/article/pii/B9780128041895000041

[7] Carl Chapman and Kathryn T. Stolee. Exploring regular expression usage and context
in python. In Proceedings of the 25th International Symposium on Software Testing
and Analysis, ISSTA 2016, page 282–293, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450343909. doi: 10.1145/2931037.2931073.
URL https://doi.org/10.1145/2931037.2931073.

[8] Robert Dyer and Jigyasa Chauhan. An Exploratory Study on the Predominant
Programming Paradigms in Python Code. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. ACM, nov 2022. doi: 10.1145/3540250.3549158. URL
https://doi.org/10.1145/3540250.3549158.

[9] Robert Dyer, Hoan Nguyen, Hridesh Rajan, and Nguyen Tien. Boa: A Language and
Infrastructure for Analyzing Ultra-Large-Scale Software Repositories. In Proceedings
of the 35th International Conference on Software Engineering (San Francisco, CA)
(ICSE’13), pages 422–431, 2013. ISBN 978-1-4673-3073-2. doi: 10.1109/ICSE.2013.
6606588. URL https://doi.org/10.1109/ICSE.2013.6606588.

[10] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program Dependence
Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst., 9(3):
319–349, jul 1987. ISSN 0164-0925. doi: 10.1145/24039.24041. URL https:
//doi.org/10.1145/24039.24041.

[11] Samuel W Flint, Ali M Keshk, Robert Dyer, and Hamid Bagheri. How do developers
use type inference: an exploratory study in kotlin. Empirical Software Engineering,
30(2):1–29, 2025. doi: 10.1007/s10664-024-10585-y. URL https://doi.org/10.
1007/s10664-024-10585-y.

[12] Miles Frantz, Ya Xiao, Tanmoy Sarkar Pias, Na Meng, and Danfeng Yao. Methods
and benchmark for detecting cryptographic api misuses in python. IEEE Transactions
on Software Engineering, 50(5):1118–1129, 2024. doi: 10.1109/TSE.2024.3377182.
URL https://doi.org/10.1109/TSE.2024.3377182.

[13] Keith Gallagher and James Lyle. Using program slicing in software maintenance.
Software Engineering, IEEE Transactions on, 17:751–761, 09 1991. doi: 10.1109/32.
83912. URL https://doi.org/10.1109/32.83912.

[14] Dan Gopstein, Hongwei Henry Zhou, Phyllis Frankl, and Justin Cappos. Prevalence
of confusing code in software projects: atoms of confusion in the wild. In Proceedings
of the 15th International Conference on Mining Software Repositories, MSR ’18,
page 281–291, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450357166. doi: 10.1145/3196398.3196432. URL https://doi.org/
10.1145/3196398.3196432.

[15] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. Large language models for software

50

https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1145/3540250.3549158
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1007/s10664-024-10585-y
https://doi.org/10.1007/s10664-024-10585-y
https://doi.org/10.1109/TSE.2024.3377182
https://doi.org/10.1109/32.83912
https://doi.org/10.1145/3196398.3196432
https://doi.org/10.1145/3196398.3196432

engineering: A systematic literature review. ACM Trans. Softw. Eng. Methodol.,
33(8), December 2024. ISSN 1049-331X. doi: 10.1145/3695988. URL https:
//doi.org/10.1145/3695988.

[16] Qing Huang, Zhou Zou, Zhenchang Xing, Zhenkang Zuo, Xiwei Xu, and Qinghua Lu.
Ai chain on large language model for unsupervised control flow graph generation for
statically-typed partial code, 2023. URL https://doi.org/10.48550/arXiv.
2306.00757.

[17] Mary Beth Kery, Claire Le Goues, and Brad A. Myers. Examining programmer
practices for locally handling exceptions. In Proceedings of the 13th International
Conference on Mining Software Repositories, MSR ’16, page 484–487, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450341868. doi: 10.
1145/2901739.2903497. URL https://doi.org/10.1145/2901739.2903497.

[18] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe. Dependence graphs
and compiler optimizations. In Proceedings of the 8th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’81, page 207–218, New
York, NY, USA, 1981. Association for Computing Machinery. ISBN 089791029X. doi:
10.1145/567532.567555. URL https://doi.org/10.1145/567532.567555.

[19] Ivano Malavolta, Kishan Nirghin, Gian Luca Scoccia, Simone Romano, Salva-
tore Lombardi, Giuseppe Scanniello, and Patricia Lago. Javascript dead code
identification, elimination, and empirical assessment. IEEE Transactions on Soft-
ware Engineering, 49(7):3692–3714, 2023. doi: 10.1109/TSE.2023.3267848. URL
https://doi.org/10.1109/TSE.2023.3267848.

[20] Benjamin Mariano, Yanju Chen, Yu Feng, Shuvendu K. Lahiri, and Isil Dillig. Demys-
tifying loops in smart contracts. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’20, page 262–274, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450367684. doi: 10.
1145/3324884.3416626. URL https://doi.org/10.1145/3324884.3416626.

[21] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4):308–320, 1976. doi: 10.1109/TSE.1976.233837. URL https://doi.org/
10.1109/TSE.1976.233837.

[22] Falcon Momot, Sergey Bratus, Sven M. Hallberg, and Meredith L. Patterson. The
seven turrets of babel: A taxonomy of langsec errors and how to expunge them. In
2016 IEEE Cybersecurity Development (SecDev), pages 45–52, 2016. doi: 10.1109/
SecDev.2016.019. URL https://doi.org/10.1109/SecDev.2016.019.

[23] Suman Nakshatri, Maithri Hegde, and Sahithi Thandra. Analysis of exception
handling patterns in java projects: an empirical study. In Proceedings of the
13th International Conference on Mining Software Repositories, MSR ’16, page
500–503, New York, NY, USA, 2016. Association for Computing Machinery. ISBN

51

https://doi.org/10.1145/3695988
https://doi.org/10.1145/3695988
https://doi.org/10.48550/arXiv.2306.00757
https://doi.org/10.48550/arXiv.2306.00757
https://doi.org/10.1145/2901739.2903497
https://doi.org/10.1145/567532.567555
https://doi.org/10.1109/TSE.2023.3267848
https://doi.org/10.1145/3324884.3416626
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/SecDev.2016.019

9781450341868. doi: 10.1145/2901739.2903499. URL https://doi.org/10.
1145/2901739.2903499.

[24] Yun Peng, Yu Zhang, and Mingzhe Hu. An empirical study for common lan-
guage features used in python projects. In 2021 IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER), pages 24–35,
2021. doi: 10.1109/SANER50967.2021.00012. URL https://doi.org/10.1109/
SANER50967.2021.00012.

[25] Michael Schröder and Jürgen Cito. Grammars for free: toward grammar inference
for ad hoc parsers. In Proceedings of the ACM/IEEE 44th International Conference
on Software Engineering: New Ideas and Emerging Results, ICSE-NIER ’22, page
41–45, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392242. doi: 10.1145/3510455.3512787. URL https://doi.org/10.
1145/3510455.3512787.

[26] Michael Schröder, Marc Goritschnig, and Jürgen Cito. An Exploratory Study of
Ad Hoc Parsers in Python, 2023. URL https://doi.org/10.48550/arXiv.
2304.09733. This is a report registered at MSR 2023.

[27] Florian Sihler, Lukas Pietzschmann, Raphael Straub, Matthias Tichy, Andor Diera,
and Abdelhalim Dahou. On the anatomy of real-world r code for static analysis,
2024. URL https://doi.org/10.1145/3643991.3644911.

[28] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. Survey of machine learning
techniques for malware analysis. Computers Security, 81:123–147, 2019. ISSN
0167-4048. doi: 10.1016/j.cose.2018.11.001. URL https://doi.org/10.1016/
j.cose.2018.11.001.

[29] Katherine Underwood and Michael E. Locasto. In search of shotgun parsers in
android applications. In 2016 IEEE Security and Privacy Workshops (SPW), pages
140–155, 2016. doi: 10.1109/SPW.2016.41. URL https://doi.org/10.1109/
SPW.2016.41.

[30] Mark Weiser. Program Slicing. IEEE Trans. Softw. Eng., 10(4):352–357, 1984. ISSN
0098-5589. doi: 10.1109/TSE.1984.5010248. URL https://doi.org/10.1109/
TSE.1984.5010248.

[31] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief
survey of program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36, March 2005.
ISSN 0163-5948. doi: 10.1145/1050849.1050865. URL https://doi.org/10.
1145/1050849.1050865.

[32] Zhaogui Xu, Ju Qian, Lin Chen, Zhifei Chen, and Baowen Xu. Static slicing for
python first-class objects. In 2013 13th International Conference on Quality Software,
pages 117–124, 2013. doi: 10.1109/QSIC.2013.50. URL https://doi.org/10.
1109/QSIC.2013.50.

52

https://doi.org/10.1145/2901739.2903499
https://doi.org/10.1145/2901739.2903499
https://doi.org/10.1109/SANER50967.2021.00012
https://doi.org/10.1109/SANER50967.2021.00012
https://doi.org/10.1145/3510455.3512787
https://doi.org/10.1145/3510455.3512787
https://doi.org/10.48550/arXiv.2304.09733
https://doi.org/10.48550/arXiv.2304.09733
https://doi.org/10.1145/3643991.3644911
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1109/SPW.2016.41
https://doi.org/10.1109/SPW.2016.41
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/1050849.1050865
https://doi.org/10.1145/1050849.1050865
https://doi.org/10.1109/QSIC.2013.50
https://doi.org/10.1109/QSIC.2013.50

[33] Yi Yang, Ana Milanova, and Martin Hirzel. Complex python features in the
wild. In Proceedings of the 19th International Conference on Mining Software
Repositories, MSR ’22, page 282–293, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450393034. doi: 10.1145/3524842.3528467. URL
https://doi.org/10.1145/3524842.3528467.

53

https://doi.org/10.1145/3524842.3528467

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background and Related Work
	Background
	Related Work

	Ad Hoc Parser Mining
	Identification of String Variables
	Parser Determination

	Findings
	Dataset Categorization and Analysis
	Frequency
	Location
	Size
	Input Sources
	Function Calls
	Regular Expressions
	Loops
	Error Handling
	Threats to Validity

	Conclusion and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

