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Kurzfassung

Große Sprachmodelle (Large Language Models, LLMs) haben bemerkenswerte Fähigkeiten
bei der Erzeugung kohärenter und kontextuell relevanter Antworten gezeigt. Dennoch stellt
ihre Neigung zur Generierung von Halluzinationen – also plausibler, aber falscher oder
nicht treuer Informationen – eine erhebliche Herausforderung für praktische Anwendungen
dar. Daher wurde die Erkennung solcher Halluzinationen in von LLMs erzeugten Texten
intensiv erforscht. Frühere Studien haben sich jedoch überwiegend auf grobkörnige Ansätze
oder textbasierte Spanerkennung gestützt, was die präzise Erkennung von Halluzinationen
auf der Ebene einzelner Wissenseinheiten erschwert.

In dieser Arbeit präsentieren wir ein Framework zur Halluzinationserkennung auf Wis-
sensebene, das Halluzinationen auf der Ebene strukturierter Wissenseinheiten – konkret
Triplets (arg1, relation, arg2) – identifiziert. Unser Ansatz extrahiert und überprüft
Triplets sowohl aus den von LLMs generierten Ausgaben als auch aus Referenztexten und
vergleicht diese beiden Mengen zur Erkennung von Halluzinationen. Durch den Einsatz
von LLMs sowohl für die Triplet-Extraktion als auch für die Validierung vermeiden wir
komplexe mehrstufige Pipelines und erreichen gleichzeitig eine hohe Erkennungsgenauig-
keit.

Zur Evaluation unseres Ansatzes führten wir Experimente zur Halluzinationserkennung
durch, wobei wir uns auf besonders herausfordernde Fälle konzentrierten – darunter abso-
lute Erfindungen, kontextuelle Erfindungen und detaillierte Informationsverfälschungen.
Unser Framework wurde mit halluzinierten Daten getestet, die mithilfe des BioASQ-
Datensatzes und unseres Hallucinated Data Generators erzeugt wurden.

Die experimentellen Ergebnisse zeigen, dass unser Ansatz ein starkes Gleichgewicht
zwischen Sensitivität (0,88) und Spezifität (0,81) erreicht und die bisherige Methode zur
Halluzinationserkennung auf Wissensebene deutlich übertrifft. Im Vergleich zu bestehen-
den Triplet-basierten Verifizierungsmodellen verbessert unser Framework nicht nur die
Erkennungsgenauigkeit, sondern reduziert auch die Anzahl notwendiger Verifizierungsan-
fragen und steigert so die Effizienz.

Darüber hinaus heben unsere Experimente die entscheidende Rolle von Prompting-
Techniken bei der Verbesserung der Halluzinationserkennung hervor. Strukturierte und
detaillierte Anweisungen steigern die Faktentreue erheblich, während Few-Shot-Beispiele
und Chain-of-Thought-Reasoning die Spezifität verbessern. Unser leistungsstärkster
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Prompt, der detaillierte Anweisungen mit Chain-of-Thought-Reasoning kombinierte,
erzielte eine Sensitivität von 0,88 und eine Spezifität von 0,81. Diese Ergebnisse unter-
streichen den Einfluss von Prompt Engineering auf die Optimierung der Halluzinations-
erkennung bei LLMs.

Unsere Studie stellt ein effizientes und fein abgestuftes Framework zur Erkennung von
Halluzinationen vor und bietet eine skalierbare und präzise Lösung zur wissensbasierten
Faktenerkennung in großen Sprachmodellen.



Abstract

Large language models (LLMs) have demonstrated remarkable capabilities in generating
coherent and contextually relevant responses. However, their tendency to produce
hallucinations—plausible but incorrect or unfaithful information—poses a significant
challenge for practical applications. As a result, hallucination detection in LLM-generated
outputs has been extensively studied. However, previous studies have primarily relied on
coarse-grained approaches or text-based span detection, making it challenging to detect
hallucinations at precise knowledge units.

In this thesis, we present a knowledge-level hallucination detection framework that
identifies hallucinations at the level of structured knowledge units, specifically triplets
(arg1, relation, arg2). Our approach extracts and verifies triplets from both LLM-
generated outputs and reference texts, comparing these two sets for hallucination detection.
By leveraging LLMs for both triplet extraction and validation, our method circumvents
the need for complex multi-step pipelines while maintaining high detection accuracy.

To evaluate our approach, we conducted hallucination detection experiments focusing on
challenging hallucination cases, including Absolute Fabrication, Contextual Fabrication,
and Detailed Information Modification. We tested our framework using hallucinated
data generated with the BioASQ dataset and our Hallucinated Data Generator.

Experimental results demonstrate that our method achieves a strong balance between
sensitivity (0.88) and specificity (0.81), significantly outperforming the previous state-of-
the-art knowledge-level detection approach. Compared to existing triplet-based verifica-
tion models, our framework not only enhances hallucination detection accuracy but also
reduces the number of verification requests, improving efficiency.

Furthermore, our experiments highlight the critical role of prompting techniques in
enhancing hallucination detection. Structured and detailed instructions significantly
improve factual accuracy, while few-shot examples and chain-of-thought reasoning con-
tribute to better specificity. Our best-performing prompt, which combined detailed
instructions with chain-of-thought reasoning, achieved 0.88 sensitivity and 0.81 specificity.
These findings underscore the impact of prompt engineering in optimizing LLM-based
hallucination detection.

Our study introduces an efficient and fine-grained hallucination detection framework,
providing a scalable and accurate solution for knowledge-level fact verification in LLMs.
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CHAPTER 1
Introduction

Recent advancements in neural architectures, massive pre-training, and large-scale
datasets have enabled language models to produce coherent, contextually relevant,
and highly sophisticated text responses [ZYW+23]. However, alongside these impressive
developments, there is growing concern about LLMs’ propensity to produce hallucinations
[BCL+23], which lead to content that appears credible but lacks factual accuracy. This
issue is further exacerbated by LLMs’ ability to generate highly persuasive, human-like
responses, making it particularly difficult to identify these hallucinations. As a result, de-
ploying language models in practical real-world information retrieval (IR) systems—such
as chatbots, search engines, and recommender systems becomes increasingly challenging
[HYM+23]. These solutions have integrated into our daily lives, where factual integrity
is crucial. The pressing question is how to reliably detect and isolate hallucinations
in generated text, especially when only certain portions of a response are incorrect or
misleading [MKL+23, HRQ+24].

A predominant body of work in hallucination detection has focused on sentence-level
[MLG23] or whole-response verification [LHE21, MZV+24]. While these techniques can
identify large-scale errors, they may overlook or misclassify partial inaccuracies—for
instance, where only a single factual detail (e.g., a date, name, or numeric value) is wrong
in an otherwise correct sentence [HRQ+24].

To address these limitations, more fine-grained approaches have been explored, primarily
falling into two categories: span prediction [MH22] and sub-sentence-level [MKL+23,
CCC+23, EJAS24] approaches. Span prediction methods attempt to highlight halluci-
nated portions within a response by directly marking unsupported spans. While this
technique provides detailed localization, it is highly sensitive to surface-level variations
in phrasing, depends on costly fine-grained annotations, and struggles with paraphrased
or multi-hop reasoning contexts [MH22, TZJ+24].
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1. Introduction

In contrast, sub-sentence-level approaches focus on verifying the factual accuracy of
smaller textual units, such as entity-relationship pairs or individual claims. While these
methods improve robustness in detecting factual inconsistencies, they often rely on
multi-step pipelines—such as entity recognition, fact-checking modules, and knowledge
graph alignment—making implementation complex [RZA+24, ZXG+24]. This challenge
is especially significant when working with closed-source language models, where internal
parameters are inaccessible.

Motivated by these challenges, detecting hallucinations in a reliable, fine-grained manner
has emerged as an important task in natural language processing (NLP). In this work,
we present a novel method for knowledge-level hallucination detection, which focuses
on extracting and comparing (arg1, relation, arg2) triplets from both LLM-generated
outputs and reference documents. The term knowledge-level hallucination detection
refers to detecting hallucinations at the level of individual knowledge units—triplets.
This term carries the same meaning as sub-sentence-level or unit-fact-level detection
in previous hallucination detection research. However, we use this term because it is
commonly used in the information retrieval (IR) domain, and we aim to bridge these
two streams of research. By operating at a finer knowledge-unit level, we aim to isolate
specific erroneous facts without dismissing entire sentences.

For a more detailed introduction to our research, the following sections provide in-depth
explanations of key concepts. Section 1.1 defines and categorizes hallucinations—drawing
on a widely referenced taxonomy and define what kind of hallucination we focus on.
Section 1.2 provides an overview of existing hallucination detection approaches at varying
levels of granularity—response, sentence, and information—then examines triplet-based
and LLM-based detection methods. Finally, section 1.3 introduces our proposed approach,
highlighting its advantages and outlining the key steps involved in using closed-source
LLMs for knowledge-level hallucination detection.

1.1 Hallucination
Hallucination in large language models (LLMs) refers to instances where generated
content appears coherent but is factually incorrect or inconsistent [HYM+23, TZJ+24].
To clearly identify hallucinations, it is essential to first define a suitable reference standard
against which generated outputs are evaluated. The choice of reference depends heavily
on the specific application context. For example, in retrieval-augmented generation
(RAG) scenarios, consistency with provided input contexts is paramount. Conversely,
general-purpose models or systems requiring precise knowledge representations must
prioritize consistency with established real-world facts. This distinction constitutes the
first dimension of hallucination addressed in this study—hallucination by reference
used [HFFQ21, HYM+23].

Once a reference is established, hallucination can manifest in various ways, ranging from
entirely fabricated facts to minor numerical inaccuracies. The severity and complexity
of detecting hallucination vary considerably based on these deviations, leading us to
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1.1. Hallucination

define our second dimension—hallucination by how it differs from reference
[GVM22, LFA+18]. In the following sections, we categorize hallucinations along these
two dimensions and clarify the specific aspects our study addresses.

1.1.1 Hallucination by reference used
The widely accepted categorization of hallucination is based on the reference used to
identify hallucination— [HYM+23] defines two primary types: Factuality Hallucination
and Faithfulness Hallucination, depending on whether the deviation occurs from real-
world facts or the given input. Building on this taxonomy, hallucinations can be broadly
classified from a reference-based perspective into these two categories.

A factuality hallucination arises when an LLM generates content that contradicts estab-
lished real-world knowledge or introduces unverifiable claims. This type of hallucination
misleads users by presenting false or unsupported information as fact.

In contrast, a faithfulness hallucination occurs when the generated output diverges
from the provided reference document or user instructions. Even if the response contains
factually correct information in a general sense, it may still be unfaithful to the specific
source material it was supposed to align with.

Consider the following example:

• Example Answer:

"Thyroid hormone receptor beta1 (TR-beta1) upregulates ChREBP ex-
pression by interacting with LXRE3, thereby influencing T3-induced
hepatic lipogenesis. This regulatory role extends to other metabolic
genes, including P450."

3



1. Introduction

• Reference Document (Excerpt):

"The carbohydrate response element-binding protein (ChREBP) and
sterol response element-binding protein (SREBP)-1c, regulated by liver X
receptors (LXRs), play central roles in hepatic lipogenesis. Because LXRs
and thyroid hormone receptors (TRs) influence each other’s transcrip-
tional activity, researchers investigated whether TRs control ChREBP
expression. They found that thyroid hormone (T3) and TR-beta1 upreg-
ulate ChREBP by binding direct repeat-4 elements (LXRE1/2)."

From this example, we observe two distinct types of hallucinations:

• Factuality Hallucination: If the model generates an output stating that "TR-
beta1 downregulates ChREBP expression," this contradicts established biological
knowledge. Since the actual role of TR-beta1 is to upregulate ChREBP, this
represents a factuality hallucination.

• Faithfulness Hallucination: If the model states that "TR-beta1 upregulates
ChREBP by interacting with LXRE3," the overall claim remains scientifically valid;
however, it diverges from the given reference, which explicitly states that TR-beta1
interacts with LXRE1/2. This discrepancy makes the output unfaithful to the
source document, even though it does not contradict general scientific knowledge.

While both factuality and faithfulness hallucinations pose challenges, faithfulness hal-
lucinations require an evaluation of the alignment between generated content and the
reference source, making them more tangible yet complex to assess. This type of halluci-
nation has become increasingly important as many services are now integrated with RAG
[SPC+21] and AI agents [SRR23], where compliance with the input context is crucial. In
such contexts, hallucinations that contradict the input context indicate a failure of the
respective system.

Given this challenge, our research primarily focuses on faithfulness hallucinations. By
examining the alignment between generated outputs and their source documents, we aim
to develop a robust detection mechanism that enhances the reliability of LLM-generated
content in applications where maintaining contextual fidelity is critical.

Hallucination by How It Differs from Reference

While many hallucinations in language model outputs are easily identifiable through
explicit contradictions or verifiably false statements, more subtle forms of hallucination
remain challenging to detect [ZXG+24]. In particular, hallucinations can deviate from
reference materials in nuanced ways, ranging from outright fabrications to minor but
critical factual distortions. Understanding these deviations is crucial for developing
detection mechanisms that extend beyond surface-level inconsistencies.

4
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Existing research has identified certain types of hallucinations that are relatively easy to
detect due to their overt nature [GVM22]. However, other subtle contextual misalign-
ments, and plausible-sounding but incorrect details—pose significant challenges [GVM22].
These subtle hallucinations often evade conventional fact-checking methods, especially in
high-stakes domains where precision is paramount (e.g., medicine, finance, and academia).
For example, even minor numerical alterations can lead to substantial misinterpretations,
yet studies specifically addressing numerical hallucinations remain limited. Furthermore,
ongoing research debates how language models encode and interpret numerical values
[LG24, HTYZ24], raising concerns about their ability to detect factual inconsistencies in
cases of minor numerical variation.

Given these challenges, our study focuses on hallucinations that are particularly difficult to
detect. We categorize them based on how they diverge from reference content, emphasizing
cases where standard verification techniques may fail. While some hallucinations, such as
explicit factual contradictions, can be easily identified, more subtle deviations—such as
plausible but incorrect details or minor numerical alterations—pose significant detection
challenges. These issues are particularly problematic in high-stakes domains like medicine,
finance, and research, where even slight factual inconsistencies can lead to serious
consequences.

To systematically address these challenges, we examine three challenging types of halluci-
nations identified in previous studies: Absolute Fabrication, where entirely new and
unsupported information is introduced [GVM22, QHQP23]1; Contextual Fabrication
, which subtly misrepresents details while maintaining a surface-level resemblance to
the reference [GVM22]; and Detailed Information Modification , involving small
but impactful changes, such as numerical distortions [DMG23, QHQP23]. A detailed
explanation of these hallucination types is provided in Section 4.5: Generation of
Challenging Hallucination Types. By analyzing these fine-grained hallucination pat-
terns, we aim to evaluate our approach on previously unexplored aspects of hallucination
detection.

1.2 Hallucination Detection Methods and Their
Granularity

As large language models (LLMs) have become widely adopted across various domains,
detecting hallucinations in their outputs has emerged as a critical challenge. This issue
has garnered significant attention from both academia and industry, leading to the
development of diverse detection strategies. Recently, the SemEval-2024 SHROOM
shared task on hallucination detection [MZV+24] attracted participation from over 40
research groups, each employing various approaches such as LLM fine-tuning [DS24], LLM
prompting [DS24, MHO+24, Sii24], LM fine-tuning [LSZH24], and ensemble methods

1Although absolute fabrications are generally considered easier to detect, they can become significantly
more challenging if the fabricated information closely resembles the original context, appearing coherent
and plausible [GVM22]
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1. Introduction

[MHO+24]. While these efforts demonstrate significant progress, existing research and
shared tasks have predominantly focused on response-level hallucination detection, leaving
finer-grained analysis largely unexplored.

Prior research on hallucination detection has explored various levels of granularity,
primarily focusing on three approaches: response-level [LRW+22, LHE21], sentence-
level [MLG23], and knowledge-level [MKL+23, CCC+23, HRQ+24], each presenting
distinct trade-offs in precision and scope. Response-level methods assess an entire
generated response, flagging it as hallucinated if any part contains inaccurate or fabricated
information. While effective for simple fact-based queries, this approach becomes less
informative for longer responses where only specific parts may be incorrect. Sentence-level
methods refine this by identifying erroneous statements within a response, but they may
still overlook localized factual inaccuracies—such as incorrect names or dates—embedded
in otherwise valid sentences.

To address these limitations, knowledge-level methods focus on finer-grained units, such as
entities and relationships, allowing for the detection of small-scale discrepancies without
discarding entire sentences [HRQ+24, EJAS24]. While text-based methods, such as
RAGAs [EJAS24], segment and compare knowledge represented purely as text, methods
based on knowledge triplets have been studied over a longer period and are closely aligned
with traditional research directions in information retrieval [BQH+23, YV23, RZA+24].
triplet-based hallucination detection decomposes text into structured tuples (arg1,
relation, arg2) to capture factual statements. This approach is advantageous as it
facilitates the integration of external knowledge sources, such as knowledge graphs,
and aligns with existing NLP pipelines that rely on triplets. However, many current
triplet-based methods involve complex, multi-step processes—including named-entity
recognition, relation extraction, and knowledge graph verification—which require different
models for each steps and difficult to implement compared to closed-source LLM APIs
[RZA+24].

Another emerging approach leverages LLMs for fact verification in hallucination
detection [MLG23, ZQG+23, HRQ+24]. These methods often employ LLMs for self-
consistency checks or retrieval-based verification. Compared to triplet-based approaches,
LLM-based methods offer a more direct implementation, as they do not require explicitly
structured knowledge bases or complex extraction pipelines. However, their effectiveness
at fine-grained, knowledge-level detection remains less well understood [HRQ+24]. Addi-
tionally, LLM-based fact verification heavily relies on prompt design, yet there is limited
research on how to systematically construct prompts that maximize factual accuracy and
reliability. Furthermore, the suitability of LLMs across diverse verification tasks remains
an open question, raising concerns about their robustness and consistency.

1.3 Our Approach
With these in mind, this research proposes an knowledge-level hallucination detection
framework that is both sufficiently granular and relatively simple to deploy. We first

6



1.3. Our Approach

prompt an LLM to extract triplets(arg1, relation, arg2) from both the model’s generated
answer and the reference documents used to generate that answer. Unlike approaches
that rely on specialized pipelines with entity detectors [BQH+23, RZA+24] or external
knowledge bases, our method leverages LLM capabilities to parse text into triplets. After
generating two sets of triplets—one from the LLM output and one from the reference
text—we then compare them to identify which triplets are unsubstantiated or conflict
with the source text. By operating at the level of discrete information units, we can
pinpoint localized inaccuracies rather than labeling entire sentences as hallucinated.

By testing our framework, we explore the feasibility of using LLMs for fact-checking
through triplet set comparison. If successful, this approach could replace the complex
multi-step pipelines of traditional triplet-based methods while enabling seamless integra-
tion with information retrieval-based approaches. This would allow for a more scalable
and adaptable fact verification model, bridging structured knowledge-based verification
with retrieval-augmented methods.

Furthermore, to address the limitations of LLM-based fact verification, our approach
investigates techniques to mitigate hallucinations that may arise within the verification
process itself. Specifically, we explore methods to enhance the reliability and performance
of LLM-based fact verification by refining prompt design strategies and incorporating
self-consistency mechanisms to maximize accuracy. Since LLM performance is highly de-
pendent on prompt formulation, we also analyze different prompt structures to determine
optimal configurations for improving factual accuracy.

Key Advantages

• Adequate Granularity: By focusing on information units, we can isolate small-scale
factual discrepancies while preserving correct information.

• Simplicity: Our two-step process eliminates the need for multi-layered pipelines,
reducing implementation complexity and potential points of failure.

• Compatibility: The method naturally integrates with prior triplet-based pipelines
and can be easily adapted to LLM-based frameworks.

• Efficiency: Unlike previous triplet-based approaches [YV23, HRQ+24], which verify
answer triplets one-by-one, necessitating separate model runs for each answer triplet.
For instance, verifying 100 answer triplets requires 100 separate comparisons. In
contrast, our method simultaneously evaluates multiple answer triplets against
all reference triplets in a single model run, significantly enhancing computational
efficiency.

• Optimized Prompt Design: By refining prompt structures, our approach enhances
the reliability of LLM-based fact verification, mitigating hallucination risks in
verification outputs and improving overall model performance.

7



1. Introduction

The remainder of this thesis is organized as follows. Section 1 provides a comprehensive
background on hallucination detection, defining key concepts and discussing different
categorization methods. It further explores existing detection approaches, focusing on
triplet-based and LLM-based methods, before introducing our proposed approach and
its key advantages. Section 2 reviews related works, covering previous triplet-based and
LLM-based hallucination detection methods, their limitations, and our contributions to
the field. Section 3 details our proposed method, including how we integrate triplets and
LLMs for hallucination detection, the triplet generation and verification processes, and
our optimized prompting strategies. It also outlines the key research questions guiding our
work. Section 4 describes our experimental setup, including the hallucination detection
task, evaluation metrics, dataset characteristics, generation of hallucinated triplets, and
experimental conditions. Section 5 presents and discusses our results, analyzing detection
performance across different hallucination types, the impact of prompting methods,
ablation studies, and comparisons with reference-text-based approaches. Finally, Section
6 concludes the study by summarizing our key findings, acknowledging limitations, and
suggesting future directions for advancing LLM-based hallucination detection research.

8



CHAPTER 2
Related Works

2.1 Related Works
Building upon the challenges introduced in Introduction, we now survey relevant methods
and frameworks in hallucination detection. While Introduction (Section 1) provides
a broad overview of hallucination detection across multiple approaches and levels of
granularity, this section focuses specifically on research most relevant to our work.

Much of the early focus has been on either labeling an entire response as hallucinated
or verifying content at the sentence level. While these approaches can quickly flag
large-scale factual inconsistencies, they often overlook localized inaccuracies that involve
only a fraction of a sentence—for example, an incorrect year or misattributed name
[MLG23, MKL+23]. To address this limitation, some researchers have pursued more
granular techniques, such as extracting sub-sentence content units or knowledge triplets,
to precisely pinpoint erroneous facts without dismissing otherwise correct material.

Given our focus on knowledge-level hallucination detection, we primarily review studies
that employ fine-grained, knowledge-based, and related approaches.

2.2 Triplet-Based Hallucination Detection
Among knowledge-level research approaches, triplet-based verification has emerged as a
structured method for identifying factual inconsistencies by decomposing text into discrete
knowledge units—triplets. This approach represents information as (arg1, relation, arg2)
statements, enabling more precise fact-checking. Several studies have explored the use
of triplets as a structured backbone for detecting hallucinations. RHO [JLL+22], for
instance, mitigates extrinsic and intrinsic hallucinations by grounding each token in an
underlying knowledge graph, followed by a re-ranking module that filters out passages
misaligned with the extracted entities and relations. FLEEK [BQH+23] refines this
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concept by segmenting content into discrete factual triples, retrieving external evidence
from the web or knowledge bases, and rewriting segments that fail verification. Similarly,
FactAlign [RZA+24] constructs a knowledge graph from generated text and aligns it with
a reference graph, detecting factual discrepancies through node and edge mismatches.
Meanwhile, Query-Based Entity Comparison [PKCGH19] employs SPARQL queries to
validate structured constraints (e.g., “both entities have more than 30,000 employees”),
though its primary focus remains on entity-to-entity comparisons rather than broader
open-ended text generation.

While these methods highlight the advantages of triplet-based verification, many rely
on complex multi-step pipelines [RZA+24, ZXG+24] involving named-entity recognition,
knowledge graph construction, and specialized reasoning modules. Such dependencies
make them difficult to scale, particularly in scenarios involving Language Models(LM)
or closed-source LLM APIs. Furthermore, these structured approaches presuppose well-
defined entities and relations, limiting their adaptability to domains where knowledge is
unstructured or contextually implied.

An alternative approach proposed by [YV23] introduces a zero-shot fact-checking frame-
work that leverages triplet-based verification in conjunction with natural language in-
ference (NLI) models. Unlike traditional knowledge graph alignment techniques, this
method employs NLI models to directly assess the relationships between claim triplets
and evidence triplets. The two-stage verification process—triple-level verification followed
by claim-level aggregation—demonstrates superior generalization to adversarial datasets
such as FEVER-Symmetric, FEVER 2.0, and Climate-FEVER. However, the approach
performs a one-to-one comparison between all answer triplets and source triplets, leading
to computational complexity that scales proportionally with the number of triplets in
both sets. While effective in zero-shot settings, this design imposes scalability constraints,
particularly when handling large-scale fact verification in real-world applications.

2.3 LLM-Based Hallucination Detection
Triplet-based approaches center on structured knowledge representations, but another
line of research tackles hallucinations by treating the language model itself as both the
source of answers and the judge of correctness. SelfCheckGPT [MLG23] exploits the idea
that factual statements should consistently reappear across multiple sampled outputs
from the same model; conflicting or contradictory restatements suggest hallucinations. In
a similar vein, FActScore [MKL+23] decomposes long responses into "atomic" facts—short
expressions of single factual claims—and uses LLMs to verify each fact individually. These
methods rely on the LLM’s own knowledge and consistency to flag spurious segments
and can perform well for QA or short text. However, they may struggle with long-
form or domain-specific tasks, where partial misrepresentations of numeric or technical
information can be overshadowed by the model’s otherwise consistent style.

Recent frameworks adopt large language models directly to extract or verify triplets
[FHT+24, CCC+23, HRQ+24], aiming to simplify multi-step processes or replacing
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trained in-house model with LLM. FacTool uses a five-stage pipeline—(LLM based)
claim extraction, query generation, tool querying, evidence aggregation, and final (LLM
based) agreement—to detect factual errors across varied tasks (QA, code generation,
math solving, scientific literature) via LLM prompting.

In contrast, REFCHECKER [HRQ+24] systematically extracts “claim-triplets” from
the LLM’s output and evaluates each against a reference text. Compared to sentence-
level checks, their triplet-based approach isolates smaller, more precise factual units.
Their results show that evaluating knowledge at the triplet level yields significantly
fewer missed hallucinations, outperforming sub-sentence or sentence-based detectors by
large margins. However, these approaches primarily focus on triplet extraction rather
than comparing triplet sets in a structured verification process. Furthermore, since
REFCHECKER verifies each claim-triplet individually, the computational complexity of
the fact-checking process scales linearly with the number of extracted triplets, making it
more resource-intensive for longer responses with numerous factual claims.

2.4 Limitations and our Contribution
Overall, both LLM-based approaches and knowledge-centric pipelines show promise in
mitigating hallucinations; however, each comes with trade-offs. LLM-based methods rely
on the model’s own internal knowledge and consistency to verify factuality, but they are
highly dependent on prompt design and the performance of the LLM on comparing two
triplet set is untested. There is still limited research on how to systematically construct
prompts that maximize factual accuracy and reliability. The lack of standardized
evaluation frameworks for LLM-driven verification further complicates efforts to optimize
prompt engineering techniques for different verification tasks.

On the other hand, triplet-based hallucination detection provides a more structured
approach by breaking down text into (arg1, relation, arg2) units, enabling more gran-
ular verification. However, existing triplet-based methods typically require multi-step
pipelines involving named-entity recognition, relation extraction, and knowledge graph
construction. These pipelines often necessitate different models for each step and require
dedicated computational resources for execution. Moreover, while previous research has
demonstrated the benefits of triplet extraction for factuality assessment, most existing
approaches primarily focus on extracting triplets while relying on pairwise natural lan-
guage inference or traditional knowledge graph comparison methods for triplet evaluation.
The former requires a one-to-one comparison for each triplet in the source and answer
sets, leading to an exponential increase in model computations as the number of triplets
grows [FHT+24, SRMS24]. The latter assumes clearly defined entities and relations for
both source and answer triplets, making it less adaptable when entities are paraphrased,
relations are implied, or the underlying knowledge structure is not explicitly defined
[RZA+24]. This gap highlights the need for a more efficient approach that leverages LLMs
for structured triplet verification while reducing dependence on predefined knowledge
graphs.
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To bridge these gaps, our work integrates knowledge-level granularity via triplets with
LLM-based verification methods. Specifically, we evaluate the feasibility of using LLMs
to perform structured triplet-set comparisons, rather than relying on traditional triplet-
based pipelines, which typically involve multiple processing stages with specialized models
at each step. Furthermore, our approach significantly reduces the number of required
model runs—at least by a factor of average length of input triplet

(input sequence length - C) , where C denotes the length
of additional prompt components such as instructions and reference triplets—thereby
improving both computational speed and efficiency.

To elaborate, traditional approaches necessitate separate model runs for each answer
triplet; for example, verifying 100 answer triplets requires 100 separate comparisons,
each involving all reference triplets against one answer triplet. In contrast, our method
enables simultaneous verification of multiple answer triplets against all reference triplets
within a single model run. Because the maximum number of tokens per model run is
limited by the model’s input sequence length, each run accommodates as many answer
triplets as possible after accounting for other prompt elements. Concretely, our method
can validate approximately (input sequence length - C)

average length of input triplet answer triplets per run.

If successful, this approach could replace complex, multi-step knowledge graph alignment
processes and facilitate seamless integration with LLM-based methods. Additionally, we
explore techniques to enhance the reliability of LLMs in fact verification by systematically
refining prompt structures and incorporating self-consistency mechanisms, addressing a
critical challenge in contemporary LLM-based fact-checking research.

In the next sections, we describe our approach to triplet extraction and knowledge
verification, then detail how we address these issues of scalability, partial references, and
localized claim errors.
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CHAPTER 3
Proposed Method

In this section, we introduce a knowledge-level hallucination detection framework that
capitalizes on the strengths of Large Language Models (LLMs) by decomposing and
verifying text at the granularity of (arg1, relation, arg2) triplets. Our approach comprises
two principal steps: (i) Triplet Generation, which extracts factual statements from
both the LLM’s generated outputs and the corresponding reference materials; and (ii)
Triplet Validation, where these sets of triplets are systematically compared to identify
any unsubstantiated claims. By encapsulating knowledge in structured triplets, we not
only enhance the precision of hallucination detection but also preserve the valid segments
of text that do not require correction.

3.1 Triplet-Based LLM Hallucination Detection
Our proposed framework uses a two-stage pipeline aimed at isolating hallucinations at a
knowledge-level approaches. Specifically, we focus on:

1. Triplet Generation: We prompt a LLM to extract (arg1, relation, arg2) triplets
from its own generated answers and from the reference documents used during
answer generation.

2. Triplet Validation: We compare the triplets derived from the LLM’s output with
those extracted from the reference text. Any triplet that is not directly supported
by, or is in conflict with, the reference triplets is flagged as a hallucination.

By implementing LLM-based comparison of triplets, we can integrate multiple steps of
conventional pipeline approaches into a single prompt-driven mechanism, thus reducing
complexity while leveraging the reasoning and language-understanding capabilities of
large models. Moreover, this knowledge-level checking can serve as a bridge between
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Figure 3.1: LLM Fact Checker

purely LLM-based self-consistency checks and more traditional triplet-based systems,
thereby retaining the advantages of both. The whole pipeline of our approach is illustrated
in Figure 1.

We introduce a real example from the BioASQ dataset throughout the rest of the report,
as it helps illustrate our method, as well as the structure of its inputs and outputs:

1. Question:

"Which genes does thyroid hormone receptor beta1 regulate in the liver?"

2. Ground Truth Answer(Included in Dataset):

"LDL receptor, ChREBP, malic enzyme, cytochrome P450 oxidoreduc-
tase"
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3. Example Answer:

"Thyroid hormone receptor beta1 (TR-beta1) upregulates ChREBP ex-
pression by interacting with LXRE2, thereby influencing T3-induced
hepatic lipogenesis. This regulatory role extends to other metabolic
genes, including P450."

4. Reference Document (Excerpt):

"The carbohydrate response element-binding protein (ChREBP) and
sterol response element-binding protein (SREBP)-1c, regulated by liver X
receptors (LXRs), play central roles in hepatic lipogenesis. Because LXRs
and thyroid hormone receptors (TRs) influence each other’s transcrip-
tional activity, researchers investigated whether TRs control ChREBP
expression. They found that thyroid hormone (T3) and TR-beta1 upreg-
ulate ChREBP by binding direct repeat-4 elements (LXRE1/2)."

5. (Generated) Answer Triplets:

• ["Thyroid hormone receptor beta1 (TR-beta1)", "upregulates",
"ChREBP expression by interacting with LXRE2"]

• ["TR-beta1", "influences", "T3-induced hepatic lipogenesis"]

• ["TR-beta1’s regulatory role", "extends to", "other metabolic
genes, including P450R"]

15



3. Proposed Method

6. (Generated) Reference Triplets:

• ["carbohydrate response element-binding protein (ChREBP) and
sterol response element-binding protein (SREBP)-1c", "are
regulated by", "liver X receptors (LXRs)"]

• ["carbohydrate response element-binding protein (ChREBP) and
sterol response element-binding protein (SREBP)-1c", "play
central roles in", "hepatic lipogenesis"]

• ["liver X receptors (LXRs) and thyroid hormone receptors
(TRs)", "influence", "each other’s transcriptional activity"]

• ["researchers", "investigated whether", "thyroid hormone
receptors (TRs) control ChREBP expression"]

• ["thyroid hormone (T3) and TR-beta1", "upregulate", "ChREBP"]

• ["thyroid hormone (T3) and TR-beta1", "upregulate ChREBP
by binding", "direct repeat-4 elements (LXRE1/2)"]

7. Identified Hallucinated Triplet:

["TR-beta1’s regulatory role", "extends to", "other metabolic
genes, including P450R"]

3.2 LLM Triplet Generator
For triplet generation, we prompt the LLM to decompose a given text—whether from
its own generated response or a reference document—into structured (arg1, relation,
arg2) triplets. To ensure the accuracy, interpretability, and completeness of the extracted
triplets, the following principles are enforced:

1. Full Contextualization: Each argument (arg1 and arg2 ) should be explicitly
defined to eliminate ambiguity. Pronouns, vague descriptors, or insufficiently
specified terms must be avoided to ensure that each triplet can be interpreted
independently of its original context1. For example, consider the following triplet
extracted from a model-generated response:
Incorrect: ["This regulatory role", "extends to", "other metabolic
genes, including P450R"]

To improve clarity, the subject should be explicitly specified:
Correct: ["TR-beta1’s regulatory role", "extends to", "other metabolic
genes, including P450R"]

1Additionally, when the same word appears multiple times with different meanings the extracted
triplets must retain sufficient contextual information to distinguish between distinct usages.
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By ensuring explicit references, the extracted triplets become more interpretable
and self-contained, thereby reducing potential ambiguity during validation.

2. Accuracy and Completeness: The extracted triplets must fully capture the
factual assertions present in the source text. Essential relationships should not be
omitted, nor should information be excessively generalized, as such omissions may
lead to misinterpretation.
Example: Suppose the generated response includes the following statement:

TR-beta1 interacts with SREBP-1c, a key regulator of lipid metabolism.

A triplet that fails to retain critical contextual information would be:
Incomplete triplet: ["TR-beta1", "interacts with", "SREBP-1c"]

Whereas a well-structured triplet that preserves the full meaning of the original
statement would be:
Complete triplet: ["TR-beta1", "interacts with", "SREBP-1c, a
key regulator of lipid metabolism"]

By incorporating essential contextual details, the complete triplet ensures alignment
with the intended meaning of the source text.

3. Grammatical and Semantic Consistency: The extracted triplets must be
grammatically well-formed and semantically coherent. The relation component must
correctly and unambiguously link arg1 and arg2, preserving the factual integrity of
the original text. Logical inference errors and grammatical inconsistencies should
be minimized, as they may lead to misinterpretations.
Example: Given the following source statement:

"T3 was shown to accelerate intracellular calcium transients and reduce
diastolic calcium levels, suggesting a sensitization of the contractile
apparatus to calcium."

A triplet extracted without proper contextual awareness may introduce errors:
Incorrect: ["T3", "suggests", "sensitization of the contractile
apparatus to calcium"]

In contrast, a correctly structured triplet that preserves the logical flow of the
original statement is:
Correct: ["Findings that T3 was shown to accelerate intracellular
calcium transients and reduce diastolic calcium levels", "suggest",
"sensitization of the contractile apparatus to calcium"]

This approach ensures that the extracted triplet accurately reflects the causal
relationship expressed in the original text.
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3.3 Triplet Fact Checker
Following triplet generation, the Triplet Fact Checker evaluates the factual alignment
between the triplets extracted from the model-generated response and those obtained
from the reference documents. Notably, an exact lexical match is not a prerequisite for
validation; rather, the verification process relies on semantic entailment. The fact checker
must assess whether a generated triplet is logically supported by the reference triplets,
even if paraphrased, restructured, or inferred from multiple sources. This is critical, as
factual verification in real-world contexts frequently involves implicit reasoning rather
than direct textual correspondence.

For example, consider the triplets extracted from the model-generated response and the
reference document:

• Answer Triplet: ["Thyroid hormone receptor beta1 (TR-beta1)",
"upregulates", "ChREBP expression by interacting with LXRE2"]

• Reference Triplet: ["thyroid hormone (T3) and TR-beta1", "upregulate
ChREBP by binding", "direct repeat-4 elements (LXRE1/2)"]

Although these triplets are not lexically identical, they convey equivalent factual informa-
tion. The fact checker must recognize that the answer triplet is semantically supported
by the reference triplet rather than erroneously flagging it as a hallucination.

In instances where no verbatim match exists between the answer triplet and any reference
triplet, the fact checker must employ inferential reasoning to determine factual consistency.
Consider the following example:

• Answer Triplet: ["T3 signaling", "induces", "fatty acid metabolism
in hepatocytes"]

• Reference Triplets:

– ["thyroid hormone (T3)", "activates", "TR-beta1"]

– ["TR-beta1", "regulates", "ChREBP"]

– ["ChREBP", "induces", "fatty acid metabolism in hepatocytes"]

Here, the claim that ["T3 signaling", "induces", "fatty acid metabolism
in hepatocytes"] is not explicitly stated in any single reference triplet. However, the
reference triplets collectively establish a logical progression: T3 activation → TR-beta1
regulation → ChREBP activation → fatty acid metabolism. Since this causal chain
substantiates the claim made in the answer triplet, the fact checker should infer that the
information is supported rather than hallucinated.

Conversely, consider the following triplet:
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• Answer Triplet: ["TR-beta1’s regulatory role", "extends to", "other
metabolic genes, including P450R"]

This triplet lacks supporting evidence in the reference text. While the reference triplets
confirm that TR-beta1 regulates ChREBP, they do not establish any connection between
TR-beta1 and "other metabolic genes, including P450R." Consequently, this triplet is
flagged as a hallucination.

The objective of our fact checker is to refine hallucination detection by distinguishing
between supported and contradicted triplets, thereby improving the reliability of factual
consistency assessments. Our approach aims to highlight contradicted triplets explicitly
and classify them as potential hallucinations for further review.

3.4 Prompting Method
The efficacy of our system heavily depends on well-crafted prompts that guide the LLM
in both triplet generation and triplet validation. We employ the following techniques:

(1) Few-shot Generation We provide the LLM with short demonstration examples
to illustrate the expected structure and depth of reasoning [TLI+23]. This approach:

• Improves formatting consistency, ensuring systematic presentation of extracted and
validated triplets.

• Boosts accuracy by furnishing concrete patterns for the model to emulate.

• Enhances instruction compliance by reinforcing the importance of the user’s guide-
lines through explicit examples.

(2) Chain-of-Thought (CoT) We encourage the model to articulate its intermediate
reasoning steps before delivering the final output [WWS+22]. This includes:

• Transparent Reasoning: Users can examine the logical basis for each True/False
verdict.

• Error Reduction: Articulating intermediate thoughts helps the model identify
and correct contradictions early.

• Clear Delineation of Result and Rationale: Separating the reasoning details
from the final label (e.g., True vs. False) makes the model’s verdict easier to verify.

Because our task differs from typical generation tasks, where a single response is generated,
we instead produce multiple outputs from multiple triplets. To ensure consistency and
accuracy, we prompt the model to generate a concise CoT inference for each triplet,
allowing for more structured and interpretable verification.
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(3) Detailed Instructions We provide comprehensive and explicit instructions to
ensure that the model fully understands the task requirements, leading to more accurate
and relevant outputs [OWJ+22]. This includes:

• Output Formatting: Clearly defining the expected structure of the model’s
response to maintain consistency.

• Validation Criteria: Specifying the exact rules and conditions for determining
whether a triplet is supported by the source data.

• Guided Responses: Providing step-by-step instructions to help the model align
its outputs with the user’s intended objectives.

By integrating these prompting techniques, we optimize the LLM’s ability to generate
and validate triplets with greater accuracy, consistency, and interpretability. Prior
research has shown that few-shot prompting [TLI+23] improves instruction adherence
and structured output generation. Similarly, Chain-of-Thought reasoning [WWS+22] has
been demonstrated to enhance logical coherence in complex decision-making tasks, and
explicit instructions [OWJ+22] significantly reduce hallucination rates by providing clearer
operational constraints. Our approach synthesizes these best practices, ensuring that
the model performs reliable fact verification while maintaining efficiency and scalability
across diverse input conditions. The detailed prompts used in our methodology are
provided in the Appendix.

3.5 Research Questions
Building upon the proposed methodology and prior work, our study aims to investigate the
feasibility and effectiveness of LLM-based triplet comparison for hallucination detection.
Specifically, we address the following research questions:

1. How can we optimize prompt design for triplet comparison to maximize
accurate hallucination detection?

• Given that LLM-based fact verification is highly sensitive to prompt for-
mulation [OWJ+22], we investigate the impact of different prompt struc-
tures—including persona-based, few-shot, and chain-of-thought prompting—on
model accuracy and consistency.

2. Can an LLM effectively compare knowledge-level triplets extracted from
different sources without requiring multi-step pipelines?

• Traditional triplet-based methods rely on multi-stage processing, including
named-entity recognition and knowledge graph construction [RZA+24]. We
examine whether an LLM can perform this comparison in a single inference
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step while maintaining reliability.To the best of our knowledge, this is the first
study to investigate this approach.

3. What limitations arise when using an LLM for triplet validation?

• Since LLMs have not been extensively tested for directly validating triplets, this
approach may have inherent limitations. We analyze whether this validation
introduces systematic biases, reliability issues, or inconsistencies in factual
verification.

4. How does performance vary across different hallucination types, and
what refinements are necessary to handle LLM-based fact verification
challenges?

• Hallucinations can manifest in different forms—fabricated entities, incorrect
numerical values, and misattributed relationships [MKL+23]. We evaluate
whether certain types of hallucinations are more difficult to detect and propose
refinements for improving robustness.

By addressing these questions, we aim to develop a streamlined yet rigorous approach for
hallucination detection that integrates structured knowledge validation with LLM-based
reasoning. The subsequent sections detail our empirical setup, evaluation metrics, and
findings, demonstrating the effectiveness of our method in minimizing hallucination risks
while maintaining interpretability and efficiency.
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CHAPTER 4
Experiments

In this section, we describe the experimental setup used to evaluate our proposed
hallucination detection framework. Our primary goal is to assess the effectiveness of
LLM-based triplet comparison in identifying hallucinated content while minimizing
false positives. We conduct experiments on a well-defined hallucination detection task,
establish appropriate evaluation metrics, and systematically compare different prompting
strategies. Additionally, we introduce a hallucinated data generator to create controlled
test cases and explore various aspects that influence our model’s performance.

4.1 Hallucination Detection Task
We evaluate our approach by conducting a hallucination detection task, where the
objective is to assess the model’s ability to distinguish hallucinated triplets in LLM-
generated responses. This evaluation follows the framework introduced by FactScore
[MKL+23].

Task Definition: The hallucination detection task involves determining whether the
information contained in a generated triplet aligns with a given set of reference triplets.
Specifically, the model must assess whether a triplet is semantically supported by the
reference triplets or if it introduces incorrect or unsubstantiated information.

If a triplet from the generated answer is logically entailed by or explicitly supported
by the reference triplets, it is classified as supported. Conversely, if the generated
triplet introduces incorrect, contradictory, or unverified information, it is labeled as
hallucinated. By performing this evaluation at the triplet level rather than at the
sentence or response level, our approach ensures a more precise and fine-grained assessment
of factual consistency.
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The classification for each triplet t is formally defined as follows:

FFactCheck(t, Tref) =
I

Supported, if the LLM predicts that t is entailed by Tref,

Hallucinated, otherwise.

Example:

• Extracted Answer Triplet: [“TR-beta1”, “directly regulates”, “SREBP-1c
expression”]

• Reference Triplets:

– ["carbohydrate response element-binding protein (ChREBP) and
sterol response element-binding protein (SREBP)-1c", "are
regulated by", "liver X receptors (LXRs)"]

– ["liver X receptors (LXRs) and thyroid hormone receptors
(TRs)", "influence", "each other’s transcriptional activity"]

• Classification: Hallucinated

Since the extracted triplet contradicts the verified reference triplets, it is labeled as
hallucinated. This evaluation is conducted independently for each extracted triplet,
enabling a detailed analysis of the model’s hallucination detection capabilities.

4.2 Evaluation Metrics
To quantify the effectiveness of our hallucination detection framework, we introduce two
primary performance metrics: Hallucination Detection Performance-sensitivity and
Fact Preservation Performance-specificity. These metrics provide complementary
insights into the model’s ability to accurately identify hallucinated triplets while preserving
valid factual statements.

Rather than traditional precision and recall, we adopted sensitivity and specificity
under the assumption of an application context where undetected hallucinations (false
negatives) pose significant risks. Given this scenario, sensitivity directly aligns with
our core objective—minimizing the occurrence of undetected hallucinations. Conversely,
specificity evaluates the extent to which supported (non-hallucinated) triplets are correctly
preserved, reflecting a secondary yet valuable objective of retaining factual accuracy. This
choice of metrics thus reflects a deliberate, scenario-driven design decision established at
the project’s outset and guided subsequent model optimization efforts.
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(1) Hallucination Detection Performance This metric measures the model’s
effectiveness in identifying hallucinated triplets and minimizing missed hallucination.
It is evaluated using sensitivity, which quantifies the proportion of actual hallucinated
triplets that are correctly flagged by the model.

Sensitivity = TP

TP + FN

where:

• TP (True Positive): The number of hallucinated triplets correctly identified as
hallucinated.

• FN (False Negative): The number of hallucinated triplets classified as supported.

A high sensitivity score indicates that the model effectively detects hallucinated triplets,
reducing the risk of unverified or misleading information remaining undetected.

(2) Fact Preservation Performance This metric evaluates the model’s ability to
correctly classify factual triplets as supported, thereby preventing valid information from
being mistakenly flagged as hallucinated. It is measured using specificity, which determines
the proportion of triplets predicted as supported that are truly not hallucinated.

Specificity = TN

TN + FP

where:

• TN (True Negative): The number of supported triplets correctly identified as
supported.

• FP (False Positive): The number of supported triplets incorrectly classified as
hallucinated.

A high specificity score ensures that the model maintains factual integrity by preserving
legitimate triplets.

By balancing hallucination detection performance (sensitivity) and fact preservation
performance (specificity), our evaluation framework provides a comprehensive assessment
of the model’s ability to detect hallucinations while minimizing unnecessary filtering of
valid information. This dual-metric approach ensures that the model is both sensitive to
factual inconsistencies and robust in maintaining accurate knowledge representation.
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4.3 Dataset
Evaluating model performance on hallucination detection requires a carefully selected
dataset that provides reliable reference contexts and well-defined ground truths. Consid-
ering this, we selected the BioASQ dataset, a reputable biomedical question-answering
benchmark containing structured questions, verified answers, and corresponding reference
documents from expert-curated biomedical literature. For our experiments, the BioASQ
dataset served as the original source from which we systematically generated hallucina-
tion data using a specialized pipeline, described in detail in Section 4.4. Here, we first
introduce the BioASQ dataset, emphasizing its structure, reliability, and suitability as a
foundational resource for realistic and controlled hallucination evaluation experiments.

BioASQ Dataset

BioASQ [TBM+15] is a large-scale biomedical question-answering benchmark designed
to advance research in information retrieval and natural language processing. It is part
of the BioASQ challenge series [TBM+15], which provides a standardized dataset for
evaluating biomedical question-answering models. The dataset is constructed using
high-quality biomedical literature sources such as PubMed and MEDLINE, ensuring its
reliability for scientific applications.

The BioASQ dataset is curated by biomedical experts to include a diverse range of question
types, covering topics such as genetics, molecular biology, diseases, and treatments. Each
question is accompanied by expert-verified answers, categorized into factoid, list, and
summary (ideal) answers. Additionally, relevant reference passages from biomedical
articles are linked to each question to provide supporting evidence.

For our experiments, we used a structured subset of the BioASQ dataset available on
HuggingFace (rag-datasets/rag-mini-bioasq1) as the original source for gen-
erating hallucinated data. This subset consists of two main components: a question-
answer-passages dataset and a text-corpus dataset. The question-answer-passages dataset
contains columns for question, answer, relevant_passage_id, and id, while the
text-corpus dataset consists of passage and id columns. By linking relevant passages
from the text corpus using their IDs, this structured subset provides clear question-answer
pairs along with corresponding reference documents.

In addition to providing biomedical question-answer pairs, the dataset enables evaluation
across different types of relationships between reference documents and their corresponding
answers. These relationships include:

1. Detailed Information Extraction: Extracting precise details from the source
material to ensure the accuracy and reliability of the provided answer.

1https://huggingface.co/datasets/rag-datasets/rag-mini-bioasq
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• Example Question: "Which genes does thyroid hormone receptor beta1
regulate in the liver?"

• Example Answer: "Thyroid hormone receptor beta1 (TR-beta1) upregulates
ChREBP expression by interacting with LXRE2, thereby influencing T3-
induced hepatic lipogenesis."

• Reference Text: "Thyroid hormone (T3) and TR-beta1 upregulate ChREBP
by binding direct repeat-4 elements (LXRE1/2)."

• Related Answer Triplet: ["Thyroid hormone (T3) and TR-beta1", "upregu-
late", "ChREBP"]

2. Summarization: Assessing whether the answer effectively conveys the main ideas
from the reference text while avoiding the inclusion of unsupported information.

• Example Question: "How does thyroid hormone receptor beta1 influence
hepatic lipogenesis?"

• Example Answer: "Thyroid hormone receptor beta1 regulates hepatic
lipogenesis by influencing ChREBP and SREBP-1c."

• Reference Text: "The carbohydrate response element-binding protein (ChREBP)
and sterol response element-binding protein (SREBP)-1c, regulated by liver X
receptors (LXRs), play central roles in hepatic lipogenesis."

• Related Answer Triplet: ["TR-beta1", "regulates", "hepatic lipogenesis
through ChREBP and SREBP-1c"]

3. Inference: Evaluating the model’s ability to derive logical conclusions from the
reference text and accurately infer indirect relationships.

• Example Question: "What indirect effects does TR-beta1 have on metabolic
gene regulation?"

• Example Answer: "TR-beta1 indirectly regulates metabolic genes, including
P450R, through its role in hepatic lipogenesis."

• Reference Text: "TR-beta1 influences T3-induced hepatic lipogenesis, which
plays a role in metabolic regulation."

• Related Answer Triplet: ["TR-beta1", "indirectly regulates", "other metabolic
genes via hepatic lipogenesis"]

• Hallucinated Triplet: ["TR-beta1"s regulatory role", "extends to", "other
metabolic genes, including P450R"]

These different reference-answer relationships provide a foundation for evaluating the
model’s ability to handle varying levels of complexity in biomedical question answering.
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4.4 Hallucinated Triplet Generator
To systematically evaluate our model’s capability to detect hallucinations, we developed
a triplet-based hallucination generator that creates structured hallucination samples
derived from the original reference texts and associated questions. Using this generator,
we constructed a dedicated hallucinated triplet dataset specifically for our experiments2.
The carefully curated hallucinated triplets allowed us to perform a precise evaluation of
model performance by explicitly distinguishing factual content from hallucinated content
at the triplet level.

The hallucinated triplet generation process consists of three main steps. First, we
generate a structured hallucinated sample consisting of three distinct components using
a large language model (LLM) based on a given question and its corresponding reference
triplets. Next, we convert the hallucinated answer into structured triplets using our
triplet generator. Finally, we compare these extracted triplets with the non-hallucinated
reference triplets to identify and index hallucinated triplets.

Step 1: Structured Hallucinated Sample Generation Given a question and its
corresponding reference triplets, we generate a structured hallucinated sample consisting
of the following three components:

• Hallucinated Answer: A response that introduces fabricated, incorrect, or
unsupported information.

• Non-Hallucinated Answer: A response that strictly adheres to the reference
triplets without any additional or incorrect information.

• Hallucination Description: A structured explanation detailing the specific
hallucinated elements present in the hallucinated answer.

For example, consider the following structured hallucinated sample:

1. Hallucinated Answer:

"Thyroid hormone receptor beta1 (TR-beta1) not only upregulates ChREBP
but also directly regulates SREBP-1c and PGC-1alpha, leading to widespread
effects on hepatic metabolism."

2. Non-Hallucinated Answer:

"Thyroid hormone receptor beta1 (TR-beta1) upregulates ChREBP ex-
pression by interacting with LXRE2, thereby influencing T3-induced
hepatic lipogenesis."

2The created dataset is available at https://github.com/KRLabsOrg/RAGFactChecker.
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3. Hallucination Description:

"Thyroid hormone receptor beta1 (TR-beta1) not only upregulates ChREBP
but also directly regulates SREBP-1c and PGC-1alpha,"

Step 2: Triplet Extraction Using Triplet Generator Once the hallucinated
sample is generated, we extract triplets from the hallucinated answer using our triplet
generator. This process converts the hallucinated answer into a structured (arg1, relation,
arg2) format, ensuring that factual inconsistencies can be systematically analyzed.

For the above example, the extracted triplets from the hallucinated answer are:

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’upregulates’, ’ChREBP’]

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’directly regulates’, ’SREBP-
1c’]

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’directly regulates’, ’PGC-
1alpha’]

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’leads to’, ’widespread
effects on hepatic metabolism’]

Similarly, the extracted triplets from the non-hallucinated answer are:

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’upregulates’, ’ChREBP
expression’]

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’interacts with’, ’LXRE2’]

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’influences’, ’T3-induced
hepatic lipogenesis’]

Step 3: Hallucinated Triplet Identification and Indexing After extracting
triplets from both the hallucinated and non-hallucinated answers, we compare them to
identify hallucinated triplets. Any triplet that appears exclusively in the hallucinated
answer but is absent from the non-hallucinated answer is classified as a hallucinated
triplet.

In our example, the hallucinated triplet is:

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’directly regulates’, ’PGC-
1alpha’]

This process ensures that hallucinated triplets are systematically indexed for evaluation,
allowing for a more granular analysis of hallucination detection performance.
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Manual Verification To further enhance dataset quality, we incorporate an optional
manual verification process. While this step can be omitted in fully automated settings,
we apply it specifically for rigorous experimentation to ensure results closely aligned with
factual accuracy. Human annotators review the generated triplets to ensure correctness,
independent of the model’s operation. This manual annotation serves as an additional
validation layer to prevent systematic errors. Since hallucination detection is a challenging
task, verifying the dataset before model evaluation ensures that detected hallucinations are
indeed hallucinations and not misclassifications caused by improper dataset construction.

The final hallucinated dataset, constructed through this procedure, is then employed to
test the model’s hallucination detection performance under controlled conditions.

4.5 Generation of Challenging Hallucination Types
In addition to the systematic extraction and indexing of hallucinated triplets, we further
refine our dataset by deliberately incorporating hallucination types that are known to
be difficult to detect. Prior work [GVM22] primarily focused on hallucinations that are
easier to identify; however, our objective is to challenge the model with more subtle
deviations. To this end, we introduce three distinct hallucination types that maintain a
close resemblance to the reference content while embedding critical factual deviations:
Absolute Fabrication, Contextual Fabrication, and Detailed Information Modification.
Each type is designed to probe a specific aspect of hallucination detection, particularly
in domains where even minor factual discrepancies can have serious consequences (e.g.,
medicine, research, finance).

Absolute Fabrication
Definition: Absolute Fabrication occurs when the hallucinated answer introduces
entirely new and unsupported information that has no grounding in the reference material.
Although the generated content adheres to the overall structural format (i.e., a triplet),
the fabricated element is completely alien to the established facts. While this type of
hallucination might be comparatively easier to detect than others, we carefully constructed
the fabricated elements to closely align with the context of the reference material, thereby
increasing the difficulty of detection.

Example: Consider a reference consisting of the following triplets:

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’upregulates’, ’ChREBP’]

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’directly regulates’, ’SREBP-
1c’]

An absolute fabrication might add:

• ["TR-beta1", "was found to improve", "cardiac output by approximately
15% in patients with heart failure in a 2022 study" ]
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Here, the introduction of insulin is a clear deviation from biological fact, as insulin is
known to be produced by the pancreas rather than the thyroid gland.

Contextual Fabrication
Definition: Contextual Fabrication involves the insertion of hallucinated details that,
while contextually related to the reference, subtly misrepresent the factual content. This
type of hallucination blends elements of the original context with newly introduced, yet
misleading, information.

Example: Given the reference:

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’upregulates’, ’ChREBP’]

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’directly regulates’, ’SREBP-
1c’]

A contextual fabrication might generate:

• [’Thyroid hormone receptor beta1 (TR-beta1)’, ’directly regulates’, ’PGC-
1alpha’]

Although TSH is a hormone involved in the endocrine system, its production is factually
associated with the pituitary gland. This example challenges the model to recognize the
nuanced difference between contextually plausible but factually incorrect associations.

Detailed Information Modification
Definition: Detailed Information Modification is characterized by minor yet critical
alterations to specific details—such as numerical values, dates, or object attributes—that
can significantly alter the factual interpretation. This hallucination type closely mirrors
the reference content, with only slight modifications that may lead to substantial dis-
crepancies. in some domain(medical, financial, academia), checking numerical values
when fact checking is crucial, however there are less study which tested this type of
hallucination alone. and There are questions about how language model interpretes
numerical values [LG24, HTYZ24]. it is questionable that that the model could check
hallucination even in a little numerical change. so we test this

Example: If a reference triplet states:

• ["Thyroid hormone receptor beta1 (TR-beta1)", "increase", "ChREBP
expression by 30%"]

a hallucinated version via detailed information modification might present:
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• ["Thyroid hormone receptor beta1 (TR-beta1)", "increase", "ChREBP
expression by 32%"]

Even though the difference is numerically minor, such discrepancies can be critical in
domains where precision is paramount.

Unified Objective Each hallucination introduced is intentionally designed to produce
content that is closely related to the reference material. This similarity ensures that the
hallucinations are not trivially obvious but rather require detailed, triplet-level analysis
to be detected. By targeting these three challenging hallucination types—Absolute
Fabrication, Contextual Fabrication, and Detailed Information Modification—we create a
robust testbed for evaluating the sensitivity and accuracy of our hallucination detection
model, particularly in high-stakes environments where even subtle factual deviations can
lead to significant consequences.

4.6 Experiment Conditions
To thoroughly evaluate the effectiveness of our hallucination detection approach, we
conduct experiments under various conditions. A primary focus is assessing the impact
of structured prompt engineering on hallucination detection performance. By comparing
models with and without optimized prompts, we analyze whether different prompt-
ing techniques contribute to improved factual consistency and hallucination detection
accuracy.

Our prompts are designed to include multiple structured components, each playing a
critical role in guiding the model’s reasoning and validation process. The key components
of our prompt structure include:

• Few-shot Examples: Demonstrative examples illustrate the expected reasoning
process and output format, helping the model learn from structured cases and align
its responses with predefined patterns. This improves both format consistency
and factual accuracy [TLI+23]. In this study, we use two few-shot examples for
our experiments. While increasing the number of examples typically enhances
performance, we limit our selection to two due to the substantial length of each
example. [TLI+23]. In this research we used 2 Few-shot samples for experiment.
More few shot samples usually improve performance [BMR+20], however, because
our few-shot sample is extremely long, we only use two samples.

• Chain-of-Thought (CoT) Reasoning: The model is explicitly instructed to
articulate intermediate reasoning steps before delivering its final verdict on whether
a triplet is supported. This enhances interpretability, reduces logical inconsistencies,
and allows users to verify the rationale behind each classification [WWS+22].
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• Detailed Instructions: Clear and explicit guidelines are included in the prompt
to standardize model responses. These instructions specify output formatting,
validation criteria, and logical constraints, ensuring the model follows a structured
and objective assessment process [OWJ+22].

To measure the effectiveness of these structured prompting techniques, we compare
different prompting methods such as few-shot generation, chain-of-thought, and detailed
instructions. While incorporating all components within a single prompt may seem ideal,
excessively long prompts may introduce context overload, degrade model performance,
and increase computational cost. Thus, we conduct an ablation study by selectively
removing certain components (e.g., excluding CoT reasoning or few-shot examples) to
evaluate their individual contributions.

In addition to prompt variations, we investigate how different types of hallucinations,
Absolute Fabrication, Contextual Fabrication, and Detailed information modification
affect detection performance. The detailed explanation of hallucination types are stated
in 4.4 Hallucinated Triplet Generator

By systematically evaluating the model’s performance across different prompt structures
and hallucination types, we aim to identify optimal configurations for hallucination
detection. These experiments provide deeper insights into how structured prompts
influence factual validation and how hallucination types affect detection reliability.

4.7 Implementation Details
We follow the experimental setup of the most relevant studies for evaluation. In line with
previous research [YV23, HRQ+24], all evaluations in this work are conducted at the
triplet level for hallucination detection. However, unlike previous methods, we compare
answer triplets and reference triplets collectively rather than on a one-to-one basis.

To ensure robust evaluation, we implement several technical optimizations. One key
aspect is prompt splitting, as large reference triplet sets can degrade LLM performance
due to context length limitations. To mitigate this issue, we split extensive reference
sets into smaller context windows, allowing for sequential processing by the model. This
approach prevents performance degradation and ensures more effective fact verification.

We use GPT-4o as the primary model for hallucination detection experiments. Addition-
ally, we evaluate a lighter variant, GPT-4o-mini, which demonstrates lower performance
in fact verification tasks. To ensure reproducibility, we set the temperature parameter to
zero, thereby enforcing deterministic outputs. Other hyperparameters, including max
tokens and top-p, are also fixed to maintain consistency across experimental runs.

Since hallucination detection relies on extracting structured outputs from LLM-generated
responses, we enforce a fixed output format to prevent parsing errors. However, certain
cases result in unexpected or malformed outputs, leading to erroneous triplet extractions.
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To address this, we employ an error detection and mitigation strategy. First, we identify
and filter common error patterns within LLM-generated responses. If an output contains
errors, we re-request a corrected response up to a predefined threshold. If errors persist
beyond this threshold, we log them for further analysis to identify configurations that
contribute to systematic failures.

By implementing these measures, we ensure that our model evaluations remain accurate,
reproducible, and free from system-induced artifacts. This structured approach enables us
to rigorously assess the effectiveness of hallucination detection across different prompting
strategies, hallucination types, and dataset variations.

Lastly, we follow the experimental setup of the most relevant studies for the evaluation. In
line with previous research [YV23, HRQ+24], all evaluations in this work are conducted
at the triplet level for hallucination detection.

34



CHAPTER 5
Results and Discussion

5.1 Hallucinated Data
To evaluate the nature of hallucinated outputs, we first analyze the hallucinated data
generated by our methodology1. This includes the types of hallucinations identified,
descriptive statistics, and a breakdown of how different types manifest in the dataset.

From a total of 60 samples derived from questions containing the keyword ‘Thyroid,’
we generated 731 triplets. Among these, 121 triplets were designated as hallucinated,
comprising approximately 16.6% of the dataset. This hallucination rate aligns with that
reported in QA tasks using LLMs in the biomedical domain [LCR+24], indicating that
our results are representative of real-world conditions.

• Detailed Information Modification: 46

• Absolute Fabrication: 42

• Contextual Fabrication: 32

Just as intended, the model produced only the three specified types of hallucinations.
Representative examples for each type are provided below:

Detailed Information Modification: Hallucinated Triplet:

[ "loss of heterozygosity (LOH) at the PTEN locus", "occurs
in exactly", "30% of follicular thyroid tumors" ]

Reference Triplet (if exists):
1The dataset is available at https://github.com/KRLabsOrg/RAGFactChecker.

35

https://github.com/KRLabsOrg/RAGFactChecker


5. Results and Discussion

[ "loss of heterozygosity (LOH) at the PTEN locus", "occurs
in approximately", "25% of follicular thyroid tumors" ]

In this instance, the hallucinated output alters a critical numerical detail while maintaining
structural similarity to the reference, exemplifying a subtle yet potentially significant
modification.

Absolute Fabrication: Original Triplets:

[ "Recent studies", "have identified", "patients with inactivating
mutations in TRβ1" ]

[ "These cases", "are distinct and do not represent", "the
typical RTH phenotype characterized by TRβ2 mutations" ]

Added (Hallucinated) Triplet:

[ "A small cohort of patients in 2022", "exhibited", "symptoms
resembling RTH" ]

Here, the hallucinated triplet introduces entirely new content that is not supported by the
reference, thereby challenging the detection system with a clear-cut instance of fabricated
information.

Contextual Fabrication: Original Triplet:

[ "PTEN’s expression", "is often silenced through", "various
epigenetic mechanisms" ]

Added (Hallucinated) Triplet:

[ "complete loss of PTEN mRNA expression", "is evident in",
"up to 8% of analyzed tumors" ]

This example demonstrates a hallucination where additional context is provided that is
closely related to the reference, yet introduces subtle factual inaccuracies.
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Example Analysis and Discussion The examples above clearly illustrate how our
methodology generates hallucinated triplets in accordance with the predefined categories.
In the case of Detailed Information Modification, the hallucinated triplet deviates from
the reference by altering a numerical value, a modification that is particularly challenging
for detection systems given its structural similarity to the original content. The Absolute
Fabrication example introduces entirely new content that is unsupported by any reference
information, while the Contextual Fabrication example subtly adjusts the context to
include an inaccurate statistic.

Notably, the hallucination data is generated in a well-balanced manner. The nearly
uniform distribution across the three types—46 instances of Detailed Information Mod-
ification, 42 instances of Absolute Fabrication, and 29 instances of Contextual Fab-
rication—demonstrates that our methodology reliably produces diverse and nuanced
hallucination examples. This balanced generation is critical, as it ensures that subse-
quent evaluations of hallucination detection are robust and comprehensive, effectively
challenging the model to detect both overt and subtle deviations from the reference
information.

These results confirm that our approach not only generates hallucinated content systemat-
ically but also maintains a controlled and varied distribution of hallucination types. This
lays a solid foundation for evaluating and improving hallucination detection mechanisms
in high-stakes domains such as medicine, research, and finance.

5.2 Hallucination Detection Performance
To assess the effectiveness of our hallucination detection framework, we conducted
extensive evaluations using multiple configurations and keyword-specific test sets. Our
experiments reveal that our approach is capable of accurately identifying hallucinated
triplets across diverse scenarios, demonstrating both robustness and generalizability.

Overall Performance: Our evaluation on the full dataset demonstrates that our
framework achieves strong performance when incorporating detailed triplet analysis,
chain-of-thought (CoT) reasoning, and persona-based contextualization. Notably, the
detail + CoT configuration yielded a sensitivity score of 0.8833 and a specificity score
of 0.8179.

For comparison, we evaluated the most relevant baseline, REFCHECKER [HRQ+24], on
our dataset. To precisely replicate REFCHECKER’s evaluation procedure, we followed
the original prompt and verification method described in their paper, in which the
hallucination detection process involves inserting each individual answer triplet and its
corresponding reference texts(not reference triplets) into their pre-defined prompt (see
Appendix C for detailed prompt example). Here, each request evaluates only one answer
triplet at a time. The results showed perfect sensitivity of 1.00 but a significantly lower
specificity of 0.2379. While REFCHECKER effectively avoids false positives, the notably
low specificity indicates it fails to identify more than three-fourths of correct knowledge
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claims, resulting in a strong bias toward classifying triplets as hallucinations. Importantly,
this performance gap persisted even when testing REFCHECKER strictly under its
original evaluation condition, where only one answer triplet is processed per request.

These results—summarized in Table 5.1—highlight the trade-offs between sensitivity
and specificity in hallucination detection, demonstrating the advantages of our approach
in achieving a well-balanced performance while maintaining computational efficiency.
Notably, our method excels in overall balanced accuracy (BA) score2. We hypothesize
that the hallucinations identified in our evaluation are more subtle and require a careful,
nuanced approach for accurate differentiation.

Performance by Keyword: To further validate the robustness of our framework,
we tested its performance on keyword-specific subsets that serve as proxies for different
contexts:

• Hormone: For samples involving the keyword “Hormone,” the model achieved per-
formance scores of 0.8657 and 0.8702. This high level of performance demonstrates
the framework’s capacity to handle biological and medical terminology reliably.

• RNA: For samples centered around “RNA,” the scores were 0.8889 and 0.8166.
Despite the shift in domain focus, the performance remains consistently high,
underscoring the generalizability of our approach across various subject areas.

Configuration/Keyword TP FP FN TN Sensitivity Specificity
Thyroid 106 108 14 485 0.8833 0.8179
Hormone 58 58 9 389 0.8657 0.8702
RNA 208 265 26 1180 0.8889 0.8166

Table 5.1: Performance Metrics for Hallucination Detection

The results indicate that our hallucination detection framework not only performs well
on the overall dataset but also exhibits balanced and robust detection capabilities across
different data. The high performance across keywords suggests that the hallucinated
data, generated using our controlled methodology, is well-distributed and representative
of real-world challenges. This balanced distribution is crucial for ensuring that our
evaluation framework accurately reflects both overt and subtle forms of hallucinated
content.

Table 5.1 summarizes these results and further illustrates the consistency of our detection
performance across various experimental settings.

2Balanced accuracy (BA) is defined as the arithmetic mean of sensitivity and specificity: (sensitivity
+ specificity) / 2.
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Performance by Prompting Methods: We evaluated the impact of different prompt-
ing strategies on hallucination detection performance by systematically varying prompt
components. Here, the prompt feature Baseline refers to prompts that contain stan-
dard elements, including a brief task description and predefined classification categories,
following the structure of REFCHECKER [HRQ+24]. The results in Table 5.2 reveal
several key trends:

Prompt Feature TP FP FN TN Sensitivity Specificity BA
REFCHECKER [HRQ+24] 120 466 0 145 1.0000 0.2373 0.6187
Baseline 55 31 66 579 0.4545 0.9492 0.7019
CoT 29 6 65 477 0.3085 0.9876 0.6481
Few-shot 47 47 74 563 0.3884 0.9230 0.6557
Detail 110 224 10 386 0.9091 0.6328 0.7710
Detail + CoT 106 108 14 485 0.8833 0.8179 0.8506
Detail + Few-shot 98 125 23 485 0.8099 0.7951 0.8025
Detail + CoT + Few-shot 99 108 21 503 0.8250 0.8232 0.8241

Table 5.2: Performance of different prompting methods in hallucination detection.

First, detailed instruction alone (Detail) was the most effective individual prompt
feature, achieving a high specificity of 0.9091 and an BA score of 0.7710. However,
its specificity was relatively low (0.6328), indicating that while it helped reduce false
negatives, it missed a significant portion of true knowledge claims. This suggests that
detailed, structured instructions improve factual accuracy but may require additional
strategies to improve specificity.

Second, few-shot prompting alone (Few-shot), which provides in-context examples, did
not significantly improve performance on its own, yielding an BA score of 0.6557. However,
when combined with detailed instructions (Detail + Few-shot), BA increased to
0.8025, and specificity also improved. This implies that few-shot examples enhance fact
preservation when paired with structured guidance, allowing the model to recognize
factual consistency more effectively.

Third, Chain-of-Thought (CoT) reasoning alone (CoT) resulted in high specificity (0.9876)
but very low sensitivity (0.3085), leading to an BA score of 0.6481. This suggests that
while CoT reasoning expands the model’s ability to retrieve more factual knowledge, it also
increases false negatives. However, when CoT was combined with detailed instructions
(Detail + CoT), sensitivity improved dramatically (0.8833), specificity remained high
(0.8179), and BA reached 0.8506, making it one of the most balanced configurations.
This implies that CoT enhances knowledge retrieval but requires structured guidance to
maintain sensitivity.

Finally, the results from applying all prompt features—Detail + CoT + Few-shot—showed
an BA score of 0.8241, with balanced sensitivity (0.8250) and specificity (0.8232). We
hypothesize that the increased prompt length resulting from the inclusion of few-shot
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examples may have adversely affected model performance. Although incorporating ad-
ditional prompt features has the potential to enhance performance, the corresponding
increase in prompt length could lead to diminishing marginal benefits or even a decline
in overall effectiveness.

These findings emphasize that structured prompts alone can significantly improve sensi-
tivity but require additional methods to enhance specificity. CoT and few-shot examples
independently provide little benefit, but when combined with structured prompts, they
create a well-balanced framework for hallucination detection. This suggests that hallu-
cination detection systems should integrate multiple prompting techniques rather than
relying on a single approach for optimal performance.

5.3 Performance by Hallucination Type
To further investigate the strengths and limitations of our hallucination detection frame-
work, we analyzed its performance separately on each hallucination type. Table 5.3
summarizes the detection results across the three types of hallucinations generated:
Detailed Information Modification, Absolute Fabrication, and Contextual Fabrication.

Hallucination Type Detection Rate
Detailed Information Modification 0.8478
Absolute Fabrication 0.9047
Contextual Fabrication 0.9063

Table 5.3: Detection Performance by Hallucination Type

As shown in Table 5.3, our model achieves a detection rate of 0.8478 for Detailed
Information Modification, which is notably lower than the performance for Absolute
Fabrication (0.9047) and Contextual Fabrication (0.9063). This indicates that while our
framework is highly effective at detecting hallucinations that involve entirely fabricated
or contextually misleading information, it faces more challenges when the hallucination
involves subtle modifications of detailed information (e.g., minor numerical changes or
slight descriptive alterations).

Unlike previous research [GVM22]—which primarily focused on broader categories of
hallucinations—the results presented here show that the detection rates for Absolute
Fabrication and Contextual Fabrication are quite similar. The introduction of Detailed
Information Modification, a more nuanced form of hallucination, reveals a lower detection
performance, suggesting that minor yet critical deviations require further refinement in
our detection approach.

These findings underscore that our detection framework achieves a well-balanced perfor-
mance across different types of hallucinations. The results demonstrate that our method
is particularly effective at identifying both overt fabrications and contextually misleading
claims, while still performing well on more subtle modifications, which are traditionally
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harder to detect. Furthermore, the strong performance across various hallucination types
suggests that our approach generalizes well beyond specific cases.
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CHAPTER 6
Conclusion

6.1 Key Findings and Contributions
In this study, we proposed a novel framework for hallucination detection in large language
models (LLMs), focusing on knowledge-level validation through structured triplet extrac-
tion and comparison. Our approach decomposes text into discrete factual units—(arg1,
relation, arg2) triplets—allowing for precise detection of hallucinated information at a
finer granularity than conventional sentence- or sub-sentence-level methods. By leveraging
LLMs for triplet fact-checking in a single request, our method eliminates the need for
complex multi-step pipelines or multiple queries in the fact verification process, thereby
significantly enhancing efficiency. The results of this approach are packaged in a python
(pip) installable package 1.

To evaluate the effectiveness of our approach, we conducted hallucination detection
experiments, specifically targeting challenging hallucination cases: Absolute Fabrication,
Contextual Fabrication, and Detailed Information Modification. Using the BioASQ
Dataset and our Hallucinated Data Generator, we systematically generated hallucinated
triplets corresponding to these hallucination types.

Results demonstrate that our method achieves a strong balance between sensitivity
(0.8833) and specificity (0.8179), significantly outperforming the previous state-of-the-art
knowledge-level detection approach [HRQ+24]. Compared to existing triplet-based verifi-
cation models, our framework not only enhances hallucination detection accuracy but also
drastically reduces the number of verification requests. Specifically, our method requires
average length of input triplet

(input sequence length - C) times fewer requests, leading to a significant improvement in
efficiency.

Additionally, our experiments highlight the critical role of prompting techniques in enhanc-
ing hallucination detection. Structured and detailed instructions significantly improve

1The package source code is available at https://github.com/KRLabsOrg/RAGFactChecker.
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factual accuracy, while few-shot examples and chain-of-thought reasoning contribute to
better specificity. Our best-performing prompt combined detailed instructions with chain-
of-thought reasoning, achieving 0.8833 sensitivity, 0.8179 specificity, and an BA score of
0.8444. Interestingly, adding few-shot examples slightly decreased performance, yielding
0.8250 sensitivity, 0.8232 specificity, and an BA score of 0.8241. We hypothesize that the
additional length introduced by few-shot examples may have negatively impacted model
performance. Furthermore, while additional prompt features could enhance performance,
they also increase total prompt length, which may introduce diminishing returns or even
performance degradation.

6.2 Limitations

Despite its strong performance, our approach has several limitations that warrant fur-
ther investigation. First, the triplet extraction process is inherently dependent on the
capabilities of the LLM used. Variations in LLM outputs, particularly in paraphrased
or contextually implied relationships, can impact detection accuracy. Second, while our
method effectively detects most hallucination types, it exhibits slightly lower performance
in identifying Detailed Information Modifications—hallucinations involving minor yet
critical numerical or descriptive changes. This suggests that additional refinements are
needed to improve sensitivity to subtle factual inconsistencies.

Another limitation is the reliance on reference triplets derived from the same source
as the generated text. While this approach ensures alignment between reference and
generated content, it restricts the scope of verification to the information present in
the dataset. The effectiveness of our method in detecting hallucinations across broader
knowledge sources (e.g., external knowledge graphs) remains an open question.

6.3 Future Work

Future research directions include several key improvements and expansions to our
hallucination detection framework. One promising avenue is the incorporation of external
knowledge sources—such as structured knowledge graphs or domain-specific databases—to
enhance reference triplet generation. By integrating these external sources, we aim to
improve hallucination detection accuracy, particularly in cases where the LLM-generated
content lacks clear reference alignment.

Additionally, further optimization of prompt engineering strategies could enhance the
reliability of our approach. Exploring alternative CoT formulations, retrieval-augmented
generation (RAG) methods, or multi-step verification processes may help mitigate false
positives and improve handling of difficult-to-detect hallucination types.

Lastly, future studies should examine the applicability of our framework across differ-
ent LLM architectures, including smaller, more efficient models designed for real-time
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applications. Evaluating how our approach performs across multiple LLM families will
provide insights into its scalability and adaptability to various computational constraints.

By addressing these areas, we aim to further refine our hallucination detection method-
ology, making it more effective, adaptable, and practical for real-world deployment in
AI-driven information retrieval and decision-making systems.
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APPENDIX A
Appendix

A.1 Fact Checker Prompts

This appendix provides the system and user prompts used for fact-checking triplets in
various experimental settings.

A.1.1 Baseline Prompt

System Prompt:
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You are an assistant responsible for verifying whether each
input triplet is supported by the source triplets. For each
triplet in the input triplets, determine whether there is a
similar triplet in the source triplets or whether the input
triplet can be logically inferred from the source triplets.

Consider paraphrased information, contextual clues (e.g.,
pronouns or synonyms), and combinations of source triplet
information to make this determination.

Provide the results in the following format:
triplet_idx:result

Where result can be one of the following:
- True: The input triplet is either highly similar to a triplet
in the source or can be logically inferred from the source
triplets.
- False: The input triplet cannot be matched or inferred from
any triplet in the source.

Be concise and only output the results as specified.
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User Prompt:

Task Description:
Compare the input triplets against the source triplets to
determine if each input triplet is either highly similar to a
source triplet or can be logically inferred from the source
triplets.
Consider paraphrasing, contextual changes, and indirect
references such as pronouns or synonyms.
Output True if the triplet matches or is inferable; otherwise,
output False.

Input Triplets:
{answer_triplets}

Source Triplets:
{reference_triplets}
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A.1.2 Few-shot Prompt
System Prompt:

You are an assistant responsible for verifying whether each
input triplet is supported by the source triplets.
For each triplet in the input triplets, determine whether
there is a similar triplet in the source triplets or whether
the input triplet can be logically inferred from the source
triplets.
Consider paraphrased information, contextual clues (e.g.,
pronouns or synonyms), and combinations of source triplet
information to make this determination.

If few-shot demonstrations are provided, carefully follow their
approach. If they demonstrate caution and only assign True
when the evidence is indisputable, follow that pattern.

Provide the results in the following format:
triplet_idx:result
Where result can be one of the following:

- True: The input triplet is either highly similar to a triplet
in the source or can be logically inferred from the source
triplets.
- False: The input triplet cannot be matched or inferred from
any triplet in the source.

Be concise and only output the results as specified.
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User Prompt:

Task Description:
Compare the input triplets against the source triplets to
determine if each input triplet is either highly similar to a
source triplet or can be logically inferred from the source
triplets.
Consider paraphrasing, contextual changes, and indirect
references such as pronouns or synonyms.
Output True if the triplet matches or is inferable; otherwise,
output False.

(Optional)
If few-shot examples are provided here, they will look like
this:

[BEGIN FEW-SHOT-EXAMPLES]
<Example 1 Input/Output Pair>
<Example 2 Input/Output Pair>
...
[END FEW-SHOT-EXAMPLES]
If these examples are present, incorporate their style and
approach into your solution.
{examples}

Input Triplets:
{answer_triplets}

Source Triplets:
{reference_triplets}
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A.1.3 Chain-of-Thought (CoT) Prompt
System Prompt:
You are an assistant responsible for verifying whether each
input triplet is supported by the source triplets.
For each triplet in the input triplets, determine whether
there is a similar triplet in the source triplets or whether
the input triplet can be logically inferred from the source
triplets.
Consider paraphrased information, contextual clues (e.g.,
pronouns or synonyms), and combinations of source triplet
information to make this determination.

Your final output must contain exactly two sections in this
order:

[REFERRED TRIPLETS]
- For each input triplet, list the source triplets (by ID or
index) that support or contradict the input.
- Provide a short explanation (a brief chain-of-thought)
describing how they led you to choose True or False.
- Example:

triplet_idx_1: (source triplets #1, #3) → [very brief
reasoning]
triplet_idx_2: None
...

[FINAL ANSWER]
- For each input triplet, output one line in the format
triplet_idx:True or triplet_idx:False.
- No additional explanation or text beyond these lines.
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User Prompt:
Task Description:
Compare the input triplets against the source triplets to
determine if each input triplet is either highly similar to a
source triplet or can be logically inferred from the source
triplets. Consider paraphrasing, contextual changes, and
indirect references such as pronouns or synonyms.

Output Requirements:
1. Provide only the two sections [REFERRED TRIPLETS] and
[FINAL ANSWER].
2. Under [REFERRED TRIPLETS], for each input triplet, specify
which source triplets (if any) were used, along with a brief
explanation of how they support or contradict the input.
3. Under [FINAL ANSWER], output exactly one line per input
triplet in the format:

triplet_idx:True
triplet_idx:False

4. No further explanations or additional text should be
included outside these two sections.
5. The number of lines in [FINAL ANSWER] must match the number
of input triplets.

Follow the revised system prompt carefully to decide True or
False for each input triplet.

Input Triplets:
{answer_triplets}
Source Triplets:
{reference_triplets}
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A.1.4 Detailed Instruction Prompt

System Prompt:
You are an assistant responsible for verifying whether each
input triplet is supported by the source triplets. For each
input triplet, you must decide whether it is True or False,
strictly based on the source triplets. Follow these detailed
rules:

1. True Condition
- Exact or Strictly Equivalent Match: If the input triplet
directly quotes or very closely paraphrases the source with the
same meaning (including specific data, facts, or relationships),
choose True.
- Numeric Data, Names, Key Facts: All specific numbers,
measurements, or details must match or be strictly equivalent
to the source.
- Locations, Timeframes, or Qualifiers: Must be identical or
demonstrably the same.
- Straightforward Inference: If it is logically clear from the
source triplets that the specific details in the input triplet
can be inferred without speculation or guesswork, mark True.
- Example: If the source says, ’A hormone X is specifically
found in both the hippocampus and the cortex,’ then ’hormone X
is found in the hippocampus’ is a valid inference.
- But if the source is significantly more general or omits
critical details (e.g., only says ’several hormones’ without
naming them), do not fill in any specifics on your own.
- Allowable Inferences: If the input triplet’s statements can
be derived by combining or interpreting information already in
the source, without speculation, guesswork, or introduction of
new details, choose True.
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2. False Condition
- Unsupported or New Details: If the input triplet introduces
any detail (numeric value, location, name, or condition) that
the source triplets do not clearly confirm, choose False--even
if it is a real-world fact.
- Contradiction or Mismatch: If any part of the input triplet
conflicts with the source triplets, choose False (e.g.,
different numbers, different subject-object relationships, or
the source is more general while the input is overly specific).
- Speculation or Guessing: If you cannot directly verify the
triplet or logically deduce it from the source without making
an assumption or inference that is not clearly supported,
choose False.

3. Additional Rule for Exactness of Numeric or Specific
Details
- If the input triplet specifies a particular quantity, time
period, location, or other condition, confirm that the source
triplets match it exactly.
- Even a slight difference in numeric value or specific wording
means False if there is no explicit mention of a range or
approximation in the source.

4. Output Format
- For each input triplet, output one line in the format
triplet_idx:True or triplet_idx:False.
- No additional explanation or text beyond these lines.
- The number of lines here must match the number of input
triplets exactly.
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5. Instructions to Follow Carefully
1. Compare each input triplet with the source triplets in
detail.
2. Decide True or False using the above rules and be very
strict about numeric data, specific locations, times, or
qualifiers.
3. List only triplet_idx:True or triplet_idx:False for each
input triplet.
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User Prompt:
Task Description:
Compare each input triplet to the provided source triplets.
Following the revised system prompt instructions, determine
whether each input triplet is supported (True) or not supported
(False).

Key Reminders from the System Prompt:
- If the input triplet introduces details (numeric values,
specific conditions, or qualifiers) not explicitly supported by
the source triplets, you must mark it False, even if it might
be true in reality.
- If the input triplet has any mismatch in numbers, times,
measurements, or specificity beyond what the source triplets
state, mark it False.
- For detailed facts with numbers, partial or approximate
matches are insufficient; all details must exactly or
straightforwardly match.

Input Triplets:
{answer_triplets}

Source Triplets:
{reference_triplets}

Output Requirements:
1. Output exactly one line per input triplet in the format:

triplet_idx:True
triplet_idx:False

2. No further explanations or additional text should be
included outside the triplet_idx:True.
3. The number of lines must match the number of input
triplets.

Follow the revised system prompt carefully to decide True or
False for each input triplet.
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A.2 Prompts for Hallucinated Data Generation
A.2.1 Hallucinated Data Generator Prompt
System Prompt:
You are HallucinationDataGenerator, an assistant specialized
in creating subtle, plausible hallucinations within your
responses.
Your task is to generate answers that are primarily grounded
in the provided reference documents and directions, but also
incorporate carefully crafted, believable fictional elements.
These hallucinations should not be outlandish; instead, focus
on small details that could easily be overlooked--such as
specific years, dosage values, or timeframes.
For instance, you might slightly alter a reported year,
introduce a modest yet unverified numerical detail, or specify
a plausible interval for symptom onset that isn’t explicitly
stated.
Ensure that the hallucinated details blend seamlessly with
the given context and do not contradict major facts in the
reference documents.
Maintain coherence, relevance, and credibility throughout your
response.

If few-shot demonstration examples are provided, use them
as a guide to understand the style, approach, and complexity
expected in the hallucinated output.
You may adopt a similar manner of integrating subtle fictional
details as demonstrated in the examples.

58



A.2. Prompts for Hallucinated Data Generation

User Prompt:
Reference Document:
{reference_documents}

(Optional) Few-Shot Demonstrations:
If few-shot examples are provided here, they will look like
this:

[BEGIN FEW-SHOT-EXAMPLES]
<Example 1 Input/Output Pair>
<Example 2 Input/Output Pair>
...
[END FEW-SHOT-EXAMPLES]

If these examples are present, incorporate their style and
approach into your solution.
{examples}

Question:
{question}
Task:
1. Non-Hallucinated Answer:
- Produce a comprehensive, evidence-based answer to the question
using the provided references.
- Include reasoning, background context, and supporting evidence
from the references, making sure the answer is not overly
brief.
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2. Hallucinated Answer:
- Start with the exact same text as the Non-Hallucinated Answer.
- Introduce subtle hallucinations that are small, credible,
and closely related to the context found in the references.
These hallucinations should be challenging to detect without
carefully checking the provided references. For instance,
slightly alter a date, a name, a relationship between entities,
or introduce a minor detail that sounds plausible but does not
appear in the references.
- Highlight each hallucinated detail in the text (e.g., italics
or a parenthetical note).
- Apart from the hallucinated elements, the rest of
the Hallucinated Answer should remain identical to the
Non-Hallucinated Answer.

3. Hallucinated Details Section:
- After the Hallucinated Answer, list each hallucinated fact as
a separate bullet point under a ’Hallucinated Details’ heading,
clearly identifying the fabricated elements.
Format Example:

Non-Hallucinated Answer:
[Comprehensive, evidence-based answer here, with no
hallucinations]

Hallucinated Answer:
[Identical to Non-Hallucinated Answer except where subtle,
contextually plausible hallucinated details are introduced and
highlighted]

Hallucinated Details:
- [List each hallucinated fact here as a bullet point]
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A.2.2 Hallucinated Triplet Extraction Prompt

System Prompt:
You are an advanced language model trained to analyze textual
information for hallucination detection. This time, you
will not reference or compare non_hallucinated_triplets.
Instead, you will work directly from the provided answer
and hallucinated_answer to determine which triplets in
answer_triplets are hallucinated.

Your primary goal is to produce output lists that match
the exact number of triplets in answer_triplets. Under no
circumstances should you produce more or fewer boolean values
than the number of provided triplets.

Specifically, you will:
1. Consider the hallucinated_answer and the original answer.
2. Identify hallucinated triplets among answer_triplets by
determining which details appear in the hallucinated_answer but
are not supported by the information in the original answer.
3. Output two boolean lists--both having the exact same length
as the answer_triplets list--where:
- One boolean list includes comments explaining the reasoning
for each corresponding triplet.
- The other boolean list includes no comments.
In both lists:
- false indicates the triplet is supported by the original
answer (not hallucinated).
- true indicates the triplet is hallucinated (introduces
unsupported or fabricated details).
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4. There must be a one-to-one correspondence between the
triplets and the boolean values in both lists. For example, if
there are 4 triplets, you must produce exactly 4 boolean values
in the commented list and exactly 4 boolean values in the plain
list.

5. Provide only the boolean lists (and optional comments for
one version) unless the user requests additional details.

Failure to match the exact number of boolean values to the
number of answer_triplets means you have not followed the
instructions correctly. Make sure to count the answer_triplets
and produce the exact same number of boolean values.

Follow the format and instructions given in the user prompt.
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User Prompt:
Here are the inputs for hallucination detection:
1. Original Answer (Used to generate supported triplets):
{answer}
2. Hallucinated Answer (Source of potential hallucinations):
{hallucinated_answer}
3. Answer Triplets (Extracted from the hallucinated answer):
{answer_triplets}

Important: The number of boolean values you provide must match
the number of triplets in answer_triplets. Do not produce any
extra or fewer boolean values.

Task:
1. Identify which of the answer_triplets are hallucinated by
checking if the information in each triplet can be supported by
the original answer.
2. Generate two boolean lists of the exact same length as
answer_triplets:
- A boolean list with comments explaining why each triplet is or
is not hallucinated.
- A plain boolean list without comments.

Ensure both lists have the same number of boolean values as
there are triplets.

Example Output:
1. Boolean List with Comments:

[
false, // ’Triplet 1 explanation...’
true, // ’Triplet 2 explanation...’
] 2. Plain Boolean List:

[false, true]

In this example, if there were exactly 2 triplets, we have
provided exactly 2 boolean values for each list.

Now analyze the provided inputs and generate the requested
outputs, making sure the number of boolean values matches the
number of answer_triplets exactly.
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A.3 Prompts from Previous Research

A.3.1 REFCHECKER Prompt

System Prompt:
I have a claim that was made by a language model
in response to a question. Please help me check
whether the claim can be entailed according
to the provided reference, which is related
to the question.

The reference is a list of passages, and the
claim is represented as a triplet formatted
as (’subject’, ’predicate’, ’object’).

If the claim is supported by ANY passage in
the reference, answer True.

If NO passage in the reference entails the
claim, and the claim is contradicted by
some passage in the reference, answer
False.

If NO passage entails or contradicts the
claim, or DOES NOT contain sufficient
information to verify the claim, answer False.

Please DO NOT use your own knowledge for the
judgment. Just compare the reference and
the claim to determine the answer.

User Prompt:

64



A.3. Prompts from Previous Research

You are HallucinationDataGenerator, an assistant specialized
in creating subtle, plausible hallucinations within your
responses.
Your task is to generate answers that are primarily grounded
in the provided reference documents and directions, but also
incorporate carefully crafted, believable fictional elements.
These hallucinations should not be outlandish; instead, focus
on small details that could easily be overlooked--such as
specific years, dosage values, or timeframes.
For instance, you might slightly alter a reported year,
introduce a modest yet unverified numerical detail, or specify
a plausible interval for symptom onset that isn’t explicitly
stated.
Ensure that the hallucinated details blend seamlessly with
the given context and do not contradict major facts in the
reference documents.
Maintain coherence, relevance, and credibility throughout your
response.

If few-shot demonstration examples are provided, use them
as a guide to understand the style, approach, and complexity
expected in the hallucinated output.
You may adopt a similar manner of integrating subtle fictional
details as demonstrated in the examples.
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