
Instance Space Analysis and
Constraint Programming Models

for Unrelated Parallel Machine
Scheduling Problems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Matthias Moik, BSc.
Matrikelnummer 11810738

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dr. Nysret Musliu
Mitwirkung: Dr. Felix Winter

Wien, 2. Mai 2025
Matthias Moik Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Instance Space Analysis and
Constraint Programming Models

for Unrelated Parallel Machine
Scheduling Problems

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Matthias Moik, BSc.
Registration Number 11810738

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dr. Nysret Musliu
Assistance: Dr. Felix Winter

Vienna, May 2, 2025
Matthias Moik Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Matthias Moik, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 2. Mai 2025
Matthias Moik

v

Danksagung

Als Erstes möchte ich mich von ganzem Herzen bei meiner Familie, insbesondere bei
meinen Eltern, bedanken, die mir das Studium ermöglicht und mich während der gesamten
Zeit in jeder Hinsicht unterstützt haben. Ich weiß das sehr zu schätzen.

Ebenso möchte ich mich bei meinem Betreuer, Associate Prof. Dr. Nysret Musliu, und
meinem Co-Betreuer, Dr. Felix Winter, bedanken. Ihr Feedback und die kontinuierliche
Unterstützung haben mir sehr geholfen, motiviert zu bleiben und die Arbeit erfolgreich
abzuschließen.

Diese Arbeit wurde im Rahmen des Christian Doppler Laboratory for Artificial Intelligence
and Optimization for Planning and Scheduling durchgeführt. Die finanzielle Unterstützung
wird mit großem Dank angenommen.

Zum Schluss ein riesiges Dankeschön an meine Freundin und alle meine Freunde, die
mich durch das Studium begleitet haben. Eine bessere Lerngruppe oder bessere WG-
Mitbewohner hätte ich mir nicht wünschen können.

vii

Kurzfassung

Terminplanung spielt eine wichtige Rolle für viele Firmen und Institutionen, zum Beispiel
zur Verbesserung der Effizienz komplexer Produktionssysteme. Es gibt verschiedene
Möglichkeiten, um problemspezifische Zeitpläne zu erstellen und zu optimieren. Die Wahl
eines passenden Algorithmus für eine konkrete Probleminstanz ist dabei entscheidend,
da die Qualität des resultierenden Zeitplans stark variieren kann. Diese Diplomarbeit
fokussiert sich auf das Unrelated Parallel Machine Scheduling Problem, ein bekanntes
Optimierungsproblem mit vielen verschiedenen Varianten. Für ein tieferes Verständnis
des Instanzraums dieses Problems wurde jedoch bisher wenig unternommen. Das ist aber
wichtig, da existierende Instanzen aus früheren Studien einen Bias aufweisen könnten
und so zu falschen Schlüssen über die Performance von Algorithmen führen.

In dieser Diplomarbeit wird der Instanzraum des Unrelated Parallel Machine Scheduling
Problems analysiert, um tiefere Einblicke in die Struktur des Optimierungsproblems
zu gewinnen. Instanz-Eigenschaften, die unter anderem auf Graphen basieren, werden
eingeführt, um die Probleminstanzen beschreiben und klassifizieren zu können. Sie
ermöglichen auch die Visualisierung des Instanzraums. Es wird festgestellt, dass die
generierten Instanzen aus bekannten Datensätzen sehr unterschiedliche Eigenschaften
im Vergleich zu realen Instanzen aufweisen. Daher werden zusätzliche Instanzen mithilfe
eines neuen Instanzengenerators erzeugt, die ähnlicher zu den realen Instanzen sind.
Auf dieser erweiterten Menge an Instanzen werden vier exakte Methoden sowie vier
heuristische Ansätze zur optimierung ausgewertet. Dabei wird festgestellt, dass die
Anzahl an zugelassenen Maschinen pro Job einen großen Einfluss auf die Performance der
untersuchten Methoden hat. Mit den gewonnenen Erkenntnissen aus diesen Experimenten
können Klassifikationsmodelle trainiert werden, die versuchen, den am besten geeigneten
Algorithmus für eine konkrete Instanz automatisiert auswählen. Die besten Modelle sind
in der Lage, die optimale Lösung öfter zu finden als jeder einzelne Algorithmus separat
betrachtet.

Zusätzlich wird eine zweite Variante dieses Optimisierungsproblems betrachtet. Basierend
auf den Ergebnissen der vorherigen Analyse wird ein Constraint Programming Modell,
das Intervallvariablen verwendet, formuliert. Die Implementierung dieses Modells ist in
der Lage, die Optimalität von Lösungen zu kleinen Instanzen in signifikant kürzerer Zeit
zu beweisen als bisher bekannte exakte Lösungsmethoden. Auf größeren Instanzen kann
diese Methode sogar einen heuristischen Ansatz auf einigen Instanzen übertreffen.

ix

Abstract

Scheduling plays a crucial role for many companies and institutions across various sectors.
The efficiency of complex production systems can be increased, or personnel utilization
can be optimized. There exist many approaches to generate and optimize such schedules.
The choice of the correct algorithm for a specific problem is very important, as the quality
of the schedule can vary a lot, which might have a direct impact on the expenses. This
thesis focuses on the Unrelated Parallel Machine Scheduling Problem, which is a well-
known problem with many variants utilizing different constraints. However, very little
work has been done in the past to analyze the instance space of this problem. Existing
instances used in past studies might be biased, which may lead to wrong conclusions
about the performance of algorithms.

This thesis analyzes the instance space to gain deeper insights into the underlying
structures of the Unrelated Parallel Machine Scheduling Problem. Instance features,
including graph-based and probing features, are introduced to describe and classify
problem instances. These features also allow a visualization of the instance space. It is
found that the existing, randomly generated instances have very different characteristics
compared to the available real-life instances. Therefore, an extension to an existing
instance generator is proposed to create a novel set of instances resembling real-life ones.
On the combined set of instances, four exact methods and four heuristic approaches are
evaluated and analyzed. It is discovered that the number of eligible machines per job
greatly influences the performance of the exact methods. A comparison of the heuristics
shows a similar influence of machine eligibility. Simple classification models are trained
on the gathered data for automated algorithm selection. The final models are able to
find the best solution more often than each algorithm or solver on its own.

Additionally, another problem with an extended set of constraints is investigated. Based
on the insights of the prior analysis, a Constraint Programming formulation utilizing
interval variables is proposed. An implementation of this model is able to prove optimality
for instances of small size significantly faster than existing exact models. Also, it finds
new best solutions for larger problem instances, by outperforming a Simulated Annealing
approach for some instances.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Aims of the Thesis . 2
1.2 Main Contributions . 3
1.3 Structure . 3

2 Background and Related Work 5
2.1 The UPMSP . 5
2.2 Instance Space Analysis . 8
2.3 State of the Art and Related Work . 9

3 Exact Solvers and Heuristics for the UPMSP 13
3.1 Exact Solvers . 13
3.2 Heuristics . 18

4 Instance Space Analysis and Algorithm Selection for the UPMSP 23
4.1 Features . 23
4.2 Utilized Instances . 28
4.3 Performance Measurements . 30
4.4 Algorithm Tuning . 32
4.5 Algorithm Evaluation . 32
4.6 Feature Selection and Projection . 33
4.7 Algorithm Selection . 34

5 Experimental Evaluation 37
5.1 Algorithm Performance . 37
5.2 Instance Space Analysis for Exact Methods 41
5.3 Instance Space Analysis for Heuristics 49
5.4 Comparison Between Exact and Heuristic Instance Space 57

xiii

6 CP Formulation for an Extension of the UPMSP 59
6.1 Problem Description . 59
6.2 CP Formulation . 63
6.3 Experimental Evaluation . 70

7 Conclusion 73

Overview of Generative AI Tools Used 77

List of Figures 79

List of Tables 81

List of Algorithms 83

Bibliography 85

CHAPTER 1
Introduction

Scheduling plays a crucial role for many companies and institutions, as it can signifi-
cantly increase efficiency, allowing them to process more orders simultaneously or utilize
personnel better. While this scheduling can be done by hand for small cases, it is difficult
to find an optimized schedule for a larger number of jobs that have to be scheduled,
or a higher number of employees that have to be assigned to projects. Because such
scheduling problems are NP-Hard in many cases (Lenstra et al. [1977], Du and Leung
[1990]), it also becomes infeasible for computers to find the optimal solution within a
reasonable runtime with increasing instance size, which makes the utilization of heuristics
or approximation algorithms necessary for practical applications.
This thesis focuses on an Unrelated Parallel Machine Scheduling Problem (UPMSP)
introduced by Moser et al. [2022]. In the most basic form of the Parallel Machine
Scheduling Problem, one aims to schedule jobs with a given processing time onto available
machines so that no two jobs run on the same machine at the same time and no job
is interrupted. The goal is to find an arrangement so that an objective, such as the
makespan (the finishing time of the last job), is minimized. A detailed definition of the
UPMSP with all its additional constraints is given in Section 2.1. The UPMSP is a topic
of great interest not only in research but also in the industry because it can model certain
production processes quite well. This specific variation introduced by Moser et al. [2022]
was developed in collaboration with partners from the industry in the Christian Doppler
Labor for Artificial Intelligence and Optimization for Planning and Scheduling.
With growing businesses, the complexity and scale of such problems only keep increasing.
Also, the problem instances get more and more specialized to different production
systems, which might lead to various instance types within the problem domain itself.
For example, the difference between two such subdomains could be the ratio of jobs to
be scheduled to available machines, or the distribution of due dates of the jobs. Such
a variety of problem instances comes with a caveat. Algorithms that perform well in
one subdomain might struggle to find good solutions for others. For the same reason,

1

https://cdlab-artis.dbai.tuwien.ac.at/
https://cdlab-artis.dbai.tuwien.ac.at/

1. Introduction

a fair comparison between various algorithms is often a challenging task. To compare
algorithms, the usual approach is to evaluate them on a set of instances, followed by
an analysis of their performance (values of the objective function). These results are
interpreted using statistical tests to conclude which algorithms outperform others. To
gain further insight into the performance of the algorithms, Smith-Miles et al. [2014]
introduces a methodological approach called Instance Space Analysis (ISA), which yields
novel insights that complement the benchmarking results. First, the ISA allows for
an assessment of the bias of an instance set, and second, instances can be grouped by
different types, which might reveal that there is no single best algorithm, but multiple
best ones, depending on the instance type.

This method was already applied successfully to other scheduling problems, like the Job
Shop Scheduling Problem by Strassl and Musliu [2022] or to a Personnel Scheduling
Problem by Kletzander et al. [2021]. The aim of this thesis is to investigate the instance
space for the UPMSP to identify and remove biases in existing instance sets and provide
valuable insights about the influence of instance features on algorithmic performance.
Also, the proposed instance features can be utilized by algorithm selection methods to
predict the best algorithm for a given problem instance, which will also be explored in
this thesis.

While the ISA can generate valuable insights into this version of the UPMSP, the problem
specifications evolve continuously. Since the introduction of the UPMSP by Moser et al.
[2022], new constraints were proposed and added to the problem. A recent version
introduced by Horn et al. [2025] focuses on resource calendars and machine availabilities.
Since these constraints were introduced very recently, only a few optimization methods
are available for this problem. Another part of this thesis is to propose a novel Constraint
Programming (CP) formulation to this problem, based on the insights gained from the
previous work of this thesis. It is expected to outperform existing, comparable methods
and find new best solutions for available instances.

1.1 Aims of the Thesis
The main aim of this thesis is to conduct an ISA for the UPMSP. In addition to this, the
gained insights will be utilized to perform algorithm selection for the UPMSP and to
introduce a CP formulation for an extension of the problem. The main goals are:

• Identifying state-of-the-art exact and heuristic approaches for the UPMSP, and
complementing them with novel approaches for a broader analysis.

• Proposing instance features, including graph-based and probing features to distin-
guish and classify problem instances. Analyzing existing instance sets from the
literature for biases and removing them by adding newly generated instances, using
a novel instance generator.

2

1.2. Main Contributions

• Identifying features that influence the performance of the exact and heuristic
methods included in this analysis.

• Training an algorithm selection model that outperforms the individual algorithms,
by utilizing the proposed instance features as the model input.

• Building a CP model that outperforms existing exact methods for a recently
introduced UPMSP with an extended set of constraints.

1.2 Main Contributions
The main contributions of this thesis are:

• Existing state-of-the-art approaches like Mixed Integer Programming (MIP) formu-
lations and Simulated Annealing (SA) approaches are reimplemented and validated.
A novel formulation of a CP model, utilizing interval variables, and a Large Neigh-
borhood Search (LNS) for the UPMSP are also introduced.

• A set of 150 instance features for the UPMSP is introduced, including novel
probing features and graph-based features derived from two different graphs. An
existing instance generator is extended to create a novel instance set, containing
764 instances, that are able to reach areas in the instance space that are not well
covered by the existing instances.

• The algorithmic performance for exact and heuristic methods is analyzed in the
context of the instance space, which allows the identification of the most influential
features, regarding the performance of each algorithm.

• An algorithm selection model that is able to outperform the individual algorithms
on an unseen set of instances is trained, based on the introduced instance features.

• A general approach for handling resource calendars and machine downtimes by
making use of interval variables is introduced. A CP model including this approach
yields better results than existing exact methods for this problem and also finds
better solutions than SA under comparable conditions for a few instances.

1.3 Structure
The thesis is split into multiple parts. Chapter 2 introduces the exact problem definition
of the UPMSP, as well as a brief description of the methodology used in the ISA. Next,
the utilized exact methods and heuristics will be described in Chapter 3, while Chapter
4 focuses on the various parts of the ISA, like utilized problem instances and instance
features, as well as the experimental setup. In Chapter 5, all results of the experiments are
reported, evaluated, and discussed. The CP formulation and the performance evaluation
for the extended UPMSP are presented separately from the ISA in Chapter 6. Finally, a

3

1. Introduction

conclusion on the accomplished work is given in Chapter 7, with an outlook for further
work.

4

CHAPTER 2
Background and Related Work

In this chapter, we want to provide a complete description of the UPMSP, with all
its additional constraints and the notation used from now on. Further, we will briefly
introduce the concept and principle behind the ISA and the framework for algorithm
selection. Finally, the current state of the art and related work for these topics is
summarized.

2.1 The UPMSP
The class of UPMSPs contains many different versions. The basis for all of them is
that several jobs have to be scheduled onto machines, where the processing time of
the jobs depends on the machine they are scheduled on. Additional constraints lead to
different versions like Perez-Gonzalez et al. [2019], which uses due dates and machine
eligibility constraints, or Santoro and Junqueira [2023], which utilizes machine availability
constraints. In this thesis, we focus on the variant by Moser et al. [2022] that describes a
challenging, practical version of the problem, as well as another variant by Horn et al.
[2025], which extends these constraints even further. In the following, we give a detailed
problem definition of the variant introduced by Moser et al. [2022] and introduce the
notation utilized in the rest of this thesis.

2.1.1 Constraints
An instance of the UPMSP includes a set of machines M, |M | = Mc and a set of jobs
J, |J | = Jc. A job has a given processing time, dependent on the machine on which the
job is scheduled. Because these processing times can differ from machine to machine,
the machines are called unrelated. Also, not all jobs can be scheduled on every machine.
There exist so-called machine eligibility constraints. A job j ∈ J is eligible on machine
m ∈ M , if and only if m ∈ Ej ⊆ M . The processing time for job j ∈ J on machine
m ∈ Ej is denoted with pjm.

5

2. Background and Related Work

Furthermore, there are sequence- and machine-dependent setup times when scheduling
job j directly after job i (the predecessor of job j) on machine m, called sijm. In real life,
this could be, for example, the time needed to change tools on a workbench between two
different tasks. There are also initial and final setup times, s0jm and sj0m respectively,
before the first and after the last job is scheduled on a machine.

Each job has to be assigned to an eligible machine for processing. If job j is scheduled on
machine m with predecessor i, it occupies machine m for sijm + pjm time steps, where
no other setup or processing is allowed on the same machine.

2.1.2 Objective Function
To calculate the objective function, we first introduce the completion time Cj of a job j
recursively using its predecessor job i with Cj = Ci + sijm + pjm. The completion time
of the first job on a machine is given by the initial setup time s0jm, plus its processing
duration pjm. The machine makespan for machine m is defined as the completion time
of the last job scheduled on it, plus the corresponding final setup time, Om := Cj + sj0m.
An often-used objective in the literature is to minimize the maximal machine makespan
Cmax := maxm∈M Om, as it is reported in the literature review Marko and Jakobovic
[2023].

The problem instance also contains due dates dj for all jobs j ∈ J that should be
considered in the schedule. In an optimal case, every job is finished before its due date.
If this is not possible, we will try to minimize the cumulative delay. This objective is the
minimization of the cumulative tardiness ∑︁

j∈J Tj , where the individual tardiness of job
j ∈ J is defined as Tj := max(0, Cj − dj).

The objective function introduced by Moser et al. [2022], namely the lexicographical
ordering of the cumulative tardiness and the makespan, is used to distinguish between
two solutions with the same cumulative tardiness. This objective function completes the
problem definition of the UPMSP that is utilized for the ISA in the next chapters. With
the three field notation introduced by Graham et al. [1979], it can be characterized as
Rm|Ej , sijm|Lex(∑︁j Tj , Cmax).

To fully describe the problem, including all constraints and the objective, one could refer
to it as the Unrelated Parallel Machine Scheduling Problem with machine eligibility
constraints, sequence- and machine-dependent setup times, minimizing the cumulative
tardiness and the makespan.

2.1.3 Example Instance
In the following, we describe a simple problem instance of the UPMSP to illustrate the
problem’s constraints and objectives. The input data for a small example problem with
four jobs and two machines is given in 2.1. The information can be arranged in a vector
and matrix format. The vector d contains the due dates, and the matrix p contains the
processing times for each job-machine combination. A dot means the job is not eligible

6

2.1. The UPMSP

d =

���
4
2
7
9

 p =

���
3 4
3 ·
1 2
· 2

 s1 =

�����
0 3 2 4 3
2 0 1 4 0
3 3 0 3 3
2 1 1 0 1
2 0 1 4 0

 s2 =

�����
0 3 2 4 3
1 0 4 2 0
1 2 0 8 2
4 3 2 0 3
1 0 4 2 0

Table 2.1: Input representation of an example instance with two machines and four jobs

for scheduling on the machine. Matrices sm for m ∈ M store the setup times on machine
m. The setup time matrices have one row and column more than the due date vector
and the processing time matrix. This is because of the initial and final setup time. As
the introduced notation suggests, the dummy jobs used for initial and final setup times
are denoted with 0. So row and column zero store the initial and final setup times,
respectively.

2.1.4 Solution Representation

A solution can be represented as an ordered list of jobs for each machine, like in Table
2.2. Jobs 2 and 3 are scheduled on machine 1, and jobs 1 and 4 are processed on machine
2. The solution representation contains all the information needed to construct a unique
schedule. We only need the order of the jobs, since we start the setup of a job immediately
after its predecessor is finished.

Machine Ordered Jobs
1 2,3
2 1,4

Table 2.2: Solution representation for a schedule corresponding to the example instance

Using this representation format, only two criteria must be satisfied to produce a valid
solution. A feasible solution is given if:

• All jobs are scheduled exactly once

• All jobs are scheduled on one of their eligible machines

A visualization of the schedule represented in Table 2.2 to the example instance from
2.1 can be seen in Figure 2.1. The blue bars show the setup times, while the red ones
represent the processing time of the jobs. This is the optimal solution for this problem
instance with an objective function value of (8, 11).

7

2. Background and Related Work

1 2 3 4 5 6 7 8 9 10

Machine 1

Machine 2

Timestamps 110

Figure 2.1: Visualization of the schedule representation in Table 2.2

2.2 Instance Space Analysis
Smith-Miles et al. [2014] proposed the ISA to enable a more detailed evaluation of
algorithms than reporting aggregated metrics over a set of instances. Figure 2.2 depicts
the methodological framework used for the ISA. It is an extension of the proposed
algorithm selection framework of Rice [1976], which is visualized as the blue box in the
graphic.

We start with a set of known instances I (from the literature or an instance generator),
a subset of all possible instances P . The set of instance features F allows the mapping
of the problem instances into a high-dimensional space. This can be used directly for
the algorithm selection, which is what Rice [1976] proposed. In the ISA, which is more
about identifying and analyzing influential features and exploring potential biases in
the dataset, the distribution of the instances in the high-dimensional space is visualized.
This is done by projecting it onto a two-dimensional plane using a similar approach to
Principal Component Analysis (PCA). The adaptation utilized for the projection into
the instance space is described in Muñoz et al. [2018]. Not only do we want to separate
instances as much as possible from each other, but ideally, a separation of the instances
into areas where a specific algorithm outperforms the others. Therefore, using algorithmic
performance as an additional input makes sense in finding an optimal projection for this
use case.

There still is the issue that the algorithms are only evaluated on a subset of the whole
problem space, but we want to draw conclusions about new instances and areas of the
instance space. The proposed footprints by Smith-Miles et al. [2013] aim to predict the
algorithmic performance in between and around the area of its evaluation points based
on statistical methods. The correctness of this extrapolation into new areas of the space
relies on an unbiased instance set, as well as carefully designed instance features to ensure

8

2.3. State of the Art and Related Work

Figure 2.2: Visualization of the methodological framework of the ISA, taken from Smith-
Miles et al. [2014]

that as much of the relevant information about an instance as possible is preserved. With
this methodological approach, one can make a sophisticated prediction of whether an
algorithm performs well or badly for instances from the whole problem space.

2.3 State of the Art and Related Work
The UPMSP is a widely known and studied problem with many variants that differ
in some constraints and objectives. The problem in this thesis has machine eligibility
constraints and sequence- and machine-dependent setup times, and we try to minimize
the cumulative tardiness, with the makespan as a tie-breaker.

A formulation for MIP solvers for the UPMSP with setup times and minimizing the
makespan was proposed by Avalos-Rosales et al. [2015], and Gedik et al. [2018] proposed
a CP Model to solve the same variant. Vallada and Ruiz [2011] also considers the
UPMSP with setup times and the makespan as an optimization criterion. They propose
a Genetic Algorithm and also introduce a benchmark dataset. However, it cannot be
utilized in our thesis because the dataset does not include the necessary due dates for
the tardiness objective. Another related problem from the literature comes from Perez-
Gonzalez et al. [2019]. They work with an objective function that minimizes cumulative
tardiness, on a scheduling problem with machine eligibility constraints and sequence-

9

2. Background and Related Work

and machine-dependent setup times. They introduce new construction heuristics to the
problem and a novel set of instances. Because of the presence of due dates in this dataset,
we can utilize it for the ISA. Moser et al. [2022] proposes new versions of MIP solvers
and SA approaches to the UPMSP investigated in our thesis. More recent publications
focus on novel additional constraints rather than proposing improved algorithms for
existing problems. For example, Saraç et al. [2023] introduces stochastic setup times to
model real-world scenarios more accurately, and Dang et al. [2023] focuses on a machine
scheduling problem considering unsupervised machines and cost-related tool switches.
They propose an MIP formulation, as well as a Genetic Algorithm, with the objective of
profit maximization.

The extended problem by Horn et al. [2025] we consider in the latter part of this thesis
includes the already introduced constraints, precedence constraints, and machine and
resource calendars. The objective function combines setup times, tardiness of jobs,
and machine makespans. While Santoro and Junqueira [2023] focuses on machine
availability constraints, they do not consider calendar-based resources. Yunusoglu and
Topaloglu Yildiz [2022] introduces a CP approach for UPMSPs that includes multi-
resource requirements, job precedences, and setup times. However, it cannot handle
calendar-based resources and machine availabilities. The proposed combination of a
Genetic Algorithm and an MIP approach by Dang et al. [2021] considers an objective
function combined from tardiness and setup times, but uses different problem constraints.
Horn et al. [2025] introduces a MiniZinc formulation (Nethercote et al. [2007]) that can
be utilized by MIP and CP solvers. They also propose an SA approach to the problem.
Because of the novelty and relevance of the constraints of this problem in practical
applications, we aim to introduce a novel CP formulation. Based on the insights from the
first problem, the focus lies on handling the resource and machine availability constraints
with interval variables.

The ISA framework by Smith-Miles et al. [2014] was successfully applied to many related
problems, like the Job Shop Scheduling Problem Strassl and Musliu [2022], the Personnel
Scheduling Problem Kletzander et al. [2021], or the Curriculum-Based Course-Timetabling
problem De Coster et al. [2022]. Also, it was used successfully to select optimal algorithm
parameters depending on the test instance in Katial et al. [2024]. If the instance space
shows some gaps, new instances must be generated. There exists an instance generator
from Moser et al. [2022]. Alternatively, the approach introduced by Smith-Miles and
Bowly [2015] could be utilized. They evolve new instances to fill the instance space if
the available dataset does not represent the whole space adequately. However, the first
option is unsuitable for generating instances with novel features because of its limited
variability. The latter method contains a lot of randomness and does not allow for a
precise and simple instance generation.

Algorithm selection was successfully applied for scheduling problems, like Strassl and
Musliu [2022] for the Job Shop Scheduling Problem or Messelis and De Causmaecker
[2014] for a Project Scheduling Problem. To get a broader overview, Kotthoff [2016]
collected many algorithm selection applications for various problem types. The idea

10

2.3. State of the Art and Related Work

of the algorithm selection in combination with the ISA is based on the framework of
Rice [1976] and extended by Smith-Miles et al. [2014]. An algorithm selection utilizing a
Support Vector Machine (SVM) is directly included in an online tool to conduct an ISA
called MATILDA, proposed by Smith-Miles and Muñoz [2023]. However, these existing
approaches cannot be utilized directly for the UPMSP without additional work. A more
recent study by Wu et al. [2024] performs algorithm selection by utilizing algorithm
characteristics extracted with the help of LLMs. However, this is out of the scope of this
thesis. The thesis focuses on the instance features and the corresponding instance space,
which leads to interpretable results and insights.

11

CHAPTER 3
Exact Solvers and Heuristics for

the UPMSP

This chapter introduces the various methods used in the ISA. While some algorithms
and models are taken from Moser et al. [2022], we also propose new strategies based on
known concepts that must be adapted to our problem description.

3.1 Exact Solvers
We utilize two approaches for the exact solvers: Mixed Integer Programming (MIP) and
Constraint Programming (CP). We look at two variations for each approach described in
the following sections. These methods are classified as exact solution methods because,
with enough memory and runtime, they could prove the optimality of a solution to a
problem instance or its infeasibility.

3.1.1 Mixed Integer Programming Models
The MIP formulations were taken from Moser et al. [2022], where they were proposed for
the first time. They are based on formulations from Perez-Gonzalez et al. [2019]. While
Moser et al. [2022] evaluated six different MIP solvers, we only restricted ourselves to the
two best from that analysis, namely M4 and M6. The formulation M4 uses constraint
formulations proposed by Avalos-Rosales et al. [2015]. This is why we call this model
from now on MIP_A. The transformation from M4 to M6 is done by swapping out a
single constraint, where Helal et al. [2006] introduced the latter version. Therefore, we
refer to this model as MIP_H. For the complete MIP formulation, we refer to the original
work by Moser et al. [2022].

We implemented these models again because of the different frameworks used for this
project. We cannot compare the performance of the newly implemented models to the

13

3. Exact Solvers and Heuristics for the UPMSP

Variable Description
startj Start time of job j
endj End time of job j

durationj Processing time of job j
Tj Tardiness of job j

startjm Start time of optional job j on machine m

Ij Interval variable representing job j
Ijm Optional interval variable representing job

j on machine m

activejm Boolean variable indicating if job j is sched-
uled on machine m

arcijm Boolean variable indicating if job j is sched-
uled right after job i on machine m

Cj End time of the final setup time after job
j

T Cumulative Tardiness
Cmax Makespan

Table 3.1: Variables used in CP formulation for the UPMSP

original work, due to varying versions of the Gurobi solver (Gurobi Optimization, LLC
[2024]) utilized. We reimplemented the MIP formulation and reevaluated it with the
newest Gurobi version. The results clearly improved compared to the older version in a
few manually selected instances.

3.1.2 Constraint Programming Models Utilizing Interval Variables
While the following CP formulation can be utilized with any CP solver, we use CP-
SAT. The CP-SAT solver is part of the Google OR-Tools package(Perron and Didier
[2024]). It combines CP with SAT methods to find good solutions to combinatorial
optimization problems. While the constraints can be formulated similarly to the MIP
models, additional options like global constraints and interval variables can also be helpful
for the formulation of the UPMSP. We introduce a CP formulation for the problem and
propose a slight modification to create a second version.

The formulation of the constraints is based on Gedik et al. [2018]. Still, it differs in a few
ways because they do not utilize machine eligibility constraints or due dates, and try to
optimize the maximal machine makespan.

Table 3.1 describes the variables used to formulate the model, which is defined by
Constraints (3.1) - (3.14). We also define J0 := J ∪ {0}, which is the set of all jobs,
extended by the dummy job 0. This dummy job can be scheduled on all machines, so
E0 = M . The input data from the problem instance uses the notation introduced in
Section 2.1.

14

https://developers.google.com/optimization/cp/cp_solver

3.1. Exact Solvers

Before we start with the actual constraint formulation, we want to add a brief explanation
of two concepts utilized, namely interval variables and the circuit global constraint.

In general, interval variables are defined by grouping three integer variables or integer
values, indicating the start, size, and end of the interval. We simply use interval
to indicate this type of variable and define it by passing the start, size, and end as
parameters. Intervals can also have a fixed size, which takes only an integer variable as
the start and an integer value as the duration. Also, an interval variable can be optional,
meaning a Boolean indicates if the interval is actually active or if it is ignored by other
constraints. In our formulation, we also make use of optional, fixed-size interval variables
using the notation opt_fixed_size_interval. The parameters start, duration, and
the Boolean, to indicate if it is active, define the optional fixed-size interval variable.
Utilizing these special variable types, global constraints that are defined on a set of
interval variables, like no_overlap, will be usable in the modeling process.

Secondly, we want to explain the circuit global constraint first introduced in Lauriere
[1978] and later improved by Francis and Stuckey [2014]. This constraint is used to
constrain a graph represented by a successor for each node, such that the resulting arcs
form a circuit. Using self-loops, nodes can be excluded from the global circuit. In our
case, this constraint allows us to efficiently capture the order of the jobs on each machine,
starting and ending at the dummy job 0. The circuit global constraint takes a set of
arcs with a corresponding Boolean variable as input. The Boolean indicates if the arc is
present in the cycle.

Starting with Constraints (3.1) - (3.2), we define the global and machine-specific interval
variables.

Ij = interval(startj , durationj , endj) ∀j ∈ J (3.1)

Ijm = opt_fixed_size_interval(startjm, pjm, activejm) ∀j ∈ J, m ∈ Ej (3.2)

Constraint (3.3) simply enforces the tardiness variable to take on its correct value. If job
j ends before dj , the tardiness is 0. Otherwise, it is the difference between the end of the
processing time and the due date, as it was defined in the problem description in Section
2.1.

Tj = max(0, endj − dj) ∀j ∈ J (3.3)

Constraint (3.4) ensures that each job is only scheduled on one machine. The corre-
sponding global constraint is called exactly, which ensures that exactly N variables
of a collection of variables have assigned value v. In our case, N = 1 and v = True,
so it is ensured that exactly one of the Boolean variables takes on the value True, and
all others get assigned False. As already suggested by the notation in the constraint,
we implemented this in our CP-SAT model using the CP-SAT-specific constraint called
exactly_one.

exactly_one({activejm|m ∈ Ej}) ∀j ∈ J (3.4)

15

3. Exact Solvers and Heuristics for the UPMSP

With Constraint (3.5), the model makes sure that no two jobs are being processed on
the same machine at the same time. While the CP-SAT specific constraint is called
no_overlap, it is usually called the disjunctive global constraint and was first
proposed by Carlier [1982]. Because of the usage of optional intervals, this constraint
only considers the jobs that are actually active on a given machine and ignores all the
others, making interval overlaps still possible, if they are on different machines.

no_overlap({Ijm|j ∈ J, m ∈ Ej}) ∀m ∈ M (3.5)

Using Constraints (3.6) - (3.7), the model forces the global job intervals to take on the
same start times and durations as the active, machine-dependent job intervals. Together
with the preceding constraints, we have interval variables representing the jobs that avoid
overlaps on each specific machine. Implications occurring in the constraints are enforced
using the only_enforce_if method available for CP-SAT.

activejm ⇒ startj = startjm ∀j ∈ J, m ∈ Ej (3.6)

activejm ⇒ durationj = pjm ∀j ∈ J, m ∈ Ej (3.7)

The circuit Constraint (3.8) select arcs out of each machine-specific set of arcs to create
cycles. To exclude jobs that are not active on the current machine, Constraint (3.9) is
used, which forces self-loops on these jobs. The other jobs occur in the big cycle, including
the dummy job 0, which acts as a start and end point for the schedule. Constraints
(3.10) - (3.12) enforce the correct setup times between jobs, as well as in the beginning
and the end. Note that Cj is only enforced if job j is actually the last on the machine.
All other variables are still unconstrained, which avoids interference from them when
enforcing Cmax.

circuit({arcijm|i, j ∈ J0, m ∈ Ei ∩ Ej}) ∀m ∈ M (3.8)

arcjjm = ¬activejm ∀j ∈ J, m ∈ Ej (3.9)

arc0jm ⇒ startj = s0jm ∀j ∈ J, m ∈ Ej (3.10)

arcijm ⇒ startj = endi + sijm ∀i, j ∈ J, i ̸= j, m ∈ Ej (3.11)

arcj0m ⇒ Cj = endj + sj0m ∀j ∈ J, m ∈ Ej (3.12)

Finally, we set the total tardiness and makespan to their correct values with Constraints
(3.13) - (3.14).

Cmax = max
j∈J

Cj (3.13)

T =
∑︂
j∈J

Tj (3.14)

We want to add a final note to this constraint formulation. For a working model, we
could drop the interval variables by introducing another constraint that enforces the

16

3.1. Exact Solvers

correct endj for all jobs. We chose to include the interval variables nevertheless because it
enables us to utilize the no_overlap constraint. The inclusion of the interval variables
showed promising results in preliminary experiments, where we also evaluated a version
without them on a few handpicked instances.

Variations in Optimization

We included two variants of this CP formulation in the ISA to see if a small change
brings any difference in performance for certain instances. Because we have a two-valued
objective function for the UPMSP instead of one for most problems, there are two
canonical ways to approach the optimization:

• Combined
The first option is to use a large constant as a scalar multiplier for the total tardiness,
and then add the makespan to it to get a single value as an objective function,
where the total tardiness is lexicographically more important than the makespan.
We did this by minimizing the objective function given in Equation (3.15).

obj = c · T + Cmax, where c = 10⌈log(horizon)⌉ (3.15)

The constant c has the same number of digits as the horizon, which is an upper
bound for the makespan of the instance. This upper bound is used to calculate the
combined objective value by shifting the cumulative tardiness objective up so that
it does not interfere with the makespan objective.
The horizon is calculated by trying to maximize the makespan of a feasible schedule.
This is done by selecting a single machine and scheduling all the eligible jobs on it.
To avoid dealing with the job-dependent setup times, we simply pick the maximal
setup time each job could possibly have on the current machine. By doing this
for every machine and then selecting the maximal value among those, we have
an upper bound of the makespan for the given problem instance. This version is
referred to as CP_C.

• Separate
The second strategy to optimize is to look at the objectives one by one. First, we
optimize the total tardiness by setting the objective as in Equation (3.16). If the
minimal tardiness, here denoted as T ∗, of the problem instance is not found before
the timeout, the search ends.

obj = T (3.16)

But if T ∗ is found in time, we add Constraint (3.17) to the model, which fixes this
optimal tardiness for the problem.

T = T ∗ (3.17)

17

3. Exact Solvers and Heuristics for the UPMSP

Afterward, we continue with the optimization of the makespan by using the new
objective in Equation (3.18). Now the optimization of the makespan is possible
without changing the tardiness again, as it is already fixed by the constraint.

obj = Cmax (3.18)

This version, optimizing the objective separately, is referred to as CP_S in later
chapters.

Making use of these two options might result in different outcomes for certain problem
instances. For some, it could be beneficial to just focus on the tardiness first, and for
others, it might prove to be better to have two measurements available that impact the
objective function, allowing for more fine-grained solution steps.

3.2 Heuristics
The following methods are part of the class of heuristic approaches to optimization
problems. Heuristic methods are usually used for larger instance sizes when exact solvers
are not able to find a good or any solution at all. While the heuristics are fast in searching
and finding new solutions, there is a trade-off, namely the loss of provability that a
solution is optimal. Both search strategies utilized by us are based on Local Search.
Local Search is an optimization strategy that checks the objective function for solutions
that lie in a neighborhood of the currently best solution. The neighborhood of the best
solution contains all solutions that can be achieved by applying a small change to it. In
our case, this could be switching the positions of two jobs. The neighborhoods utilized
for SA are described in detail in the original work by Moser et al. [2022], while the LNS
approach is introduced by us and is described completely below.

3.2.1 Construction Heuristic
SA and LNS both require an initial solution to start their optimization. We obtain
this initial solution with the construction heuristic introduced by Moser et al. [2022].
Basically, it sorts the jobs by their due date and schedules them one after another on
the machine where the job has the earliest finishing time. If two jobs have the same due
date, or a job finishes on two machines at the same time, the ties are randomly broken.
The detailed description, as well as the pseudo-code, can be found in Moser et al. [2022].
From now on, we refer to this construction heuristic as Greedy.

3.2.2 Simulated Annealing
The three SA Approaches that will be included for the ISA were taken from Moser et al.
[2022]. We implemented them again in our framework and performed experiments to
verify they behave in the same way and result in an equal performance as the original
implementation in Section 5.1.

18

3.2. Heuristics

SA was first proposed by Kirkpatrick et al. [1983]. This approach is inspired by a cooling
process that shows up in industrial production processes. The algorithm starts from
a given solution and uses available neighborhoods to find similar solutions, and then
checks if it improved over the current best solution or not. Usually, in Local Search,
this neighborhood search is done from the best known solution. However, this has the
disadvantage that it might get trapped in a local optimum. To escape such a local
optimum, SA also allows the selection of a worse solution by chance, and lets the search
continue from there.

The probability of selecting a worse solution is not constant but gets smaller with a
higher number of iterations or longer runtime. The probability of accepting a worse
solution depending on parameter t is given in Equation (3.19). Parameter t is called the
temperature. A higher temperature leads to a higher acceptance probability.

P(accept|t) = e− δ
t , (3.19)

Here, δ is defined as the difference of the weighted objective functions from Equation
(3.20) of the new candidate solution and the current solution.

f = 10 000 · T + Cmax (3.20)

The three variations proposed by Moser et al. [2022] differ only by their cooling schemes
(change of the temperature t), which are briefly described below:

• Reheating
The cooling is done with a constant cooling factor α after a fixed number of
iterations per temperature. The temperature is reset to tmax if tmin is reached. We
call this approach SAR.

• Cooling
The algorithm tries to estimate the number of iterations left until the timeout, and
adapts the cooling factor α, so that by the end of the time tmin is reached. The
number of iterations per temperature stays fixed. From now on, this version is
referred to as SAC.

• Iterations
The heuristic considers the speed of the iterations from prior experiments and
a constant cooling rate α to estimate how many iterations per temperature are
possible, such that the minimal temperature tmin is reached at the timeout. This
variant is called SAI from now on.

To get an even deeper insight into the exact workings of the neighborhoods and the
algorithms themselves, as well as their tuning, we again refer to the original work by
Moser et al. [2022].

19

3. Exact Solvers and Heuristics for the UPMSP

3.2.3 Large Neighborhood Search
The other heuristic approach used for comparison in the ISA is an LNS. This approach
utilizes the destroy-and-repair method, which is used to optimize parts of a solution,
resulting in an improvement of the objective function of the whole solution over many
iterations. Our LNS approach is a novel approach since existing LNS methods for PMSP
like Ahuja et al. [2002] or Rolim et al. [2023] focus on slightly different constraints, which
makes their proposed destroy and repair operators not applicable to our problem.

To control the size of the part of the solution that should be destroyed and repaired in
each iteration, we introduce the parameter job_limit, which represents a soft limit to
the maximal number of jobs that should be destroyed. We chose this approach over the
regulation with a parameter that gives the percentage of jobs to destroy, because the
exact solver, which is used as a repair operator, can only solve subproblems of small sizes
efficiently. Giving a percentage would yield different sizes of subproblems, which might
affect the performance of the utilized repair operators.

Because we use an exact solver as a repair operator, we focus on destroy operators, which
lead to subproblems that can be optimized in a reasonable time. We aim to select a
subset of jobs and a subset of machines that can then be passed as an independent
problem to the solver. The resulting subschedule is inserted at the correct place in the
full schedule. This is why we exclude the random destroy operator, because there is no
real subproblem present. Even if we fix most jobs and only allow the positional change
of a few, we would still have to load the whole problem instance into the model, which
takes too much time for large instances, leading to a great reduction in iteration steps of
the LNS algorithm.

To create subproblems, we take a horizontal or vertical slice out of the currently best
schedule. These slices can be adapted to reasonable subproblems in the way described
below.

• Machines
This destroy operator randomly selects a machine that is added to the subproblem
with the currently scheduled jobs on it. More machines and jobs are added iteratively
until job_limit is reached or crossed. Note that we actually allow more jobs
than the limit suggests, because this way we have an easy and standardized way
of handling schedules and do not have to make exceptions for cases where every
machine has more jobs scheduled than the limit allows.
We also introduce an option to weigh the machines for the random selection, by
adding up the tardiness and earliness (defined as max(0, dj − Cj), j ∈ J) of all
jobs on the machine. A bigger value suggests that there are more jobs that are not
optimally timed (both too early or too late), and rescheduling might be helpful.
Figure 3.1a visualizes the application of this destroy operator on an example
schedule with job_limit = 4. The arrows indicate the selected machines. White
boxes are used for jobs that stay fixed and are not part of the subproblem. We end

20

3.2. Heuristics

1 2 3 4 5 6 7 8 9 10 110 1312

(a) Machines

1 2 3 4 5 6 7 8 9 10 110 1312

(b) Block

Figure 3.1: Examples of the destroy operators

up with a subset of machines and jobs that can be treated like a normal instance
by the repair operators.

• Block
This destroy operator does not focus on single machines but rather on a timestamp.
We start by randomly selecting a timestamp t0 and a random number of machines.
To get the jobs included in the subproblem, we order them by distance from
their start time to t0. Now, all, or the closest job_limit many of these jobs
are selected for the subproblem. Ties are broken randomly. Other than in the
Machines destroy operator, it might happen that the selected jobs have preceding
or succeeding jobs that are not part of the subproblem. To consider that in the
subproblem, the initial and final setup times will be adapted so that they include
all preceding and succeeding jobs in the subschedule, respectively. To complement
this description, the Block destroy operator is visualized in Figure 3.1b. Again,
white boxes mark the jobs that are fixed and not part of the subproblem, arrows
indicate selected machines, and job_limit = 4.

We propose three different repair operators to reach a feasible solution after the destruction
step.

• Random
This just randomly inserts the jobs on a feasible machine. Fixed jobs stay at their
position, so this random insertion only happens in between fixed jobs in case of the
block destroy.

• Heuristic
This heuristic applies the Greedy construction heuristic, which is also used for SA
and LNS in Section 3.2. This enables us to get a feasible solution to the subproblem
in a short time.

• CP_C
Uses the CP_C solver introduced in Subsection 3.1.2 to solve the subproblem. To
avoid long runtimes per iteration, we run the solver for 0.5 seconds and return the

21

3. Exact Solvers and Heuristics for the UPMSP

current best solution. If no solution is found in time, no solution is returned and
LNS simply keeps the current best solution and starts the next iteration. To speed
up the search, we pass the current schedule of the subproblem as a hint to the
solver, so it can start its search from that point on.

The algorithm for LNS is given in 3.1, which takes the parameters described in the
list below. The probabilities for the destroy and repair operators should sum to one,
respectively.

Algorithm 3.1: Large Neighborhood Search (LNS)
1 new ← Greedy Solution;
2 best ← new;
3 while maximal runtime not exceeded do
4 destroy ← choice(machine, block);
5 subproblem ← destroy(best);
6 repair ← choice(random, heuristic, exact);
7 new ← repair(best, subproblem);
8 if new.cost < best.cost then
9 best ← new;

10 end
11 end

• job_limit
Soft upper-bound for jobs used in the subproblem

• prob_machine_weights
Probability that weights are used when randomly selecting machines to destroy

• prob_machine_dest
Probability to use the machine destroy operator

• prob_block_dest
Probability to use the block destroy operator

• prob_random_rep
Probability to use the random repair operator

• prob_heuristic_rep
Probability to use the heuristic repair operator

• prob_exact_rep
Probability to use the exact repair operator

In the next chapters, we will refer to this optimization approach as LNS.

22

CHAPTER 4
Instance Space Analysis and
Algorithm Selection for the

UPMSP

The experimental setup for the ISA and the algorithm selection will be described in
this chapter. We will start with the introduction of the utilized features for the ISA,
followed by the instance sets and the benchmarking setup. Finally, the models utilized
for algorithm selection are listed with their corresponding tuning parameters.

4.1 Features

To guarantee an instance space that is able to distinguish well between different instances,
the proposal of many instance features is necessary. These features can be grouped into
different categories. All features are described in the following sections.

4.1.1 Aggregation Functions

Parts of the information that can be extracted from a problem instance come in arrays
with length Mc or Jc. For example, there is one due date for each job. So we need ways
to aggregate them into a single value that can be used as an instance feature. We apply
all the aggregation functions listed in Table 4.1 to these extracted features that consist
of a set of values. These aggregation functions are basic statistical measurements, but
were selected based on the feature construction by Strassl and Musliu [2022].

23

4. Instance Space Analysis and Algorithm Selection for the UPMSP

Abbreviation Description
mean Mean value
median Median value
std Standard Deviation
min Minimal value
max Maximal value
range Maximal minus minimal value
q1 First quartile
q3 Third quartile

Table 4.1: Aggregation function used for multi-valued features

Abbreviation Description
job_ct Number of jobs
mach_ct Number of machines
mat_ct Number of materials
u_job_ct Number of unique jobs
u_mach_ct Number of unique machines
job_mach_rat Number of jobs, divided by the number of ma-

chines
job_mat_rat Number of jobs, divided by the number of mate-

rials

Table 4.2: Single-valued general features

4.1.2 General Features
We will list features that are not probing or graph features but can be extracted from
the instance input directly. They are referred to as general features. They can be split
further into single-valued features in Table 4.2 and multi-valued features in Table 4.3.

Table 4.2 lists the general single-valued features. They include very basic features,
like the number of jobs or machines, and the ratio between them. The material is an
abstraction layer introduced by Moser et al. [2022] in their instance generator. Using this
concept, setup times are not directly dependent on the job, but rather on the material a
job utilizes. Each job has an assigned material, and the material itself has a machine-
and sequence-dependent setup time. Note that an equivalent problem instance can be
generated without the usage of materials, but it can save a lot of storage space because
less redundant information has to be stored. Also, it can be argued that the problem
structure is different, with many jobs having the same setup times, rather than completely
randomly generated, unrelated ones. While this material count could be calculated from
any given instance, we assume that instances generated without this specific feature use
different materials for all jobs, since it is very unlikely that all randomly generated setup
times of two jobs match.

24

4.1. Features

Abbreviation Description
min_proc_m Minimal processing time on a fixed machine,

varying jobs
max_proc_m Maximal processing time on a fixed machine,

varying jobs
min_proc_j Minimal processing time of a fixed job, varying

machines
max_proc_j Maximal processing time of a fixed job, varying

machines
min_setup_pre List of minimal preceding setup time before a

fixed job
max_setup_pre List of maximal preceding setup time before a

fixed job
min_setup_suc List of minimal succeeding setup time after a

fixed job
max_setup_suc List of maximal succeeding setup time after a

fixed job
min_spare_m Minimal spare time on a fixed machine, varying

jobs
max_spare_m Maximal spare time on a fixed machine, varying

jobs
min_spare_j Minimal spare time of a fixed job, varying ma-

chines
max_spare_j Maximal spare time of a fixed job, varying ma-

chines
elig_m_ct Number of eligible machines per job

Table 4.3: Multi-valued general features

We also want to explain how the counting of unique jobs works. A job is a duplicate if it
has the same processing and setup time on all machines as another job. In u_job_ct,
we only count unique jobs, so all duplicates only count once. The same applies to unique
machines. Two machines are duplicates if the processing and setup times of all jobs
scheduled on them stay the same.

The multi-valued general features can be found in Table 4.3. Because of the two- or
three-dimensional data for processing and setup times, we need to aggregate multiple
times to get a single-valued feature in the end. To make things clearer, we look at the first
multi-valued feature, min_proc_m, and calculate it for the example problem instance
from Subsection 2.1.3. The minimal processing time on a fixed machine, varying jobs
would mean that we fix the machine M1, and look at the processing times of all jobs on
that machine. The minimal processing time of a job on M1 is 1. For M2 it is 2. We end
up with the multi-valued feature (1, 2), because the problem has two machines. This

25

4. Instance Space Analysis and Algorithm Selection for the UPMSP

3

4

3

1

2

2

(a) jm_graph

3

3

2

3

3

1

1

2
0 0

(b) jj_graph

Figure 4.1: Extracted graphs from the example problem input 2.1

array is then aggregated further with the functions from Table 4.1. The spare time used
in some features is defined as dj − pjm. The spare time indicates how many timesteps are
available before the job has to be started, so it is still able to finish before its due date.

4.1.3 Graph Features
We also propose graph features for the UPMSP. First, we introduce two graphs derived
from the problem input. The first one is a bipartite graph, where one side has jobs
as nodes, while the other side consists of machines. The edge weight of edge (j, m) is
the processing time pjm. Figure 4.1a shows this for the example problem instance from
Subsection 2.1.3. To distinguish this graph from the second one we will introduce, we
call it jm_graph, since its edges only go from jobs to machines.

The second graph only has jobs as nodes. The arcs are aggregated values of the setup
times between them. Because, in general, sijm ̸= sjim, the graph is bidirectional. Since
the setup time between two jobs is dependent on the machine, there would be multiple
values assigned to the same edge. To condense this into a single value, the weight of edge
(i, j) is defined as the mean of the setup times, so 1

|Ei∩Ej |
∑︁

m∈Ei∩Ej
sijm. If two jobs have

no machine where both jobs can be scheduled, there exists no edge. This graph is called
jj_graph and Figure 4.1b shows the corresponding graph to the example problem from
Subsection 2.1.3.

The same differentiation between single- and multi-valued features also plays a role
for graph features. Table 4.4 shows the single-valued graph features. Note that the

26

4.1. Features

Abbreviation Description
jm_clust Average clustering of jm-graph
jm_dens Average density of jm-graph
jj_clust Average clustering of jj-graph
jj_dens Average density of jj-graph

Table 4.4: Single-valued graph features

Abbreviation Description
jm_deg Node degrees of the jm-graph
jm_wght Edge weights of the jm-graph
jj_deg Node degrees of the jj-graph
jj_wght Edge weights of the jj-graph

Table 4.5: Multi-valued graph features

density and average clustering of the jm_graph use the corresponding definitions for
bipartite graphs, which differ from the conventional ones used for general graphs. The
implementation we used comes from a framework introduced by Hagberg et al. [2008].

The multi-valued graph features utilized are given in Table 4.5. These are only very basic
measurements. This choice was made to avoid extensive time being spent on feature
calculation for larger instances, since many graph metrics require global knowledge of
the whole graph and have a high computational complexity.

4.1.4 Probing Features
Probing features are a different class of features. They are based on the obtained schedule
of an algorithm or solver, within a short amount of time. Our focus lies on probing
features that rely on the solution obtained by Greedy. We chose to exclude probing
features based on exact methods, since initial experiments showed that for the majority
of the utilized instances, no valid solution could be found by any of them in a short
amount of time, or they were trivial and optimized immediately. Table 4.6 shows the
probing features we include in our analysis.

The first two features measure how well the construction heuristic is able to balance the
jobs on the machines, which might be an indicator of the flexibility that an instance
allows, regarding the placement of jobs. The naive lower bound mentioned in the third
probing feature is calculated by assuming that every job can be scheduled, so that it
utilizes its minimal processing and preceding setup time, and a perfect distribution over
all machines. So we sum up the minimal processing and setup times for each job and
divide that by the number of machines.

In total, we propose 150 features that can be extracted from an instance. Due to the
aggregation functions, some of the features make little sense at first glance, and others

27

4. Instance Space Analysis and Algorithm Selection for the UPMSP

Abbreviation Description
j_bal_ct Mean derivation from the average number of jobs

per machine
j_bal_mksp Mean derivation from the average machine

makespan
rat_lb Ratio of greedy solution makespan to a naive

lower bound

Table 4.6: Probing features

might yield duplicate values. However, we do not sort them out by hand, but rather
let MATILDA, the online tool for ISAs, take care of this issue by selecting the most
useful features for the separation of the instances and algorithmic performance. The few
selected features are then further projected down to two dimensions for visualization
purposes.

The feature name used in the experiments and results later is either just the feature
name as it is in the table for single-valued features, or it is a combination of the
aggregation function and the feature from the table for multi-valued features in the
format [feature]_agg_[aggregation function].

4.2 Utilized Instances
The ISA is conducted using instances from different sources to get a complete picture of
the current state of the available benchmark instances. This set is extended with novel
instances generated with an adaptation of an existing instance generator. The following
sections will give an overview of the existing instance sets, as well as an explanation of
the novel instance generator and the resulting instances.

4.2.1 Existing Instances
During the literature research, we identified two instance sets that can be used. The
few other publicly available instance sets for UPMSPs are unusable for our problem
description because they lack due dates or other necessary data for the version we focus
on.

We have been provided with instances from Perez-Gonzalez et al. [2019] short pez in
the following, which were initially used for a slightly different problem description, but
contain all the necessary data to use them for our problem. These instances are grouped
into small, medium, and big, depending on their number of jobs and machines.

Another instance set comes from Moser et al. [2022], referred to as max from now
on, which includes generated instances, as well as a few real-life instances. The exact
description of the implementation of the instance generator can be found in Moser et al.

28

4.2. Utilized Instances

Name Description Number of Instances
pez_s Small instances from pez 3 840
pez_m Medium instances from pez 5 760
pez_b Big instances from pez 6 000
max_gen Instances from instance generator from max 560
max_rl Real-life instances from max 28

Table 4.7: Existing instance sets

[2022] if more detailed information is needed. This instance generator is also the basis
for the adaptation we propose in Subsection 4.2.2.

In Table 4.7, the different sources, as well as the number of instances, are listed. We will
not be able to utilize all of the 16 188 instances for the ISA, because the time to evaluate
all of them with all algorithms would exceed our available time. Therefore, we sampled a
subset of 400 instances of each group, plus the 28 real-life instances.

4.2.2 Newly Generated Instances
To fill gaps in the instance space and also create more instances that resemble the
available real-life instances, we introduce an extension to the instance generator from
Moser et al. [2022]. In the first step, we simply generate instances with the available
method. Below, we introduce a post-processing routine that is applied to these instances
to generate our instance sets.

From manual inspection of the real-life instances provided by Moser et al. [2022], we
found that there are only a few setup times different from zero. Also, these non-zero
setup times are mostly identical, and when they differ, they remain of the same order
of magnitude. This behavior is not reproducible with the existing instance generator.
Therefore, we propose a post-processing procedure, where setup times sijm are randomly
set to zero, with probability prob_zero_setup, which is a parameter that can be set
manually upon generation.

While the available real-life instances only have one eligible machine per job, we also
generate novel instances with multiple eligible machines in combination with the special
structure of the setup times. Applying this post-processing to instances that use similar
value ranges for job count, machine count, processing times, due dates, and setup times to
the real-life instances yields a novel instance set. We also create another set of instances
with this method, with value ranges more similar to the other randomly generated
instances in the existing instance sets, with the goal of filling gaps in the instance space
between them.

Table 4.8 contains the ranges for parameter settings of the original instance generator
for the instance set called moik_rll (real-life-like) and moik_gap. For each instance
generation, random values are picked from these ranges. Parameters that are not listed are

29

4. Instance Space Analysis and Algorithm Selection for the UPMSP

Parameter Moik_rll Moik_gap
Number of machines {3 . . . 20} {1 . . . 20}
Number of materials {1 . . . 10} machine_ct
Number of jobs {100 . . . 1000} {20 . . . 320}
Minimal processing time {100 . . . 200} {0 . . . 6}
Maximal processing time {200 . . . 90 200} {25 . . . 150}
Minimal setup time {1 000 . . . 50 000} {0 . . . 60}
Maximal setup time min_setup + {0 . . . 1 000} {60 . . . 200}
Multiple eligible machines {0, 1} {0, 1}

Table 4.8: Parameters different from default, utilizing the instance generator from Moser
et al. [2022] to generate both new instance sets

set to their default value. For more information regarding the initial instance generator,
we refer to the original work by Moser et al. [2022]. The post-processing parameter
prob_zero_setup is also chosen randomly per instance, ranging between zero and
one.

The naming scheme of our instances is [# of machines]_[# of materials]_[#
of jobs]_[multiple eligible machines].max.

In total, moik_gen contains 798 instances and moik_gap 764, so combined 1562 novel
instances for the UPMSP. In combination with the sampled instances from the existing
instance set, we have 3190 instances that will be part of the ISA. For the algorithm
selection, we split the instances into a training and a test set. The size of the test set
is 20%, so 638 instances. The feature selection, projection into the instance space, and
the training of the algorithm selection models will be performed just using the training
set with the other 2552 instances. The test set is only used for the evaluation of the
algorithm selection models.

4.3 Performance Measurements
To project the instances into a two-dimensional space, where instances are separated by
their hardness, we need an objective measurement of how well an algorithm performs.
For this, we cannot simply use the objective function. For example, if we take two
instances that differ only by the scaling of each due date, processing time, and setup
time by some factor, the objective function would also scale by that factor for the same
schedule. Because the algorithms are not influenced by the scaling of the input data in
an appropriate range, this would lead to the wrong conclusion about the goodness of
an algorithm or the hardness of an instance. In the following, we discuss performance
measurements considered by us.

To combine the two separate objectives into a single value, we utilize the same strategy that
is used in Subsection 3.2.2, which is the weighted objective function P = 10 000 ·T +Cmax.

30

4.3. Performance Measurements

While this weighted value does not correspond to a perfect lexicographical ordering, it
leads to correct results in the vast majority of cases. This choice was mainly made because
the usage of a multiplying constant, which ensures that the objectives do not interfere
with each other, leads to large numbers, which resulted in difficulties for MATILDA in
the instance space projection.

There are a few ways to approach the problem of the scale invariance we want to
achieve. The optimal one would be to normalize it by the weighted objective value of
the optimal solution P ∗ as in Equation (4.1). But this is not possible for all instances,
because we would need to know the optimal solution beforehand, rendering this algorithm
comparison as a whole useless. Below are other ways that try to approximate this optimal
measurement of goodness of an algorithm that were considered for further experiments.

RO = P

P ∗ (4.1)

• Ratio to Best (RB) The performance measurement is given by Equation (4.2),
which is calculated by taking the best objective value reached by one of the utilized
methods and normalizing all others by that performance. This yields performance
values in the range [1, ∞).

RB = P

PBest
(4.2)

• Ratio to Greedy (RG) The second measurement in Equation (4.3) works in the
same way as the first one but takes the objective value of the solution found by
the Greedy. This gives performance values in (0, ∞) because the exact methods
might yield worse solutions than the construction heuristic.

RG = P

PGreedy
(4.3)

• Ratio to Upper Bound (RU) Finally, we propose a metric that does not rely on
the objective values of solutions by other algorithms. We normalize the objective
values of the various algorithms by the upper bound, which was introduced as
the horizon in connection with the modeling of the objective function of the CP
models in Subsection 3.1.2. Because the tardiness of a job cannot be more than
the makespan upper bound, we get an upper bound for the total tardiness with
Jc · horizon. Combining these two upper bounds to a single value allows us to
calculate the ratio as is done in Equation (4.4). This metric results in values in the
range (0, 1].

RU = P

PUB
(4.4)

While we implemented and tested these different performance measurements, we, un-
fortunately, have no appropriate instances with known optimal solutions to find out

31

4. Instance Space Analysis and Algorithm Selection for the UPMSP

experimentally, which one correlates best with the optimal measurement P ∗. To conduct
meaningful experiments, we would require non-trivial instances with known optima that
did not initially come from our own methods. If we only utilize instances where we
already know that there is at least one of our methods that finds the optimal solution, it
would always yield RB = P

Pbest
= P

P ∗ = RO. Only the cases where none of our methods
are able to find the optimal solution, but can be compared to the known optimum, would
reveal the real strengths of each performance metric.

We decided to use RB as the performance metric for the ISA. This decision is based
on the analysis of different performance metrics for utilization in the ISA for the Job
Shop Scheduling Problem by Strassl and Musliu [2022]. There, the metric P6, which is
RB in our case, outperformed all other proposed measurements easily. The Job Shop
Scheduling Problem is, as the name suggests, from the same problem domain as the
UPMSP, which supports the choice of this performance metric for our problem.

4.4 Algorithm Tuning
We will briefly go into the tuning and parameter choices made for the algorithms described
in Chapter 3.

For the exact solvers, we did not change any of the default parameters, but the number
of search workers. The default parameters of these models are very reasonable for most
use cases. A higher number of workers, meaning parallel searches, usually leads to better
results and is therefore set to eight.

For the SA variants, we can confidently use the same parameters as the tuning from
Moser et al. [2022] yielded because our experiments run on the same machine setup as
the original experiments.

Finally, the tuning of LNS was done by manually adjusting the tuning parameters and
evaluating instances. The largest impact on performance was shown by job_limit
and prob_machine_weights. Too many jobs in the subproblem would yield no
improved results by the exact solver in the given time, while too few did not allow for an
improvement over the current schedule, since it was already optimal most of the time.
For the probabilities of destroy and repair operators, we simply used equal distribution,
since our manual testing yielded no clear improvement for any other setting. We simply
balance their probabilities. Note that the probabilities for destroy and repair operators
must sum up to one, respectively, to get a valid configuration. The chosen parameters
are listed in Table 4.9. Also, the parameter spaces utilized for tuning are listed there for
completeness.

4.5 Algorithm Evaluation
The experiments to get the performances for each algorithm on all instances are performed
on a computing cluster with 13 nodes, each featuring two Intel Xeon E5-2650 v4 CPUs

32

4.6. Feature Selection and Projection

Parameter Range Tuning Result
job_limit {5 . . . 30} 10
prob_machine_weights [0, 1] 0.5
prob_machine_dest [0, 1] 0.5
prob_block_dest [0, 1] 0.5
prob_random_rep [0, 1] 0.33
prob_heuristic_rep [0, 1] 0.33
prob_exact_rep [0, 1] 0.33

Table 4.9: Tuning parameters of LNS and the utilized settings

(12 cores @ 2.20GHz) with 40GB of RAM. The MIP formulations are implemented and
executed with Gurobi 12.0.0 (Gurobi Optimization, LLC [2024]), and the CP models are
implemented for CP-SAT from OR-Tools 9.11 (Perron and Didier [2024]).

The runtime of all algorithms is capped at 15 minutes to allow a fair comparison. We
also evaluate each of the SA algorithms eight times on each instance and select the best
one, to make it comparable to the exact solvers, which utilize eight cores in parallel.

It is possible that no solutions will be found in the given time. In this case, we replace
the missing values with naive upper bounds. The horizon introduced in Subsection 3.1.2
is already an upper bound for the makespan, and by multiplying it by the number of
jobs, it yields an upper bound for the cumulative tardiness as well.

For the SA approaches, we choose the best of the eight performances for further analysis,
to account for the fact that the exact solvers utilized eight cores in parallel. Note that
LNS utilizes an exact solver and therefore also eight threads in parallel, and is only
evaluated once.

4.6 Feature Selection and Projection
We decided to conduct two separate analyses for the exact and heuristic methods. This
choice, after initial experiments, showed that on the majority of instances, the heuristic
methods outperformed or reached the same result as the exact methods, making a
comparison obsolete. However, one might argue that the exact methods are able to prove
optimality, unlike the heuristics. So, their application yields a different value than just
the solution alone, which is also beneficial in some contexts.

The performance metric RB described in Section 4.3 is applied to these results. This
performance metric, together with the extracted features of each instance, is the input
needed for the ISA tool MATILDA. We utilized the web interface of MATILDA for our
experiments, rather than running it locally. Regarding the exact solvers, we decided
to exclude instances where none of them could find any solution within the given time.
These instances do not allow for a good performance measurement and would only distort

33

4. Instance Space Analysis and Algorithm Selection for the UPMSP

the constructed instance space. In the case of the heuristic methods, this is not necessary
since they always yield a valid solution, starting with the greedy construction heuristic.

For the ISAs, we mostly use the default values from MATILDA. We set the Performance
Threshold to 5% for both of them. The number of features that should be selected for
the projection is also set to six for both ISAs.

4.7 Algorithm Selection
The goal of the algorithm selection is to choose the most promising algorithm out of a
set of algorithms for a given problem instance. In our case, this is done by using the
instance features as input for the model.

Because this is a basic classification task, we expect to get good results using simple
models and therefore refrain from using more complicated models, such as Deep Neural
Networks. Also, the available data would not suffice to train larger models, limiting the
options to choose from to the simpler ones.

4.7.1 Models
Below is a brief description of all the utilized models for Algorithm Selection on the
UPMSP. To find optimal parameters, a grid search with 5-fold cross-validation was
performed for each model. The tuning parameters are listed in separate tables. If a
parameter is not mentioned, it means that the default value was used. The models were
implemented and fitted using scikit-learn 1.6.1 (Pedregosa et al. [2011]).

Most Frequent Classifier
The baseline for the other algorithm selection models is the classifier, which always
predicts the class that appears most often in the training set. This classifier has no
relevant parameters. From now on, we refer to it as MF.

K Nearest Neighbors
The K Nearest Neighbors classifier, short KNN, makes predictions based on the k closest
instances measured by some metric. Because the distance metrics might depend on
scaling, the input is normalized before fitting the algorithm. Table 4.10 shows the
parameters that will be tuned and the corresponding options available in the grid search.

The parameter p is a part of the Minkowski distance. For p = 1, we get the Manhattan
metric, p = 2, the Euclidean metric, and with p −→ ∞, it approaches the Maximum
metric, also called Chebyshev distance.

Random Forrest
The random forest, called RF from now on, is an ensemble of many decision trees and
makes predictions by the majority of the results of the decision trees. This can improve
the accuracy and reduce the overfitting compared to a single decision tree. Parameters
for this model are listed in Table 4.11.

34

4.7. Algorithm Selection

Parameter Range
n_neighbors {3, 5, 7, 9}
weights uniform, distance
p {1, 2, ∞}

Table 4.10: Tuning parameters for KNN

Parameter Range
n_estimators {100, 200, 500}
criterion gini, entropy, log_loss
min_samples_leaf {1, 2, 5}

Table 4.11: Tuning parameters for RF

Parameter Range
C {1, 2, 5}
kernel linear, poly, rbf, sigmoid
degree {2, 3, 4} (only relevant if kernel=poly)
gamma scale, auto

Table 4.12: Tuning parameters for SVM

Support Vector Machine
A support vector machine, short SVM, finds a hyperplane that maximizes the margin
between different data classes. Utilizing kernel functions, they can also handle non-linear
separation problems. Table 4.12 lists the considered parameters in the tuning process.

4.7.2 Evaluation
The training labels are multi-labels because, in some cases, two or more algorithms reach
the same solution. The model predicts multiple classes, which will be scored using the
subset accuracy. A prediction is seen as correct if it matches the true labels completely.
But because we want a single algorithm selected per instance in the end, we have to break
ties in some way. For this, we decided to sort the algorithms by the number of times
they performed best on the instances from the training set and break ties by favoring the
first method occurring in this order.

In addition to the subset accuracy measurements on the test data, we also report more
detailed insights into the results by including other classification measurements, confusion
matrices, and comparing the models to each other by the number of correct predictions
they made after using our tie-breaking approach. The best among these models is used
for the final evaluation and comparison to the performance of individual algorithms.

35

CHAPTER 5
Experimental Evaluation

In this chapter, we discuss the results obtained from the experiments using the experi-
mental setup described in Chapter 4.

5.1 Algorithm Performance
Before we analyze the instance space and evaluate the algorithm selection models, we
benchmark the exact methods utilized and compare them to each other on a small set of
instances, which was also used by Moser et al. [2022] for this purpose. These experiments
are executed on a machine with an Intel i7-1355U CPU with 10 cores and 32GB of RAM.
The runtime is set to 30 minutes, as described in Moser et al. [2022]. A comparison of
the performance of our reimplemented MIP models to the reported results in the original
work does not make sense, since the utilized versions of Gurobi differ, as well as the
hardware specifications.

However, for the SA approaches, we are able to compare our reimplementation directly
to the original work, since we can run the algorithms for the same number of iterations,
making it hardware independent. This benchmarking should be seen as a validation of
the correct reimplementation of the algorithms and not as a direct comparison of their
performance with each other, since this will be done in the context of the instance space
in the following sections.

5.1.1 Exact Methods
We report results from our implementation of the MIP formulations for Gurobi and the
two CP formulations implemented for CP-SAT. Table 5.1 contains the results for a set of
25 instances that were also utilized by Moser et al. [2022].

The first line of the result shows the cumulative tardiness of the best solution found, with
the best bound in brackets behind it. The second line contains the makespan and its

37

5. Experimental Evaluation

best bound as well. Due to the nature of the multidimensional objective function, we do
not have a valid bound for the makespan if the tardiness is not already optimal. Because
of this, many bounds are actually not available, which is represented by a dash (-). The
best performing solver is highlighted by using a bold font, while objective values that are
proven to be optimal are marked with a star (*).

By looking at the objective values obtained by the exact methods, we can see that for most
instances, CP_S finds the best solution among them. Instances where MIP_A or MIP_H
outperform the CP approaches seem to have more machines and jobs than the others,
while instances with many jobs in combination with very few machines favor CP-SAT.
However, no clear pattern can be found only using 25 instances, so this hypothesis will
be discussed again in combination with the instance space in the following sections.

There exist two instances where all models were able to find and prove the optimality of
a solution. In addition to that, the CP models were able to find a third optimal solution.
Also, for most instances, the best bounds found by CP_C and CP_S are better than
the bounds for MIP_A and MIP_H. At least on these 25 instances, the CP formulations
proposed by us seem to perform better than the existing MIP formulations utilized by
Gurobi.

5.1.2 Simulated Annealing

We perform similar validation benchmarks for the SA approaches that were reimplemented
on the description by Moser et al. [2022]. Although the randomness prevents the results
from matching exactly, our versions are able find solutions of similar quality most of the
time. In Table 5.2, these results are reported for all three SA variants. Again, the best
result is highlighted by a bold font for each of the three versions separately, and the first
value represents the cumulative tardiness of the found solution, while the second value
is the makespan. In the case of SA, we do not have any lower bounds to the solution
compared to the exact solvers above. The 25 instances were drawn randomly from the
set of instances where solutions were provided for the original implementations.

For SAC, our method yields better results for 10 of the 25 instances and is generally not
too far off on the others. The same applies to SAR, where our implementation yields 15
better and one equally good result as the originally reported results. However, with the
re-implementation of SAI, we only improve results over the reported ones in four cases
and tie for one. This suggests that our implementation performs worse than the original
one. However, this might be due to the parameter tuning, because these benchmarks
were run on a different machine. SAI is especially affected by this because of the fixed
iteration budget I that was chosen based on previous experiments in the original work.
While this first benchmark was performed on the setup described at the beginning of this
section, the final experiments, yielding the results used for the instance space construction
and analysis, will be conducted on the same setup as Moser et al. [2022] utilized, so we
still include our implementation of SAI without further adaptation.

38

5.1. Algorithm Performance

Instance MIP_A MIP_H CP_C CP_S

p-13-80-80-1 1189
488

(117)
(-)

1430
520

(159)
(-)

494
352

(363)
(-)

363 *
361

(363)
(33)

p-15-60-60-1 712
350

(225)
(-)

674
394

(206)
(-)

538
334

(458)
(-)

567
367

(475)
(-)

p-15-63-80-1 841
428

(29)
(-)

1218
492

(35)
(-)

583
456

(283)
(-)

515
390

(294)
(-)

p-16-100-100-1 2499
500

(2)
(-)

1181
516

(2)
(-)

615
387

(111)
(-)

598
481

(117)
(-)

p-16-180-180-1 3355920
18644

(0)
(-)

21682
1010

(3)
(-)

77456
3613

(133)
(-)

394695
9982

(156)
(-)

p-17-100-100-1 4714
485

(1)
(-)

3183
442

(68)
(-)

1597
392

(661)
(-)

1357
454

(666)
(-)

p-18-80-80-2 1090
390

(23)
(-)

1153
405

(81)
(-)

874
402

(465)
(-)

684
327

(483)
(-)

p-20-180-180-1 16762
870

(1)
(-)

21009
971

(1)
(-)

158148
6215

(174)
(-)

120640
5409

(225)
(-)

p-22-140-140-1 8448
605

(1)
(-)

8090
651

(1)
(-)

3253
584

(194)
(-)

2939
593

(64)
(-)

p-29-140-140-1 5446
379

(1)
(-)

5746
458

(2)
(-)

4698
478

(100)
(-)

5073
479

(207)
(-)

p-3-17-20-1 937
525

(303)
(-)

937
525

(318)
(-)

945
568

(632)
(-)

945
568

(609)
(-)

p-7-19-40-1 1929
553

(175)
(-)

1672
535

(149)
(-)

1859
455

(685)
(-)

1618
458

(708)
(-)

p-9-180-180-1 42396
1816

(1)
(-)

38253
1774

(48)
(-)

8815
1636

(291)
(-)

11923
1596

(333)
(-)

s-1-3-100-1 63208
8568

(0)
(-)

104804
9444

(0)
(-)

0 *
10746 *

(0)
(10746)

0 *
10746 *

(0)
(10746)

s-10-120-180-1 21195
1761

(0)
(-)

17664
1811

(0)
(-)

8372
1853

(0)
(-)

316
1787

(0)
(-)

s-15-80-80-2 0 *
346

(0)
(217)

0 *
364

(0)
(219)

0 *
353

(0)
(149)

0 *
367

(0)
(61)

s-15-80-80-3 0 *
307

(0)
(209)

0 *
300

(0)
(208)

0 *
389

(0)
(80)

0 *
401

(0)
(99)

s-22-149-160-1 3278
780

(0)
(-)

1589
743

(0)
(-)

64026
3932

(0)
(-)

101822
4818

(0)
(-)

s-4-16-20-1 0 *
409 *

(0)
(409)

0 *
409 *

(0)
(409)

0 *
409 *

(0)
(409)

0 *
409 *

(0)
(409)

t-10-24-40-1 0 *
373 *

(0)
(373)

0 *
373 *

(0)
(373)

0 *
373 *

(0)
(373)

0 *
373 *

(0)
(373)

t-15-77-80-1 119
737

(0)
(-)

36
502

(0)
(-)

0 *
378

(0)
(105)

0 *
358

(0)
(45)

t-18-56-100-1 1400
521

(0)
(-)

504
563

(0)
(-)

56
435

(0)
(-)

43
890

(0)
(-)

t-20-76-100-1 446
458

(0)
(-)

222
528

(0)
(-)

267
348

(0)
(-)

0 *
397

(0)
(31)

t-28-34-100-1 85
514

(0)
(-)

0 *
231

(0)
(199)

84
365

(0)
(-)

52
407

(0)
(-)

t-3-12-200-1 204137
6433

(0)
(-)

175792
7035

(0)
(-)

25675
4790

(0)
(-)

80054
6872

(0)
(-)

Table 5.1: Performance results of the reimplemented MIP models and novel CP formula-
tions

39

5. Experimental Evaluation

Instance SAC SAC (Moser) SAI SAI (Moser) SAR SAR (Moser)

t-18-820-820-2 28
2645

20
2094

20
2547

45
2557

25
1960

25
2071

s-18-763-800-1 0
2543

0
2485

0
3203

0
2799

0
1976

0
2094

s-22-519-740-1 0
1549

0
1801

0
2268

0
1916

0
1451

0
1503

t-6-540-540-1 22
5532

6
4055

81
5723

19
4641

36
4439

54
4243

s-7-166-600-1 0
4882

0
4100

80
5984

0
4304

67
4072

0
4072

s-12-720-720-1 0
2788

0
3084

0
4339

0
3794

0
2662

0
2846

p-30-332-340-1 419
589

434
563

461
640

396
489

510
566

431
552

t-10-230-700-1 3
3774

8
3144

6
4049

1
2970

14
3222

2
3137

s-14-940-940-1 0
3479

0
3539

0
4842

0
4716

0
2997

0
3141

t-2-490-800-1 8
20990

0
21485

0
30450

0
30975

0
22044

0
31120

t-2-380-380-1 0
11130

0
9347

4
13600

0
12374

0
9542

0
9835

t-20-76-100-1 0
336

0
298

0
303

0
282

0
275

0
270

p-10-376-680-1 451
4299

518
3235

508
4250

418
4140

410
3553

438
3590

t-15-77-80-1 0
414

0
330

0
341

0
317

0
321

0
313

t-28-620-620-1 29
1368

4
1037

11
1235

2
1011

68
979

3
934

s-20-794-800-1 0
1862

0
2224

0
2836

0
2616

0
1756

0
1873

t-26-334-480-1 58
1065

93
823

5
991

49
720

5
752

52
1045

t-24-400-400-1 38
981

26
733

34
903

34
663

90
693

34
678

s-27-249-660-1 0
1119

0
1317

0
1613

0
1089

0
1022

0
1086

s-24-900-900-1 0
1729

0
2016

0
2721

0
2701

0
1592

0
1731

t-28-371-520-1 9
935

5
800

0
943

0
714

0
743

0
741

p-21-62-740-1 572
1517

392
1601

555
2045

444
1929

494
1673

562
2151

t-10-389-940-1 75
4321

63
4424

60
5635

45
4894

56
4388

156
4706

t-27-360-360-1 2
792

0
623

4
685

22
544

4
579

2
550

s-4-16-20-1 0
422

0
409

0
409

0
409

0
409

0
409

Table 5.2: Results of the reimplemented SA approaches compared to the reported results
in Moser et al. [2022], with the same number of iterations

40

5.2. Instance Space Analysis for Exact Methods

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

Source

pez_s

pez_m

pez_b

max_rl

max_gen

(a) Existing instances

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

Source

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(b) All utilized instances

Figure 5.1: Instances separated by their source in the instance space for exact solvers

5.2 Instance Space Analysis for Exact Methods
In the following, we present and interpret the obtained results by analyzing the instance
space in the context of exact methods. As already mentioned in Section 4.6, we exclude
instances where none of the solvers were able to find a feasible solution. In total, the
dataset utilized to create the instance space contains 2254 instances. This means that
in total, 296 instances were removed from the whole set. The vast majority of these
removed instances come from the source max_gen, which contains the generated instances
proposed by Moser et al. [2022]. The reason no solution was found by any solver is
that the instances simply were too large. The order of magnitude where this occurs is a
combination of around 500 or more jobs with dozens of machines.

Instance Source Visualization

Figure 5.1 visualizes the projected instances in the instance space, using colors for different
instance sources. On the left side, only the instances known from the literature are
visualized, while the right figure also contains our generated instances.

One can see that the real-life instances from max_rl are placed separately from most of
the known randomly generated instances. Also, there is a substantial gap between them.

The additional instances we propose lead to a more complete coverage of the instance
space. moik_rll overlaps quite well with the position of the instances from max_rl.
This indicates that we are able to generate instances with similar properties to the
real-life ones, which is crucial to evaluating algorithms in this region of the space. Also
moik_gap is able to fill the space between the real-life and generated instances, with
only small gaps left.

However, it overlaps quite heavily with moik_rll around Z1 = 0.5 and Z2 = 1, 5 as it
can be seen in Figure 5.1b. This might indicate that more than six features might be

41

5. Experimental Evaluation

Feature Z1 Z2
mat_ct 0.162 −0.3945
job_mach_rat 0.6399 0.6867
min_proc_j_agg_median −0.1323 0.2524
elig_m_ct_agg_mean 0.5782 −0.1024
jj_deg_agg_q3 0.0685 0.0174
j_bal_mksp 0.3173 −0.0912

Table 5.3: Features with their corresponding projection coefficients obtained by
MATILDA, for the instance space for exact solvers

needed to separate these instances, or additional features have to be proposed. Also, there
is still a sparse area at the center around Z1 = 0 and Z2 = 0, with very few instances,
indicating that more instances should have been generated.

5.2.1 Selected Features
The selected features by MATILDA are listed with their corresponding projections in
Table 5.3. With Figure 5.2, visualizing the feature values in the instance space, and Figure
5.3 focusing on the feature distribution per source, we can interpret the selection. Note
that the feature values in all graphics are preprocessed using a Box-Cox transformation
and normalization, as it is utilized by MATILDA itself (Smith-Miles and Muñoz [2023]).
The correlation matrix in Figure 5.4 also adds to the analysis of the selected features.

• mat_ct The material count of an instance seems to be highest for instances from
pez_b and max_gen, as it can be seen in Figure 5.3a. A low number of materials
means that there are fewer unique setup times for the jobs, which might make
scheduling easier for some approaches. Of course, a high number of materials is
only possible in combination with many jobs, so there exists a correlation between
these basic features.

• job_mach_rat The job-machine-ratio, visualized by source in Figure 5.3b, is
lower for instances from pez_s, pez_m, and pez_b than for the other instance
sets, allowing a separation between instances from pez and the other sources.

• min_proc_j_agg_median The median of the minimal processing times per job
is able to distinguish between generated and real-life, or real-life-like instances quite
well, as it can be seen in Figure 5.3c.

• elig_m_ct_agg_mean The average number of eligible machines shows a gradual
increase from the top left to the bottom right in Figure 5.2d. Since there are
instances with only a single eligible machine per job, this feature might be used to
separate them from the others. In Figure 5.3d, we can see this, since max_rl, and

42

5.2. Instance Space Analysis for Exact Methods

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) mat_ct

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

2

1

0

1

2

(b) job_mach_rat

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

4

3

2

1

0

1

(c) min_proc_j_agg_median

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

1.0

0.5

0.0

0.5

1.0

1.5

(d) elig_m_ct_agg_mean

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(e) jj_deg_agg_q3

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(f) j_bal_mksp

Figure 5.2: Processed feature values visualized in the instance space for exact solvers

2 1 0 1 2

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(a) mat_ct

2 1 0 1 2 3

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(b) job_mach_rat

5 4 3 2 1 0 1 2

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(c) min_proc_j_agg_median

3 2 1 0 1 2 3

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(d) elig_m_ct_agg_mean

2 1 0 1 2

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(e) jj_deg_agg_q3

3 2 1 0 1 2

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(f) j_bal_mksp

Figure 5.3: Distribution of features split by source

43

5. Experimental Evaluation

ma
t_c

t

job
_m

ac
h_
ra
t

mi
n_
pr
oc
j
ag
g_
me

dia
n

eli
g_
m_

ct_
ag
g_
me

an

jj_
de
g_
ag
g_
q3

j_b
al_

mk
sp

mat_ct

job_mach_rat

min_proc_j_agg_median

elig_m_ct_agg_mean

jj_deg_agg_q3

j_bal_mksp

1.00 0.27 -0.09 0.35 0.51 0.29

0.27 1.00 0.12 -0.22 0.52 -0.28

-0.09 0.12 1.00 -0.11 0.01 0.06

0.35 -0.22 -0.11 1.00 0.39 0.77

0.51 0.52 0.01 0.39 1.00 0.14

0.29 -0.28 0.06 0.77 0.14 1.00

Figure 5.4: Correlation between the selected features for the instance space construction
for exact solvers

our generated datasets show an accumulation of instances at the lower end, and
also slightly at the upper end, with fewer instances in between.

• jj_deg_agg_q3 The third quartile of the node degrees of the jj_graph corre-
lates with mat_ct and job_mach_rat when inspecting the correlation matrix in
Figure 5.4. When looking at the feature values in the instance space in Figure 5.2e,
this feature increases from the bottom left to the top right. The node degree of this
graph depends heavily on the number of jobs, but also indirectly on the eligible
machines per job, since edges connect jobs running on the same machines. It might
be a good representation of these two fundamental properties of an instance.

• j_bal_mksp The balancing of the machine makespans correlates a lot with
elig_m_ct_agg_mean as Figure 5.4 shows. However, it is still interesting to see
a possible connection between the number of eligible machines and the ability to
distribute jobs equally on the machines by the construction heuristic.

5.2.2 Algorithm Performance
We shift the focus onto the performance of the individual algorithms in the instance
space.

Figure 5.5 visualizes where an algorithm reaches the best solution among all other
algorithms. It is further distinguished between a uniquely best solution and a tied best
solution. Tied means that there is another algorithm that was able to find a solution with

44

5.2. Instance Space Analysis for Exact Methods

the exact same objective value, whereas unique means that this algorithm was the only
one that found the best solution among all algorithms. Grayed out instances indicate
that the algorithm was not able to find the best known solution, and another algorithm
outperformed it.

First, for the data sources pez_s, pez_m as well as parts of moik_gen, all algorithms
perform equally well for most instances. This is a strong indication that optimal solutions
were found for these instances. But one can see that there are some regions where the
algorithms perform differently.

At the top of the instance space in Figure 5.5, around Z1 = 0.5 and Z2 = 1.5, both
MIP variations perform worse than the CP approaches. However, CP_C and CP_S tie
most of the time, and are able to produce a few uniquely best solutions in this area.
With the feature distribution from the last section in mind, this region is characterized
by its low values in elig_m_ct_agg_mean, in combination with higher values of
jj_deg_agg_q3. So the CP models seem to have an advantage over the MIP approaches
for instances with many jobs, but a small number of eligible machines per job. The fact
that they are able to tie on so many instances in this area also suggests that they are
able to find optimal solutions for many of these instances.

On the other hand, instances located around Z1 = 1.5 and Z2 = −1.5 in 5.5 are
dominated by the MIP approaches. Especially, MIP_H is able to find many unique best
solutions. This area mainly includes instances from pez_b, but also from max_gen and
moik_gap. The instances in this area can also be described by using the same features
again. A high value in elig_m_ct_agg_mean, in combination with a medium value
of jj_deg_agg_q3, places an instance in this part of instance space. But with even
higher values for the latter, the CP methods start to outperform the MIP solvers again.
However, there is no clear distinction between CP_S and CP_C, meaning that either the
features do not allow a clear separation, or they perform equally well in general.

So in total, jj_deg_agg_q3 seems to have the biggest influence on the algorithm
performance overall. For small values, all solvers are able to find an equally good solution,
while for large values, CP yields better results than both MIP formulations. There is
a region in between, where MIP and CP solvers outperform each other, depending on
elig_m_ct_agg_mean.

Figure 5.6 shows the information from the plots above condensed by counting the number
of algorithms that were able to find the best known solution for each instance. The
hardness seems to increase from left to right in the instance space, looking very similar to
the distribution of jj_deg_agg_q3 in Figure 5.2e. Figure 5.1b shows that max_gen,
as well as parts of pez_b, moik_gen, and moik_rll are projected to this area, where
only one solver finds a good solution. Note that a good solution does not automatically
mean that the solution is optimal, or close to the optimum.

45

5. Experimental Evaluation

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

unique

tied

(a) MIP_A

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

unique

tied

(b) MIP_H

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

unique

tied

(c) CP_C

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

unique

tied

(d) CP_S

Figure 5.5: Best performances of each exact approach

5.2.3 Algorithm Selection

Finally, we come to the training and evaluation of the algorithm selection models. Table
5.4 lists the resulting tuned parameters from the grid search cross-validation of the models
described in Section 4.7.

Table 5.5 shows the F1-scores achieved by the trained models on the test set, which
contains 575 instances. By looking at these scores, one can see that all three classifiers
are able to outperform MF. However, the differences in F1-scores are not that high. This
is simply due to the large number of instances, where multiple approaches are able to
the same best solution, and the choice does not matter. This favors the most frequent
classifier MF.

Figure 5.7 compares the number of instances where the models were able to choose one
of the best-performing algorithms on the test set. Note that we shifted the y-axis to
exclude instances where all algorithms were able to find the same best solution, and

46

5.2. Instance Space Analysis for Exact Methods

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 5.6: Number of good exact solvers per instance

Model Parameters Tuning result
KNN n_neighbors 7

weights distance
p 1

RF n_estimators 200
criterion entropy
min_samples_leaf 2

SVM C 5
kernel rbf
degree -
gamma scale

Table 5.4: Tuned Parameters for the algorithm selection models for exact solvers

MF KNN RF SVM
MIP_A 0 0.90 0.91 0.90
MIP_H 0.71 0.86 0.86 0.86
CP_C 0.76 0.85 0.86 0.84
CP_S 0.78 0.87 0.87 0.87

Table 5.5: F1-scores of the algorithm selection models for the exact solvers

47

5. Experimental Evaluation

MF KNN RF SVM

250

300

350

400

N
u
m

b
e
r

o
f

c
o
rr

e
c
t

p
re

d
ic

ti
o
n
s

371

420

408 408

Figure 5.7: Comparison of the number of correct predictions of the algorithm selection
models on the test set

therefore, algorithm selection does not have any impact. The plot shows that the trained
models are able to outperform the baseline. Again, since there are a lot of instances
where two or more algorithms perform equally well and the choice does not matter, the
differences are only minor. The best model, the KNN classifier, selects one of the best
exact approaches for 420 out of the 575 instances, while the baseline finds 371. This is
an increase of around 8%.

The confusion matrices for the predictions of the KNN model are visualized in Figure 5.8.
One can see that the model is able to make correct predictions most of the time for all
algorithms. Both CP versions outperform the MIP models. And there is also a difference
between the models of the same type. MIP_H performs better than MIP_A, as it was
already suggested in the reported results by Moser et al. [2022]. Our approach, CP_C,
which utilizes the separate objectives, outperforms the version with a combined objective
function. This is an indicator that optimizing these two-valued, lexicographically ordered
objectives separately can lead to improved results compared to combining the objective
values into a single measurement.

The algorithm selection using KNN on the train and test sets is visualized in Figure 5.9.
All models are used by this model, with CP_C dominating. However, this is only the
case because we decided to select the model that was best on the training set to break
ties. Around Z1 = 1.5 and Z2 = −1.5 is the only area where MIP_H dominates a whole
cluster, which was already expected by analyzing the performance of the train set in
Figure 5.5. However, there exists a large area with no clear pattern that the algorithm

48

5.3. Instance Space Analysis for Heuristics

Pred Bad Pred Good

B
a
d

G
o
o
d

161 43

54 317

CP_S

Pred Bad Pred Good

B
a
d

G
o
o
d

181 45

57 292

CP_C

Pred Bad Pred Good

B
a
d

G
o
o
d

225 34

50 266

MIP_H

Pred Bad Pred Good

B
a
d

G
o
o
d

279 18

37 241

MIP_A

Figure 5.8: Confusion matrices of KNN for exact optimizers

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

Prediction

CP_S

MIP_H

MIP_A

CP_C

(a) Train set

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

Prediction

CP_S

MIP_H

CP_C

MIP_A

(b) Test set

Figure 5.9: Selected exact methods by KNN for train and test instances

selection follows.

5.3 Instance Space Analysis for Heuristics
We repeat the same analysis for the heuristic methods discussed in Section 3.2, which
includes Greedy, SAC, SAR, SAI, and LNS. All 2552 instances from the train set, as
well as the whole test set containing 638 instances, will be utilized.

5.3.1 Instance Source Visualization
Again, before going into details about feature selection and algorithm performance, we
visualize the distribution of instances from different data sources in the instance space.
To show the significance and novelty of our own generated instance sets, Figure 5.10
visualizes the existing instances in the instance space on the left, while the right plot
includes all utilized instances. The existing instances are differentiated quite well by their
source. However, in the same way as for the selected features for the exact solvers in
Section 5.2, the few real-life instances from max_rl are located apart from the other
instances. With the instances generated by us, we solve this issue. moik_gap is located

49

5. Experimental Evaluation

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

Source

pez_s

pez_m

pez_b

max_rl

max_gen

(a) Existing instances

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

Source

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(b) All utilized instances

Figure 5.10: Instance separated by their source in the instance space for heuristics

Feature Z1 Z2
max_proc_m_agg_std −0.0986 −0.2878
max_setup_pre_agg_range −0.3029 −0.1479
min_spare_j_agg_std −0.5977 −0.1136
elig_m_ct_agg_range 0.0096 0.4919
jj_deg_agg_mean −0.4799 0.4640
rat_lb 0.2598 0.2561

Table 5.6: Features with corresponding projection coefficients obtained by MATILDA,
for the instance space for heuristic approaches

quite central to fill the gap, and moik_rll is located in the same area as max_rl as
before. Similarly, with the utilization of other instance features for the construction of
the instance space, our instance sets are able to complement the existing ones.

5.3.2 Selected Features
The features listed in Table 5.6 were selected by MATILDA to project the instances into
a two-dimensional space. We visualize the distribution of these features split by source
in Figure 5.12, as well as in the instance space in Figure 5.11. The correlation between
the selected features can be seen in Figure 5.13.

• max_proc_m_agg_std The standard deviation of maximal processing time per
machine is highest for instances from max_rl and moik_rll, as one can see in
Figure 5.12a. This feature is able to separate the real-life and real-life-like instances
from the rest quite well. In the instance space in Figure 5.11a, the highest feature
values occur on the bottom left at around Z1 = −1 and Z2 = −2. The Top and
the center show the lowest values.

50

5.3. Instance Space Analysis for Heuristics

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) max_proc_m_agg_std

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(b) max_setup_pre_agg_range

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

3

2

1

0

1

2

(c) min_spare_j_agg_std

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

1.0

0.5

0.0

0.5

1.0

1.5

(d) elig_m_ct_agg_mean

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

2

1

0

1

2

(e) jj_deg_agg_mean

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

2

1

0

1

2

3

4

(f) rat_lb

Figure 5.11: Feature values visualized in the instance space for heuristics

2 1 0 1 2

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(a) max_proc_m_agg_std

3 2 1 0 1 2 3 4

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(b) max_setup_pre_agg_range

4 3 2 1 0 1 2 3

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(c) min_spare_j_agg_std

2 1 0 1 2

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(d) elig_m_ct_agg_mean

3 2 1 0 1 2 3

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(e) jj_deg_agg_mean

3 2 1 0 1 2 3 4

pez_s

pez_m

pez_b

moik_rll

moik_gap

max_rl

max_gen

(f) rat_lb

Figure 5.12: Distribution of selected features in the instance space for heuristics per data
source

51

5. Experimental Evaluation

m
ax
_p
ro
c_
m
_a
gg
_s
td

m
ax
_s
et
up
_p
re
_a
gg
_r
an
ge

m
in
_s
pa
re
_j
_a
gg
_s
td

el
ig
_m
_c
t_
ag
g_
ra
ng
e

jj_
de
g_
ag
g_
m
ea
n

ra
t_
lb

max_proc_m_agg_std

max_setup_pre_agg_range

min_spare_j_agg_std

elig_m_ct_agg_range

jj_deg_agg_mean

rat_lb

1.00 0.04 0.35 -0.04 0.01 -0.02

0.04 1.00 -0.01 -0.04 -0.01 -0.03

0.35 -0.01 1.00 -0.02 0.12 -0.04

-0.04 -0.04 -0.02 1.00 0.47 0.28

0.01 -0.01 0.12 0.47 1.00 0.04

-0.02 -0.03 -0.04 0.28 0.04 1.00

Figure 5.13: Correlation between the features selected for heuristics

• max_setup_pre_agg_range The second selected feature, the range of the maxi-
mal setup times preceding a job, shows a gradual increase from the top right to the
bottom left in the instance space, with a few exceptions, as it can be seen in Figure
5.11b. In general, this feature seems to group the instances at the top together
with their low values for this feature. Figure 5.12b suggests that these are mainly
from pez_b and max_gen, since these are concentrated at a low value.

• min_spare_j_agg_std The standard deviation of the minimal spare time per
job shows a clear increase from right to left in the instance space in Figure 5.11c.
This again means that both, max_rl and moik_rll, reach the highest values like
it is visible in Figure 5.12c. In comparison to max_proc_m_agg_std, which also
reached its highest values in this area, this feature is lower on the right side of the
instance space, while the first one shows an increase on both sides.

• elig_m_ct_agg_range The range of the eligible machine count for an instance
increases gradually from bottom to the top in Figure 5.11d. This feature is suitable
for separating instances with one or multiple eligible machines. This can be seen in
Figure 5.12d, where most sources show two accumulation regions. The selection of
this feature indicates an impact of the number of eligible machines on the hardness
of an instance.

• jj_deg_agg_mean The mean node degree of the jj_graph shows a trend from
bottom right to top left in Figure 5.11e. This feature, in combination with
elig_m_ct_agg_range, also shows the highest correlation between any of the

52

5.3. Instance Space Analysis for Heuristics

selected features in the correlation matrix in Figure 5.13. In general, the features
are only weakly correlated, since the highest correlation coefficient is 0.47.

• rat_lb The ratio of the greedy solution to a naive lower bound is the only probing
feature included. A higher ratio indicates a larger optimization potential for the
heuristics, starting from the solution provided by Greedy. However, it might also
be an indicator of the hardness of an instance. Figure 5.12f shows that the lowest
values for this ratio are achieved by the real-life instances and our own generated
instance set. So this feature could be coupled to the sparse setup times utilized in
these sets.

5.3.3 Algorithm Performance
Figure 5.14 visualizes the best performances of each algorithm. Again, tied means that
there exists another algorithm that found the same best solution, while unique indicates
that this particular algorithm was the only one that found the best solution. Grayed out
instances indicate that another algorithm was able to find a better solution.

In the bottom part of the instance cloud, all algorithms manage to find the same best
solution, suggesting that these instances are quite easy to solve. This is also backed by
the fact that pez_s and pez_m, the two instance sets containing smaller instances, are
located in this area, as it can be seen in Figure 5.10. Instances from moik_gap and
moik_rll are also part of these easy instances. They seem to be instances where each
job has very few eligible machines, as suggested by the feature distribution in Figure
5.11d. For the other areas in the instance space, SAC and SAR dominate, while SAI and
LNS only achieve uniquely best solutions for a few instances, but not for a whole cluster.

SAR, which is the SA variant that reheats after the minimum temperature is reached,
achieves many uniquely best solutions in the top right around Z1 = 1 and Z2 = 1.5. This
area contains mostly instances from pez_b when looking at Figure 5.10. SAC, which
adapts the cooling speed according to the time left, outperforms all other algorithms on
the rest of the instances most of the time.

In Figure 5.15 we visualize the number of good algorithms per instance. The trend
from easy instances at the bottom to harder ones on the top can be seen clearly here.
Occasionally, even Greedy produces the same results as the more sophisticated heuristics.

5.3.4 Algorithm Selection
Finally, we train algorithm selection models for the heuristic optimizers. The tuning of
the models according to the setup described in Section 4.7 yielded the parameters listed
in Table 5.7.

All models outperform the baseline classifier when comparing the F1-scores in Table 5.8.
The macro-averaged F1-score of MF reaches 0.34., while the best solver, which is RF,
scores 0.87. Again, the scores of the MF classifier do not differ much for SAC and SAR,

53

5. Experimental Evaluation

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

unique

tied

(a) SAC

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

unique

tied

(b) SAR

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

unique

tied

(c) SAI

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

unique

tied

(d) LNS

Figure 5.14: Best performances of each heuristic approach, excluding greedy

Model Parameters Tuning result
KNN n_neighbors 7

weights distance
p 1

RF n_estimators 200
criterion log_loss
min_samples_leaf 5

SVM C 5
kernel rbf
degree -
gamma scale

Table 5.7: Tuned Parameters for the algorithm selection models for heuristic approaches

54

5.3. Instance Space Analysis for Heuristics

2 1 0 1 2 3

Z1

2

1

0

1

2
Z
2

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure 5.15: Number of good heuristic algorithms per instance

MF KNN RF SVM
SAC 0.85 0.92 0.92 0.91
SAR 0.83 0.91 0.92 0.88
SAI 0 0.88 0.91 0.84
LNS 0 0.83 0.87 0.80

Greedy 0 0.68 0.73 0.12

Table 5.8: F1-scores for the algorithm selection models for the heuristic approaches

because these algorithms are able to perform well on the majority of instances. Still,
small improvements can be seen in the other models.

In Figure 5.16, a closer inspection is possible by looking at the confusion matrices for
each algorithm for the predictions from RF.

In Figure 5.17, we visualize the number of instances each model was able to identify as
one of the best algorithms. In this visualization, we accounted for the instances where all
algorithms (except Greedy) are able to find the same best solution, as these instances
are not interesting for algorithm selection. For this, we moved the y-axis so that the
irrelevant instances are excluded. The number of correct predictions by RF is 548, which
is an improvement of around 11% over the baseline.

The visualization of the predictions of RF on train and test instances is given in Figure
5.18. As the analysis of the algorithm performances in Subsection 5.3.3 already suggested,
SAR is considered the best algorithm for a small cluster around Z1 = 0.5 and Z2 = 1.5.

55

5. Experimental Evaluation

Pred Bad Pred Good

B
a
d

G
o
o
d

112 51

26 450

SAC

Pred Bad Pred Good

B
a
d

G
o
o
d

145 37

40 417

SAR

Pred Bad Pred Good

B
a
d

G
o
o
d

338 21

28 252

SAI

Pred Bad Pred Good

B
a
d

G
o
o
d

341 32

35 231

LNS

Pred Bad Pred Good

B
a
d

G
o
o
d

590 0

21 28

Greedy

Figure 5.16: Confusion matrices of RF for heuristic optimizers

MF KNN RF SVM

250

300

350

400

450

500

550

N
u
m

b
e
r

o
f

c
o
rr

e
c
t

p
re

d
ic

ti
o
n
s 476

546 548
539

Figure 5.17: Comparison of the number of correct predictions of the algorithm selection
models on the test set

56

5.4. Comparison Between Exact and Heuristic Instance Space

2 1 0 1 2 3

Z1

2

1

0

1

2

Z
2

Prediction

SAC

SAR

LNS

(a) Train set

2 1 0 1 2

Z1

2

1

0

1

2

Z
2

Prediction

SAC

SAR

LNS

(b) Test set

Figure 5.18: Selected heuristics by RF for train and test instances

Otherwise, SAC is the algorithm of choice with few exceptions. With the feature analysis
from Subsection 5.3.2, we can conclude that the average number of eligible machines per
job has an impact on the algorithm selection between SAR and SAC.

5.4 Comparison Between Exact and Heuristic Instance
Space

To finalize this chapter, we will briefly discuss the insights from both instance spaces to
point out similarities and differences between them.

In comparison of the two analyses, the heuristics showed better separation of the instances
regarding algorithmic performance. For the exact solvers, MATILDA could not select
features that allow the same quality of separation. This might be due to missing features
or simply because the models do not show enough differences in performance.

The most important features for distinguishing the performance of the various heuristics
and exact methods are closely related. They focus on the number of eligible machines
and the node degree of the jj_graph. It is also worth mentioning that the clusters
where SAR is selected for the heuristics, and the MIP models perform best for the exact
solvers, contain similar instances as well.

While experiments with exact methods and heuristics combined were conducted, there
are only very few instances where exact solvers are chosen over heuristic approaches, as
Figure 5.19 shows. The combined analysis also would not have allowed for the discovery
of the performance difference between CP models and MIP models on instances with
very few eligible machines per job, since the heuristics cover that area.

57

5. Experimental Evaluation

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Z1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Z
2

Prediction

SAC

MIP_H

SAR

CP_C

LNS

CP_S

SAI

MIP_A

(a) Train set

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Z1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Z
2

Prediction

SAC

SAR

MIP_H

CP_S

MIP_A

(b) Test set

Figure 5.19: Selected approaches by RF for train and test instances

58

CHAPTER 6
CP Formulation for an Extension

of the UPMSP

Very recently, the UPMSP we analyzed in the earlier chapters was adapted by introducing
new constraints and objectives. In this chapter, we will propose a novel CP formulation,
which will be implemented for the CP-SAT solver. We compare our new approach to
the other known solvers for this problem from Horn et al. [2025]. The focus lies on the
general approach for handling resource calendars and machine downtimes using interval
variables.

6.1 Problem Description
This variant of the UPMSP has, in addition to the machine eligibility and setup time
constraints that we already introduced in Section 2.1, job precedences and calendar-based
cumulative resource constraints. Therefore, the problem is called the Parallel Machine
Scheduling Problem with Precedence Constraints and Resource Calendar Constraints
(short PMSP-PCRCC). These constraints arise in real-life applications of our industry
partner and are therefore of practical importance.

The following problem description is directly taken from Horn et al. [2025], with a slightly
adapted example problem, which makes the following explanation for resource handling
easier to understand. We include the problem description in our work to make the
constraint formulations in the next section easier to understand, with the necessary
conditions and an example problem in mind.

Figure 6.1 illustrates a simple example schedule using two machines (M1, M2) and six
jobs (J1 . . . J6). The jobs are drawn as red bars, where the horizontal length indicates
the processing time. The thinner blue bars denote the predecessor-dependent setup time
of the jobs. Note that J1, J5, and J6 have a setup time of zero.

59

6. CP Formulation for an Extension of the UPMSP

The diagonally striped bars within the schedule indicate a machine downtime or the
unavailability of a resource. During a downtime, no work can be processed. However,
jobs running before a downtime period can simply be paused during the downtime and
continue right afterwards. Pausing a job randomly or due to a lack of resources is not
allowed. This interruption may occur during the setup or processing time of the job.
In the example, this is illustrated as J5 is interrupted during the processing time but
continues immediately after the end of the downtime. The downtimes at the end of
the schedule reach to infinity, indicating the end of the input or machine and resource
availabilities.

In any feasible schedule, job precedence constraints have to be respected. The job
precedences in the example are illustrated by arrows between pairs of jobs. Thus, J3 and
J5 must be scheduled after the completion of J1. Precedences can optionally specify time
lags between jobs. In the example, we see that J5 must respect a short time lag after the
completion of J1 (otherwise, it could start directly after J2).

In addition, two resources R1 and R2 are visualized in Figure 6.1. Cumulative resource
constraints impose restrictions on feasible schedules as follows: For each time slot in the
scheduling horizon, each resource provides a certain amount of capacity. Thus, resource
calendars can be modeled by supplying different capacities in different time periods of
the scheduling horizon. Each job and machine also specifies resource demands that must
be fulfilled. Thus, for each time slot, all resources need to provide sufficient capacity to
supply the running machines and all jobs that are processed at the given time. Note that
a machine with a running job does not consume any resource capacities during machine
downtimes, but jobs may not be paused outside of machine downtimes to purposely
interrupt resource consumption.

In the example, R1 provides a capacity of 4 in the time slots 0-4 and a capacity of 2 in
the time slots 6-9. During the remaining times, there is no capacity supply, indicated
again by a diagonal line pattern. R2 provides a capacity of 2 during the time slots 2-9;
in the remaining time, the resource is not available.

In the following, we provide the full formal specification of the problem.

6.1.1 Model Variables

Table 6.1 summarizes all instance parameters. We further define the following variables
for the PMSP-PCRCC:

• Job start times: startj ∈ N ∀j ∈ J0

• Job completion times: endj ∈ N ∀j ∈ J0

• Indicator variables determining if a job is spanning across a machine downtime:
acrossju ∈ {0, 1} ∀j ∈ J, u ∈ U

60

6.1. Problem Description

1 2 3 4 5 6 7 8 9 10

Machine 1

Machine 2

Timestamps 0

4Resource 1

Resource 2 2

2

Figure 6.1: An example schedule with two parallel machines and six jobs, adapted from
Horn et al. [2025]

• Previous job assignments (capture the last job previously scheduled before another
job): prevj ∈ J ∪ Jb \ {j} ∀j ∈ J

• Machine assignments: aj ∈ Ej ∀j ∈ J0

• Total tardiness: T ∈ N

• Makespan: C ∈ N

• Total setup time: S ∈ N

6.1.2 Constraints
Several constraints impose restrictions on feasible schedules:

• All previous job assignments must be different:

prev(j1) ̸= prev(j2) ∀j1, j2 ∈ J, j1 ̸= j2

• The starting dummy jobs, which represent the machine starts, are fixed to the
corresponding machines:

a(bm) = m ∀m ∈ M

• Set start- and end-times of starting dummy jobs to 0:

startj = 0 ∧ endj = 0 ∀j ∈ Jb

61

6. CP Formulation for an Extension of the UPMSP

Parameter Description
M, |M | = k Set of machines
J, |J | = n Set of jobs
bm ∀m ∈ M, Jb = {bm | m ∈ M} Starting dummy jobs
J0 = J ∪ Jb Jobs with dummies
Ej ⊆ M ∀j ∈ J0 Eligible machines
dj ∈ N ∀j ∈ J Due date of each job
rdj ∈ N ∀j ∈ J Release date of each job
jpjm ∈ N ∀j ∈ J0, m ∈ M Job processing times
sijm ∈ N ∀m ∈ M, i, j ∈ J0 Job setup times
R, |R| = s Set of resources
rcrt ∈ N ∀r ∈ R, t ∈ H Resource capacity
zjr ∈ N ∀j ∈ J, r ∈ R Job demands
vmr ∈ N ∀m ∈ M, r ∈ R Machine demands
U = ⋃︁

m∈M Um Machine downtimes
usu ∈ H ∀u ∈ U Downtime start
ueu ∈ H ∀u ∈ U Downtime end
Pj ∀j ∈ J Set of preceding jobs
ljp ∈ N ∀j ∈ J, p ∈ Pj Precedence time lag
precp ∈ J ∀j ∈ J, p ∈ Pj Predecessor job
V ∈ N Horizon upper bound
H = [0, V] Scheduling horizon

Table 6.1: Input parameters of the PMSP-PCRCC

• Jobs must be assigned to the same machine as their previous job:

a(prevj) = aj ∀j ∈ J

• Determine if a job is spanning across a machine downtime:

(startj ≤ usu ∧ endj ≥ usu) ⇔ acrossju = 1 ∀u ∈ U(aj), j ∈ J

• Calculate the job end times, including pauses (note that the job’s start time is set
to the beginning of the setup time):

endj = startj + s(aj)(prevj),j + jpj(aj) +
∑︂

u∈U(aj)

acrossju · (ueu − ues) ∀j ∈ J

• Job start times must be greater than or equal to the release date:

startj ≥ rdj ∀j ∈ J

• Job start times must be greater than the previous job’s end time:

startj ≥ end(prevj) ∀j ∈ J

62

6.2. CP Formulation

• Job starts and ends cannot lie within machine downtimes:

(startj < usu ∨ startj ≥ ueu) ∀j ∈ J, u ∈ U(aj)

(endj < usu ∨ endj ≥ ueu) ∀j ∈ J, u ∈ U(aj)

• Sufficient resource capacities must be supplied for all running jobs at any point
(except for paused jobs during machine downtimes):

Jt =
{︁
j ∈ J |t ∈ [startj , endj] ∧ ∀u ∈ U(aj)(t /∈ [usu, ueu])

}︁∑︂
j∈Jt

zjr + v(aj)r ≤ rcrt ∀t ∈ H, r ∈ R

• Job precedence constraints must be fulfilled with respect to the precedence time
lag:

startj ≥ end(precp) + ljp ∀j ∈ J, p ∈ Pj

• Calculate total tardiness:

T =
∑︂
j∈J

max{0, endj − dj}

• Calculate makespan:
C = max{endj | ∀j ∈ J}

• Calculate total setup time:

S =
∑︂
j∈J

s(aj)(prevj)j

6.1.3 Objective Function
The objective function minimizes a weighted sum of the total tardiness, the makespan,
and the total setup time (with weights w1, w2, w3 ∈ R):

minimize(w1 · T + w2 · C + w3 · S)

6.2 CP Formulation
In the following, the model constraints will be given and explained. We again make
use of the circuit and no_overlap global constraints, which were introduced in
Subsection 3.1.2. Additionally, we use the cumulative global constraint to handle the
resource calendar and machine downtimes. The concept underlying this global constraint
was first proposed by Aggoun and Beldiceanu [1993]. A modern implementation of the
global constraint for lazy clause generation based CP solvers was proposed by Schutt
et al. [2011]. This constraint takes a value as the maximal capacity, as well as a set of

63

6. CP Formulation for an Extension of the UPMSP

interval variables with corresponding demands as input. Intervals use up the quantity of
demanded resources from their start to end time. If two intervals overlap, their demanded
resources add up. The cumulative constraint enforces that at no time, the cumulative
demanded resources of all intervals exceed the given capacity.

Before we define all variables used in this constraint formulation, we introduce another
notation. The set Segr, r ∈ R contains all segments, where the capacity of resource r
stays constant. Working with such segments instead of individual timesteps makes it
easier to define interval variables in the following. Also caprs, the capacity of resource
r ∈ R in segment s ∈ Segr, as well as ssrs and sers, which are the start and end time of
segment s of resource r, are used in the constrain formulation. Table 6.2 lists all model
variables necessary for the following constraint formulation.

We start with the definition of the interval variables modeling the jobs. In this modeling
approach, we extend the job interval duration if machine downtimes are crossed and
provide additional resources during these downtimes instead of splitting the job into
multiple intervals to avoid such crossings. With the same notation as it was introduced
in Subsection 3.1.2, we define a global interval variable in Constraint (6.1), as well as
machine-specific ones in Constraint (6.2) for each job. Note that the machine-specific
interval variable is not of fixed size because it is dependent on whether or not machine
downtimes are crossed.

Ij = interval(startj , durj , endj) ∀j ∈ J (6.1)

Ijm = opt_interval(startjm, durjm, endjm, activejm) ∀j ∈ J, m ∈ Ej (6.2)

With this and Constraints (6.3) - (6.5), it is ensured that no two job intervals overlap
on the same machine. Implications are enforced using only_enforce_if available for
CP-SAT. Note that, in contrast to the separation of setup- and processing time in the
formulation in Subsection 3.1.2, the start of an interval is the start of the preceding setup
time of the corresponding job in this case.

exactly_one({activejm|m ∈ Ej}) ∀j ∈ J (6.3)

activejm ⇒ startj = startjm ∀j ∈ J, m ∈ Ej (6.4)
activejm ⇒ durj = durjm ∀j ∈ J, m ∈ Ej (6.5)

The tardiness, as well as the precedence constraints for each job, are enforced by Con-
straints (6.6) - (6.7). Note that because of the non-negative variable domain of Tj and
the minimization of the objective function, it will automatically be zero if the job finishes
before its due date.

Tj ≥ endj − dj ∀j ∈ J (6.6)
startj ≥ endp + lpj ∀j ∈ J, p ∈ Pj (6.7)

To get an ordering of the jobs on each machine, we use the circuit global constraints
given in Constraint (6.8). To exclude non-present jobs from the cycle on a given machine,

64

6.2. CP Formulation

Variable Description
startj Start of setup of job j
endj End of job j
durj Duration of job j
Tj Tardiness of job j
Sj Duration of setup time of job j

activejm Boolean indicating if job j is scheduled on machine m
startjm Start time of job j on machine m
durjm Duration of job j on machine m
endjm End time of job j on machine m

Cm Makespan of machine m
delayj Additional time that job j spends during machine

downtimes
Ij Interval variable corresponding to job j

Ijm Optional interval variable for job j on machine m
Icalrs Interval variable for resource r during segment s

Icrossesrju Optional fixed size interval variable to complement
usage of resource r of job j during downtime u

Idownru Optional fixed size interval variable for usage of re-
source r if no job crosses downtime u

Iupru Fixed-size interval variable for usage of resource r dur-
ing machine uptime immediately after downtime u

arcijm Boolean indicating if the arc from job i to job j on
machine m in present

SBDTSju Boolean indicating if job j starts before downtime u
starts

SBDTEju Boolean indicating if job j starts before downtime u
ends

EADTSju Boolean indicating if job j ends after downtime u starts
crossesju Boolean indicating if job j crosses the downtime u
crossesu Boolean indicating, if any job crosses downtime u

C Maximal machine makespan
T Cumulative tardiness of all jobs
S Cumulative setup times of all jobs

Table 6.2: Utilized variables in the CP model for the PMSP-PCRCC with their description

65

6. CP Formulation for an Extension of the UPMSP

Constraint (6.9) is added. The dummy job 0 in each circle marks the start and end point
of the schedule and also allows for modeling the initial setup time in the next steps.

circuit({arcijm|i, j ∈ J0, m ∈ Ei ∩ Ej}) ∀m ∈ M (6.8)

arcjjm = ¬activejm ∀j ∈ J, m ∈ Ej (6.9)

Starting out with helper variables in Constraints (6.10) -(6.12), Constraints (6.13) - (6.14)
can then enforce crossesju and crossesu to take on their correct values.

SBDTSju = startj < usu ∀j ∈ J, u ∈ U (6.10)

SBDTEju = startj < ueu ∀j ∈ J, u ∈ U (6.11)

EADTSju = endj > usu ∀j ∈ J, u ∈ U (6.12)

crossesju = SBDTSju ∧ EADTSju ∧ activejm ∀j ∈ J, m ∈ M, u ∈ Um (6.13)

crossesu =
⋁︂
j∈J

(crossesju) ∀u ∈ U (6.14)

Using the same variables, we enforce that no job starts during a machine downtime in
Constraint (6.15). With the other constraints, it is ensured that no job ends during a
downtime, so this constraint does not have to be included explicitly. Also note that with
this implementation, there is no differentiation if a job is interrupted by a downtime
during setup or processing because it is not relevant to the final schedule or the objective
function.

SBDTSju ∨ ¬SBDTEju ∨ ¬activejm = True ∀j ∈ J, m ∈ M, u ∈ Um (6.15)

For later usage, the additional time that a job spends in machine downtimes is given
with Constraint (6.16).

delayj =
∑︂

u∈Um

crossesju · (ueu − usu) ∀j ∈ J, m ∈ M (6.16)

To enforce the correct start, setup, and processing times, the ordering from the circuit
constraint (represented by the presence of arcs in the cycle) is used in Constraints (6.17)
- (6.20). Also, the machine makespans are enforced with Constraint (6.21).

startj ≥ rdj ∀j ∈ J (6.17)

arcijm ⇒ Sj = sijm ∀i ∈ J0, j ∈ J, m ∈ M, i ̸= j (6.18)

arcijm ⇒ startj ≥ endi ∀i, j ∈ J, m ∈ M, i ̸= j (6.19)

arcijm ⇒ endj = startj + sijm + pjm + delayj ∀i ∈ J0, j ∈ J, m ∈ M, i ̸= j (6.20)

66

6.2. CP Formulation

J1 J2 J3 J4 J5 J6 M1 M2
R1 1 1 2 1 0 1 1 0
R2 0 0 1 1 1 1 0 0

Table 6.3: Example resource demands in addition to schedule from Figure 6.1

arcj0m ⇒ Cm ≥ endj ∀j ∈ J, m ∈ M (6.21)

Finally, we come to the resources. The resource calendar and machine availability
constraints are enforced using a single global cumulative constraint per resource. We
propose a general formulation in this thesis, which can also be used for other variants,
where any kind of resource calendar, machine downtimes, or similar are present.

Recall that jobs can be interrupted when they are crossing a machine downtime and
do not use any resources during that time. Instead of splitting the job into individual
intervals, we fix this with additional dummy jobs that are running during machine up-
and downtimes.

To complement the constraint formulation, Figure 6.2 shows the scheduling and demands
of all dummy and job intervals for the example schedule in Figure 6.1, which is included
again below the interval schedules for easier reference. For this, we assume the resource
usages of jobs and machines given in Table 6.3.

In Constraint (6.22) we set an upper bound of the maximal resource demand at any time.
This acts as the capacity in the cumulative global constraints in Constraint 6.31. The
first term of maxCapr is used to handle the changes in the resource calendars, while
the second term is needed for resource demands of machines and jobs. We calculate an
upper bound for the resource demand and then block as much as necessary to recreate
the actual availabilities, depending on the schedule.

maxCapr = max
s∈Segr

(caprs) + |M | ·
(︃

max
j∈J

(zjr) + max
m∈M

(vmr)
)︃

∀r ∈ R (6.22)

For our example with values from Table 6.3 this means maxCap1 = 4 + 2 · (2 + 1) = 10
and maxCap2 = 2 + 2 · (1 + 0) = 4.

Next, we introduce the dummy jobs for the resource calendar and machine up- and
downtimes. The interval definition follows the same notation as it was introduced in
Subsection 3.1.2. In addition to each interval, we define a corresponding demand.

To enforce the resource calendar, Constraints (6.23) - (6.24) are used. While Icalrs is
an interval variable, corresponding to a part of the resource calendar, IcalDrs is the
demand of resource r for Icalrs. This notation of using the letter D for the demand
corresponding to an interval is also used in the following constraints.

The intervals are of fixed size, not optional, and span across each period where the resource
availability stays constant. This interval is defined by the start time and duration.

Icalrs = fixed_interval(ssrs, sers − ssrs) ∀r ∈ R, s ∈ Segr (6.23)

67

6. CP Formulation for an Extension of the UPMSP

1 2 3 4 5 6 7 8 9 10Timestamps 0

3 3

3

3

3

Total used 9

3

2 3 2 2

1 0

0 24

10

4

(a) Resource 1

1 2 3 4 5 6 7 8 9 10Timestamps 0

1 1

1

1

1

Total used 4

0

0 1 1 1

0 1

0 22

3 44 3 34

(b) Resource 2

1 2 3 4 5 6 7 8 9 10

Machine 1

Machine 2

Timestamps 0

4Resource 1

Resource 2 2

2

(c) Schedule from Figure 6.1 as reference

Figure 6.2: Visualization of dummy intervals scheduled to handle resource calendars and
machine downtimes

IcalDrs = max
s∈Segr

(caprs) − caprs ∀r ∈ R, s ∈ Segr (6.24)

In this approach, job intervals are still active during machine downtimes. Therefore, we
start with a higher capacity, which is blocked by combining the job interval and a dummy
interval during downtimes. The dummy intervals with their demands in Constraints
(6.25) - (6.26) during downtimes act complementary to the job, so that at all times, both
combined use max(zjr)+max(vmr) resources. If no job crosses the downtime, the dummy
jobs use as many resources as are allocated for them, as it is given in Constraints (6.27)
and (6.28).

Icrossesrju = opt_fixed_interval(usu, ueu −usu, crossesju) ∀r ∈ R, j ∈ J, u ∈ U
(6.25)

68

6.2. CP Formulation

IcrossesDrju = max
i∈J

(zir)+max
n∈M

(vnr)−zjr −vmr ∀r ∈ R, j ∈ J, m ∈ M, u ∈ Um (6.26)

Idownru = opt_fixed_interval(usu, ueu − usu, ¬crossesu) ∀r ∈ R, u ∈ U (6.27)

IdownDru = max
j∈J

(zjr) + max
m∈M

(vmr) ∀r ∈ R, u ∈ U (6.28)

Note that these intervals are not merely preprocessing steps, because the intervals and
corresponding demands are dependent on whether a job interval crosses a machine
downtime or not.

To make this clearer, we go through the calculation to reach the values for Icrosses(M2)
shown in Figure 6.2. Since J5 crosses a downtime, its resource usage has to be comple-
mented by the dummy intervals Icrossesrju to use up the additionally allocated resources.
Since J5 does not use resource 1, calculation with the example values from Table 6.3
yields IcrossesDrju = maxi∈J (zir) + maxn∈M (vnr) − zjr − vmr = 2 + 1 − 0 − 0 = 3. But
J5 utilizes resource 2. The same calculation for this resource results in IcrossesDrju =
maxi∈J(zir) + maxn∈M (vnr) − zjr − vmr = 1 + 0 − 1 − 0 = 0.

During machine uptimes, only resources are used where they are supposed to be, so we
use up the additionally assigned resources with dummy jobs. In the preprocessing, we
add dummy downtimes at timestamp 0 up until the first uptime and at the end after the
last uptime to the horizon so that each machine’s uptime is enclosed by two downtimes.
Now let U− be the set of all downtimes, excluding the final downtime that indicates the
end of the scheduling horizon. Using downtime u ∈ U−, we have its succeeding downtime
succ(u). With this notation, we define dummy jobs with corresponding demands with
Constraints (6.29) - (6.30) to use up the extra resources given for the handling of machine
downtimes that are not needed during machine uptimes.

Iupru = fixed_interval(ueu, ususucc − ueu) ∀r ∈ R, u ∈ U− (6.29)

IupDru = max
j∈J

(zjr) + max
m∈M

(vmr) ∀r ∈ R, u ∈ U− (6.30)

The cumulative constraint gets passed the interval variables defined above with their
corresponding capacity, as well as the interval variables Ijm representing jobs with their
demand zjr + vmr for resource r. In Constraint (6.31), the intervals and demands are
condensed into the expressions Intervalsr and Demandsr, respectively, for each resource
r ∈ R.

cumulative(maxCapr, Intervalsr, Demandsr) ∀r ∈ R (6.31)

Finally, we can define the separate objectives T , C, and S in Constraints (6.32) - (6.34),
followed by the whole objective function as the weighted sum of them with weights given
in the problem input in Constraint (6.35)

C = max
m∈M

(Cm) (6.32)

69

6. CP Formulation for an Extension of the UPMSP

Measurement MiniZinc CP_SAT SA
Optimum found 118 120 108

Proven Infeasibility 40 40 -
Unknown if solution exists 1 0 47

Table 6.4: Results for CP_SAT , MiniZinc and SA on gen_s

S =
∑︂
j∈J

Sj (6.33)

T =
∑︂
j∈J

Tj (6.34)

minimize(w1 · T + w2 · C + w3 · S) (6.35)

6.3 Experimental Evaluation
Finally, we performed tests to compare our CP model to the MiniZinc model on the CP-
SAT solver and the SA approach in Horn et al. [2025]. We call our model CP_SAT, as it is
directly implemented for this solver. While Minizinc also utilizes CP-SAT, it is translated
automatically and does not use interval variables. We call this simply MiniZinc. The
SA approach is referred to as SA. We performed the experiments on identical hardware
to the original work so that the results are comparable. The experiments are conducted
on a computing cluster with 13 nodes, each featuring two Intel Xeon E5-2650 v4 CPUs
(12 cores @ 2.20GHz). CP_SAT is run with OR-Tools version v9.10 on a single CPU
using the interleave mode, a parameter for CP-SAT, which allows the solver to combine
multiple search strategies effectively instead of relying on a single one. We set a runtime
limit of 1 hour and conducted a single run per instance.

We utilize the provided instances from Horn et al. [2025]. These consist of a total of 345
instances. They can be divided into three groups:

• gen_s: 140 randomly generated instances with 10 jobs, and 20 randomly generated
instances with 20 jobs.

• gen_m: 160 randomly generated instances with 100 jobs.

• real-life: 25 instances that were extracted from real-life industry data.

Tables 6.4, 6.5 and 6.6 show the comparison between our CP model, with the results
of Horn et al. [2025], which were kindly provided to us in form of the raw experiment
output, on each group of instances.

One can see that both exact methods find almost all optimal solutions for the small
instances, with only MiniZinc missing two of them. SA only reached the optimum for

70

6.3. Experimental Evaluation

CP-SAT MiniZinc

100

101

102

103

r
u
n
t
im

e
 i
n
 s

e
c
o
n
d
s

Figure 6.3: Comparison of time needed to find the optimal solution for solved instances
from gen_s

108 instances, while for five, it found feasible but not optimal solutions. For the other 47
instances, no feasible solution is found in the given runtime. Because both MiniZinc
and CP_SAT yield nearly perfect results on gen_s, we also compare the time needed
for them to find the optima. The results can be seen in Figure 6.3, showing a log-scaled
box plot of the runtimes. One can clearly see that CP_SAT finds the optimum much
faster. By calculating the ratio of the MiniZinc runtime to the CP_SAT runtime and
calculating the median of these ratios, we see that the latter is faster by a factor of four
on average. Also, there is only one instance where MiniZinc is faster than CP_SAT
among all 120 feasible instances.

We continue with the medium-sized instances. MiniZinc is not able to find a single
solution, which is why we only compare CP_SAT and SA. Table 6.5 contains the gathered
insights. Whether SA is able to find an optimal solution or not can only be determined
if CP_SAT is able to prove the optimality first. In the tables showing the results, we
denote this with a + behind the reported value for SA to emphasize that there might be
more optimal solutions. However, we see that there are 19 instances where infeasibility
is proven by CP_SAT. Because of the lack of optimal solutions, we report the number
of instances in which one algorithm outperforms the other. As one can see, SA found a
better solution on 55 instances, and CP_SAT on 51 instances. We can conclude that for

71

6. CP Formulation for an Extension of the UPMSP

Measurement CP_SAT SA
Optimum found 0 0+

Proven Infeasibility 19 -
Unknown if solution exists 89 93

Better than other 51 55

Table 6.5: Results for CP_SAT and SA on gen_m

Measurement CP_SAT SA
Optimum found 6 6+

Proven Infeasibility 0 -
Unknown if solution exists 19 0

Better than other 0 19

Table 6.6: Results for CP_SAT and SA on real-life

this instance size (around 100 jobs), the performance of both algorithms is comparable.

Finally, we come to the 25 real-life instances. These results are presented in Table 6.6.
For the smallest six instances, our solver is able to prove optimality. SA is also able to
find the same solution. For the other instances, no feasible solution or lower bound is
found by CP_SAT. Here, SA finds at least one feasible solution for all instances. The
smallest six instances of this set have a maximum of 31 jobs, with the next higher one
having 107 jobs to schedule, with up to 685 jobs for the largest instance. So, one can see
again that the dominance of SA starts at about 100 jobs.

72

CHAPTER 7
Conclusion

In this thesis, we analyze the instance space for a challenging variant of the Unrelated
Parallel Machine Scheduling Problem to detect biases in existing instance sets and
to deeply analyze the strengths and weaknesses of exact solvers and heuristics. We
also introduce a novel Constraint Programming formulation for a second variant of the
Unrelated Parallel Machine Scheduling Problem with an extended set of constraints. The
Instance Space Analysis yields valuable insights regarding the performance of algorithms
based on different instance types, while the Constraint Programming model for the
extended problem shows the strength of interval variables in CP modeling for Parallel
Machine Scheduling Problems.
First, we identify existing state-of-the-art approaches to the problem. These are various
Mixed Integer Programming models and Simulated Annealing heuristics. We complement
them with other approaches to the problem, to enable a broader analysis and comparison
of algorithmic performance. We introduce a Constraint Programming formulation, which
makes use of interval variables, as well as a Large Neighborhood Search with novel
destroy and repair operators for the problem. We also gather existing instances used in
past benchmarks for our analysis. These instances come from Moser et al. [2022] and
Perez-Gonzalez et al. [2019].
To visualize the instances in the instance space, we propose various instance features.
This includes graph-based features, which are derived from two graphs constructed from
the problem input. Additionally, probing features, based on the construction heuristic,
are introduced. This set, containing 150 features, is used to map instances into the
instance space. The online tool MATILDA, proposed by Smith-Miles and Muñoz [2023],
projects the instances into a two-dimensional space by selecting a subset of features that
is still able to separate instances well, and also takes into account the performance of the
evaluated algorithms. Visualizing this projection reveals gaps between existing instances,
as well as a lack of instances resembling real-life instances. We address these issues by
introducing a novel set of 1562 instances to complement the existing ones and allow a

73

7. Conclusion

better coverage of the instance space. This is done by adapting an existing instance
generator, which allows the generation of instances with unseen feature combinations.
The adaptation is inspired by the structure of the setup times from real-life instances and,
therefore, is also able to produce instances that resemble the sparse real-life instances
that are available to us.

Evaluating all algorithms and solvers on a sampled subset containing 2552 instances
allows for a detailed performance analysis, depending on instance features. In general,
all included methods are able to solve the vast majority of small instances included in
our experiments, with only a few exceptions. Our proposed Constraint Programming
models are able to reach better results than the Mixed Integer Programming methods on
most instances included in our experiments, which have a low average number of eligible
machines per job. For instances with many eligible machines per job in combination with
a higher number of jobs, the Mixed Integer Programming approaches show better results.
However, the Constraint Programming models yield better results if the number of jobs
is increased even further. The comparison of the Simulated Annealing variants and the
Large Neighborhood Search leads to similar outcomes. For instances with a low number
of eligible machines per job, all algorithms are able to find good solutions. With a higher
number of jobs and multiple eligible machines, the Simulated Annealing variant SAR
yields the best performance. This variant uses a cooling scheme using a constant cooling
factor and resets the temperature again to the maximum temperature if the minimum
temperature is reached. However, in the same way as before, for instances with an even
higher number of jobs, the advantage goes to the Simulated Annealing variant SAC,
which adapts the cooling factor based on the current runtime, to reach the minimum
temperature by the timeout. Unfortunately, the Large Neighborhood Search is not able
to reach uniquely best results on a cluster of instances to play a relevant role in the
algorithm selection. We train machine learning models to identify the most promising
exact method and heuristic for a given instance. While the best individual exact method
is able to find the best solution for 64% of the instances from the test set, the algorithm
selection model is able to obtain the best solution for 73%. For the heuristic approaches,
the best individual algorithm finds 74% of the best solutions, and the algorithm selection
model obtains the best solution for 86% of the test instances.

In addition to the Instance Space Analysis, we propose a novel Constraint Programming
formulation for an extension of the Unrelated Parallel Machine Scheduling Problem.
Since the interval variable models from the initial problem yield better results for most
instances than the Mixed Integer Programming models, we utilize the same approach
again. Interval variables are used to model resource calendars and machine availability
constraints in a generally applicable way by introducing dummy jobs to block resources or
machines a the right times. Our model formulation, implemented for the CP-SAT solver,
is able to prove optimality of solutions for the evaluated small instances four times faster
than the existing exact solvers on average. For medium-sized instances, our approach is
also able to compete with Simulated Annealing and provides new best solutions to some
instances.

74

The Instance Space Analysis conducted in this thesis opens up many possibilities for future
work. Novel instance generators could be investigated to populate the instance space
even more densely. Regarding the exact solvers, one could utilize a novel performance
measurement that incorporates the best bounds found. This could make the differences
between the models clearer and would allow for a better separation in the instance space.

75

Overview of Generative AI Tools
Used

All of the work presented in this thesis was done by me. For the implementation,
ChatGPT only helped with the generation of regular expressions used to read input files.
It was also used to translate single words or reformulate some sentences while writing
this thesis. However, the generated output only acted as a basis for the final formulation
and was never used directly. In addition, Grammarly was used as a spellchecker in the
finalizing steps of the writing process.

77

https://openai.com/
https://app.grammarly.com/

List of Figures

2.1 Visualization of the schedule representation in Table 2.2 8
2.2 Visualization of the methodological framework of the ISA, taken from Smith-

Miles et al. [2014] . 9

3.1 Examples of the destroy operators . 21

4.1 Extracted graphs from the example problem input 2.1 26

5.1 Instances separated by their source in the instance space for exact solvers 41
5.2 Processed feature values visualized in the instance space for exact solvers 43
5.3 Distribution of features split by source . 43
5.4 Correlation between the selected features for the instance space construction

for exact solvers . 44
5.5 Best performances of each exact approach 46
5.6 Number of good exact solvers per instance 47
5.7 Comparison of the number of correct predictions of the algorithm selection

models on the test set . 48
5.8 Confusion matrices of KNN for exact optimizers 49
5.9 Selected exact methods by KNN for train and test instances 49
5.10 Instance separated by their source in the instance space for heuristics . . 50
5.11 Feature values visualized in the instance space for heuristics 51
5.12 Distribution of selected features in the instance space for heuristics per data

source . 51
5.13 Correlation between the features selected for heuristics 52
5.14 Best performances of each heuristic approach, excluding greedy 54
5.15 Number of good heuristic algorithms per instance 55
5.16 Confusion matrices of RF for heuristic optimizers 56
5.17 Comparison of the number of correct predictions of the algorithm selection

models on the test set . 56
5.18 Selected heuristics by RF for train and test instances 57
5.19 Selected approaches by RF for train and test instances 58

6.1 An example schedule with two parallel machines and six jobs, adapted from
Horn et al. [2025] . 61

79

6.2 Visualization of dummy intervals scheduled to handle resource calendars and
machine downtimes . 68

6.3 Comparison of time needed to find the optimal solution for solved instances
from gen_s . 71

80

List of Tables

2.1 Input representation of an example instance with two machines and four jobs 7
2.2 Solution representation for a schedule corresponding to the example instance 7

3.1 Variables used in CP formulation for the UPMSP 14

4.1 Aggregation function used for multi-valued features 24
4.2 Single-valued general features . 24
4.3 Multi-valued general features . 25
4.4 Single-valued graph features . 27
4.5 Multi-valued graph features . 27
4.6 Probing features . 28
4.7 Existing instance sets . 29
4.8 Parameters different from default, utilizing the instance generator from Moser

et al. [2022] to generate both new instance sets 30
4.9 Tuning parameters of LNS and the utilized settings 33
4.10 Tuning parameters for KNN . 35
4.11 Tuning parameters for RF . 35
4.12 Tuning parameters for SVM . 35

5.1 Performance results of the reimplemented MIP models and novel CP formula-
tions . 39

5.2 Results of the reimplemented SA approaches compared to the reported results
in Moser et al. [2022], with the same number of iterations 40

5.3 Features with their corresponding projection coefficients obtained by MATILDA,
for the instance space for exact solvers . 42

5.4 Tuned Parameters for the algorithm selection models for exact solvers . . 47
5.5 F1-scores of the algorithm selection models for the exact solvers 47
5.6 Features with corresponding projection coefficients obtained by MATILDA,

for the instance space for heuristic approaches 50
5.7 Tuned Parameters for the algorithm selection models for heuristic approaches 54
5.8 F1-scores for the algorithm selection models for the heuristic approaches . 55

6.1 Input parameters of the PMSP-PCRCC 62
6.2 Utilized variables in the CP model for the PMSP-PCRCC with their descrip-

tion . 65

81

6.3 Example resource demands in addition to schedule from Figure 6.1 67
6.4 Results for CP_SAT , MiniZinc and SA on gen_s 70
6.5 Results for CP_SAT and SA on gen_m . 72
6.6 Results for CP_SAT and SA on real-life 72

82

List of Algorithms

3.1 Large Neighborhood Search (LNS) . 22

83

Bibliography

Aggoun, A. and Beldiceanu, N. (1993). Extending chip in order to solve complex scheduling
and placement problems. Mathematical and Computer Modelling, 17(7):57–73.

Ahuja, R. K., Ergun, O., Orlin, J. B., and Punnen, A. P. (2002). A survey of very large-
scale neighborhood search techniques. Discrete Applied Mathematics, 123(1):75–102.

Avalos-Rosales, O., Angel-Bello, F., and Alvarez, A. (2015). Efficient metaheuristic
algorithm and re-formulations for the unrelated parallel machine scheduling problem
with sequence and machine-dependent setup times. The International Journal of
Advanced Manufacturing Technology, 76(9):1705–1718.

Carlier, J. (1982). The one-machine sequencing problem. European Journal of Operational
Research, 11(1):42–47.

Dang, Q.-V., Herps, K., Martagan, T., Adan, I., and Heinrich, J. (2023). Unsupervised
parallel machines scheduling with tool switches. Computers & Operations Research,
160:106361.

Dang, Q.-V., van Diessen, T., Martagan, T., and Adan, I. (2021). A matheuristic for
parallel machine scheduling with tool replacements. European Journal of Operational
Research, 291(2):640–660.

De Coster, A., Musliu, N., Schaerf, A., Schoisswohl, J., and Smith-Miles, K. (2022).
Algorithm selection and instance space analysis for curriculum-based course timetabling.
Journal of Scheduling, 25(1):35–58.

Du, J. and Leung, J. Y.-T. (1990). Minimizing Total Tardiness on One Machine is
NP-Hard. Mathematics of Operations Research, 15(3):483–495. Publisher: INFORMS.

Francis, K. G. and Stuckey, P. J. (2014). Explaining circuit propagation. Constraints,
19(1):1–29.

Gedik, R., Kalathia, D., Egilmez, G., and Kirac, E. (2018). A constraint programming
approach for solving unrelated parallel machine scheduling problem. Computers &
Industrial Engineering, 121:139–149.

85

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. H. G. R. (1979). Optimization
and Approximation in Deterministic Sequencing and Scheduling: a Survey. In Hammer,
P. L., Johnson, E. L., and Korte, B. H., editors, Annals of Discrete Mathematics,
volume 5 of Discrete Optimization II, pages 287–326. Elsevier.

Gurobi Optimization, LLC (2024). Gurobi Optimizer Reference Manual. Accessed:
2025-04-12.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network structure,
dynamics, and function using networkx. In Varoquaux, G., Vaught, T., and Millman, J.,
editors, Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena,
CA USA.

Helal, M., Rabadi, G., and Al-Salem, A. (2006). A tabu search algorithm to minimize
the makespan for the unrelated parallel machines scheduling problem with setup times.
International Journal of Operations Research, 3:182–192.

Horn, M., Lackner, M.-L., Malik, P., Mrkvicka, C., Musliu, N., Preininger, J., and Winter,
F. (2025). Solving parallel machine scheduling with precedences and cumulative resource
constraints with calendars. Under Submission.

Katial, V., Smith-Miles, K., and Hill, C. (2024). On the Instance Dependence of Optimal
Parameters for the Quantum Approximate Optimisation Algorithm: Insights via
Instance Space Analysis. arXiv:2401.08142.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated
Annealing. Science, 220(4598):671–680.

Kletzander, L., Musliu, N., and Smith-Miles, K. (2021). Instance space analysis for
a personnel scheduling problem. Annals of Mathematics and Artificial Intelligence,
89(7):617–637.

Kotthoff, L. (2016). Algorithm Selection for Combinatorial Search Problems: A Survey.
In Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan, B., and Pedreschi,
D., editors, Data Mining and Constraint Programming: Foundations of a Cross-
Disciplinary Approach, pages 149–190. Springer International Publishing, Cham.

Lauriere, J.-L. (1978). A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10(1):29–127.

Lenstra, J. K., Rinnooy Kan, A. H. G., and Brucker, P. (1977). Complexity of Ma-
chine Scheduling Problems. In Hammer, P. L., Johnson, E. L., Korte, B. H., and
Nemhauser, G. L., editors, Annals of Discrete Mathematics, volume 1 of Studies in
Integer Programming, pages 343–362.

Marko, D. and Jakobovic, D. (2023). Heuristic and metaheuristic methods for the parallel
unrelated machines scheduling problem: a survey. Artificial Intelligence Review,
56(4):3181–3289.

86

Messelis, T. and De Causmaecker, P. (2014). An automatic algorithm selection approach
for the multi-mode resource-constrained project scheduling problem. European Journal
of Operational Research, 233(3):511–528.

Moser, M., Musliu, N., Schaerf, A., and Winter, F. (2022). Exact and metaheuristic
approaches for unrelated parallel machine scheduling. Journal of Scheduling, 25(5):507–
534.

Muñoz, M. A., Villanova, L., Baatar, D., and Smith-Miles, K. (2018). Instance spaces
for machine learning classification. Machine Learning, 107(1):109–147.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., and Tack, G. (2007).
MiniZinc: Towards a Standard CP Modelling Language. In Bessière, C., editor,
Principles and Practice of Constraint Programming – CP 2007, Lecture Notes in
Computer Science, pages 529–543, Berlin, Heidelberg. Springer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830.

Perez-Gonzalez, P., Fernandez-Viagas, V., Zamora García, M., and Framinan, J. M.
(2019). Constructive heuristics for the unrelated parallel machines scheduling problem
with machine eligibility and setup times. Computers & Industrial Engineering, 131:131–
145.

Perron, L. and Didier, F. (2024). CP-SAT. Accessed: 2025-04-12.

Rice, J. R. (1976). The Algorithm Selection Problem*. In Rubinoff, M. and Yovits, M. C.,
editors, Advances in Computers, volume 15, pages 65–118.

Rolim, G. A., Nagano, M. S., and Prata, B. d. A. (2023). Formulations and an adaptive
large neighborhood search for just-in-time scheduling of unrelated parallel machines
with a common due window. Computers & Operations Research, 153:106159.

Santoro, M. C. and Junqueira, L. (2023). Unrelated parallel machine scheduling mod-
els with machine availability and eligibility constraints. Computers & Industrial
Engineering, 179:109219.

Saraç, T., Ozcelik, F., and Ertem, M. (2023). Unrelated parallel machine schedul-
ing problem with stochastic sequence dependent setup times. Operational Research,
23(3):46.

Schutt, A., Feydy, T., Stuckey, P. J., and Wallace, M. G. (2011). Explaining the
cumulative propagator. Constraints, 16(3):250–282.

87

Smith-Miles, K., Baatar, D., Wreford, B., and Lewis, R. (2014). Towards objective
measures of algorithm performance across instance space. Computers & Operations
Research, 45:12–24.

Smith-Miles, K. and Bowly, S. (2015). Generating new test instances by evolving in
instance space. Computers & Operations Research, 63:102–113.

Smith-Miles, K. and Muñoz, M. A. (2023). Instance Space Analysis for Algorithm Testing:
Methodology and Software Tools. ACM Comput. Surv., 55(12):255:1–255:31.

Smith-Miles, K., Wreford, B., Lopes, L., and Insani, N. (2013). Predicting Metaheuristic
Performance on Graph Coloring Problems Using Data Mining. In Talbi, E.-G., editor,
Hybrid Metaheuristics, pages 417–432. Springer Berlin Heidelberg, Berlin, Heidelberg.

Strassl, S. and Musliu, N. (2022). Instance space analysis and algorithm selection for the
job shop scheduling problem. Computers & Operations Research, 141:105661.

Vallada, E. and Ruiz, R. (2011). A genetic algorithm for the unrelated parallel ma-
chine scheduling problem with sequence dependent setup times. European Journal of
Operational Research, 211(3):612–622.

Wu, X., Zhong, Y., Wu, J., Jiang, B., and Tan, K. C. (2024). Large language model-
enhanced algorithm selection: towards comprehensive algorithm representation. In
Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence,
IJCAI ’24.

Yunusoglu, P. and Topaloglu Yildiz, S. (2022). Constraint programming approach
for multi-resource-constrained unrelated parallel machine scheduling problem with
sequence-dependent setup times. International Journal of Production Research,
60(7):2212–2229.

88

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aims of the Thesis
	Main Contributions
	Structure

	Background and Related Work
	The UPMSP
	Instance Space Analysis
	State of the Art and Related Work

	Exact Solvers and Heuristics for the UPMSP
	Exact Solvers
	Heuristics

	Instance Space Analysis and Algorithm Selection for the UPMSP
	Features
	Utilized Instances
	Performance Measurements
	Algorithm Tuning
	Algorithm Evaluation
	Feature Selection and Projection
	Algorithm Selection

	Experimental Evaluation
	Algorithm Performance
	Instance Space Analysis for Exact Methods
	Instance Space Analysis for Heuristics
	Comparison Between Exact and Heuristic Instance Space

	CP Formulation for an Extension of the UPMSP
	Problem Description
	CP Formulation
	Experimental Evaluation

	Conclusion
	Overview of Generative AI Tools Used
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

