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Abstract

As the complexity of modern enterprises and software simultaneously increases, it becomes
increasingly challenging for enterprises to maintain business-IT alignment, especially when
tumultuous business environments necessitate frequent changes to information systems
requirements. Two promising techniques which can improve business-IT alignment are
the DEMO method and low-code software development. The DEMO method is used to
model the stable essence of the organization of enterprises, while low-code development
facilitates agile software development.

In a recent study by Krouwel et al., a model-driven engineering approach was designed
to generate low-code software artifacts for the Mendix platform directly from DEMO
enterprise models. Although this approach showed promise, the authors noted that
the process could potentially be improved by applying the Model Driven Architecture
(MDA) approach, whereby the problem and solution spaces of the software are modelled
together using models across three levels of abstraction: a computation-independent
model (CIM), a platform-independent model (PIM), and a platform-specific model (PSM).
This motivated the research problem of this thesis: how do we transform DEMO models
to Mendix low-code artifacts using the MDA approach?

This thesis contributes to solving this research problem by applying the agile design
science research methodology, through which multiple experimental design cycles were
conducted to create transformation mappings from DEMO to Mendix via a PIM, modelled
using different UML profiles as candidate modelling languages. Each transformation
was demonstrated using an academic case study, and the semantic correctness of the
transformations was evaluated. Using fact statements captured by the CIM as the
ground truth of the domain, the resulting MDA transformation exhibited a high degree
of semantic correctness, thereby demonstrating that the MDA approach can be used to
effectively transform DEMO fact models to Mendix low-code application artifacts.

Over the course of this study, three major deliverables were produced: working definitions
of the MDA abstraction levels, an MDA transformation meta-design, and an MDA
transformation specification using a novel UML profile, pimUML. The deliverables and
findings of this study benefit academia by providing insight and guidance for future
studies applying the MDA approach and benefit industry by contributing to developing a
technique to improve business-IT alignment, as well as to combating challenges hindering
the adoption of low-code solutions, such as vendor lock-in.

ix





Kurzfassung

Mit der zunehmenden Komplexität von Unternehmen in der modernen Gesellschaft
und der zunehmenden Nutzung Software wird es für diese immer herausfordernder,
das Business-IT-Alignment aufrechtzuerhalten, vor allem, wenn häufig sich verändernde
Geschäftsumgebungen Änderungen der Anforderungen an Informationssysteme erfordern.
Zwei vielversprechende Methode, die das Business-IT-Alignment verbessern können, sind
die DEMO-Methode und die Low-Code-Softwareentwicklung. Die DEMO-Methode wird
verwendet, um das stabile Wesen der Unternehmensorganisation zu modellieren, während
die Low-Code-Entwicklung eine agile Softwareentwicklung begünstigt.

In einer jüngst durchgeführten Studie von Krouwel et al. wurde ein modellgetriebener
Ansatz entwickelt, um Low-Code-Softwareartefakte für die Mendix-Plattform direkt aus
DEMO-Unternehmensmodellen zu erzeugen. Obwohl dieser Ansatz vielversprechend ist,
stellten die Autoren fest, dass der Prozess durch die Anwendung des MDA-Ansatzes
(Model Driven Architecture) verbessert werden könnte. Bei diesem Ansatz werden die
Problem- und Lösungsräume der Software mit Hilfe von Modellen auf drei Abstraktions-
ebenen gemeinsam modelliert: ein computation-independent-model (CIM), ein platform-
independent-model (PIM) und ein platform-specific-model (PSM). Dies war die Motiva-
tion für die Forschungsfrage dieser Arbeit: Wie können DEMO-Modelle mit Hilfe des
MDA-Ansatzes in Mendix-Low-Code-Artefakte transformiert werden?

Konkret wurden für diese These, mithilfe des Agile Design Science Ansatzes, mehrere
experimentelle Designzyklen durchgeführt, um Transformationsmappings von DEMO-
Modellen zu Mendix Low-Code Artefakten über ein platform-independent-model (PIM) zu
erstellen, welches mit verschiedenen UML-Profilen als Modellierungssprachen modelliert
wurden. Jede Transformation wurde anhand einer akademischen Fallstudie nachvollziehbar
dargestellt, und die semantische Korrektheit der einzelnen Transformationenwurde be-
wertet. Unter Verwendung des computation-independent-model (CIM) als Ground-Truth
der Domain wies die endgültige MDA-Transformation einen hohen Grad an semantischer
Korrektheit auf und zeigte damit, dass der MDA-Ansatz zur effektiven Transformati-
on von DEMO-Faktenmodellen in Mendix-Low-Code-Anwendungsartefakte verwendet
werden kann.

Im Laufe dieser Studie wurden drei wichtige Ergebnisse erzielt: Arbeitsdefinitionen
der MDA-Abstraktionsebenen, ein MDA-Transformations-Metadesign und eine MDA-
Transformationsspezifikation unter Verwendung eines neuen UML-Profils, mit dem Namen
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pimUML. Die Ergebnisse und Erkenntnisse dieser Studie geben für die Wissenschaft von
Nutzen sein, indem sie Einblicke und Anleitungen für künftige Studien zur Anwendung
des MDA-Ansatzes, und sind dadurch für die Industrie von Nutzen, indem sie einen
Beitrag zur Entwicklung einer Technik zur Verbesserung des Business-IT-Alignments
sowie den Einsatz von Low-Code-Lösungen, durch offene Technologien und Standards,
begünstigen.



Contents

Abstract ix

Kurzfassung xi

Contents xiii

1 Introduction 1
1.1 Motivation & Problem Statement . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical Background 11
2.1 Model-Driven Engineering & Model Driven Architecture® . . . . . . . 11
2.2 Enterprise Ontology & DEMO . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Low-Code Development . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 State of the Art 23
3.1 Model-Driven Engineering & Low-Code Development . . . . . . . . . . 23
3.2 DEMO & Model-Driven Engineering . . . . . . . . . . . . . . . . . . . 27
3.3 DEMO & Low-Code Development . . . . . . . . . . . . . . . . . . . . 29
3.4 DEMO, Low-Code, & Model-Driven Engineering . . . . . . . . . . . . 30
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Characteristics of MDA Abstraction Levels 33
4.1 Semi-Structured Literature Review . . . . . . . . . . . . . . . . . . . . 33
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 MDA Transformation Meta-Design 39
5.1 Formulation of a Conceptual Framework . . . . . . . . . . . . . . . . . 40
5.2 Conceptual Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xiii



5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Experimental Design Preliminaries 49
6.1 DEMO Fact Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 UML Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Mendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.4 Rent-A-Car Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Structure of the Agile Design Sprints . . . . . . . . . . . . . . . . . . . 57

7 AS1: DEMO FM to Standard UML 59
7.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 AS2: DEMO FM to xUML 71
8.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9 AS3: DEMO FM to fUML 83
9.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10 HS: DEMO FM to pimUML 95
10.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.2 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11 AS4: pimUML to Mendix 109
11.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.2 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

12 Conclusion 123
12.1 Answers to Research Questions . . . . . . . . . . . . . . . . . . . . . . 123
12.2 Summary of Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 128
12.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
12.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



A Semi-Structured Literature Review: Review Protocol 133
A.1 Review Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.2 Query Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B Metamodel: DEMO Fact Model 141

C Metamodel: pimUML 143

D Metamodel: Mendix 147

E Transformation Mappings: DEMO FM to pimUML 151
E.1 Value Mapping Functions . . . . . . . . . . . . . . . . . . . . . . . . . 151
E.2 Helper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
E.3 Graphical Matched Pattern Transformation Rules . . . . . . . . . . . . 152

F Transformation Mappings: pimUML to Mendix 165
F.1 Value Mapping Functions . . . . . . . . . . . . . . . . . . . . . . . . . 165
F.2 Helper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
F.3 Graphical Matched Pattern Transformation Rules . . . . . . . . . . . . 166

G RAC Case Study Fact Statements 191

Overview of Generative AI Tools Used 197

Übersicht verwendeter Hilfsmittel 199

List of Figures 201

List of Tables 203

Glossary 205

Bibliography 207





CHAPTER 1
Introduction

Over the past several decades, the power and usage of information technology in enterprises
has grown tremendously. Business computing began in the 1960s as mainframe computer
programs, supporting simple automations and inventory control, and has evolved into
present-day enterprise information systems (EIS) and management information systems
(MIS), supporting day-to-day operations across corporate functional units, such as finance,
human resources, engineering, and project management [1, 2]. This advancement has
resulted in the role of IT becoming increasingly intertwined with corporate strategy and
operations, all while new technology emerges faster and increases in complexity [2, 3]. At
the same time, business environments have become ever more tumultuous, with modern
enterprises constantly being faced with increasing opportunities and threats relating to
competition, customer expectations, regulations, and indeed, digital disruption [4, 5]. As
enterprises must be able to simultaneously adapt to these forces of changing business
environments and evolving technology, business-IT alignment has become a critical key
success factor for the enterprise of the information age [6, 5].

1.1 Motivation & Problem Statement
Maintaining business-IT alignment can be a challenging task, largely due to the com-
plexity of modern enterprise information systems. Enterprises themselves are complex
entities with several different components or concerns comprising their business oper-
ations. As such, information systems can be comprised of various types of enterprise
applications to support the different needs of the operations, supporting tasks as processes
automation, workflow management, information management, e-commerce, and business
intelligence [7]. In order to discern exactly how an application can and should be used,
enterprise management must understand their IT needs. Moreover, the application itself
should be flexible and adaptable, so that it can adapt quickly as those identified needs
evolve or change in highly dynamic business environments.
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1. Introduction

The complexity of maintaining business-IT alignment has motivated IS researchers to
improve the process of software development by pursuing methods to generate software
artifacts from business-oriented models [8]. Technologies, practices and approaches have
emerged to guide business experts and software engineers to identify business needs,
communicate these needs, and rapidly build IT solutions. These include enterprise
engineering, model-driven software engineering, and low-code software development.

A popular approach to model-driven software engineering is Model Driven Architecture ®1

(MDA). Following MDA, high-level enterprise models can be transformed to concrete
code via a series of model-to-model transformations between models at three levels of
abstraction. These models span the both the problem and solution spaces, supporting
flexible and agile software development [9, 10]. This process is illustrated in Figure 1.1.

MDA starts with high-level models known as computation-independent models (CIM).
These models depict the business processes and structures which the eventual running
software artifacts are to support. CIMs can be transformed, via mappings, to more
concrete platform-independent models (PIM). PIMs model the software to be built,
excluding platform specific constructs. These PIMs can again be further transformed to
platform-specific models (PSM). PSMs contain enough concrete details such that code
can be generated from such models [9].

Figure 1.1: The Model Driven Architecture process, described in [11]

A particular challenge in creating mappings between modelling languages is addressing
semantic mismatches [12, 13, 14]. These arise when there are language constructs that
exist in the language of the target model but not in that of the source model and vice
versa [13]. To accomplish semantically rich transformations, models and transformation
must capture semantics from models at higher levels of abstraction and make design
decisions based on these semantics to bridge any semantic mismatches. This can be
achieved through the use of transformation specifications, consisting of mapping rules
and helper functions to translate semantics between similar constructs and to perform
any needed auxiliary computations [10]. These constructs applied to the MDA framework
are illustrated in Figure 1.2.

Krouwel et al. [5] recently explored the possibility of mapping DEMO models directly
to low-code models, using Mendix as the low-code platform of choice. In terms of the
MDA approach, this constitutes a direct CIM to PSM transformation. However, they
note in the paper that introducing a further level of abstraction – a PIM – could increase
the flexibility of such transformations in that one PIM can possibly yield many PSMs of

1Model Driven Architecture® is a registered trademark of The Object Management Group (OMG).
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1.1. Motivation & Problem Statement

Figure 1.2: The MDA process described in [11], annotated with mapping rules and helper
functions as inputs to the model transformations

different languages; thus the target low-code or high-code platform would not be fixed.
Moreover, models at the PIM level could be generated from models of various languages
at the CIM level, allowing multiple types of enterprise models to be included and thus
amalgamating various types of information in the process [15, 16]. In such an approach,
the PIM acts as an interface, possibly mapping constructs between various source models
in the CIM to various target models in the PSM, analogous to a network router in the
field of computer networking. In order to facilitate this flexible transformation of DEMO
to low-code or high-code technologies, where Mendix is an example of a target low-code
platform, an intermediary PIM layer is required. However, there is a gap in the knowledge
of how to map enterprise models to low-code via MDA. This is the research gap that this
thesis addresses.

In sum, with the goal of improving business-IT alignment, the research problem of this
thesis is the following: How do we transform DEMO models to Mendix low-code artifacts
using the MDA approach?

3



1. Introduction

1.2 Research Questions
To address the aforementioned research problem, we posed the following research ques-
tions:

RQ1 What are the distinct characteristics of the three Model Driven Architecture (MDA)
abstraction levels (CIM, PIM, and PSM) and what are their intended uses in the
context of Model-Driven Engineering (MDE)?
Answering this research question clarifies the notions and requirements of the
models of the three MDA abstraction levels.

RQ2 What concepts or constructs of CIMs, PIMs, PSMs can be identified to guide the
usage of MDA for the generation of enterprise applications?
Answering this research question informs the decisions on the scope of the designed
artifacts of this thesis and ascertains the suitability of DEMO as a CIM and Mendix
as a PSM.

RQ3 What architectural principles can be inferred from the design sprints to the guide
the design of a PIM?
Answering this research question allows the key findings that emerged from the
foundational meta-design and the experimental design cycles to be generalized so
that they can contribute back to the knowledge base.

1.3 Deliverables
The methods to answer the research questions will yield the following deliverables:

RQ1 Deliverable: A table of empirical characteristics and working definitions of each
of the MDA abstraction levels (CIM, PIM, and PSM), as found in literature.

RQ2 Deliverable: A meta-design in the form of a conceptual framework.

RQ3 Deliverable: A novel MDA transformation specification from DEMO to Mendix
via a PIM and a set of generalized PIM architectural design principles.

1.4 Methodological Approach
One of the most popular research paradigms in Information Systems (IS) research is
design science research (DSR). Originally suggested by Hevner, this framework guides
researchers to create and evaluate an artifact to contribute to solving a given research
problem [17]. A key weakness of DSR is that despite DSR consisting of three key cycles,
their prescribed ordering of first the relevance cycle, then the rigour cycle, and then
the design cycle [18] tends to result in an overall waterfall-like workflow, such that the
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1.4. Methodological Approach

problem space is fixed in the beginning and not revisited during the design phase. For
studies in which the research problem may need to evolve as the study progresses, this
can be limiting. For such studies in which the problem space requires the ability to evolve,
Conboy et al. introduced the Agile Design Science Research Methodology (ADSRM) [19].

At the core of ADSRM is the design science research methodology (DSR) introduced by
Hevner [17]. Peffers et al. further explored and elaborated the use of DSR in the research
of information systems (IS) by proposing a procedure that is “structured in a nominally
sequential order” which can be followed by IS researchers using DSR in their studies [20].
This procedure is illustrated in Figure 1.3.

Figure 1.3: The IS design science research procedure, adopted from [20]

As previously mentioned, this view of DSR had a critical downside when used in finding
new solutions to new problems: its procedural flow results in projects progressing in a
waterfall-like flow, inhibiting experimental design [19, 20].

ADSRM resolves this issue by modifying the traditional workflow of DSR to allow for
multiple agile design sprints, borrowing key notions from the practice of agile software
development. This allows for a co-evolving problem and solution space, yielding multiple
incremental artifacts which can be compared against each other or unified to form
aggregate solutions [19]. The ADSRM process is illustrated in Figure 1.4. This figure
is an extension of Figure 1.3, wherein the added agile components are drawn in red.
These components and the traditional DSR components are elaborated in the following
subsections.

1.4.1 Problem Backlog

At the beginning of each iteration, problems are extracted from the study’s “problem
space” and are added to the list of problems which are to be addressed at some point
during the study [19].

5



1. Introduction

Figure 1.4: The agile design science research procedure, adopted from [19]

The approach to solving each research question evolved over the course of this thesis.
Each deliverable stands as a major step towards answering the research questions, solving
some sub-questions while raising new ones. Findings collected gave insights that were
reflected back into the problem space, possibly shedding light on new sub-questions
to be added to the problem backlog. As the project progressed, this cycle of solving
sub-questions and finding new ones stabilized. Once there were no further sub-problems
in the problem backlog to be solved for a given research question, the research question
was considered to be answered.

1.4.2 Problem Identification and Motivation

The first step is to identify the research problem and to establish the motivation of the
research, as to understand the relevance of the problem and to set the initial course of
the design activities. This is important, as the starting stage of the research process
depends on the motivation of the project.

Given that research problem for this thesis arose from suggestion for future research from
Krouwel et al. on how to use the MDA approach to transform DEMO models to low-code
applications [21], this constitutes problem-centred initiation [19]. Therefore, the first step
in this thesis project was to identify the problem and motivation (see Figure 1.4).

1.4.3 Solution Objectives Definition

To set the foundation of a potential solution to each iteration’s principal problem, the
characteristics of a solution to the problem should be defined [19].

6



1.4. Methodological Approach

In this thesis project, the concrete objectives of the agile design sprints were primarily
identified through three stages:

1. A review of theoretical background knowledge (see Chapter 2)

2. A review of the state of the art (see Chapter 3)

3. An investigation into the empirical characteristics of the three MDA abstraction
levels found in literature (see Chapter 4)

4. The deductive formulation of a conceptual framework (see Chapter 5)

1.4.4 Design and Development
At the design and development step, the artifact of the design sprint is produced. Such
artifacts may be any object, such as constructs, models or instantiations, that is designed
on the basis of foundational theory and that contributes to solving the research question.

The artifacts produced by each of the design sprints of this thesis are model-to-model
transformation mappings. The meta-design derived in Chapter 5, as a compilation
of knowledge on enterprise ontology, software architecture, and the MDA framework,
guided the design and development of these mappings. The design procedure of each
sprint follows the same design model-to-model transformation procedure, based on the
procedures proposed in [22, 23].

1.4.5 Demonstration
At the demonstration step, the utility of an artifact developed during the previous
steps is demonstrated against the current iteration’s principal problem. This could be
accomplished through the use of experimentation in the context of an evaluation method
or a case study. The created artifact from this step will allow for insights to be drawn
which can be translated back to the problem backlog to be addressed and used to develop
another artifact in a future cycle. In the spirit of agile, ADSRM allows for partial
solutions to be demonstrated and evaluated, not just those that are complete [19].

In this thesis, the mappings created during the experimental design sprints – the com-
plete MDA transformation specification and the partial CIM-to-PIM mappings – are
demonstrated using an academic case study (see Chapter 6 for the case study description;
see Chapters 7, 8, 9, 10, and 11 for the details and results of each sprint).

1.4.6 Evaluation
At the evaluation step, the artifact of each design cycle is assessed and measured to
determine how well the artifact fulfilled the objectives of a solution to the research
problem through its demonstration.
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The demonstrated transformation mappings of this thesis were evaluated both quantita-
tively and qualitatively. To measure the results quantitatively, the semantic completeness
and correctness of the transformation is measured [24, 25]. To evaluate the results
qualitatively, the strengths and weaknesses of the first three experimental CIM-to-PIM
designs are assessed. These are taken as input into the hardening sprint to produce the
final CIM-to-PIM design.

1.4.7 Communication
At the communication step, the motivation, background, and details of the research study
are communicated to stakeholders. Forms of communication can vary over the course of
the study and can include presentations, articles, or posters. Feedback gathered from
this step may result in new problems added to the problem backlog or modifications
made to artifacts.

The thesis proposal, this written report, a final review presentation, and the defence
presentation serve as the methods of communicating this thesis project’s progression and
results.

1.4.8 Hardening Sprint
As agile projects can become quite tumultuous over the course of several iterations, this
may come at the cost of lowered rigour. To ensure that the rigour is protected, every few
iterations should be structured as a hardening sprint. This is possible by employing one
of the three following options: freeze the problem, freeze the procedure, or add additional
elements of rigour to the procedure [19].

A hardening sprint was undertaken following the first three experimental design sprints
of this thesis. After three partial mappings were explored in Chapters 7, 8, and 9,
Chapter 10 details a hardening sprint whereby the strongest components of the first three
partial mappings were combined to derive a novel UML profile and the CIM-to-PIM
mappings of the final MDA transformation artifact of this thesis.

1.5 Structure of the Work
The contents of the remaining chapters of this thesis are briefly summarized below:

Chapter 2 – Theoretical Background
This chapter introduces the fields of model-driven engineering and Model Driven
Architecture®, enterprise ontology and DEMO, and low-code software development,
discussing relevant advantages and drawbacks of each.
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Chapter 3 – State of the Art

A review of the current state of the art is provided to explore the complementary
relationships between the three key fields of this thesis: DEMO, model-driven
engineering, and low-code development. The chapter concludes by discussing the
implications that the explored works have for this thesis.

Chapter 4 – Characteristics of the MDA Abstraction Levels

To answer research question one, this chapter presents a semi-structured literature
review, through which existing research relating to the MDA approach was searched
to uncover empirical characteristics of CIM, PIM, and PSM models. These charac-
teristics are presented in table-form and working definitions of the three abstraction
layers are provided.

Chapter 5 – MDA Transformation Meta-Design

To answer research question two, key findings, theories, and notions from Chapters
2, 3, and 4 are synthesized and presented as a conceptual framework that was
used to position enterprise ontology within the context of software architecture by
analyzing common semantics. The conceptual framework as a meta-design served
to scope and guide the project’s experimental design cycles.

Chapter 6 – Experimental Design Preliminaries

To set the stage for the experimental design sprints, the intended artifact is scoped in
terms of the conceptual framework presented in Chapter 5, and static aspects of the
experiments are introduced. These include the DEMO fact model (FM) modelling
concepts, the candidate UML profiles, the Mendix low-code development platform
and its metamodel, and the academic case study, “Rent-A-Car”, through which
the designs were demonstrated and evaluated. The findings of the subsequent agile
design sprint (AS) chapters together provide insights that contribute to answering
research question three.

Chapter 7 – AS1: DEMO FM to UML

A transformation mapping from the DEMO fact model to Standard UML is
presented, demonstrated, and evaluated.

Chapter 8 – AS2: DEMO FM to xUML

A transformation mapping from the DEMO fact model to xUML is presented,
demonstrated, and evaluated.

Chapter 9 – AS3: DEMO FM to fUML

A transformation mapping from the DEMO fact model to fUML is presented,
demonstrated, and evaluated.

9
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Chapter 10 – HS: DEMO FM to pimUML
A hardening sprint undertaken to synthesize the findings of the previous three
agile sprints to formulate a novel UML profile to be used as a PIM modelling
language: pimUML. A mapping from the DEMO fact model to pimUML is presented,
demonstrated, and evaluated.

Chapter 11 – AS4: pimUML to Mendix
A transformation mapping from pimUML to Mendix via pimUML, is presented,
demonstrated, and evaluated. The demonstration constitutes the full two-stage
MDA transformation, from the DEMO fact model to pimUML and from pimUML
to Mendix.

Chapter 12 – Conclusion
To conclude this thesis, the research questions are answered, the deliverables are
summarized, contributions of the research to industry and academia are explained,
limitations of the study are discussed, and future work is proposed.
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CHAPTER 2
Theoretical Background

This chapter elaborates the three fundamental concepts that comprise the theoretical
background of this thesis. First, the discipline of model-driven engineering and the Model
Driven Architecture (MDA) approach are discussed. Next, enterprise ontology and the
related DEMO method are introduced, explaining their core concepts and foundational
theories. Finally, the concept of low-code development is introduced, and common
features and challenges of low-code development platforms are explained. The chapter
concludes with a discussion on how leveraging DEMO, MDA, and low-code together
has the potential to realize synergy which can aid enterprises in improving business-IT
alignment, which is the motivating goal of this thesis.

2.1 Model-Driven Engineering & Model Driven
Architecture®

As software becomes increasingly complex, models play a significant role in ensuring the
efficiency and effectiveness of development efforts. Model-driven software engineering –
shortened to MDSD or MDE – is a software engineering methodology that leverages the
expressive power of models to effectively and efficiently develop enterprise software. Mod-
els in MDE may be used for various engineering activities throughout the development
process, from serving as a means of communication between stakeholders, to simulating
proposed software designs, and even to generating code. MDE therefore addresses the
process of software development from two orthogonal dimensions: conceptualization and
implementation [10]. The conceptualization of software consists of using conceptual mod-
els to represent the problem and solution spaces of the development. The implementation
of software is supported by realizing the modelled software solution as executable artifacts.
As models are central to both the conceptualization and implementation dimensions,
MDE regards models as “first-class citizens” in the software engineering process.
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Models in MDE are specified using modelling languages and are expressed using a
graphical or textual notation. These modelling languages should be formally defined by
models themselves of higher levels of abstraction, known as metamodels. Metamodels
define a modelling languages concepts and valid links between concepts.

Different models depict different aspects of a system at different levels abstraction,
depending on the model’s notation. As some modelling notations are more expressive
than others and may be more suitable than others for modelling certain aspects, MDE
encourages the use of different views and notations across and within each abstraction
level [10, 26]. This principle is known as multi-view modelling. Following this principle,
MDE approaches can capture both the structural and behavioural dimensions at all
relevant levels of abstraction. This has the benefit of comprehensively capturing all
aspects of the software’s structure and behaviour while separating concerns into different
coherent views. Views within the same abstraction levels would be interlinked through
commonalities between the views.

Translating models between modelling languages at different levels of abstraction – as
well as generating code artifacts from models – is achieved through model transformations.
By defining mappings between elements of different modelling languages, models can
either have their individual views directly transformed into a semantically equivalent
view at a different level of abstraction, or models can be weaved together to combine
semantics from different views at one abstraction level into a common view at a different
abstraction level. These mappings are defined at the metamodel level.

MDE approaches can be implemented and realized by modelling tools. Such tool support
increases the efficiency and effectiveness of MDE even more by enabling the automation
of tasks such as model development, validation, and simulation, as well as code generation
or model execution.

2.1.1 Model Driven Architecture®
Model Driven Architecture® (MDA) is an MDE framework introduced and maintained by
the Object Management Group (OMG) [27]. MDA models serve two primary purposes: to
foster communication between stakeholders and to increase the efficiency, reliability, and
flexibility of enterprise software development, especially when it comes to implementing
strategic change. Simultaneously fulfilling these dual purposes requires MDA models to
be expressive enough to capture both domain information and precise implementation
details while remaining understandable to both technical and non-technical stakeholders
alike. To achieve this, MDA follows the principles of multi-view modelling and separation
of concerns to capture different aspects of both the problem and solution spaces from
different viewpoints and at different levels of abstraction [10, 27].

The aforementioned principles are applied by modelling the business context and software
solution across three levels of abstraction: the computation-independent model (CIM),
the platform-independent model (PIM), and the platform-specific model (PSM). Through
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a series of model transformations, the high-level, business-oriented CIM models are
transformed into software-oriented PIM models, and then further into PSM models
which can be either directly executed or used to generate software artifacts. Thus, the
development is driven by modelling at all stages, shifting the effort of the development
from the solution implementation phase to the problem analysis and solution design
phases.

Software development via the MDA approach begins with the development of a CIM
model. Often known as the business model or domain model, the CIM model captures
information on the context of the enterprise problem space, without making any reference
to technologies that may be used to support the enterprise operations [26]. Various types
of models may be suitable for the CIM level, such as enterprise architecture models,
business process models, or ontological models [27]. These models are typically expressed
using enterprise modelling notations and vocabulary that are commonly understood by
domain experts and non-technical stakeholders. [10]. The primary responsibility of the
CIM is to provide a means of communication and to capture domain entities, processes,
rules, and vocabulary [27].

The PIM model is a software-oriented model, modelling key design decisions of software
artifacts that are to be implemented to support enterprise operations, while excluding
features or constructs of any particular platform. As the PIM is derived from the CIM, the
PIM model captures the needs of the enterprise as software requirements and appropriate
design specifications. The CIM-to-PIM transformation therefore plays a key role in
bridging the semantic gaps between the enterprise engineering domain and the software
engineering domain, translating business requirements into software requirements and
functional design decisions [10].

The PSM model contains platform-specific constructs, as well as the necessary execution
semantics required for implementing and executing the application on a specific platform.
Such an implementation can either be realized by generating code from the PSM or
by directly executing the PSM itself [10, 27]. As multiple platforms may be required
to realize a software system, the PIM-to-PSM transformation may transform a single
PIM into multiple PSMs, each for a different platform and with their own respective
responsibilities, together forming a cohesive system [27].

There are a few considerations to keep in mind when designing or adopting an MDA
approach. First, since platforms can exist at different levels of abstraction, naturally, so
do PSMs. As such, the difference in abstraction between the PIM and PSM is relative,
varying dependently on the abstraction level of the target platform [27]. Second, each
modelled view should be expressed in a notation that is well-defined and commonly
understood by the relevant stakeholders at each of the three abstraction levels [10]. This
could be achieved by using a well-known enterprise modelling language at the CIM level,
such as BPMN, and a well-known software modelling language at the PIM level, such as
UML. Third, to benefit most from the MDA approach, transformations should ideally be
automated. Although, it is possible for transformations to be conducted manually [27].
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The MDA approach can benefit enterprises in maintaining business-IT alignment in
three ways. First, MDA encourages the activity of modelling collaboratively. This aids
stakeholders, both technical and non-technical, to engage in communication with each
other to find a common vision [27]. Moreover, the MDA models themselves are highly
valuable artifacts of documentation. Not only do these models comprehensively capture
information on the enterprise, software architecture, and software implementation at
multiple perspectives and abstraction levels, but since code is generated from them, they
remain accurate representations of the actual implemented systems, even as the enterprise
and its systems undergo change. Second, modelling the problem and solution spaces at
three levels of abstraction assists not only deriving executable artifacts from models, but
also in drawing a logical line of reasoning through the related design decisions from the
CIM through to the PSM and vice versa [10]. For example, implementation decisions
at the PSM level can better understood given context provided by the PIM level, and
architectural decisions at the PIM level can be understood given context provided by the
CIM level. Third, using models to generate executable artifacts saves time and reduces
the number of bugs in the code caused by manual coding. This allows software to be
modified quicker and more easily, thus increasing the adaptability of enterprise software
as the requirements of the enterprise change. Moreover, models can be used for simulation
and analytics to evaluate the designs of proposed systems before the implementation
phase begins, further reducing project risk [27].

Despite its benefits, there is one prominent drawback of MDA. There is little guidance
in the official MDA reference document [27] on what concrete information should be
captured and how this information should be structured at each of the MDA abstraction
levels. As a result, it is not immediately clear how the MDA approach should be applied
in the context of a fundamental part of the development of information systems: software
architecture design [28].

2.2 Enterprise Ontology & DEMO

As modern enterprises are growing in complexity, without a clear understanding of
how an enterprise works, solving business problems, changing strategy, and reacting to
various enterprise phenomena becomes a challenge [29]. Fundamental to understanding
observed phenomena is explanatory theory [30, 31]; enterprise ontology fulfills this role
in the field of enterprise engineering, with the aim of understanding the nature of
enterprises. Enterprise ontology is a scientific discipline grounded in various philosophical
and ontological theories, to understand, analyze, and model the construction and operation
of enterprises. Enterprise ontology serves to assist managers in gaining an overview of
and insight into the complexity of their respective organizations by providing concepts
and tools to understand and model the essence of enterprises in any domain.
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2.2.1 Construction and Operation of Enterprises
To understand enterprise operation, enterprise ontology frames the notion of enterprises
as social systems which operate through the cooperation of human actors, constantly
engaging in transactions to generate value and complete business processes. These
actors, the roles they assume, and the transactions they fulfill constitute the fundamental
building blocks of business processes. At the same time, enterprise ontology expresses the
construction of enterprises through the notion of facts and how human actors behave and
interact in fulfillment of the processes and corresponding acts that result in the creation
of facts.

In enterprise ontology, facts are the key concept used for expressing the construction of
enterprises. Facts are essentially propositions or statements about an enterprise that
are understood to be true [32]. Facts together form the “state of the ‘business’ world of
an enterprise”. Concrete objects of unary facts are called entities and abstract objects
of unary facts are called values. In enterprise ontology, these concepts are captured as
business entities. These include the products of the enterprise, the actors who concern
those products, and any other concepts that are relevant to the products and services of
the enterprise and any business rules that apply [33].

In the context of enterprises, a fact is anything that is considered to be true about the
existence of entities and objects within an enterprise. They are therefore used to describe
every aspect of the construction of the business, such as business entities, relationships
between entities, and business events. They are also the basis upon which business rules
are formed and evaluated [34]. Facts are created through the fulfillment of acts. The
creation of a new fact is called an event. As actors work and communicate, they engage in
two types of acts, resulting in two corresponding types of events and facts: coordination
(C-act, C-event, and C-fact) and production (P-act, P-event, and P-fact).

2.2.2 Transactions
Actors go about doing their work by responding to requests from other actors and
completing those tasks in accordance with business rules and laws set by the enterprise.
The performance of a C-act by an actor – including creating a request – is known as a
C-event. In order to move a transaction along, a C-event requires a response from the
other cooperating actor of the transaction. The resulting prompt for a response from
a C-event is known as an agendum. An actor continuously works by waiting for tasks
to complete, selecting an agendum when one arises, choosing an appropriate response
in accordance with any applicable business rules, and performing the desired C-act or
P-act. This cycle is known as the actor cycle (see Figure 2.1).

When actors request tasks or products to be completed by other actors, the sequences
of C-acts and P-acts that follow from the request to the completion or rejection of the
commitment occur in generic patterns known as transactions. The role of the actor
making a request is the initiator of the transaction, and the role of the actor who is being
requested to fulfill a task is the executor of the transaction.
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Figure 2.1: The operating cycle of actors, adopted from [33]

There are three phases of a transaction: the order phase, the execution phase, and the
result phase. During the order phase, the initiator makes their request to the executor for
something to be produced. In other words, the initiator requests a product of the executor
– products can either be material or immaterial [33, 34]. If the executor promises to act
on the request, the transaction moves into the execution phase, whereby the executor
produces the product that was requested. After the product has finished produced, the
executor declares that the product is complete and delivers the result to the initiator. If
the initiator accepts the result, the transaction has completed successfully (see Figure 2.2).

Figure 2.2: The stepwise pattern of transactions, adapted from [33]

New P-facts are only created after the successful execution of a transaction [33]. Every
transaction is related to a certain kind of product and a certain actor role who executes
that transaction. A product can have multiple different kinds of transactions that concern
it; each of which amounts to a change of state of the product. For example, one transaction
may result in a certain kind of product being created, while another transaction may
result in that same kind of product being destroyed. As such, transactions determine the
relevant business events that affect a product, changing its state, over its lifetime.
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By applying the principles of automata theory to the cycle in Figure 2.2, the pattern of
transactions can be viewed as an automaton, thus yielding the basic transaction pattern
(see Figure 2.3).

Figure 2.3: The basic transaction pattern, adopted from [33]

The function of an enterprise is known as its business. The business is defined by what
services are offered to customers of the enterprise. The business of the enterprise is realized
by the organization of the enterprise. Transaction kinds combined with their associated
executor actor roles are known as transactor roles. Transactor roles, when organized
together into tree structures, form business processes. Transactions are therefore the
building blocks of business processes. Together, these tree structures give the total
view of the enterprise processes and products. In this way, modelling an enterprise’s
business transactor roles and applicable business rules which form the business processes
to produce the products offered by the enterprise gives a complete view of the organization
of the enterprise. Thus, a model that captures this information is known as the essential
model of the enterprise [33].

2.2.3 DEMO

The Design and Engineering Methodology for Organizations (DEMO) is an enterprise
ontology method for deriving the essential model of any enterprise. As the essential
model captures the structure of transactor roles of which business processes are composed,
DEMO is effectively a coordination-based business modelling approach [33].

As a method, DEMO is comprised of two core components. The first component – the
Way of Modelling – is a collection of metamodels and a notation language for expressing
ontological enterprise models. The second component – the Way of Working – is a
method for analyzing an enterprise system or situation to produce ontological enterprise
models. Such ontological enterprise models produced with the DEMO method are herein
referred to as DEMO models.
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Figure 2.4: The DEMO aspect models, adopted from [33]

DEMO models are composed of four aspect models1 that each capture a key view of the
organization of an enterprise. These models are the cooperation model, the action model,
the process model, and the fact model (see Figure 2.4). The cooperation model captures
the construction of the enterprise, illustrating the transactor roles and the relationships
between them which form the coordination structure of business processes. The action
model captures the operation of the enterprise, containing business rules in the form
of action rule specifications and work instruction specifications. The process model
captures the chains of actor acts and transactions composing the business processes of
the enterprise, primarily expressed using process structure diagrams. Finally, the fact
model captures the products of the enterprise, illustrating business entities and the state
and transition spaces of these entities. The four DEMO aspect models are expressed
graphically and textually using the DEMO Specification Language (DEMO-SL) [35, 33].

While the main benefit of the DEMO method is that it allows for the modelling of the
essential model of any enterprise, a key drawback of DEMO models is that they are
highly abstract, and as a result, they lack concrete implementation details which would
be required to develop software [36]. This would make it a challenge to generate software
directly from DEMO models in an MDE approach.

1For a detailed explanation of each of these aspect models, the reader is encouraged to refer to [35].

18



2.3. Low-Code Development

2.3 Low-Code Development
Low-code is a software development approach that allows developers to visually build
applications, primarily by using graphical editors with drag-and-drop functionality, with
minimal manual coding required. Low-code applications are developed, deployed, and
maintained using low-code development platforms (LCDP) [37, 38, 39, 40]. Drawing on
principles of MDE, low-code applications are built at a high level of abstraction, while
low-level concerns are largely handled by the LCDP, thus requiring minimal development
effort. Given the ease-of-use of these platforms, LCDPs are primarily aimed at business
users with little to no technical knowledge or coding experience. Such users are known as
citizen developers. The productivity increases afforded by these platforms make them ideal
for many enterprise use cases, such as rapid prototyping or digital transformation [41, 40].
As such, the adoption of low-code development platforms (LCDPs) in industry, as well
as research into such platforms in academia, has been growing tremendously in recent
years [42, 43].

LCDPs are particularly desirable for enterprises when agility is necessary, business process
management is paramount, and the supply of developers is low [38]. As an enterprise
of the information age may have an arsenal of enterprise applications to support dif-
ferent functions of day-to-day business operations, LCDPs have become quite popular
for building many different applications commonly found as part of modern enterprise
information systems. These include e-commerce systems [41], workflow management sys-
tems, (WfMS), customer relation management systems (CRM), and business intelligence
processes [38, 40].

LCDPs come in a variety of forms, some more tailored for specific use cases and some more
applicable for general application development. LCDPs can roughly be distinguished as
belonging to one of the following four categories [40]:

• Data management platforms

• Workflow management systems

• Extended graphical user interface (GUI) and data-centric IDEs

• Complex multi-use platforms

Regardless of form, LCDPs tend to share common characteristics and features. LCDPs
provide dialogs, graphical editors, and other tools as visual means of developing applica-
tions. LCDPs are typically composed of the following components and features [39]:

• Application modeller

– Domain model, navigation model, etc.
– Local run environment
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– Configuration of database, deployment, external API and service integration,
version control repositories etc.

• Back-end and database server

– SQL or NoSQL database
– Analysis and optimizations
– Hosting (container orchestration)

• Collaborative development support

– Includes project management tools such as agile, kanban, and scrum

Despite the differences between LCDPs, the process of building applications also tends
to follow the same procedure, which of course may be followed iteratively through an
agile approach [39]:

1. Data modelling

2. User interface definition

3. Business logic rules and workflows specification

4. External services and API integrations

5. Application deployment

Despite the benefits of efficiency and better business-IT alignment brought by LCDPs,
there are still challenges that come with their adoption. The two most significant
challenges are the high learning curve of platforms and the risk of vendor lock-in [41, 44,
38]. Despite being targeted towards non-technical citizen developers, learning low-code
development can still be a challenge. These users may lack not just software development
skills, but also knowledge of important software design principles required to model
applications, even following a low-code approach. The risk of vendor lock-in is also a
significant challenge with the use of LCDPs. In fact, the risk of vendor lock-in was
found to be one of the top reasons why companies choose against using LCDPs [38]. As
platforms tend to be closed sourced, some even using proprietary modelling languages,
this inhibits the extensibility and interoperability of these platforms. This could become
a critical problem in the situation that support for a platform is discontinued, as was the
case with Google AppMaker in 2020 [45]. Given these challenges and the risks that they
bring to teams considering the adoption of LCDPs, researching ways to combat vendor
lock-in and to lower the learning curve of these platforms is imperative [41, 38].
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2.4 Conclusions
In light of the challenges of market turbulence and digital disruption that the enterprise of
the information age faces, improving enterprise agility while maintaining optimal business-
IT alignment are paramount objectives. This chapter introduced model-driven engineering
and MDA, enterprise ontology and DEMO, and low-code software development. Each
of these methodologies and technologies have their own respective advantages, but as
this thesis aims to explore, combining these notions into a novel development approach
could create synergy that boosts an enterprise’s ability to achieving the aforementioned
objectives more effectively and efficiently than the individual tools could on their own.

The notions of enterprise ontology and the DEMO method can assist with gaining a
better understanding of the inner workings of the enterprise, thus making it easier to
identify how improvements can be made internally in response to external market forces
and other enterprise phenomena, improving enterprise agility.

Low-code development can also help to boost enterprise agility, especially as it relates to
software adaptability [5, 44]; however, the significant challenges of high-learning curves
and risk of vendor lock-in still hinder business users, and low-code technology itself, from
fully realizing this potential. While low-code development already draws on principles
from MDE, recent research on the challenges of low-code development suggests that
expanding the incorporation of MDE principles to develop low-code applications could
solve some of these issues.

The MDA framework, under the umbrella of MDE, is a prime candidate to create an
approach to integrate ontological DEMO models into the development process of building
enterprise applications using low-code technology. The reason for this is twofold. First,
MDA can bridge the semantic gaps between enterprise ontology and software engineering,
streamlining the application development process while maintaining business-IT alignment.
Second, MDA could also alleviate some of the challenges of current low-code platforms.
The learning curve of working with LCDPs becomes lowered, as business experts can
collaborate by working on the CIM level to capture enterprise concerns using a notation
with which they are familiar. Meanwhile, the software experts can work on the software
design concerns independent of any target platform, mitigating the risk of vendor lock-in.

To better explore the potential synergies using DEMO, MDE, and low-code together,
the next chapter reviews of the state of the art, providing a deeper examination of the
existing literature on the interrelationships between the three fields.
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CHAPTER 3
State of the Art

This thesis is grounded in the foundational theories of enterprise ontology, practices
of model-driven engineering, and approaches of low-code development. Over the past
several years, there have been several studies into the interrelationships between these
three fields. This chapter discusses the state of the art at the following four intersection
points of these three fields:

• Model-Driven Engineering and Low-Code Development

• DEMO and Model-Driven Engineering

• Low-Code Development and DEMO

• DEMO, Model-Driven Engineering, and Low-Code Development

The respective positioning of the papers reviewed at the above listed intersection points
is illustrated in Figure 3.1.

To conclude the chapter, the implications that the findings of the reviewed state of the
art studies have on this thesis are discussed.

3.1 Model-Driven Engineering & Low-Code Development
The principles behind model-driven engineering (MDE) and low-code development plat-
forms (LCDPs) greatly overlap. However, there do exist differences between MDE
approaches and low-code. This has motivated researchers to explore the similarities and
differences between MDE and low-code, thus uncovering challenges and opportunities for
future research into approaches using MDE to develop applications for LCDPs [42, 46].
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Figure 3.1: Diagram of the intersecting fields of the papers comprising the state of the
art of this thesis

Cabot’s 2020 assessment [46] of the link between MDE and LCDPs classifies low-code as
a restrictive form of MDE; restrictive in the sense that the generated output cannot be
accessed nor modified. The relation between MDE and low-code development becomes
clear when considering that the generation of executable software artifacts from graphical
models is central to both paradigms. However, a key differentiating factor is that MDE
approaches often involve multiple intermediate model transformations, whereas low-code
uses a single-step model transformation to generate executable artifacts. Moreover, with
low-code development, there is no flexibility with the choice of modelling language to be
used; they are fixed features of the LCDPs.

A similar assessment [42] by Di Ruscio et al. in 2022 also identifies similarities between
the two approaches. The authors found that graphical modelling languages are not only
both central to the design and development stages of the two approaches, but both
approaches enable stakeholders – even those with minimal programming experience –
to contribute to the development of enterprise application by expressing applications
graphically. The authors also identify three key aspects which distinguish model-driven
approaches from low-code development approaches: platforms, users, and domains.

Having identified similarities and differences between model-driven engineering and low-
code development, the authors identify a few challenges and opportunities. A common
challenge of using LCDPs is the risk of vendor lock-in. This was also found in [44] to be
a challenge commonly considered by those using LCDPs in industry. An opportunity to
combat this is to leverage existing notions and standards of MDE; for example, by using
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standard modelling languages such as BPMN and UML or meta-modelling languages
such as MOF or Ecore [42].

In [47], Tisi et al. present Lowcomote - an innovative training network (ITN) with the
aim of enhancing the capabilities of LCDPs through the integration of MDE, as well
as machine learning and cloud computing technologies, to evolve low-code development
platforms into low-code engineering platforms. The role of MDE in this project is to
solve three prominent issues of LCDPs: scalability, fragmentation, and homogeneity.
Scalability refers to the difficulty of managing large low-code models of complex and
mission-critical applications; especially when it comes to visualizing them graphically.
Fragmentation refers to how different LCDP vendors largely use proprietary modelling
languages to build low-code models; thus, hindering interoperability and promoting
vendor lock-in. Finally, homogeneity refers to the restrictiveness caused by LCDPs largely
using modelling languages that originate from the software engineering discipline and
not from the enterprise engineering discipline. The authors postulate that principles and
approaches of MDE can alleviate the problems of fragmentation and homogeneity. For
example, fragmentation can be solved by facilitating the use of open standard modelling
languages. Homogeneity of models can be reduced by introducing multi-view modelling
to LCDPs.

The approach presented by Hermann et al. in 2024 [48] builds upon the notion of multi-
view modelling, proposing an integrated ecosystem consisting of LCDPs, MDE tools
and even high-code development environments. This is powered by an amalgamation of
multiple metamodels known as a virtual single underlying model (V-SUM), also known
as a pragmatic SUM. The V-SUM is used to “project” the information contained in the
V-SUM to generate artifacts – or views – of the various platforms and tools involved
in the ecosystem. Low-code artifacts thus become one view in the multi-view system.
Consistency is automatically maintained between the low-code artifacts and the other
views of the ecosystem. A key benefit of this approach is that stakeholders of varying
levels of technical backgrounds can contribute to developing an application using a
platform with which they are most comfortable.

Creating a V-SUM requires establishing mapping rules – which the authors call consistency
preservation rules – between the metamodels of the LCDP, the source code, and any
intermediate models. This was demonstrated with a case study in which a V-SUM was
created by combining the metamodels of UML, Java, and a mock LCDP. The V-SUM
integration strategy used was to include the LCDP metamodel as part of the V-SUM
and map this metamodel with the UML metamodel. The UML metamodel was then
mapped to the Java metamodel; thus, consistency between the low-code model and the
source code was maintained through an intermediate UML model. Although the case
study demonstrated promise, a key challenge in realizing the V-SUM approach is that
including a LCDP as part of a V-SUM ecosystem requires a LCDP to offer features that
allow for the export and import of the underlying application model in order for the
platform to commit and fetch application changes with the V-SUM.

25



3. State of the Art

In [49], Missikoff presents EasInnova, a model-driven engineering approach for enterprise
innovation – specifically, process innovation. Process innovation requires new or adapted
enterprise application support in order to maintain business-IT alignment as the enterprise
transforms. This approach involves modelling the current state of the enterprise, known
as an AsIs model. Through problem analysis, business experts identify any problems
that the enterprise is facing. The transformed enterprise with proposed solutions to these
problems is modelled as a ToBe model. The gap between the AsIs and ToBe models is
bridged using a Transformation model to capture the necessary changes. These three
models are each expressed at the three abstraction levels of the MDA framework: CIM,
PIM, and PSM (see Section 2.1.1).

Expressing the models at different levels of abstraction facilitates the engagement and
input of business experts together with software developers. The CIM level captures the
enterprise ontology through a pattern known as the OPAAL scheme, which captures
information about the objects, processes, and actors, as well as any attributes of and links
between these entities. The PIM is expressed using BPMN diagrams, UML class diagrams,
and UML use case diagrams. The PSM-AsIs is primarily focused on the data model of
the current information system and how to migrate it to the proposed application. To
automatically generate software to support the transformed enterprise, the PSM-ToBe
is expressed using low-code models. However, no automatic transformations between
models are proposed.

In [50, 51] Alfonso, Cabot, et al. introduce BESSER, an open-source low-code, low-
modelling development platform. The goal of BESSER is to build enterprise applications
that integrate smart systems technologies while easing the process of application modelling
by addressing challenges currently associated with low-code development. This is achieved
by following the principles of a concept called low-modelling.

Low-modelling eases the processes of three phases of software modelling: model generation,
model enrichment, and model inference. By using heuristics, leveraging domain knowledge
from existing sources such as taxonomies or ontologies, and using machine learning to
extract model content from documents or images, the effort required to model complex
software can be reduced [52]. For example, heuristics can be used to infer the CRUD
operations of domain entities represented in structural models. As Cabot explains,

“The key idea is that any data model will require a number of basic CRUD
(create/read/update/delete) operations to visualize and manipulate the data
specified in the model. . . operations can be deduced from an analysis of the
static model elements and relationships by systematically applying a number
of heuristics.”

BESSER applications are built using BESSER’s Universal Modeling Language (B-UML)
[50, 53, 51]. B-UML models are used to generate Python code via model-to-text trans-
formations. The Python code generated targets various platform tools to implement
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application components, such as Django or SQLAlchemy. B-UML is heavily based on
UML; however, taking a pragmatic approach, the language does not fully conform with
the UML metamodel, as it deviates from the UML specification where necessary, omitting,
modifying, or adding modelling concepts where necessary to improve modelling efficiency
and ease-of-use. The current version of B-UML (version 2.5.1) [53] consists of eight
sub-models, which may either be used individually or together to specify constructs as
the modeller needs. Each model serves a different purpose in defining various aspects of
enterprise applications, such as defining a domain model, specifying both its structure and
runtime constraints; defining a GUI model, specifying the application’s GUI components
and how they integrate with the domain model to enable the creation, modification, and
deletion of domain model entity instances; defining a state machine model, specifying
the runtime behaviours of the application; and so on.

3.2 DEMO & Model-Driven Engineering

There have been many recent studies on the generation of enterprise information systems
(EIS) through the application of model-driven engineering approaches incorporating the
theories and constructs of enterprise ontology and DEMO. These include the direct
execution of DEMO models and the translation of DEMO models into code or into
models of different modelling languages.

In his 2022 PhD thesis [54], Mulder identified a weakness in the DEMO method in that
it lacked the necessary constructs and methods to support the automatic verification and
exchange of DEMO models. The main reason for this is that there existed no complete
metamodel of DEMO – something that is imperative to facilitate MDE tasks, such
as model-to-model transformations. Therefore, the solution was to derive a new and
complete DEMO metamodel.

The metamodel proposed by Mulder is comprised of five partial metamodels: an ontolog-
ical metamodel, a verification metamodel, a visualization metamodel, a data exchange
metamodel, and a visualization exchange metamodel. The ontological metamodel is
a high-level refinement of the underlying metamodel of the four DEMO sub-models.
The verification metamodel contains rules to verify a model’s adherence to data rules,
mathematical rules, and other model restrictions. The visualization metamodel provides
the rules for the graphical representation of the DEMO models. Finally, the exchange
metamodels, based on XML Schema Definition (XSD), facilitate the electronic storage
and exchange of DEMO models and are necessary for the automatic transformation of
DEMO models into models of complementary modelling languages, such as BPMN or
ArchiMate. The proposed DEMO metamodel was implemented and demonstrated using
the modelling tool, Sparx Enterprise Architect (SEA). The solution was evaluated against
several case studies and uncovered a number of possible improvements to the DEMO
method in the process.
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In his 2012 PhD thesis [55], van Kervel presents an ontology-based model-driven engi-
neering approach to generating an enterprise information system that directly executes
the four DEMO aspect models as source code input. This approach has the benefit
of effectively skipping the software engineering phase of implementation design, thus
eliminating the chance of introducing errors into the system through transforming an
ontological model to an implementation model. Another key benefit of this approach is
that the ontological models can be simulated and validated before application deployment.
The authors postulate that conducting such validation earlier in the development process
yields a better degree of business-IT alignment.

This approach is realized by directly executing DEMO enterprise models through a
computation construct known as the DEMO processor. The DEMO processor works by
serializing the four DEMO aspect models in an XML-based language called XML DEMO
Modelling Language (DMOL). There is a one-to-one mapping between the four DEMO
aspect models and DMOL; therefore, this transformation does not suffer from information
loss. The DEMO processor then instantiates and executes these models. At the core of
the DEMO processor is the logical axioms of the enterprise ontology PSI theory, which
is key to the enforcement of model compliance. This is achieved by interpreting the
action rules expressed in the action model to determine allowed versus disallowed actor
actions at runtime. The applications that the DEMO processor generates therefore run
as workflow systems.

In [56] Guerreiro et al. leverage the DEMO processor’s ability to enforce business rules
to generate an enterprise dynamic control system (EDCS). The DEMO processor is first
provided with a complete DEMO model consisting of the four DEMO aspect models.
Once validated, these models constitute the business transaction model of the enterprise.
An enterprise information system (EIS) is then generated from this business transaction
model. As enterprise actors use the EIS, the state of the application at any given time
constitutes a real-time instance of the business transaction model. This model instance
can then be validated against the original business transaction model, and action can be
taken if any deviations from valid business transactions occur, as to ensure enterprise
governance.

The DEMO processor was also demonstrated in a real-world use case in [57] in which it
was used to develop a case management system for a Dutch utility company. By applying
the discipline of enterprise ontology to the development of an IT artifact, the majority
of the design decisions were made during the modelling phase, rather than the software
development phase, allowing the process of building the application to be much more
grounded in sound engineering principles. This also allowed stakeholders to actively
participate in the development of the system such that the system was built according to
the way client does their work, which also helped to maintain business-IT alignment.
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In [58] Skotnica et al. also present a theoretical automaton, known as the DEMO Machine,
that directly executes DEMO models expressed in the DEMO Specification Language
(DEMO-SL). As the primary purpose of DEMO-SL for the interpretation of DEMO
models by humans, it lacks formal execution semantics which are required by machines
for model simulation and validation purposes. As such, the aim of this paper was to
define formal execution semantics for DEMO-SL in the form of formal mathematical
axioms. This paper defines three sets of formal axioms which can be interpreted by the
theoretical automaton: fact axioms, agenda axioms, and rules and dependencies axioms.
These axioms are together known as the FAR ontology. As a formal computation model,
the DEMO Machine is based purely on mathematical constructs and is independent of
any kind of software implementation.

The DEMO Machine builds on the ideas of van Kervel’s DEMO processor [55] such that
the DEMO Machine is also based on the axioms and notions of the PSI, FI, and TAO
theories. The DEMO Machine is also based on fundamental IS and MDE theories, such
as the normalized systems theory and the Generic Systems Development Process for
Model Driven Engineering (GSDP-MDE). By incorporating the principles of the FAR
ontology in accordance with the applicable software engineering theories, better support
is added for interpreting fact and rule expressions of which business rules are composed
in the DEMO action model.

In a follow-up paper [59], the authors build on the foundational axioms for the fact and
action models derived in their previous paper by adding formal axioms and constructs
which formalize the foundational concepts of the structure of the DEMO Machine itself,
as well as of DEMO models themselves, such as actors and transactions. In addition,
an algorithm is presented for calculating the agenda of an actor at any given instance
during runtime.

3.3 DEMO & Low-Code Development

In [60], published in 2022, Freitas et al. present DISME, a DEMO-based low-code
development platform. DISME allows users to build applications using the DEMO
method by providing a system modeller, through which DEMO models are created and
edited graphically using a diagram editor and refined using tables or forms. The platform
also provides a form editor for designing forms which are used to create and modify
entity instances. All of an application’s data is stored in a database, which is structured
based on the DEMO fact-based modelling approach. Users specify program logic through
the definition of action rules, also by using a graphical editor. To run the modelled
applications, DISME provides an execution engine which interprets the models in real
time, allowing the application to dynamically to respond to any runtime changes to the
underlying DEMO model.

29



3. State of the Art

3.4 DEMO, Low-Code, & Model-Driven Engineering

This thesis was motivated by and primarily builds on the work of Krouwel et al. in their
2024 paper on generating low-code application models from DEMO models via a direct
MDE mapping approach [5]. The paper identifies enterprise agility as a key success
factor for the modern enterprise. As modern enterprise operations are heavily reliant on
software, software adaptability goes hand-in-hand with enterprise agility. It is therefore
imperative that enterprises ensure that their software is highly adaptable to rapidly
changing business requirements so that software can be in continuous alignment with
the enterprise as it undergoes change. As a solution to maintaining this alignment, the
authors propose the use of MDE as an approach to generate software from enterprise
models.

In their approach, DEMO was the modelling language of choice for modelling the
enterprise, as DEMO comprehensively and concisely captures the essence of the enterprise.
As the ontology of an enterprise does not change often, enterprise ontology models provide
a solid foundation from which enterprise information systems can be generated to support
enterprise operations. The four DEMO sub-models are transformed directly into low-code
application artifacts – specifically, Mendix application artifacts. These artifacts consist of
a domain model for storing business entities, microflows for processing business rules, and
pages for creating and modifying the business entities via the graphical user interface.

The proposed approach was demonstrated through a case study on a Dutch social
housing program. The business entities of this domain included program registrations
and persons involved in the registrations. These entities were captured using the DEMO
fact model, while the business rules themselves, pertaining to who may register and
when they may register into the program, were captured through the DEMO action
model. The demonstration showed that DEMO models in combination with organization
implementation variables (OIVs) can indeed form a semantically rich basis for generating
enterprise applications via MDE. The authors also found that Mendix artifacts fit well
as a target models, as they can be rapidly and reliably modified in response to modified
DEMO models, thus increasing the adaptability of software artifacts.

The authors provided a few key areas which could be further explored to improve on
their proposed approach. One limitation they encountered was difficulty in comparing
their DEMO-based MDE approach against other MDE approaches using different source
languages, noting that having a framework that could be used for this purpose would
be beneficial. Another possible improvement could be realized by employing the MDA
approach to MDE, rather than a direct mapping approach. This approach could increase
the versatility and flexibility of the mapping by reducing the semantic gap between the
target software artifacts and the models from which they were generated. However, the
authors suggested it would first have to be determined how low-code models would fit
within the MDA framework – either as a PSM or as output generated from a PSM.
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3.5 Conclusions
There have been many studies in recent years on model-driven engineering, low-code
development, and enterprise ontology. Those that are the most relevant to this thesis
are at the intersections of these three disciplines, from which many key insights can be
drawn from the strengths and weaknesses of those studies.

The similarities and differences between low-code development and model-driven engineer-
ing highlights opportunities to realize benefits by further integrating the two practices.
For example, as suggested in [41], a possible way to combat LCDP vendor lock-in is
by introducing standard modelling languages into MDE approaches targeting low-code
development platforms. Using the MDA framework allows for this possibility, especially
given its use of different abstraction levels.

The application of the theories of enterprise ontology to model-driven engineering and
low-code development approaches has also been explored, demonstrating existing interest
in using DEMO as a source model in MDE approaches. Many studies focus on achieving
the direct execution of DEMO models; however there has not been any studies found
which employ DEMO models in an MDA approach. A key challenge highlighted in the
studies reviewed that employ DEMO in MDE approaches that needs to be taken into
consideration is that DEMO on its own lacks formal execution semantics. While previous
studies have worked to add such semantics to DEMO itself, another possible way to
achieve this is by using the MDA approach, whereby capturing the execution semantics
is the responsibility of models at the PIM and PSM levels.

Finally, Krouwel et al. present a DEMO model transformation directly to Mendix low-
code artifacts, constituting an approach leveraging all three fields of enterprise ontology,
low-code, and model-driven engineering. The findings of this study support the notion of
using DEMO models as a source and Mendix low-code models as a target in an MDE
approach. However, the authors suggested that using the MDA framework to add an
additional abstraction level could increase the flexibility and value of such an approach.

To summarize, the key insights from the papers reviewed on the state of the art reveal
opportunities and challenges which support the use of MDA in an approach to generate
low-code artifacts from DEMO enterprise models. With regards to the use of low-
code development platforms, the benefits of such an approach could contribute to
combating vendor lock-in and lowering the learning curve of using such platforms, further
incentivizing the adoption of such platforms. With regards to business-IT alignment,
the use of DEMO enterprise models could help to ensure that the software generated
meets the requirements of the enterprise and its business processes. Finally, the use of
the MDA approach could also increase the flexibility of development pipelines, allowing
for different platforms to be targeted from a single platform-independent model.

To better assess the potential fit of enterprise ontology and low-code development within
the MDA framework, the next chapter aims to answer RQ1 by exploring the empirical
characteristics and purposes of models of each of the three MDA abstraction levels.
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CHAPTER 4
Characteristics of MDA

Abstraction Levels

To better understand the applicability of the MDA approach to generating low-code
applications from DEMO models, it was first important to precisely establish definitions
of the three abstraction levels – CIM, PIM, and PIM – based on theoretical literature and
empirical studies. To achieve this, a semi-systematic literature review was conducted to
search for existing literature in which the MDA approach was applied, taking note of how
the authors defined CIMs, PIMs, and PSMs and which languages were used. The findings
of the literature review were compiled into comprehensive descriptions of each of these
three abstraction levels, both in tabular form and in prose. Most consequentially, models
at CIM, PIM, and PSM levels were found to differ among the following key dimensions:
concerns, views, common languages, and users. The findings of this chapter served as an
initial answer to RQ1 and assisted in better understanding the research problem, as well
as in setting the objectives of this thesis.

4.1 Semi-Structured Literature Review
To answer research question one, a semi-systematic literature review was followed –
the procedure of which is prescribed in [61]. Through this literature review, previous
studies that have dealt with the MDA approach were examined. The similarities and
differences of CIMs, PIMs, and PSMs were qualitatively analyzed and the choices of
modelling languages for each abstraction level were recorded. Establishing a thorough
understanding of the MDA approach by deriving clear definitions of what constitutes a
CIM versus a PIM versus a PSM helped to best position DEMO and Mendix within the
MDA framework and to further scope this research. This deliverable therefore reports on
the distinct common characteristics of CIMs, PIMs, and PSMs, respectively.
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The literature review began by first reviewing a batch of papers pre-identified as being
relevant to this study which were supplied by the author’s advisor. The details of the
search protocol of the semi-systematic literature review (review protocol, search strategy,
study selection criteria, study selection procedures, quality assessment checklist, and
query results) can be found in Appendix A.

4.1.1 Included Papers

The Table 4.1 lists the papers that were included as part of the literature review. The list
includes papers which were pre-identified as relevant by the author’s advisors in addition
to papers found through conducting the semi-structured literature review procedure.

4.2 Results

The semi-systematic literature procedure was executed over several iterations. As the
review progressed, the similarities and differences between CIMs, PIMs, and PSMs began
to emerge. The most prominent resulting characteristics can be grouped according to the
following four dimensions: concerns, views, common languages, and users. The results of
the literature review are summarized in Table 4.2 and working definitions for CIM, PIM,
and PIM were derived and are presented in the following subsections.

4.2.1 Working Definition of Computation-Independent Model

The results from the literature review show that a computation-independent model (CIM)
is a high-abstraction level model used to illustrate various aspects of the system1 of
business operations. As such, models at the CIM level capture information required
to understand how a business operates, including domain-specific vocabulary, entities,
processes, transactions, communication, actors. The structural aspects can be prescriptive,
such as requirements or constraints, as well as descriptive, such as business entities and
processes, including their inter-dependencies, and hierarchies. The behavioural aspects are
typically captured as business processes and are constrained using business rules. These
models are used primarily by business analysts or enterprise architects [62, 15, 63]. As
such, they tend to model the functional aspects of the enterprise with as little specification
of technology in use as possible [15]. Additionally, CIM models are typically illustrated
using modelling languages that are commonly understood by business experts [63]. BPMN
is one such modelling language that was used at the CIM level in many of the studies
reviewed.

1The word “system” in this context refers to the social-technical system of an enterprise.
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ID Title Year Citation
P1 The Fast Guide to Model Driven Architecture: The Basics

of Model Driven Architecture
2006 [9]

P2 Transformation From CIM to PIM: a Systematic Mapping 2022 [16]
P3 Transformation from CIM to PIM: A Feature-Oriented

Component-Based Approach
2005 [65]

P4 Conceptual Modeling of Multimedia Search Applications
using Rich Process Models

2009 [64]

P5 The Impact of the Computational Independent Model for
Enterprise Information System Development

2010 [66]

P6 Automate Model Transformation From CIM to PIM up to
PSM in Model-Driven Architecture

2019 [62]

P7 An Approach for Transforming CIM to PIM up To PSM in
MDA

2020 [67]

P8 Model Transformation with ATL into MDA from CIM to
PIM Structured through MVC

2016 [68]

P9 An MDA approach to business process model transformations 2010 [15]
P10 Transformation From CIM to PIM Using Patterns and

Archetypes
2008 [69]

P11 Applying CIM-to-PIM model transformations for the service-
oriented development of information systems

2011 [63]

P12 Code generation using model driven architecture: A system-
atic mapping study

2020 [70]

P13 A model transformation in MDA from CIM to PIM repre-
sented by web models through SoaML and IFML

2016 [71]

P14 Disciplined approach for transformation CIM to PIM in MDA 2015 [72]
P15 An Approach for MDA Model Transformation Based on JEE

Platform
2008 [73]

P16 Mapping Approach for Model Transformation of MDA Based
on XMI/XML Platform

2009 [74]

P17 Mapping approach for model transformation of MDA based
on xUML

2009 [75]

P18 A methodology for transforming CIM to PIM through UML:
From business view to information system view

2015 [76]

P19 Transformation approach CIM to PIM: from business pro-
cesses models to state machine and package models

2015 [77]

P20 A set of QVT relations to transform PIM to PSM in the
Design of Secure Data Warehouses

2007 [78]

Table 4.1: Papers reviewed through the semi-structured literature review
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4.2. Results

4.2.2 Working Definition of Platform-Independent Model
Platform-independent models (PIM) were found to describe the computational concerns
of applications, primarily by capturing architectural and functional aspects of software
systems. The structure of PIMs may vary depending on the target technology of the
MDA model. As such, it is often the case that the views of PIMs are structured according
to an appropriate architectural pattern and programming paradigm. Not only do the
contents of PIMs consist of the structural and behavioural domain semantics received
from the CIM, but also design decisions that are required in order to realize the solution
in an execution environment. Static domain constructs are typically captured at the
PIM using a conceptual model, also known as a domain model. Behavioural domain
semantics are typically captured in process models, but with added constructs to explicitly
define how the processes are to be performed when automated, both by humans and
by machines. For tasks that are performed by humans or require human input, such as
manual exception handling, user interfaces can be modelled which capture the human
input required to carry out such tasks [64].

PIMs express information typically using notations which are commonly understood
by software architects, such as UML [63]. Users of PIMs are primarily those who
work with building enterprise applications, typically software architects and system
analysts [62, 63]; however, they can also be used as a means of discourse together with
non-technical stakeholders, especially when examined in conjunction with CIM models.
A key implication of this is that in order to be useful, a PIM must capture information
and present it in such a way that it is understandable to the users of the PIM, while
also capturing sufficiently explicit execution semantics such that platform-specific design
decisions can be easily inferred based on the PIM, ensuring an accurate generation of the
PSM.

4.2.3 Working Definition of Platform-Specific Model
Platform-specific models (PSM) are the most interesting of the three levels of abstraction,
as PSMs may take many different forms depending on the desired target technology.
Moreover, PSMs may concern various application aspects, from database construction
to user interface design. Some studies considered graphical modelling languages to be
PSMs while others considered code to be PSMs. This is because according to the MDA
specification, the abstraction levels of PIMs and PSMs are relative [27]. In other words,
the extent to which a PIM is abstracted from concrete execution instructions depends on
how abstract the PSM language is. For example, if a PSM is expressed as code itself,
such as C++, versus if a PSM is expressed using low-code models. Given that PSMs
must capture all necessary execution semantics for implementation on a specific platform,
graphical PSM models could either be used to generate code or the PSM models could
even be executed themselves. Given their technical nature and detailed implementation
information, PSMs are typically used by software developers and system administrators.
Given that low-code applications are simultaneously both graphical models and code,
this means that they fit the profile of PSMs.
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4.3 Conclusions
The semi-structured literature review searching for empirical characteristics of CIMs,
PIMs, and PSMs laid the foundation for the remaining chapters of this thesis in two ways.
First, understanding the characteristics of CIMs and PSMs allowed for the assessment of
the suitability of applying the MDA approach to solving the research question. Candidate
modelling languages could also be assessed according to the characteristic dimensions
as outlined in Table 4.2 to determine how suitable they are for use at any of the three
abstraction levels of MDA. Second, the identified characteristics of PIMs could be used
to define the objectives, as well as to guide design decisions, of the PIM to be developed
in this thesis.

An important characteristic of PIM models specifically is the dual purpose these models
fulfill in MDA approaches. On the one hand, PIMs serve as a means to facilitate
stakeholder communication, among both technical and non-technical stakeholders. On
the other hand, PIMs are used for code generation, and as such, they must be capable of
capturing functional design decisions that are critical to implementing software to support
business processes. As such, the CIM-to-PIM transformation has the responsibility of
inferring functional design decisions based on the domain information captured by the
CIM. However, several studies emphasize or make it evident that creating a CIM-to-PIM
mapping can be expected to a challenge [65, 63, 62, 16, 66], as the nature of CIM
models focusing on business concerns, versus PIM and PSM models focusing on software
concerns, means that there is a larger the semantic gap to be bridged by the CIM-to-PIM
transformation than by the PIM-to-PSM transformation.

The next chapter builds on the results of the semi-systematic literature review by defining
a high-level conceptual framework as a meta-design that outlines the required information
and structure of an MDA transformation. This was used to assess the suitability of
DEMO as a PIM and Mendix as a PSM and to define the objectives of the MDA solution
to effectively bridge the semantic gaps that exist between DEMO and Mendix.
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CHAPTER 5
MDA Transformation

Meta-Design

Enterprise applications are complex in nature, being comprised of an orchestra of tech-
nologies, such as databases, messaging systems, scripts, services, and user interfaces,
working together to perform tasks for users. As such, the scope of the problem of
generating software artifacts from enterprise models is massive. The previous chapter
echoes this complexity, having identified many common characteristics of MDA models
and revealing that each abstraction level pertains to its own range of concerns, views,
modelling languages, and users. Therefore, building on the results of the previous chapter,
the next step was to reduce the complexity to allow for a better understanding of the
research problem and to identify a structure of the MDA design decisions so that the
objectives and scope of a solution could be accurately set. This was achieved by applying
the principle of separation of concerns [79, 80, 81] to formulate a conceptual framework
combining and structuring the notions of foundational theory and practice to better
understand the interrelationships between these notions in the context of the MDA
framework and to serve as a meta-design to guide the design and development sprints of
this thesis.

To effectively reduce the complexity of building enterprise applications, each of the three
abstraction levels of the MDA approach must capture the right information, structured
in a logical way, so that the details of the enterprise and software can be analyzed by
humans and so that software can be generated rapidly and platforms can be targeted
interchangeably. Software architecture patterns are often applied to MDA approaches to
achieve this [27, 28]. This was exhibited in many of the studies reviewed in the previous
chapter; in such studies, the PIM and PSM levels were each comprised of multiple
views concerning different aspects of the application architecture. A challenge of this
is choosing an architectural pattern that is capable of applying a sufficient degree of
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5. MDA Transformation Meta-Design

separation of concerns without enforcing the use of an architecture style that may not be
implementable with all target platforms.

Another key insight from the literature review in the previous chapter is that formulating
a transformation to generate a PIM from a CIM is not trivial. As CIM models were
found to be focused on business constructs and PIM models were found to be focused on
software constructs, this means that the CIM-to-PIM transformation is responsible to
bridge semantic gap between the enterprise and software worlds. In order for an MDA
model to be used to generate an application, it needs to capture details of the fundamental
aspects of the desired software system based on information from the enterprise domain.

Given these challenges, before an MDA transformation could be designed, it had to
be clearly established what information is capable of being extracted from the CIM
level to automatically make design decisions at the PIM level. Similarly, in order
for the transformation meta-design to be generalizable – ensuring that a conforming
PIM would be truly platform-independent –, it was important that the meta-design be
formulated based on the analysis of appropriate information systems theories, rather than
on the analysis of a particular information systems platform. To address this challenge,
the fundamental notions of conceptual schema-centric development were leveraged to
understand how constructs of a domain can relate to constructs of a software system.

5.1 Formulation of a Conceptual Framework
The meta-design was formulated following the procedure presented in [82] for constructing
a conceptual framework to guide information systems research. A conceptual framework
is typically presented as a diagram that illustrates how the concepts of the applicable
theories or frameworks are interconnected in the context of the research problem, thus
providing a clear theoretical basis upon which the objectives of the research are built.

This procedure consists of the following steps to understand the research problem, identify
the applicable background theories, determine how they relate to each other in the context
of the research problem, and to synthesize the conceptual framework unifying those
theories and frameworks.

Step 1. Conceptualize a topic

Step 2. Identify problem statement

Step 3. Read and develop literature review

Step 4. Identify objectives/questions

Step 5. Explore IS theory(ies) or frameworks

Step 6. Select suitable theory(ies) or framework/s

Step 7. Modify
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5.1. Formulation of a Conceptual Framework

Steps one to three of the above procedure are fulfilled through the elaborations provided
in Chapter 1. This chapter therefore begins with step four, outlining the objectives of
the conceptual framework. These correspond to sub-questions of RQ2.
A generalizable MDA transformation meta-design should achieve the following two
objectives:

• Comprehensively bridge the gap between enterprise engineering and enterprise
software engineering

• Inform the choice of one or a set of modelling languages for use at each abstraction
level

The resulting conceptual framework should assist in answering the questions:

• What design decisions (e.g. programming choices) required by the PIM can be
made based on information from the CIM?

• Which design decisions can be extracted from models at higher abstraction levels
and which can be inferred?

• How can the design decisions captured at each abstraction level be structured?

• Can DEMO fit as a stand-alone CIM modelling language?

• Which modelling language(s) should be used at the PIM?

To fulfill steps five and six of the procedure, drawing on the background fields discussed
in Chapter 2 and key characteristics of MDA approaches found in Chapter 4, the
conceptual framework leverages the following theories and practices which were selected
as foundational to solving the research problem of this thesis:

• Enterprise Ontology

• Model Driven Architecture

• Conceptual Schema-Centric Development

• Enterprise Application Architecture

Step seven of the procedure is to modify the existing frameworks to fit the objectives and
context of the research problem. To achieve the objectives listed above in a scientifically
rigorous way, the theories and practices from the knowledge base were applied in a top-
down approach starting by broadly addressing the overarching research goal of conceptual
schema-centric development and then putting it into the context of the three abstraction
levels of the MDA framework. Principles of enterprise application architecture were then
added in to break down each abstraction level into coherent architectural layers. Finally,
the principles of enterprise ontology were mapped into this framework.
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5.2 Conceptual Framework
The conceptual framework was developed following a top-down approach, whereby the
application of a broad theory to solve the research problem was bolstered by applicable,
specific theories. First, a broad theory providing principles of generating application
artifacts from enterprise knowledge was applied, known as conceptual schema-centric
development (CSCD). An elaboration of CSCD applied to the context of MDA provided
high-level requirements and principles to achieve CSCD by following MDA.

5.2.1 Conceptual Schema-Centric Development
The goal of automatically generating information systems (IS) software from enterprise
engineering models has existed since the advent of the IS in the 1960s. In [83], the
authors assign the name, conceptual schema-centric development (CSCD), to this goal.
According to CSCD, in order to generate software artifacts to support the business of an
enterprise, general information about the enterprise and the tasks which the enterprise
business performs must be captured in what is known as a conceptual schema. In order to
generate software from a conceptual schema, CSCD prescribes that a conceptual schema
must be explicit, executable, and evolving.

The core of CSCD is grounded in the following guiding principles:

• The Principle of Necessity: “To develop an information system it is necessary
to define its conceptual schema.”

• The 100 Percent Principle: “All relevant general static and dynamic aspects,
i.e. all rules, laws, etc. of the universe of discourse should be described in the
conceptual schema. The information system cannot be held responsible for not
meeting those described elsewhere, including in particular those in application
programs.”

• The Conceptualization Principle: “A conceptual schema should only include
conceptually relevant aspects, both static and dynamic, of the universe of discourse,
thus excluding all aspects of (external or internal) data representation, physical
data organization and access as well as all aspects of particular external user
representation such as message formats, data structures, etc.”

The MDA approach aligns closely with the guiding principles of CSCD, especially as
it relates to the CIM-to-PIM transformation challenge. When MDA is applied as the
approach to achieve CSCD, the PIM takes the role of the conceptual schema of the IS [83].
This is especially underscored by the 100 percent principle and the conceptualization
principle, as they reflect the need for a conceptual schema to exclude details of a particular
platform as well as the need of the conceptual schema to capture domain information of
the enterprise. Thus, the principles of CSCD were followed to guide the formulation of
MDA meta-design.
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To achieve CSCD, the conceptual schema requires information found in the domain of
the enterprise. This domain information is translated into functional information which
pertains to one of the three categories of information systems functionality: memory,
informative, and active. The purposes of these functions are to store information,
communicate information, and to process information, respectively.

The pieces of information must be captured by the domain vs. information system, as
prescribed by CSCD, are presented in Table 5.1.

Information Found in Domain Information Required in IS Conceptual Schema

• Entity and relationship types

• Derivation rules

• Integrity constraints

• Domain states

• Domain events (a state change consisting
of a set of elementary changes in instances
of entity or relationship types)

– Type
– Effect

• Information Base (state of the domain)

– Temporal or non-temporal

• Requests (commands)

– Type
– Required output

• Notifications

– Conditions
– Required output

• Inference capability

– Inference mechanism
– Derivation rules

• Actions

– Request types or generating condition
– Behaviours

Table 5.1: Requirements of conceptual schema-centric development from [83]

5.2.2 Why Enterprise Ontology?
DEMO aligns closely with the theory of conceptual schema-centric development, as
enterprise ontology focuses on the exact domain information that is required by the
conceptual schema. In fact, the notion of the conceptual schema is also central to the
theory of enterprise ontology and the DEMO method.

• Entity and relationship types are part of the DEMO fact model

• Derivation rules are expressed as part of the DEMO fact model and action model
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• Integrity constraints are expressed as imperative and declarative business rules

• The state of the domain (known as the “business world” in enterprise ontology) is
captured as original facts of the production and coordination worlds

• Domain events are expressed as event types in the DEMO fact model and action
model

A DEMO model also aligns with the working definition of a computation independent
model (CIM) of this thesis (see Section 4.2.1). A CIM is primarily concerned with the
functional details of the business of an enterprise. Specifically, the components and
behaviour of its operations activities, such as resources, actors, processes, rules, etc.
These concepts are the fundamental building blocks of enterprise ontology. As explained
in [33],

“Enterprise ontology offers a coherent, comprehensive, consistent and concise
understanding of the essence of an enterprise, fully abstracted from realisation
and implementation.”

The alignment of enterprise ontology with conceptual schema-centric development means
that enterprise ontology is an ideal theory to apply to guide the creation of CIM models
and that DEMO is suitable for modelling at the CIM level.

5.2.3 Why the Four-Layered Software Architecture Pattern?
In his seminal book, Patterns of Enterprise Application Architecture [84], Martin Fowler’s
perspective on enterprise applications follows a three-layered view of software architecture:
the presentation logic layer, the domain logic layer, and the data source logic layer. The
responsibilities of these layers are to display, manipulate, and store enterprise data,
respectively. According to Fowler,

“We can identify the three common responsibility layers of presentation,
domain, and data source for every enterprise application.”

This was found to be an ideal architectural pattern to add structure to guide the
development of a PIM, because any enterprise application, regardless of the target
platform, can be expected to exhibit elements of these three layers. Additionally, a fourth
persistence logic layer [85] was factored out from the business logic layer in order to
emphasize that information on the persistence of domain entities is not directly available
at the CIM level and therefore must be inferred. Given that the primary concern of the
PIM is to capture elements of the application architecture, the conceptual framework is
expressed in terms of both MDA and four-tier layered software architecture pattern.

44



5.2. Conceptual Framework

Figure 5.1: The MDA transformation meta-design matrix structured with the four-layered
software architectural pattern. Design concepts are captured at the relevant intersections
of different architecture layers and abstraction levels in the matrix.
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5.2.4 MDA Transformation Meta-Design
Figure 5.1 presents the conceptual framework as a meta-design to solving the research
problem, showing the arrangement of the design decisions when enterprise ontology is
put in the context of the four-layered software architecture pattern to achieve concep-
tual schema-centric development. This allowed the MDA conceptual framework to be
structured in terms of the software architecture domain. In order to bridge the semantic
gap, information captured by enterprise ontology was embedded into the business logic
layer of the layered software architecture pattern. The constructs and considerations
positioned in each cell of the matrix are based on findings from the aforementioned
background literature on enterprise ontology [33], CSCD [83], and enterprise software
architecture [84], as well as from the characteristics of the MDA abstraction levels from
Chapter 4.

Mapping constructs from the CIM to the PIM in the context of the four-layered software
architecture pattern sheds light on which layers and design decisions are applicable or out
of scope at both abstraction levels. Moreover, it makes clear critical design aspects that
may be missing when designing an MDA transformation. Where aspects are missing,
either a new view could be added, or a different modelling language could be used to
capture the missing information.

The meta-design of an MDA transformation allows for the MDA transformation to be
designed following the systems thinking approach1. This applies to the three abstraction
layers of the MDA transformation in the following ways:

• The CIM level must capture a holistic view of the construction or organization of
the enterprise, as opposed to the function or business of the enterprise.

• The PSM level must capture a holistic view of the architecture of the software that
will be generated to support business of the enterprise.

• The PIM level must capture the business requirements of the enterprise from the
CIM and express them as software requirements, components, and functionality to
be implemented by the PSM.

In order to provide a holistic view, a CIM or PIM should be composed of multiple views,
possibly expressed using different modelling languages, so that each distinct aspect of
the enterprise or software is expressed in a model that best captures its semantics [81].

As a PIM takes the role of the conceptual schema when MDA is applied to achieve
CSCD, the PIM is the key component of the MDA approach. The complexity of modern
enterprise applications necessitates that not only must a PIM capture the domain aspects
expressed in the CIM, but it must also express core computational aspects that allow for

1“Systems thinking is an approach to problem-solving, which goes hence and forth between a global,
holistic view on a system and a detailed, specific view on its constituting parts.” [33]
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the management of enterprise data and automation of business processes. We therefore
postulate that a conceptual schema not only capture structural and behavioural semantics
of domain entities, but also execution semantics. This makes explicit how behaviours are
to be computationally implemented and ensures that the generated executable artifacts
behave at runtime according to the expected behaviour as expressed in the CIM. This
is exhibited in the meta-design in Figure 5.1 at the PIM level, which introduces design
decisions pertaining to the persistence level of the software architecture.

The constructs of DEMO at the CIM level align with the business logic layer of the PIM.
The meta-design also supports the suitability of low-code as a target technology using
MDA. As discussed in Chapter 3, low-code development has been greatly influenced
by principles of model-driven engineering, and for good reason. Key to achieving the
purported benefits of low-code development – such as increased productivity and better
business-IT alignment – is the use of conceptual models. As Bock & Frank emphasize
in [40],

“Conceptual modelling components are among the most important components
of low-code platforms and one of the principal ways in which they are able to
decrease the need for traditional coding.”

With the aim of achieving the goal of CSCD, the conceptual framework in Figure 5.1
makes explicit the domain information to be captured at each MDA level and how
this information can be structured by the software architecture layers that should be
considered to generate enterprise applications implemented by low-code technology at
the PSM level. The PIM level therefore has the crucial role of extracting the domain
information from the CIM level and inferring design decisions to realize the conceptual
schema of the information system to support the enterprise and its processes.

5.3 Conclusions
The development of a meta-design, consisting of a conceptual framework composed of
foundational theories and frameworks, ensured that choices made in the design of the
MDA transformation specification, such as included elements and views at the PIM
level, are grounded in scientific rigour. In this thesis, these theories and frameworks
are conceptual schema-centric development, enterprise ontology, enterprise application
architecture, and MDA.

Conceptual schema-driven development (CSCD) provided requirements of information
that must be captured from the enterprise domain and by the conceptual schema of the
information system in order to generate software artifacts for the information system.
Given the alignments between the requirements of CSCD with the disciplines of DEMO
and enterprise software architecture, these disciplines were found to be suitable for use
in a meta-design to achieve CSCD.
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The four-layered software architecture pattern and the information captured at each
layer were framed within the context of MDA, formulating the conceptual framework to
serve as the meta-design. The meta-design thus makes explicit how information design
decisions are positioned with regards to the MDA abstraction levels and the layers of
the four-layered software architecture pattern. This makes it easily identifiable not only
what information must be present for each aspect of the software architecture, but it
also makes it distinguishable what information may be translated directly from a higher
abstraction level and what information and design decisions must be inferred.

The meta-design also provides requirements to better inform the choice of a PIM modelling
language for the DEMO to Mendix MDA transformation. Given the information to be
captured at the CIM level and the PSM level, the views and notation of the PIM level
must be able to capture all the required constructs from the CIM level and express the
structural, behavioural, and execution semantics of these constructs in a computational
sense at the business logic layer and persistence logic layer such that they can be easily
understood by humans for analysis and be passed on to the PSM level for implementation.

The conceptual framework thus served as a guide for the design sprints in the later
chapters of this thesis. The conceptual framework aided the remainder of thesis to be
scoped by targeting a subset of specific architectural layers at which DEMO could be
straightforwardly mapped to the PIM and PSM levels for transformation to a low-code
application. The next chapter discusses the preliminaries of the experimental design
sprints to realize an MDA transformation in accordance with this chapter’s meta-design.
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CHAPTER 6
Experimental Design Preliminaries

The MDA transformation mapping artifacts produced through this thesis study were
experimentally designed through agile design sprints. This chapter provides foundational
details of the modelling languages and procedure of these sprints. To keep a manageable
scope, the sprints focus on using only the DEMO fact model as the source CIM. Three
UML profiles were first experimentally explored as PIM modelling languages before
deriving a novel UML profile, pimUML, to be used as the PIM. The metamodel of the
Mendix low-code development platform was used as the target PSM. The mappings of
each sprint were demonstrated and evaluated using the Rent-A-Car academic case study.

6.1 DEMO Fact Model

The scope of the thesis design sprints focuses on the DEMO fact model (FM). The FM
captures facts constituting the state space and transition space of the production world
of the scope of interest (SoI). As such, it models the various types of P-facts which can
exist within the SoI. The FM is expressed graphically with an Object Fact Diagram
(OFD). The metamodel of the OFD of the DEMO fact model is presented in Appendix B.
Additionally, facts that are difficult to represent graphically can instead be included
textually as derived fact specifications (DFS). The FM plays a key role in capturing
the static information of the enterprise domain. In the context of the meta-design in
Figure 5.1, it specifically captures the business entities and relationships, as well as the
domain events which pertain to these entities.

The OFD captures elements of the fact model with notation elements representing various
P-fact types, such as declared and derived entities, their attributes and properties, the
events which concern these entities, and the types of values of which attributes may be.
The concrete modelling concepts that can appear in the OFD are listed in Table 6.1.
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DEMO FM Modelling Concepts
Declared entity type
Attribute type
Event type
Derived entity type (specialization of entity type with event type)
Derived entity type (specialization of entity type with derivation rule)
Derived entity type (nameless specialization of value type with event type)
Derived generalized entity type
Derived aggregate entity type
Property type
Cardinality laws
Value type - user-defined, categorical
Value type - user-defined, non-categorical
Value type - pre-defined

Table 6.1: Modelling concepts represented in the Object Fact Diagram of the DEMO FM

Event types may appear inside specialized entity types that are derived upon the state
change induced by an occurrence of the event represented by the event type. Some entity
types may be specialized upon the fulfillment of a condition specified by a derivation
rule. For example, in [33], an example is given of a Person entity being specialized as a
Student entity upon being admitted to an educational institution. The Student is
identified with their student number which is a different logical identifier than that
of the Person, which could be their name.

A peculiar type of model construct in the DEMO fact model is the nameless derived
entity which is a specialization of a value type. This construct is not documented in
the DEMO fact model in [35] nor in the GOSL syntax description in [33]. However, it
appears in the Rent-A-Car case study (see Figure 6.4). The assumption is hereby made
that the purpose of this model concept is that, since value types cannot be the domain
nor range of property types, the nameless entity type is derived from the value type upon
the occurrence of a concerning event type so that the value type may be transitively
related to another entity type.

The information captured by the FM can be effectively translated to design decisions at
the business logic layer of the PIM. Likewise, architectural decisions belonging to the
persistence logic layer of the PIM can be inferred from information captured in the FM.

Due to the complexity, textual transformations are outside the scope of this thesis.
Therefore, only elements of the DEMO fact model that are expressed with the Object
Fact Diagram (OFD) are considered in the transformation mappings from DEMO.
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6.2 UML Profiles
The Unified Modeling Language (UML) was chosen as the primary candidate conceptual
modelling language for use in the experimental designs of the PIM level for a few key
reasons. First and foremost, it is recommended for use as a PIM by the OMG [86]. This is
reflected in the results of the semi-structured literature review of this thesis, as UML was
found to be the most commonly used PIM language among the studies reviewed. Lastly,
UML is the most commonly used conceptual modelling language in the field of software
engineering, both in industry and in academia, as found in [87]. This aligns with a key
characteristic of MDA approaches found in Section 4.2.2, which is that PIM models are
most commonly used by software architects and software analysts. Therefore, it would
be beneficial to use UML in this thesis, for the sake of the proposed transformation’s
potential adoptability among software professionals and academics.

Another key benefit of UML is its ability to be extended and tailored for particular uses
through the definition of profiles [27, 86]. This allows for a selection of the most pertinent
UML diagrams and elements to be used for a particular use case.

6.2.1 Standard UML
The latest version of UML, version 2.5.1 [88], is herein referred to as “Standard UML”, as
it contains all elements of the standard version of UML. In this sprint, all UML diagrams
and elements were considered for use as target elements being transformed from the
DEMO FM.

6.2.2 Executable UML (xUML)
Executable UML, stylized as xUML, is an executable UML profile first proposed by
Stephen Mellor in his book, Executable UML: A Foundation for Model-Driven Architec-
ture [89]. It prescribes the use of the UML state machine diagram and action language
to capture the execution semantics of domain entities modelled in a UML class diagram.

6.2.3 Foundational UML (fUML)
Foundation UML, stylized as fUML, is an executable UML subset published and main-
tained by the OMG [90]. It is similar to xUML in that it is focused on capturing
execution semantics of applications. It also includes an action language, known as Alf,
for the purpose of precisely defining execution semantics. It differs from xUML in that it
prescribes the use of activity diagrams for graphically expressing entity behaviours.

6.3 Mendix
Mendix is a low-code application development platform owned and maintained by Siemens.
A Mendix application consists primarily of four different components which realize the
application architecture. These are pages, domain models, microflows or nanoflows, and
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Figure 6.1: The layered runtime architecture of Mendix applications, adopted from [94]

workflows. Application logic is implemented by microflows and workflows which are
interpreted at runtime. The data source logic is handled by a built-in HyperSQL (HSQL)
database when deployed locally or by a PostgreSQL database when deployed in the
Mendix cloud environment [91, 92]. Alternatively, if the Mendix app is deployed in an
external environment, an independent database management system must be used. Such
database management systems supported by Mendix currently include, among others,
PostgreSQL, MySQL, and Oracle Database [93].

The Mendix runtime engine interprets the logic from the domain model and the microflows
at runtime and produces database tables and web pages from the domain model and page
files, respectively. The runtime architecture of Mendix applications, shown in Figure 6.1,
illustrates how the key components of Mendix applications support each other, mapped
to layers which are very similar to those presented in Figure 5.1.
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6.4 Rent-A-Car Case Study
The designs of the transformation of this thesis are demonstrated with the Rent-A-Car
academic case study from [95] which is used to demonstrate approaches of conceptual
modelling, as well as business process modelling1.

Rent-A-Car (RAC) is a rental car company that rents cars for both personal and
commercial use. RAC operates 50 branches across Europe, offering customers the
convenience of returning the rental car at a different location than they picked it up, if
they wish. Customers can either rent a car on demand at one of the RAC branches or
they can reserve online, by email, or by phone, specifying their desired rental starting day
and ending day. However, the starting day must fall within the rental horizon, which is
200 days in advance, and the rental duration must be equal to or less than the maximum
rental period of 10 days. The rental horizon and maximum rental period may change
from year to year. Additionally, there are extra fees for returning the car at a different
location than was agreed on in the contract and for returning the car late – these fees
are also updated on a yearly basis.

Figure 6.2: The first section of the Object Fact Diagram of the DEMO fact model for
Rent-A-Car, adapted from [95].

RAC also offers the flexibility of allowing different persons to be included in a rental
as the renter, the rental deposit payer, the final invoice payer, or the driver. As part
of the rental form, the person who is to be the driver must provide information from

1The Rent-A-Car case study is a simplified version of the popular EU-Rent case study from [96].
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their driver’s license, such as its expiration date. Once the rental request form has been
completed and submitted with the aforementioned information, an employee is assigned
to complete the rental request.

RAC offers a wide assortment of cars for rent; each being categorized as part of a car
group with other cars of similar features. All cars within a car group have the same daily
rental rate and the same deposit amount, which are updated on a yearly basis.

The above details of the rental parameters are captured as entities, attributes, properties,
and events in the fact model as an OFD in Figure 6.22.

The rental order is approved as soon as the deposit amount is paid by the rental deposit
payer, at which point a car is assigned to the rental. The rental begins as soon as the car
is taken from the agreed upon pickup branch.

Once the rental car is returned to an RAC branch, the final invoice amount is calculated
as the rental duration times the rental rate plus any applicable fees if the car was returned
late or if the actual return branch is different than the agreed upon return branch.

Once the invoice amount is paid, the rental is then complete.

The details on the phases of the rental are captured as entities in a second section of the
OFD of the RAC fact model in Figure 6.3.

Finally in order to make sure that there are enough cars available for rent at each branch,
cars must be periodically transported between branches by RAC employees. These
transports are scheduled to be carried out daily, being managed by a different employee
each day.

The details of the transport jobs are captured as in the third section of the OFD of the
RAC fact model in Figure 6.4.

2The CarGroup enumeration contains no values due to a nuance of DEMO: custom categorical value
classes only receive their category values upon model instantiation and are therefore not present in the
schema illustrated by the Object Fact Diagram.
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Figure 6.3: The second section of the Object Fact Diagram of the DEMO fact model for
Rent-A-Car, adapted from [95].
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Figure 6.4: The third section of the Object Fact Diagram of the DEMO fact model for
Rent-A-Car, adapted from [95].
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6.5 Structure of the Agile Design Sprints
Following the agile design science research methodology (ADSRM), five agile design
sprints were undertaken to design the mappings of the MDA transformation from DEMO
to Mendix. For the first three initial experimental design sprints, the DEMO fact model
was fixed as the source modelling language and the candidate UML profiles, discussed in
Section 6.2, were varied as the target modelling language. A hardening sprint was then
conducted, through which the strongest findings of the first three sprints were synthesized
to design mappings to a novel UML profile, pimUML. In the final design sprint, pimUML
was used as the source model and was mapped to Mendix artifacts.

The three initial agile design sprints (AS1, AS2, and AS3) each produced the experimental
CIM-to-PIM transformations, the hardening sprint (HS) produced the CIM-to-PIM
transformation to pimUML, and the final agile design sprint (AS4) produced the PIM-to-
PSM transformation to Mendix. The next five chapters detail these design sprints:

1. AS1 – DEMO Fact Model to Standard UML

2. AS2 – DEMO Fact Model to xUML

3. AS3 – DEMO Fact Model to fUML

4. HS – DEMO Fact Model to pimUML

5. AS4 – pimUML to Mendix

The design procedure of each sprint follows the following procedure (based on the
procedures proposed in [22, 23]):

Step 1: Setting the mapping context
The sprint’s target modelling language is assessed to select which of its sub-models
are suitable for capturing the structural, behavioural, and execution semantics of
the modelling concepts of the DEMO fact model.

Step 2: Understanding the similarities and differences
Given the sub-models selected in Step 1, the compatibility of these models with
the various aspects of the sprint’s source modelling will be briefly discussed.

Step 3: Approaching the metamodel of the target modelling language
An overview of the relevant parts of the metamodel of the sprint’s target modelling
language is undertaken to identify elements and links to use in the transformation
mappings.
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Step 4: Determining specific mappings
The non-trivial mappings between the sprint’s source modelling language and target
modelling language are established and detailed.

Step 5: Determining the complete mapping
The complete mapping from the sprint’s source modelling language to the target
modelling language is designed in a tabular form, including both trivial and non-
trivial mappings.

This procedure yields a series of transformation mappings, presented in a tabular format.
These mappings consist of matched pattern rules, matching input patterns of model
elements from input models of the source modelling language and producing model
elements in the target modelling language according to corresponding output patterns.
Some rules may also include references to helper functions that could be implemented to
assist with the transformation of values. As these transformations are between modelling
languages of different families, the resulting transformations are therefore exogenous,
out-place transformations [10].

The transformations in this thesis were manually demonstrated and evaluated; however,
the transformation mapping rules are assumed to be executed in sequential order, from
the top of the table to the bottom. Additionally, it is assumed that each rule can access
and modify outputted model elements generated by earlier executed mapping rules.

Together, the resulting CIM-to-PIM mappings from the hardening sprint and the PIM-
to-PSM mappings from the final design sprint constitute the main artifact of this thesis:
a full MDA transformation specification from the DEMO fact model to Mendix.
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CHAPTER 7
AS1: DEMO FM to Standard

UML

This chapter details the first design sprint, which aimed to map the DEMO fact model
(FM) to the current version of UML, referred to in this thesis as Standard UML.

7.1 Design
The Unified Modeling Language (UML) is a general-purpose modelling language which is
commonly used for object-oriented modelling [88, 97]. Since its introduction in 1997, UML
has evolved into a highly expressive and powerful general-purpose modelling language
and is capable of modelling complex object structures and complex processes. As such,
UML has grown into the most commonly used modelling language by software engineers,
both in industry and in academia [98, 87].

7.1.1 Step 1: Setting the mapping context
Object orientation is primarily concerned with modelling systems from the perspective of
classes and objects and how the instantiated objects of a system behave at runtime. The
current version of UML consists of 14 different diagrams, each offering a different view of
the structural or behavioural aspects of the system. Some of these diagrams are used to
model the structure and behaviour of objects. Three of the most important and most
commonly used of these [97] are the following:

• Class diagram

• State machine diagram

• Activity diagram
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Structural Semantics

The most important UML structural diagram is the class diagram. Heavily based on
the notions of conceptual modelling, the class diagram models the domain elements, the
relationships between these elements, and the resulting data structures of the system.
Classes consist of attributes, operations, and associations to other classes or themselves.
Using generalization links, classes can also be organized into hierarchical structures, in
which higher-order classes are referred to as generalizations and lower-order classes are
referred to as specializations. Objects always have states, which are defined in terms of
sets of values of the object’s attributes at runtime. To capture the behavioural semantics
of objects, the states of an object and the transitions between them are modelled using
the UML state diagram.

Behavioural Semantics

The UML state machine diagram captures the behavioural semantics of objects. Using
the notions of automata theory, the lifecycle of an object is modelled as the states which
an object can assume over its lifecycle [97]. Over an object’s lifecycle, the state of the
object changes in response to events which trigger state transitions. The effects that
these events have on the object, in terms of state transitions and operations invoked
as an effect of state transitions, is the object’s behaviour. Such operations are called
transition effects. Not only does the state machine show the permissible behaviour of
objects, but it also can express conditional constraints on this behaviour through the use
of Boolean guard conditions on state transitions.

Execution Semantics

While the state machine diagram depicts the transitions between object states, the UML
activity diagram can be used to express how the change of state is realized. As an object’s
state is defined by the values of the object’s attributes, the activity diagram can be
used to model the step-by-step algorithmic process of an operation that is executed to
change such attribute values to realize the state change. Activities can also express side
effect processes, such as CRUD operations, to be executed as a result of a state change.
The elements in the activity diagram of which these processes are composed are actions,
events, parameters, control flows and object flows.

Actions are the atomic processing steps of activities. They work by accepting input
values, processing those values, and outputting output values. These values are passed
between the actions of an activity via object edges. The UML specification includes
several pre-defined executable actions, such as object creation and variable modification
actions. Additionally, an action can be user-defined or can refer to another activity that
itself is composed of other actions.

Constraints also provide important execution semantics by imposing rules on how the
system should behave at runtime [89]. To specify model constraints, the OMG created
the Object Constraint Language (OCL) [99]. OCL is a formal language for writing
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expressions, based on predicate logic. These expressions can be used to query the
objects in a model and to specify constraints to restrict an object’s permissible attribute
values and relationships. A model can then be evaluated to validate whether or not the
model’s objects adhere to these constraints. As OCL is a formal language, the benefit
of using OCL, as opposed to natural language, is that OCL expressions are expressed
unambiguously.

7.1.2 Step 2: Understanding the similarities and differences
The closest similarity between the DEMO fact model and the chosen set of UML diagram
is with the UML class diagram. As both models have their roots in conceptual modelling,
they overlap nicely, and many elements from the DEMO fact model can therefore be
trivially mapped to corresponding elements of the UML class diagram.

The largest difference between the DEMO fact model and the chosen set of UML diagrams
is that the DEMO fact model models structural semantics of business entities while
excluding any sort of behavioural semantics. As expressed in Chapter 5, in order for
business entities to be implemented in a runtime environment, they require CRUD
operations to support their creation, destruction, and modification. Moreover, it must be
explicit how such operations are invoked in response to the occurrence of certain events.
As such, the UML activity diagram was used to capture the algorithmic processes of the
CRUD operations of entities and the UML state machine diagram was used to specify
the behaviours and state changes of entities.

7.1.3 Step 3: Approaching the metamodel of the target modelling
language

The metamodel of Standard UML was analyzed to determine the elements which could be
feasibly used to capture semantics from corresponding elements of the DEMO fact model.
The full UML metamodel can be found in the publicly available UML 2.5.1 specification
documentation [88].

7.1.4 Step 4: Determine the specific mappings
Explanations behind non-trivial mappings presented in Table 7.1 are discussed below.

i. Declared entity type
A declared entity in DEMO can be trivially translated to a class in UML. Each
class has a logical identifier of the data type integer. Although this is not a property
directly translated from an attribute type in the DEMO FM, it is added in to
ensure data integrity, enabling a logical link between object instances with the
event instances which resulted in the objects’ creation.
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ii. Derived entity type
Derived entities are also translated to classes in UML. Differing from the mapping
of declared entities, derived entities do not require a logical identifier, as this is
inherited from the original declared entity from which the derived entity is (possibly
transitively) derived. Alternatively, if the derived entity is an aggregate entity, it
can receive multiple logical identifiers – one from each of its component entities.

iii. Event type
An event type in DEMO represents the acceptance C-act of a transaction and a
creation of a new P-fact, resulting in a change of state of an associated entity. To
capture the structural semantics of this, the state of an object is captured as a
Boolean attribute in the class diagram and can therefore be accessed at runtime.
The two values of the Boolean are represented as states in an orthogonal region in
a state machine.
A transition between the states with the transaction kind as the trigger captures
the behavioural semantics of the event type. Execution semantics are captured as
an activity that updates the value of the Boolean when executed, realizing the state
change. These regions are orthogonal as to allow for the object to be in multiple
states at once, as is implied by the structural semantics of the DEMO fact model.
This also does not enforce any such ordering on the state transitions, which is
important as there are no such orderings imposed by the Object Fact Diagram of
the DEMO fact model.
To capture the execution semantics, an activity diagram is used. This activ-
ity diagram consists of three key elements. First, upon operation invocation,
a ReadSelfAction places the context object of the activity – being the con-
text object of the state machine that invoked the operation, thus being an en-
tity object from the class diagram – on the action’s output pin. Next, an
AddStructuralFeatureValueAction sets the Boolean attribute represent-
ing the event type in the object to true. This effectively realizes the state change
in the entity object.

iv. Specialization of entity type with event type
Instances in DEMO, known as things, can belong to a certain type as soon as it
conforms to the description of that type. If the thing conforms to the descriptions
of multiple types, then the thing belongs to multiple types at the same time. In
UML, these semantics can be captured using the generalization set {incomplete,
overlapping}. Incomplete specifies that an instance of the generalization hi-
erarchy does not have to belong to one of the more specific classifiers; rather, it
can belong to the general classifier. Overlapping specifies that an instance can
be of multiple specific sibling classifiers at the same time. Therefore, with this
generalization set, an instance can be of a supertype or of the supertype and one or
many of its subtypes [88]. As an effect of this, the specialized classes do not require

62



7.2. Demonstration

their own logical identifiers, as any instance of these classes are simultaneously an
instance of the subtype and the supertype, and thus the identifier attribute and its
value are inherited from the supertype.

v. Specialization of value type with event type + Property type
Given the semantics behind this construct, a UML association class is used to
represent this concept in the PIM. As the derived entity would have been transformed
to a class through the rule realizing Definition ii., this class should be replaced with
an association class. The property type is then transformed into the association
represented by the association class. As this construct is contains a derived entity
with an event type, a state machine is also created to capture the entity’s behavioural
and execution semantics in the PIM.

vi. Specialization of entity type with derivation rule
Such specializations in DEMO do not begin to exist when a transaction has
completed, but when a fact unrelated to a transaction comes into existence. These
types of specializations are accompanied by a derivation rule which specifies the
conditions of a thing conforming to the specialized type. A generalization set is
still used to capture this, as it still nicely captures the is-a semantics. However,
the derivation rule is captured as an OCL constraint stating the logical condition
that an instance must fulfill in order to become the associated type.

7.1.5 Step 5: Determining the complete mapping
Table 7.1 presents mappings from elements of the DEMO FM (OFD) to UML, with an
ID code for each mapping. The descriptions in Step 4 provide the intuition behind the
non-trivial mappings.

7.2 Demonstration
In this section, the experimental CIM-to-PIM mapping from the DEMO FM to Standard
UML presented in Table 7.1 is demonstrated using the Rent-A-Car (RAC) case study
(see Section 6.4).

7.2.1 RAC Standard UML Class Diagram
The UML class diagram of Rent-A-Car is presented in Figure 7.1. Each entity of
Rent-A-Car is represented as a class in the pimUML class diagram. The value classes
{YEAR} and {DAY} become custom data types while {CAR GROUP} becomes an enumer-
ation. The specializations of Rental, namely TakenRental, DepositPaidRental,
ReturnedRental, and InvoicePaidRental, are related to Rental through a gener-
alization set {incomplete, overlapping}. The semantics of this is that an instance
of Rental can simultaneously also be an instance of any number of the specializations
of Rental. The Aggregation Entity Type {CAR GROUP}*{YEAR} becomes its own
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ID DEMO FM Standard UML
A1 Value type - user-declared, categorical Enumeration (class diagram)
A2 Value type - user-declared, non-categorical User-defined data type (class diagram)

A3 Declared entity type
Class (class diagram)
Logical identifier (class diagram)
State machine (state machine)

A4 Derived entity type Class (class diagram)
State machine (state machine)

A5 Attribute type [Derived] Attribute (class diagram)

A6 Event type

Boolean attribute (class diagram)
Orthogonal region for corresponding Boolean (state machine diagram)
Initial node (state machine diagram)
False state and true state (state machine diagram)
Transition from initial node to false state [t1] (state machine diagram)
Transition from false state to true state [t2] (state machine diagram)
Trigger and effect behaviour expression on transition t2 (state machine diagram)
Set<Entity><Event> activity (activity diagram)

A7 Specialization of entity type with event type Generalization set {incomplete, overlapping} (class diagram)

A8 Specialization of value type with event type Association class (class diagram)Property type

A9 Specialization of entity type with derivation rule Generalization set {complete, overlapping} (class diagram)
OCL expression (class diagram)

A10 Generalization Generalization with abstract parent (class diagram)
A11 Aggregation Aggregation (class diagram)

A12 Property type Association (class diagram)
Cardinality laws Multiplicities (class diagram)

Table 7.1: Experimental mapping from the DEMO Fact Model to Standard UML

class CarGroupByYear to which its component classes and data types are related via a
shared aggregation relationship (except for the enumeration). This class is identified by
a compound identifier consisting of its CarGroup value and Year (as Year is a data
type, it is additionally represented as a String for instance identification purposes). The
states of the entities are made explicit at runtime with the use of the Boolean attributes
for the Event Types.

The nameless Derived Entity Type that is a specialization of the Value Type {DAY} is
represented in the class diagram as an association class named DayEmployee. This
name reflects the semantics that {DAY} is the domain of the association and Employee
is the range. The Property Type that relates this nameless Derived Entity Type to
Employee is directly attached to the Day data type and the Employee class in the class
diagram, and DayEmployee describes this relationship.

The property types in the fact model are translated as directed associations, and as the
cardinality laws are not specified in the fact model of RAC, the OFD defaults of 0..* on
the domain side and 1..1 on the range side are used.

7.2.2 RAC Standard UML State Machine Diagram

Each class in the class diagram – including association classes – has a corresponding state
machine that shows the possible state changes of those entities in response to business
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Figure 7.1: UML class diagram of Rent-A-Car

events, which in the case of DEMO are transaction kind accept C-acts. Figure 7.2 shows
the UML state machine diagram for the Rental class.

Each region has two states: one representing that that Boolean is false and one represent-
ing that the Boolean is true. As the default value of each of these Boolean attributes is
false, the false state is immediately entered after the initial node. The transition between
the false state and the true state contains key behavioural elements: the transition trigger
and the transition effect.

The transition trigger corresponds to the transaction accept event which results in the
creation of the corresponding P-fact. The event is therefore identified by the transaction
number, as well as the “TK” prefix denoting it as a Transaction Kind and the “ac” suffix
denoting it as an accept C-event. The transition effect links the behavioural semantics
with the activity diagram capturing the execution semantics. That is, each activity
depicts the actions which much be executed to realize the state change in the system;
specifically, changing the value of the Boolean attribute. For example, in the event that
the deposit of an instance of Rental has been paid, this is realized in the system as
the accept event of a transaction of transaction kind 04. Setting depositPaid
Boolean attribute of the Rental object to true and creating the corresponding instance of
DepositPaidRental are handled by the RentalDepositPaid operation referenced
by the transition effect behaviour expression.
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Figure 7.2: UML state machine diagram of the Rental class of Rent-A-Car

7.2.3 RAC Standard UML Activity Diagram
For each operation referenced by the effect behaviour expressions of the transitions within
the entity state machines, a UML activity diagram is used to illustrate the computational
steps invoked to execute the operation. Each activity is composed of predefined UML
actions, the semantics of which are defined in the UML specification documentation [88].

Figure 7.3 shows the UML activity diagram of the operation RentalCompleted. As the
activity is owned by the state machine of the Rental object, the activity inherits this as its
context object from the state machine, which also has is the Rental object as its context
object. This means that the first action invoked in the activity — ReadSelfAction

— can directly access on the context object and place it on its output pin. The object
is then passed to the AddStructuralFeatureValueAction which also takes in the
value true, which is an alias for a ValueSpecificationAction, and assigns the
value true to the completed Boolean attribute of the Rental object. This effectively
completes the state change of the Rental object, and the activity is finished.

Figure 7.4 shows the slightly more complex UML activity diagram of the operation
RentalDepositPaid. This operation has the dual responsibility of changing the state
of the Rental object and specializing the Rental object as a DepositPaidRental.
The process to change the value of the depositPaid attribute of the Rental ob-
ject is the same as the processed described above for Figure 7.3. The additional
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Figure 7.3: UML activity diagram of the RentalCompleted operation of Rent-A-Car

Figure 7.4: UML activity diagram of the RentalDepositPaid operation of Rent-A-Car

step is the ReclassifyObjectAction which is assigned to add the classifier of
RentalDepositPaid to the list of classifiers which classify the input object. In
effect, the Rental object then becomes an instance of both the Rental class and the
DepositPaidRental class. Once this action has completed, the operation is also
finished.

7.3 Evaluation

The experimental transformation design from DEMO FM to Standard UML was evaluated
in two ways. First, it was quantitatively evaluated by assessing the semantic completeness
and correctness of the transformation applied to the Rent-A-Car case study. Second, it
was qualitatively evaluated with respect to the key strengths and weaknesses of using
Standard UML as a PIM to capture and communicate the semantics of the Rent-A-Car
case.
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7.3.1 Model Semantic Completeness
The semantic completeness of the DEMO FM to Standard UML transformation is first
evaluated against the Rent-A-Car case. The domain semantics captured in the DEMO
fact model were extracted from the model elements and listed as domain fact statements
through the verbalization process described in [33]. These facts were taken as the ground
truth of the domain. Second, each fact statement was checked to determine if the
semantics were adequately captured and communicated at the PIM level. The number
of correctly preserved fact statements of the UML PIM was aggregated for each of the
major model concepts (see Appendix G for the full results). The aggregated results are
presented in Table 7.2.

DEMO FM Concept # fact statements in DEMO FM # preserved statements in UML
Entity Types 12 12
Value Types 3 3
Event Types 14 14
Attribute Types 42 42
Property Types 42 42

Table 7.2: Semantic completeness of the Standard UML PIM against the Rent-A-Car
case study

All fact statements were deemed to have been sufficiently preserved in the Standard UML
PIM.

7.3.2 Standard UML PIM Strengths
The identified strengths of using Standard UML as a PIM for the Rent-A-Car case study
are listed below.

1. Full suite of UML models and elements available. This approach freely
uses any UML elements from any diagrams which could possibly be used to
capture domain and execution semantics from the CIM level. To ensure the
understandability of the class diagram, the elements of the UML class diagram
that are used in the PIM were selected primarily on the basis of capturing and
communicating both domain semantics and the structural semantics of the DEMO
FM. The element that best demonstrates this is the generalization set. The
generalization set construct nicely captures the particular structural semantics of
specialized types in the DEMO fact model. The generalization set {incomplete,
overlapping} makes it clear that a Rental can be a DepositPaidRental
or TakenRental, or both at the same time, or neither of them.

2. Similar structural semantics as the DEMO fact model. Many of the UML
class diagram modelling concepts are very similar to the modelling concepts of the
object fact diagram, allowing like model elements between the CIM and PIM levels
to be identified easily.
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3. Behavioural semantics are well captured. State machines create good visual-
izations of the behavioural semantics of the entities in response to events. The use
of orthogonal parallel regions reflects that the entity can be in multiple states at
once, and the transitions clearly show how the entities react in response to business
events.

4. Execution semantics are well illustrated. Activities nicely visualize the
algorithmic procedure of the operations that realize the execution semantics of
state changes.

7.3.3 Standard UML PIM Weaknesses
The identified weaknesses of using Standard UML as a PIM for the Rent-A-Car case
study are listed below.

1. Missing or vague semantics makes inhibits model execution. For example,
in the state machine diagram, the transition effect label specifies the corresponding
activity using a behaviour-expression. However, the exact syntax expected for this
behaviour-expression is not provided. Rather, according to the Standard UML
documentation it is open to being "vendor-specific or some standard language" [88].

2. The use of ReadSelfAction is not platform-independent enough. This
action assumes that behaviour depicted in the activity diagram belongs to an object
of a certain class. This assumption means that the context object could then be
retrieved in the target platform by using a corresponding keyword, such as "self" or
"this". However, this does not fit well in the case of platforms such as Mendix, in
which the behaviours (expressed as microflows) do not belong necessarily to any
particular object instance.

3. Generalization Sets nicely capture domain semantics from the CIM
level, but they do not express execution semantics very well. The model
does not clearly show how the implemented constrains and relationships between
parent and child objects would vary depending on the modelled generalization set.
Execution semantics are difficult to extract from a generalization set. For example,
to implement the {incomplete, overlapping} generalization set, multiple
classification must be possible in the target platform. If a platform does not allow
this, it is not immediately clear how the construct could be otherwise implemented.

7.4 Conclusions
In this chapter, an experimental CIM-to-PIM mapping from the DEMO fact model as
a CIM to Standard UML as a PIM was designed, demonstrated, and evaluated. As a
general-purpose modelling language, the many constructs of UML make it very well suited
to capture the domain semantics of the DEMO fact model, particularly the structural
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and behavioural semantics of the domain being modelled. Where it has shown to lack is
with regards to execution semantics. Although the evaluation shows that a high degree
of domain semantics was able to be captured by the UML PIM, it is not clear how some
of the constructs used could be easily transformed into PSM constructs.
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CHAPTER 8
AS2: DEMO FM to xUML

This chapter details the second design sprint, which aimed to map the DEMO fact model
(FM) to Executable UML (xUML).

8.1 Design
Executable UML [89] – also known as xUML – is an executable UML profile with
the objective of ensuring that models capture precise execution semantics while still
remaining platform independent. This is done by prescribing that each entity in the
UML class diagram has a corresponding UML state machine diagram to capture the
entity’s behaviour over its lifecycle.

8.1.1 Step 1: Setting the mapping context
xUML ensures that the behavioural semantics of classes and associations are captured
explicitly. For this purpose, state machines are used in xUML exclusively to model
object lifecycles [100]. Each state in a state machine has a set of procedures, comprised
of actions, that captures the execution semantics of the state changes. In other words,
procedures define the actions that are undertaken to realize an object’s change of state.
These procedures are expressed in action language. Together, the class diagram, state
machine diagrams, and procedures capture rich enough structural, behavioural, and
execution semantics such that they are together computationally complete. Moreover,
since xUML leverages the expressive power of UML, xUML models are not only executable
by machines, but they are also comprehensible to humans [89].

Structural Semantics

Just like with Standard UML, in xUML, the class diagram is primarily used to capture
the structural semantics of the application, modelling the data of the application. As
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such, the class diagram in xUML is referred to as the application domain model. Domain
models are thus expressed using classes and attributes, associations, and constraints.

One aspect in which xUML adds to the existing semantics of UML is with regards to
data types. xUML core data types include the default UML primitive data types, as well
as additional data types which would be pertinent to model execution. These are the
date, timestamp, and identifier data types. The whole selection is presented in Table 8.1.

Core Data Type Description
boolean binary value true or false
string a sequence of characters
integer whole number
real decimal number
date calendar date and clock time
timestamp clock time
arbitrary_id an arbitrarily assigned identifier value

Table 8.1: xUML Core Data Type descriptions from [89]

If there is no direct matching data type in the list above for a specialized data type from
the CIM, xUML recommends creating a domain-specific data type instead.

A key distinguishing aspect of the class diagram in xUML is its differentiation between
implicit and explicit object identifiers. For object-oriented environments, each object
must be uniquely identified by the runtime environment. However, this identifier is
implicit in the sense that is created, is accessed, and is only meaningful to the runtime
platform itself. It is therefore semantically insignificant from the perspective of the
domain. In order to better ensure the data integrity of the domain semantics, xUML
prescribes that each entity in a domain model have a unique, explicit, and semantically
relevant identifier that is clearly indicated in the class diagram, denoted by {I}. An
identifier in xUML can be a single attribute identifier, a multiple attribute identifier, or
a compound identifier that includes referential attributes.

Referential attributes are unique to xUML. These attributes automatically receive their
values from the identifier attribute of a related class, much like foreign keys in a database.
They are not mandatory in xUML, but including them in the class diagram adds structural
and execution semantics by clearly indicating which entity attributes receive their values
from an object of an associated entity at runtime. The notation of referential attributes is
similar to that of identifiers, taking the form of {Rn}, where n is the identifying number
of the association over which the attribute receives its value.

Lastly, xUML imposes strict restrictions on the use of generalization relationships in class
diagrams. Namely, superclasses must be abstract, and the generalization set {disjoint,
complete} applies to all generalization hierarchies.
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Behavioural Semantics

The key technique through which xUML captures the behavioural semantics of domain
entities is by modelling their lifecycles. The states and transitions of a state machine
diagram describe the entity’s behaviour as its progresses through different stages in
response to domain events. The stages are represented as states and the domain events
are represented as transitions between states.

The xUML state machine diagram models the control of the application. xUML state
machines consist of states, events, transitions, and procedures. While states, events,
and transitions capture the state of the domain and the possible state changes, states
themselves also contain procedures that express precisely what happens to the entity’s
attributes or relationships to realize a state change, including object creation and deletion.

Execution Semantics

“By formalizing behavior as actions in procedures, we make the procedures,
the state machines, and so the entire domain model, executable.”
∼ Executable UML [89], Chapter 10

To capture the execution semantics of behaviours, each state in an xUML state machine
diagram includes an entry activity which is expressed as a procedure, written in action
language. The entry activity is invoked as soon as the state is entered. The procedure
specifies the operation that is to be executed in order to realize the state transition in the
system. The procedures of the states in the xUML state machine are composed of actions.
Actions are primitive units of computation, the semantics of which were originally defined
in the OMG Unified Modeling Language Action Semantics Specification1 [89]. xUML
relies on these action semantics to provide the execution semantics of xUML models,
thus making them computationally complete. Actions can create and delete objects,
access object attributes and other objects via links, transform data, and perform other
general computations. As such, procedures and their actions model the algorithms of the
application. In relation to the MDA meta-design (see Figure 5.1), these algorithms are
applicable to both the business logic layer and the persistence logic layer of the PIM to
perform business computations and CRUD operations, respectively.

Actions in xUML are expressed using action language. Action languages are formal
textual modelling languages, expressed using natural language, which specify the effects
of actions [101]. They are highly abstract and are therefore platform independent.
Originally, the BridgePoint Action Language2 was used in xUML [89]. Today, there are
many different action languages that are compatible with xUML [100].

1The specification of the Action Semantics for UML 1.4 can be found at https://www.omg.org/
cgi-bin/doc?ptc/02-01-09

2The syntax specification of the BridgePoint Action Language can be found at http://www.ooatool.
com/docs/BPAL97.pdf
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Constraints are also fundamental concepts that provide execution semantics to xUML
models. Constraints in xUML are written primarily in OCL; although, action language
may be used as well. They provide execution semantics in the form of Boolean expres-
sions, providing explicit logical rules to runtime environments to ensure data integrity.
Constraints are used to add execution semantics to elements of the class diagram, such as
identifiers, unique attributes, referential attributes, and derived attributes. [89] provides a
list of general OCL constraint patterns, known as constraint idioms, which are commonly
used in xUML models.

8.1.2 Step 2: Understanding the similarities and differences
The largest similarity between DEMO and xUML is the common prominent influence of
both automata theory and conceptual modelling. The largest difference is with regards
to how xUML includes constructs to explicitly capture execution semantics, which are
not present in DEMO FM. As such, in order to transform DEMO FM models to xUML
models, design decisions in which these constructs are used must be inferred from the
domain semantics provided by the CIM.

8.1.3 Step 3: Approaching the metamodel of the target modelling
language

xUML itself has no published metamodel [100]. However, xUML is based on UML version
1.4, and so its metamodel is loosely taken as the metamodel for xUML.

8.1.4 Step 4: Determine the specific mappings
Explanations behind non-trivial mappings presented in Table 8.2 are discussed below.

i. Declared entity type
As with Standard UML, a declared entity in DEMO is translated to a class in
xUML. Each declared entity has a logical identifier, of the data type integer, which
not only identifies the entity itself, but is also used to relate instances of the declared
entity to its child instances of derived entities. A state machine is also created
to capture the behavioural and execution semantics of the entity state changes in
response to events.

ii. Derived entity type
Similar to Definition i., except that derived entities have compound identifiers to
capture the is-a semantics by placing a constraint that the identifier of the object
of the class representing the derived entity gets its value from the object of the
class representing the parent entity from which the child instance was derived.
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iii. Event type
The class of the entity that the event type concerns receives a Boolean attribute
(the default value of which is false) to represent the event type, capturing the
structural semantics. The behavioural semantics are captured by a state and
incoming state transition in the entity’s state machine diagram. The execution
semantics are captured by an entry activity procedure, consisting of an action
language command that sets the corresponding Boolean attribute to true. The
syntax of this command is stated below:

<object reference>.<attribute name> = true;

iv. Specialization of entity type with event type
Special consideration was made to properly capture the behavioural and execution
semantics of the specialization of an entity with an event type, both at the business
logic layer and at the persistence logic layer. The behavioural semantics of this
modelling concept is that in response to an occurrence of the event type, the entity
which the event type concerns must undergo a change of state, and an object of the
specialized entity type must be instantiated. To realize the execution semantics
of this, an entry activity procedure is used as in the state representing the event
type. In this procedure, a create object action handles the instantiation of
the specialized entity type, a write attribute action sets the event Boolean
in the parent entity to true, and a create link action links the object of the
specialized entity to the object of the entity from which it was derived. The syntax
of these commands is stated below:

create object instance <object reference> of <class>;
<object reference>.<attribute name> = <expression>;
relate <object reference> to <object reference>

across <association>.’<verb phrase>’;

v. Specialization of value type with event type + Property type
Given the semantics behind this modelling construct, the association class construct
in xUML is used to represent this concept in the PIM. The property type is then
transformed into a role on the association represented by the association class.

vi. Specialization of entity type with derivation rule
The derivation rule can be captured as an OCL constraint expression in the xUML
class diagram. However, the derivation rule itself is expressed as part of the derived
fact specifications and does not appear explicitly in the object fact diagram. It
therefore falls outside the scope of this thesis and is not explored any further.

75



8. AS2: DEMO FM to xUML

vii. Property type

Instead of the names of property types being represented as association labels in
xUML, they are instead represented as the role names on the side of the property’s
range. This is to retain the navigation direction semantics, as associations in xUML
do not have navigation adornments.

8.1.5 Step 5: Determining the complete mapping

Table 8.2 presents mappings from elements of the DEMO FM (OFD) to xUML, with an
ID code for each mapping.

ID DEMO FM xUML
A1 Value type - user-declared, categorical Domain-specific enumerated type (class diagram)
A2 Value type - user-declared, non-categorical Domain-specific data type (class diagram)

A3 Declared entity type
Class (class diagram)
Logical identifier (class diagram)
State machine (state machine)

A4 Derived entity type
Class (class diagram)
State machine (state machine)
Two logical identifiers, integer attribute and link to parent (class diagram)

A5 Attribute type Attribute (class diagram)

A6 Event type
Boolean attribute (class diagram)
State and transition (state machine diagram)
Procedure to change state (state machine diagram)

A7 Specialization of entity type with event type Association with referential attribute constraint {I , Rn} (class diagram)
Procedure to change state and create new derived entity instance (state machine diagram)

A8 Specialization of value type with event type Association class (class diagram)
Property type Association (class diagram)

A9 Specialization of entity type with derivation rule Association with parent attribute (class diagram)
OCL constraint on association (class diagram)

A10 Generalization Generalization with abstract parent (class diagram)
A11 Aggregation Association (class diagram)

A12 Property type Association (class diagram)
Cardinality laws Multiplicities (class diagram)

Table 8.2: Experimental mapping from the DEMO Fact Model to xUML

8.2 Demonstration
In this section, the experimental CIM-to-PIM mapping from the DEMO FM to xUML
presented in Table 8.2 is demonstrated using the Rent-A-Car (RAC) case study (see
Section 6.4).

8.2.1 RAC xUML Class Diagram

The xUML class diagram of Rent-A-Car is presented in Figure 8.1. Each entity of Rent-
A-Car is represented as a class in the xUML class diagram. The value classes {YEAR}
and {DAY} become custom data types, while {CAR GROUP} becomes an enumeration.
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Figure 8.1: xUML class diagram of Rent-A-Car

The associations are not directed in xUML, and aggregation adornments do not exist on
xUML associations either. Therefore, all associations in the RAC xUML class diagram
are non-directed binary associations. This makes the semantics slightly less precise,
constituting a form of information loss.

Due to the restrictiveness of generalization relationships in xUML, is-a semantics need to
be explicitly added with different constructs. Rather than using generalization links, the
is-a semantics are communicated in the class diagram by using a regular association with
a parent role on the side of the parent. Theses associations are arbitrarily labelled in
accordance with the naming convention of xUML, which is Rn. Each derived entity class
requires its own logical identifier that is equal to that of its parent at runtime. In xUML,
relations can be used as identifiers. In xUML, identifiers are denoted using {I}. Similarly,
the specialized classes have the compound identifiers; for example, TakenRental has
the compound identifier of {I,R1}. The semantics of this are that the rentalID
attribute of TakenRental receives its value from the identifying attribute of the class
connected over R1, which is rentalID of Rental.

The property types in the fact model are translated as directed associations, and as the
cardinality laws are not specified in the fact model of RAC, the OFD defaults of 0..* on
the domain side and 1..1 on the range side are used.
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8.2.2 RAC xUML State Machine Diagram

Each class in the xUML class diagram – including association classes – has a corresponding
state machine that shows the possible state changes of domain entities in response to
business events, which in the case of DEMO are transaction accept C-acts. Each state in
the state machine therefore corresponds to an event type in the DEMO fact model. The
transitions between the states correspond to the transaction accept C-acts that the event
types represent. Figure 8.2 shows the xUML state machine diagram for the Rental
class.

There are no orthogonal states in xUML; therefore, states must be traversed sequentially.
This means that the order in which the business events occur must be available in the
CIM or it must be inferred at the PIM level. This information is not available in the
DEMO fact model, and therefore this constitutes a form of semantic mismatch. However,
for demonstration purposes, the order of the states and state transitions in Figure 8.2
are assumed based on the RAC case study description in Section 6.4.

Semantic variation exists between UML and xUML with regards to the initial pseudostate
of the state machines. Although business events cannot be assigned to the outgoing
transition of the initial state [97] in UML, this is allowed in xUML. Therefore, in the
Rental state machine, after instantiation, the Rental object remains in the initial
state until the occurrence of the first business event, TK01ac.

8.2.3 RAC xUML Action Language Procedures

There are two different entry activity procedures that can be identified in the Rental
state machine diagram in Figure 8.2. The first kind has the sole responsibility of changing
a Boolean attribute value of the Rental object. An example of this is the entry activity
procedure in the completed state, which simply sets the value of the completed
Boolean attribute to true. The second kind has the dual responsibility of changing a
Boolean attribute value of the Rental object and instantiating the class representing
the derived entity type that is created as a result of the occurrence of the associated
event type in the DEMO fact model. For example, in the depositPaid state, the entry
activity first creates the new instance of the DepositPaidRental class. The next
command in the procedure links the newly created DepositPaidRental object to the
Rental object from which it was derived over the association labelled R1. Finally, the
last command of the procedure sets the depositPaid Boolean attribute of Rental to
true.

8.3 Evaluation
The experimental transformation design from DEMO FM to xUML was evaluated in two
ways. First, it was quantitatively evaluated by assessing the semantic completeness and
correctness of the transformation applied to the Rent-A-Car case study. Second, it was
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Figure 8.2: xUML state machine diagram of the Rental class from Rent-A-Car
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qualitatively evaluated with respect to the key strengths and weaknesses of using xUML
as a PIM to capture and communicate the semantics of the Rent-A-Car case.

8.3.1 Model Semantic Completeness
The semantic completeness of the DEMO FM to xUML transformation was evaluated
against the Rent-A-Car case. First, the domain semantics captured in the DEMO fact
model were extracted from the model elements and listed as domain fact statements
through the verbalization process demonstrated in [33]. These facts were taken as the
ground truth of the domain. Second, each fact statement was checked to determine if the
semantics were adequately captured and communicated at the PIM level. The number of
correctly preserved fact statements of the xUML PIM was aggregated for each of the
major model concepts (see Appendix G for the full results). The aggregated results are
presented in Table 8.3.

DEMO FM Concept # fact statements in DEMO FM # preserved statements in xUML
Entity Types 12 11
Value Types 3 3
Event Types 14 14
Attribute Types 42 42
Property Types 42 42

Table 8.3: Semantic completeness of the xUML PIM against the Rent-A-Car case study

The only fact statement that was not sufficiently captured using xUML was regarding the
existence of the aggregate entity type {CAR GROUP} * {YEAR}. As adornments do not
exist for xUML associations, it is not clear that the relationship between CarGroupByYear
and its component classes are specifically aggregation relationships. Therefore, this fact
statement was deemed to have not been sufficiently preserved in the xUML PIM.

8.3.2 xUML PIM Strengths
The identified strengths of using xUML as a PIM for the Rent-A-Car case study are
listed below.

1. All necessary aspects of computation captured as execution semantics.
The xUML profile prescribes a set of models which capture all the necessary
information such that programs can be executed based off the models alone. This
includes data objects, control mechanisms, and algorithms.

2. Class diagrams in xUML capture entity-relationship semantics better
than standard UML. Using annotations in curly brackets, it is easy to denote a
foreign key which receives its value from a related object.
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3. Procedures of entry activities are described directly in the states of the
state machine. The procedure of each entry activity is thoroughly expressed in
action language directly in the state to which the procedure belongs, enhancing
readability.

8.3.3 xUML PIM Weaknesses

The identified weaknesses of using xUML as a PIM for the Rent-A-Car case study are
listed below.

1. xUML is based on UML v1.4. UML has changed and greatly evolved since
this version. For example, actions are no longer allowed to belong directly to state
machines. Rather, they belong to activities.

2. xUML does not fully conform to the UML metamodel. Some constructs
used in xUML do not exist in UML, such as the date data type or referential
constraints. Moreover, the semantics of the entry activity do not align with those
of the UML specification. In xUML, the procedure which is in invoked to change
the state of an object occurs upon entering the new state, effectively after the state
transition, whereas this procedure should be executed before the state change in
order to execute actions that result in a state change.

3. Use of action language for application logic forces a textual-to-graphical
transformation. It would be more intuitive to implement a transformation from a
graphical PIM flowchart to a graphical PSM flowchart, rather than from a textual
procedure script in a PIM to a graphical flowchart in a PSM.

4. Objects cannot be in two states at once. This does not match the semantics
of the DEMO fact model, in which entities may be simultaneously in multiple
states. This demonstrates a shortcoming of the expressiveness of the xUML state
machine diagram.

5. States must be traversed sequentially. In order for the state machine in
xUML to capture the state and state transitions properly, the order of states must
be explicitly drawn. This information is not available in the DEMO fact model;
therefore, in order to use the xUML state machine diagram based on the fact model
alone, the order of the state transitions must be assumed or inferred, which has a
large margin of error.

6. Graphical notation of xUML is sometimes less expressive than Standard
UML. xUML associations have no association adornments; therefore, there are no
aggregation adornments, and associations have no direction in xUML.
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8.4 Conclusions
This sprint focused on creating a CIM-to-PIM mapping from the DEMO fact model
using the xUML modelling language to model the PIM. This sprint highlighted the
important role that behavioural semantics should play at the PIM level. Not only is
the PIM responsible for capturing the domain semantics from the CIM, but it also adds
an additional perspective: a computational way of thinking. The notion of capturing
the lifecycle of objects aligns well with the connection between entity types and event
types in DEMO. Specifically, the event of the accept C-act of a transaction results in
a new P-fact, and this constitutes an internal state change of an entity. Using a state
machine nicely captures the behavioural semantics of this. But xUML takes this further
by adding in the necessary execution semantics to define how a system should actually
change the variables that comprise the state of the object in question. However, a major
drawback of using xUML is its reliance on action language to capture program logic.
Although action language is used directly inside of the states of a state machine diagram,
having benefits when it comes to model readability, using an activity diagram would
perhaps be more useful when using MDA to derive a further downstream model, as it
would avoid having to create complex textual-to-graphical transformation patterns to
extract notation elements from action language statements.
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CHAPTER 9
AS3: DEMO FM to fUML

This chapter details the third design sprint, which aimed to map the DEMO fact model
(FM) to Foundational UML (fUML).

9.1 Design
Foundational UML (fUML) [90] is an executable UML profile published and maintained
by the OMG. While xUML captures behavioural and execution semantics primarily by
using the UML state machine diagram, fUML captures these semantics primarily by
using the UML activity diagram.

The aim of fUML is twofold:

• To serve as foundational and minimal subset of UML elements which can replace
higher-level UML constructs

• To precisely capture application execution semantics

9.1.1 Step 1: Setting the mapping context
fUML was created as a tool to implement MDA, and one of the key aspects of fUML to
assist modellers in designing MDA transformations is the minimal subset concept. The
complete UML superset contains many constructs that can be useful to communicate
semantics graphically to humans for interpretation; however, as a general-purpose mod-
elling language, the semantics of many of its modelling constructs are ambiguous. This
ambiguity makes it difficult to derive execution semantics from some UML constructs.
Therefore, fUML was designed by taking a computationally complete subset of core
UML elements from which higher-level modelling constructs can be derived. An MDA
transformation can therefore be more easily created from fUML to any targeted platform
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language, as there are fewer elements that need to be mapped than if the entire UML
superset were to be used. As fUML is a minimal subset of UML, there are several UML
elements and constructs which are excluded from fUML. Some of the most pertinent of
which are the following:

• State machines

• Constraints

• Generalization sets

• Association classes

The other key aspect of fUML, which makes it suitable for use in MDA transformations,
is its ability to precisely capture application execution semantics. While behavioural
semantics capture “changes over time to instances in the semantic domain”, execution
semantics capture “operational action over time” [90]. Similar to xUML, this is partially
achieved through the use of a formal action language. The OMG has its own action
language specification designed to provide such additional execution semantics to the
fUML profile. This language is Action Language for fUML, or Alf for short [102].

Structural Semantics

As with Standard UML and xUML, the class diagram is primarily responsible for captur-
ing structural semantics in fUML. Classes are therefore used in fUML to model the domain
entities and relationships between them. In the fUML metamodel, the Class construct
inherits from BehavioredClassifier and thus inherits the ownedBehavior rela-
tionship to the Behavior construct. Owned behaviours define the behavioural semantics
of the entities captured in fUML class diagrams. A BehavioredClassifier may have
multiple ownedBehaviors, but only one of these may be used to specify the runtime
behaviour of the owning BehavioredClassifier itself [88]. In fUML, the only type
of Behavior that is included which can concretely capture behavioural semantics of
BehavioredClassifiers is the Activity [90].

Behavioural Semantics

The execution semantics of each behaviour in an fUML model is captured as an activity
using the UML activity diagram. The activity can be expressed using the graphical
notation, using Alf, or using a mixture of both. Activity diagrams are graph models,
similar to Petri-nets [88]. As such they are composed of nodes and edges, known as
ActivityNodes and ActivityEdges, respectively.

There are three types of ActivityNodes in fUML: executable nodes, object nodes, and
control nodes. Object nodes and control nodes are used to model the object and control
flows through the activity. Executable nodes express the actual computational steps
taken during the run of the modelled behaviour. They are realized as actions in fUML.
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Execution Semantics

Actions are the sole type of executable node in UML [88]. The following object action
subtypes are included in fUML:

• CreateObjectAction

• DestroyObjectAction

• ReadSelfAction

• ValueSpecificationAction

• ReclassifyObjectAction

These actions are used to specify elementary CRUD operations on objects. Objects are
passed into and out of object actions through input and output pins, respectively. Links
between objects are created and destroyed using link actions. The following link actions
exist in fUML:

• ReadLinkAction

• CreateLinkAction

• DestroyLinkAction

The two types of edges used in activities are control flow edges and object flow edges.
Whereas control flow edges denote the step-by-step procedural flow through the activity,
object flow edges denote how objects are passed between object nodes.

To precisely specify execution semantics in fUML models, the OMG introduced the
Action Language for fUML (Alf). Alf was created to serve as an alternative method
of expressing execution semantics, whereas the only official way to do so up until its
introduction was graphically via the activity diagram [103]. As an action language with
a “Java like” syntax, the primary use of Alf is to precisely specify behavioural aspects
of a modelled system in a textual way within or alongside a greater graphical diagram
of the system [102]. For example, it can be used to specify the execution semantics of
function belonging to a class. In the context of behaviours, Alf can be used to specify
the execution semantics of the behaviour while the graphical notation is used to specify
the behavioural semantics [103]. For example, Alf can be used to precisely define the
effect behaviour of a transition between states in a state machine. It is possible to use
Alf entirely in place of the graphical notation to model a system, as an extension of Alf’s
textual syntax maps to the abstract syntax of fUML. This means that Alf can actually
serve as a complete textual substitute to the graphical way of specifying behaviours
using the activity diagram [102]. This fills a major gap of Standard UML: as no concrete
syntax was previously provided for specifying behavioural expressions, the choice of a
syntax was left to the users or tool vendors [88].
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9.1.2 Step 2: Understanding the similarities and differences
The largest similarity between the DEMO FM and fUML is with regards to the notion of
conceptual modelling. The class diagram in fUML contains many constructs which can
be used to straightforwardly capture structural semantics from the DEMO fact model.

The largest difference between the DEMO FM and fUML is their respective approaches
to the notion of entity state. In particular, fUML excludes the UML state machine
diagram, thus excluding detailed specifications of object state and state transitions.

9.1.3 Step 3: Approaching the metamodel of the target modelling
language

The metamodels of fUML and Alf were analyzed to determine the elements which could
be feasibly used to capture semantics from corresponding elements of the DEMO fact
model. The fUML metamodel can be found at [90] and the Alf metamodel can be found
at [102].

9.1.4 Step 4: Determine the specific mappings
Explanations behind non-trivial mappings presented in Table 9.1 are discussed below.

i. Value type - TIME scale
While many of the value types from DEMO can be trivially mapped to similar data
types from UML, this is difficult to achieve with the TIME value class, as there
is no date nor time data type included in the UML specification by default. This
is therefore captured in the transformation by declaring a user-defined DateTime
data type (maximum one per application).

ii. Declared entity type
A declared entity type in the DEMO fact model is translated to the fUML class
diagram by first creating a corresponding class for the entity and then creating an
identifier attribute for the entity, marking this attribute as an identifier using the
isID meta-property. The identifier is assigned upon the instantiation of the class.

iii. Derived entity type
Same as Definition ii., except that the form of the logical identifiers of classes
representing derived entities depend on the way by which each of these entities are
derived, and thus the logical identifiers are mapped by later translations.

iv. Event type
To capture its structural semantics, a Boolean attribute is used to represent the
event type in the class diagram; the default value of this attribute is false. To
capture the behavioural and execution semantics, an activity diagram is used. This
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activity diagram consists of three key elements. First, an AcceptEventAction
is assigned to listen for an event indicating the occurrence of the event type, which
starts the activity process. Second, an ActivityParameterNode receives an
object of the class representing the entity that the event type concerns. Third, an
AddStructuralFeatureValueAction sets the Boolean attribute representing
the event type in the object to true.

v. Specialization of entity type with event type
As generalization sets are excluded from fUML, to capture the structural semantics
of the specialization, particularly, the is-a semantics between the derived entity
type (this child) and the entity type from it is derived (the parent), a directed
association is created from the child object to the parent object. The child object
receives an integer attribute to serve as its logical identifier, which must equal
that of its parent. In order to capture the execution semantics to ensure the data
integrity of this at runtime, an activity diagram is created to specify the create
operation of the child object. This activity diagram consists of seven elements.
Using an ActivityParameterNode, the operation receives the parent object
as input. An AcceptEventAction is assigned to listen for an event indicating
the occurrence of the event type, which starts the activity process. The first
action executed is a CreateObjectAction, which creates the child object. Next,
a ReadStructuralFeatureValueAction extracts the logical identifier from
the parent object and passes it to an AddStructuralFeatureValueAction
which assigns this value to the logical identifier of the child object. Next, a
CreateLinkAction creates the parent link from the child object to the parent
object. Finally, an AddStructuralFeatureValueAction sets the Boolean
attribute representing the event type in the parent object to true.

vi. Specialization of value type with event type + Property type
Given the semantics behind this modelling construct, the nameless entity type
is transformed into a class in fUML to represent this concept in the PIM. The
property type is then transformed into a directed association from this class to
the class representing the range entity. To capture the inheritance semantics of
the entity type, a parent directed association is created from the child class to the
parent data type.
To capture the execution semantics of the event type, an activity diagram is created
with an AddStructuralFeatureValueAction that sets the Boolean attribute
representing the event type in the object to true.

vii. Specialization of entity type with derivation rule
Similar to Definition v., the class representing the child derived entity receives
a logical identifier; however, there is no requirement that the value of the log-
ical identifier of the child equal that of the parent. The activity in this case
simply consists of an ActivityParameterNode to receive the parent object
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as input, a CreateObjectAction to create the new specialized object, and a
CreateLinkAction to link this child object to the parent object.
As constraints are excluded from fUML it is not clear how to explicitly capture the
semantics of the derivation rule; this is a form of information loss.

9.1.5 Step 5: Determining the complete mapping
Table 9.1 presents mappings from elements of the DEMO FM (GOSL) to fUML, with an
ID code for each mapping.

ID DEMO FM fUML
A1 Value type - user-declared, categorical Enumeration (class diagram)
A2 Value type - user-declared, non-categorical User-defined data type (class diagram)

A4 Declared entity type Class (class diagram)
Logical identifier (class diagram)

A3 Derived entity type Class (class diagram)
A5 Attribute type Property (class diagram)

A6 Event type Boolean attribute (class diagram)
Set<Entity><Event> activity (activity diagram)

A7 Specialization of entity type with event type
Identifier property for child class (specialized) (class diagram)
Directed association from child to parent with “parent” role (class diagram)
CreateNew<ChildEntity> activity (activity diagram)

A8 Specialization of value type with event type Class (class diagram)
Property type Associations (domain and range) (class diagram)

A9 Specialization of entity type with derivation rule
Identifier property for child class (specialized) (class diagram)
Directed association from child to parent with “parent” role (class diagram)
CreateNew<ChildEntity> activity (activity diagram)

A10 Generalization Abstract parent (class diagram)
Generalization (class diagram)

A11 Aggregation Aggregation, shared (class diagram)
Logical identifiers (class diagram)

A12 Property type Association (class diagram)
Cardinality laws Multiplicities (class diagram)

Table 9.1: Experimental mapping from the DEMO Fact Model to fUML

9.2 Demonstration
In this section, the experimental CIM-to-PIM mapping presented in Table 9.1 is demon-
strated using the Rent-A-Car (RAC) case study (see Section 6.4).

9.2.1 RAC fUML Class Diagram
The fUML class diagram of the Rent-A-Car is presented in Figure 9.1. Each entity of
Rent-A-Car is represented as a class in the fUML class diagram. The value classes {YEAR}
and {DAY} become custom data types while {CAR GROUP} becomes an enumeration.

Each class in fUML has its own logical identifier. As these relationships do not inherently
include inheritance semantics, these needed to be added with explicit structural and
execution semantics. In order to ensure the data integrity of the is-a semantics of
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the data model, is an important that these logical identifiers be managed as to ensure
that the specializations of Rental, namely TakenRental, DepositPaidRental,
ReturnedRental, and InvoicePaidRental, each have a logical identifier that is to
be equal to that of the object from which it was derived. These classes are related to
Rental through directed associations with the parent role on the side of Rental.

The DayEmployee class was translated through transformation rule A8. As association
classes are excluded from the fUML specification, the nameless Derived Entity Type,
which is a specialization of the Value Type {DAY}, is represented as a regular class in
the fUML class diagram. The Property Type between the nameless Derived Entity Type
and the EMPLOYEE entity in the DEMO fact model is represented as an association from
the DayEmployee class to the Employee class in fUML. It should be noted however
that using a regular class makes it appear as though it carries similar semantics as other
classes, when in fact, it represents a special form of a derived entity in the DEMO fact
model. Moreover, using two separate directed associations to represent the Property
makes the semantics also less clear. Thus, this constitutes a form of information loss.

The property types in the fact model are translated as directed associations, and as the
cardinality laws are not specified in the fact model of RAC, the OFD defaults of 0..* on
the domain side and 1..1 on the range side are used.

Figure 9.1: fUML class diagram of Rent-A-Car
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9.2.2 RAC fUML Activity Diagrams

Figure 9.2 shows the fUML activity diagram of the operation RentalCompleted. The
activity receives an object of the Rental class via the parameter node of the activity.
The activity is invoked upon receipt of the event of the accept event action, labelled
TK01ac, which corresponds to the accept C-event of transaction kind 01 from
the DEMO fact model. The Rental object on the parameter node is then passed to
the AddStructuralFeatureValueAction which takes in the value true, which
is an alias for a ValueSpecificationAction. This assigns the value true to the
completed Boolean attribute of the Rental object. This effectively completes the
state change of the Rental object, and the activity is finished.

Figure 9.2: fUML activity diagram of the RentalCompleted operation of Rent-A-Car

Figure 9.3 shows the slightly more complex fUML activity diagram of the operation
RentalTaken. This operation has the dual responsibility of changing the state of the
Rental object and specializing the Rental entity instance as a TakenRental. The
activity receives an object of the Rental class via the parameter node of the activity. The
activity is invoked upon receipt of the event of the accept event action, labelled TK04ac,
which corresponds to the accept C-event of transaction kind 04 from the DEMO
fact model. The first action executed is the CreateObjectAction, which creates a new
instance of TakenRental. The next action is a ReadStructuralFeatureValueAction
which reads the RentalID of the parameter Rental object and passes it to the next
action, the AddStructuralFeatureValueAction. This action also receives the
newly created TakenRental object and assigns the value of RentalID to the attribute
takenRentalID of the TakenRental object. Next, the CreateLinkAction is exe-
cuted to create the parent link between the TakenRental object and the parameter
Rental object. Finally, the last step is to set the value of the Boolean attribute taken
of the Rental object, representing the occurrence of the event type, to true. The process
to change the value of the taken attribute of the Rental object is the same as the
processed described above to change the value of completed in Figure 9.2.
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Figure 9.3: fUML activity diagram of the RentalTaken operation of Rent-A-Car

9.3 Evaluation

The experimental transformation design from the DEMO FM to fUML was evaluated in
two ways. First, it was quantitatively evaluated by assessing the semantic completeness
and correctness of the transformation applied to the Rent-A-Car case study. Second,
it was qualitatively evaluated with respect to the key strengths and weaknesses of the
fUML PIM which emerged from the Rent-A-Car case.

9.3.1 Model Semantic Completeness

The semantic completeness of the DEMO FM to fUML transformation was evaluated
against the Rent-A-Car case. First, the domain semantics captured in the DEMO fact
model were extracted from the model elements and listed as domain fact statements
through the verbalization process demonstrated in [33]. These facts were taken as the
ground truth of the domain. Second, each fact statement was checked to determine if the
semantics were adequately captured and communicated at the PIM level. The number
of correctly preserved fact statements of the fUML PIM was aggregated for each of the
major model concepts (see Appendix G for the full results). The aggregated results are
presented in Table 9.2.

DEMO FM Concept # fact statements in DEMO FM # preserved statements in fUML
Entity Types 12 12
Value Types 3 3
Event Types 14 13
Attribute Types 42 42
Property Types 42 41

Table 9.2: Semantic completeness of the fUML PIM against the Rent-A-Car case study

Semantic loss has been identified with two fact statements, both stemming from the
omission of association classes from fUML. For the concept {CAR GROUP} * {YEAR},
a regular class with two directed associations was used instead.
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With regards to the event type fact statement, transport managing for day concerns
day, as with the other classes, it should be that the Boolean attribute representing this
event type belongs to the class representing the value type {DAY}. However, instead
it belongs to the class DayEmployee. Since this is a regular class, the exact semantic
relationship between DayEmployee and Day is not immediately clear, especially since
they are linked with a regular association and not a generalization. Therefore, this fact
statement was deemed to have not been sufficiently preserved in the fUML PIM.

Similarly, with regards to the fact property type statement, the domain of transport
manager of day is day, it is unclear as to the actual domain of the transportManager
association in the fUML class diagram. In the class diagram, it appears that the domain is
DayEmployee, and as DayEmployee is implemented as a regular class, this would imply
that the domain of transportManager is DayEmployee and not Day. Therefore, the
fact that the domain of transportManager is supposed to be Day is not sufficiently
preserved in the fUML PIM.

9.3.2 PIM Strengths

1. Minimal subset that includes only elements which can be used to express
execution semantics. Using a smaller amount of modelling concepts would make
the task of creating mappings to downstream PSM models for new platforms easier.

2. Activity diagrams could be nicely mapped to Mendix microflows. A
graphical-to-graphical transformation is much more intuitive than a textual-to-
graphical transformation.

3. Includes Alf action language for the expression of precise supplementary
execution semantics. This platform-independent language can be used to fill in
the blanks where execution semantics are missing in the regular UML specification.
Such as in the case where a behavior-expression requires a formal language
to be properly expressed.

9.3.3 PIM Weaknesses

1. Too restrictive of a subset for capturing all possible domain semantics.
fUML’s characteristic of being a minimal subset of UML elements allows models
to be formed which are semantically rich enough for model execution while being
constructed using a minimal amount of distinct model elements. However, this
minimal subset reduces the models to a point at which the interpretation of the
semantics by humans could be difficult. Although there is a benefit to fUML being a
minimal subset when it comes to the reduction of effort required to create mappings
from fUML to other models, as there are less elements to be mapped, a trade-off
exists with regards to how behavioural semantics can be effectively communicated
to human software analysts with fewer notation constructs to use. For example,
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without state machine diagrams, analysis of the states and transitions of objects at
runtime by software developers would be more difficult. As state machines clearly
illustrate the runtime behaviour of objects, without them as human analysts would
have to piece together the behaviours using a collection of activity diagrams and
for each class in the class diagram, making the understanding of the behaviour of
objects at runtime less intuitive.

2. Behavioural semantics less intuitive. While activity diagrams nicely capture
and express the execution semantics of operations, the behavioural semantics of
objects in the class diagram are not as clear with the exclusion of state machine
diagrams. For example, an important concept is that the occurrence of an event
type results in the change of state of an object of the entity which the event concerns.
Moreover, an entity in DEMO can be in multiple states at once. A state machine
clearly shows these semantics; however, they are not as intuitively expressed with
just a class diagram and activity diagrams.

9.4 Conclusions
This sprint focused on creating a CIM-to-PIM mapping from the object fact diagram
of the DEMO fact model to the fUML modelling language. This sprint highlighted the
important role that expressing execution semantics plays at the PIM level. Not only is
the PIM responsible for capturing the domain semantics from the CIM, but it needs to
clearly show how the behavioural aspects of the domain semantics may be realized in a
computational way. However, while the formal syntax of fUML and Alf allow precise
execution semantics to be captured and expressed, the behavioural semantics are not as
clearly communicated as they were with state machines in the previous two sprints. This
is something that should be considered in the design of a PIM.
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CHAPTER 10
HS: DEMO FM to pimUML

The previous three chapters detailed experimental design sprints which were undertaken
to explore how the DEMO Fact Model (FM) could be mapped to Standard UML, xUML,
and fUML. As each of these experimental transformations were found to have their
own strengths and weaknesses, the hardening sprint detailed in this chapter synthesizes
the strongest alternative choices of various mappings of the previous three agile sprints
to produce a UML profile, pimUML. The designed transformation mappings from the
DEMO FM to pimUML are then presented, demonstrated, and evaluated.

10.1 Design
As Standard UML, xUML, and fUML all draw from the UML family of modelling
languages, different mapping alternatives can be easily interchanged to select the mappings
that best achieve the objectives of the MDA transformation. Selecting key elements
to be used as a PIM model into a new UML profile focuses the scope of the PIM and
makes the evaluation metrics more meaningful. While the focus and aim of the first three
sprints was to create mappings using elements from each modelling language that could
best capture the semantics of the DEMO fact model, while prioritizing the implications
of these choices on readability over executability, the goal of pimUML is to prioritize
semantics favourable to executable artifact generation over those favourable to diagram
readability.

10.1.1 Step 1: Setting the mapping context
The derivation of pimUML is largely influenced by the challenges faced in light of the
nuances of the DEMO FM and how to ensure that the semantics of these nuances are
retained when translating models. At the same time, the design decisions of pimUML
were also influenced by the aim of the UML profile to effectively capture execution
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semantics while remaining platform independent. The following challenges and trade-offs
were examined with regards to these concerns:

1. Entity instance identification

2. Entity state management

3. Inheritance (is-a) semantics

4. Multiple classification

5. Association adornments

6. Data type mapping

7. Operation ownership

8. Action language usage

Structural Semantics

The UML class diagram was selected for use as the primary model view to capture
structural semantics in pimUML, constituting a domain model. As the aim of pimUML is
to ensure the understandability of the model diagrams while including as precise execution
semantics as possible, the elements of the pimUML class diagram were selected primarily
on the basis of capturing and communicating the domain semantics in accordance with
the structural semantics of the DEMO FM in such a way that they could be easily
implemented on any platform. One such way in which this is achieved is by ensuring that
each class has a logical identifier to identify which object instantiations represent which
individual domain entities. If an instance of a domain entity conforms to entity types
represented by multiple types of classes simultaneously, then instantiations of multiple
different classes will have the same value of their logical identifiers (but of course, the
value of the logical identifier must be unique among objects of the same class).

Similar to xUML, to ensure that date and time values can be captured and stored,
pimUML adds a custom DateTime data type to the set of default data types of Standard
UML. The full list of data type mappings is presented in Appendix E.

Finally, to ensure that the proper semantics of aggregation relationships are captured
and communicated, pimUML includes association adornments on association ends.

Behavioural Semantics

As the state machine was shown in agile sprints one and two to nicely capture the
lifecycles of objects and the behaviours of those objects in response to events at runtime,
the state machine is used in pimUML to capture the behavioural semantics of entity
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instances. A state machine is therefore “started” upon the instantiation of the class of
which the state machine represents the behaviour.

A key limitation of the state machines in xUML, as demonstrated in Chapter 8, is that
the objects cannot be in multiple states at once. Therefore, in pimUML, state machines
consist of orthogonal regions, with a pair of states representing the values “true” and
“false” of corresponding Boolean attributes, representing DEMO event types, in the class
diagram.

The most important elements of the state machines are the transition triggers, the
transition effect behaviours, and the state entry events. These three elements are
primarily responsible for capturing the behavioural semantics, expressing what transition
occurs in response to what event, what operation must be executed to realize that state
transition, and what post-operations must be executed in response to the state transition,
respectively.

Execution Semantics

Leveraging the precise execution semantics expressed by the actions included in UML,
the activity diagram is used in pimUML as the primary means to capture and express
the execution semantics of operations. The actions used are exclusively those predefined
in the official UML specification [88].

Activities are supplied an object via an activity parameter node. The procedure illustrated
in each activity diagram starts at the initial node and ends at a final node. There are
two types of flows in the activity diagram: object flow edges and control flow edges.
Control flow edges are the only edges in the pimUML activity diagram that denote the
step-by-step ordering of action execution. Object flow edges simply denote the links
between sources of objects and the actions that use those objects as input.

Additionally, it was decided to use (albeit sparingly) the action language Alf, explored in
Chapter 9, to ensure that precise execution semantics are captured by using a formal
language, rather than using natural language as Standard UML often suggests. Specifically,
the this expression is used to precisely communicate that the context object of the
state machine is being passed as a parameter to the operation that is called as either the
effect behaviour of a transition or the entry activity of a state in the state machine of
the context object.

10.1.2 Step 2: Understanding the similarities and differences
As this step in the first three design sprints already discussed the differences between
the DEMO FM and each of the UML profiles upon which pimUML is based, this step
will instead focus on discussing the rationale behind the choices made where differences
existed between AS1, AS2, and AS3.

The decisions of which views and elements to include were largely based on addressing
the differences between DEMO and the UML family of languages. Fundamentally, it was
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important to ensure that decisions on capturing behavioural and execution semantics
could be inferred based on the structural semantics of the OFD. Key to this was the
decision on which UML diagrams to include. The choice was made to include all three
diagrams explored in AS1, AS2, and AS3: the UML class diagram, the UML state
machine diagram, and the UML activity diagram.

Together, these achieve the following,

1. Business entities, as well as their attributes and relationships, are represented in a
domain model using the UML class diagram

2. The lifecycles of entities, which include state changes in response to relevant events,
are represented using the UML state machine diagram

3. CRUD operations associated with the lifecycles of entities (i.e., effects of state
changes) are specified using UML activity diagrams

10.1.3 Step 3: Approaching the metamodel of the target modelling
language

The metamodel of pimUML is a subset of the latest version of UML (version 2.5.1).
The Action Language for Foundational UML (Alf) is included as well; however, rather
than including it as part of the metamodel, pimUML only prescribes its use wherever
expressions are required in the diagrams, such as to specify the effect behaviour of a
transition in a state machine. Lastly, the Object Constraint Language (OCL) is prescribed
for use in places, but the exact details of its usage in the PIM and in translations are
outside the scope of this thesis. See Appendix C for the full pimUML metamodel.

10.1.4 Step 4: Determine the specific mappings
Explanations behind non-trivial mappings presented in Table 10.1 are discussed below.

i. Value type - user-declared, categorical
In the DEMO fact model, Value types can appear either with or without associated
attribute types. When a value type of a categorical scale is declared, it does not
include attribute types, as value types of this scale do not have measurement scales
nor units [35]. In DEMO, these value types do not receive their categories until
model instantiation, and they are therefore left without any associated attribute
types nor values beforehand. Therefore, any such value type appearing in a model
that does not include any attribute types will be recognized as a value type of a
categorical scale. Such value classes are translated to enumeration data types in
pimUML.
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ii. Declared entity type
Entities are translated to pimUML such that both the structural and behavioural
semantics of entities are explicitly captured. The entities themselves are translated
as classes in pimUML. These classes are automatically assigned a logical identifier
in the form of an integer attribute. The value of such a logical identifier may be
accessible and understandable by a user of the system being modelled, as opposed
to using an arbitrarily assigned identifier, such as a GUID, which is primarily
used by the machine running the system. Drawing on the notion of capturing
object lifecycles from xUML, the lifecycles of entities are captured in pimUML
using state machines. A state machine is instantiated upon the instantiation of
its associate class, the object of which becomes the context object of the state
machine. Therefore, the state machine captures the behavioural semantics over the
entire lifecycle of the object. In these state machines, each associated event type
is captured as a region consisting of two states: a false state to indicate that the
event has not yet occurred and a true state to indicate that the event has occurred.
State machine diagrams in pimUML are orthogonal because of the semantics of
DEMO that entities can be in multiple states at once.

iii. Derived entity type
Same as Definition iii., but without a logical identifier. Since the identifier is
dependent on the type of derivation relationship through which the derived entity
instance is created, the logical identifier of derived entities is assigned to each
corresponding pimUML class at the same time the specialization relationships are
translated.

iv. Event type
Event types in the DEMO fact model represent state changes that occur to entity
types in response to business events, which in the case of the fact model are
transaction accept C-acts. Event types therefore indicate the state into which the
entity enters, as well as the event that occurs for the state change to happen. Given
this, it is critical that in pimUML, three semantic elements must be captured: what
the state is and to what class it belongs (structural semantics), and what event
triggers the state change (behavioural semantics), and how the state change is
realized in response to the event occurrence (execution semantics).
Whether or not the event concerning a given instance of an entity has occurred
is represented as a Boolean: true or false. Upon entity instantiation, the Boolean
representing the event is assigned a default value of false.
The behavioural semantics of the occurrence of the event type resulting in a change
of state of its concerning entity is captured in the state machine corresponding to
the entity’s class as a transition between two states representing the two possible
values of the event type’s corresponding Boolean: true and false. The source of the
transition is the false state, and the target of the transition is the true state. The
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event is captured as the trigger of the transition and the activity that is executed
to realize the change of state is captured as the effect behaviour of the transition.
Since Standard UML does not prescribe a formal language to express this, pimUML
uses Alf to explicitly express the call of the effect behaviour operation with the
context object of the state machine being passed as a parameter to the activity
realizing the operation.
The effect behaviour is what captures the execution semantics of the event type. As
the execution semantics are not explicitly expressed in the DEMO fact model these
semantics are inferred. To realize a state change that is represented as a Boolean
attribute, the value of this attribute must change. Therefore, the effect activity
is represented using a UML activity model. As previously mentioned, the context
object of the state machine is passed into the activity as a parameter. The Boolean
attribute of this object corresponding to the event is assigned the value true using
a UML standard action called an AddStructuralFeatureValueAction.

v. Specialization of entity type with event type
As in fUML, the inheritance (is-a) semantics between the two entity types in
DEMO are captured in pimUML as a “parent-child” relationship whereby a directed
association is created from the class of the derived entity (the child) to the class of
the source entity (the parent). This relationship is made explicit by assigning the
parent class the role of parent in the association.
The additional behavioural semantics of the instantiation of the derived type are
captured using an entry activity in the state machine of the parent entity, whereby
an operation is invoked to create an instance of the derived entity upon the state
change resulting from the occurrence of the event type. The state entry activity
is used to explicitly capture the execution semantics of the instantiation of the
derived entity type.
Similar to Definition v., such semantics are not explicitly in the DEMO fact model
and are therefore inferred. The activity not only creates the new entity instance, but
it also by ensures the data integrity of the underlying “parent-child” relationship.
The activity receives the parent object as a parameter. First, the derived entity is
instantiated using the UML action CreateObjectAction. Next, the logical iden-
tifier of the parent object is read and assigned to a variable using the UML action
ReadStructuralFeatureValueAction. The logical identifier of the newly cre-
ated child object is then assigned the value of the logical identifier of its parent object.
This is achieved using the UML action AddStructuralFeatureValueAction.
Second, the association with the parent role is instantiated between the child and
its parent using the UML action CreateLinkAction. After the completion of
these actions, the activity is finished.

vi. Specialization of value type with event type + Property type
As with Standard UML and xUML, given the semantics behind this construct, a
UML association class is used to represent this concept in pimUML. As the derived
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entity would have been transformed to a class through the rule realizing Definition
ii., this class should be replaced with an association class. The property type is
then transformed into the association represented by the association class. The
name of the property type is assigned as the role on the end of the association of
the class representing the entity on the side of the range of the property type. As
this construct is contains a derived entity with an event type, a state machine is
also created to capture the entity’s behavioural and execution semantics in the
PIM.

vii. Specialization of entity type with derivation rule
Essentially the same as Definition vi. except that the “parent-child” relationship
is looser in the case of specialization through a derivation rule. In this case, the
derived entity (the child) may not represent the exact same thing as the parent
entity, whereas in Definition vi. the semantics are that the derived entity is
essentially representing the same thing as its parent entity, just in a different state.
Therefore, in the case of specialization via a derivation rule, the derived entity may
be represented by its own logical identifier, which is dictated by the derivation
rule. Therefore, to allow this to happen, the value of the logical identifier is not
automatically assigned upon instantiation of the derived entity.
The derivation rule is expressed textually in DEMO and such translations are
outside the scope of this thesis and are therefore not further discussed.

10.1.5 Step 5: Determining the complete mapping
A high-level specification of the complete mapping from the DEMO fact model to
pimUML is presented in Table 10.1. The descriptions from the previous sub-section
provide explanations of non-trivial mappings.

10.2 Demonstration
In this section, the CIM-to-PIM mapping from the DEMO FM to pimUML presented in
Table 10.1 is demonstrated using the Rent-A-Car (RAC) case study (see Section 6.4).

10.2.1 RAC pimUML Class Diagram
The pimUML class diagram of the Rent-A-Car is presented in Figure 10.1.

As with all explored UML profiles, each entity of Rent-A-Car is represented as a class
in the pimUML class diagram. The value types {YEAR} and {DAY} become custom
data types while {CAR GROUP} becomes an enumeration. Each class in pimUML has
its own logical identifier. This could correspond to the transaction kind identifier that
was responsible for the instantiation of the entity type that the class represents; however,
how exactly classes of declared entities receive their identifiers is outside the scope of
this thesis.
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Figure 10.1: pimUML class diagram of Rent-A-Car
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Generalization sets are not used in pimUML, due to the lack of precise execution seman-
tics and the lack of generalizability of the construct, as in order for the semantics to be
implemented, the target platform must include the ability for instances to belong multiple
classes of a hierarchy at once, which is not always the case. Instead, as with fUML, trans-
formation A10 uses regular associations for generalization/specialization relationships.
Therefore, specializations of Rental, namely TakenRental, DepositPaidRental,
ReturnedRental, and InvoicePaidRental, are related to Rental through directed
associations with a parent role. As these relationships do not inherently include in-
heritance semantics, these needed to be added with explicit structural and execution
semantics. To ensure the data integrity of the is-a semantics of the data model, is
an important that these logical identifiers be automatically managed as to ensure that
objects of derived entities have a logical identifier that is equal to that of the object from
which it was derived. Such execution semantics are explicitly added in and are captured
by CRUD operations.

The class CarGroupByYear, representing an aggregate derived entity type, is related to
its parts, Year and CarGroup, via associations baring a shared aggregation association
adornment.

The property types in the fact model are translated as directed associations in pimUML,
just as with Standard UML and fUML. As the cardinality laws are not specified in the
fact model of RAC, the OFD defaults of 0..* on the domain side and 1..1 on the range
side are used.

10.2.2 RAC pimUML State Machine Diagram
To capture the behavioural semantics of the entities, particularly their lifecycles, pimUML
includes state machines. State machines are created for each class in the class diagram,
except for association classes.

Each class in the class diagram – including for association classes – has a corresponding
state machine that shows the possible state changes of those entities in response to
business events, which in the case of DEMO are transaction kind accept events (C-events).
Figure 10.2 shows the UML state machine diagram for the Rental class1

Each region corresponds to a Boolean value representing an Event Type. As with
Standard UML, these regions are orthogonal as to allow for the Rental object to be
in multiple states at once, as is inferred by the structural semantics of the DEMO fact
model. This also does not enforce any such ordering on the state transitions, which
is important as there is no such ordering depicted in the Object Fact Diagram of the
RAC fact model. Each region has two states: one representing that that Boolean is
false and one representing that the Boolean is true. As the default value of each of
these Boolean attributes is false, the false state is immediately entered after the initial

1All other classes also would have corresponding state machines, but as no other entities have any
concerning Event Types in the FM, these state machines are empty and are therefore not shown for
simplicity’s sake.
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10.2. Demonstration

Figure 10.2: pimUML state machine diagram of the Rental class from Rent-A-Car
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10. HS: DEMO FM to pimUML

node. The transition between the false state and the true state contains two crucial
behavioural components: the transition trigger and the transition effect. The transition
trigger corresponds to the transaction accept C-act which results in the creation of the
P-fact corresponding to the event occurrence. The event is therefore identified by the
transaction number as well as the “TK” prefix denoting it as a Transaction Kind and the
“ac” suffix denoting it as an accept C-event.

The transition effect links the behavioural semantics with the execution semantics captured
in an activity diagram. Each activity depicts the operations which must be executed to
realize the state change in the system; that is, changing the value of the Boolean attribute.
For example, in the event that the deposit of an instance of Rental has been paid, this
is realized in the system as the occurrence of an accepted transaction of transaction
kind 04. The depositPaid Boolean attribute of the Rental object is then set to
true and the effect of creating the corresponding instance of DepositPaidRental
is handled by the RentalDepositPaid operation referenced by the transition effect
behaviour expression.

Each event type that has a corresponding derived entity type in the DEMO fact model
requires the invocation of a create operation to instantiate the class representing the
derived entity. To realize this, within the region corresponding to such an event type,
the true state contains an entry event activity expression, expressed in Alf, which
denotes an invocation of an operation that handles the creation of the derived object.
This operation is depicted in an activity diagram to specify the actions executed to
create the new object instance and to associate it with its parent. For example, in
the depositPaid = true state in Figure 10.2, the expression of the entry activity,
CreateDepositPaidRental(this), invokes the CreateDepositPaidRental op-
eration and passes the context object of the state machine (referred to by the this
expression) as the parameter, which is an instance of the Rental class.

10.2.3 RAC pimUML Activity Diagram
Figure 10.3 shows the pimUML activity diagram of the operation SetRentalCompleted.

The activity receives an object of the Rental class via the parameter node of the activity.
The activity is invoked upon receipt of a Rental object on the parameter node of activ-
ity. This object is immediately passed to the AddStructuralFeatureValueAction
which takes in the value true, which is an alias for a ValueSpecificationAction,
and assigns the value true to the completed Boolean attribute of the Rental object.
This effectively completes the state change of the Rental object, and the activity is
finished.

Figure 10.4 shows the slightly more complex pimUML activity diagram of the opera-
tion CreateTakenRental. This operation has the responsibility of creating a new
instance of the specialized entity, TakenRental, and relating it to the Rental en-
tity instance from which it is derived. The activity receives an object of the Rental
class via the parameter node of the activity. The activity is invoked upon the op-
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10.2. Demonstration

Figure 10.3: pimUML activity diagram of the SetRentalCompleted operation of
Rent-A-Car

Figure 10.4: pimUML activity diagram of the CreateTakenRental operation of Rent-
A-Car

eration call by the entry activity of the state machine of the Rental object. The
first action executed is the CreateObjectAction, which creates a new instance of
TakenRental. The next action is a ReadStructuralFeatureValueAction which
reads the RentalID of the parameter Rental object and passes it to the next ac-
tion, the AddStructuralFeatureValueAction. This action also receives the newly
created TakenRental object and assigns the value of RentalID to the attribute
takenRentalID of TakenRental. Finally, the CreateLinkAction is executed to
create the parent link between the TakenRental object and the parameter Rental
object. After this step, the operation is finished.
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10. HS: DEMO FM to pimUML

10.3 Evaluation
The CIM-to-PIM transformation design from DEMO FM to pimUML was quantitatively
evaluated by assessing the semantic completeness and correctness of the transformation
of the Rent-A-Car case.

10.3.1 Model Semantic Completeness
The semantic completeness of the DEMO FM to pimUML transformation was evaluated
against the Rent-A-Car case. First, the domain semantics captured in the DEMO fact
model were extracted from the model elements and listed as domain fact statements
through the verbalization process demonstrated in [33]. These facts were taken as the
ground truth of the domain. Second, each fact statement was checked to determine if the
semantics were adequately captured and communicated at the PIM level. The number of
correctly preserved fact statements of the pimUML PIM was aggregated for each of the
major model concepts (see Appendix G for the full results). The aggregated results are
presented in Table 10.2.

DEMO FM Concept # fact statements in DEMO FM # preserved statements in pimUML
Entity Types 12 12
Value Types 3 3
Event Types 14 14
Attribute Types 42 42
Property Types 42 42

Table 10.2: Semantic completeness of the pimUML PIM against the Rent-A-Car case
study

All fact statements were deemed to have been sufficiently preserved in the pimUML PIM.

10.4 Conclusions
The CIM-to-PIM mapping from the object fact diagram of the DEMO fact model to a
novel UML profile, pimUML, was presented, demonstrated, and evaluated in this chapter.
This transformation constitutes the first stage in the MDA approach designed in this
thesis. The demonstration and evaluation results showed all fact statements from the
domain semantics of the CIM were preserved within the semantics of the produced PIM
model elements, confirming that a CIM-to-PIM transformation from the DEMO fact
model to pimUML can be used to bridge the enterprise domain semantics to software
design semantics with a high degree of semantic correctness. The next chapter details
the final agile sprint in this study: the PIM-to-PSM transformation from pimUML to
Mendix.
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CHAPTER 11
AS4: pimUML to Mendix

The previous four chapters focused on designing a CIM-to-PIM mapping from the DEMO
FM, resulting in a novel UML profile, called pimUML, and a transformation specification
from the DEMO fact model (FM) to pimUML. While multiple agile sprints and a
hardening sprint were undertaken to explore different possibilities to achieve the CIM-to-
PIM transformation, this chapter focuses on a single sprint to design the PIM-to-PSM
mapping from pimUML to Mendix. The designed transformation specification is then
demonstrated and evaluated with an academic case study.

11.1 Design
The target platform of the PSM is Mendix, a low-code development platform (LCDP) from
Siemens. As a LCDP, Mendix applications are built primarily using graphical notation
to implement various components across the layers of the application’s architecture.

11.1.1 Step 1: Setting the mapping context
Mendix applications are built using four major components to implement the application
presentation logic, business logic, and persistence logic:

• Domain Model

• Microflows

• Workflows

• Pages
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11. AS4: pimUML to Mendix

Each of these components have their own individual metamodels which are interlinked
via relations between common metaclasses. The four components are discussed in detail
in the subsections below.

Domain Model

The domain model visually specifies the data of the application; specifically, the domain
entities, their attributes, and the relationships between entities. The domain model itself
is an abstract visualization of the data model of the application, which is implemented in
an underlying (relational) database schema. There are three different types of entities in
a domain model: persistable, non-persistable, and external. Objects of non-persistable
and external entities are stored in memory at runtime, while objects of persistable entities
are stored in the built-in HSQL database, the cloud-based PostgreSQL database, or a
supported external database management system. In addition to entities and relationships,
annotations can also be included in domain models. Annotations have no functional
purpose; they simply serve to provide supplementary information that may be useful to
anyone who is trying to understand a given domain model [104].

Microflows

Application logic is primarily realized and implemented in Mendix using microflows. This
includes creating, modifying, and deleting objects, as well as application flow decisions,
such as user interface (UI) navigation. Microflows are visualized as flowcharts using
notation which is based on the Business Process Model and Notation (BPMN). As
such, microflow elements consist of parameters, events, flows, decisions, and activities.
Microflows start with a start event, end with an end event, and perform one or more
activities. The flow through the microflow is guided by sequence flow arrows and control
constructs, such as decision nodes (which make decisions through evaluating conditions)
and merge nodes [105]. Microflow expressions in Mendix are key to implementing many
business logic computations, such as mathematical calculations, as well as to modifying
objects of the domain model, such as assigning attribute values and creating links between
entity objects [106]. There also exist several types of activities which can be used to
perform application operations, such as object activities for manipulating objects and
integration activities for calling external services [107].

Workflows

For long-running application processes in Mendix, workflows are used [108]. Processes
typically handled by workflows are those which are well-defined, are repeatable, and are
frequently executed. Such processes may include both human tasks and automated tasks.
As such, workflow processes may take a long time to complete. Workflows typically
can run from hours to even months [109]. Therefore, the states of these processes are
persisted [108]. Workflows themselves do not perform application operations; rather they
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can be used to coordinate the execution of microflows and the assignment of human tasks
which perform actions delegated by the workflow [110].

Workflows are assigned an entity to receive as a parameter on which to work, known as
the “WorkflowContext”. Workflows consist of activities which each serve various purposes
in the workflow. For example, the wait for notification activity instructs the workflow to
pause its execution until the notification of an event occurrence arrives. There are also
system action activities, which instruct the workflow to execute some other operation,
such as a microflow or another workflow [111].

Pages

Pages are the interactive views that make up the user interface (UI) of Mendix applications.
They are primary means by which the information of an application, such as entity objects
and the values of their attributes, are presented and modified [112]. The metamodel
of pages consists of elements pertaining to the contents, layout, data sources, and
functionality of the UI [113].

Since the DEMO fact model mapped primarily to the business logic layer and persistence
layer of the software architecture, and not at all to the presentation layer, Mendix pages
fell outside of the scope of this thesis and are therefore not explored.

11.1.2 Step 2: Understanding the similarities and differences
The Mendix domain model syntax and semantics are very close to those of pimUML
class diagram. However, some class diagram constructs do not have exact matches in the
Mendix domain model, including abstract classes, association classes, and association
adornments.

Another difference between pimUML and Mendix is with regards to representation of
object state. pimUML provides the state machine diagram for explicitly illustrating the
behaviours of objects and the states they assume in response to events. While there
exists no such state machine view for entities in Mendix, the pimUML state machine does
contain key behavioural semantics which should be captured in the PSM. Specifically,
these are the state transition trigger events, the transition effect activities, and the state
entry activities. The precise execution semantics of the activities are captured in pimUML
activity diagrams to prescribe the algorithmic process to realize object state changes.

Activity diagrams in pimUML are very similar to microflows in Mendix. However, a
key difference between the appearance of these two constructs is with regards to edges.
pimUML activity diagrams consist of both control flows and object flows. Control flows
make explicit the stepwise ordering of actions, while object flows make explicit how
objects are passed between actions. In Mendix microflows, flow edges exist only to specify
the stepwise ordering of actions. Object flows are not needed, because as soon as an
object or variable is made available in a microflow instance, either by a parameter or an
action, then it is accessible to all subsequent actions in the microflow.
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11.1.3 Step 3: Approaching the metamodel of the target modelling
language

The metamodel of Mendix was analyzed to determine the elements which could be
feasibly used to capture semantics from elements of pimUML. A subset of the Mendix
metamodel containing elements relevant to the transformation mappings can be found in
Appendix D.

11.1.4 Step 4: Determine the specific mappings
Explanations behind non-trivial mappings presented in Table 11.1 are discussed below.

i. Abstract class
All elements of Mendix domain models must be concrete. Despite this, abstract
classes are mapped to entities in Mendix. It is therefore left up to the domain logic
to ensure that these entities are not instantiated.

ii. User-defined data type (custom)
User-defined data types do not exist in Mendix. These are therefore implemented
as entities in Mendix.

iii. Property (isID == true)
The isID meta-property of Properties in pimUML denotes a property that acts
as the identifier as a class. In pimUML, these are always integer values; therefore,
they are translated to Mendix as Attributes with the IntegerAttributeType as the
type. The AutoNumberAttributeType is also a suitable data type for identifiers in
Mendix; however, in order to allow for the possibility for the entities to receive an
identifier that is domain-relevant, the IntegerAttributeType is used instead.

iv. State Machine
In pimUML, a state machine is instantiated upon the instantiation of its context
object. The state machine listens for events and invokes operations in response to
both these events and the state changes which result from triggered transitions.
The key aspect of the state machine itself in this translation is the mechanism of
listening for events that concern the machine’s context object.
A state machine is created as a controller of object behaviour in response to events
concerning the object. To realize this in Mendix, a microflow is invoked upon
object creation. These kinds of microflows in Mendix are known as “After Create”
microflows and are identified with the prefix “ACR_” in the name of the microflow.

v. ValueSpecificationAction + AddStructuralFeatureValueAction
The effect of these two actions is to change the attribute value of an object
specified by the AddStructuralFeatureValueAction to the value specified
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by the ValueSpecificationAction. This action is achieved in Mendix as a
ChangeObjectAction in a microflow, whereby the action is provided the following
parameters: the object, the attribute to be modified, and the value that is to be
assigned.

vi. AddStructuralFeatureValueAction

The remaining AddStructuralFeatureValueActions that were not translated
in the mapping described in Definition v. can be deduced (when looking at the
pimUML metamodel) to be those actions that receive as input an object and
the value of a variable. The value of an attribute is passed from an OutputPin,
rather than a constant specified by a ValueSpecificationAction. In this
case, the AddStructuralFeatureValueAction is translated to Mendix as a
ChangeObjectAction that is instructed, using an expression, to assign the specified
attribute of the given object the value of the microflow variable that represents the
attribute provided by the output pin.

vii. CreateLinkAction

This action object, creating a link between two objects, is achieved in Mendix as a
ChangeObjectAction in a microflow, whereby the action is provided as parameters
the association link to be created and other the object that is to be linked.

viii. ReadStructuralFeatureValueAction

In a Mendix microflow, to read the value of an attribute of an object, a variable
must be created during an execution instance of the microflow, and the value of the
attribute is assigned to this variable. This is achieved with the CreateVariableAction
in Mendix. This action is provided an expression string as a parameter that directs
the action to receive the value of the identifier attribute of the entity object that was
provided as a parameter. For example, for accessing the identifier of a “Membership”
entity object, the expression would be “$Membership/MembershipID”.

ix. Transition + Trigger

A state machine transition and its trigger contain valuable execution semantics
regarding what action should be undertaken in response to some domain event. In
Mendix, workflows can be used to take on such responsibility. While microflows are
meant for short-lived operations, workflows of entities can be active indefinitely as
they await the fulfillment of their steps to move them along. To realize the trigger
of a transition in a pimUML state machine, Mendix workflows can be instructed
wait for a specific event to occur using a Wait For Notification Activity. After
such an event occurs, a Call Microflow Activity is used to invoke a microflow that
implements the logic specified by an activity diagram to which the transition’s
effect behaviour expression refers.
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x. State entry activity

States in pimUML use entry activities to specify operations which are to be
performed upon entering a new state. In the case of pimUML, the entry activities
are created to specify the operation that is to be performed to create a new instance
of the child entity that is derived upon the occurrence of a domain event concerning
an instance of the parent entity. The exact execution semantics of these activities
are expressed in an activity diagram. In the state machine, the entry activity
expression is given in the form of an operation call of the activity, expressed in
Alf. To capture this behaviour, the action of calling this operation is translated to
Mendix as a Call Microflow Activity that invokes the microflow which implements
the referenced activity.

11.1.5 Step 5: Determining the complete mapping

Table 11.1 presents mappings from elements of pimUML to Mendix, with an ID code for
each mapping.

11.2 Demonstration
In this section, the PIM-to-PSM mapping presented in Table 11.1 is demonstrated using
the Rent-A-Car (RAC) case study (see Section 6.4). This demonstration constitutes a
demonstration of the entire MDA transformation specification of this thesis, from the
CIM expressed using a DEMO fact model to the PIM expressed using pimUML (see
Section 10.2) and from the PIM to the PSM expressed as Mendix executable model
artifacts.

11.2.1 RAC Mendix Domain Model

The Mendix domain model of Rent-A-Car is presented in Figure 11.1. Each entity of
Rent-A-Car is represented as an entity in the Mendix domain model, translated from
classes at the PIM level. The value classes {YEAR} and {DAY} become entities as well,
translated from custom data types at the PIM level, while {CAR GROUP} becomes an
enumeration, which is also an enumeration at the PIM level.

As no aggregation adornments exist for associations in the Mendix domain model, the
association between Year and CarGroupByYear is implemented as a regular association.

There also exists no such construct for association classes in Mendix. Therefore, as-
sociation classes are implemented as regular entities in the Mendix domain model via
transformation mapping rule B5. The association that the association class represents
is implemented as two separate associations: one from the owning entity to the entity
representing the association class and one from the entity representing the association
class to the other entity.
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Figure 11.1: Mendix domain model of Rent-A-Car
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ID pimUML Mendix
B1 Class Entity (domain model)
B2 Abstract Class Entity (domain model)

B3 Enumeration EnumerationAttributeType (domain model)
EnumerationLiteral Enumeration (domain model)

B4 User-defined data type Entity (domain model)

B5 Association Class
Entity (domain model)
Association [domain] (domain model)
Association [range] (domain model)

B6 Property (isID == true) Attribute Integer (domain model)
B7 Property (of Datatype) Attribute (domain model)
B8 Property (of Class) Attribute (domain model)
B9 Association Association (domain model)
B10 Generalization Generalization/Specialization (domain model)
B11 State Machine ACR Microflow (domain model + microflow)

B12 Region Call Workflow activity (microflow)
Workflow (workflow)

Pseudostate (initial) Start element (workflow)
B13 Activity Microflow (microflow)
B14 InitialNode StartEvent (microflow)
B15 ActivityFinalNode EndEvent (microflow)

B16 Parameter Entity reference (microflow)
ActivityParameterNode Parameter (microflow)

B17 ValueSpecificationAction Change Object (microflow)AddStructuralFeatureValueAction
B18 AddStructuralFeatureValueAction ChangeObjectAction (microflow)
B19 CreateLinkAction ChangeObjectAction (microflow)
B20 CreateObjectAction CreateObjectAction (microflow)
B21 ReadStructuralFeatureAction CreateVariableAction (microflow)
B22 Control flow Sequence flow (microflow)

B23 Transition CallMicroflowTask (workflow)
Trigger WaitForNotificationActivity (workflow)

B24 State entry activity CallMicroflowTask (workflow)

Table 11.1: High-level mapping specification from pimUML to Mendix
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Each association must have a unique name in a Mendix domain model. Therefore,
wherever there are multiple entities with different associations sharing the same name,
the entity name is appended to the beginning of the association name, followed by an
underscore, in order to distinguish the associations.

11.2.2 RAC Mendix Workflows
To implement the behaviour of entities in response to business events, for each transition in
a pimUML state machine at the PIM level, the triggers, transition effect behaviours, and
entry activity expressions are translated via transformation rules B23 and B24 to Mendix
workflow elements. Figure 11.2 shows the workflow translated from the completed
region of the state machine in Figure 10.2. This workflow consists of two workflow
activities. The first is a Wait For Notification Activity which listens for the notification
of the accept C-event of transaction kind 01 for an instance of Rental – this
constitutes the state transition trigger. The second workflow activity responds to this
event by invoking a microflow to set the completed attribute of the Rental object
to true (this microflow is shown in Figure 11.5). This constitutes a transition effect
behaviour in a state machine in the PIM.

Figure 11.2: Mendix workflow to listen for the Rental “completed” event of Rent-A-Car

Figure 11.3 shows the workflow translated from the taken region of the state machine
in Figure 10.2. This workflow consists of three workflow activities. The first is a
Wait For Notification Activity which listens for the notification of the accept C-event
of transaction kind 02 for an instance of Rental – this constitutes the state
transition trigger in the PIM. The second workflow activity responds to this event by
invoking a microflow to set the taken attribute of the Rental object to true (this
microflow is shown in Figure 11.5) – this constitutes the transition effect behaviour in
the PIM. The third workflow activity invokes the microflow to create a new instance of
the TakenRental entity, derived from the Rental entity – this constitutes the entry
activity of the true state in the PIM.
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Figure 11.3: Mendix workflow to listen for the Rental “taken” event of Rent-A-Car

11.2.3 RAC Mendix Microflows
To implement the operations specified by the activity diagrams at the PIM level, Mendix
microflows are used. These microflows implement the two primary roles of the behaviours
specified at the PIM level: to realize state transitions and to implement CRUD operations1.

According to the semantics of pimUML, a state machine is started immediately upon the
instantiation of the class of which the state machine describes the behaviour. In Mendix,
this is implemented with an after create event handler. This is a microflow that is
specifically assigned to be invoked upon the instantiation of an entity. Figure 11.4 shows
the ACR_Rental microflow. This workflow consists of five CallWorkflowActivitys;
one for each of the regions of the Rental state machine diagram in Figure 10.2. These
activities each start the workflows which listen for the trigger events of the transitions
between the states in these regions, as described in Section 11.2.2.

The transition effect behaviours are implemented as Mendix microflows that have the
responsibility to change the Boolean attribute of the entity, representing the occurrence
of the associated event type from the DEMO fact model, which is specified at the PIM
level as a pimUML activity diagram. Figure 11.5 shows the microflow implementing the
SetRentalCompleted activity from the pimUML activity diagram. This microflow
sets the completed attribute of the parameter Rental object to true using a change
object action.

The state entry activities are implemented as Mendix microflows that have the responsi-
bility to create and initialize new objects of derived entities from the DEMO fact model
in response to the occurrence of an associated event type; the execution steps of which are
specified at the PIM level as a pimUML activity diagram. Figure 11.6 shows the microflow
implementing the CreateTakenRental activity from the pimUML activity diagram.

1It should be noted that as the PIM level in this thesis only captures the semantics from the object
fact diagram of the DEMO fact model, there would certainly be additional purposes for microflows to
implement behaviours expressed by other DEMO aspect models. These are outside the scope of this
thesis.
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Figure 11.4: Mendix “After Create” microflow to call the event listener workflows of the
Rental entity of Rent-A-Car

Figure 11.5: Mendix microflow to set a Rental object of Rent-A-Car to completed

First, the microflow creates a new TakenRental object. Next, the microflow creates
a new variable to hold the value of the RentalID attribute of the parameter Rental
object. The next step assigns the value of this variable to the TakenRentalID attribute
of the newly created TakenRental object, ensuring that they share the same value thus
preserving the is-a semantics. Finally, the parent link from the new TakenRental object
to the parameter Rental object is created. After this, the TakenRental creation and
initialization process is finished.

11.3 Evaluation

The PIM-to-PSM transformation design from pimUML to Mendix was quantitatively
evaluated by assessing the semantic completeness and correctness of the transformation
of the Rent-A-Car case study.
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Figure 11.6: Mendix microflow to create a new TakenRental object of Rent-A-Car

11.3.1 Model Semantic Completeness

The semantic completeness of the DEMO FM to pimUML and pimUML to Mendix MDA
transformation chain was evaluated against the Rent-A-Car case. First, the domain
semantics captured in the DEMO fact model were extracted from the model elements and
listed as domain fact statements through the verbalization process demonstrated in [33].
These facts were taken as the ground truth of the domain. Second, each fact statement
was checked to determine if the semantics were adequately captured and communicated
at the PSM level. The number of correctly preserved fact statements of the Mendix
PSM was aggregated for each of the major model concepts (see Appendix G for the full
results). The aggregated results are presented in Table 11.2.

DEMO FM Concept # fact statements in DEMO FM # preserved statements in Mendix
Entity Types 12 11
Value Types 3 3
Event Types 14 14
Attribute Types 42 42
Property Types 42 42

Table 11.2: Semantic completeness of the Mendix PSM against the Rent-A-Car case
study

The only fact statement that was deemed to have not been sufficiently preserved is
aggregate entity type car group * year exists. This is due to the fact that Mendix does
not have specific construct in its metamodel to denote entities which are composed of
other entities, thus constituting an aggregate entity. Instead, the aggregate entity type
{CAR GROUP} * {YEAR} can be traced from the RAC DEMO fact model to being
implemented as a regular entity in Mendix.
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11.4 Conclusions
The PIM-to-PSM mapping from pimUML to Mendix was presented, demonstrated, and
evaluated in this chapter. This transformation constitutes the second stage in the MDA
approach designed in this thesis. The demonstration and evaluation results showed
all fact statements from the domain semantics of the CIM were preserved within the
semantics of the produced model elements of the target platform, confirming that an
MDA transformation from the DEMO fact model to Mendix via pimUML can be used
to generate low-code executable artifacts from DEMO ontological enterprise models with
a high degree of semantic correctness. The next chapter concludes this thesis report
by providing answers to the research questions, summarizing the produced deliverables,
detailing the research contributions, discussing study limitations, and suggesting avenues
for future research.
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CHAPTER 12
Conclusion

The research conducted in this thesis aimed to explore the possibility and benefits of using
the MDA approach to improve the process of generating low-code software from enterprise
models. Through the chapters of this thesis, the theoretical background was elaborated,
the state of the art was explored, foundational definitions were derived through a semi-
systematic literature review, a meta-design was formulated, and experimental MDA
transformation mappings were designed, demonstrated, and evaluated. To conclude this
thesis, answers to the research questions are provided and elaborated, the deliverables are
summarized, the contributions to academia and industry are highlighted, the limitations
of the research are explained, and work that is left open to future research is discussed.

12.1 Answers to Research Questions

RQ1 What are the distinct characteristics of the three Model Driven Architecture (MDA)
abstraction levels (CIM, PIM, and PSM) and what are their intended uses in the
context of Model-Driven Engineering (MDE)?

The semi-structured literature review in Chapter 4 revealed empirical characteristics
of the three abstraction levels of the MDA framework (see Table 4.2). These
characteristics pertain to four key aspects on which the MDA abstraction levels
can be differentiated:

• Concerns

• Views

• Modelling languages

• Users
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While the CIM has the primary use of stakeholder communication and the PSM
has the primary use of executable artifact generation, the PIM equally has the dual
purpose of being used both for communicating designs among technical stakeholders
and for generating executable artifacts for one or multiple target platforms. This was
a key insight that was considered while designing the CIM-to-PIM transformation
during the design sprints.

RQ2 What concepts or constructs of CIMs, PIMs, PSMs can be identified to guide the
usage of MDA for the generation of enterprise applications?
The process of constructing a conceptual framework provided a means of structuring
the notions of the three major background field of this thesis – enterprise ontology,
model-driven engineering, and low-code development – in like terms to understand
how they can be used together in a common framework. No such framework
existed in the literature; nevertheless, it was important to have such a framework
as to ensure that the PIM artifact produced in this thesis would be truly platform
independent and thus generalizable.
Drawing on notions of enterprise application architecture, it was chosen to structure
the MDA conceptual framework in terms of the four-layered architecture pattern:
the presentation layer, the business logic layer, the persistence logic layer, and the
data source logic layer. By structuring the MDA framework in terms of these four
layers, it became clear that each of these layers should be targeted at the PSM
level in order to produce an enterprise application. This provided the structure of
the conceptual framework.
Drawing on the notions of conceptual schema-centric development gave important
insight into what information should be expected to be captured at the CIM level
and what information is feasible to represent at the PIM level. This made it clear
that the CIM level can only explicitly provide information of the business logic
layer of the enterprise application. This includes business domain semantics such as
business vocabulary, business entities, business rules, and business events. The PIM
level expands the range of semantics capable of being captured, with information
being able to be explicitly extracted from the CIM at the business logic layer while
design decisions can be made at the persistence logic layer through inference. Such
information includes data processing algorithms to handle business processes and a
domain model to organize information on domain entities at the business logic layer,
while data and data integrity rules are managed at the persistence layer. Only at
the PSM level can information pertaining to the presentation logic and data source
logic be captured, such as user interface design and database construction. Added
across the matrix of abstraction levels the architecture layers, these are the concepts
of the conceptual framework, and thus, the concepts that must be captured by
CIMs, PIMs, and PSMs to generate enterprise application artifacts with the MDA
approach.
The resulting conceptual framework in Chapter 5 allowed it to be deduced that
the constructs captured by DEMO and Mendix make these models suitable for
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use as a stand-alone CIM and a stand-alone PSM, respectively. Reflecting back
on the MDA transformation design sprints, using the DEMO fact model as the
CIM constituted a mapping to the persistence logic layer and part of the domain
logic layer of the PIM. Semantics and design decisions and how these are made to
capture the necessary information at the presentation logic and data source logic
layers fell outside of the scope of this thesis.

RQ3 What architectural principles can be inferred from the design sprints to the guide
the design of a PIM to build low-code enterprise applications?
As this thesis served as an exploratory study into the use of the MDA approach
to generate low-code application artifacts from ontological enterprise models, over
the course of developing the conceptual framework in Chapter 5 and executing
the experimental design sprints through Chapters 7, 8, 9, 10, and 11, several
insights were revealed which can serve to guide the development of CIM-to-PIM
transformations in the future, such that they capture and propagate structural,
behavioural, and execution semantics necessary for the MDA approach to be used for
both analysis and executable artifact generation of low-code enterprise applications.
These findings are generalized and expressed below as the following architectural
principles:

AP01 The PIM should capture structural and behavioural semantics on the domain
logic (business logic) from the CIM and the CIM-to-PIM transformation should
be able to infer execution semantics to realize the structural and behavioural
semantics.
Assuming the CIM contains the necessary domain semantics, not only must the
PIM be able to interpret these the explicit domain semantics in a computational
sense, but a PIM should also have precise enough execution semantics such that
implementation at the PSM level is straightforward. Design decisions regarding
the data source layer and the presentation layers will require knowledge about
the features of a target platform. According to [83], presentation logic cannot
be captured by a conceptual schema, and thus, it is not captured by the PIM.
However, the presentation logic is influenced by the conceptual schema and
design decisions can be expected to be inferred based on information contained
in the PIM. Therefore, presentation logic is added at the PSM layer.

AP02 The PIM should add in or infer design decisions about the persistence logic
layer.
The persistence logic layer of the PIM should introduce functionality to ensure
data integrity when new business entity instances are created, modified, or
deleted. The explicit specification of CRUD operations realizes this func-
tionality. When appropriate (see AP03), data integrity constraints may be
implemented and enforced by CRUD operations. These shall exist at the
persistence logic layer. This relates to AP01, as execution semantics are added
to ensure that the structural semantics captured by the domain model at the
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CIM level are preserved throughout the runtime of the application (i.e., over
the course of the lifecycles of the object instances).

AP03 Business rules should be enforced at the domain logic layer; data integrity
should be enforced at the data source level.
According to the enterprise ontology PSI theory [33], there exist two kinds of
business rules: declarative rules and imperative rules. Declarative rules are
constraints which apply to the creation and existence of facts in the enterprise
ontology. Imperative rules are the realization of declarative rules in the terms
of procedures or protocols. Therefore, although they are two different kinds of
rules, each imperative business rule has a declarative counterpart. Enforcement
of business rules must be appropriately captured and implemented.
The notions of imperative and declarative business rules also align closely with
the notions of behaviour business rules and definitional rules as defined by
the Semantics of Business Vocabulary and Business Rules (SBVR) specifica-
tion published by OMG [32]. The key difference between such rules is that
behavioural business rules allow for a certain degree of free will on the part
of the executor, whereas definitional rules do not. It is important that these
types of rules are distinguishable in the CIM level, as this difference has major
implications for how they are enforced at the PIM and PSM levels.
Enforcing rules from a declarative standpoint could be realized by persistence
level constraints on CRUD operations, whereby any deviation is disallowed.
However, the PSI theory also acknowledges that sometimes business rules
are broken for good reasons. If they were broken for improper reasons, they
should be corrected at the promise state of the transaction [33]. Therefore,
the imperative business rules could instead be implemented as inherent effects
of the implemented procedures to which the business rules apply1.

AP04 When choosing notation elements, domain semantics take precedence over
modelling language semantics.
This relates to the findings of the characteristics of the PIM; not only should
a PIM be capable of producing an executable PSM or code, but it should
also express, in a human readable manner, the behavioural and structural
semantics of the application for the purpose of analysis. This principle aligns
closely with the xUML design principles from [89]. Balancing the dual purpose
of the PIM for human communication and executable artifact generation, at
times, trade-offs had to be made when choosing modelling elements based
on how well they captured the semantics to best fulfill these purposes. For
example, is-a semantics of generalization versus specialization relationships
between entities must be propagated to the target platform at the PSM level
and must also be clear and understandable to software analysts reading the
diagrams at the PIM level.

1For this reason, in this thesis, any declarative business rules were not considered for translation from
the CIM to the PIM at the persistence logic layer.
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12.2 Summary of Deliverables
Following the agile design science research methodology (ADSRM), three major deliv-
erables were produced: working definitions of the MDA abstraction levels based on
empirical characteristics found in literature, an MDA transformation meta-design, and
an MDA transformation specification, including a novel UML profile, from the DEMO
fact model to Mendix.

12.2.1 Characteristics and Definitions of MDA Abstraction Levels
Through the semi-structured literature review, a table of the characteristics of models
of the MDA abstraction levels was composed. The characteristics in the table were
grouped by four major themes: concerns, views, common languages, and users. From
those characteristics, working definitions of each of the three abstraction levels were
derived. The table of characteristics and the working definition of CIM, the working
definition of PIM, and the working definition of PSM are found in Table 4.2, Section 4.2.1,
Section 4.2.2, and Section 4.2.3, respectively.

The sets of characteristics and working definitions served to fill the gaps in the under-
standing of what defines each of the MDA abstraction levels. This was used to better
understand the applicability of the MDA approach to solve the research problem and to
better set the scope and objectives of the design sprints of this thesis.

12.2.2 MDA Transformation Meta-Design
By synthesizing fundamental notions from enterprise ontology, enterprise application
architecture, and MDA into a conceptual framework, an MDA transformation meta-
design was formulated. This meta-design structured the information captured by the
MDA abstraction levels in terms of the four-layered software architecture pattern. The
meta-design is found in Figure 5.1.

By contextualizing enterprise ontology in terms of the layers of enterprise application
architecture, it became clearer as to how information from the PIM level can be directly
extracted from the CIM level and what information must be inferred. This also allowed
for a critical assessment as to the fit of DEMO as a CIM and Mendix as a PSM; moreover,
it informed the decision as to what modelling languages are suitable candidates for
modelling at the PIM level. Lastly, it also assisted in further refining the objectives and
scope of the design sprints.

12.2.3 pimUML and MDA Transformation Specification
The first three design sprints focused on creating CIM-to-PIM mappings from DEMO
to each of the following three UML profiles: Standard UML, xUML, and fUML. The
strengths and weaknesses of these modelling languages in use as a PIM were assessed,
and from these findings, a novel UML profile was derived in a hardening sprint: pimUML.
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As a UML profile, pimUML is restricted to include elements that can effectively capture
the structural and behavioural semantics of domain entities, as well as the execution
semantics of operations concerning those entities. pimUML was used as the PIM
modelling language in the two stage MDA transformation specification: from DEMO
to pimUML and from pimUML to Mendix. The pimUML metamodel, the graphical
CIM-to-PIM transformation mappings, and the graphical PIM-to-PSM mappings are
found in Appendix C, Appendix E, and Appendix F, respectively.

Through an evaluation of the semantic correctness of the information modelled in the
Mendix PSM with regards to the domain facts captured by the DEMO CIM, the MDA
transformation was shown to effectively transform DEMO models to pimUML models
and then to Mendix executable artifacts with a high degree of semantic correctness.

12.3 Research Contributions

The research presented in this thesis in creating a novel MDA transformation specification
from DEMO to Mendix benefits academia by furthering the knowledge of how the MDA
approach can be applied to bridge the gap between enterprise ontology and low-code
application development. Likewise, it benefits industry by offering a new way to use MDA
to realize the flexibility of designing low-code enterprise applications at multiple levels
of abstraction, making it easier to interchange the target platform for which executable
artifacts are generated to support business processes. Not only can this aid in improving
business-IT alignment, but it also lessens the impact of common challenges of using
low-code development platforms (LCDPs); one of the most prominent of those discussed
in this thesis is the challenge of vendor lock-in.

12.3.1 Contributions to Academia

The findings throughout this research can be leveraged in future studies involving MDA.
The characteristics of the MDA abstraction levels found by answering RQ1 serve to
better inform the use of the MDA approach in research, providing guidance on what
concerns, views, modelling languages, and users are typical of each level. The MDA
transformation meta-design formulated to answer RQ2 provides the structure and an
overview of the various concepts which should be captured by CIMs, PIMs, and PSMs,
in order to generate executable artifacts for the major architectural aspects of enterprise
applications. This also can assist with the choices of modelling languages, views, and
design patterns used by each model of the three MDA abstraction levels. Finally, the
architectural principles derived from the design sprints to answer RQ3 can be used in
future studies looking to explore the use of the MDA approach, particularly as it relates
to the design of a PIM.
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12.3.2 Contributions to Industry
The deliverables and findings of this thesis can be applied in industry efforts to develop
techniques to improve business-IT alignment. Using enterprise ontology and DEMO
models as a source in the MDA approach ensures that code artifacts are generated
directly from the essential model of the enterprise; as such, this ensures that the enterprise
application is built directly from the specifications of the business processes which it is
to support. Thus, this approach contributes to improving business-IT alignment.

This approach also contributes to combating two significant challenges hindering the
adoption of LCDPs in industry: vendor lock-in and high learning curves. With the
design of the software being expressed both at platform-independent and platform-specific
levels of abstraction, using the MDA approach to design and build low-code enterprise
applications makes it easier to interchange the target platform or to use multiple target
platforms for different parts of the application, avoiding the need for the application
to be redesigned from scratch using the proprietary modelling languages of individual
LCDPs. At the same time, using the MDA approach to develop low-code applications
also encourages the collaboration of non-technical stakeholders. As the contribution of
non-technical stakeholders can be hindered due to the learning curve associated with low-
code platforms [41], the MDA approach can help by allowing non-technical stakeholders
to contribute to the project design using the DEMO notation to capture the problem
space at the CIM level while technical stakeholders can work with pimUML models
on the solution space at the PIM level. This is similar to the benefits of the V-SUM
approach by Hermann et al. in [48] (discussed in Section 3.2), and it also aligns with
the suggestions found in [41, 39, 42] of using standard modelling notations as part of
the design and development of low-code applications to ease the learning curve of using
LCDPs. Alleviating these challenges while allowing enterprises to realize the benefits
of low-code development, such as faster software development and “democratizing” the
development process to involve non-technical stakeholders [40, 37], further contributes to
the effort of maintaining business-IT alignment.

12.4 Limitations
There are a few challenges and limitations of the thesis which pose threats to the validity
of the results.

First, the use of the DEMO fact model as a CIM model and thus as a source metamodel
was difficult due to inconsistencies and omissions in the metamodel itself. Many such
inconsistencies and omissions in the DEMO metamodel have been reported in the PhD
thesis of Mulder [54]. For example, despite the DEMO-SL specification [35] making clear
that various fact types have names, fact type names are not explicitly included as a
meta-property in the graphical metamodel of the DEMO fact model. This information
therefore had to be assumed to be present in the metamodel for use in the transformations.
Also, although the metamodel does not permit the association between an event type
and a value type, such a construct appeared in the Rent-A-Car case study; this construct
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had to be accounted for in the transformation designs in order to satisfy the semantics of
the case study. Similarly, due to the aim of DEMO being to capture the essential model
of the enterprise, some attributes which are not pertinent to the business process and
business rules are omitted from the fact model. If these are desired in an information
system, they will need to be added manually at the PIM level.

Second, as the transformations in the case study were conducted manually, this had
an increased risk of modelling mistakes being made; however, this risk was mitigated
through modelling the case demonstrations over multiple iterations during each sprint.

Lastly, due to the outputted Mendix artifacts not constituting a full application, the
runtime functionality of the Mendix artifacts was not validated nor verified. Such a task
is left open for future work.

12.5 Future Work
There are three key aspects of this research which could be further explored in future
research. The first is the potential use of the remaining DEMO aspect models; the second
is with regards to varying the target platform of the PSM, and the third is with regards
to the concrete implementation and automation of the MDA transformation specification.

12.5.1 Expansion of CIM and PIM
This thesis had a narrowly focused scope on applying the Object Fact Diagram of the
DEMO fact model in the MDA transformation approach. The usage of the DEMO fact
model was a sensible first step in exploring the use of the MDA approach to generate
low-code applications from DEMO, as the entities of the conceptual model must first
be captured in the system before those entities can be acted upon in business processes.
However, there is still much to explore with regards to the usage of DEMO as a CIM.
As textual transformations were not considered in this thesis, additional fact model
information captured as derived fact specifications were excluded from the transformation
designs. The use of these as part of the CIM should be explored in future research.
Beyond the fact model, there are also the other aspect models of DEMO, as well as
the transaction pattern constructs, containing highly valuable domain information on
business rules and business processes, which is crucial for realizing a semantically rich
PIM. These should also be explored for use at the CIM level in future research.

With addition of other DEMO aspect models at the CIM level, the PIM and PSM could
also be enhanced. For example, any automated processes requiring human participation
must have a corresponding user interface dialog. Likewise, any information which must be
provided as input to human tasks must be displayed to the user. It is therefore important
to be able delineate whether a task is to be performed by a human or a machine at the
PIM level. Where human input is required, the appropriate user interface methods and
constructs should be generated at the PSM level. Capturing these additional design
decisions could be achieved possibly by expanding pimUML with additional UML models
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and constructs or even adding an additional modelling language into the mix, such as
SoaML2, SysML3, or IFML4.

12.5.2 Targeting Different Platforms
One of the most substantial benefits of the MDA approach is the flexibility afforded by
the PIM to easily interchange the platform of the PSM, possibly even using different
PSMs for different aspects of the application architecture at once. Drawing on the notions
of Ashby’s law of requisite variety from the field of cybernetics [114], to account for the
complexity induced by variety on both the side of the enterprise and the side of the
technology, a PIM that is truly platform-independent should be able to handle as large
a variety of input and to produce as large a variety of desired output as possible, thus
reducing risk of vendor lock-in on the side of the PSM and accounting for increased firm
agility and changes of requirements on the side of the CIM. To truly test the platform
independence factor of the PIM modelled using pimUML, the ability of pimUML to be
mapped to different platforms – potentially both low-code and high-code platforms –
should be explored. As such, the flexibility of pimUML to be used to target different
platforms should be explored and the flexibility afforded should be measured.

12.5.3 Automation of the MDA Transformation
While the transformation mappings designed in this thesis were demonstrated and
evaluated manually, automating these designs would not only allow for a more effective
evaluation of these transformation designs, but it would also bring them a step closer to
realizing value for real-world users. Once the transformations are automated, tested, and
refined accordingly, tool support could also be developed, allowing the transformations
to be used in real-world projects to assist enterprises in improving business-IT alignment.

2Information on SoaML can be found at: https://www.omg.org/spec/SoaML
3Information on SysML can be found at: https://sysml.org
4Information on IFML can be found at: https://www.ifml.org
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APPENDIX A
Semi-Structured Literature

Review: Review Protocol

The details of the search protocol design and execution of the semi-systematic literature
review conducted as part of answering RQ1 of this thesis are outlined in this appendix.

The major steps followed to conduct the semi-systematic literature review in this thesis,
as defined in [61], are outlined below:

Step 1. Designing the review

The study review protocol detailed in Section A.1 provides the research question,
search terms, queries, and research databases of the review.

Step 2. Conducting the review

Section A.2 provides the resulting papers found after having conducted the review.

Step 3. Analysis

See Chapter 4.

Step 4. Writing the review

See Chapter 4.
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A.1 Review Protocol

A.1.1 Research Question

RQ1: What are the distinct characteristics of the three Model Driven Architecture
(MDA) abstraction levels (CIM, PIM, and PSM) and what are their intended uses
in the context of Model-Driven Engineering (MDE)?

A.1.2 Search Terms

Synonyms

Terms

mda model driven architecture model-driven architecture
cim computational independent model
pim platform independent model
psm platform-specific model platform specific model
approach method methodology
systematic mapping study systematic literature review
transformation mapping

Table A.1: Search terms used in queries of the semi-structured literature review

A.1.3 Queries

Q1 OR

AND

mda OR model driven architecture OR model-driven architecture
cim OR pim OR psm OR computational independent model OR
platform independent model OR platform specific model
transform OR transformation OR transformations OR transforming

Q2 OR

AND

mda OR model driven architecture OR model-driven architecture
approach OR method OR methodology
model
transform OR transformation OR transformations OR transforming

Q3 OR

AND

cim OR pim OR psm OR computational independent model OR
platform independent model OR platform specific model
approach OR method OR methodology
transform OR transformation OR transformations OR transforming
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Q4 OR

AND
cim OR pim OR psm OR computational independent model OR
platform independent model OR platform specific model
transform OR transformation OR transformations OR transforming

Q5 OR

AND
mda OR model driven architecture OR model-driven architec-
ture
"systematic literature review" OR "systematic mapping study"

A.1.4 Research Databases
The above queries were executed as searches in the following research databases:

• Google Scholar

• IEEE Xplore

A.1.5 Study Selection Criteria
Inclusion Criteria

• Primary study papers applying MDA, yielding a new artifact

• Primary study papers augmenting or suggesting a new approach to MDA transfor-
mations, yielding a new process

• Secondary study papers about MDA (systematic literature reviews, systematic
mapping studies, etc.)

Exclusion Criteria

• Papers on MDE but not on the MDA process from OMG

• Papers that do not apply MDA to transform models between modelling languages
(i.e. code to code transformations)

• Papers which do not provide clear definitions of CIMs, PIMs, or PSMs

• Papers not in English

A.1.6 Study Selection Procedure

1. First review papers supplied by my supervisors

2. Second search for papers in online research databases
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3. Read narrowed down list of articles, looking for choices of CIM/PIM/PSMs (and
perhaps their characteristics)

4. Review the interesting papers found in the references lists of the previously read
papers

5. Summarize findings

6. Draw insights using the line of argument synthesis technique

A.1.7 Study Selection Quality Checklist

1. Age of paper

2. Level of detail of characteristics of CIM/PIM/PSM

3. Quantity of interesting citations

A.2 Query Results
This section provides lists of papers found which were selected for use in this thesis.
There is a table for each combination of query and research database.

Q1
DATABASE: Google Scholar
QUERY: allintitle: (MDA | “model driven architecture” | “model-driven architecture”)
(CIM | PIM | PSM | “computational independent model” | “platform independent
model” | “platform specific model”) (“transform” | “transformation” | “transformations”
| “transforming”)
Total # of papers found: 36
ID Title Year Citation
P7 An Approach for Transforming CIM to PIM up To PSM in

MDA
2020 [67]

P6 Automate model transformation from CIM to PIM up to
PSM in model-driven architecture

2019 [62]

P8 Model Transformation with ATL into MDA from CIM to
PIM Structured through MVC

2016 [68]

136



A.2. Query Results

Q2
DATABASE: Google Scholar
QUERY: allintitle: (MDA | “model driven architecture” | “model-driven architecture”)
(“approach” | “method” | “methodology”) (“model”) (“transform” | “transformation” |
“transformations” | “transforming”)
Total # of papers found: 49
ID Title Year Citation
P9 An MDA approach to business process model transformations 2010 [15]

Q3
DATABASE: Google Scholar
QUERY: allintitle: (CIM | PIM | PSM | “computational independent model” | “platform
independent model” | “platform specific model”) (“approach” | “method” | “methodology”)
(“transform” | “transformation” | “transformations” | “transforming”)
Total # of papers found: 40
ID Title Year Citation
P9 An MDA approach to business process model transformations 2010 [15]
P3 Transformation from CIM to PIM: A feature-oriented

component-based approach
2005 [65]

Q4
DATABASE: Google Scholar
QUERY: allintitle: (CIM | PIM | PSM | “computational independent model” | “platform
independent model” | “platform specific model”) (“transform” | “transformation” |
“transformations” | “transforming”)
Total # of papers found: 159
ID Title Year Citation
P2 Transformation from CIM to PIM: A systematic mapping 2022 [16]
P10 Transformation from CIM to PIM using patterns and

archetypes
2008 [69]

P11 Applying CIM-to-PIM model transformations for the service-
oriented development of information systems

2011 [63]
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Q1
DATABASE: IEEE Xplore
QUERY: (“Document Title”:“MDA” OR “Document Title”:“Model driven archi-
tecture” OR “Document Title”:“Model-driven architecture”) AND (“Document Ti-
tle”:“CIM” OR “Document Title”:“PIM” OR “Document Title”:“PSM” OR “Doc-
ument Title”:“computational independent model” OR “Document Title”:“platform
independent model” OR “Document Title”:“platform specific model”) AND (“Doc-
ument Title”:“transform” OR “Document Title”:“transformation” OR “Document Ti-
tle”:“transformations” OR “Document Title”:“transforming”)
Total # of papers found: 2
ID Title Year Citation
P13 A model transformation in MDA from CIM to PIM repre-

sented by web models through SoaML and IFML
2016 [71]

P14 Disciplined approach for transformation CIM to PIM in MDA 2015 [72]

Q2
DATABASE: IEEE Xplore
QUERY: (“Document Title”:“MDA” OR “Document Title”:“model driven archi-
tecture” OR “Document Title”:‘model-driven architecture”) AND (“Document Ti-
tle”:“approach” OR “Document Title”:“method” OR “Document Title”:“methodology”)
AND (“Document Title”:“model”) AND (“Document Title”:“transform” OR “Document
Title”:“transformation” OR “Document Title”:“transformations” OR “Document Ti-
tle”:“transforming”)
Total # of papers found: 9
ID Title Year Citation
P15 An Approach for MDA Model Transformation Based on JEE

Platform
2008 [73]

P16 Mapping Approach for Model Transformation of MDA Based
on XMI/XML Platform

2009 [74]

P17 Mapping approach for model transformation of MDA based
on xUML

2009 [75]
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Q3
DATABASE: IEEE Xplore
QUERY: (“Document Title”:“CIM” OR “Document Title”:“PIM” OR “Document
Title”:“PSM” OR “Document Title”:“computational independent model” OR “Docu-
ment Title”:“platform independent model” OR “Document Title”:“platform specific
model”) AND (“Document Title”:“approach” OR “Document Title”:“method” OR “Doc-
ument Title”:“methodology”) AND (“Document Title”:“transform” OR “Document
Title”:“transformation” OR “Document Title”:“transformations” OR “Document Ti-
tle”:“transforming”)
Total # of papers found: 5
ID Title Year Citation
P18 A methodology for transforming CIM to PIM through UML:

From business view to information system view
2015 [76]

P19 Transformation approach CIM to PIM: from business pro-
cesses models to state machine and package models

2015 [77]

Q4
DATABASE: IEEE Xplore
QUERY: (“Document Title”:“CIM” OR “Document Title”:“PIM” OR “Document Ti-
tle”:“PSM” OR “Document Title”:“computational independent model” OR “Document
Title”:“platform independent model” OR “Document Title”:“platform specific model”)
AND (“Document Title”:“transform” OR “Document Title”:“transformation” OR “Doc-
ument Title”:“transformations” OR “Document Title”:“transforming”)
Total # of papers found: 15
ID Title Year Citation
P20 A set of QVT relations to transform PIM to PSM in the

Design of Secure Data Warehouses
2007 [78]

P10 Transformation from CIM to PIM Using Patterns and
Archetypes

2008 [69]

P13 A model transformation in MDA from CIM to PIM repre-
sented by web models through SoaML and IFML

2016 [71]

P2 Transformation From CIM to PIM: a Systematic Mapping 2022 [16]
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APPENDIX B
Metamodel: DEMO Fact Model

This appendix presents the metamodel of the Object Fact Diagram (OFD) of the DEMO
fact model (FM). The metamodel is expressed in the General Ontology Specification
Language (GOSL)1.

Figure B.1: Metamodel of the DEMO fact model, adopted from [35]

1For a reference on the syntax of GOSL and the DEMO metamodel, the reader is encouraged to
see [35].
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APPENDIX C
Metamodel: pimUML

This appendix presents the metamodel of the novel UML profile of this thesis, pimUML.
The metamodel is divided into the three major UML diagrams of which pimUML is
composed: the class diagram, the state machine diagram, and the activity diagram. The
pimUML metamodel is based on the metamodel of UML version 2.5.1, which is available
at [88].

Figure C.1: Legend describing the meaning of different pimUML metamodel element
appearances.
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C. Metamodel: pimUML

Figure C.2: Metamodel of the pimUML class model
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Figure C.3: Metamodel of the pimUML state machine model
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C. Metamodel: pimUML

Figure C.4: Metamodel of the pimUML activity model
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APPENDIX D
Metamodel: Mendix

This appendix presents partial metamodels of the Mendix domain model, microflow, and
workflow. The metamodels of the domain model and microflow are adapted from graphical
metamodels provided on the online Mendix documentation, whereas the metamodel of
the workflow was graphically adapted based on the Mendix SDK documentation.

Figure D.1: Legend describing the meaning of different Mendix metamodel element
appearances.
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D. Metamodel: Mendix

Figure D.2: Partial metamodel of the Mendix domain model, adapted from [115]
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Figure D.3: Partial metamodel of the Mendix microflow, adapted from [116]
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D. Metamodel: Mendix

Figure D.4: Partial metamodel of the Mendix workflow, adapted from [117]
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APPENDIX E
Transformation Mappings: DEMO

FM to pimUML

This appendix provides the details of the CIM-to-PIM transformation specification
from the DEMO fact model (FM) to pimUML. There are three key components of the
transformation specification: value mapping functions, helper functions, and graphical
matched pattern transformation rules. The graphical matched pattern transformation
rules demonstrate how various input patterns of DEMO FM modelling concepts, expressed
in GOSL graphical notation, are mapped to output patterns of pimUML modelling
concepts, expressed in the standard graphical notation of UML. The value mapping
functions may appear in elements of the output pattern for various transformation
mappings; for example, to map value types from the DEMO FM to data types in
pimUML in generated elements containing data types. Helper functions operate on
values specified by variables in input patterns to produce new values for use in elements
generated in the corresponding output patterns.

E.1 Value Mapping Functions

• v ↦→ φ in Table E.1 maps DEMO value types (v) to pimUML data types (φ)

E.2 Helper Functions

• + denotes a string concatenation operation

• toCamelCase(x) reformats an inputted string x into camel case format

• first(x) returns the first character of an inputted string x in lowercase
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E. Transformation Mappings: DEMO FM to pimUML

v ↦→ φ

v φ

Time DateTime
Duration Integer
Amount Real
Mass Real
Length Real
Area Real
Volume Real
Velocity Real
Temperature Real
Number Integer
True Value Boolean
Sort Enumeration
Custom value type User-defined data type

Table E.1: Mapping function from DEMO value types to pimUML data types

E.3 Graphical Matched Pattern Transformation Rules
The following pages provide illustrations of the matched pattern transformation rules
corresponding to the transformation mappings listed in Table 10.1. The key elements
being mapped in the input patterns are tinted blue, unless the default tint colour of the
element has semantic meaning (i.e., Value Types are tinted grey to distinguish them
from Entity Types), in which case the element is outlined in blue. The key elements
being generated in the output patterns are tinted green.
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E.3. Graphical Matched Pattern Transformation Rules
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E. Transformation Mappings: DEMO FM to pimUML
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E.3. Graphical Matched Pattern Transformation Rules
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E. Transformation Mappings: DEMO FM to pimUML
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E.3. Graphical Matched Pattern Transformation Rules
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E. Transformation Mappings: DEMO FM to pimUML
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E.3. Graphical Matched Pattern Transformation Rules

In
pu

t
pa

tt
er

n
O

ut
pu

t
pa

tt
er

n

Tr
an

sfo
rm

at
io

n
A

7

159



E. Transformation Mappings: DEMO FM to pimUML
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E.3. Graphical Matched Pattern Transformation Rules
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E. Transformation Mappings: DEMO FM to pimUML
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E.3. Graphical Matched Pattern Transformation Rules
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E. Transformation Mappings: DEMO FM to pimUML
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APPENDIX F
Transformation Mappings:

pimUML to Mendix

This appendix provides the details of the PIM-to-PSM transformation specification from
pimUML to Mendix. There are three key components of the transformation specification:
value mapping functions, helper functions, and graphical matched pattern transformation
rules. The graphical matched pattern transformation rules demonstrate how various input
patterns of pimUML modelling concepts, expressed in the standard graphical notation
of UML, are mapped to output patterns of Mendix modelling concepts, expressed as
UML object diagrams representing instantiated Mendix elements1. The value mapping
functions may appear in elements of the output pattern for various transformation
mappings. Helper functions operate on values specified by variables in input patterns to
produce new values for use in elements generated in the corresponding output patterns.

F.1 Value Mapping Functions

• v ↦→ σ in Table F.1 maps pimUML data types (v) to Mendix data types (φ)

• (a, b) ↦→ (α, β) in Table F.2 maps multiplicities on associations in the pimUML
class diagram to Mendix association owner and type values in the domain model

1It should be noted that the numbers identifying the objects in the output patterns are arbitrarily
assigned and serve no further purpose than to uniquely identify different instances of like elements.
Likewise, these numbers are specific to each transformation rule and therefore do not intend to suggest
that output pattern objects of the same type and with equivalent identifiers represent the same instantiation
across different transformation rules.
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F. Transformation Mappings: pimUML to Mendix

v ↦→ σ

v σ

DateTime DateTime
Integer Integer
Real Decimal
Boolean Boolean
Enumeration Enumeration

Table F.1: Mapping function from pimUML data types to Mendix data types

(a, b) ↦→ (α, β)
a b α β

1 1 Both Reference
1 * Default Reference
* 1 Default Reference
* * Default Reference set

Table F.2: Mapping function from pimUML association multiplicity upper bounds to
Mendix association type and ownership values

F.2 Helper Functions

• + denotes a string concatenation operation

• toUpperCamelCase(x) reformats an inputted string x into upper camel case
format

F.3 Graphical Matched Pattern Transformation Rules
The following pages provide illustrations of the matched pattern transformation rules
corresponding to the transformation mappings listed in Table 11.1. The key elements
being mapped in the input patterns are tinted blue, and the key elements being generated
in the output patterns are tinted green.
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F.3. Graphical Matched Pattern Transformation Rules
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F. Transformation Mappings: pimUML to Mendix
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F.3. Graphical Matched Pattern Transformation Rules
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F. Transformation Mappings: pimUML to Mendix
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F.3. Graphical Matched Pattern Transformation Rules
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F. Transformation Mappings: pimUML to Mendix
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F.3. Graphical Matched Pattern Transformation Rules
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F. Transformation Mappings: pimUML to Mendix
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F.3. Graphical Matched Pattern Transformation Rules
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F. Transformation Mappings: pimUML to Mendix
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F.3. Graphical Matched Pattern Transformation Rules
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F. Transformation Mappings: pimUML to Mendix
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F.3. Graphical Matched Pattern Transformation Rules
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F. Transformation Mappings: pimUML to Mendix
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F.3. Graphical Matched Pattern Transformation Rules
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F. Transformation Mappings: pimUML to Mendix
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F.3. Graphical Matched Pattern Transformation Rules
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F. Transformation Mappings: pimUML to Mendix
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F.3. Graphical Matched Pattern Transformation Rules
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F. Transformation Mappings: pimUML to Mendix
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F.3. Graphical Matched Pattern Transformation Rules
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F. Transformation Mappings: pimUML to Mendix
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F.3. Graphical Matched Pattern Transformation Rules

In
pu

t
pa

tt
er

n
O

ut
pu

t
pa

tt
er

n

Tr
an

sfo
rm

at
io

n
B2

3

189



F. Transformation Mappings: pimUML to Mendix
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APPENDIX G
RAC Case Study Fact Statements

This appendix contains the domain fact statements derived from the Rent-A-Car (RAC)
case study, derived through the verbalization process demonstrated in [33]. The fact
statements are organized into separate tables, grouped by the fact types by which they
are represented in the Object Fact Diagram of the RAC DEMO fact model. For each
of the CIM-to-PIM mappings demonstrated from Chapters 7 through 10, as well as the
PIM-to-PSM mappings in Chapter 11, the semantic correctness of each fact statement
was assessed. Each of the transformation target modelling languages of each of these
chapters has a column in the below tables. A ✓ is used to denote if the semantics of
each fact statement was deemed to be correctly captured by the chosen elements of each
target modelling language.
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G. RAC Case Study Fact Statements
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Overview of Generative AI Tools
Used

No generative AI tools were used in the creation of this work.
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Übersicht verwendeter Hilfsmittel

Bei der Erstellung dieser Arbeit wurden keine generativen KI-Tools verwendet.
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